WO2020100484A1 - Head-mounted display, and display method - Google Patents

Head-mounted display, and display method Download PDF

Info

Publication number
WO2020100484A1
WO2020100484A1 PCT/JP2019/040148 JP2019040148W WO2020100484A1 WO 2020100484 A1 WO2020100484 A1 WO 2020100484A1 JP 2019040148 W JP2019040148 W JP 2019040148W WO 2020100484 A1 WO2020100484 A1 WO 2020100484A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
image
display
optical system
user
Prior art date
Application number
PCT/JP2019/040148
Other languages
French (fr)
Japanese (ja)
Inventor
尚志 岡
英樹 相羽
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2020100484A1 publication Critical patent/WO2020100484A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a head mounted display and a display method thereof.
  • Patent Document 1 discloses a head-mounted display that includes an image display unit, a combiner element, and a dimming unit.
  • the dimming part has a first region corresponding to the contour of the combiner element.
  • the dimming unit is provided on the outside world side of the combiner element and dims the outside world light.
  • the present embodiment has been made in view of the above points, and an object thereof is to provide a head mounted display and a display method capable of making a displayed image look natural.
  • the head mounted display is a display element unit that displays a left-eye image and a right-eye image, and a left-eye optical system that guides the display light of the left-eye image to the left eye of the user, A right-eye optical system that guides the display light of the right-eye image to the right eye of the user, and in the left-eye image visually recognized by the user, the visibility is increased from a predetermined position toward the left end. In the right-eye image visually recognized by the user, the visibility becomes lower from the predetermined position toward the right end.
  • the display method of the head mounted display according to the present embodiment, the display element unit, a step of generating an image for the left eye and an image for the right eye, the optical system for the left eye, the display light of the image for the left eye of the user.
  • the optical system for the right eye guides the display light of the image for the right eye to the right eye of the user, and in the image for the left eye visually recognized by the user, from the predetermined position to the left end. In the right-eye image visually recognized by the user, the visibility decreases toward the right end from a predetermined position.
  • FIG. 3 is a diagram showing functional blocks of the head mounted display according to the first embodiment. It is a figure which shows typically the structure of the optical system of the head mounted display using two mirrors. It is a figure which shows typically the structure of the optical system of the head mounted display using one mirror. It is a figure which shows typically the structure of the head mounted display using a lens. It is a figure for demonstrating the relationship between a user's visual field and a display image.
  • FIG. 6 is a diagram for explaining a difference between a normal display image and a display image according to the present embodiment. It is a figure which shows the brightness
  • FIG. 9 is a diagram showing functional blocks of the head mounted display according to the second embodiment. It is a figure which shows the display image which has a change distribution of a blur amount. It is a figure which shows the image before changing a blur amount.
  • FIG. 1 is a perspective view schematically showing the configuration of the head mounted display 100.
  • FIG. 2 is a diagram showing functional blocks of the head mounted display 100.
  • FIG. 1 shows the internal configuration of the head mounted display 100, and in practice, each component shown in FIG. 1 may be covered with a cover or the like.
  • the front-back direction is the Z direction
  • the left-right direction is the X direction
  • the up-down direction is the Y direction.
  • the front direction is + Z direction
  • the rear direction is -Z direction
  • the right direction is + X direction
  • the left direction is -X direction
  • the up direction is + Y direction
  • the down direction is -Y direction.
  • the head mounted display 100 includes a frame 102, a left-eye optical system 103L, a right-eye optical system 103R, and a control unit 105.
  • the control unit 105 includes a control unit 105L and a control unit 105R.
  • the frame 102 has a goggle shape, eyeglass shape, or the like, and is attached to the user's head by a headband or the like (not shown).
  • the display element unit 101, the left-eye optical system 103L, the right-eye optical system 103R, the control unit 105L, and the control unit 105R are attached to the frame 102.
  • the display element unit 101 includes a left-eye display element 101L and a right-eye display element 101R.
  • the left-eye display element 101L generates a display image for the left eye.
  • the right-eye display element 101R generates a display image for the right eye.
  • the left-eye display element 101L and the right-eye display element 101R each include a flat panel display such as a liquid crystal monitor or an organic EL (Electro-Luminescence) monitor.
  • the left-eye display element 101L and the right-eye display element 101R may be curved displays.
  • the left-eye display element 101L and the right-eye display element 101R each include a plurality of pixels arranged in an array.
  • the array arrangement is not limited to a two-dimensional matrix arrangement, and may be a pentile arrangement or the like.
  • the left-eye display element 101L is arranged on the left side ( ⁇ X side) of the right-eye display element 101R.
  • a control unit 105L and a control unit 105R are provided above the display element unit 101 (+ Y side). Video signals, control signals, and power are supplied from the outside to the control units 105L and 105R.
  • a video signal or the like is input to the control unit 105 by a wired connection such as HDMI (registered trademark) or a wireless connection such as WiFi (registered trademark) or BlueTooth (registered trademark).
  • the head mounted display 100 may include a video generation unit (not shown) that generates a video signal, and the control unit 105 may receive the video signal generated by the video generation unit and the like.
  • the head mounted display 100 may not include the control unit 105, in which case the video signal is input to the display element unit 101.
  • the control unit 105L and the control unit 105R have hardware resources such as a CPU (Central Processing Unit) and a memory, and operate according to a computer program stored in the memory. Further, the control unit 105L and the control unit 105R each include a display drive circuit and the like.
  • the control unit 105L generates a display signal of the left-eye image PL based on the video signal, the control signal, and the like, and outputs the display signal to the left-eye display element 101L. As a result, the left-eye display element 101L outputs display light for displaying the left-eye image PL.
  • the control unit 105R generates a display signal of the right-eye image PR based on the video signal, the control signal, and the like, and outputs the display signal to the right-eye display element 101R. That is, the control unit 105 outputs the display signal to the display element unit 101. As a result, the right-eye display element 101R outputs display light for displaying the right-eye image PR.
  • the display element unit 101 is not limited to the configuration in which the left-eye display element 101L and the right-eye display element 101R are separate display elements, and may be a single display element.
  • a single display element may generate a display image for the left eye and a display image for the right eye.
  • the display element unit 101 uses one part of the display area of the display to generate the left-eye image PL, and uses the other part of the display area to generate the right-eye image PR.
  • the control units 105L and 105R may be common to the left and right.
  • a part or all of the display element unit 101, the control unit 105, and the like are not limited to being fixed to the frame 102, but may be detachably provided to the frame 102.
  • the display element unit 101, the control unit 105, and the like may be realized by attaching a smart phone, a tablet computer, or the like to the frame 102.
  • an application program (application) for generating a display image for a head mounted display may be installed in advance on a smart phone or the like.
  • the left-eye optical system 103L guides the display light output from the left-eye display element 101L to the user's left-eye EL as the left-eye image PL.
  • the right-eye optical system 103R guides the display light output from the right-eye display element 101R to the right eye ER of the user as the right-eye image PR.
  • the left-eye optical system 103L is arranged on the left side ( ⁇ X side) of the right-eye optical system 103R.
  • the left-eye optical system 103L is arranged in front of the user's left eye (+ Z side).
  • the right-eye optical system 103R is arranged in front of the right eye of the user (+ Z side). The user can visually recognize the virtual image of the display image generated by the display element unit 101 in front of the front (+ Z side).
  • the head mounted display 100 is applicable to both non-transmissive type and semi-transmissive type.
  • the semi-transmissive head mounted display 100 the user enters the display light from the display element unit 101 and the external light into the left eye and the right eye. Therefore, the user can visually recognize the superimposed image in which the display image is superimposed on the front (+ Z side) scenery.
  • the non-transmissive head mounted display only the display light from the display element unit 101 enters the left eye and the right eye. The user can visually recognize the display image generated by the display element unit 101.
  • the head mounted display 100 In order to perform head tracking or the like, it is possible to provide the head mounted display 100 with a sensor such as a 3-axis sensor or a 6-axis sensor that detects an attitude state. The display image can be changed by detecting the position or orientation of the user's head with the sensor.
  • the head mounted display 100 is applicable to various applications such as games, entertainment, industrial, medical, and simulator.
  • the head mounted display 100 is a VR (Virtual Reality) head mounted display or an AR (Augmented Reality) head mounted display.
  • Examples of the left-eye optical system 103L and the right-eye optical system 103R (hereinafter collectively referred to as an optical system) will be described.
  • 3 to 5 are diagrams schematically showing Examples 1 to 3 of the optical system. Since the left-eye optical system 103L and the right-eye optical system 103R have the same configuration, only the left-eye optical system 103L will be described with reference to FIGS. 3 to 5.
  • FIG. 3 shows Example 1 of the optical system.
  • the left-eye optical system 103L includes a first mirror 121L and a second mirror 122L.
  • the first mirror 121L is a concave mirror and the second mirror 122L is a plane mirror.
  • the second mirror 122L is a beam splitter such as a half mirror, which reflects a part of the incident light and transmits a part thereof.
  • the first mirror 121L and the second mirror 122L are arranged in front of and in front of the left eye EL of the user (+ Z direction).
  • the first mirror 121L is arranged in front of the second mirror 122L (+ Z direction).
  • the display surface of the display element 101L for the left eye faces vertically downward (-Y direction). Therefore, the display light from the left-eye display element 101L is emitted in the ⁇ Y direction.
  • the second mirror 122L is arranged to be inclined. Therefore, the display light reflected by the second mirror 122L is reflected forward (+ Z direction). The display light reflected by the second mirror 122L is reflected by the first mirror 121L.
  • the first mirror 121L reflects the display light backward (-Z direction). Further, the first mirror 121L is a concave mirror, and reflects the display light so that the display light is condensed toward the left eye EL.
  • the left-eye optical system 103L guides the display light from the left-eye display element 101L to the left eye EL of the user.
  • the optical system can display a virtual image in front of the user (+ Z direction).
  • the first mirror 121L is a combiner mirror that combines the external light and the display light from the display element.
  • a beam splitter such as a half mirror is used as the first mirror 121L.
  • the beam splitter reflects a part of the light and transmits a part of the light. Therefore, external light passes through the first mirror 121L and the second mirror 122L and enters the left eye EL. Further, a part of the display light is reflected by the first mirror 121L and enters the left eye EL via the second mirror 122L. Therefore, the display image is superimposed on the scenery in front of the user (+ Z direction).
  • the first mirror 121L is a total reflection mirror that reflects almost all incident light.
  • FIG. 4 shows Example 2 of the optical system. Since the left-eye optical system 103L and the right-eye optical system 103R have the same configuration, only the left-eye optical system 103L will be described.
  • the left-eye optical system 103L includes a first mirror 121L.
  • the first mirror 121L is a concave mirror.
  • the first mirror 121L is arranged in front of the front of the left eye EL of the user (in the + Z direction).
  • the display element 101L for the left eye is arranged diagonally. That is, the display surface of the left-eye display element 101L is downward and faces forward. Therefore, the display light from the left-eye display element 101L is emitted in the ⁇ Y direction and the + Z direction (oblique direction).
  • the first mirror 121L is arranged below and in front of the display element 101L for the left eye (oblique direction). Therefore, the display light from the display element 101L for the left eye of the first mirror 121L is reflected by the first mirror 121L toward the left eye EL.
  • the first mirror 121L is a concave mirror and reflects the display light so that the display light is condensed toward the left eye EL.
  • the left-eye optical system 103L guides the display light from the left-eye display element 101L to the left-eye EL.
  • the optical system can display a virtual image in front of the user (+ Z direction).
  • the first mirror 121L is a combiner mirror that combines the external light and the display light from the display element.
  • a beam splitter such as a half mirror is used as the first mirror 121L.
  • the beam splitter reflects a part of the light and transmits a part of the light. Therefore, the external light passes through the first mirror 121L and enters the left eye EL. Further, part of the display light is reflected by the first mirror 121L and enters the left eye EL. Therefore, the display image is superimposed on the scenery in front of the user (+ Z direction).
  • the first mirror 121L is a total reflection mirror that reflects almost all incident light.
  • FIG. 5 is a diagram showing Example 3 of the optical system. Since the left-eye optical system 103L and the right-eye optical system 103R have the same configuration, only the left-eye optical system 103L will be described.
  • the left-eye optical system 103L has a lens 112L.
  • the lens 112L is arranged in front of the left eye EL (+ Z direction).
  • the display element 101L for the left eye is arranged in front of the lens 112L (+ Z direction).
  • the display surface of the left-eye display element 101L faces rearward (-Z direction). Therefore, the display light from the left-eye display element 101L is condensed by the lens 112L and enters the left-eye EL.
  • the left-eye optical system 103L guides the display light from the left-eye display element 101L to the left-eye EL.
  • the left-eye optical system 103L can display a virtual image in front of the user (+ Z direction).
  • the left-eye optical system 103L may have a plurality of lenses. Further, the lens may be driven so as to adjust zoom and focus.
  • FIGS. 3 to 5 show one example of the optical system, and the left eye optical system 103L and the right eye optical system 103R are not limited to the configurations of FIGS. 3 to 5.
  • the left-eye optical system 103L only needs to guide the display light of the left-eye image PL to the left eye, and the right-eye optical system 103R guides the display light of the right-eye image PR to the right eye. I wish I had it.
  • the display light of the left-eye image PL is not guided to the right eye, and the display light of the right-eye image PR is not guided to the left eye.
  • FIG. 6 is a diagram schematically showing the relationship between the visual fields of the left eye EL and the right eye ER in the left-right direction (X direction) and the display image.
  • the visual field FL indicates the visual field of the left eye EL possessed by a human
  • the visual field FR indicates the visual field of the right eye ER possessed by the human.
  • the field of view FL of the left eye EL and the field of view FR of the right eye ER have symmetric divergence angles, and are displaced in the X direction by the interval between the two eyes of the user (pupil interval).
  • the visual field FL of the left eye EL and the visual field FR of the right eye ER partially overlap. That is, the right side of the field of view FL and the left side of the field of view FR overlap.
  • the left end of the field of view FL is not included in the field of view FR.
  • the right end of the field of view FR is not included in the field of view FL.
  • the left end of the visual field FL in the X direction is X1
  • the right end is X5.
  • the left end of the field of view FR in the X direction is X3, and the right end is X7.
  • the left end of the left-eye image PL is X2.
  • the right end of the left-eye image PL coincides with the right end X5 of the visual field FL.
  • the left end of the right-eye image PR matches the left end X3 of the field of view FR.
  • the right end of the right-eye image PR in the X direction is set to the position X6.
  • the left end X2 of the left-eye image PL and the left end X3 of the right-eye image PR may be substantially at the same position.
  • the right end X5 of the left-eye image PL and the right end X6 of the right-eye image PR may be substantially at the same position.
  • the right end of the left-eye image PL may not coincide with the right end X5 of the visual field FL in the X direction.
  • the left end of the right-eye image PR may not coincide with the left end X3 of the field of view FR in the X direction.
  • the center position of the left eye EL and the right eye ER is X4.
  • the position X4 is intermediate between the positions X2 and X6.
  • the left and right visual fields FL and FR overlap in the range from position X3 to position X5.
  • the positions X1, X2, X3, X4, X5, X6, and X7 are located in this order in the direction from the -X side to the + X side.
  • the left-eye image PL of the left-eye display element 101L is displayed in the range from the position X2 to the position X5.
  • the right-eye image PR of the right-eye display element 101R is displayed in the range from the position X3 to the position X6. That is, the left eye EL visually recognizes the virtual image of the left-eye image PL displayed in the range from the position X2 to the position X5, and the right eye ER displays the right-eye image PR displayed in the range from the position X3 to the position X6. Visually recognize the virtual image of. From the viewpoint of the user, the left-eye image PL and the right-eye image PR are displayed in an overlapping manner in the range of position X3 to position X5. The boundary at the left end of the area where the left-eye image PL and the right-eye image PR overlap is at position X3, and the right boundary is at position X5.
  • the position X1 is on the left side of the position X2, and the position X7 is on the right side of the position X6. That is, the visual field FL of the left eye is wider than the image PL for the left eye, and the visual field FR of the right eye is wider than the image PR for the right eye.
  • the size of the virtual image to be visually recognized is limited by the configuration of the optical system, the size of the display element, and the like.
  • the display image (virtual image) becomes smaller than the user's visual field (visual field). Therefore, the user visually recognizes the edge of the display image. That is, the image display end (edge) is in the user's visual field (field of view).
  • FIG. 7 is a diagram showing a normal display image and a display image desired to be obtained by the head mounted display according to the present embodiment.
  • FIG. 7 shows a display image when the video signal input to the control unit 105 has a uniform luminance value.
  • the display image may be smaller than the user's visual field (visual field) depending on the configuration of the optical system, the size of the display element, and the like.
  • the user visually recognizes the edge of the display image.
  • the edges of the image are clearly visible.
  • the display image is obtained in which the edges of the display image are not clearly visible and the ends naturally merge with the surroundings.
  • the brightness of the display image visually recognized by the user using the left eye EL and the right eye ER is set to have a distribution as shown in FIG.
  • the horizontal axis represents the divergence angle with reference to the center (position X4) of both eyes
  • the vertical axis represents luminance.
  • the display is performed with a uniform brightness value (for example, white display)
  • the brightness at the center of both eyes is 100%.
  • the brightness is set so that the brightness becomes weaker as it approaches the left end (position X2) in the left-eye image PL, and becomes weaker as it approaches the right end (position X6) in the right-eye image PR. Change. That is, the brightness gradually decreases toward the display image edge. It should be noted that the brightness here is assumed when the video signal input to the control unit 105 has a uniform brightness value.
  • the field of view of the head mounted display is smaller than the field of view of humans, and even when the user visually recognizes the image display end and the outside thereof, the user can clearly see the edge of the display image. I will not see it.
  • the information of the display image and the information around it can be merged and made closer in a natural manner.
  • the gap between the display image and its periphery can be reduced, and the display quality can be improved.
  • the displayed image can be made to look natural by fusing with the surrounding environment.
  • FIG. 9 is a diagram for explaining the luminance distributions of the left-eye image PL and the right-eye image PR.
  • the brightness I gradually decreases from the position X5 (right end) toward the position X2 (left end). That is, the brightness of the image PL for the left eye is highest at the position X5 (right end) and lowest at the position X2 (left end).
  • the brightness PR for the right eye the brightness I gradually decreases from the position X3 (left end) toward the position X6 (right end). That is, the brightness of the image PR for the right eye is highest at the position X3 (left end) and lowest at the position X6 (right end).
  • the brightness gradually decreases from one end to the other end.
  • FIG. 10 is a diagram for explaining the luminance distributions of the left-eye image PL and the right-eye image PR.
  • the brightness I gradually decreases from the position X3 toward the position X2 (left end).
  • the brightness is constant in the range from the position X3 to the position X5 (right end).
  • the brightness PR for the right eye the brightness I gradually decreases from the position X5 toward the position X6 (right end).
  • the brightness is constant in the range from the position X5 to the position X3 (left end).
  • the brightness is constant.
  • the brightness is highest in the range from position X3 to position X5, and lowest in position X2 (left end).
  • the brightness gradually changes in the range from the position X2 to the position X3.
  • the brightness is highest in the range from the position X3 to the position X5, and lowest in the position X6 (right end).
  • the brightness gradually changes in the range from the position X5 to the position X6.
  • the region where the right side of the field of view FL and the left side of the field of view FR overlap has a constant luminance, and the right side of the field of view FL does not overlap with the left side of the field of view FR.
  • the brightness decreases gradually only by itself.
  • the region where the right side of the field of view FL and the left side of the field of view FR do not overlap is considered to be less important to the user than the region where the right side of the field of view FL overlaps with the left side of the field of view FR, and thus the display image and its The peripheral gap can be reduced and the displayed image can appear natural.
  • FIG. 11 is a diagram for explaining the luminance distributions of the left-eye image PL and the right-eye image PR.
  • the brightness I gradually decreases from the position X3 toward the position X2 (left end).
  • the brightness is constant in the range from the position X3 to the position X4.
  • the brightness I gradually decreases from the position X4 toward the position X5 (right end). In this way, in the left and right regions of the left-eye image PL, the brightness gradually decreases toward both ends of the left-eye image PL.
  • the brightness is constant in the central region of the left-eye image PL.
  • the brightness is highest in the range from position X3 to position X4, and is low at position X2 (left end) and position X5 (right end).
  • the brightness gradually changes in the range from position X2 to position X3 and in the range from position X4 to position X5.
  • the brightness at the position X2 and the brightness at the position X5 may be the same or different. That is, the position X2 may have higher or lower brightness than the position X5.
  • the brightness I gradually decreases from the position X5 toward the position X6 (right end).
  • the brightness is constant in the range from the position X5 to the position X4.
  • the brightness I gradually decreases from the position X4 toward the position X3 (left end).
  • the brightness gradually decreases toward both ends of the right-eye image PR.
  • the brightness is constant in the central region of the right-eye image PR.
  • the brightness is highest in the range from position X4 to position X5, and is low at position X3 (left end) and position X6 (right end).
  • the brightness gradually changes in the range from position X3 to position X4 and from the position X5 to position X6.
  • the brightness at the position X3 and the brightness at the position X6 may be the same or different. That is, the position X3 may have a higher brightness or a lower brightness than the position X6.
  • the left-eye image PL and the right-eye image PR overlap on the + X side of the left end X3 of the visual field FR in the X direction, so the user recognizes that the luminance is higher than the surroundings. To do. Therefore, there is a difference in brightness recognized by the user before and after the left end X3 of the field of view FR in the X direction. Further, on the ⁇ X side of the right end X5 of the visual field FL in the X direction, the left-eye image PL and the right-eye image PR overlap each other, so the user recognizes that the brightness is higher than the surroundings.
  • the brightness distribution example 3 of the display image the brightness changes smoothly before and after the left end X3 of the visual field FR in the X direction, and also changes before and after the right end X5 of the visual field FL in the X direction. Therefore, the gap between the display image and its periphery can be further reduced, and the display image can appear natural.
  • the brightness changes linearly according to the position in the X direction.
  • the slope at which the brightness changes linearly may be changed in the middle, or the brightness changes nonlinearly according to a polynomial or the like. You may have.
  • the luminance does not necessarily have to be constant.
  • the highest brightness of the left-eye image PL is 1, the lowest brightness of the left-eye image PL can be 0.5.
  • the lowest brightness of the left-eye image PL may be a value other than 0.5 as long as it is lower than the highest brightness of the left-eye image RL.
  • the virtual image of the left-eye image PL formed in front of the front of the user (+ Z direction) has low brightness near the left end.
  • the virtual image of the image PR for the right eye formed in front of the front of the user (+ Z direction) has low brightness near the right end.
  • the predetermined position is a position serving as a starting point where the luminance starts to decrease toward the left end of the left-eye image PL or the right end of the right-eye image PR.
  • the predetermined position is the right end in the left-eye image PL and the left end in the right-eye image PR, for example.
  • the left-eye image PL has a boundary position (position X3) with the right-eye image PR
  • the right-eye image PR has a boundary position (position X5) with the left-eye image PL.
  • the predetermined position is not limited to the positions of the brightness distribution examples 1 to 3, and may be any position.
  • FIGS. 9 to 11 show luminance distributions when the video signal input to the control unit 105 has a uniform luminance value (for example, white display).
  • the brightness distribution is a brightness distribution when displaying with a uniform brightness value in all pixels, for example, white display.
  • the white display indicates a case where all the pixels of the image have the highest luminance value and the display is performed with the maximum luminance of the display.
  • FIGS. 9 to 11 show the brightness distribution of the display image displayed when a video signal for performing white display is input to the head mounted display 100 from the outside. The brightness of the actually viewed display image changes according to the distribution of the brightness value of the video signal input to the control unit 105.
  • the reflectance of the first mirror 121L is changed according to the X position so that the amount of reflected light decreases toward the left end. That is, in the first mirror 121L, the spatial distribution of reflectance is made nonuniform so that the reflectance is lowest at the left end.
  • the reflectance of the first mirror 121R is changed according to the X position so that the reflectance becomes lower toward the right end. That is, in the first mirror 121R, the spatial distribution of reflectance is made nonuniform so that the reflectance is lowest at the right end.
  • the brightness distribution as described above can be obtained according to the spatial distribution of the transmittances of the second mirrors 122L and 122R. Furthermore, a desired brightness distribution can be obtained by using a neutral density filter or the like having a desired neutral density distribution. Further, in the case of Example 3 of the optical system shown in FIG. 5, a desired luminance distribution can be obtained by making the spatial distribution of the transmittance of the lens non-uniform.
  • Mirrors and lenses having a non-uniform spatial distribution of transmittance or reflectance can be obtained by changing the thickness of the metal film depending on the positions of the mirror and lens so as to obtain a desired brightness distribution. Further, the mirror and the lens can be obtained by changing the film structure of the dielectric multilayer film depending on the positions of the mirror and the lens so as to obtain a desired luminance distribution. Mirrors and lenses may be obtained using known techniques other than those mentioned above.
  • the brightness distribution can be set by the optical characteristics of the optical elements such as the first mirrors 121L and 121R and the second mirrors 122L and 122R. .. That is, by making the spatial distribution of the optical characteristics of the mirror and the like non-uniform, the brightness decreases toward the left end in the left-eye optical system 103L, and the brightness decreases toward the right end in the right-eye optical system 103R. Try to lower it. As a result, the gap between the display image and its periphery can be reduced, and the display image can appear natural.
  • a method of obtaining a desired luminance distribution by the left-eye display element 101L and the right-eye display element 101R will be described.
  • the brightness distribution of the display image can be controlled.
  • the display element unit 101 displays an image PL for the left eye whose brightness decreases from the predetermined position toward the left end and an image PR for the left eye whose brightness decreases toward the right end from the predetermined position. To generate.
  • the light source (not shown) of the left-eye display element 101L and the right-eye display element 101R may make the spatial distribution of the light emission amount non-uniform.
  • the left-eye display element 101L and the right-eye display element 101R are direct light type displays, even if a luminance distribution is provided by changing the arrangement of LED light sources or the like, or changing the emission characteristics or drive current of each LED light source. Good.
  • a brightness distribution may be provided in the amount of emitted light depending on the optical characteristics of the light guide plate.
  • a brightness reduction film or the like may be attached to the left-eye display element 101L and the right-eye display element 101R to make the luminance distribution non-uniform.
  • the brightness distribution may be provided by another film or optical sheet.
  • the control unit 105 may control the brightness distribution of the display image.
  • the luminance distribution can be adjusted by changing the dynamic range for each pixel or each area of the left-eye display element 101L and the right-eye display element 101R.
  • the area of the left-eye display element 101L can be, for example, an area obtained by dividing the left-eye image PL in the vertical direction (Y direction).
  • the area of the right-eye display element 101R can be, for example, an area obtained by dividing the right-eye image PR in the vertical direction (Y direction).
  • the control unit 105 may adjust the luminance distribution by processing a video signal that is a digital signal input from the outside. For example, when the gradation of the luminance value is 8 bits (0 to 255), the control unit 105 leaves the 8-bit gradation as it is in the central pixel of the display image and sets the gradation in the edge pixels. It may be compressed to 7 bits (0 to 127). In this case, the control unit 105 can convert the gradation using a look-up table or the like. Then, the control unit 105 may change the compression ratio of the dynamic range according to the position of the pixel. By doing so, the virtual image of the display image can be displayed with the brightness distribution as shown in FIGS. 9 to 11.
  • control unit 105 may adjust the luminance distribution by processing a display signal that is an analog signal output to the left-eye display element 101L and the right-eye display element 101R.
  • the left-eye display element 101L and the right-eye display element 101R are voltage-driven liquid crystal displays, the output voltage value when the gradation value for obtaining the same brightness is input can be changed according to the position of the pixel. Good.
  • the left-eye display element 101L and the right-eye display element 101R are current-driven organic EL displays, the output current value when a gradation value for obtaining the same brightness is input is determined according to the pixel position. It suffices to change the output voltage value.
  • the driving time when the gradation value for obtaining the same brightness is input is changed according to the position of the pixel.
  • the control unit 105 may control the display signal (driving signal) that is an analog signal according to the position of the pixel.
  • the brightness distribution can be adjusted by the control unit 105 changing the dynamic range for each pixel or each area of the left-eye display element 101L and the right-eye display element 101R.
  • the area of the left-eye display element 101L can be, for example, an area obtained by dividing the left-eye image PL in the vertical direction (Y direction).
  • the area of the right-eye display element 101R can be, for example, an area obtained by dividing the right-eye image PR in the vertical direction (Y direction). By doing so, the virtual image of the display image can be displayed with the luminance distribution as shown in FIGS. 9 to 11.
  • the control unit 105 can control the luminance distribution by analog signal processing or digital signal processing.
  • the control unit 105 controls the brightness distribution the user can adjust the brightness distribution.
  • the brightness distribution may be adjusted according to the preference when the user visually recognizes the display image. For example, the brightness distribution may be adjusted by changing the range in which the brightness is decreased or changing the amount of decrease (slope) of the brightness. That is, by changing the compression range of the dynamic range or changing the compression rate, the head mounted display 100 can perform display according to the user's preference.
  • FIG. 12 is a diagram showing functional blocks of the head mounted display 100 according to the second embodiment. It is assumed that the head mounted display of the present embodiment allows the user to adjust the optical system. That is, the head mounted display 100 includes the adjustment mechanism 201 for the left-eye optical system 103L and the right-eye optical system 103R as shown in FIG.
  • the adjustment mechanism 201 includes the left-eye optical system 103L and the right-eye optical system 103R so that the user can appropriately visually recognize the displayed image because there is an individual difference in the distance between both eyes (pupil distance) of the human. You may adjust.
  • the adjusting mechanism 201 can adjust the left-eye optical system 103L and the right-eye optical system 103R by changing the positions and angles of the optical elements such as the first mirror, the second mirror, and the lens of the optical system. ..
  • the head mounted display 100 is provided with an input unit 202 including switches or buttons for adjusting the optical system.
  • the input unit 202 refers to a storage unit (not shown) and supplies an adjustment signal according to the operation to the adjustment mechanism 201.
  • the storage unit stores the adjustment signal in association with each operation in advance.
  • the adjustment mechanism 201 changes the position and angle of optical elements such as the first mirror, the second mirror, and the lens of the optical system based on the adjustment signal. As a result, the positions and sizes of the virtual images of the left-eye image PL and the right-eye image PR are adjusted.
  • the input unit 202 refers to a storage unit (not shown) and supplies the adjustment amount according to the operation to the control unit 105.
  • the storage unit stores the operation amount and the like in advance in association with the adjustment signal.
  • the control unit 105 changes the brightness distribution according to the adjustment amount. Further, the control unit 105 may detect the adjustment amount with a sensor (not shown) or the like, and change the luminance distribution according to the detection result.
  • control unit 105 changes the brightness distribution according to the adjustment amount according to the pupil distance. By doing so, display can be performed with an appropriate luminance distribution according to the pupil distance of the user.
  • the luminance distribution may be adjusted by changing the range of the region where the luminance gradually decreases. That is, you may change the predetermined position used as the starting point which a brightness
  • the reflectance of the mirror may be nonuniform and the brightness of the display element unit 101 may be nonuniform.
  • the visibility of the edge portion of the image is reduced, but the visibility may be reduced by another method.
  • the head-mounted display 100 may obtain a desired change distribution of the amount of blur instead of obtaining a desired luminance distribution in order to blur the edge portion of the display image.
  • FIG. 13 is a diagram showing an example of a display image having a distribution of changes in the amount of blur obtained on the head mounted display 100.
  • FIG. 14 shows an image before changing the blur amount. As shown in FIG. 13, in order to blur the edge portion of the display image, the blur amount is increased near the left end of the left-eye image PL and near the right-eye image PR.
  • the blur amount increases as it approaches the left end (position X2), and in the right-eye image PR, the blur amount increases as it approaches the right end (position X6). .. In this way, the visibility can be changed by changing the blur amount of the image PL for the left eye and the image PR for the right eye.
  • the first mirror 121L and the first mirror 121R are, for example, free-form surface mirrors, and excellent resolution characteristics are obtained at a position where the blur amount is desired to be small, and inferior at a position where the blur amount is desired to be large. Design to obtain resolution characteristics.
  • the control unit 105 When the method using the display element is used, the control unit 105, for example, gradually increases the blurring radius from a predetermined position of the left-eye image PL and the right-eye image PR to a position where the blur amount is to be increased, and performs Gaussian blurring. A processed display image is generated.
  • the display element unit 101 displays the display image subjected to the blurring process.
  • Non-transitory computer-readable medium include various types of tangible storage media (tangible storage media).
  • non-transitory computer readable media are magnetic recording media (eg flexible disk, magnetic tape, hard disk drive), magneto-optical recording media (eg magneto-optical disk), CD-ROM (Read Only Memory), CD-R, Includes CD-R / W and semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may be supplied to the computer by various types of transitory computer readable medium (transmission computer readable medium). Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • the transitory computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the present disclosure can be applied to a head mounted display.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

A head-mounted display according to the present embodiment is provided with a display element unit (101) for displaying a left eye image and a right eye image, a left-eye optical system (103L) for guiding the left-eye image to the left eye of a user, and a right-eye optical system (103R) for guiding the right-eye image to the right eye of the user. In the left-eye image viewed by the user, visibility decreases from a given position toward a left end. In the right-eye image viewed by the user, visibility decreases from a given position toward a right end.

Description

ヘッドマウントディスプレイ、及び表示方法Head mounted display and display method
 本発明は、ヘッドマウントディスプレイ、及びその表示方法に関する。 The present invention relates to a head mounted display and a display method thereof.
 特許文献1には、画像表示部と、コンバイナ素子と、減光部と、を備えた頭部装着型ディスプレイが開示されている。減光部は、コンバイナ素子の輪郭に対応する第1の領域を持っている。減光部は、コンバイナ素子よりも外界側に設けられ、外界光を減光する。 Patent Document 1 discloses a head-mounted display that includes an image display unit, a combiner element, and a dimming unit. The dimming part has a first region corresponding to the contour of the combiner element. The dimming unit is provided on the outside world side of the combiner element and dims the outside world light.
特開2008-46562号公報JP, 2008-46562, A
 ヘッドマウントディスプレイでは、表示品位の向上が望まれている。例えば、ヘッドマウントディスプレイでは、表示画像のサイズが限られている。よって、ヘッドマウントディスプレイの視界が、人間がもつ視界に比べて小さい場合、ユーザが表示画像のエッジをはっきりと視認してしまうという問題点がある。 ▽ For head-mounted displays, improvement in display quality is desired. For example, in a head mounted display, the size of the display image is limited. Therefore, when the field of view of the head mounted display is smaller than the field of view of human beings, there is a problem that the user clearly recognizes the edge of the display image.
 本実施形態は上記の点に鑑みなされたものであり、表示画像を自然に見せることができるヘッドマウントディスプレイ、及び表示方法を提供することを目的とする。 The present embodiment has been made in view of the above points, and an object thereof is to provide a head mounted display and a display method capable of making a displayed image look natural.
 本実施形態にかかるヘッドマウントディスプレイは、左眼用画像と右眼用画像とを表示する表示素子部と、前記左眼用画像の表示光をユーザの左眼に導く左眼用光学系と、前記右眼用画像の表示光を前記ユーザの右眼に導く右眼用光学系と、を備え、前記ユーザが視認する前記左眼用画像では、所定の位置から左端に向かうにつれて、視認性が低くなり、前記ユーザが視認する前記右眼用画像では、所定の位置から右端に向かうにつれて、視認性が低くなる、ものである。 The head mounted display according to the present embodiment is a display element unit that displays a left-eye image and a right-eye image, and a left-eye optical system that guides the display light of the left-eye image to the left eye of the user, A right-eye optical system that guides the display light of the right-eye image to the right eye of the user, and in the left-eye image visually recognized by the user, the visibility is increased from a predetermined position toward the left end. In the right-eye image visually recognized by the user, the visibility becomes lower from the predetermined position toward the right end.
 本実施形態にかかるヘッドマウントディスプレイの表示方法は、表示素子部が、左眼用画像と右眼用画像とを生成するステップと、左眼用光学系が左眼用画像の表示光をユーザの左眼に導くとともに、右眼用光学系が右眼用画像の表示光を前記ユーザの右眼に導くステップと、を備え、前記ユーザが視認する前記左眼用画像では、所定の位置から左端に向かうにつれて、視認性が低くなり、前記ユーザが視認する前記右眼用画像では、所定の位置から右端に向かうにつれて、視認性が低くなる、ものである。 The display method of the head mounted display according to the present embodiment, the display element unit, a step of generating an image for the left eye and an image for the right eye, the optical system for the left eye, the display light of the image for the left eye of the user. Along with guiding to the left eye, the optical system for the right eye guides the display light of the image for the right eye to the right eye of the user, and in the image for the left eye visually recognized by the user, from the predetermined position to the left end. In the right-eye image visually recognized by the user, the visibility decreases toward the right end from a predetermined position.
 本実施形態によれば、表示画像を自然に見せることができるヘッドマウントディスプレイ、及び表示方法を提供することができる。 According to the present embodiment, it is possible to provide a head mounted display and a display method that allow a displayed image to look natural.
本実施の形態に係るヘッドマウントディスプレイの構成を示す図である。It is a figure which shows the structure of the head mounted display which concerns on this Embodiment. 本実施の形態1に係るヘッドマウントディスプレイの機能ブロックを示す図である。FIG. 3 is a diagram showing functional blocks of the head mounted display according to the first embodiment. 2つのミラーを用いたヘッドマウントディスプレイの光学系の構成を模式的に示す図である。It is a figure which shows typically the structure of the optical system of the head mounted display using two mirrors. 1つのミラーを用いたヘッドマウントディスプレイの光学系の構成を模式的に示す図である。It is a figure which shows typically the structure of the optical system of the head mounted display using one mirror. レンズを用いたヘッドマウントディスプレイの構成を模式的に示す図である。It is a figure which shows typically the structure of the head mounted display using a lens. ユーザの視野と、表示画像の関係を説明するための図である。It is a figure for demonstrating the relationship between a user's visual field and a display image. 通常の表示画像と本実施の形態にかかる表示画像の違いを説明するための図である。FIG. 6 is a diagram for explaining a difference between a normal display image and a display image according to the present embodiment. 表示画像の輝度分布を示す図である。It is a figure which shows the brightness | luminance distribution of a display image. 表示画像の輝度分布例1を示す図である。It is a figure which shows the brightness distribution example 1 of a display image. 表示画像の輝度分布例2を示す図である。It is a figure which shows the brightness distribution example 2 of a display image. 表示画像の輝度分布例3を示す図である。It is a figure which shows the brightness distribution example 3 of a display image. 本実施の形態2に係るヘッドマウントディスプレイの機能ブロックを示す図である。FIG. 9 is a diagram showing functional blocks of the head mounted display according to the second embodiment. ぼけ量の変化分布を持つ表示画像を示す図である。It is a figure which shows the display image which has a change distribution of a blur amount. ぼけ量を変化する前の画像を示す図である。It is a figure which shows the image before changing a blur amount.
 以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。ただし、本開示が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載および図面は、適宜、簡略化されている。 Specific embodiments to which the present invention is applied will be described below in detail with reference to the drawings. However, the present disclosure is not limited to the following embodiments. Further, the following description and drawings are simplified as appropriate for the sake of clarity.
実施の形態1.
 本実施の形態にかかるヘッドマウントディスプレイ、及びその表示方法について、図を参照して説明する。図1はヘッドマウントディスプレイ100の構成を模式的に示す斜視図である。図2はヘッドマウントディスプレイ100の機能ブロックを示す図である。また、図1では、ヘッドマウントディスプレイ100の内部構成が示されており、実際には、図1に示す各構成要素がカバー等で覆われていてもよい。
Embodiment 1.
The head mounted display and the display method thereof according to the present embodiment will be described with reference to the drawings. FIG. 1 is a perspective view schematically showing the configuration of the head mounted display 100. FIG. 2 is a diagram showing functional blocks of the head mounted display 100. Further, FIG. 1 shows the internal configuration of the head mounted display 100, and in practice, each component shown in FIG. 1 may be covered with a cover or the like.
 以下、説明の明確化のため、XYZ3次元直交座標系を用いて説明を行う。ユーザを基準として、前後方向(奥行方向)をZ方向、左右方向(水平方向)をX方向、上下方向(鉛直方向)をY方向とする。前方向が+Z方向、後ろ方向が-Z方向、右方向を+X方向、左方向を-X方向、上方向を+Y方向、下方向を-Y方向とする。 For the sake of clarity, the explanation will be given below using the XYZ three-dimensional Cartesian coordinate system. Based on the user, the front-back direction (depth direction) is the Z direction, the left-right direction (horizontal direction) is the X direction, and the up-down direction (vertical direction) is the Y direction. The front direction is + Z direction, the rear direction is -Z direction, the right direction is + X direction, the left direction is -X direction, the up direction is + Y direction, and the down direction is -Y direction.
 図示しないユーザが、ヘッドマウントディスプレイ100を装着している。ヘッドマウントディスプレイ100は、フレーム102と、左眼用光学系103Lと、右眼用光学系103Rと、制御部105とを備えている。制御部105は、制御部105Lと制御部105Rとを備えている。 A user (not shown) wears the head mounted display 100. The head mounted display 100 includes a frame 102, a left-eye optical system 103L, a right-eye optical system 103R, and a control unit 105. The control unit 105 includes a control unit 105L and a control unit 105R.
 フレーム102はゴーグル形状又は眼鏡形状等を有しており、図示しないヘッドバンド等によりユーザの頭部に装着される。フレーム102には、表示素子部101、左眼用光学系103L、右眼用光学系103R、制御部105L、制御部105Rが取り付けられている。 The frame 102 has a goggle shape, eyeglass shape, or the like, and is attached to the user's head by a headband or the like (not shown). The display element unit 101, the left-eye optical system 103L, the right-eye optical system 103R, the control unit 105L, and the control unit 105R are attached to the frame 102.
 表示素子部101は、左眼用表示素子101Lと右眼用表示素子101Rを備えている。左眼用表示素子101Lは、左眼用の表示画像を生成する。右眼用表示素子101Rは、右眼用の表示画像を生成する。左眼用表示素子101L、及び右眼用表示素子101Rはそれぞれ液晶モニタ又は有機EL(Electro-Luminescence)モニタ等のフラットパネルディスプレイを備えている。左眼用表示素子101L、及び右眼用表示素子101Rは曲面形状が可能なディスプレイでもよい。左眼用表示素子101Lと右眼用表示素子101Rは、それぞれアレイ状に配置された複数の画素を備えている。ここでアレイ状の配置とは、2次元行列の配置だけでなく、ペンタイル配列等でもよい。左眼用表示素子101Lは右眼用表示素子101Rの左側(-X側)に配置されている。 The display element unit 101 includes a left-eye display element 101L and a right-eye display element 101R. The left-eye display element 101L generates a display image for the left eye. The right-eye display element 101R generates a display image for the right eye. The left-eye display element 101L and the right-eye display element 101R each include a flat panel display such as a liquid crystal monitor or an organic EL (Electro-Luminescence) monitor. The left-eye display element 101L and the right-eye display element 101R may be curved displays. The left-eye display element 101L and the right-eye display element 101R each include a plurality of pixels arranged in an array. Here, the array arrangement is not limited to a two-dimensional matrix arrangement, and may be a pentile arrangement or the like. The left-eye display element 101L is arranged on the left side (−X side) of the right-eye display element 101R.
 表示素子部101の上方(+Y側)には、制御部105Lと制御部105Rとが設けられている。制御部105L、制御部105Rには、外部からの映像信号、制御信号、電源が供給されている。例えば、HDMI(登録商標)等の有線接続、又は、WiFi(登録商標)若しくはBlueTooth(登録商標)等の無線接続によって、映像信号等が制御部105に入力される。ヘッドマウントディスプレイ100は、映像信号を生成する映像生成部(図示せず)を備えていてもよく、制御部105には、映像生成部が生成した映像信号等が入力されてもよい。ヘッドマウントディスプレイ100は、制御部105を備えていなくてもよく、その場合、映像信号は表示素子部101に入力される。 A control unit 105L and a control unit 105R are provided above the display element unit 101 (+ Y side). Video signals, control signals, and power are supplied from the outside to the control units 105L and 105R. For example, a video signal or the like is input to the control unit 105 by a wired connection such as HDMI (registered trademark) or a wireless connection such as WiFi (registered trademark) or BlueTooth (registered trademark). The head mounted display 100 may include a video generation unit (not shown) that generates a video signal, and the control unit 105 may receive the video signal generated by the video generation unit and the like. The head mounted display 100 may not include the control unit 105, in which case the video signal is input to the display element unit 101.
 制御部105L、制御部105RはCPU(Central Processing Unit)、及びメモリなどのハードウェア資源を備えており、メモリに格納されたコンピュータプログラムにしたがって動作する。さらに、制御部105L、制御部105Rはそれぞれ、ディスプレイの駆動回路等を備えている。制御部105Lは、映像信号、制御信号等に基づいて、左眼用画像PLの表示信号を生成して、左眼用表示素子101Lに出力する。これにより、左眼用表示素子101Lは、左眼用画像PLを表示するための表示光を出力する。制御部105Rは、映像信号、制御信号等に基づいて、右眼用画像PRの表示信号を生成して、右眼用表示素子101Rに出力する。つまり、制御部105は表示信号を表示素子部101に出力する。これにより、右眼用表示素子101Rは、右眼用画像PRを表示するための表示光を出力する。 The control unit 105L and the control unit 105R have hardware resources such as a CPU (Central Processing Unit) and a memory, and operate according to a computer program stored in the memory. Further, the control unit 105L and the control unit 105R each include a display drive circuit and the like. The control unit 105L generates a display signal of the left-eye image PL based on the video signal, the control signal, and the like, and outputs the display signal to the left-eye display element 101L. As a result, the left-eye display element 101L outputs display light for displaying the left-eye image PL. The control unit 105R generates a display signal of the right-eye image PR based on the video signal, the control signal, and the like, and outputs the display signal to the right-eye display element 101R. That is, the control unit 105 outputs the display signal to the display element unit 101. As a result, the right-eye display element 101R outputs display light for displaying the right-eye image PR.
 なお、表示素子部101は、左眼用表示素子101Lと右眼用表示素子101Rを別々の表示素子とする構成に限らず、単一の表示素子とする構成としてもよい。単一の表示素子が、左眼用の表示画像と右眼用の表示画像とを生成してもよい。この場合、表示素子部101は、ディスプレイの表示領域の片側の一部を用いて、左眼用画像PLを生成し、反対側の一部を用いて、右眼用画像PRを生成する。表示素子だけでなく、制御部105L、105Rも左右共通となっていてもよい。 The display element unit 101 is not limited to the configuration in which the left-eye display element 101L and the right-eye display element 101R are separate display elements, and may be a single display element. A single display element may generate a display image for the left eye and a display image for the right eye. In this case, the display element unit 101 uses one part of the display area of the display to generate the left-eye image PL, and uses the other part of the display area to generate the right-eye image PR. Not only the display element but also the control units 105L and 105R may be common to the left and right.
 表示素子部101、制御部105等の一部又は全部は、フレーム102に固定されている構成に限らず、フレーム102に対して脱着可能に設けられていてもよい。例えば、スマートホン又はタブレットコンピュータ等をフレーム102に対して取り付けることで、表示素子部101、制御部105等を実現してもよい。この場合、スマートホン等にヘッドマウントディスプレイ用の表示画像を生成するアプリケーションプログラム(アプリ)を予めインストールしておけばよい。 A part or all of the display element unit 101, the control unit 105, and the like are not limited to being fixed to the frame 102, but may be detachably provided to the frame 102. For example, the display element unit 101, the control unit 105, and the like may be realized by attaching a smart phone, a tablet computer, or the like to the frame 102. In this case, an application program (application) for generating a display image for a head mounted display may be installed in advance on a smart phone or the like.
 左眼用光学系103Lは、左眼用表示素子101Lが出力した表示光を、左眼用画像PLとしてユーザの左眼ELに導く。右眼用光学系103Rは、右眼用表示素子101Rが出力した表示光を、右眼用画像PRとしてユーザの右眼ERに導く。左眼用光学系103Lは右眼用光学系103Rの左側(-X側)に配置されている。左眼用光学系103Lは、ユーザの左眼の前方(+Z側)に配置されている。右眼用光学系103Rは、ユーザの右眼の前方(+Z側)に配置されている。ユーザは、表示素子部101が生成した表示画像の虚像を正面前方(+Z側)に視認することができる。 The left-eye optical system 103L guides the display light output from the left-eye display element 101L to the user's left-eye EL as the left-eye image PL. The right-eye optical system 103R guides the display light output from the right-eye display element 101R to the right eye ER of the user as the right-eye image PR. The left-eye optical system 103L is arranged on the left side (−X side) of the right-eye optical system 103R. The left-eye optical system 103L is arranged in front of the user's left eye (+ Z side). The right-eye optical system 103R is arranged in front of the right eye of the user (+ Z side). The user can visually recognize the virtual image of the display image generated by the display element unit 101 in front of the front (+ Z side).
 本実施の形態にかかるヘッドマウントディスプレイ100は、非透過型、及び半透過型のいずれにも適用可能である。半透過型のヘッドマウントディスプレイ100では、ユーザは表示素子部101からの表示光と、外光とが、左眼及び右眼に入射する。よって、ユーザは、前方(+Z側)の景色に表示画像が重畳した重畳画像を視認することができる。非透過型のヘッドマウントディスプレイでは、表示素子部101からの表示光のみが左眼、及び右眼に入射する。ユーザは、表示素子部101が生成した表示画像を視認することができる。 The head mounted display 100 according to the present embodiment is applicable to both non-transmissive type and semi-transmissive type. In the semi-transmissive head mounted display 100, the user enters the display light from the display element unit 101 and the external light into the left eye and the right eye. Therefore, the user can visually recognize the superimposed image in which the display image is superimposed on the front (+ Z side) scenery. In the non-transmissive head mounted display, only the display light from the display element unit 101 enters the left eye and the right eye. The user can visually recognize the display image generated by the display element unit 101.
 ヘッドトラッキング等を行うために、ヘッドマウントディスプレイ100に3軸センサ又は6軸センサ等の姿勢状態を検知するセンサを設けることも可能である。センサによって、ユーザの頭部の位置又は向きを検出することで、表示画像を変えることができる。ヘッドマウントディスプレイ100は、ゲーム用、エンターテインメント用、産業用、医療用、シミュレータ用等の様々な用途に適用可能である。ヘッドマウントディスプレイ100は、VR(Virtual Reality)ヘッドマウントディスプレイ又は、AR(Augmented Reality)ヘッドマウントディスプレイである。 In order to perform head tracking or the like, it is possible to provide the head mounted display 100 with a sensor such as a 3-axis sensor or a 6-axis sensor that detects an attitude state. The display image can be changed by detecting the position or orientation of the user's head with the sensor. The head mounted display 100 is applicable to various applications such as games, entertainment, industrial, medical, and simulator. The head mounted display 100 is a VR (Virtual Reality) head mounted display or an AR (Augmented Reality) head mounted display.
 以下、左眼用光学系103Lと右眼用光学系103R(以下、まとめて単に光学系と称する)の例について説明する。図3~図5は、光学系の例1~3を模式的に示す図である。なお、左眼用光学系103Lと右眼用光学系103Rとは同様の構成となっているため、図3~図5においては、左眼用光学系103Lについてのみ説明を行う。 Hereinafter, examples of the left-eye optical system 103L and the right-eye optical system 103R (hereinafter collectively referred to as an optical system) will be described. 3 to 5 are diagrams schematically showing Examples 1 to 3 of the optical system. Since the left-eye optical system 103L and the right-eye optical system 103R have the same configuration, only the left-eye optical system 103L will be described with reference to FIGS. 3 to 5.
(光学系の例1)
 図3は、光学系の例1を示している。左眼用光学系103Lは、第1ミラー121Lと第2ミラー122Lとを備えている。
(Example 1 of optical system)
FIG. 3 shows Example 1 of the optical system. The left-eye optical system 103L includes a first mirror 121L and a second mirror 122L.
 第1ミラー121Lは凹面鏡となっており、第2ミラー122Lは平面鏡となっている。第2ミラー122Lはハーフミラー等のビームスプリッタであり、入射光の一部を反射して、一部を透過する。第1ミラー121Lと第2ミラー122Lは、ユーザの左眼ELの正面前方(+Z方向)に配置されている。また、第1ミラー121Lは、第2ミラー122Lの前方(+Z方向)に配置されている。 The first mirror 121L is a concave mirror and the second mirror 122L is a plane mirror. The second mirror 122L is a beam splitter such as a half mirror, which reflects a part of the incident light and transmits a part thereof. The first mirror 121L and the second mirror 122L are arranged in front of and in front of the left eye EL of the user (+ Z direction). In addition, the first mirror 121L is arranged in front of the second mirror 122L (+ Z direction).
 左眼用表示素子101Lの表示面は、鉛直下方(-Y方向)に向いている。したがって、左眼用表示素子101Lからの表示光は、-Y方向に出射される。左眼用表示素子101Lの下方(-Y方向)には、第2ミラー122Lが傾斜して配置されている。よって、第2ミラー122Lで反射した表示光は、前方(+Z方向)に反射される。第2ミラー122Lで反射した表示光は、第1ミラー121Lで反射される。 The display surface of the display element 101L for the left eye faces vertically downward (-Y direction). Therefore, the display light from the left-eye display element 101L is emitted in the −Y direction. Below the left-eye display element 101L (-Y direction), the second mirror 122L is arranged to be inclined. Therefore, the display light reflected by the second mirror 122L is reflected forward (+ Z direction). The display light reflected by the second mirror 122L is reflected by the first mirror 121L.
 第1ミラー121Lは、後方(-Z方向)に表示光を反射する。さらに、第1ミラー121Lは凹面鏡であり、表示光を左眼ELに向けて集光するように、表示光を反射する。左眼用光学系103Lが、左眼用表示素子101Lからの表示光を、ユーザの左眼ELに導く。光学系により、ユーザの前方(+Z方向)に虚像を表示させることができる。 The first mirror 121L reflects the display light backward (-Z direction). Further, the first mirror 121L is a concave mirror, and reflects the display light so that the display light is condensed toward the left eye EL. The left-eye optical system 103L guides the display light from the left-eye display element 101L to the left eye EL of the user. The optical system can display a virtual image in front of the user (+ Z direction).
 半透過型のヘッドマウントディスプレイの場合、第1ミラー121Lは、外光と表示素子からの表示光を合成するコンバイナミラーとなる。この場合、第1ミラー121Lとして、ハーフミラー等のビームスプリッタを用いる。ビームスプリッタは、一部の光を反射して、一部の光を透過する。よって、外光が第1ミラー121L、及び第2ミラー122Lを透過して、左眼ELに入射する。また、表示光の一部が第1ミラー121Lで反射して、第2ミラー122Lを介して、左眼ELに入射する。したがって、ユーザの前方(+Z方向)の景色に表示画像が重畳される。なお、非透過型のヘッドマウントディスプレイの場合、第1ミラー121Lは、入射光のほぼ全てを反射する全反射ミラーとなる。 In the case of a semi-transmissive head mounted display, the first mirror 121L is a combiner mirror that combines the external light and the display light from the display element. In this case, a beam splitter such as a half mirror is used as the first mirror 121L. The beam splitter reflects a part of the light and transmits a part of the light. Therefore, external light passes through the first mirror 121L and the second mirror 122L and enters the left eye EL. Further, a part of the display light is reflected by the first mirror 121L and enters the left eye EL via the second mirror 122L. Therefore, the display image is superimposed on the scenery in front of the user (+ Z direction). In the case of a non-transmissive head mounted display, the first mirror 121L is a total reflection mirror that reflects almost all incident light.
(光学系の例2)
 図4は、光学系の例2を示している。なお、左眼用光学系103Lと右眼用光学系103Rとは同様の構成となっているため左眼用光学系103Lについてのみ説明を行う。左眼用光学系103Lは、第1ミラー121Lを備えている。第1ミラー121Lは凹面鏡となっている。第1ミラー121Lは、ユーザの左眼ELの正面前方(+Z方向)に配置されている。
(Example 2 of optical system)
FIG. 4 shows Example 2 of the optical system. Since the left-eye optical system 103L and the right-eye optical system 103R have the same configuration, only the left-eye optical system 103L will be described. The left-eye optical system 103L includes a first mirror 121L. The first mirror 121L is a concave mirror. The first mirror 121L is arranged in front of the front of the left eye EL of the user (in the + Z direction).
 左眼用表示素子101Lは、斜めに配置されている。つまり、左眼用表示素子101Lの表示面は、下方であって、前方に向いている。したがって、左眼用表示素子101Lからの表示光は、-Y方向及び+Z方向(斜め方向)に出射される。左眼用表示素子101Lの下方及び前方(斜め方向)には、第1ミラー121Lが配置されている。よって、第1ミラー121Lは左眼用表示素子101Lからの表示光は第1ミラー121Lによって左眼ELに向けて反射される。 The display element 101L for the left eye is arranged diagonally. That is, the display surface of the left-eye display element 101L is downward and faces forward. Therefore, the display light from the left-eye display element 101L is emitted in the −Y direction and the + Z direction (oblique direction). The first mirror 121L is arranged below and in front of the display element 101L for the left eye (oblique direction). Therefore, the display light from the display element 101L for the left eye of the first mirror 121L is reflected by the first mirror 121L toward the left eye EL.
 さらに、第1ミラー121Lは凹面鏡であり、表示光を左眼ELに向けて集光するように、表示光を反射する。左眼用光学系103Lが、左眼用表示素子101Lからの表示光を、左眼ELに導く。光学系により、ユーザの前方(+Z方向)に虚像を表示させることができる。 Further, the first mirror 121L is a concave mirror and reflects the display light so that the display light is condensed toward the left eye EL. The left-eye optical system 103L guides the display light from the left-eye display element 101L to the left-eye EL. The optical system can display a virtual image in front of the user (+ Z direction).
 半透過型のヘッドマウントディスプレイの場合、第1ミラー121Lは、外光と表示素子からの表示光を合成するコンバイナミラーとなる。この場合、第1ミラー121Lとして、ハーフミラー等のビームスプリッタを用いる。ビームスプリッタは、一部の光を反射して、一部の光を透過する。よって、外光が第1ミラー121Lを透過して、左眼ELに入射する。また、表示光の一部が第1ミラー121Lで反射して、左眼ELに入射する。したがって、ユーザの前方(+Z方向)の景色に表示画像が重畳される。なお、非透過型のヘッドマウントディスプレイの場合、第1ミラー121Lは、第1ミラー121Lは、入射光のほぼ全てを反射する全反射ミラーとなる。 In the case of a semi-transmissive head mounted display, the first mirror 121L is a combiner mirror that combines the external light and the display light from the display element. In this case, a beam splitter such as a half mirror is used as the first mirror 121L. The beam splitter reflects a part of the light and transmits a part of the light. Therefore, the external light passes through the first mirror 121L and enters the left eye EL. Further, part of the display light is reflected by the first mirror 121L and enters the left eye EL. Therefore, the display image is superimposed on the scenery in front of the user (+ Z direction). In the case of a non-transmissive head mounted display, the first mirror 121L is a total reflection mirror that reflects almost all incident light.
(光学系の例3)
 図5は光学系の例3を示す図である。なお、左眼用光学系103Lと右眼用光学系103Rとは同様の構成となっているため左眼用光学系103Lについてのみ説明を行う。左眼用光学系103Lは、レンズ112Lを有している。レンズ112Lは、左眼ELの前方(+Z方向)に配置されている。レンズ112Lの前方(+Z方向)には左眼用表示素子101Lが配置されている。
(Example 3 of optical system)
FIG. 5 is a diagram showing Example 3 of the optical system. Since the left-eye optical system 103L and the right-eye optical system 103R have the same configuration, only the left-eye optical system 103L will be described. The left-eye optical system 103L has a lens 112L. The lens 112L is arranged in front of the left eye EL (+ Z direction). The display element 101L for the left eye is arranged in front of the lens 112L (+ Z direction).
 左眼用表示素子101Lの表示面は、後方(-Z方向)に向いている。よって、左眼用表示素子101Lからの表示光は、レンズ112Lで集光されて、左眼ELに入射する。左眼用光学系103Lが、左眼用表示素子101Lからの表示光を、左眼ELに導く。左眼用光学系103Lにより、ユーザの前方(+Z方向)に虚像を表示させることができる。 The display surface of the left-eye display element 101L faces rearward (-Z direction). Therefore, the display light from the left-eye display element 101L is condensed by the lens 112L and enters the left-eye EL. The left-eye optical system 103L guides the display light from the left-eye display element 101L to the left-eye EL. The left-eye optical system 103L can display a virtual image in front of the user (+ Z direction).
 なお、図5では、左眼用光学系103Lにおいて、レンズが1枚図示されているが、左眼用光学系103Lは複数枚のレンズを有していてもよい。さらに、ズーム及びフォーカス等を調整するようにレンズを駆動してもよい。 Although one lens is shown in the left-eye optical system 103L in FIG. 5, the left-eye optical system 103L may have a plurality of lenses. Further, the lens may be driven so as to adjust zoom and focus.
 図3~図5は、光学系の一例を示すものであり、左眼用光学系103L、右眼用光学系103Rは、図3~図5の構成に限られるものではない。左眼用光学系103Lは、左眼用画像PLの表示光を左眼に導くものであればよく、右眼用光学系103Rは、右眼用画像PRの表示光を右眼に導くものであればよい。なお、左眼用画像PLの表示光は右眼に導かれないようになっており、右眼用画像PRの表示光は左眼に導かれないようになっている。 3 to 5 show one example of the optical system, and the left eye optical system 103L and the right eye optical system 103R are not limited to the configurations of FIGS. 3 to 5. The left-eye optical system 103L only needs to guide the display light of the left-eye image PL to the left eye, and the right-eye optical system 103R guides the display light of the right-eye image PR to the right eye. I wish I had it. The display light of the left-eye image PL is not guided to the right eye, and the display light of the right-eye image PR is not guided to the left eye.
 次に、図6を用いて、ユーザの視野と、表示画像(虚像)との位置関係について説明する。図6は、左眼EL及び右眼ERの左右方向(X方向)における視野と、表示画像との関係を模式的に示す図である。視野FLは人間がもつ左眼ELの視野を示し、視野FRは人間がもつ右眼ERの視野を示す。左眼ELの視野FLと右眼ERの視野FRは、左右対称な広がり角度を有しており、ユーザの両眼の間隔(瞳間隔)だけX方向にずれている。したがって、左眼ELの視野FLと右眼ERの視野FRは一部が重なっている。つまり、視野FLの右側と視野FRの左側とが重複している。視野FLの左端は、視野FRに含まれていない。視野FRの右端は視野FLに含まれていない。 Next, the positional relationship between the visual field of the user and the display image (virtual image) will be described with reference to FIG. FIG. 6 is a diagram schematically showing the relationship between the visual fields of the left eye EL and the right eye ER in the left-right direction (X direction) and the display image. The visual field FL indicates the visual field of the left eye EL possessed by a human, and the visual field FR indicates the visual field of the right eye ER possessed by the human. The field of view FL of the left eye EL and the field of view FR of the right eye ER have symmetric divergence angles, and are displaced in the X direction by the interval between the two eyes of the user (pupil interval). Therefore, the visual field FL of the left eye EL and the visual field FR of the right eye ER partially overlap. That is, the right side of the field of view FL and the left side of the field of view FR overlap. The left end of the field of view FL is not included in the field of view FR. The right end of the field of view FR is not included in the field of view FL.
 虚像の表示位置において、X方向での視野FLの左端をX1とし、右端をX5とする。虚像の表示位置において、X方向での視野FRの左端をX3とし、右端をX7とする。X方向において、左眼用画像PLの左端をX2とする。X方向において、左眼用画像PLの右端は、視野FLの右端X5と一致している。X方向において、右眼用画像PRの左端は、視野FRの左端X3と一致している。X方向において右眼用画像PRの右端を、位置X6とする。光学系によっては、左眼用画像PLの左端X2と、右眼用画像PRの左端X3とが、ほぼ同位置となる場合もある。光学系によっては、左眼用画像PLの右端X5と、右眼用画像PRの右端X6とが、ほぼ同位置となる場合もある。光学系によっては、X方向において、左眼用画像PLの右端が、視野FLの右端X5と一致しない場合もある。光学系によっては、X方向において、右眼用画像PRの左端が、視野FRの左端X3と一致しない場合もある。 At the display position of the virtual image, the left end of the visual field FL in the X direction is X1, and the right end is X5. At the display position of the virtual image, the left end of the field of view FR in the X direction is X3, and the right end is X7. In the X direction, the left end of the left-eye image PL is X2. In the X direction, the right end of the left-eye image PL coincides with the right end X5 of the visual field FL. In the X direction, the left end of the right-eye image PR matches the left end X3 of the field of view FR. The right end of the right-eye image PR in the X direction is set to the position X6. Depending on the optical system, the left end X2 of the left-eye image PL and the left end X3 of the right-eye image PR may be substantially at the same position. Depending on the optical system, the right end X5 of the left-eye image PL and the right end X6 of the right-eye image PR may be substantially at the same position. Depending on the optical system, the right end of the left-eye image PL may not coincide with the right end X5 of the visual field FL in the X direction. Depending on the optical system, the left end of the right-eye image PR may not coincide with the left end X3 of the field of view FR in the X direction.
 X方向において、左眼ELと右眼ERの中心位置をX4とする。位置X4は位置X2と位置X6の中間である。左右の視野FLと視野FRは、位置X3~位置X5までの範囲で重なっている。位置X1、X2、X3、X4、X5、X6、X7は、-X側から+X側に向かう方向において、この順番で位置されている。 ▽ In the X direction, the center position of the left eye EL and the right eye ER is X4. The position X4 is intermediate between the positions X2 and X6. The left and right visual fields FL and FR overlap in the range from position X3 to position X5. The positions X1, X2, X3, X4, X5, X6, and X7 are located in this order in the direction from the -X side to the + X side.
 位置X2から位置X5の範囲に、左眼用表示素子101Lの左眼用画像PLが表示される。位置X3から位置X6の範囲に、右眼用表示素子101Rの右眼用画像PRが表示される。つまり、左眼ELが位置X2から位置X5までの範囲に表示された左眼用画像PLの虚像を視認し、右眼ERが位置X3から位置X6までの範囲に表示された右眼用画像PRの虚像を視認する。ユーザから見ると、位置X3~位置X5の範囲で、左眼用画像PLと右眼用画像PRとが重なって表示される。左眼用画像PLと右眼用画像PRとが重なる領域の左端の境界が位置X3であり、右側の境界が位置X5となる。 The left-eye image PL of the left-eye display element 101L is displayed in the range from the position X2 to the position X5. The right-eye image PR of the right-eye display element 101R is displayed in the range from the position X3 to the position X6. That is, the left eye EL visually recognizes the virtual image of the left-eye image PL displayed in the range from the position X2 to the position X5, and the right eye ER displays the right-eye image PR displayed in the range from the position X3 to the position X6. Visually recognize the virtual image of. From the viewpoint of the user, the left-eye image PL and the right-eye image PR are displayed in an overlapping manner in the range of position X3 to position X5. The boundary at the left end of the area where the left-eye image PL and the right-eye image PR overlap is at position X3, and the right boundary is at position X5.
 さらに、位置X1は位置X2よりも左側にあり、位置X7は位置X6よりも右側にある。つまり、左眼の視野FLが左眼用画像PLよりも広くなっており、右眼の視野FRが右眼用画像PRよりも広くなっている。例えば、ヘッドマウントディスプレイ100では、光学系の構成及び、表示素子の大きさ等により、視認される虚像の大きさが制限される。ユーザの視野(視界)に比べて、表示画像(虚像)が小さくなってしまう。従って、ユーザが表示画像のエッジを視認してしまう。つまり、画像表示端(エッジ)がユーザの視野(視界)の中にある。 Furthermore, the position X1 is on the left side of the position X2, and the position X7 is on the right side of the position X6. That is, the visual field FL of the left eye is wider than the image PL for the left eye, and the visual field FR of the right eye is wider than the image PR for the right eye. For example, in the head mounted display 100, the size of the virtual image to be visually recognized is limited by the configuration of the optical system, the size of the display element, and the like. The display image (virtual image) becomes smaller than the user's visual field (visual field). Therefore, the user visually recognizes the edge of the display image. That is, the image display end (edge) is in the user's visual field (field of view).
 ヘッドマウントディスプレイ100の視界(視野:FOV(Field Of View)ともいう)は、人間がもつ視界に比べて小さい。ヘッドマウントディスプレイ100で表示される表示画像について、図7を用いて説明する。図7では通常の表示画像と、本実施の形態にかかるヘッドマウントディスプレイで得たい表示画像を示す図である。図7では、制御部105に入力される映像信号が均一な輝度値である場合の表示画像を示している。 The field of view (field of view: FOV (Field Of View)) of the head mounted display 100 is smaller than that of humans. A display image displayed on the head mounted display 100 will be described with reference to FIG. 7. FIG. 7 is a diagram showing a normal display image and a display image desired to be obtained by the head mounted display according to the present embodiment. FIG. 7 shows a display image when the video signal input to the control unit 105 has a uniform luminance value.
 上記のように、ヘッドマウントディスプレイ100では、光学系の構成及び、表示素子の大きさ等により、ユーザの視野(視界)に比べて、表示画像(虚像)が小さくなることがある。この場合、ユーザが表示画像のエッジを視認してしまう。通常の手法で表示した場合、画像のエッジがはっきりと視認されてしまう。これに対して、本実施の形態では表示画像のエッジがはっきりと視認されず、終端が周囲と自然に融合するような表示画像を得るようにする。 As described above, in the head mounted display 100, the display image (virtual image) may be smaller than the user's visual field (visual field) depending on the configuration of the optical system, the size of the display element, and the like. In this case, the user visually recognizes the edge of the display image. When displayed by the usual method, the edges of the image are clearly visible. On the other hand, in the present embodiment, the display image is obtained in which the edges of the display image are not clearly visible and the ends naturally merge with the surroundings.
 図7に示すように表示画像のエッジ部分をぼかすために、左眼用画像PLの左端近傍、及び右眼用画像PRの近傍での輝度を低くする。つまり、左眼用画像PLの左端近傍、及び右眼用画像PRの近傍の視認性を低くする。そのため、ユーザが左眼EL及び右眼ERを用いて視認する表示画像の輝度を、図8に示すような分布とする。図8において、横軸は両眼の中心(位置X4)を基準とする広がり角度であり、縦軸は輝度を示している。なお、図8は、均一な輝度値で表示を行う場合(例えば、白表示)において、両眼の中心での輝度を100%としている。 As shown in FIG. 7, in order to blur the edge portion of the display image, the brightness is reduced near the left end of the left-eye image PL and near the right-eye image PR. That is, the visibility in the vicinity of the left end of the left-eye image PL and in the vicinity of the right-eye image PR is reduced. Therefore, the brightness of the display image visually recognized by the user using the left eye EL and the right eye ER is set to have a distribution as shown in FIG. In FIG. 8, the horizontal axis represents the divergence angle with reference to the center (position X4) of both eyes, and the vertical axis represents luminance. In FIG. 8, when the display is performed with a uniform brightness value (for example, white display), the brightness at the center of both eyes is 100%.
 本実施の形態では、左眼用画像PLでは左端(位置X2)に近づくにつれて、輝度が弱くなり、右眼用画像PRでは右端(位置X6)に近づくにつれて、輝度が弱くなるように、輝度を変えていく。つまり、表示画像端に向かうにつれて、徐々に輝度が低下する。なお、ここでの輝度は、制御部105に入力される映像信号が均一な輝度値である場合のものとする。 In the present embodiment, the brightness is set so that the brightness becomes weaker as it approaches the left end (position X2) in the left-eye image PL, and becomes weaker as it approaches the right end (position X6) in the right-eye image PR. Change. That is, the brightness gradually decreases toward the display image edge. It should be noted that the brightness here is assumed when the video signal input to the control unit 105 has a uniform brightness value.
 このようにすることで、ヘッドマウントディスプレイの視界が、人間がもつ視界に比べて小さく、ユーザが画像表示端及びその外側を視認してしまう場合であっても、ユーザが表示画像のエッジをはっきりと視認しなくなる。表示画像とその周囲との情報を自然な形で融合、近くさせることができる。表示画像とその周辺のギャップを低減することができ、表示品位を高めることができる。周囲の環境と融合して、表示画像を自然に見せることができる。 By doing so, the field of view of the head mounted display is smaller than the field of view of humans, and even when the user visually recognizes the image display end and the outside thereof, the user can clearly see the edge of the display image. I will not see it. The information of the display image and the information around it can be merged and made closer in a natural manner. The gap between the display image and its periphery can be reduced, and the display quality can be improved. The displayed image can be made to look natural by fusing with the surrounding environment.
(表示画像の輝度分布例1)
 表示画像の輝度分布例1について、図9を用いて説明する。図9は、左眼用画像PLと右眼用画像PRの輝度分布を説明するための図である。左眼用画像PLでは、位置X5(右端)から位置X2(左端)に向かうにつれて、輝度Iが徐々に低くなっている。つまり、左眼用画像PLの輝度は、位置X5(右端)で最も高く、位置X2(左端)で最も低くなっている。一方、右眼用画像PRでは、位置X3(左端)から位置X6(右端)に向かうにつれて、輝度Iが徐々に低くなっている。つまり、右眼用画像PRの輝度は、位置X3(左端)で最も高く、位置X6(右端)で最も低くなっている。このように、輝度分布例1では、一端から他端に向かうにつれて、徐々に輝度が低下している。
(Example 1 of brightness distribution of display image)
A first brightness distribution example of a display image will be described with reference to FIG. FIG. 9 is a diagram for explaining the luminance distributions of the left-eye image PL and the right-eye image PR. In the image PL for the left eye, the brightness I gradually decreases from the position X5 (right end) toward the position X2 (left end). That is, the brightness of the image PL for the left eye is highest at the position X5 (right end) and lowest at the position X2 (left end). On the other hand, in the image PR for the right eye, the brightness I gradually decreases from the position X3 (left end) toward the position X6 (right end). That is, the brightness of the image PR for the right eye is highest at the position X3 (left end) and lowest at the position X6 (right end). As described above, in the brightness distribution example 1, the brightness gradually decreases from one end to the other end.
(表示画像の輝度分布例2)
 表示画像の輝度分布例2について、図10を用いて説明する。図10は、左眼用画像PLと右眼用画像PRの輝度分布を説明するための図である。左眼用画像PLでは、位置X3から位置X2(左端)に向かうにつれて、輝度Iが徐々に低くなっている。左眼用画像PLでは、位置X3から位置X5(右端)の範囲で輝度が一定となっている。右眼用画像PRでは、位置X5から位置X6(右端)に向かうにつれて、輝度Iが徐々に低くなっている。右眼用画像PRでは、位置X5から位置X3(左端)の範囲で、輝度が一定となっている。このように一部の領域では、端に向かうにつれて、徐々に輝度が低下している。残りの領域では、輝度が一定になっている。
(Brightness distribution example 2 of display image)
A second luminance distribution example of the display image will be described with reference to FIG. FIG. 10 is a diagram for explaining the luminance distributions of the left-eye image PL and the right-eye image PR. In the image PL for the left eye, the brightness I gradually decreases from the position X3 toward the position X2 (left end). In the left-eye image PL, the brightness is constant in the range from the position X3 to the position X5 (right end). In the image PR for the right eye, the brightness I gradually decreases from the position X5 toward the position X6 (right end). In the right-eye image PR, the brightness is constant in the range from the position X5 to the position X3 (left end). Thus, in some areas, the brightness gradually decreases toward the edges. In the remaining area, the brightness is constant.
 左眼用画像PLでは、位置X3から位置X5の範囲で輝度が最も高くなっており、位置X2(左端)で最も低くなっている。左眼用画像PLでは、位置X2から位置X3の範囲で輝度が徐々に変化している。右眼用画像PRでは、位置X3から位置X5の範囲で輝度が最も高くなっており、位置X6(右端)で最も低くなっている。右眼用画像PRでは、位置X5から位置X6の範囲で輝度が徐々に変化している。 In the left-eye image PL, the brightness is highest in the range from position X3 to position X5, and lowest in position X2 (left end). In the image PL for the left eye, the brightness gradually changes in the range from the position X2 to the position X3. In the right-eye image PR, the brightness is highest in the range from the position X3 to the position X5, and lowest in the position X6 (right end). In the right-eye image PR, the brightness gradually changes in the range from the position X5 to the position X6.
 表示画像の輝度分布例2によれば、視野FLの右側と視野FRの左側とが重複している領域では一定の輝度であり、視野FLの右側と視野FRの左側とが重複していない領域のみで徐々に輝度が低下する。視野FLの右側と視野FRの左側とが重複していない領域は、視野FLの右側と視野FRの左側とが重複している領域よりもユーザにとって重要でないと考えられるため、より表示画像とその周辺のギャップを低減することができ表示画像を自然に見せることができる。 According to the luminance distribution example 2 of the display image, the region where the right side of the field of view FL and the left side of the field of view FR overlap has a constant luminance, and the right side of the field of view FL does not overlap with the left side of the field of view FR. The brightness decreases gradually only by itself. The region where the right side of the field of view FL and the left side of the field of view FR do not overlap is considered to be less important to the user than the region where the right side of the field of view FL overlaps with the left side of the field of view FR, and thus the display image and its The peripheral gap can be reduced and the displayed image can appear natural.
(表示画像の輝度分布例3)
 表示画像の輝度分布例3について、図11を用いて説明する。図11は、左眼用画像PLと右眼用画像PRの輝度分布を説明するための図である。左眼用画像PLでは、位置X3から位置X2(左端)に向かうにつれて、輝度Iが徐々に低くなっている。また、左眼用画像PLでは、位置X3から位置X4の範囲で輝度が一定となっている。左眼用画像PLでは、位置X4から位置X5(右端)に向かうにつれて、輝度Iが徐々に低くなっている。このように、左眼用画像PLの左右両側の領域では、左眼用画像PLの両端に向かうにつれて、徐々に輝度が低下している。左眼用画像PLの中央の領域では、輝度が一定になっている。
(Brightness distribution example 3 of display image)
A third brightness distribution example of the display image will be described with reference to FIG. FIG. 11 is a diagram for explaining the luminance distributions of the left-eye image PL and the right-eye image PR. In the image PL for the left eye, the brightness I gradually decreases from the position X3 toward the position X2 (left end). In the left-eye image PL, the brightness is constant in the range from the position X3 to the position X4. In the image PL for the left eye, the brightness I gradually decreases from the position X4 toward the position X5 (right end). In this way, in the left and right regions of the left-eye image PL, the brightness gradually decreases toward both ends of the left-eye image PL. The brightness is constant in the central region of the left-eye image PL.
 左眼用画像PLでは、位置X3から位置X4の範囲で輝度が最も高くなっており、位置X2(左端)、位置X5(右端)で低くなっている。左眼用画像PLでは、位置X2から位置X3の範囲、位置X4から位置X5の範囲で輝度が徐々に変化している。なお、位置X2と位置X5との輝度は、同じであっても異なっていてもよい。つまり、位置X2が位置X5よりも高い輝度であってもよく、低い輝度であってもよい。 In the left-eye image PL, the brightness is highest in the range from position X3 to position X4, and is low at position X2 (left end) and position X5 (right end). In the image PL for the left eye, the brightness gradually changes in the range from position X2 to position X3 and in the range from position X4 to position X5. The brightness at the position X2 and the brightness at the position X5 may be the same or different. That is, the position X2 may have higher or lower brightness than the position X5.
 右眼用画像PRでは、位置X5から位置X6(右端)に向かうにつれて、輝度Iが徐々に低くなっている。右眼用画像PRでは、位置X5から位置X4の範囲で、輝度が一定となっている。右眼用画像PRでは、位置X4から位置X3(左端)に向かうにつれて、輝度Iが徐々に低くなっている。このように、右眼用画像PRの左右両側の領域では、右眼用画像PRの両端に向かうにつれて、徐々に輝度が低下している。右眼用画像PRの中央の領域では、輝度が一定になっている。 In the right-eye image PR, the brightness I gradually decreases from the position X5 toward the position X6 (right end). In the right-eye image PR, the brightness is constant in the range from the position X5 to the position X4. In the right-eye image PR, the brightness I gradually decreases from the position X4 toward the position X3 (left end). As described above, in the left and right regions of the right-eye image PR, the brightness gradually decreases toward both ends of the right-eye image PR. The brightness is constant in the central region of the right-eye image PR.
 右眼用画像PRでは、位置X4から位置X5の範囲で輝度が最も高くなっており、位置X3(左端)、位置X6(右端)で低くなっている。右眼用画像PRでは、位置X3から位置X4の範囲、位置X5から位置X6の範囲で輝度が徐々に変化している。なお、位置X3と位置X6との輝度は、同じであっても異なっていてもよい。つまり、位置X3が位置X6よりも高い輝度であってもよく、低い輝度であってもよい。 In the right-eye image PR, the brightness is highest in the range from position X4 to position X5, and is low at position X3 (left end) and position X6 (right end). In the right-eye image PR, the brightness gradually changes in the range from position X3 to position X4 and from the position X5 to position X6. The brightness at the position X3 and the brightness at the position X6 may be the same or different. That is, the position X3 may have a higher brightness or a lower brightness than the position X6.
 ところで、表示画像の輝度分布例2では、X方向における視野FRの左端X3の+X側においては左眼用画像PLと右眼用画像PRとが重なる為、ユーザは周辺よりも輝度が高いと認識する。よってX方向における視野FRの左端X3の前後でユーザの認識する輝度に段差が生じる。また、X方向における視野FLの右端X5の-X側においては左眼用画像PLと右眼用画像PRとが重なる為、ユーザは周辺よりも輝度が高いと認識する。よってX方向における視野FLの左端X5の前後でユーザの認識する輝度に段差が生じる。しかし、表示画像の輝度分布例3によれば、X方向における視野FRの左端X3の前後でも滑らかに輝度が変化し、またX方向における視野FLの右端X5の前後でも滑らかに輝度が変化する。従って、より表示画像とその周辺のギャップを低減することができ、表示画像を自然に見せることができる。 By the way, in the luminance distribution example 2 of the display image, since the left-eye image PL and the right-eye image PR overlap on the + X side of the left end X3 of the visual field FR in the X direction, the user recognizes that the luminance is higher than the surroundings. To do. Therefore, there is a difference in brightness recognized by the user before and after the left end X3 of the field of view FR in the X direction. Further, on the −X side of the right end X5 of the visual field FL in the X direction, the left-eye image PL and the right-eye image PR overlap each other, so the user recognizes that the brightness is higher than the surroundings. Therefore, there is a difference in brightness recognized by the user before and after the left end X5 of the visual field FL in the X direction. However, according to the brightness distribution example 3 of the display image, the brightness changes smoothly before and after the left end X3 of the visual field FR in the X direction, and also changes before and after the right end X5 of the visual field FL in the X direction. Therefore, the gap between the display image and its periphery can be further reduced, and the display image can appear natural.
 図9~図11では輝度がX方向の位置に応じて線形に変化するようにしているが、輝度が線形に変化する傾きを途中で変更してもよいし、輝度が多項式等に従って非線形に変化していてもよい。また、図9~図11で輝度を一定としている領域でも、必ずしも輝度を一定としなくてもよい。また、左眼用画像PLの最も高い輝度を1とした場合、左眼用画像PLの最も低い輝度を0.5とすることができる。左眼用画像PLの最も低い輝度は、左眼用画像RLのもっとも高い輝度より低ければ0.5以外の値でもよい。 9 to 11, the brightness changes linearly according to the position in the X direction. However, the slope at which the brightness changes linearly may be changed in the middle, or the brightness changes nonlinearly according to a polynomial or the like. You may have. Further, even in the area where the luminance is constant in FIGS. 9 to 11, the luminance does not necessarily have to be constant. When the highest brightness of the left-eye image PL is 1, the lowest brightness of the left-eye image PL can be 0.5. The lowest brightness of the left-eye image PL may be a value other than 0.5 as long as it is lower than the highest brightness of the left-eye image RL.
 本実施形態では、ユーザの正面前方(+Z方向)に形成される左眼用画像PLの虚像は、左端近傍の輝度が低くなっている。同様に、ユーザの正面前方(+Z方向)に形成される右眼用画像PRの虚像は、右端近傍の輝度が低くなっている。ユーザが視認する左眼用画像PLでは、所定の位置から左端に向かうにつれて、輝度が低くなり、ユーザが視認する右眼用画像PRでは、所定の位置から右端に向かうにつれて、輝度が低くなる。ここで、所定の位置とは、左眼用画像PLの左端、又は右眼用画像PRの右端に向かって輝度が低下し始める起点となる位置である。前記所定の位置は例えば、輝度分布例1の場合、左眼用画像PLでは右端、右眼用画像PRでは左端となっている。輝度分布例2、3の場合、左眼用画像PLでは、右眼用画像PRとの境界位置(位置X3)となり、右眼用画像PRでは、左眼用画像PLとの境界位置(位置X5)となる。もちろん、前記所定の位置は、輝度分布例1~3の位置に限定されるものではなく、任意の位置とすることができる。 In the present embodiment, the virtual image of the left-eye image PL formed in front of the front of the user (+ Z direction) has low brightness near the left end. Similarly, the virtual image of the image PR for the right eye formed in front of the front of the user (+ Z direction) has low brightness near the right end. In the image PL for the left eye visually recognized by the user, the brightness decreases from the predetermined position toward the left end, and in the image PR for the right eye visually recognized by the user, the brightness decreases from the predetermined position toward the right end. Here, the predetermined position is a position serving as a starting point where the luminance starts to decrease toward the left end of the left-eye image PL or the right end of the right-eye image PR. In the case of the luminance distribution example 1, the predetermined position is the right end in the left-eye image PL and the left end in the right-eye image PR, for example. In the case of the luminance distribution examples 2 and 3, the left-eye image PL has a boundary position (position X3) with the right-eye image PR, and the right-eye image PR has a boundary position (position X5) with the left-eye image PL. ). Of course, the predetermined position is not limited to the positions of the brightness distribution examples 1 to 3, and may be any position.
 また、図9~図11は、制御部105に入力される映像信号が均一な輝度値(例えば、白表示)である場合の輝度分布を示している。つまり、輝度分布は、全画素で均一な輝度値での表示、例えば白表示を行った場合の輝度分布である。白表示とは、画像の全画素を最高輝度値として、ディスプレイの最大輝度で表示を行う場合を示す。例えば、図9~図11では、外部から白表示を行うための映像信号をヘッドマウントディスプレイ100に入力した場合に、表示される表示画像の輝度分布が示されている。実際に視認される表示画像は、制御部105に入力される映像信号の輝度値の分布に応じて、輝度が変化する。 Further, FIGS. 9 to 11 show luminance distributions when the video signal input to the control unit 105 has a uniform luminance value (for example, white display). In other words, the brightness distribution is a brightness distribution when displaying with a uniform brightness value in all pixels, for example, white display. The white display indicates a case where all the pixels of the image have the highest luminance value and the display is performed with the maximum luminance of the display. For example, FIGS. 9 to 11 show the brightness distribution of the display image displayed when a video signal for performing white display is input to the head mounted display 100 from the outside. The brightness of the actually viewed display image changes according to the distribution of the brightness value of the video signal input to the control unit 105.
 上記のような輝度分布を得る手法としては、主として、光学系による手法と、表示素子による手法の2つがある。以下に、これらの手法を例示する。 There are mainly two methods to obtain the above-mentioned brightness distribution: a method using an optical system and a method using a display element. Below, these methods are illustrated.
 光学系による手法を用いる場合、図3、図4で示した光学系の例1、例2の場合、第1ミラー121L、121Rの反射率の空間分布により、上記のような輝度分布を得ることができる。第1ミラー121Lについては、左端に向かうにつれて反射光量が低くなるように、X位置に応じて反射率を変化させる。つまり、第1ミラー121Lでは、左端で最も低く反射率が低くなるように、反射率の空間分布を不均一にする。一方、第1ミラー121Rについては、右端になるほど反射率が低くなるように、X位置に応じて反射率を変化させる。つまり、第1ミラー121Rでは、右端で最も低く反射率が低くなるように、反射率の空間分布を不均一にする。 In the case of using the method based on the optical system, in the case of Example 1 and Example 2 of the optical system shown in FIG. 3 and FIG. You can The reflectance of the first mirror 121L is changed according to the X position so that the amount of reflected light decreases toward the left end. That is, in the first mirror 121L, the spatial distribution of reflectance is made nonuniform so that the reflectance is lowest at the left end. On the other hand, the reflectance of the first mirror 121R is changed according to the X position so that the reflectance becomes lower toward the right end. That is, in the first mirror 121R, the spatial distribution of reflectance is made nonuniform so that the reflectance is lowest at the right end.
 あるいは、図3に示した光学系の例1の場合、第2ミラー122L、122Rの透過率の空間分布に応じて、上記のような輝度分布を得ることができる。さらには、所望の減光特性分布を有する減光フィルタ等を用いて、所望の輝度分布を得ることができる。また、図5に示した光学系の例3の場合、レンズの透過率の空間分布を不均一とすることで、所望の輝度分布を得ることができる。 Alternatively, in the case of Example 1 of the optical system shown in FIG. 3, the brightness distribution as described above can be obtained according to the spatial distribution of the transmittances of the second mirrors 122L and 122R. Furthermore, a desired brightness distribution can be obtained by using a neutral density filter or the like having a desired neutral density distribution. Further, in the case of Example 3 of the optical system shown in FIG. 5, a desired luminance distribution can be obtained by making the spatial distribution of the transmittance of the lens non-uniform.
 透過率、又は、反射率の空間分布が不均一なミラー及びレンズは、所望の輝度分布を得るように、ミラー及びレンズの位置によって金属膜の厚みを変えることで得ることができる。また、ミラー及びレンズは、所望の輝度分布を得るように、ミラー及びレンズの位置によって誘電体多層膜の膜構造を変えることで得ることができる。これまで挙げた以外の公知技術を用いてミラー及びレンズを得てもよい。 Mirrors and lenses having a non-uniform spatial distribution of transmittance or reflectance can be obtained by changing the thickness of the metal film depending on the positions of the mirror and lens so as to obtain a desired brightness distribution. Further, the mirror and the lens can be obtained by changing the film structure of the dielectric multilayer film depending on the positions of the mirror and the lens so as to obtain a desired luminance distribution. Mirrors and lenses may be obtained using known techniques other than those mentioned above.
 このように、左眼用光学系103L、及び右眼用光学系103Rにおいて、第1ミラー121L、121R、第2ミラー122L、122R等の光学素子の光学特性によって、輝度分布を設定することができる。つまり、ミラー等の光学特性の空間分布を不均一にすることで、左眼用光学系103Lにおいて、左端に向かうにつれて輝度が低くなり、右眼用光学系103Rにおいては、右端に向かうにつれて輝度が低くなるようにする。これにより、表示画像とその周辺のギャップを低減することができ、表示画像を自然に見せることができる。 As described above, in the left-eye optical system 103L and the right-eye optical system 103R, the brightness distribution can be set by the optical characteristics of the optical elements such as the first mirrors 121L and 121R and the second mirrors 122L and 122R. .. That is, by making the spatial distribution of the optical characteristics of the mirror and the like non-uniform, the brightness decreases toward the left end in the left-eye optical system 103L, and the brightness decreases toward the right end in the right-eye optical system 103R. Try to lower it. As a result, the gap between the display image and its periphery can be reduced, and the display image can appear natural.
 左眼用表示素子101L、右眼用表示素子101Rにより、所望の輝度分布を得る手法について説明する。左眼用表示素子101L、右眼用表示素子101Rにおいて、表示画像の輝度分布を制御することができる。これにより、表示素子部101が、所定の位置から左端に向かうにつれて、輝度が低くなる左眼用画像PLと、所定の位置から右端に向かうにつれて、輝度が低くなる左眼用画像PRと、を生成する。 A method of obtaining a desired luminance distribution by the left-eye display element 101L and the right-eye display element 101R will be described. In the left-eye display element 101L and the right-eye display element 101R, the brightness distribution of the display image can be controlled. As a result, the display element unit 101 displays an image PL for the left eye whose brightness decreases from the predetermined position toward the left end and an image PR for the left eye whose brightness decreases toward the right end from the predetermined position. To generate.
 例えば、左眼用表示素子101L、右眼用表示素子101Rの図示しない光源により、発光量の空間分布を不均一にしてもよい。左眼用表示素子101L、右眼用表示素子101Rが直下ライト方式のディスプレイである場合、LED光源等の配置又は、LED光源毎の発光特性又は駆動電流を変えることで、輝度分布を設けてもよい。あるいは、エッジライト方式のように、光源からの光を導光板等で均一化する場合、導光板の光学特性によって、出射光量に輝度分布を設ければよい。左眼用表示素子101L、右眼用表示素子101Rに減光フィルム等を貼り付けて、輝度分布を不均一にしてもよい。あるいは、その他のフィルム又は光学シート等によって、輝度分布を設けてもよい。 For example, the light source (not shown) of the left-eye display element 101L and the right-eye display element 101R may make the spatial distribution of the light emission amount non-uniform. When the left-eye display element 101L and the right-eye display element 101R are direct light type displays, even if a luminance distribution is provided by changing the arrangement of LED light sources or the like, or changing the emission characteristics or drive current of each LED light source. Good. Alternatively, when the light from the light source is made uniform by a light guide plate or the like as in the edge light system, a brightness distribution may be provided in the amount of emitted light depending on the optical characteristics of the light guide plate. A brightness reduction film or the like may be attached to the left-eye display element 101L and the right-eye display element 101R to make the luminance distribution non-uniform. Alternatively, the brightness distribution may be provided by another film or optical sheet.
 また、制御部105が、表示画像の輝度分布を制御してもよい。例えば、左眼用表示素子101L、右眼用表示素子101Rの画素毎あるいはエリア毎にダイナミックレンジを変えることで、輝度分布を調整することができる。ここで、左眼用表示素子101Lのエリアとは、例えば左眼用画像PLを上下方向(Y方向)に複数分割したエリアとすることができる。右眼用表示素子101Rのエリアとは、例えば右眼用画像PRを上下方向(Y方向)に複数分割したエリアとすることができる。 The control unit 105 may control the brightness distribution of the display image. For example, the luminance distribution can be adjusted by changing the dynamic range for each pixel or each area of the left-eye display element 101L and the right-eye display element 101R. Here, the area of the left-eye display element 101L can be, for example, an area obtained by dividing the left-eye image PL in the vertical direction (Y direction). The area of the right-eye display element 101R can be, for example, an area obtained by dividing the right-eye image PR in the vertical direction (Y direction).
 具体的な一例として、制御部105が、外部から入力されるデジタル信号である映像信号を処理することで、輝度分布を調整してもよい。例えば、輝度値の階調が8ビット(0~255)である場合、制御部105は、表示画像の中央部の画素では8ビットの階調をそのままとして、端部の画素では、階調を7ビット(0~127)等に圧縮してもよい。この場合、制御部105が、ルックアップテーブル等用いて、階調を変換することができる。そして、制御部105が、画素の位置に応じて、ダイナミックレンジの圧縮率を変えればよい。このようにすることで、図9~図11で示したような輝度分布で表示画像の虚像を表示させることができる。 As a specific example, the control unit 105 may adjust the luminance distribution by processing a video signal that is a digital signal input from the outside. For example, when the gradation of the luminance value is 8 bits (0 to 255), the control unit 105 leaves the 8-bit gradation as it is in the central pixel of the display image and sets the gradation in the edge pixels. It may be compressed to 7 bits (0 to 127). In this case, the control unit 105 can convert the gradation using a look-up table or the like. Then, the control unit 105 may change the compression ratio of the dynamic range according to the position of the pixel. By doing so, the virtual image of the display image can be displayed with the brightness distribution as shown in FIGS. 9 to 11.
 あるいは、制御部105が、左眼用表示素子101L、右眼用表示素子101Rに出力するアナログ信号である表示信号を処理することで、輝度分布を調整してもよい。左眼用表示素子101L、右眼用表示素子101Rが電圧駆動の液晶ディスプレイである場合、同じ輝度を得るための階調値が入力されたときの出力電圧値を、画素の位置に応じて変えればよい。左眼用表示素子101L、右眼用表示素子101Rが電流駆動の有機ELディスプレイである場合、同じ輝度を得るための階調値が入力されたときの出力電流値を、画素の位置に応じて出力する電圧値を変えればよい。あるいは、左眼用表示素子101L、右眼用表示素子101Rが時分割駆動方式である場合、同じ輝度を得るための階調値が入力されたときの駆動時間を画素の位置に応じて変えればよい。制御部105が、アナログ信号である表示信号(駆動信号)を画素の位置に応じて制御すればよい。左眼用表示素子101L、右眼用表示素子101Rの画素毎あるいはエリア毎に、制御部105がダイナミックレンジを変えることで、輝度分布を調整することができる。ここで、左眼用表示素子101Lのエリアとは、例えば左眼用画像PLを上下方向(Y方向)に複数分割したエリアとすることができる。右眼用表示素子101Rのエリアとは、例えば右眼用画像PRを上下方向(Y方向)に複数分割したエリアとすることができる。このようにすることで、図9~図11で示したような輝度分布で表示画像の虚像を表示させることができる。 Alternatively, the control unit 105 may adjust the luminance distribution by processing a display signal that is an analog signal output to the left-eye display element 101L and the right-eye display element 101R. When the left-eye display element 101L and the right-eye display element 101R are voltage-driven liquid crystal displays, the output voltage value when the gradation value for obtaining the same brightness is input can be changed according to the position of the pixel. Good. When the left-eye display element 101L and the right-eye display element 101R are current-driven organic EL displays, the output current value when a gradation value for obtaining the same brightness is input is determined according to the pixel position. It suffices to change the output voltage value. Alternatively, when the left-eye display element 101L and the right-eye display element 101R are of the time-division driving method, the driving time when the gradation value for obtaining the same brightness is input is changed according to the position of the pixel. Good. The control unit 105 may control the display signal (driving signal) that is an analog signal according to the position of the pixel. The brightness distribution can be adjusted by the control unit 105 changing the dynamic range for each pixel or each area of the left-eye display element 101L and the right-eye display element 101R. Here, the area of the left-eye display element 101L can be, for example, an area obtained by dividing the left-eye image PL in the vertical direction (Y direction). The area of the right-eye display element 101R can be, for example, an area obtained by dividing the right-eye image PR in the vertical direction (Y direction). By doing so, the virtual image of the display image can be displayed with the luminance distribution as shown in FIGS. 9 to 11.
 このように、制御部105がアナログ信号処理又はデジタル信号処理によって、輝度分布を制御することができる。制御部105が輝度分布を制御する場合、ユーザが輝度分布を調整することができる。ユーザが表示画像を視認した場合の好みに応じて、輝度分布を調整してもよい。例えば、輝度を低下する範囲を変えたり、輝度の低下量(傾き)を変えたりすることで、輝度分布を調整してもよい。つまり、ダイナミックレンジを圧縮する範囲を変えたり、圧縮率を変えたりすることで、ヘッドマウントディスプレイ100は、ユーザの好みに合わせた表示を行うことができる。 In this way, the control unit 105 can control the luminance distribution by analog signal processing or digital signal processing. When the control unit 105 controls the brightness distribution, the user can adjust the brightness distribution. The brightness distribution may be adjusted according to the preference when the user visually recognizes the display image. For example, the brightness distribution may be adjusted by changing the range in which the brightness is decreased or changing the amount of decrease (slope) of the brightness. That is, by changing the compression range of the dynamic range or changing the compression rate, the head mounted display 100 can perform display according to the user's preference.
実施の形態2.
 図12は実施の形態2のヘッドマウントディスプレイ100の機能ブロックを示す図である。本実施の形態のヘッドマウントディスプレイは、ユーザが光学系を調整することができるようになっているとする。つまり、ヘッドマウントディスプレイ100は、図12に示すように左眼用光学系103Lと右眼用光学系103Rの調整機構201を備えている。調整機構201は、人間の両眼の間隔(瞳間隔)には、個人差があるため、ユーザが適切に表示画像を視認できるように、左眼用光学系103Lと右眼用光学系103Rを調整してもよい。調整機構201は例えば、光学系の第1ミラー、第2ミラー、レンズ等の光学素子の位置及び角度を変化させることで左眼用光学系103Lと右眼用光学系103Rを調整することができる。
Embodiment 2.
FIG. 12 is a diagram showing functional blocks of the head mounted display 100 according to the second embodiment. It is assumed that the head mounted display of the present embodiment allows the user to adjust the optical system. That is, the head mounted display 100 includes the adjustment mechanism 201 for the left-eye optical system 103L and the right-eye optical system 103R as shown in FIG. The adjustment mechanism 201 includes the left-eye optical system 103L and the right-eye optical system 103R so that the user can appropriately visually recognize the displayed image because there is an individual difference in the distance between both eyes (pupil distance) of the human. You may adjust. The adjusting mechanism 201 can adjust the left-eye optical system 103L and the right-eye optical system 103R by changing the positions and angles of the optical elements such as the first mirror, the second mirror, and the lens of the optical system. ..
 具体的には、ヘッドマウントディスプレイ100に、光学系を調整するためのスイッチ又はボタン等を備える入力部202が設けられているとする。ユーザがスイッチ等の入力部202を操作すると、入力部202は、図示しない記憶部を参照して、操作に応じた調整信号を調整機構201に供給する。なお、記憶部は、予め、操作毎に調整信号を対応付けて記憶している。調整機構201は、調整信号に基づいて光学系の第1ミラー、第2ミラー、レンズ等の光学素子の位置及び角度を変化させる。これにより、左眼用画像PL、及び右眼用画像PRの虚像の位置及び大きさ等が調整される。そして、入力部202は、図示しない記憶部を参照して、操作に応じた調整量を、制御部105に供給する。なお、記憶部は、予め、操作量等を調整信号に対応付けて記憶している。制御部105は、調整量に応じて、輝度分布を変更する。また、制御部105は、図示しないセンサ等で調整量を検出して、検出結果に応じて、輝度分布を変更するようにしてもよい。 Specifically, it is assumed that the head mounted display 100 is provided with an input unit 202 including switches or buttons for adjusting the optical system. When a user operates the input unit 202 such as a switch, the input unit 202 refers to a storage unit (not shown) and supplies an adjustment signal according to the operation to the adjustment mechanism 201. The storage unit stores the adjustment signal in association with each operation in advance. The adjustment mechanism 201 changes the position and angle of optical elements such as the first mirror, the second mirror, and the lens of the optical system based on the adjustment signal. As a result, the positions and sizes of the virtual images of the left-eye image PL and the right-eye image PR are adjusted. Then, the input unit 202 refers to a storage unit (not shown) and supplies the adjustment amount according to the operation to the control unit 105. The storage unit stores the operation amount and the like in advance in association with the adjustment signal. The control unit 105 changes the brightness distribution according to the adjustment amount. Further, the control unit 105 may detect the adjustment amount with a sensor (not shown) or the like, and change the luminance distribution according to the detection result.
 本実施の形態では、瞳間隔に合わせた調整量に応じて、制御部105が輝度分布を変化させる。このようにすることで、ユーザの瞳間隔に応じて、適切な輝度分布で表示を行うことができる。 In the present embodiment, the control unit 105 changes the brightness distribution according to the adjustment amount according to the pupil distance. By doing so, display can be performed with an appropriate luminance distribution according to the pupil distance of the user.
他の実施の形態.
 実施の形態1、2では例えば、輝度が徐々に低下する領域の範囲を変えることで、輝度分布を調整してもよい。つまり、左眼用画像PLの左端、又は右眼用画像PRの右端に向かって輝度が低下し始める起点となる所定の位置を変更してもよい。あるいは、輝度の低下量又は低下する傾きを変更してもよい。
Other embodiments.
In the first and second embodiments, for example, the luminance distribution may be adjusted by changing the range of the region where the luminance gradually decreases. That is, you may change the predetermined position used as the starting point which a brightness | luminance starts decreasing toward the left end of the image PL for left eyes, or the right end of the image PR for right eyes. Alternatively, the amount of decrease in brightness or the slope of decrease may be changed.
 また、実施の形態1、2で所望の輝度分布を得る手法は、上記の例の2以上を適宜組み合わせてもよい。例えば、ミラーの反射率を不均一とするとともに、表示素子部101の輝度を不均一にしてもよい。 In addition, as a method of obtaining a desired luminance distribution in the first and second embodiments, two or more of the above examples may be appropriately combined. For example, the reflectance of the mirror may be nonuniform and the brightness of the display element unit 101 may be nonuniform.
 また、実施の形態1、2では、画像のエッジ部分の視認性を低下させていたが、他の手法により、視認性を低下させてもよい。例えば、ヘッドマウントディスプレイ100は、表示画像のエッジ部分をぼかすために、所望の輝度分布を得ることに変えて、所望のぼけ量の変化分布を得てもよい。図13は、ヘッドマウントディスプレイ100で得たいぼけ量の変化分布を持つ表示画像の例を示す図である。なお、図14は、ぼけ量を変化させる前の画像を示している。図13に示すように表示画像のエッジ部分をぼかすために、左眼用画像PLの左端近傍、及び右眼用画像PRの近傍でのぼけ量を大きくする。本実施の形態では、左眼用画像PLでは左端(位置X2)に近づくにつれて、ぼけ量が大きくなり、右眼用画像PRでは右端(位置X6)に近づくにつれて、ぼけ量が大きくなるようにする。このように、左眼用画像PL、右眼用画像PRのぼけ量を変えることで、視認性を変えることができる。 Further, in the first and second embodiments, the visibility of the edge portion of the image is reduced, but the visibility may be reduced by another method. For example, the head-mounted display 100 may obtain a desired change distribution of the amount of blur instead of obtaining a desired luminance distribution in order to blur the edge portion of the display image. FIG. 13 is a diagram showing an example of a display image having a distribution of changes in the amount of blur obtained on the head mounted display 100. Note that FIG. 14 shows an image before changing the blur amount. As shown in FIG. 13, in order to blur the edge portion of the display image, the blur amount is increased near the left end of the left-eye image PL and near the right-eye image PR. In the present embodiment, in the left-eye image PL, the blur amount increases as it approaches the left end (position X2), and in the right-eye image PR, the blur amount increases as it approaches the right end (position X6). .. In this way, the visibility can be changed by changing the blur amount of the image PL for the left eye and the image PR for the right eye.
 上記のようなぼけ量の変化分布を得る手法としては、主として、光学系による手法と、表示素子による手法の2つがある。光学系による手法を用いる場合、第1ミラー121L、第1ミラー121Rを例えば自由曲面ミラーとして、ぼけ量を小さくしたい位置では優れた解像特性を得るように、ぼけ量を大きくしたい位置では劣った解像特性を得るように設計する。 There are mainly two methods for obtaining the above-mentioned change distribution of the blur amount, that is, an optical system method and a display element method. When the method using the optical system is used, the first mirror 121L and the first mirror 121R are, for example, free-form surface mirrors, and excellent resolution characteristics are obtained at a position where the blur amount is desired to be small, and inferior at a position where the blur amount is desired to be large. Design to obtain resolution characteristics.
 表示素子による手法を用いる場合、制御部105は例えば、左眼用画像PL、右眼用画像PRの所定の位置からぼけ量を大きくしたい位置に向かって、ぼかし半径を徐々に大きくしてガウスぼかし処理をした表示画像を生成する。表示素子部101は、ぼかし処理をした表示画像を表示する。 When the method using the display element is used, the control unit 105, for example, gradually increases the blurring radius from a predetermined position of the left-eye image PL and the right-eye image PR to a position where the blur amount is to be increased, and performs Gaussian blurring. A processed display image is generated. The display element unit 101 displays the display image subjected to the blurring process.
 実施の形態1、2における上記処理のうちの一部又は全部は、コンピュータプログラムによって実行されてもよい。上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 A part or all of the above processes in the first and second embodiments may be executed by a computer program. The program described above can be stored using various types of non-transitory computer-readable medium (non-transitory computer readable medium), and can be supplied to the computer. Non-transitory computer-readable media include various types of tangible storage media (tangible storage media). Examples of non-transitory computer readable media are magnetic recording media (eg flexible disk, magnetic tape, hard disk drive), magneto-optical recording media (eg magneto-optical disk), CD-ROM (Read Only Memory), CD-R, Includes CD-R / W and semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). In addition, the program may be supplied to the computer by various types of transitory computer readable medium (transmission computer readable medium). Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. The transitory computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 以上、本発明者によってなされた発明を実施の形態1、2に基づき具体的に説明したが、本発明は上記実施の形態に限られたものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 Although the invention made by the present inventor has been specifically described based on the first and second embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.
 この出願は、2018年11月12日に出願された日本出願特願2018-212127を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-212127 filed on November 12, 2018, and incorporates all of the disclosure thereof.
 本開示は、ヘッドマウントディスプレイに適用可能である。 The present disclosure can be applied to a head mounted display.
 EL 左眼
 ER 右眼
 100 ヘッドマウントディスプレイ
 101 表示素子部
 101L 左眼用表示素子
 101R 右眼用表示素子
 102 フレーム
 103L 左眼用光学系
 103R 右眼用光学系
 105  制御部
 105L 制御部
 105R 制御部
 112L レンズ
 112R レンズ
 121L 第1ミラー
 122L 第2ミラー
 201 調整機構
 202 入力部
EL Left eye ER Right eye 100 Head mounted display 101 Display element section 101L Left eye display element 101R Right eye display element 102 Frame 103L Left eye optical system 103R Right eye optical system 105 Control section 105L Control section 105R Control section 112L Lens 112R Lens 121L First mirror 122L Second mirror 201 Adjustment mechanism 202 Input unit

Claims (7)

  1.  左眼用画像と右眼用画像とを表示する表示素子部と、
     前記左眼用画像の表示光をユーザの左眼に導く左眼用光学系と、
     前記右眼用画像の表示光を前記ユーザの右眼に導く右眼用光学系と、を備え、
     前記ユーザが視認する前記左眼用画像では、所定の位置から左端に向かうにつれて、視認性が低くなり、
     前記ユーザが視認する前記右眼用画像では、所定の位置から右端に向かうにつれて、視認性が低くなる、ヘッドマウントディスプレイ。
    A display element unit that displays an image for the left eye and an image for the right eye,
    An optical system for the left eye that guides the display light of the image for the left eye to the left eye of the user,
    An optical system for the right eye that guides the display light of the image for the right eye to the right eye of the user,
    In the image for the left eye visually recognized by the user, the visibility becomes lower from the predetermined position toward the left end,
    In the image for the right eye visually recognized by the user, the head mounted display is less visible from the predetermined position toward the right end.
  2.  前記ユーザが視認する前記左眼用画像では、所定の位置から左端に向かうにつれて、輝度が低くなり、
     前記ユーザが視認する前記右眼用画像では、所定の位置から右端に向かうにつれて、輝度が低くなる、
     請求項1に記載のヘッドマウントディスプレイ。
    In the left-eye image visually recognized by the user, the brightness decreases from the predetermined position toward the left end,
    In the right-eye image visually recognized by the user, the brightness decreases from the predetermined position toward the right end,
    The head mounted display according to claim 1.
  3.  前記左眼用光学系は、少なくとも一つのミラーを備え、
     前記左眼用光学系の前記ミラーの反射率の空間分布によって、前記ユーザが視認する前記左眼用画像の輝度が、所定の位置から左端に向かうにつれて低くなり
     前記右眼用光学系は、少なくとも一つのミラーを備え、
     前記右眼用光学系の前記ミラーの反射率の空間分布によって、前記ユーザが視認する前記右眼用画像の輝度が、所定の位置から右端に向かうにつれて低くなる請求項2に記載のヘッドマウントディスプレイ。
    The left-eye optical system includes at least one mirror,
    Due to the spatial distribution of the reflectance of the mirror of the left-eye optical system, the brightness of the left-eye image visually recognized by the user becomes lower from the predetermined position toward the left end, and the right-eye optical system is at least With one mirror,
    The head mounted display according to claim 2, wherein the brightness of the image for the right eye visually recognized by the user decreases from the predetermined position toward the right end due to the spatial distribution of the reflectance of the mirror of the optical system for the right eye. ..
  4.  前記左眼用光学系は、入射光の一部を透過し、一部を反射するビームスプリッタを備え、
     前記左眼用光学系の前記ビームスプリッタの透過率の空間分布によって、前記ユーザが視認する前記左眼用画像の輝度が、所定の位置から左端に向かうにつれて低くなり
     前記右眼用光学系は、入射光の一部を透過し、一部を反射するビームスプリッタを備え、
     前記右眼用光学系の前記ビームスプリッタの反射率の空間分布によって、前記ユーザが視認する前記右眼用画像の輝度が、所定の位置から右端に向かうにつれて低くなる請求項2、又は3に記載のヘッドマウントディスプレイ。
    The left-eye optical system includes a beam splitter that transmits a part of incident light and reflects a part of the incident light,
    Due to the spatial distribution of the transmittance of the beam splitter of the left-eye optical system, the brightness of the left-eye image visually recognized by the user becomes lower from the predetermined position toward the left end, the right-eye optical system, It is equipped with a beam splitter that transmits a part of the incident light and reflects a part of it.
    The brightness of the image for the right eye visually recognized by the user decreases from the predetermined position toward the right end due to the spatial distribution of the reflectance of the beam splitter of the optical system for the right eye. Head mounted display.
  5.  前記表示素子部を制御する制御部をさらに備え、
     前記左眼用光学系、及び前記右眼用光学系が調整可能となっており、
     前記制御部は、前記左眼用光学系、及び前記右眼用光学系の調整量に応じて、前記表示素子部の輝度を変更する請求項2に記載のヘッドマウントディスプレイ。
    Further comprising a control unit for controlling the display element unit,
    The left-eye optical system and the right-eye optical system are adjustable,
    The head mounted display according to claim 2, wherein the control unit changes the brightness of the display element unit according to the adjustment amount of the left-eye optical system and the right-eye optical system.
  6.  前記ユーザが視認する前記左眼用画像では、所定の位置から左端に向かうにつれて、ぼけ量が大きくなり、
     前記ユーザが視認する前記右眼用画像では、所定の位置から右端に向かうにつれて、ぼけ量が大きくなる、
    請求項1に記載のヘッドマウントディスプレイ。
    In the image for the left eye visually recognized by the user, the blur amount increases from the predetermined position toward the left end,
    In the image for the right eye visually recognized by the user, the blur amount increases from the predetermined position toward the right end,
    The head mounted display according to claim 1.
  7.  表示素子が、左眼用画像と右眼用画像とを生成するステップと、
     左眼用光学系が左眼用画像の表示光をユーザの左眼に導くとともに、右眼用光学系が右眼用画像の表示光を前記ユーザの右眼に導くステップと、を備え、
     前記ユーザが視認する前記左眼用画像では、所定の位置から左端に向かうにつれて、視認性が低くなり、
     前記ユーザが視認する前記右眼用画像では、所定の位置から右端に向かうにつれて、視認性が低くなる、ヘッドマウントディスプレイの表示方法。
    The display element generates a left-eye image and a right-eye image,
    The optical system for the left eye guides the display light of the image for the left eye to the left eye of the user, and the optical system for the right eye guides the display light of the image for the right eye to the right eye of the user,
    In the image for the left eye visually recognized by the user, the visibility becomes lower from the predetermined position toward the left end,
    In the right-eye image visually recognized by the user, the visibility is reduced from the predetermined position toward the right end, and the visibility of the head-mounted display is reduced.
PCT/JP2019/040148 2018-11-12 2019-10-11 Head-mounted display, and display method WO2020100484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018212127A JP2020079829A (en) 2018-11-12 2018-11-12 Head-mounted display and display method
JP2018-212127 2018-11-12

Publications (1)

Publication Number Publication Date
WO2020100484A1 true WO2020100484A1 (en) 2020-05-22

Family

ID=70730454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040148 WO2020100484A1 (en) 2018-11-12 2019-10-11 Head-mounted display, and display method

Country Status (2)

Country Link
JP (1) JP2020079829A (en)
WO (1) WO2020100484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796816B2 (en) 2020-11-30 2023-10-24 Seiko Epson Corporation Virtual image display apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328258A (en) * 1992-05-26 1993-12-10 Olympus Optical Co Ltd Head mount type display device
JPH07325266A (en) * 1994-06-01 1995-12-12 Olympus Optical Co Ltd Video display device
JPH10246866A (en) * 1997-01-06 1998-09-14 Olympus Optical Co Ltd Video display device
JP2003337299A (en) * 2002-05-20 2003-11-28 Victor Co Of Japan Ltd Head-mound display device
JP2010139940A (en) * 2008-12-15 2010-06-24 Brother Ind Ltd Head mounted display, half mirror, and method for manufacturing half mirror
JP2017212720A (en) * 2016-05-18 2017-11-30 キヤノン株式会社 Image processing apparatus, image processing method, and program
US20180018943A1 (en) * 2015-01-20 2018-01-18 The Technology Partnership Plc Dual display immersive screen technology

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328258A (en) * 1992-05-26 1993-12-10 Olympus Optical Co Ltd Head mount type display device
JPH07325266A (en) * 1994-06-01 1995-12-12 Olympus Optical Co Ltd Video display device
JPH10246866A (en) * 1997-01-06 1998-09-14 Olympus Optical Co Ltd Video display device
JP2003337299A (en) * 2002-05-20 2003-11-28 Victor Co Of Japan Ltd Head-mound display device
JP2010139940A (en) * 2008-12-15 2010-06-24 Brother Ind Ltd Head mounted display, half mirror, and method for manufacturing half mirror
US20180018943A1 (en) * 2015-01-20 2018-01-18 The Technology Partnership Plc Dual display immersive screen technology
JP2017212720A (en) * 2016-05-18 2017-11-30 キヤノン株式会社 Image processing apparatus, image processing method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796816B2 (en) 2020-11-30 2023-10-24 Seiko Epson Corporation Virtual image display apparatus

Also Published As

Publication number Publication date
JP2020079829A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
US11163164B2 (en) Steerable high-resolution display
JP7230082B2 (en) Virtual and augmented reality systems and methods
US10162412B2 (en) Display, control method of display, and program
US8994614B2 (en) Head mountable display
US8619005B2 (en) Switchable head-mounted display transition
US8269692B2 (en) Image display apparatus, display method thereof, program, integrated circuit, goggle-type head-mounted display, vehicle, binoculars, and desktop display
US10685592B1 (en) Near-eye display assembly with adjustable resolution and frame rate
JP5886896B2 (en) Display device
US20180218711A1 (en) Display device
JP2019500633A (en) Head mounted display device having a plurality of segment displays and optical elements
US10598941B1 (en) Dynamic control of optical axis location in head-mounted displays
US9905143B1 (en) Display apparatus and method of displaying using image renderers and optical combiners
JP2011145607A (en) Head mount display
US20190317329A1 (en) Super-resolution scanning display for near-eye displays
US11256128B2 (en) Display device
JP2004233867A (en) Picture display device
WO2019131160A1 (en) Information processing device, information processing method, and recording medium
WO2020100484A1 (en) Head-mounted display, and display method
CN108028038B (en) Display device
WO2020137088A1 (en) Head-mounted display, display method, and display system
JP7127415B2 (en) virtual image display
CN111435195B (en) Near-eye display structure
WO2024122191A1 (en) Image processing device and method, program, and storage medium
WO2023181602A1 (en) Display device and display method
US20180234670A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883930

Country of ref document: EP

Kind code of ref document: A1