WO2020100611A1 - Nanowire optical device - Google Patents

Nanowire optical device Download PDF

Info

Publication number
WO2020100611A1
WO2020100611A1 PCT/JP2019/042779 JP2019042779W WO2020100611A1 WO 2020100611 A1 WO2020100611 A1 WO 2020100611A1 JP 2019042779 W JP2019042779 W JP 2019042779W WO 2020100611 A1 WO2020100611 A1 WO 2020100611A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowire
region
electrode
type region
optical device
Prior art date
Application number
PCT/JP2019/042779
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 滝口
納富 雅也
智 佐々木
功太 舘野
篤 横尾
国強 章
セルジャン シルヴァン
新家 昭彦
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/293,399 priority Critical patent/US20210408336A1/en
Publication of WO2020100611A1 publication Critical patent/WO2020100611A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present invention relates to a nanowire optical device, and more specifically to a nanowire optical device including a nanowire made of a semiconductor.
  • Nano-wires using semiconductors are drawing attention as optical elements with extremely small one-dimensional structures.
  • This nanowire can be made of various semiconductor materials, and in the light emitting device, the emission wavelength can be freely changed. Further, since the nanowire can have a pin structure or a quantum well / quantum dot embedding structure, it can be applied to a laser, a single photon source, an optical receiver, or the like.
  • CMOS Complementary metal oxide silicon
  • the nanowire can be made into a single mode waveguide by designing the wire diameter appropriately.
  • the nanowire can be operated as a laser by utilizing end face reflection.
  • optical elements such as photodetectors.
  • the operation of the nanowire alone has a problem that the threshold value of laser oscillation becomes high because the resonator Q value is small and multimode oscillation occurs. Therefore, in recent years, single-mode oscillation of a nanowire laser has been realized by combining a compound nanowire with a two-dimensional photonic crystal having a large optical confinement effect that can freely control optical characteristics (see Non-Patent Document 1). ).
  • a two-dimensional photonic crystal body 501 is formed with an optical waveguide 502 by a line defect, and a nanowire 504 is arranged in a groove 503 formed in the optical waveguide 502. It has a structure.
  • the two-dimensional photonic crystal main body 501 is composed of a plate-shaped base portion 505 and a plurality of lattice elements 506 that are periodically provided on the base portion 505.
  • the nanowire 504 is arranged in the groove 503 using the probe 521 of the atomic force microscope. Light is strongly confined at the portion of the groove 503 where the nanowire 504 is arranged.
  • the nanowires are placed on the substrate.
  • This technique includes a method using an inkjet method and a method using a micromanipulator. Further, in order to arrange the nanowire arranged on the substrate in the groove, the nanowire is manipulated by using the atomic force microscope, the optical tweezers or the micromanipulator described above. It is also possible to directly grow the nanowires of different materials on the silicon substrate so that the nanowires are arranged in the grooves.
  • the technique for arranging nanowires in the grooves of the photonic crystal described above has achieved certain success in that it makes it possible to observe laser oscillation and quantum optical effects.
  • -It is important to form an appropriate electrode structure, for example, a current injection structure, in the nanowire optical device using such a photonic crystal in order to realize future on-chip optical integrated devices.
  • an appropriate electrode structure for example, a current injection structure
  • the capacitance of the nanowire itself is very small, and thus the nanowire optical device can be operated at high speed.
  • This nanowire optical device has an optical waveguide 502 provided in the photonic crystal body 501, a groove 503 formed in the optical waveguide 502, similar to the photonic crystal body 501 described with reference to FIGS. 9A and 9B.
  • the photonic crystal body 501 includes a plate-shaped base 505 and a plurality of lattice elements 506.
  • n-type region 507 is formed on one end side of the nanowire 504, and a p-type region 508 is formed on the other end side of the nanowire 504.
  • N-type region 507 and p-type region 508 are formed by introducing corresponding impurities.
  • an active region 509 is formed in a region sandwiched between the n-type region 507 and the p-type region 508 of the nanowire 504.
  • the active region 509 has, for example, a multiple quantum well structure.
  • a first electrode 510 made of metal is connected to the n-type region 507, and a second electrode 511 made of metal is connected to the p-type region 508.
  • the first electrode 510 and the second electrode 511 are connected to a power source (not shown), a current is passed through the nanowire 504, and carriers are injected into the active region 509, so that the active region 509 can emit light.
  • the detour optical waveguide 502a due to the line defect is provided, and the light generated in the active region 509 is guided to the detour optical waveguide 502a and extracted.
  • the detour optical waveguide 502a even when the detour optical waveguide 502a is used, there is a problem that the guided light loss due to the detour optical waveguide 502a having the bending structure occurs and the band of the guided light becomes narrow. Further, in order to suppress the absorption of light by the electrode made of metal, the electrode is separated from the active region 509. However, the longer the distance between the electrode and the active region 509, the higher the resistance value between the active region 509 and the electrode, and the lower the efficiency of current injection.
  • the present invention has been made to solve the above problems, and an object of the present invention is to suppress light loss in a nanowire optical device without increasing the distance between the active region and the electrode.
  • the nanowire optical device comprises a base and a plurality of columnar grating elements having a refractive index different from that of the base, and the plurality of grating elements are periodically arranged on the base at intervals equal to or less than the wavelength of light of interest.
  • a plate-shaped photonic crystal body provided in the optical waveguide, an optical waveguide by a line defect in which a plurality of defects composed of a portion without a lattice element of the photonic crystal body are linearly arranged, and a waveguide direction in the optical waveguide.
  • the n-type region of the first electrode includes an active region sandwiched between an n-type region and a p-type region, a first electrode connected to the n-type region, and a second electrode connected to the p-type region. At least one of the region in contact with the p-type region and the region in contact with the p-type region of the second electrode is made of a transparent electrode material.
  • the groove is formed to be wider than the width of the nanowire in a region formed of the transparent electrode material of at least one of the first electrode and the second electrode in plan view. Has been done.
  • At least one of the region connected to the n-type region of the first electrode and the region connected to the p-type region of the second electrode is a nanowire region.
  • the transparent electrode material is formed in contact with the side surface of the nanowire facing the side surface of the groove in addition to the upper surface of the transparent electrode material.
  • the width of the groove becomes wider in a plan view in a region formed of the transparent electrode material of at least one of the first electrode and the second electrode, as the distance from the active region increases. ..
  • the configuration example of the nanowire optical device further includes an optical confinement structure for confining light in the active region, and the optical confinement structure is formed by sandwiching the active region in an optical waveguide.
  • At least one of the region connected to the n-type region of the first electrode and the region connected to the p-type region of the second electrode is made of the transparent electrode material. It is possible to obtain an excellent effect that the loss of light in the nanowire optical device can be suppressed without increasing the distance between the region and the electrode.
  • FIG. 1A is a plan view showing the configuration of the nanowire optical device according to the first embodiment of the present invention.
  • FIG. 1B is a sectional view showing the configuration of the nanowire optical device according to the first embodiment of the present invention.
  • FIG. 2A is a plan view showing the configuration of the nanowire optical device according to the second embodiment of the present invention.
  • FIG. 2B is a sectional view showing the configuration of the nanowire optical device according to the second embodiment of the present invention.
  • FIG. 3 shows a case where a transparent electrode material made of ZnO having a thickness of several nm and a width of 5 ⁇ m is formed on the nanowire 104 arranged in the groove 103 (b) and a case where the transparent electrode material is not formed (a).
  • FIG. 4 is a characteristic diagram showing the measurement results of the wavelength shift between the groove 103 having a width of 100 nm and (a) and the groove 103a having a width of 150 nm and (b).
  • FIG. 5A is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention.
  • FIG. 5B is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention.
  • FIG. 5C is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention.
  • FIG. 6 is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention.
  • FIG. 7 is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention.
  • FIG. 8 is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention.
  • FIG. 9A is a perspective view showing a configuration of a conventional nanowire optical device.
  • FIG. 9B is a plan view showing a configuration of a conventional nanowire optical device.
  • FIG. 10 is a plan view showing a configuration of a conventional nanowire optical device.
  • FIG. 1B shows a cross section taken along the line aa ′ in FIG. 1A.
  • This nanowire optical device includes a photonic crystal body 101, an optical waveguide 102 provided in the photonic crystal body 101, a groove 103 formed in the optical waveguide 102, and a nanowire 104 arranged in the groove 103.
  • the photonic crystal body 101 can be made of, for example, silicon.
  • the nanowire 104 is composed of a semiconductor.
  • the nanowire 104 can be made of a compound semiconductor such as InP.
  • the photonic crystal body 101 includes a plate-shaped base 105 and a plurality of lattice elements 106.
  • the grating element 106 has a refractive index different from that of the base 105.
  • the base 105 is made of, for example, InP, and the lattice element 106 is, for example, a cylindrical through hole.
  • the plurality of lattice elements 106 are periodically provided at intervals equal to or less than the wavelength of the target light, and are arranged in a triangular lattice shape in plan view, for example.
  • the optical waveguide 102 is composed of line defects.
  • a line defect is a linear array of a plurality of defects (point defects) formed from a portion of the photonic crystal body 101 without the lattice element 106.
  • the groove 103 extends in the waveguide direction of the optical waveguide 102 thus configured.
  • An n-type region 107 is formed on one end side of the nanowire 104, and a p-type region 108 is formed on the other end side of the nanowire 104.
  • the n-type region 107 and the p-type region 108 can be formed by introducing corresponding impurities.
  • an active region 109 is formed in a region sandwiched between the n-type region 107 and the p-type region 108 of the nanowire 104.
  • the active region 109 has, for example, a multiple quantum well structure.
  • the active region 109 can be formed by forming a multiple quantum well structure in which quantum well layers made of InAsP and barrier layers made of InP are alternately stacked in the extending direction of the nanowires 104.
  • a quantum well layer made of InAsP functions as an active layer.
  • the nanowire optical device includes the first electrode 110 connected to the n-type region 107 and the second electrode 111 connected to the p-type region 108.
  • the first electrode 110 is in contact with the upper surface of the n-type region 107 at the opening end of the groove 103.
  • the second electrode 111 is in contact with the upper surface of the p-type region 108 at the open end of the groove 103.
  • At least a region of the second electrode 111 that is in contact with the p-type region 108 is made of a transparent electrode material.
  • the second electrode 111 may be entirely made of a transparent electrode material.
  • the second electrode 111 made of a transparent electrode material can be arranged directly on the optical waveguide 102 or on the photonic crystal body 101.
  • the transparent electrode material can be composed of, for example, ITO (Indium Tin Oxide) or ZnO. Note that at least the region of the first electrode 110 that is connected (contacted) with the n-type region 107 can be made of a transparent electrode material. Also in this case, the first electrode 110 may be wholly made of a transparent electrode material.
  • the light generated in the active region 109 when the light generated in the active region 109 is guided through the optical waveguide 102 in the direction of the second electrode 111, the light is not absorbed by the second electrode 111 and is guided. No loss of wave light. Therefore, according to the first embodiment, the light generated in the active region 109 can be guided in the direction of the second electrode 111 of the optical waveguide 102 without the loss of the guided light. There is no need to introduce and there is no waveguide loss due to the use of bending waveguides.
  • the second electrode 111 made of a transparent electrode material can be arranged close to the active region 109, and the resistance value between the active region 109 and the second electrode 111 can be lowered, so that the current injection The decrease in efficiency can be suppressed. It is also possible that at least a region of the second electrode 111 that influences the optical characteristics and that is connected (contacted) with the p-type region 108 is made of a transparent electrode material, and the other region of the second electrode 111 is made of a metal. Is. Although the transparent electrode material has a high resistivity with respect to a metal, by limiting the portion of the transparent electrode material to a portion that affects the optical characteristics and forming the other region from the metal, the overall resistance of the second electrode 111 can be reduced. Can be lowered. The same applies to the case where the first electrode 110 is made of a transparent electrode material. The light generated in the active region 109 can be guided in the direction of the first electrode 110 of the optical waveguide 102 without loss of guided light.
  • the nanowire optical device according to the first embodiment can function as a light emitting element that causes the active region 109 to emit light by injecting a current into the active region 109 through the first electrode 110 and the second electrode 111, for example.
  • the n-type region 107, the active region 109, and the p-type region 108 can function as a photodiode having a so-called pin structure.
  • FIG. 2B shows a cross section taken along the line aa ′ of FIG. 2A.
  • the first electrode 110a connected to the n-type region 107 and the second electrode 111a connected to the p-type region 108 are provided. Further, at least a region of the second electrode 111a that is connected (contacted) with the p-type region 108 is made of a transparent electrode material.
  • the width of the groove 103a is made wider than the width of the nanowire 104 in the region formed of the transparent electrode material in the region connected to the p-type region 108 of the second electrode 111a.
  • the width of the groove 103b is made wider than the width of the nanowire 104 even in the region of the first electrode 110a connected to the n-type region 107.
  • the region of the second electrode 111a made of the transparent electrode material is formed not only on the upper surface of the nanowire 104 but also on the side surface of the nanowire 104 facing the side surface of the groove 103a. It is formed in contact. Even when the first electrode 110a is made of a transparent electrode material, the region made of the transparent electrode material of the first electrode 110a is formed on the side surface of the nanowire 104 facing the side surface of the groove 103b in addition to the upper surface of the nanowire 104. It can be configured to be in contact with each other.
  • the transparent electrode material is also in contact with the side surface of the nanowire 104 facing the side surface of the groove 103a, as compared with the state in which the second electrode 111a made of the transparent electrode material is connected (contacted) only on the upper surface of the nanowire 104. Therefore, the resistance value can be lowered.
  • the electrode is formed by the vapor deposition method or the sputtering method, if the width of the groove 103a is made wider than the width of the nanowire 104, the electrode material can be deposited and formed on the side surface of the nanowire 104 as well.
  • FIG. 3 shows the wavelength shift between the case where a transparent electrode material made of ZnO having a thickness of several nm and a width of 5 ⁇ m is formed on the nanowire 104 arranged in the groove 103 and the case where the transparent electrode material is not formed. The measurement results are shown.
  • the case where the transparent electrode material is not formed (a)
  • the case where the transparent electrode material is formed (b) has only a wavelength shift to the long wavelength side of about 20 nm.
  • the wavelength shift is small and, as described above, the waveguide loss (transmission loss) is also small, so that the optical characteristics of the nanowire optical device are not significantly impaired.
  • FIG. 4 shows the measurement results of the wavelength shift between the groove 103 having a width of 100 nm in plan view and the groove 103a having a width of 150 nm in plan view.
  • the groove 103a (b) having a width of 150 nm shifts to the short wavelength side by only about 10 to 20 nm.
  • the wavelength shift due to the increased width is small, and therefore the optical characteristics of the nanowire optical device are not significantly impaired.
  • the wavelength shift to the short wavelength side is canceled by the wavelength shift to the long wavelength side, so that the transmission band can be narrowed. Absent.
  • a resonator can be formed by providing an optical confinement structure 112 for confining light in the active region 109 of the nanowire 104.
  • the light confinement structure 112 may be formed by periodically disposing columnar structures having a refractive index different from that of the base 105 formed in the photonic crystal body 101 in the optical waveguide direction.
  • the light confinement structure 112a may be a rectangular parallelepiped through hole.
  • a light confinement structure 112b may be formed by a through hole arranged between the groove 103 and the row of the grating elements 106 adjacent to the optical waveguide 102.
  • the grating element 106 a adjacent to the groove 103 is shifted in the direction away from the groove 103, so that the optics of this region are changed. It becomes possible to adjust the characteristics.
  • the second electrode 111b made of a transparent electrode material can be arranged along the optical waveguide 102 on the inner side in the width direction of the optical waveguide 102 in plan view.
  • the second electrode 111b is arranged between the two rows of the lattice elements 106 adjacent to the groove 103 and in parallel with the optical waveguide 102.
  • the width of the groove 103c in the region connected to the p-type region of the second electrode 111c, can be made wider in a plan view as the distance from the active region 109 increases.
  • the width of the groove 103d in the region of the first electrode 110a connected to the n-type region 107, can be made wider as it is farther from the active region 109 in a plan view.
  • the groove 103c is formed in a region made of the transparent electrode material of the first electrode 110a in plan view.
  • the groove 103d can also be formed in a region made of the transparent electrode material of the second electrode 111c in plan view.
  • At least one of the region connected to the n-type region of the first electrode and the region connected to the p-type region of the second electrode is made of the transparent electrode material.
  • the light loss in the nanowire optical device can be suppressed without increasing the distance between the active region and the electrode.
  • 101 Photonic crystal body, 102 ... Optical waveguide, 103 ... Groove, 104 ... Nanowire, 105 ... Base, 106 ... Lattice element, 107 ... N-type region, 108 ... P-type region, 110 ... First electrode, 111 ... 2 electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A nanowire optical device comprising: a plate-like photonic crystal body provided on a substrate; an optical waveguide composed of a plurality of linearly-disposed line defects constituted by portions with no lattice elements of the photonic crystal body; a groove formed in the optical waveguide along the wave-guide direction; a nanowire made from a semiconductor and arranged in the groove; an n-type region formed at one end of the nanowire; a p-type region formed at the other end of the nanowire; an active region formed between the n-type region and p-type region of the nanowire; a first electrode connected to the n-type region; and a second electrode connected to the p-type region. At least either a region in contact with the n-type region of the first electrode or a region in contact with the p-type region of the second electrode is made of a transparent electrode material.

Description

ナノワイヤ光デバイスNanowire optical device
 本発明は、ナノワイヤ光デバイスに関し、より具体的には、半導体からなるナノワイヤを備えるナノワイヤ光デバイスに関する。 The present invention relates to a nanowire optical device, and more specifically to a nanowire optical device including a nanowire made of a semiconductor.
 半導体を用いたナノワイヤは、非常に小さい一次元構造を有する光学素子として注目を集めている。このナノワイヤは、様々な半導体材料で作製することが可能であり、発光素子にあっては、発光波長の自由に変えることができる。また、ナノワイヤは、pin構造や量子井戸・量子ドットの埋め込み構造とすることができるため、レーザ、単一光子源、光受光器などに応用可能である。近年では、CMOS(Complementary metal oxide silicon)技術に応用できるシリコン基板上に、化合物半導体によるナノワイヤを成長する集積化の研究も行われており、シリコン光導波路の任意の場所にナノワイヤを集積した、光電融合型プロセッサやオンチップ高感度センサなどへの応用が期待される。 Nano-wires using semiconductors are drawing attention as optical elements with extremely small one-dimensional structures. This nanowire can be made of various semiconductor materials, and in the light emitting device, the emission wavelength can be freely changed. Further, since the nanowire can have a pin structure or a quantum well / quantum dot embedding structure, it can be applied to a laser, a single photon source, an optical receiver, or the like. In recent years, research on integration to grow nanowires made of compound semiconductors on a silicon substrate that can be applied to CMOS (Complementary metal oxide silicon) technology has been conducted. Applications to fused processors and on-chip high-sensitivity sensors are expected.
 ナノワイヤは、適切にワイヤ径を設計することで単一モード導波路とすることができる。また、ナノワイヤは、端面反射を利用することでレーザとして動作させることができる。さらに、ナノワイヤの構造の持つアンテナの効果を利用することで、フォトディテクタなど光学素子にも応用できる。しかしながら、ナノワイヤ単体での動作は、共振器Q値が小さいためにレーザ発振の閾値が高くなり、また、多モード発振するなどの課題がある。このため、近年では、光学特性を自由に制御でき光閉じ込め効果の大きい2次元フォトニック結晶と化合物ナノワイヤを組み合わせることで、ナノワイヤレーザの単一モード発振などが実現されてきた(非特許文献1参照)。 -The nanowire can be made into a single mode waveguide by designing the wire diameter appropriately. In addition, the nanowire can be operated as a laser by utilizing end face reflection. Furthermore, by utilizing the effect of the antenna of the nanowire structure, it can be applied to optical elements such as photodetectors. However, the operation of the nanowire alone has a problem that the threshold value of laser oscillation becomes high because the resonator Q value is small and multimode oscillation occurs. Therefore, in recent years, single-mode oscillation of a nanowire laser has been realized by combining a compound nanowire with a two-dimensional photonic crystal having a large optical confinement effect that can freely control optical characteristics (see Non-Patent Document 1). ).
 この技術では、図9A,図9Bに示すように、2次元フォトニック結晶本体501に線欠陥による光導波路502を作製し、光導波路502の中に形成された溝503にナノワイヤ504を配置したハイブリッド構造としている。2次元フォトニック結晶本体501は、よく知られているように、板状の基部505と、基部505に周期的に設けられた複数の格子要素506とから構成されている。例えば、原子間力顕微鏡のプローブ521を用い、ナノワイヤ504を、溝503に配置する。溝503のナノワイヤ504が配置された箇所では、光が強く閉じ込められるようになる。 In this technique, as shown in FIG. 9A and FIG. 9B, a two-dimensional photonic crystal body 501 is formed with an optical waveguide 502 by a line defect, and a nanowire 504 is arranged in a groove 503 formed in the optical waveguide 502. It has a structure. As is well known, the two-dimensional photonic crystal main body 501 is composed of a plate-shaped base portion 505 and a plurality of lattice elements 506 that are periodically provided on the base portion 505. For example, the nanowire 504 is arranged in the groove 503 using the probe 521 of the atomic force microscope. Light is strongly confined at the portion of the groove 503 where the nanowire 504 is arranged.
 上述したようなナノワイヤを所定の箇所に配置するためには、まず、ナノワイヤを基板の上に配置することになる。この技術には、インクジェットによる塗布や、マイクロマニピュレータによる方法がある。また、基板の上に配置されたナノワイヤを溝に配置させるためには、上述した原子間力顕微鏡や、光ピンセットやマイクロマニピュレータなどを用い、ナノワイヤをマニピュレーションする。また、直接シリコン基板上に異種材料のナノワイヤを成長させることで、溝にナノワイヤが配置される状態とすることも可能である。上述したフォトニック結晶の溝にナノワイヤを配置する技術は、レーザ発振や量子光学効果を観測することを可能にしたという点で一定の成功を収めている。 In order to place the nanowires as described above in the prescribed places, first, the nanowires are placed on the substrate. This technique includes a method using an inkjet method and a method using a micromanipulator. Further, in order to arrange the nanowire arranged on the substrate in the groove, the nanowire is manipulated by using the atomic force microscope, the optical tweezers or the micromanipulator described above. It is also possible to directly grow the nanowires of different materials on the silicon substrate so that the nanowires are arranged in the grooves. The technique for arranging nanowires in the grooves of the photonic crystal described above has achieved certain success in that it makes it possible to observe laser oscillation and quantum optical effects.
 このようなフォトニック結晶を用いたナノワイヤ光デバイスに、適切な電極構造を形成し、例えば電流注入構造を導入することは、将来のオンチップ光集積化素子などを実現する上で重要である。ナノワイヤを用いれば、ナノワイヤ自体の静電容量が非常に小さいため、ナノワイヤ光デバイスを高速に動作させることができる。 -It is important to form an appropriate electrode structure, for example, a current injection structure, in the nanowire optical device using such a photonic crystal in order to realize future on-chip optical integrated devices. When the nanowire is used, the capacitance of the nanowire itself is very small, and thus the nanowire optical device can be operated at high speed.
 しかしながら、ナノワイヤ光デバイスに電極を形成すると、ナノワイヤが配置される光導波路構造における、導波損失を招くという問題がある。ここで、ナノワイヤ光デバイスの電極を設ける構成について、図10を参照して説明する。 However, when an electrode is formed on the nanowire optical device, there is a problem that it causes a waveguide loss in the optical waveguide structure in which the nanowire is arranged. Here, the configuration of providing the electrodes of the nanowire optical device will be described with reference to FIG.
 このナノワイヤ光デバイスは、図9A,図9Bを用いて説明したフォトニック結晶本体501と同様に、フォトニック結晶本体501に設けられた光導波路502と、光導波路502に形成された溝503と、溝503に配置されたナノワイヤ504とを備える。フォトニック結晶本体501は、板状の基部505と、複数の格子要素506とを備えている。 This nanowire optical device has an optical waveguide 502 provided in the photonic crystal body 501, a groove 503 formed in the optical waveguide 502, similar to the photonic crystal body 501 described with reference to FIGS. 9A and 9B. A nanowire 504 disposed in the groove 503. The photonic crystal body 501 includes a plate-shaped base 505 and a plurality of lattice elements 506.
 また、ナノワイヤ504の一端側には、n型領域507が形成され、ナノワイヤ504の他端側には、p型領域508が形成されている。n型領域507およびp型領域508は、各々対応する不純物を導入することで形成されている。また、ナノワイヤ504のn型領域507とp型領域508とに挾まれた領域には、活性領域509が形成されている。活性領域509は、例えば、多重量子井戸構造とされている。 An n-type region 507 is formed on one end side of the nanowire 504, and a p-type region 508 is formed on the other end side of the nanowire 504. N-type region 507 and p-type region 508 are formed by introducing corresponding impurities. Further, an active region 509 is formed in a region sandwiched between the n-type region 507 and the p-type region 508 of the nanowire 504. The active region 509 has, for example, a multiple quantum well structure.
 また、n型領域507には、金属からなる第1電極510が接続され、p型領域508には、金属からなる第2電極511が接続されている。第1電極510,第2電極511を電源(不図示)に接続し、ナノワイヤ504に電流を流して、活性領域509にキャリアを注入することがで、活性領域509を発光させることができる。 A first electrode 510 made of metal is connected to the n-type region 507, and a second electrode 511 made of metal is connected to the p-type region 508. The first electrode 510 and the second electrode 511 are connected to a power source (not shown), a current is passed through the nanowire 504, and carriers are injected into the active region 509, so that the active region 509 can emit light.
 上述したナノワイヤ光デバイスでは、例えば、活性領域509で生成された光を、光導波路502に導波させようとすると、金属からなる第1電極510や第2電極511で光が吸収され、導波光の損失が発生することになる。このため、線欠陥による迂回光導波路502aを設け、活性領域509で生成された光を、迂回光導波路502aに導波させて取り出すようにする。 In the nanowire optical device described above, for example, when the light generated in the active region 509 is to be guided to the optical waveguide 502, the light is absorbed by the first electrode 510 and the second electrode 511 made of metal, and the guided light is emitted. Will be lost. Therefore, the detour optical waveguide 502a due to the line defect is provided, and the light generated in the active region 509 is guided to the detour optical waveguide 502a and extracted.
 しかしながら、迂回光導波路502aを用いても、曲げ構造の迂回光導波路502aによる導波光の損失が発生する他に、導波光の帯域が狭くなるなどの問題がある。また、金属からなる電極による光の吸収を抑制するためには、電極を活性領域509からより離すことになる。しかしながら、電極と活性領域509との距離が長くなれば長くなるほど、活性領域509と電極との間の抵抗値が上がり、電流注入の効率が低下する。 However, even when the detour optical waveguide 502a is used, there is a problem that the guided light loss due to the detour optical waveguide 502a having the bending structure occurs and the band of the guided light becomes narrow. Further, in order to suppress the absorption of light by the electrode made of metal, the electrode is separated from the active region 509. However, the longer the distance between the electrode and the active region 509, the higher the resistance value between the active region 509 and the electrode, and the lower the efficiency of current injection.
 本発明は、以上のような問題点を解消するためになされたものであり、活性領域と電極との間隔を広げることなく、ナノワイヤ光デバイスにおける光の損失を抑制することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to suppress light loss in a nanowire optical device without increasing the distance between the active region and the electrode.
 本発明に係るナノワイヤ光デバイスは、基部および基部とは異なる屈折率を有する柱状の複数の格子要素を備え、複数の格子要素は、基部上に、対象とする光の波長以下の間隔で周期的に設けられている板状のフォトニック結晶本体と、フォトニック結晶本体の格子要素がない部分から構成された欠陥を直線状に複数配列した線欠陥による光導波路と、光導波路に、導波方向に沿って形成された溝と、溝に配置された、半導体からなるナノワイヤと、ナノワイヤの一端側に形成されたn型領域と、ナノワイヤの他端側に形成されたp型領域と、ナノワイヤのn型領域とp型領域とに挾まれて形成された活性領域と、n型領域に接続する第1電極と、p型領域に接続する第2電極とを備え、第1電極のn型領域に接する領域、および第2電極のp型領域に接する領域の少なくとも一方は、透明電極材料から構成されている。 The nanowire optical device according to the present invention comprises a base and a plurality of columnar grating elements having a refractive index different from that of the base, and the plurality of grating elements are periodically arranged on the base at intervals equal to or less than the wavelength of light of interest. A plate-shaped photonic crystal body provided in the optical waveguide, an optical waveguide by a line defect in which a plurality of defects composed of a portion without a lattice element of the photonic crystal body are linearly arranged, and a waveguide direction in the optical waveguide. A groove formed along the groove, a nanowire made of a semiconductor arranged in the groove, an n-type region formed on one end side of the nanowire, a p-type region formed on the other end side of the nanowire, and a nanowire The n-type region of the first electrode includes an active region sandwiched between an n-type region and a p-type region, a first electrode connected to the n-type region, and a second electrode connected to the p-type region. At least one of the region in contact with the p-type region and the region in contact with the p-type region of the second electrode is made of a transparent electrode material.
 請求項1記載のナノワイヤ光デバイスの一構成例において、溝は、平面視で、第1電極、および第2電極の少なくとも一方の透明電極材料から構成されている領域において、ナノワイヤの幅より広く形成されている。 In one structural example of the nanowire optical device according to claim 1, the groove is formed to be wider than the width of the nanowire in a region formed of the transparent electrode material of at least one of the first electrode and the second electrode in plan view. Has been done.
 上記ナノワイヤ光デバイスの一構成例において、第1電極のn型領域に接続する領域、および第2電極のp型領域に接続する領域の少なくとも一方の透明電極材料から構成されている領域は、ナノワイヤの上面に加えて、溝の側面に向かい合うナノワイヤの側面に透明電極材料が接して形成されている。 In one configuration example of the nanowire optical device, at least one of the region connected to the n-type region of the first electrode and the region connected to the p-type region of the second electrode is a nanowire region. The transparent electrode material is formed in contact with the side surface of the nanowire facing the side surface of the groove in addition to the upper surface of the transparent electrode material.
 上記のナノワイヤ光デバイスの一構成例において、溝の幅は、平面視で、第1電極、および第2電極の少なくとも一方の透明電極材料から構成されている領域において、活性領域から離れるほど広くなる。 In one configuration example of the nanowire optical device described above, the width of the groove becomes wider in a plan view in a region formed of the transparent electrode material of at least one of the first electrode and the second electrode, as the distance from the active region increases. ..
 上記ナノワイヤ光デバイスの一構成例において、活性領域に光を閉じ込めるための光閉じ込め構造をさらに備え、光閉じ込め構造は、光導波路に活性領域を挟んで形成されている。 The configuration example of the nanowire optical device further includes an optical confinement structure for confining light in the active region, and the optical confinement structure is formed by sandwiching the active region in an optical waveguide.
 以上説明したように、本発明によれば、第1電極のn型領域に接続する領域、および第2電極のp型領域に接続する領域の少なくとも一方を、透明電極材料から構成したので、活性領域と電極との間隔を広げることなく、ナノワイヤ光デバイスにおける光の損失が抑制できるという優れた効果が得られる。 As described above, according to the present invention, at least one of the region connected to the n-type region of the first electrode and the region connected to the p-type region of the second electrode is made of the transparent electrode material. It is possible to obtain an excellent effect that the loss of light in the nanowire optical device can be suppressed without increasing the distance between the region and the electrode.
図1Aは、本発明の実施の形態1に係るナノワイヤ光デバイスの構成を示す平面図である。FIG. 1A is a plan view showing the configuration of the nanowire optical device according to the first embodiment of the present invention. 図1Bは、本発明の実施の形態1に係るナノワイヤ光デバイスの構成を示す断面図である。FIG. 1B is a sectional view showing the configuration of the nanowire optical device according to the first embodiment of the present invention. 図2Aは、本発明の実施の形態2に係るナノワイヤ光デバイスの構成を示す平面図である。FIG. 2A is a plan view showing the configuration of the nanowire optical device according to the second embodiment of the present invention. 図2Bは、本発明の実施の形態2に係るナノワイヤ光デバイスの構成を示す断面図である。FIG. 2B is a sectional view showing the configuration of the nanowire optical device according to the second embodiment of the present invention. 図3は、厚さ数nm、幅5μmのZnOからなる透明電極材料を溝103に配置されているナノワイヤ104の上に形成した場合(b)と、透明電極材料を形成しない場合(a)との間の波長シフトの測定結果を示す特性図である。FIG. 3 shows a case where a transparent electrode material made of ZnO having a thickness of several nm and a width of 5 μm is formed on the nanowire 104 arranged in the groove 103 (b) and a case where the transparent electrode material is not formed (a). It is a characteristic view which shows the measurement result of the wavelength shift between. 図4は、幅を100nmとした溝103と(a)、幅を150nmとした溝103aと(b)の間の波長シフトの測定結果を示す特性図である。FIG. 4 is a characteristic diagram showing the measurement results of the wavelength shift between the groove 103 having a width of 100 nm and (a) and the groove 103a having a width of 150 nm and (b). 図5Aは、本発明の実施の形態に係る他のナノワイヤ光デバイスの構成を示す平面図である。FIG. 5A is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention. 図5Bは、本発明の実施の形態に係る他のナノワイヤ光デバイスの構成を示す平面図である。FIG. 5B is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention. 図5Cは、本発明の実施の形態に係る他のナノワイヤ光デバイスの構成を示す平面図である。FIG. 5C is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る他のナノワイヤ光デバイスの構成を示す平面図である。FIG. 6 is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る他のナノワイヤ光デバイスの構成を示す平面図である。FIG. 7 is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る他のナノワイヤ光デバイスの構成を示す平面図である。FIG. 8 is a plan view showing the configuration of another nanowire optical device according to the embodiment of the present invention. 図9Aは、従来のナノワイヤ光デバイスの構成を示す斜視図である。FIG. 9A is a perspective view showing a configuration of a conventional nanowire optical device. 図9Bは、従来のナノワイヤ光デバイスの構成を示す平面図である。FIG. 9B is a plan view showing a configuration of a conventional nanowire optical device. 図10は、従来のナノワイヤ光デバイスの構成を示す平面図である。FIG. 10 is a plan view showing a configuration of a conventional nanowire optical device.
 以下、本発明の実施の形態に係るナノワイヤ光デバイスについて説明する。 The nanowire optical device according to the embodiment of the present invention will be described below.
[実施の形態1]
 はじめに、本発明の実施の形態1におけるナノワイヤ光デバイスについて図1A,図1Bを参照して説明する。なお、図1Bは、図1Aのaa’線の断面を示している。
[Embodiment 1]
First, the nanowire optical device according to the first embodiment of the present invention will be described with reference to FIGS. 1A and 1B. Note that FIG. 1B shows a cross section taken along the line aa ′ in FIG. 1A.
 このナノワイヤ光デバイスは、フォトニック結晶本体101と、フォトニック結晶本体101に設けられた光導波路102と、光導波路102に形成された溝103と、溝103に配置されたナノワイヤ104とを備える。フォトニック結晶本体101は、例えば、シリコンから構成することができる。ナノワイヤ104は、半導体から構成されている。ナノワイヤ104は、例えばInPなどの化合物半導体から構成することが可能である。 This nanowire optical device includes a photonic crystal body 101, an optical waveguide 102 provided in the photonic crystal body 101, a groove 103 formed in the optical waveguide 102, and a nanowire 104 arranged in the groove 103. The photonic crystal body 101 can be made of, for example, silicon. The nanowire 104 is composed of a semiconductor. The nanowire 104 can be made of a compound semiconductor such as InP.
 フォトニック結晶本体101は、板状の基部105と、複数の格子要素106とを備えている。格子要素106は、屈折率が基部105とは異なるものとされている。基部105は、例えばInPから構成され、格子要素106は、例えば、円柱状の貫通孔である。
複数の格子要素106は、対象とする光の波長以下の間隔で周期的に設けられ、例えば平面視で三角格子状に配列している。光導波路102は、線欠陥から構成されている。線欠陥は、フォトニック結晶本体101の格子要素106がない部分から構成された欠陥(点欠陥)を直線状に複数配列したものである。このように構成された光導波路102の導波方向に、溝103は延在している。
The photonic crystal body 101 includes a plate-shaped base 105 and a plurality of lattice elements 106. The grating element 106 has a refractive index different from that of the base 105. The base 105 is made of, for example, InP, and the lattice element 106 is, for example, a cylindrical through hole.
The plurality of lattice elements 106 are periodically provided at intervals equal to or less than the wavelength of the target light, and are arranged in a triangular lattice shape in plan view, for example. The optical waveguide 102 is composed of line defects. A line defect is a linear array of a plurality of defects (point defects) formed from a portion of the photonic crystal body 101 without the lattice element 106. The groove 103 extends in the waveguide direction of the optical waveguide 102 thus configured.
 また、ナノワイヤ104の一端側には、n型領域107が形成され、ナノワイヤ104の他端側には、p型領域108が形成されている。n型領域107およびp型領域108は、各々対応する不純物を導入することで形成することができる。また、ナノワイヤ104のn型領域107とp型領域108とに挾まれた領域には、活性領域109が形成されている。活性領域109は、例えば、多重量子井戸構造を有している。例えば、InAsPからなる量子井戸層とInPからなる障壁層とがナノワイヤ104の延在方向に交互に積層した多重量子井戸構造を形成して活性領域109とすることができる。活性領域109を多重量子井戸構造とした場合、InAsPからなる量子井戸層が活性層として機能する。 An n-type region 107 is formed on one end side of the nanowire 104, and a p-type region 108 is formed on the other end side of the nanowire 104. The n-type region 107 and the p-type region 108 can be formed by introducing corresponding impurities. In addition, an active region 109 is formed in a region sandwiched between the n-type region 107 and the p-type region 108 of the nanowire 104. The active region 109 has, for example, a multiple quantum well structure. For example, the active region 109 can be formed by forming a multiple quantum well structure in which quantum well layers made of InAsP and barrier layers made of InP are alternately stacked in the extending direction of the nanowires 104. When the active region 109 has a multiple quantum well structure, a quantum well layer made of InAsP functions as an active layer.
 また、実施の形態1におけるナノワイヤ光デバイスは、n型領域107に接続する第1電極110と、p型領域108に接続する第2電極111とを備える。第1電極110は、溝103の開口端におけるn型領域107の上面に接している。また、第2電極111は、溝103の開口端におけるp型領域108の上面に接している。第2電極111の少なくともp型領域108に接する領域は、透明電極材料から構成されている。第2電極111は、全体を透明電極材料から構成することもできる。透明電極材料から構成した第2電極111は、光導波路102の直上や、フォトニック結晶本体101の上に配置することが可能である。 Further, the nanowire optical device according to the first embodiment includes the first electrode 110 connected to the n-type region 107 and the second electrode 111 connected to the p-type region 108. The first electrode 110 is in contact with the upper surface of the n-type region 107 at the opening end of the groove 103. The second electrode 111 is in contact with the upper surface of the p-type region 108 at the open end of the groove 103. At least a region of the second electrode 111 that is in contact with the p-type region 108 is made of a transparent electrode material. The second electrode 111 may be entirely made of a transparent electrode material. The second electrode 111 made of a transparent electrode material can be arranged directly on the optical waveguide 102 or on the photonic crystal body 101.
 透明電極材料は、例えば、ITO(Indium Tin Oxide)やZnOから構成することができる。なお、第1電極110の少なくともn型領域107に接続(接触)する領域を、透明電極材料から構成することもできる。この場合においても、第1電極110は、全体を透明電極材料から構成することもできる。 The transparent electrode material can be composed of, for example, ITO (Indium Tin Oxide) or ZnO. Note that at least the region of the first electrode 110 that is connected (contacted) with the n-type region 107 can be made of a transparent electrode material. Also in this case, the first electrode 110 may be wholly made of a transparent electrode material.
 実施の形態1によれば、例えば、活性領域109で生成された光が、光導波路102を第2電極111の方向に導波するときに、第2電極111で吸収されることがなく、導波光の損失が発生しない。このため、実施の形態1によれば、活性領域109で生成された光は、導波光の損失無く、光導波路102の第2電極111の方向に導波させることができるので、曲げ導波路を導入する必要がなく、曲げ導波路を用いることによる導波損失もない。 According to the first embodiment, for example, when the light generated in the active region 109 is guided through the optical waveguide 102 in the direction of the second electrode 111, the light is not absorbed by the second electrode 111 and is guided. No loss of wave light. Therefore, according to the first embodiment, the light generated in the active region 109 can be guided in the direction of the second electrode 111 of the optical waveguide 102 without the loss of the guided light. There is no need to introduce and there is no waveguide loss due to the use of bending waveguides.
 さらに、透明電極材料から構成した第2電極111は、活性領域109に近づけて配置することができ、活性領域109と第2電極111との間の抵抗値を下げることができるので、電流注入の効率の低下が抑制できる。また、光学特性に影響する第2電極111の少なくともp型領域108に接続(接触)する領域は、透明電極材料から構成し、第2電極111の他の領域は、金属から構成することも可能である。透明電極材料は金属に対して抵抗率が高いが、透明電極材料の部分を光学特性に影響する箇所に限定し、他の領域を金属から構成することで、第2電極111の全体の抵抗を下げることができる。なお、これらのことは、第1電極110を透明電極材料から構成する場合も同様である。活性領域109で生成された光は、導波光の損失無く、光導波路102の第1電極110の方向に導波させることもできる。 Further, the second electrode 111 made of a transparent electrode material can be arranged close to the active region 109, and the resistance value between the active region 109 and the second electrode 111 can be lowered, so that the current injection The decrease in efficiency can be suppressed. It is also possible that at least a region of the second electrode 111 that influences the optical characteristics and that is connected (contacted) with the p-type region 108 is made of a transparent electrode material, and the other region of the second electrode 111 is made of a metal. Is. Although the transparent electrode material has a high resistivity with respect to a metal, by limiting the portion of the transparent electrode material to a portion that affects the optical characteristics and forming the other region from the metal, the overall resistance of the second electrode 111 can be reduced. Can be lowered. The same applies to the case where the first electrode 110 is made of a transparent electrode material. The light generated in the active region 109 can be guided in the direction of the first electrode 110 of the optical waveguide 102 without loss of guided light.
 実施の形態1に係るナノワイヤ光デバイスは、例えば、第1電極110、第2電極111により活性領域109にる電流注入することで、活性領域109を発光させる発光素子として機能させることができる。また、n型領域107、活性領域109、およびp型領域108をいわゆるpin構造としたフォトダイオードとして機能させることもできる。 The nanowire optical device according to the first embodiment can function as a light emitting element that causes the active region 109 to emit light by injecting a current into the active region 109 through the first electrode 110 and the second electrode 111, for example. Further, the n-type region 107, the active region 109, and the p-type region 108 can function as a photodiode having a so-called pin structure.
[実施の形態2]
 次に、本発明の実施の形態2に係るナノワイヤ光デバイスついて、図2A,図2Bを参照して説明する。なお、図2Bは、図2Aのaa’線の断面を示している。
[Embodiment 2]
Next, a nanowire optical device according to Embodiment 2 of the present invention will be described with reference to FIGS. 2A and 2B. Note that FIG. 2B shows a cross section taken along the line aa ′ of FIG. 2A.
 実施の形態2においても、n型領域107に接続する第1電極110aと、p型領域108に接続する第2電極111aとを備える。また、第2電極111aの少なくともp型領域108に接続(接触)する領域は、透明電極材料から構成されている。実施の形態2では、第2電極111aのp型領域108に接続する領域の透明電極材料から構成されている領域では、溝103aの幅がナノワイヤ104の幅より広くされている。なお、実施の形態2では、第1電極110aのn型領域107に接続する領域でも、溝103bの幅をナノワイヤ104の幅より広くしている。 Also in the second embodiment, the first electrode 110a connected to the n-type region 107 and the second electrode 111a connected to the p-type region 108 are provided. Further, at least a region of the second electrode 111a that is connected (contacted) with the p-type region 108 is made of a transparent electrode material. In the second embodiment, the width of the groove 103a is made wider than the width of the nanowire 104 in the region formed of the transparent electrode material in the region connected to the p-type region 108 of the second electrode 111a. In the second embodiment, the width of the groove 103b is made wider than the width of the nanowire 104 even in the region of the first electrode 110a connected to the n-type region 107.
 また、実施の形態2において、図2Bに示すように、第2電極111aの透明電極材料から構成されている領域は、ナノワイヤ104の上面に加え、溝103aの側面に向かい合うナノワイヤ104の側面にも接して形成されている。なお、第1電極110aを透明電極材料から構成する場合も、第1電極110aの透明電極材料から構成されている領域は、ナノワイヤ104の上面に加えて溝103bの側面に向かい合うナノワイヤ104の側面に接して形成されている構成とすることができる。 In addition, in the second embodiment, as shown in FIG. 2B, the region of the second electrode 111a made of the transparent electrode material is formed not only on the upper surface of the nanowire 104 but also on the side surface of the nanowire 104 facing the side surface of the groove 103a. It is formed in contact. Even when the first electrode 110a is made of a transparent electrode material, the region made of the transparent electrode material of the first electrode 110a is formed on the side surface of the nanowire 104 facing the side surface of the groove 103b in addition to the upper surface of the nanowire 104. It can be configured to be in contact with each other.
 ナノワイヤ104の上面のみで透明電極材料から構成されている第2電極111aが接続(接触)している状態に比較し、溝103aの側面に向かい合うナノワイヤ104の側面にも透明電極材料が接していることで、抵抗値を下げることができる。例えば、電極を蒸着法やスパッタ法により形成する場合、溝103aの幅をナノワイヤ104の幅より広くしておけば、ナノワイヤ104の側面にも、電極材料を堆積して形成することができる。 The transparent electrode material is also in contact with the side surface of the nanowire 104 facing the side surface of the groove 103a, as compared with the state in which the second electrode 111a made of the transparent electrode material is connected (contacted) only on the upper surface of the nanowire 104. Therefore, the resistance value can be lowered. For example, when the electrode is formed by the vapor deposition method or the sputtering method, if the width of the groove 103a is made wider than the width of the nanowire 104, the electrode material can be deposited and formed on the side surface of the nanowire 104 as well.
 ところで、透明電極材料は、フォトニック結晶本体101と異なる誘電率を有するため、溝103にナノワイヤ104を配置した光導波路102では、透明電極材料を配置することで光学特性が変わる。図3に、厚さ数nm、幅5μmのZnOからなる透明電極材料を溝103に配置されているナノワイヤ104の上に形成した場合と、透明電極材料を形成しない場合との間の波長シフトの測定結果を示す。図3に示すように、透明電極材料を形成しない場合(a)に比較し、透明電極材料を形成した場合(b)は、20nm程度の長波長側への波長シフトしかない。このように、透明電極材料を用いても、波長シフトが小さく、また、前述したように、導波損失(透過損失)も小さいため、ナノワイヤ光デバイスの光学特性を大きく損なうことはない。 By the way, since the transparent electrode material has a dielectric constant different from that of the photonic crystal body 101, in the optical waveguide 102 in which the nanowire 104 is arranged in the groove 103, the optical characteristics are changed by arranging the transparent electrode material. FIG. 3 shows the wavelength shift between the case where a transparent electrode material made of ZnO having a thickness of several nm and a width of 5 μm is formed on the nanowire 104 arranged in the groove 103 and the case where the transparent electrode material is not formed. The measurement results are shown. As shown in FIG. 3, as compared with the case where the transparent electrode material is not formed (a), the case where the transparent electrode material is formed (b) has only a wavelength shift to the long wavelength side of about 20 nm. As described above, even if the transparent electrode material is used, the wavelength shift is small and, as described above, the waveguide loss (transmission loss) is also small, so that the optical characteristics of the nanowire optical device are not significantly impaired.
 また、溝103にナノワイヤ104を配置した光導波路102では、より幅を広くした溝103aにおいて、光学特性が変わる。図4に、平面視の幅を100nmとした溝103と、平面視の幅を150nmとした溝103aとの間の波長シフトの測定結果を示す。図4に示すように、幅を100nmとした溝103(a)に対し、幅を150nmとした溝103a(b)は、短波長側へ10~20nm程度しかシフトしない。このように、溝の幅を広くしても、幅を広くしたことによる波長シフトが小さいので、ナノワイヤ光デバイスの光学特性を大きく損なうことはない。また、前述したように、幅を広くした溝において透明電極材料を形成することで、短波長側への波長シフトが、長波長側への波長シフトにより相殺されるので、透過帯域を狭めることがない。 Further, in the optical waveguide 102 in which the nanowire 104 is arranged in the groove 103, the optical characteristics change in the groove 103a having a wider width. FIG. 4 shows the measurement results of the wavelength shift between the groove 103 having a width of 100 nm in plan view and the groove 103a having a width of 150 nm in plan view. As shown in FIG. 4, in contrast to the groove 103 (a) having a width of 100 nm, the groove 103a (b) having a width of 150 nm shifts to the short wavelength side by only about 10 to 20 nm. Thus, even if the width of the groove is increased, the wavelength shift due to the increased width is small, and therefore the optical characteristics of the nanowire optical device are not significantly impaired. Further, as described above, by forming the transparent electrode material in the groove having the wide width, the wavelength shift to the short wavelength side is canceled by the wavelength shift to the long wavelength side, so that the transmission band can be narrowed. Absent.
 ところで、溝103のナノワイヤ104が配置された箇所では、光が強く閉じ込められるが、この構成では、光閉じ込めがナノワイヤ104の全体にわたる領域となり、共振器が作れず、ナノワイヤ光デバイスをレーザとして用いることができない。これに対し、図5Aに示すように、ナノワイヤ104の活性領域109に光を閉じ込める光閉じ込め構造112を設けることで、共振器が構成できる。 By the way, light is strongly confined in the portion of the groove 103 where the nanowires 104 are arranged. However, in this configuration, the optical confinement is in the entire region of the nanowires 104, a resonator cannot be formed, and the nanowire optical device is used as a laser. I can't. On the other hand, as shown in FIG. 5A, a resonator can be formed by providing an optical confinement structure 112 for confining light in the active region 109 of the nanowire 104.
 光閉じ込め構造112は、フォトニック結晶本体101に形成された基部105とは異なる屈折率の柱状の構造体を、光導波方向に周期的に配置すればよい。なお、図5Bに示すように、直方体状の貫通孔による光閉じ込め構造112aであってもよい。また、図5Cに示すように、溝103と、光導波路102に隣接する格子要素106の列との間に配置した貫通孔による光閉じ込め構造112bであってもよい。このように光閉じ込め構造112を設けることで、共振器Q値を、10000を超える値にすることが可能となる。 The light confinement structure 112 may be formed by periodically disposing columnar structures having a refractive index different from that of the base 105 formed in the photonic crystal body 101 in the optical waveguide direction. In addition, as shown in FIG. 5B, the light confinement structure 112a may be a rectangular parallelepiped through hole. Alternatively, as shown in FIG. 5C, a light confinement structure 112b may be formed by a through hole arranged between the groove 103 and the row of the grating elements 106 adjacent to the optical waveguide 102. By providing the optical confinement structure 112 in this way, the resonator Q value can be set to a value exceeding 10,000.
 また、図6に示すように、透明電極材料から構成した第2電極111を配置した領域において、溝103に隣接する格子要素106aを、溝103から離れる方向にシフトさせることで、この領域の光学特性を調整することが可能となる。 Further, as shown in FIG. 6, in the region where the second electrode 111 made of a transparent electrode material is arranged, the grating element 106 a adjacent to the groove 103 is shifted in the direction away from the groove 103, so that the optics of this region are changed. It becomes possible to adjust the characteristics.
 また、図7に示すように、透明電極材料から構成した第2電極111bは、平面視で光導波路102の平面視で幅方向の内側で光導波路102に沿って配置することが可能である。第2電極111bは、溝103に隣接して光導波路102に並列する2列の格子要素106の列の間に配置される。 Further, as shown in FIG. 7, the second electrode 111b made of a transparent electrode material can be arranged along the optical waveguide 102 on the inner side in the width direction of the optical waveguide 102 in plan view. The second electrode 111b is arranged between the two rows of the lattice elements 106 adjacent to the groove 103 and in parallel with the optical waveguide 102.
 また、図8に示すように、第2電極111cのp型領域に接続する領域では、平面視で溝103cの幅を、活性領域109から離れるほど広くすることができる。同様に、第1電極110aのn型領域107に接続する領域では、平面視で溝103dの幅を、活性領域109から離れるほど広くすることができる。溝103cは、平面視で、第1電極110aの透明電極材料から構成されている領域に形成されている。溝103dも、平面視で、第2電極111cの透明電極材料から構成されている領域に形成することができる。 Further, as shown in FIG. 8, in the region connected to the p-type region of the second electrode 111c, the width of the groove 103c can be made wider in a plan view as the distance from the active region 109 increases. Similarly, in the region of the first electrode 110a connected to the n-type region 107, the width of the groove 103d can be made wider as it is farther from the active region 109 in a plan view. The groove 103c is formed in a region made of the transparent electrode material of the first electrode 110a in plan view. The groove 103d can also be formed in a region made of the transparent electrode material of the second electrode 111c in plan view.
 以上に説明したように、本発明によれば、第1電極のn型領域に接続する領域、および第2電極のp型領域に接続する領域の少なくとも一方を、透明電極材料から構成したので、活性領域と電極との間隔を広げることなく、ナノワイヤ光デバイスにおける光の損失が抑制できるようになる。 As described above, according to the present invention, at least one of the region connected to the n-type region of the first electrode and the region connected to the p-type region of the second electrode is made of the transparent electrode material. The light loss in the nanowire optical device can be suppressed without increasing the distance between the active region and the electrode.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 The present invention is not limited to the embodiments described above, and many modifications and combinations can be implemented by a person having ordinary knowledge in the field within the technical idea of the present invention. That is clear.
 101…フォトニック結晶本体、102…光導波路、103…溝、104…ナノワイヤ、105…基部、106…格子要素、107…n型領域、108…p型領域、110…第1電極、111…第2電極。 101 ... Photonic crystal body, 102 ... Optical waveguide, 103 ... Groove, 104 ... Nanowire, 105 ... Base, 106 ... Lattice element, 107 ... N-type region, 108 ... P-type region, 110 ... First electrode, 111 ... 2 electrodes.

Claims (5)

  1.  基部および前記基部とは異なる屈折率を有する柱状の複数の格子要素を備え、前記複数の格子要素は、前記基部上に、対象とする光の波長以下の間隔で周期的に設けられている板状のフォトニック結晶本体と、
     前記フォトニック結晶本体の前記格子要素がない部分から構成された欠陥を直線状に複数配列した線欠陥による光導波路と、
     前記光導波路に、導波方向に沿って形成された溝と、
     前記溝に配置された、半導体からなるナノワイヤと、
     前記ナノワイヤの一端側に形成されたn型領域と、
     前記ナノワイヤの他端側に形成されたp型領域と、
     前記ナノワイヤの前記n型領域と前記p型領域とに挾まれて形成された活性領域と、
     前記n型領域に接続する第1電極と、
     前記p型領域に接続する第2電極と
     を備え、
     前記第1電極の前記n型領域に接する領域、および前記第2電極の前記p型領域に接する領域の少なくとも一方は、透明電極材料から構成されている
     ことを特徴とするナノワイヤ光デバイス。
    A plate provided with a plurality of columnar grating elements having a base and a refractive index different from that of the base, and the plurality of grating elements are periodically provided on the base at intervals equal to or less than the wavelength of the target light. -Shaped photonic crystal body,
    An optical waveguide by a line defect in which a plurality of defects constituted by a portion without the lattice element of the photonic crystal body are linearly arranged,
    In the optical waveguide, a groove formed along the waveguide direction,
    A nanowire made of a semiconductor, which is arranged in the groove,
    An n-type region formed on one end side of the nanowire,
    A p-type region formed on the other end side of the nanowire,
    An active region sandwiched between the n-type region and the p-type region of the nanowire;
    A first electrode connected to the n-type region,
    A second electrode connected to the p-type region,
    At least one of a region in contact with the n-type region of the first electrode and a region in contact with the p-type region of the second electrode is made of a transparent electrode material.
  2.  請求項1記載のナノワイヤ光デバイスにおいて、
     前記溝は、平面視で、前記第1電極、および前記第2電極の少なくとも一方の前記透明電極材料から構成されている領域において、前記ナノワイヤの幅より広く形成されている
     ことを特徴とするナノワイヤ光デバイス。
    The nanowire optical device according to claim 1,
    The nanowire is formed to be wider than the width of the nanowire in a region formed of the transparent electrode material of at least one of the first electrode and the second electrode in a plan view. Optical device.
  3.  請求項2記載のナノワイヤ光デバイスにおいて、
     前記第1電極の前記n型領域に接続する領域、および前記第2電極の前記p型領域に接続する領域の少なくとも一方の前記透明電極材料から構成されている領域は、
     前記ナノワイヤの上面に加えて前記溝の側面に向かい合う前記ナノワイヤの側面に前記透明電極材料が接して形成されている
     ことを特徴とするナノワイヤ光デバイス。
    The nanowire optical device according to claim 2, wherein
    A region formed of the transparent electrode material in at least one of a region connected to the n-type region of the first electrode and a region connected to the p-type region of the second electrode,
    The nanowire optical device, wherein the transparent electrode material is formed in contact with the side surface of the nanowire facing the side surface of the groove in addition to the upper surface of the nanowire.
  4.  請求項1~3のいずれか1項に記載のナノワイヤ光デバイスにおいて、
     前記溝の幅は、平面視で、前記第1電極、および前記第2電極の少なくとも一方の前記透明電極材料から構成されている領域において、前記活性領域から離れるほど広くなる
     ことを特徴とするナノワイヤ光デバイス。
    The nanowire optical device according to any one of claims 1 to 3,
    The width of the groove, in a plan view, is wider in a region formed of the transparent electrode material of at least one of the first electrode and the second electrode, as the distance from the active region increases. Optical device.
  5.  請求項1~4のいずれか1項に記載のナノワイヤ光デバイスにおいて、
     前記活性領域に光を閉じ込めるための光閉じ込め構造をさらに備え、
     前記光閉じ込め構造は、前記光導波路に前記活性領域を挟んで形成されている
     ことを特徴とするナノワイヤ光デバイス。
    The nanowire optical device according to any one of claims 1 to 4,
    Further comprising a light confinement structure for confining light in the active region,
    The nanowire optical device, wherein the optical confinement structure is formed in the optical waveguide with the active region sandwiched therebetween.
PCT/JP2019/042779 2018-11-14 2019-10-31 Nanowire optical device WO2020100611A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/293,399 US20210408336A1 (en) 2018-11-14 2019-10-31 Nanowire Optical Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018213551A JP2020080389A (en) 2018-11-14 2018-11-14 Nanowire optical device
JP2018-213551 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020100611A1 true WO2020100611A1 (en) 2020-05-22

Family

ID=70731504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042779 WO2020100611A1 (en) 2018-11-14 2019-10-31 Nanowire optical device

Country Status (3)

Country Link
US (1) US20210408336A1 (en)
JP (1) JP2020080389A (en)
WO (1) WO2020100611A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152873A1 (en) * 2022-02-10 2023-08-17 日本電信電話株式会社 Method for fabricating nanostructure device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074876A1 (en) * 2005-12-27 2007-07-05 Nec Corporation Coupling structure of waveguide
US7474811B1 (en) * 2007-09-14 2009-01-06 Hewlett-Packard Development Company, L.P. Nanowire photonic apparatus employing optical field confinement
JP2009505415A (en) * 2005-08-19 2009-02-05 ポステック・ファウンデーション Light emitting device including conductive nanorod as transparent electrode
JP2009088481A (en) * 2007-09-14 2009-04-23 Sharp Corp Nitride semiconductor light emitting element
US7603016B1 (en) * 2007-04-30 2009-10-13 The United States Of America As Represented By The Secretary Of The Air Force Semiconductor photonic nano communication link apparatus
JP2014027168A (en) * 2012-07-27 2014-02-06 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing photonic crystal resonator, and photonic crystal resonator
JP2016115783A (en) * 2014-12-15 2016-06-23 日本電信電話株式会社 Optical element
JP2016154164A (en) * 2015-02-20 2016-08-25 日本電信電話株式会社 Photonic crystal resonator and method of designing the same
JP2018032751A (en) * 2016-08-25 2018-03-01 日本電信電話株式会社 Nanowire laser

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505415A (en) * 2005-08-19 2009-02-05 ポステック・ファウンデーション Light emitting device including conductive nanorod as transparent electrode
WO2007074876A1 (en) * 2005-12-27 2007-07-05 Nec Corporation Coupling structure of waveguide
US7603016B1 (en) * 2007-04-30 2009-10-13 The United States Of America As Represented By The Secretary Of The Air Force Semiconductor photonic nano communication link apparatus
US7474811B1 (en) * 2007-09-14 2009-01-06 Hewlett-Packard Development Company, L.P. Nanowire photonic apparatus employing optical field confinement
JP2009088481A (en) * 2007-09-14 2009-04-23 Sharp Corp Nitride semiconductor light emitting element
JP2014027168A (en) * 2012-07-27 2014-02-06 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing photonic crystal resonator, and photonic crystal resonator
JP2016115783A (en) * 2014-12-15 2016-06-23 日本電信電話株式会社 Optical element
JP2016154164A (en) * 2015-02-20 2016-08-25 日本電信電話株式会社 Photonic crystal resonator and method of designing the same
JP2018032751A (en) * 2016-08-25 2018-03-01 日本電信電話株式会社 Nanowire laser

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BIROWOSUTO, ET AL: "Position Controlled Nanocavity Using a Single Nanowire in Photonic Crystals", 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM, 30 June 2013 (2013-06-30), XP032481409 *
DANANG BIROWOSUTO MUHAMMAD ET AL: "Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals", JOURNAL OF APPLIED PHYSICS, vol. 112, 113106, 6 December 2012 (2012-12-06), pages 1 - 10, XP012167100, ISSN: 0021-8979, DOI: 10.1063/1.4768437 *
MASATO TAKIGUCHI ET AL: "Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal", APL PHOTONICS, vol. 2, no. 4, 3 April 2017 (2017-04-03), pages 1 - 10, XP012217649, DOI: 10.1063/1.4977927 *
MASATO TAKIGUCHI ET AL: "Movable Nanowire Laser On Silicon Photonic Crystal Using Atomic Force Microscopy", 2018 INTERNATIONAL CONFERENCE ON MANIPULATION, AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS), 4 July 2018 (2018-07-04), pages 1 - 4, XP033413146, DOI: 10.1109/MARSS.2018.8481227 *
YOKOO ET AL: "Semiconductor Nanowire Induced Photonic-Crystal Nanocavity with Selectable Resonant Wavelength, 2014 Conference on Lasers and Electro- Optics (CLEO", 2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) - LASER SCIENCE TO PHOTONIC APPLICATIONS, 8 June 2014 (2014-06-08), pages 1 - 2, XP032707697, DOI: 10.1364/CLEO_SI.2014.STu2H.5 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152873A1 (en) * 2022-02-10 2023-08-17 日本電信電話株式会社 Method for fabricating nanostructure device

Also Published As

Publication number Publication date
US20210408336A1 (en) 2021-12-30
JP2020080389A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
US7263251B2 (en) Optical switch having photonic crystal structure
US9893493B2 (en) Surface emitting quantum cascade laser
JP3613348B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR100792078B1 (en) Two dimensional photonic crystal surface emitting laser
JP5372349B2 (en) Quantum cascade laser device
JP5147041B2 (en) Photonic crystal optical device
CN101304158A (en) Vertical cavity surface emitting laser
WO2013183178A1 (en) Optical detector
JP7293348B2 (en) Phase-coupled laser device and method for manufacturing a phase-coupled laser device
JP2011091164A (en) Semiconductor integrated element
JP4445292B2 (en) Semiconductor light emitting device
JP2005159002A (en) Light receiving element, optical module, and optical transmission device
JP6669611B2 (en) Nanowire laser
JP2011091163A (en) Semiconductor integrated element
JP2012093584A (en) Optical coupler, optical scanner and spectrometer
WO2020100611A1 (en) Nanowire optical device
TWI791217B (en) Photonic crystal surface emitting laser device
KR102366164B1 (en) Mach-zehnder electro-optic modulator and fabrication method of the same
JP4386191B2 (en) Optical element
JP5309877B2 (en) Photonic crystal surface emitting laser element
JP2013197502A (en) Modulator integrated semiconductor laser system
US10511148B2 (en) Tunable laser device
EP3432428B1 (en) Semiconductor laser device
JP6863909B2 (en) Nanowire optical device
JP4479214B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885565

Country of ref document: EP

Kind code of ref document: A1