WO2020100559A1 - ユーザ装置及び基地局装置 - Google Patents

ユーザ装置及び基地局装置 Download PDF

Info

Publication number
WO2020100559A1
WO2020100559A1 PCT/JP2019/041986 JP2019041986W WO2020100559A1 WO 2020100559 A1 WO2020100559 A1 WO 2020100559A1 JP 2019041986 W JP2019041986 W JP 2019041986W WO 2020100559 A1 WO2020100559 A1 WO 2020100559A1
Authority
WO
WIPO (PCT)
Prior art keywords
mimo layers
mimo
bwp
base station
communication
Prior art date
Application number
PCT/JP2019/041986
Other languages
English (en)
French (fr)
Inventor
高橋 秀明
英和 下平
和晃 武田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2020555962A priority Critical patent/JP7073529B2/ja
Priority to US17/278,798 priority patent/US20220030517A1/en
Priority to CN201980074185.1A priority patent/CN112997520B/zh
Priority to EP19883484.8A priority patent/EP3883282A4/en
Publication of WO2020100559A1 publication Critical patent/WO2020100559A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a user device and a base station device in a wireless communication system.
  • NR New Radio
  • LTE Long Term Evolution
  • NR employs a method in which a user device uses a part of the carrier bandwidth as a BWP (Bandwidth part).
  • the BWP is composed of consecutive PRBs (Physical Resource Blocks). Further, up to four BWPs can be set in the user equipment in DL or UL, respectively.
  • the user device uses one active BWP to perform communication (for example, Non-Patent Document 2).
  • the NR wireless communication system it is possible to reduce the bandwidth used by the user equipment by using the BWP mechanism.
  • MIMO Multiple Input Multiple Output
  • the present invention has been made in view of the above points, and an object of the present invention is to improve communication efficiency by using an appropriate number of MIMO (Multiple Input Multiple Output) layers for a user apparatus in a wireless communication system. To do.
  • MIMO Multiple Input Multiple Output
  • the first MIMO layer number based on a reception unit that receives the first MIMO (Multiple Input Multiple Output) layer number and the second MIMO layer number from the base station device, and the communication state.
  • it has a control unit that selects the second number of MIMO layers and a communication unit that performs communication using the selected number of MIMO layers, and the first number of MIMO layers has a default BWP (Bandwidth Part).
  • BWP Bandwidth Part
  • a user apparatus in a wireless communication system, can improve communication efficiency by using an appropriate number of MIMO (Multiple Input Multiple Output) layers.
  • MIMO Multiple Input Multiple Output
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention. It is a figure for demonstrating BWP. It is a sequence diagram for explaining an example (1) of communication setting. It is a sequence diagram for explaining an example (2) of communication setting. 6 is a flowchart for explaining a first operation example in the embodiment of the present invention. It is a specification change example (1) according to the first operation example in the embodiment of the present invention. It is a specification change example (2) according to the first operation example in the embodiment of the present invention. It is a specification change example (3) according to the first operation example in the embodiment of the present invention. It is a specification change example (4) according to the first operation example in the embodiment of the present invention.
  • 7 is a flowchart for explaining a second operation example according to the embodiment of the present invention.
  • It is a specification modification example (1) according to a second operation example in the embodiment of the present invention.
  • It is a specification change example (2) according to the second operation example in the embodiment of the present invention.
  • It is a specification change example (3) according to the second operation example in the embodiment of the present invention.
  • It is a specification change example (5) according to the second operation example in the embodiment of the present invention.
  • It is a figure showing an example of functional composition of base station device 10 in an embodiment of the invention.
  • It is a figure which shows an example of a functional structure of the user apparatus 20 in embodiment of this invention.
  • It is a figure which shows an example of the hardware constitutions of the base station apparatus 10 or the user apparatus 20 in embodiment of this invention.
  • the existing technology is appropriately used for the operation of the wireless communication system according to the embodiment of the present invention.
  • the existing technology is, for example, existing LTE, but is not limited to existing LTE.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced or later systems (eg, NR) unless otherwise specified.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical Random access channel
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other (for example, Flexible Duplex). Method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • Method may be used.
  • “configuring” the wireless parameter and the like may mean that a predetermined value is set in advance (Pre-configure), or the base station device 10 Alternatively, the wireless parameter notified from the user device 20 may be set.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system in the embodiment of the present invention includes a base station device 10 and a user device 20, as shown in FIG. Although one base station apparatus 10 and one user apparatus 20 are shown in FIG. 1, this is an example, and a plurality of each may be provided.
  • the base station device 10 is a communication device that provides one or more cells and performs wireless communication with the user device 20.
  • the physical resource of the radio signal is defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks.
  • the base station device 10 transmits the synchronization signal and the system information to the user device 20.
  • the synchronization signal is, for example, NR-PSS and NR-SSS.
  • the system information is transmitted on the NR-PBCH, for example, and is also called broadcast information. As illustrated in FIG.
  • the base station device 10 transmits a control signal or data to the user device 20 by DL (Downlink), and receives a control signal or data from the user device 20 by UL (Uplink). Both the base station device 10 and the user device 20 can perform beamforming to transmit and receive signals. In addition, both the base station device 10 and the user device 20 can apply communication by MIMO (Multiple Input Multiple Output) to DL or UL. Moreover, both the base station apparatus 10 and the user apparatus 20 may communicate via SCell (Secondary Cell) and PCell (Primary Cell) by CA (Carrier Aggregation).
  • SCell Secondary Cell
  • PCell Primary Cell
  • the user device 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the user apparatus 20 receives a control signal or data from the base station apparatus 10 in DL and transmits the control signal or data to the base station apparatus 10 in UL, thereby providing the wireless communication system. Use various communication services.
  • FIG. 2 is a diagram for explaining BWP.
  • FIG. 2 is an example in which four BWPs of BWP # 0, BWP # 1, BWP # 2, and BWP # 3 are set.
  • the four BWPs shown in FIG. 2 may be set to DL or UL.
  • the four BWPs shown in FIG. 2 are arranged in the carrier bandwidth of a cell.
  • BWP # 0 is an initial BWP (initial BWP).
  • the initial BWP may be specified from an upper layer or may be specified by a part of a control resource set of a Type 0 PDCCH (Physical Downlink Control Channel) common search space, and is used when establishing a connection.
  • the BWP used is an active BWP (active BWP).
  • the BWP used when the inactivity timer related to BWP has expired is the default BWP (default BWP). If the default BWP is not specified by the upper layer, the initial BWP is used as the default BWP.
  • the initial BWP may be the initial DL BWP or the initial UL BWP.
  • the default BWP may be the default DL BWP or the default UL BWP.
  • the active BWP may be an active DL BWP or an active UL BWP.
  • the base station apparatus 10 may notify the user apparatus 20 of the number of MIMO layers used for each cell.
  • the “number of MIMO layers to use” may correspond to the maximum number of usable layers.
  • the “number of MIMO layers” may correspond to the number of receiving antennas (Rx) or transmitting antennas (Tx) used.
  • FIG. 3 is a sequence diagram for explaining an example (1) of communication settings.
  • the base station device 10 performs settings related to cells, BWP, MIMO communication, DRX, and the like on the user device 20.
  • step S11 the base station device 10 transmits RRCReconfiguration to the user device 20.
  • RRCReconfiguration is an RRC (Radio Resource Control) message that includes settings related to cells, BWP, MIMO communication, DRX, and the like.
  • the user apparatus 20 transmits RRCReconfigurationComplete to the base station apparatus 10 (S12).
  • step S13 the user device 20 executes normal communication with the base station device 10 based on the cell, BWP, MIMO communication, and DRX settings included in the RRCReconfiguration.
  • FIG. 4 is a sequence diagram for explaining an example (2) of communication settings.
  • the user apparatus 20 establishes a connection, and the base station apparatus 10 makes settings for the cell, BWP, MIMO communication, DRX and the like to the user apparatus 20.
  • step S21 the user device 20 transmits RRCSetupRequest to the base station device 10.
  • RRCSetupRequest is an RRC message sent when establishing a connection.
  • the base station device 10 transmits RRCSetup to the user device 20 (S22).
  • RRCSetup is an RRC message that includes settings related to cells, BWP, MIMO communication, DRX, and the like.
  • the user apparatus 20 transmits RRCSetupComplete to the base station apparatus 10 (S23).
  • step S24 the user device 20 performs normal communication with the base station device 10 based on the cell, BWP, MIMO communication, and DRX settings included in the RRCReconfiguration.
  • FIG. 5 is a flow chart for explaining the first operation example in the embodiment of the present invention.
  • the base station apparatus 10 uses the MIMO to be used separately from the number of MIMO layers to be used for each cell for the default BWP or the initial BWP.
  • the number of layers may be notified. For example, a smaller number of MIMO layers than the number of MIMO layers used for each cell may be set for the default BWP or the initial BWP.
  • “set for each cell” may correspond to “set for each CC (Carrier Component)”.
  • step S31 the default BWP or initial BWP of the SCell of the user device 20 is assumed to be the active BWP. Then, the SCell transits to the deactivated state (S32). Subsequently, the user apparatus 20 uses the number of MIMO layers set for the default BWP or the initial BWP (S33).
  • step S34 SCell transits to the activated state. Then, the user apparatus 20 uses the number of MIMO layers set for each CC (S35).
  • the base station device 10 may determine the number of MIMO layers used by the user device 20 and execute communication, similarly to the flowcharts of steps S31 to S35 described above.
  • FIG. 6 is a specification change example (1) according to the first operation example in the embodiment of the present invention.
  • a part of the SCell activation or deactivation operation is defined.
  • maxMIMO-LayerDL set by PDSCH-ServingCellConfig is applied, and maxMIMO-LayerUL set by PUSCH-ServingCellConfig is applied. That is, the number of MIMO layers set for each cell is used.
  • maxMIMO-LayerDL set by PDSCH-Config is applied and maxMIMO-LayerUL set by PUSCH-Config is applied. That is, the number of MIMO layers set for the default BWP or the initial BWP is used.
  • FIG. 7 is a specification modification example (2) according to the first operation example in the embodiment of the present invention.
  • FIG. 7 shows an example of specifications of PDSCH-Config.
  • PDSCH-Config notifies the user equipment 20 of the number of MIMO layers set for the default BWP or initial BWP, which is used when the SCell is in the deactivated state.
  • “DefBWP” indicates the default DL BWP.
  • FIG. 8 is a specification modification example (3) according to the first operation example in the embodiment of the present invention.
  • FIG. 8 shows an example of specifications of PDSCH-ServingCellConfig.
  • the PDSCH-ServingCellConfig notifies the user equipment 20 of the number of MIMO layers set for each cell.
  • FIG. 9 is a specification modification example (4) according to the first operation example in the embodiment of the present invention.
  • FIG. 9 shows an example of specifications of PUSCH-Config.
  • the PUSCH-Config notifies the user apparatus 20 of the number of MIMO layers set for the default BWP or the initial BWP, which is used when the SCell is in the deactivated state.
  • “DefBWP” indicates the default DL BWP.
  • FIG. 10 shows a specification modification example (5) according to the first operation example in the embodiment of the present invention.
  • FIG. 10 shows an example of specifications of PUSCH-ServingCellConfig.
  • the PUSCH-ServingCellConfig notifies the user equipment 20 of the number of MIMO layers set for each cell.
  • FIG. 11 is a flowchart for explaining the second operation example in the embodiment of the present invention.
  • the base station apparatus 10 uses the MIMO to be used separately from the number of MIMO layers to be used for each cell for the default BWP or the initial BWP.
  • the number of layers may be notified. For example, a smaller number of MIMO layers than the number of MIMO layers used for each cell may be set for the default BWP or the initial BWP.
  • step S41 the default BWP or initial BWP of the serving cell of the user device 20 is assumed to be the active BWP. Then, the serving cell drx-Inactivity Timer expires (S42). Then, the user apparatus 20 uses the number of MIMO layers set for the default BWP or the initial BWP (S43).
  • step S44 the user device 20 receives the PDCCH and is instructed to perform new reception or new transmission. Then, the user apparatus 20 uses the number of MIMO layers set for each CC (S45).
  • the base station device 10 may determine the number of MIMO layers used by the user device 20 and execute communication, similarly to the flowcharts of steps S41 to S45 described above.
  • FIG. 12 is a specification modification example (1) according to the second operation example in the embodiment of the present invention.
  • a part of the operation related to DRX is defined.
  • maxMIMO-LayerDL set by PDSCH-Config is applied and maxMIMO-LayerUL set by PUSCH-Config is applied. That is, the number of MIMO layers set for the default BWP or the initial BWP is used.
  • maxMIMO-LayerDL set by PDSCH-ServingCellConfig is applied, and maxMIMO-LayerUL set by PUSCH-ServingCellConfig is applied. That is, the number of MIMO layers set for each cell is used.
  • FIG. 13 is a specification modification example (2) according to the second operation example in the embodiment of the present invention.
  • FIG. 13 shows an example of specifications of PDSCH-Config.
  • PDSCH-Config notifies the user equipment 20 of the number of MIMO layers set for the default BWP or the initial BWP, which is used when DRX-Config is set.
  • DRX-Config is a setting related to DRX. “DefBWP” indicates the default DL BWP.
  • FIG. 14 is a specification modification example (3) according to the second operation example in the embodiment of the present invention.
  • FIG. 14 shows an example of specifications of PDSCH-ServingCellConfig.
  • the PDSCH-ServingCellConfig notifies the user equipment 20 of the number of MIMO layers set for each cell.
  • FIG. 15 is a specification modification example (4) according to the second operation example in the embodiment of the present invention.
  • FIG. 15 shows an example of specifications of PUSCH-Config.
  • the PUSCH-Config notifies the user apparatus 20 of the number of MIMO layers set for the default BWP or the initial BWP, which is used when DRX-Config is set. “DefBWP” indicates the default DL BWP.
  • FIG. 16 is a specification modification example (5) according to the second operation example in the embodiment of the present invention.
  • FIG. 16 shows an example of specifications of PUSCH-ServingCellConfig.
  • the PUSCH-ServingCellConfig notifies the user equipment 20 of the number of MIMO layers set for each cell.
  • the user device 20 can change the number of MIMO layers to be used according to the communication state. For example, when the bandwidth used by the user apparatus 20 is reduced by using the BWP mechanism, the power consumption reduction effect can be obtained by reducing the number of MIMO layers. For example, when the SCell transitions to the deactivated state, the user equipment 20 uses the number of MIMO layers set for the default BWP or the initial BWP, and when the SCell transitions to the activated state, the MIMO set for each cell. Use number of layers.
  • the user equipment 20 uses the number of MIMO layers set for the default BWP or the initial BWP, and when new reception or new transmission by the PDCCH occurs, cell by cell Use the number of MIMO layers set to.
  • the user device can improve the communication efficiency by using an appropriate number of MIMO (Multiple Input Multiple Output) layers.
  • MIMO Multiple Input Multiple Output
  • the base station device 10 and the user device 20 include a function for implementing the above-described embodiment. However, each of the base station device 10 and the user device 20 may have only some of the functions in the embodiment.
  • FIG. 17 is a diagram showing an example of the functional configuration of the base station device 10.
  • the base station device 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 17 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the function categories and the names of the function units may be any names.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the user device 20 side and wirelessly transmitting the signal.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the user device 20 and acquiring, for example, information of a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signals, etc. to the user apparatus 20.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the user device 20, in the storage device, and reads from the storage device as necessary.
  • the content of the setting information is, for example, a communication setting related to the cell of the user apparatus 20, a communication setting related to BWP, a setting related to MIMO transmission / reception, a setting related to DRX, and the like.
  • the control unit 140 performs the process of generating the communication setting related to the cell or the BWP of the user device 20, as described in the embodiment.
  • the control unit 140 also notifies the user apparatus 20 of the number of available MIMO layers.
  • the control unit 140 also controls DRX communication.
  • the functional unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the functional unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • FIG. 18 is a diagram showing an example of a functional configuration of the user device 20.
  • the user device 20 includes a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 18 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the function categories and the names of the function units may be any names.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the reception unit 220 wirelessly receives various signals and acquires higher-layer signal from the received physical-layer signal.
  • the receiving unit 220 also has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL / UL / SL control signals, etc. transmitted from the base station apparatus 10.
  • the transmission unit 210 performs P2D communication with other user apparatuses 20 by using PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), and PSBCH (Physical Sidelink Broadcast Channel). ) Etc., and the receiving part 220 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other user apparatus 20.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the setting unit 230 stores various setting information received from the base station device 10 or the user device 20 by the receiving unit 220 in a storage device, and reads from the storage device as necessary.
  • the setting unit 230 also stores preset setting information.
  • the contents of the setting information are, for example, communication settings related to cells, communication settings related to BWP, settings related to MIMO transmission / reception, settings related to DRX, and the like.
  • control unit 240 executes communication to which spatial multiplexing based on the number of MIMO layers is applied, based on the communication settings acquired from the base station device 10. Further, the control unit 240 controls activation or deactivation of cells. The control unit 240 also controls communication to which DRX is applied.
  • the functional unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the functional unit related to signal reception in the control unit 240 may be included in the reception unit 220.
  • each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional blocks may be realized by combining the one device or the plurality of devices with software.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, observation, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these.
  • a functional block (component) that functions for transmission is called a transmitting unit or a transmitter.
  • the implementation method is not particularly limited.
  • the base station device 10, the user device 20, and the like according to the embodiment of the present disclosure may function as a computer that performs the process of the wireless communication method of the present disclosure.
  • FIG. 19 is a diagram illustrating an example of a hardware configuration of the base station device 10 and the user device 20 according to the embodiment of the present disclosure.
  • the base station device 10 and the user device 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be done.
  • the word “device” can be read as a circuit, device, unit, or the like.
  • the hardware configurations of the base station device 10 and the user device 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • Each function in the base station device 10 and the user device 20 causes a predetermined software (program) to be loaded onto hardware such as the processor 1001, the storage device 1002, etc., so that the processor 1001 performs calculation and communication by the communication device 1004. It is realized by controlling or at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 operates an operating system to control the entire computer, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the control unit 140, the control unit 240, and the like described above may be realized by the processor 1001.
  • the processor 1001 also reads a program (program code), software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to these.
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiments is used.
  • the control unit 140 of the base station device 10 illustrated in FIG. 17 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the user device 20 illustrated in FIG. 18 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. It may be configured.
  • the storage device 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store an executable program (program code), a software module, or the like for implementing the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, compact disk, digital versatile disk, Blu -Ray disk), smart card, flash memory (eg card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-described storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or another appropriate medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be composed of
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmitter / receiver may be implemented by physically or logically separating the transmitter and the receiver.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station device 10 and the user device 20 include a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured to include hardware, and the hardware may implement part or all of each functional block. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the communication state is established with the receiving unit that receives the first MIMO (Multiple Input Multiple Output) layer number and the second MIMO layer number from the base station device. Based on the first number of MIMO layers or the second number of MIMO layers, and a communication unit that performs communication using the selected number of MIMO layers.
  • the number of MIMO layers is the number of MIMO layers set for the default BWP (Bandwidth Part) or the initial BWP
  • the second number of MIMO layers is the number of MIMO layers set for each cell. .
  • the user device 20 can change the number of MIMO layers to be used according to the communication state. For example, when the bandwidth used by the user apparatus 20 is reduced by using the BWP mechanism, the power consumption reduction effect can be obtained by reducing the number of MIMO layers. That is, in the wireless communication system, the user apparatus can improve the communication efficiency by using an appropriate number of MIMO layers.
  • the control unit selects the first number of MIMO layers when the SCell (Secondary Cell) transitions to the deactivated state, and selects the second number of MIMO layers when the SCell transitions to the activated state. You may. With this configuration, when the SCell transitions to the deactivated state, the user equipment 20 uses the number of MIMO layers set for the default BWP or the initial BWP, and when the SCell transitions to the activated state, it is set for each cell. Number of MIMO layers.
  • the control unit selects the first MIMO layer number, and when new reception or new transmission is started by PDCCH (Physical Downlink Control Channel), the second The number of MIMO layers may be selected.
  • PDCCH Physical Downlink Control Channel
  • the user equipment 20 uses the number of MIMO layers set for the default BWP or the initial BWP, and when new reception or new transmission by the PDCCH occurs, cell by cell Use the number of MIMO layers set to.
  • the number of first MIMO layers may be smaller than the number of second MIMO layers.
  • a transmission unit that transmits the number of first MIMO (Multiple Input first MIMO (Multiple Input Multiple Output) layers and the second number of MIMO layers to the user apparatus, and the communication state.
  • the number of the first MIMO layers or the number of the second MIMO layers based on the, and a communication unit that performs communication using the selected number of MIMO layers,
  • the number of MIMO layers of 1 is the number of MIMO layers set for the default BWP (Bandwidth Part) or the initial BWP
  • the second number of MIMO layers is the number of MIMO layers set for each cell. To be done.
  • the user device 20 can change the number of MIMO layers to be used according to the communication state. For example, when the bandwidth used by the user apparatus 20 is reduced by using the BWP mechanism, the power consumption reduction effect can be obtained by reducing the number of MIMO layers. That is, in the wireless communication system, the user apparatus can improve the communication efficiency by using an appropriate number of MIMO layers.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by the plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • the base station apparatus 10 and the user apparatus 20 are described using functional block diagrams for convenience of processing description, such an apparatus may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor included in the base station device 10 according to the embodiment of the present invention and the software operated by the processor included in the user device 20 according to the embodiment of the present invention are respectively a random access memory (RAM), a flash memory, and a read memory. It may be stored in a dedicated memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed using another method.
  • information is notified by physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be carried out by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof, and RRC signaling may be called an RRC message, for example, RRC message. It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FRA Full Radio Access
  • NR new Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Universal Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 UWB (Ultra-WideBand
  • Bluetooth registered trademark
  • other systems using appropriate systems, and extensions based on these It may be applied to at least one of the next-generation systems.
  • a plurality of systems may be combined and applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation that is performed by the base station device 10 in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with the user device 20 are other than the base station device 10 and the base station device 10.
  • it may be performed by at least one of the network nodes of (eg, but not limited to, MME or S-GW, etc.).
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). Good.
  • Information, signals, etc. described in the present disclosure may be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • Information that has been input and output may be stored in a specific location (for example, memory), or may be managed using a management table. Information that is input / output may be overwritten, updated, or added. The output information and the like may be deleted. The input information and the like may be transmitted to another device.
  • the determination in the present disclosure may be performed based on a value (0 or 1) represented by 1 bit, may be performed based on a Boolean value (Boolean: true or false), or may be performed by comparing numerical values (for example, , Comparison with a predetermined value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • the software uses a wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and / or wireless technology (infrared, microwave, etc.) websites, When sent from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
  • At least one of the channel and the symbol may be a signal (signaling).
  • the signal may also be a message.
  • a component carrier CC may be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
  • the radio resources may be those indicated by the index.
  • base station Base Station
  • radio base station base station
  • base station device fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • GNB gNodeB
  • access point “ transmission point ”,“ reception point ”,“ transmission / reception point ”,“ cell ”,“ sector ”
  • Terms such as “cell group”, “carrier”, “component carrier” may be used interchangeably.
  • a base station may be referred to by terms such as macro cell, small cell, femto cell, pico cell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being defined by a base station subsystem (eg, indoor small base station (RRH: Communication services can also be provided by Remote Radio Head) .
  • RRH indoor small base station
  • the term "cell” or “sector” refers to a part or the whole of the coverage area of at least one of the base station and the base station subsystem that perform communication services in this coverage. Refers to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations are defined by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmission device, a reception device, a communication device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned).
  • At least one of the base station and the mobile station also includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by the user terminal.
  • the communication between the base station and the user terminal is replaced with communication between a plurality of user devices 20 (eg, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • a plurality of user devices 20 eg, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.
  • the user apparatus 20 may have the function of the above-described base station apparatus 10.
  • the wording such as “up” and “down” may be replaced with the wording corresponding to the communication between terminals (for example, “side”).
  • the uplink channel and the downlink channel may be replaced with the side channel.
  • the user terminal in the present disclosure may be replaced by the base station.
  • the base station may have the function of the above-described user terminal.
  • determining and “determining” as used in this disclosure may encompass a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment, calculation, computing, processing, processing, deriving, investigating, and looking up, search, inquiry. (Eg, searching in a table, a database, or another data structure), considering ascertaining as “judging” or “deciding” may be included.
  • “decision” and “decision” include receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) may be regarded as “judging” and “deciding”.
  • judgment and “decision” are considered to be “judgment” and “decision” when things such as resolving, selecting, choosing, establishing, establishing, and comparing are done. May be included. That is, the “judgment” and “decision” may include considering some action as “judged” and “decided”. In addition, “determination (decision)” may be read as “assuming,” “expecting,” “considering,” and the like.
  • connection means any direct or indirect connection or coupling between two or more elements, and It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled”.
  • the connections or connections between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • two elements are in the radio frequency domain, with at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , Can be considered to be “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” means both "based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • Numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transceiver At least one of a specific filtering process performed in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be shown.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot. Minislots may be composed of fewer symbols than slots.
  • PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using a minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent the time unit for transmitting signals. Radio frames, subframes, slots, minislots, and symbols may have different names corresponding to them.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot is called a TTI.
  • You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be The unit representing the TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI means, for example, the minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth that can be used in each user device 20, transmission power, etc.) to each user device 20 in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), code block, codeword, or the like, or may be a processing unit of scheduling, link adaptation, or the like.
  • the time interval for example, the number of symbols
  • the transport block, code block, codeword, etc. may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • the TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and a short TTI (eg, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • Each 1 TTI, 1 subframe, etc. may be configured with one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (PRB: Physical RB), subcarrier group (SCG: Sub-Carrier Group), resource element group (REG: Resource Element Group), PRB pair, RB pair, etc. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB pair, etc. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (may be called a partial bandwidth) may represent a subset of consecutive common RBs (common resource blocks) for a certain numerology in a certain carrier.
  • the common RB may be specified by the index of the RB based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE does not have to assume that it will send and receive predetermined signals / channels outside the active BWP.
  • BWP bitmap
  • the above-described structure of the radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, and included in RBs The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and the like can be variously changed.
  • the term “A and B are different” may mean “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • the terms “remove”, “coupled” and the like may be construed as “different” as well.
  • the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, but is performed implicitly (for example, the notification of the predetermined information is not performed). Good.
  • the deactivated state is an example of the deactivated state.
  • the activated state is an example of the activated state.
  • the transmission unit 210 and the reception unit 220 are examples of communication units.
  • the transmission unit 110 and the reception unit 120 are examples of a communication unit.
  • base station device 110 transmission unit 120 reception unit 130 setting unit 140 control unit 20 user device 210 transmission unit 220 reception unit 230 setting unit 240 control unit 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ装置は、第1のMIMO(Multiple Input Multiple Output)レイヤ数及び第2のMIMOレイヤ数を基地局装置から受信する受信部と、通信状態に基づいて、前記第1のMIMOレイヤ数又は前記第2のMIMOレイヤ数を選択する制御部と、前記選択されたMIMOレイヤ数を使用して通信を実行する通信部とを有し、前記第1のMIMOレイヤ数はデフォルトBWP(Bandwidth Part)又はイニシャルBWP用に設定されるMIMOレイヤ数であり、前記第2のMIMOレイヤ数はセルごとに設定されるMIMOレイヤ数である。

Description

ユーザ装置及び基地局装置
 本発明は、無線通信システムにおけるユーザ装置及び基地局装置に関する。
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。
 NRでは、キャリアバンド幅の一部をBWP(Bandwidth part)としてユーザ装置が使用する方法が採用されている。BWPは、連続したPRB(Physical Resource Block)から構成される。また、BWPは、DL又はULにおいてそれぞれ最大4つまでユーザ装置に設定されることが可能である。複数のBWPが設定された場合、ユーザ装置は1つのアクティブBWPを使用して通信を実行する(例えば非特許文献2)。
3GPP TS 38.300 V15.3.0(2018-09) 3GPP TS 38.213 V15.3.0(2018-09)
 NRの無線通信システムにおいて、BWPの仕組みを使用してユーザ装置が使用する帯域幅を削減することができる。しかしながら、ユーザ装置に設定されたMIMO(Multiple Input Multiple Output)レイヤ数が多い場合、消費電力を低減することが困難であった。
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、ユーザ装置が適切なMIMO(Multiple Input Multiple Output)レイヤ数を使用することにより、通信の効率を向上させることを目的とする。
 開示の技術によれば、第1のMIMO(Multiple Input Multiple Output)レイヤ数及び第2のMIMOレイヤ数を基地局装置から受信する受信部と、通信状態に基づいて、前記第1のMIMOレイヤ数又は前記第2のMIMOレイヤ数を選択する制御部と、前記選択されたMIMOレイヤ数を使用して通信を実行する通信部とを有し、前記第1のMIMOレイヤ数はデフォルトBWP(Bandwidth Part)又はイニシャルBWP用に設定されるMIMOレイヤ数であり、前記第2のMIMOレイヤ数はセルごとに設定されるMIMOレイヤ数であるユーザ装置が提供される。
 開示の技術によれば、無線通信システムにおいて、ユーザ装置が適切なMIMO(Multiple Input Multiple Output)レイヤ数を使用することにより、通信の効率を向上させることができる。
本発明の実施の形態における無線通信システムを説明するための図である。 BWPを説明するための図である。 通信設定の例(1)を説明するためのシーケンス図である。 通信設定の例(2)を説明するためのシーケンス図である。 本発明の実施の形態における第1の動作例を説明するためのフローチャートである。 本発明の実施の形態における第1の動作例に係る仕様変更例(1)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(2)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(3)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(4)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(5)である。 本発明の実施の形態における第2の動作例を説明するためのフローチャートである。 本発明の実施の形態における第2の動作例に係る仕様変更例(1)である。 本発明の実施の形態における第2の動作例に係る仕様変更例(2)である。 本発明の実施の形態における第2の動作例に係る仕様変更例(3)である。 本発明の実施の形態における第2の動作例に係る仕様変更例(4)である。 本発明の実施の形態における第2の動作例に係る仕様変更例(5)である。 本発明の実施の形態における基地局装置10の機能構成の一例を示す図である。 本発明の実施の形態におけるユーザ装置20の機能構成の一例を示す図である。 本発明の実施の形態における基地局装置10又はユーザ装置20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局装置10又はユーザ装置20から通知される無線パラメータが設定されることであってもよい。
 図1は、本発明の実施の形態における無線通信システムを説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局装置10及びユーザ装置20を含む。図1には、基地局装置10及びユーザ装置20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
 基地局装置10は、1つ以上のセルを提供し、ユーザ装置20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局装置10は、同期信号及びシステム情報をユーザ装置20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。図1に示されるように、基地局装置10は、DL(Downlink)で制御信号又はデータをユーザ装置20に送信し、UL(Uplink)で制御信号又はデータをユーザ装置20から受信する。基地局装置10及びユーザ装置20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局装置10及びユーザ装置20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局装置10及びユーザ装置20はいずれも、CA(Carrier Aggregation)によるSCell(Secondary Cell)及びPCell(Primary Cell)を介して通信を行ってもよい。
 ユーザ装置20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、ユーザ装置20は、DLで制御信号又はデータを基地局装置10から受信し、ULで制御信号又はデータを基地局装置10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。
 図2は、BWPを説明するための図である。図2は、BWP#0、BWP#1、BWP#2及びBWP#3の4つのBWPが設定される例である。図2に示される4つのBWPは、DLに設定されてもよいし、ULに設定されてもよい。図2に示される4つのBWPは、あるセルのキャリアバンド幅に配置されている。BWP#0は、イニシャルBWP(initial BWP)である。イニシャルBWPは、上位レイヤから指定されてもよいし、タイプ0PDCCH(Physical Downlink Control Channel)コモンサーチスペースの制御リソースセットの一部で規定されてもよく、接続を確立するとき使用される。使用されるBWPは、アクティブBWP(active BWP)である。複数のBWPが設定される場合、いずれか1つのBWPのみがアクティブBWPとなる。BWPに係る非活動タイマが満了したときに使用されるBWPは、デフォルトBWP(default BWP)である。デフォルトBWPが上位レイヤから指定されない場合、イニシャルBWPがデフォルトBWPとして使用される。なお、以下の説明において、イニシャルBWPは、イニシャル DL BWPであってもよいし、イニシャル UL BWPであってもよい。同様に、以下の説明において、デフォルトBWPは、デフォルト DL BWPであってもよいし、デフォルト UL BWPであってもよい。同様に、以下の説明において、アクティブBWPは、アクティブ DL BWPであってもよいし、アクティブ UL BWPであってもよい。
 ここで、基地局装置10は、ユーザ装置20にセルごとに使用するMIMOレイヤ数を通知してもよい。以下の説明において、「使用するMIMOレイヤ数」は、使用可能な最大のレイヤ数に対応してもよい。また、以下の説明において、「MIMOレイヤ数」は、使用する受信アンテナ(Rx)数又は送信アンテナ(Tx)数に対応してもよい。
 図3は、通信設定の例(1)を説明するためのシーケンス図である。図3において、基地局装置10は、セル、BWP、MIMO通信及びDRXに係る設定等をユーザ装置20に行う。
 ステップS11において、基地局装置10は、RRCReconfigurationをユーザ装置20に送信する。RRCReconfigurationは、セル、BWP、MIMO通信及びDRXに係る設定等が含まれるRRC(Radio Resource Control)メッセージである。続いて、ユーザ装置20は、RRCReconfigurationCompleteを基地局装置10に送信する(S12)。
 ステップS13において、RRCReconfigurationに含まれていたセル、BWP、MIMO通信及びDRXに係る設定等に基づいて、ユーザ装置20は、通常の通信を基地局装置10と実行する。
 図4は、通信設定の例(2)を説明するためのシーケンス図である。図4において、ユーザ装置20は、接続を確立し、基地局装置10は、セル、BWP、MIMO通信及びDRXに係る設定等をユーザ装置20に行う。
 ステップS21において、ユーザ装置20は、RRCSetupRequestを基地局装置10に送信する。RRCSetupRequestは、接続を確立するときに送信されるRRCメッセージである。続いて、基地局装置10は、RRCSetupをユーザ装置20に送信する(S22)。RRCSetupは、セル、BWP、MIMO通信及びDRXに係る設定等が含まれるRRCメッセージである。続いて、ユーザ装置20は、RRCSetupCompleteを基地局装置10に送信する(S23)。
 ステップS24において、RRCReconfigurationに含まれていたセル、BWP、MIMO通信及びDRXに係る設定等に基づいて、ユーザ装置20は、通常の通信を基地局装置10と実行する。
 図5は、本発明の実施の形態における第1の動作例を説明するためのフローチャートである。基地局装置10は、ユーザ装置20にセルごとに使用するMIMOレイヤ数を通知することに加えて、デフォルトBWP又はイニシャルBWPに対して、セルごとに使用するMIMOレイヤ数とは別途、使用するMIMOレイヤ数を通知してもよい。例えば、セルごとに使用するMIMOレイヤ数よりも少ないMIMOレイヤ数が、デフォルトBWP又はイニシャルBWPに対して設定されてもよい。なお、「セルごとに設定する」とは、「CC(Carrier Component)ごとに設定する」に対応してもよい。
 ステップS31において、ユーザ装置20のSCellのデフォルトBWP又はイニシャルBWPがアクティブBWPであるとする。続いて、SCellがdeactivated状態に遷移する(S32)。続いて、ユーザ装置20は、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数を用いる(S33)。
 ステップS34において、SCellがactivated状態に遷移する。続いて、ユーザ装置20は、CCごとに設定されたMIMOレイヤ数を用いる(S35)。
 すなわち、SCellがdeactivated状態である場合、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数が使用され、SCellがactivated状態である場合、セルごとに設定されたMIMOレイヤ数が使用される。なお、基地局装置10は、上記のステップS31からS35のフローチャートと同様に、ユーザ装置20が使用するMIMOレイヤ数を決定して、通信を実行してもよい。
 図6は、本発明の実施の形態における第1の動作例に係る仕様変更例(1)である。図6に示される仕様において、SCellのActivation又はDeactivationの動作の一部が規定される。SCellがactivateされる場合、PDSCH-ServingCellConfigで設定されるmaxMIMO-LayerDLが適用され、PUSCH-ServingCellConfigで設定されるmaxMIMO-LayerULが適用される。すなわち、セルごとに設定されたMIMOレイヤ数が使用される。
 SCellがdeactivated状態であり、かつ、アクティブBWPがデフォルトBWP又はイニシャルBWPである場合、PDSCH-Configで設定されるmaxMIMO-LayerDLが適用され、PUSCH-Configで設定されるmaxMIMO-LayerULが適用される。すなわち、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数が使用される。
 図7は、本発明の実施の形態における第1の動作例に係る仕様変更例(2)である。図7は、PDSCH-Configの仕様の例を示す。PDSCH-Configによって、SCellがdeactivated状態である場合に使用する、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数がユーザ装置20に通知される。なお、「DefBWP」は、デフォルト DL BWPを示す。
 図8は、本発明の実施の形態における第1の動作例に係る仕様変更例(3)である。図8は、PDSCH-ServingCellConfigの仕様の例を示す。PDSCH-ServingCellConfigによって、セルごとに設定されたMIMOレイヤ数がユーザ装置20に通知される。
 図9は、本発明の実施の形態における第1の動作例に係る仕様変更例(4)である。図9は、PUSCH-Configの仕様の例を示す。PUSCH-Configによって、SCellがdeactivated状態である場合に使用する、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数がユーザ装置20に通知される。なお、「DefBWP」は、デフォルト DL BWPを示す。
 図10は、本発明の実施の形態における第1の動作例に係る仕様変更例(5)である。図10は、PUSCH-ServingCellConfigの仕様の例を示す。PUSCH-ServingCellConfigによって、セルごとに設定されたMIMOレイヤ数がユーザ装置20に通知される。
 図11は、本発明の実施の形態における第2の動作例を説明するためのフローチャートである。基地局装置10は、ユーザ装置20にセルごとに使用するMIMOレイヤ数を通知することに加えて、デフォルトBWP又はイニシャルBWPに対して、セルごとに使用するMIMOレイヤ数とは別途、使用するMIMOレイヤ数を通知してもよい。例えば、セルごとに使用するMIMOレイヤ数よりも少ないMIMOレイヤ数が、デフォルトBWP又はイニシャルBWPに対して設定されてもよい。
 ステップS41において、ユーザ装置20のサービングセルのデフォルトBWP又はイニシャルBWPがアクティブBWPであるとする。続いて、サービングセルのdrx-Inactivity Timerが満了する(S42)。続いて、ユーザ装置20は、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数を用いる(S43)。
 ステップS44において、ユーザ装置20は、PDCCHを受信し、新規受信又は新規送信が指示される。続いて、ユーザ装置20は、CCごとに設定されたMIMOレイヤ数を用いる(S45)。
 すなわち、サービングセルのdrx-Inactivity Timerが満了した場合、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数が使用され、PDCCHによる新規受信又は新規送信が発生した場合、セルごとに設定されたMIMOレイヤ数が使用される。なお、基地局装置10は、上記のステップS41からS45のフローチャートと同様に、ユーザ装置20が使用するMIMOレイヤ数を決定して、通信を実行してもよい。
 図12は、本発明の実施の形態における第2の動作例に係る仕様変更例(1)である。図12に示される仕様において、DRXに係る動作の一部が規定される。drx-Inactivity Timerが満了した場合、PDSCH-Configで設定されるmaxMIMO-LayerDLが適用され、PUSCH-Configで設定されるmaxMIMO-LayerULが適用される。すなわち、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数が使用される。
 PDCCHによって新規受信又は新規送信が発生した場合、PDSCH-ServingCellConfigで設定されるmaxMIMO-LayerDLが適用され、PUSCH-ServingCellConfigで設定されるmaxMIMO-LayerULが適用される。すなわち、セルごとに設定されたMIMOレイヤ数が使用される。
 図13は、本発明の実施の形態における第2の動作例に係る仕様変更例(2)である。図13は、PDSCH-Configの仕様の例を示す。PDSCH-Configによって、DRX-Configが設定されている場合に使用する、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数がユーザ装置20に通知される。DRX-Configは、DRXに係る設定である。なお、「DefBWP」は、デフォルト DL BWPを示す。
 図14は、本発明の実施の形態における第2の動作例に係る仕様変更例(3)である。図14は、PDSCH-ServingCellConfigの仕様の例を示す。PDSCH-ServingCellConfigによって、セルごとに設定されたMIMOレイヤ数がユーザ装置20に通知される。
 図15は、本発明の実施の形態における第2の動作例に係る仕様変更例(4)である。図15は、PUSCH-Configの仕様の例を示す。PUSCH-Configによって、DRX-Configが設定されている場合に使用する、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数がユーザ装置20に通知される。なお、「DefBWP」は、デフォルト DL BWPを示す。
 図16は、本発明の実施の形態における第2の動作例に係る仕様変更例(5)である。図16は、PUSCH-ServingCellConfigの仕様の例を示す。PUSCH-ServingCellConfigによって、セルごとに設定されたMIMOレイヤ数がユーザ装置20に通知される。
 上述の実施例により、ユーザ装置20は、通信状態に応じて、使用するMIMOレイヤ数を変更することができる。例えば、BWPの仕組みを用いて、ユーザ装置20が使用する帯域幅を減少させる場合、MIMOレイヤ数を削減することで、電力消費低減効果を得ることができる。例えば、ユーザ装置20は、SCellがdeactivated状態に遷移した場合、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数を使用して、SCellがactivated状態に遷移した場合、セルごとに設定されたMIMOレイヤ数を使用する。また、例えば、ユーザ装置20は、drx-Inactivity Timerが満了した場合、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数を使用して、PDCCHによる新規受信又は新規送信が発生した場合、セルごとに設定されたMIMOレイヤ数を使用する。
 すなわち、無線通信システムにおいて、ユーザ装置が適切なMIMO(Multiple Input Multiple Output)レイヤ数を使用することにより、通信の効率を向上させることができる。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局装置10及びユーザ装置20の機能構成例を説明する。基地局装置10及びユーザ装置20は上述した実施例を実施する機能を含む。ただし、基地局装置10及びユーザ装置20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
 <基地局装置10>
 図17は、基地局装置10の機能構成の一例を示す図である。図17に示されるように、基地局装置10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図17に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部110は、ユーザ装置20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、ユーザ装置20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、ユーザ装置20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。
 設定部130は、予め設定される設定情報、及び、ユーザ装置20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、ユーザ装置20のセルに係る通信設定、BWPに係る通信設定、MIMO送受信に係る設定、DRXに係る設定等である。
 制御部140は、実施例において説明したように、ユーザ装置20のセル又はBWPに係る通信設定を生成する処理を行う。また、制御部140は、ユーザ装置20に使用可能であるMIMOレイヤ数を通知する。また、制御部140は、DRXによる通信を制御する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
 <ユーザ装置20>
 図18は、ユーザ装置20の機能構成の一例を示す図である。図18に示されるように、ユーザ装置20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図18に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局装置10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他のユーザ装置20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他のユーザ装置20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。
 設定部230は、受信部220により基地局装置10又はユーザ装置20から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、セルに係る通信設定、BWPに係る通信設定、MIMO送受信に係る設定、DRXに係る設定等である。
 制御部240は、実施例において説明したように、基地局装置10から取得した通信設定に基づいて、MIMOレイヤ数に基づく空間多重が適用された通信を実行する。また、制御部240は、セルの有効化又は無効化を制御する。また、制御部240は、DRXが適用される通信を制御する。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図17及び図18)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局装置10、ユーザ装置20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図19は、本開示の一実施の形態に係る基地局装置10及びユーザ装置20のハードウェア構成の一例を示す図である。上述の基地局装置10及びユーザ装置20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局装置10及びユーザ装置20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局装置10及びユーザ装置20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図17に示した基地局装置10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図18に示したユーザ装置20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局装置10及びユーザ装置20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、第1のMIMO(Multiple Input Multiple Output)レイヤ数及び第2のMIMOレイヤ数を基地局装置から受信する受信部と、通信状態に基づいて、前記第1のMIMOレイヤ数又は前記第2のMIMOレイヤ数を選択する制御部と、前記選択されたMIMOレイヤ数を使用して通信を実行する通信部とを有し、前記第1のMIMOレイヤ数はデフォルトBWP(Bandwidth Part)又はイニシャルBWP用に設定されるMIMOレイヤ数であり、前記第2のMIMOレイヤ数はセルごとに設定されるMIMOレイヤ数であるユーザ装置が提供される。
 上記の構成により、ユーザ装置20は、通信状態に応じて、使用するMIMOレイヤ数を変更することができる。例えば、BWPの仕組みを用いて、ユーザ装置20が使用する帯域幅を減少させる場合、MIMOレイヤ数を削減することで、電力消費低減効果を得ることができる。すなわち、無線通信システムにおいて、ユーザ装置が適切なMIMOレイヤ数を使用することにより、通信の効率を向上させることができる。
 前記制御部は、SCell(Secondary Cell)が非活性化状態に遷移する場合、前記第1のMIMOレイヤ数を選択し、SCellが活性化状態に遷移する場合、前記第2のMIMOレイヤ数を選択してもよい。当該構成により、ユーザ装置20は、SCellがdeactivated状態に遷移した場合、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数を使用して、SCellがactivated状態に遷移した場合、セルごとに設定されたMIMOレイヤ数を使用する。
 前記制御部は、サービングセルのdrx-Inactivity Timerが満了した場合、前記第1のMIMOレイヤ数を選択し、PDCCH(Physical Downlink Control Channel)により新規受信又は新規送信が開始される場合、前記第2のMIMOレイヤ数を選択してもよい。当該構成により、ユーザ装置20は、drx-Inactivity Timerが満了した場合、デフォルトBWP又はイニシャルBWP用に設定されたMIMOレイヤ数を使用して、PDCCHによる新規受信又は新規送信が発生した場合、セルごとに設定されたMIMOレイヤ数を使用する。
 前記第1のMIMOレイヤ数は、前記第2のMIMOレイヤ数よりも小さくてもよい。当該構成により、BWPの仕組みを用いて、ユーザ装置20が使用する帯域幅を減少させる場合、MIMOレイヤ数を削減することで、電力消費低減効果を得ることができる。
 また、本発明の実施の形態によれば、第1のMIMO(Multiple Input第1のMIMO(Multiple Input Multiple Output)レイヤ数及び第2のMIMOレイヤ数をユーザ装置に送信する送信部と、通信状態に基づいて、前記第1のMIMOレイヤ数又は前記第2のMIMOレイヤ数を選択する制御部と、前記選択されたMIMOレイヤ数を使用して通信を実行する通信部とを有し、前記第1のMIMOレイヤ数はデフォルトBWP(Bandwidth Part)又はイニシャルBWP用に設定されるMIMOレイヤ数であり、前記第2のMIMOレイヤ数はセルごとに設定されるMIMOレイヤ数である基地局装置が提供される。
 上記の構成により、ユーザ装置20は、通信状態に応じて、使用するMIMOレイヤ数を変更することができる。例えば、BWPの仕組みを用いて、ユーザ装置20が使用する帯域幅を減少させる場合、MIMOレイヤ数を削減することで、電力消費低減効果を得ることができる。すなわち、無線通信システムにおいて、ユーザ装置が適切なMIMOレイヤ数を使用することにより、通信の効率を向上させることができる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局装置10及びユーザ装置20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局装置10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従ってユーザ装置20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局装置10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局装置10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置20との通信のために行われる様々な動作は、基地局装置10及び基地局装置10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局装置10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ装置20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局装置10が有する機能をユーザ装置20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ装置20に対して、無線リソース(各ユーザ装置20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 なお、本開示において、deactivated状態は、非活性化状態の一例である。activated状態は、活性化状態の一例である。送信部210及び受信部220は、通信部の一例である。送信部110及び受信部120は、通信部の一例である。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 本国際特許出願は2018年11月15日に出願した日本国特許出願第2018-214558号に基づきその優先権を主張するものであり、日本国特許出願第2018-214558号の全内容を本願に援用する。
10    基地局装置
110   送信部
120   受信部
130   設定部
140   制御部
20    ユーザ装置
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (5)

  1.  第1のMIMO(Multiple Input Multiple Output)レイヤ数及び第2のMIMOレイヤ数を基地局装置から受信する受信部と、
     通信状態に基づいて、前記第1のMIMOレイヤ数又は前記第2のMIMOレイヤ数を選択する制御部と、
     前記選択されたMIMOレイヤ数を使用して通信を実行する通信部とを有し、
     前記第1のMIMOレイヤ数はデフォルトBWP(Bandwidth Part)又はイニシャルBWP用に設定されるMIMOレイヤ数であり、前記第2のMIMOレイヤ数はセルごとに設定されるMIMOレイヤ数であるユーザ装置。
  2.  前記制御部は、SCell(Secondary Cell)が非活性化状態に遷移する場合、前記第1のMIMOレイヤ数を選択し、SCellが活性化状態に遷移する場合、前記第2のMIMOレイヤ数を選択する請求項1記載のユーザ装置。
  3.  前記制御部は、サービングセルのdrx-Inactivity Timerが満了した場合、前記第1のMIMOレイヤ数を選択し、PDCCH(Physical Downlink Control Channel)により新規受信又は新規送信が開始される場合、前記第2のMIMOレイヤ数を選択する請求項1記載のユーザ装置。
  4.   前記第1のMIMOレイヤ数は、前記第2のMIMOレイヤ数よりも小さい請求項1記載のユーザ装置。
  5.  第1のMIMO(Multiple Input Multiple Output)レイヤ数及び第2のMIMOレイヤ数をユーザ装置に送信する送信部と、
     通信状態に基づいて、前記第1のMIMOレイヤ数又は前記第2のMIMOレイヤ数を選択する制御部と、
     前記選択されたMIMOレイヤ数を使用して通信を実行する通信部とを有し、
     前記第1のMIMOレイヤ数はデフォルトBWP(Bandwidth Part)又はイニシャルBWP用に設定されるMIMOレイヤ数であり、前記第2のMIMOレイヤ数はセルごとに設定されるMIMOレイヤ数である基地局装置。
PCT/JP2019/041986 2018-11-15 2019-10-25 ユーザ装置及び基地局装置 WO2020100559A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020555962A JP7073529B2 (ja) 2018-11-15 2019-10-25 端末、基地局及び通信方法
US17/278,798 US20220030517A1 (en) 2018-11-15 2019-10-25 User apparatus and base station apparatus
CN201980074185.1A CN112997520B (zh) 2018-11-15 2019-10-25 用户装置以及基站装置
EP19883484.8A EP3883282A4 (en) 2018-11-15 2019-10-25 USER EQUIPMENT AND BASE STATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-214558 2018-11-15
JP2018214558 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020100559A1 true WO2020100559A1 (ja) 2020-05-22

Family

ID=70730825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041986 WO2020100559A1 (ja) 2018-11-15 2019-10-25 ユーザ装置及び基地局装置

Country Status (5)

Country Link
US (1) US20220030517A1 (ja)
EP (1) EP3883282A4 (ja)
JP (1) JP7073529B2 (ja)
CN (1) CN112997520B (ja)
WO (1) WO2020100559A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11805499B2 (en) * 2019-12-13 2023-10-31 Qualcomm Incorporated Increase diversity of slot aggregation using slot-specific cyclic delay diversity
US11088741B1 (en) * 2020-05-13 2021-08-10 Charter Communicatons Operating, LLC Apparatus and methods for uplink MIMO enhancement in wireless systems

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675193B2 (ja) * 2010-07-14 2015-02-25 シャープ株式会社 基地局、通信方法及び集積回路
AU2013303253B2 (en) * 2012-08-13 2016-12-08 Telefonaktiebolaget L M Ericsson (Publ) Methods of receiving retransmissions including discontinuous transmission indicators and related devices
EP3859993B1 (en) * 2013-01-18 2023-08-23 Huawei Technologies Co., Ltd. Method for determining rank indication ri bit number, base station, and terminal
KR20140106365A (ko) * 2013-02-26 2014-09-03 주식회사 케이티 캐리어 병합을 수행하는 방법 및 그 장치
WO2016077975A1 (en) * 2014-11-18 2016-05-26 Intel IP Corporation Evolved node-b and user equipment and methods for group sounding in full-dimension multiple-input multiple-output systems
US10064217B2 (en) * 2015-10-16 2018-08-28 Samsung Electronics Co., Ltd. Method and apparatus for enabling flexible numerology in multi-user MIMO system
JP2019009483A (ja) * 2015-11-13 2019-01-17 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
JP6381590B2 (ja) * 2016-07-29 2018-08-29 株式会社Nttドコモ ユーザ装置、基地局及び通信方法
US10268256B2 (en) * 2016-08-24 2019-04-23 Qualcomm Incorporated Techniques for reducing power consumption based at least in part on reconfiguration of a user equipment in a sub-transmission time interval (TTI) range
WO2018084971A1 (en) * 2016-11-02 2018-05-11 Intel Corporation Mimo (multiple input multiple output) layer transmission for nr (new radio)
CN108093481B (zh) * 2017-11-28 2023-04-18 中兴通讯股份有限公司 发送波束恢复信息的方法和装置、波束检测方法和装置
WO2020070898A1 (ja) * 2018-10-05 2020-04-09 株式会社Nttドコモ ユーザ端末、無線基地局、及び、無線通信方法
KR20210007497A (ko) * 2019-07-11 2021-01-20 삼성전자주식회사 차세대 이동 통신 시스템에서 밴드위스 파트 별로 최대 mimo 레이어 갯수를 설정하는 방법 및 장치
KR102613219B1 (ko) * 2019-08-07 2023-12-13 삼성전자 주식회사 무선 통신 시스템에서 안테나 적응 방법 및 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion on MIMO layer configuration for NR", 3GPP TSG RAN WG1 #95 R1-1812448, 3 November 2018 (2018-11-03), XP051478649 *
LG ELECTRONICS: "Discussions on triggering adaptation for UE power consumption", 3GPP TSG RAN WG1 #95 R1-1812588, 4 November 2018 (2018-11-04), XP051478817 *
MEDIATEK INC: "Discussion on MIMO layer configuration [ online", 3GPP TSG RAN WG1 #95 R1-1813338, 3 November 2018 (2018-11-03), XP051479648 *
See also references of EP3883282A4

Also Published As

Publication number Publication date
CN112997520A (zh) 2021-06-18
JPWO2020100559A1 (ja) 2021-09-24
CN112997520B (zh) 2024-02-13
EP3883282A4 (en) 2022-07-27
JP7073529B2 (ja) 2022-05-23
US20220030517A1 (en) 2022-01-27
EP3883282A1 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
WO2020090098A1 (ja) ユーザ装置及び基地局装置
WO2020090097A1 (ja) ユーザ装置及び基地局装置
WO2020170405A1 (ja) ユーザ装置及び基地局装置
WO2020100559A1 (ja) ユーザ装置及び基地局装置
WO2021140674A1 (ja) 端末及び通信方法
WO2021149246A1 (ja) 端末、基地局及び通信方法
WO2020100379A1 (ja) ユーザ装置及び基地局装置
WO2020166030A1 (ja) ネットワークノード
WO2020095455A1 (ja) ユーザ装置及び基地局装置
JP7203199B2 (ja) 端末、基地局及び通信方法
WO2020171182A1 (ja) ユーザ装置及び基地局装置
WO2021038920A1 (ja) 端末、基地局及び通信方法
WO2020170445A1 (ja) ユーザ装置及び基地局装置
WO2020161824A1 (ja) ユーザ装置及び基地局装置
WO2020157874A1 (ja) ユーザ装置及び基地局装置
WO2020157873A1 (ja) ユーザ装置及び基地局装置
WO2020194638A1 (ja) ユーザ装置及び基地局装置
WO2020166028A1 (ja) ネットワークノード
WO2020166006A1 (ja) ネットワークノード
WO2020090069A1 (ja) ユーザ装置及び基地局装置
JP7491905B2 (ja) 端末、基地局装置、通信方法及びシステム
JP7373559B2 (ja) ユーザ装置及び無線通信システム
WO2022044558A1 (ja) 端末、基地局及び通信方法
WO2022038919A1 (ja) 端末及び通信方法
WO2021140676A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019883484

Country of ref document: EP

Effective date: 20210615