WO2020100470A1 - Full-color led display panel - Google Patents

Full-color led display panel Download PDF

Info

Publication number
WO2020100470A1
WO2020100470A1 PCT/JP2019/039693 JP2019039693W WO2020100470A1 WO 2020100470 A1 WO2020100470 A1 WO 2020100470A1 JP 2019039693 W JP2019039693 W JP 2019039693W WO 2020100470 A1 WO2020100470 A1 WO 2020100470A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
light
display panel
full
layer
Prior art date
Application number
PCT/JP2019/039693
Other languages
French (fr)
Japanese (ja)
Inventor
梶山 康一
貴文 平野
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2020100470A1 publication Critical patent/WO2020100470A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/30Picture reproducers using solid-state colour display devices

Definitions

  • the present invention relates to a full-color LED (light-emitting diode) display panel including a plurality of fluorescent light emitting layers that are excited by ultraviolet light and wavelength-converted into fluorescent light of a corresponding color, and particularly, it is easy to bend or wind the display panel.
  • the present invention relates to a full color LED display panel.
  • a conventional full-color LED display panel of this kind is arranged on a first substrate in a matrix and has a plurality of LEDs emitting near-ultraviolet light or ultraviolet light and a transparent second substrate corresponding to the plurality of LEDs. And has a plurality of red phosphors, green phosphors, and blue phosphors that are excited by near-ultraviolet light or ultraviolet light to emit light (see, for example, Patent Document 1).
  • the first substrate is a silicon substrate or a quartz substrate, or a glass substrate or a ceramic substrate, and a flexible substrate was not assumed. Therefore, no technical consideration was given to facilitating bending or winding of the panel.
  • an object of the present invention is to provide a full-color LED display panel that addresses such problems and facilitates bending or winding of the display panel.
  • a full-color LED display panel is arranged in a matrix on a flexible wiring substrate, and has a plurality of LEDs emitting near-ultraviolet or ultraviolet light and one pixel.
  • a plurality of fluorescent light emitting layers provided on the light emitting surface side of the corresponding three LEDs corresponding to the three primary color lights, and wavelength-converted into fluorescent light of the corresponding color by being excited by the ultraviolet light, and the LED and the fluorescent light emitting layer.
  • a light-shielding wall provided with a light-shielding film that reflects or absorbs the ultraviolet light and the fluorescence on the surface of a transparent partition wall made of a photosensitive resin, and the light-shielding wall includes adjacent pixels or A gap is provided to separate adjacent pixel columns from each other.
  • the adjacent pixels or the adjacent pixel columns are separated from each other, it is possible to easily bend or wind the display panel. Therefore, a full-color display panel that is convenient to carry can be provided.
  • FIG. 1 is a plan view showing a first embodiment of a full-color LED display panel according to the present invention, (a) is an overall view, and (b) is a perspective view showing a partly wound state.
  • FIG. 2 is a sectional view taken along the line AA of FIG. It is a principal part expanded sectional view of FIG.
  • FIG. 3 is an enlarged cross-sectional view of an essential part showing the basic structure of a full-color LED display panel according to the present invention.
  • 6 is a graph showing the relationship between the ultraviolet transmittance at 385 nm and the film thickness of the ultraviolet cut layer, with the blending ratio of the stretchable resin and the ultraviolet absorber as a parameter.
  • FIG. 6 is a vertical sectional view showing a third embodiment of a full-color LED display panel according to the present invention. It is a longitudinal section showing a 4th embodiment of a full-color LED display panel by the present invention.
  • FIG. 1 is a plan view showing a first embodiment of a full-color LED display panel according to the present invention, (a) is an overall view, and (b) is a perspective view showing a state in which a part is wound.
  • 2 is a sectional view taken along the line AA of FIG. 1A
  • FIG. 3 is an enlarged cross-sectional view of a main part of FIG.
  • This full-color LED display panel displays an image in full-color, and includes a plurality of LEDs 1, a plurality of fluorescent light emitting layers 2, a light shielding wall 3, and an ultraviolet ray blocking layer 4. Note that, in FIGS. 1 and 2, the ultraviolet ray blocking layer 4 is omitted in order to avoid complication of the drawings.
  • the plurality of LEDs 1 emit near-ultraviolet or ultraviolet rays of ultraviolet light, and are arranged in a matrix at predetermined intervals on a wiring board 5 made of a flexible resin such as polyimide. It is a micro LED. Wiring is provided on the wiring board 5 so that driving currents for lighting and extinguishing can be supplied to each of the plurality of LEDs 1 from a driving circuit provided outside.
  • Fluorescent light emitting layers 2 are provided on the light emitting surface side of the three LEDs 1 corresponding to one pixel, respectively corresponding to the three primary color lights.
  • the fluorescent light emitting layer 2 is a red fluorescent light emitting layer that is excited by ultraviolet light of near-ultraviolet light or ultraviolet light emitted from the LED 1 and emits fluorescence, and emits red light corresponding to the three LEDs 1 in one pixel.
  • 2R a green fluorescent light emitting layer 2G that emits green light
  • a blue fluorescent light emitting layer 2B that emits blue light.
  • the fluorescent light emitting layer 2 corresponding to each color is a fluorescent resist containing a fluorescent dye (pigment or dye) of a corresponding color.
  • a light shielding wall 3 is provided surrounding the LED 1 and the red, green and blue fluorescent light emitting layers 2R, 2G, 2B.
  • the light shielding wall 3 separates the fluorescent light emitting layers 2 corresponding to respective colors from each other, and as shown in FIG. 3, a partition 7 formed by exposing and developing a transparent photosensitive resin coating film by a photolithography technique. It is provided with a light-shielding film 8 which is adhered to the surface and reflects or absorbs the ultraviolet light emitted from the LED 1 and the fluorescence emitted by the fluorescence emitting layer 2 being excited by the ultraviolet light.
  • the thickness of the transparent photosensitive resin is such that the position of the top surface of the light shielding wall 3 formed by processing the photosensitive resin is higher than the position of the top surface of the LED 1 arranged on the wiring board 5. It is better to set Specifically, the thickness of the photosensitive resin is preferably such that the light shielding wall 3 projects from the top surface of the LED 1 by about 10 ⁇ m to about 40 ⁇ m. In one embodiment, the height from the upper surface of the wiring board 5 to the top surface of the LED 1 is about 10 ⁇ m, but the height is not limited to this.
  • the transparent photosensitive resin is a material that enables the partition wall 7 to have an aspect ratio of height to width of about 1 or more in order to increase the filling rate of the fluorescent dye in the fluorescent light emitting layer 2.
  • it is a high aspect material that enables the aspect ratio to be about 3 or more.
  • Such materials include, for example, SU-83000 manufactured by Nippon Kayaku Co., Ltd., TMMR S2000 series manufactured by Tokyo Ohka Kogyo Co., Ltd., and permanent film photoresists for MEMS (Micro Electronic Mechanical System), and Nippon Steel Sumitomo Chemical.
  • MEMS Micro Electronic Mechanical System
  • Nippon Steel Sumitomo Chemical There is V-259PHA series manufactured by corporation.
  • the photosensitive resin is generally selected based on at least one parameter among the width between the adjacent openings 11 of the partition wall 7, the height of the partition wall 7 and the aspect ratio.
  • the light shielding wall 3 is provided with a gap 10 for separating a pixel row 9 in which a plurality of pixels 6 are arranged in a row from an adjacent pixel row 9 as shown in FIGS. Accordingly, it is possible to easily bend or wind the display panel in the direction intersecting with the pixel row 9.
  • An ultraviolet cut layer 4 that covers the plurality of pixel rows 9 (or pixels 6) and that transmits visible light and reflects or absorbs ultraviolet light is provided as shown in FIG.
  • the ultraviolet cut layer 4 prevents a part of the ultraviolet light (leakage light 12) emitted from the LED 1 and transmitted through the fluorescent light emitting layer 2 from leaking to the display surface side, or is fluorescent by the ultraviolet light included in the external light. This is for preventing the light emitting layer 2 from emitting light and deteriorating the color reproduction.
  • at least one of the ultraviolet absorber and the ultraviolet reflector is uniformly dispersed. It is a coating film provided with a stretchable stretchable resin that transmits the visible light and covers a plurality of pixel rows 9.
  • a flexible wiring board 5 made of resin such as polyimide is prepared.
  • the wiring board 5 is provided with a plurality of electrode pads corresponding to the electrodes of the plurality of LEDs 1 arranged in a matrix, and wiring for electrically connecting the electrode pads to an external drive circuit is provided. Has been done.
  • conductive elastic protrusions are formed corresponding to the electrode pads on the wiring board 5. More specifically, a resist for a photo spacer is applied to the entire surface of the wiring board 5, exposed using a photo mask, and developed to form protrusions on the electrode pads by patterning. After that, a conductive material film having good conductivity such as gold or aluminum is formed on the projection and the electrode pad in a conductive state by sputtering, vapor deposition, or the like to form a conductive elastic projection portion.
  • a resist layer is formed by photolithography in the peripheral portion except on the electrode pad, and after forming the conductor film, the resist layer is dissolved with a dissolution liquid and the resist layer is formed. Lift off the conductor film on the layer.
  • the conductive elastic protrusion may be a protrusion formed of a conductive photoresist in which conductive fine particles such as silver are added to the photoresist or a conductive photoresist containing a conductive polymer.
  • the conductive elastic protrusions are formed by applying a conductive photoresist on the entire upper surface of the wiring substrate 5 with a predetermined thickness, exposing it using a photomask, and developing it to form protrusions on the electrode pads. It is formed.
  • the conductive elastic protrusions can be formed by applying the photolithography process, it is possible to secure high accuracy in position and shape, and the interval between the electrodes of the LED 1 becomes narrower than about 10 ⁇ m. However, it can be easily formed. Therefore, it becomes possible to manufacture a high-definition full-color LED display panel to which the micro LED is applied.
  • each electrode of each LED 1 has a conductive elastic projection.
  • the part can be surely contacted. Therefore, the manufacturing yield of the full-color LED display panel can be improved.
  • a plurality of LEDs 1 for emitting near-ultraviolet or ultraviolet light which are formed by arranging them in a matrix at the same pitch as the sub-pixel pitch of the LED display panel on a sapphire substrate, have electrodes whose wiring is the above wiring.
  • the wiring board 5 is aligned so as to match the electrode pads of the board 5. This alignment is performed using the alignment marks provided in advance on the sapphire substrate and the wiring substrate 5.
  • the sapphire substrate is pressure-bonded to the wiring board 5, and the electrodes of the plurality of LEDs 1 are electrically connected to the plurality of electrode pads of the wiring board 5.
  • a photosensitive adhesive which is pre-patterned and provided on a portion other than the electrode pads is heat-cured or UV-cured to bond and fix the plurality of LEDs 1 to the wiring board 5.
  • the interface between the sapphire substrate and the LED 1 is irradiated with laser light from the sapphire substrate side by a known technique to laser-off the LED 1 from the sapphire substrate.
  • a known technique to laser-off the LED 1 from the sapphire substrate.
  • a resin solution of a transparent photosensitive resin for the light shielding wall covering the entire surface of the wiring board 5 is applied so that the light shielding wall 3 projects from the top surface of the LED 1 installed on the wiring board 5 by about 10 ⁇ m to about 40 ⁇ m. Apply so that it has a uniform thickness.
  • the photosensitive resin used here has an aspect ratio of about 3 or more.
  • SU-8 3000 manufactured by Nippon Kayaku Co., Ltd., or MEMS (Micro Electronic Electronic) such as TMMR S2000 series manufactured by Tokyo Ohka Kogyo Co., Ltd. It is a high aspect material such as permanent film photoresist for mechanical system. However, it is not limited to these.
  • the photosensitive resin is exposed and developed by a photolithography technique using a photomask to form an opening 11 including each LED 1 in the photosensitive resin with a depth reaching the wiring board 5.
  • three LEDs 1 corresponding to the three primary color lights are used as one unit of pixel 6 to form a gap 10 for separating a pixel row 9 in which the pixels 6 are arranged in a row from an adjacent pixel row 9.
  • the remaining photosensitive resin becomes the partition wall 7 that separates each LED 1.
  • a light-shielding film 8 made of, for example, aluminum or nickel, which reflects ultraviolet light and the fluorescence emitted by the fluorescent light-emitting layer 2 upon being excited by the ultraviolet light, is formed on the inside of the opening 11 and the surface of the partition wall 7 by sputtering, vapor deposition, or plating. Form.
  • the light shielding film 8 may absorb ultraviolet light or fluorescence.
  • the formation of the light shielding wall 3 is not limited to the above method, and the light shielding wall 3 formed on another transparent substrate may be bonded to the wiring substrate 5 provided with the LED 1 and then the transparent substrate may be laser lifted off.
  • the fluorescent light emitting layer 2 of the corresponding color is formed in each opening 11 as shown in FIG. Specifically, a fluorescent resist containing a fluorescent dye (pigment or dye) of a corresponding color is filled in the opening 11 corresponding to each color surrounded by the light shielding wall 3 by, for example, an inkjet, and then dried to dry the fluorescent light emitting layer. Form 2.
  • a fluorescent resist containing a fluorescent dye (pigment or dye) of a corresponding color is filled in the opening 11 corresponding to each color surrounded by the light shielding wall 3 by, for example, an inkjet, and then dried to dry the fluorescent light emitting layer.
  • a fluorescent resist containing a fluorescent dye (pigment or dye) of a corresponding color is filled in the opening 11 corresponding to each color surrounded by the light shielding wall 3 by, for example, an inkjet, and then dried to dry the fluorescent light emitting layer.
  • the fluorescent resist is applied to the entire surface of the LED array substrate (wiring substrate 5)
  • the ultraviolet cut layer 4 is further provided so as to cover the display surface.
  • the ultraviolet cut layer 4 is provided so as to cover a plurality of pixel rows 9 as shown in FIG.
  • the ultraviolet cut layer 4 transmits visible light and reflects or absorbs ultraviolet light.
  • the ultraviolet cut layer 4 is at least one of an ultraviolet absorber and an ultraviolet reflector.
  • This is a coating film in which one kind is uniformly dispersed and stretchable stretchable resin that transmits visible light is provided to cover a plurality of pixel rows 9. It is desirable that this coating film has a thickness capable of sufficiently absorbing the leaked light 12 of the ultraviolet rays emitted from the LED 1 and transmitted through the fluorescent light emitting layer 2.
  • the ultraviolet cut layer 4 uses, for example, VPA300 manufactured by Nippon Steel & Sumitomo Metal Corporation as the stretchable resin liquid, and the stretchable resin liquid contains, for example, UV rays of FUV-002B manufactured by Fuji Film Co., Ltd. It is formed by coating the wiring substrate 5 with a coating solution formed by homogenizing the absorbent by dissolving, dispersing, kneading, etc., and then drying it.
  • FIG. 5 is a graph showing the relationship between the ultraviolet transmittance of 385 nm and the film thickness of the ultraviolet cut layer 4 with the compounding ratio of the stretchable resin and the ultraviolet absorber as a parameter.
  • the ultraviolet ray blocking layer 4 it is desirable that at least about 99% of ultraviolet rays can be cut off.
  • 10% (ultraviolet absorber) is selected as the compounding ratio of the extensible resin and the ultraviolet absorber
  • the thickness of the ultraviolet cut layer 4 particularly the thickness on the fluorescent light emitting layer 2
  • At least 30 ⁇ m is desirable.
  • the compounding ratio is 33% (ultraviolet absorber)
  • FIG. 6A and 6B are reference examples showing the effect of the ultraviolet blocking layer 4, where FIG. 6A shows the case without the ultraviolet blocking layer 4 and FIG. 6B shows the case with the ultraviolet blocking layer 4.
  • FIG. 6 leakage of ultraviolet rays from the LED 1 is observed in FIG. 6 (a), but in FIG. 6 (b), there is no leakage of ultraviolet rays and the effect of the ultraviolet cut layer 4 is confirmed. It was
  • a gap 10 may be provided so as to vertically and horizontally cross each other and separate adjacent pixels 6 from each other.
  • the light shielding wall 3 is provided with the gap 10 for separating the adjacent pixels 6 or the adjacent pixel rows 9 from each other, so that the display panel can be easily bent or wound.
  • the ultraviolet ray blocking layer 4 is made of a stretchable resin that is transparent and capable of transmitting visible light, at least one of an ultraviolet ray absorbing agent and an ultraviolet ray reflecting agent is uniformly dispersed. The tensile stress applied to the ultraviolet ray blocking layer 4 is relaxed even when it is bent or wound up on the substrate 5 side, which also makes it possible to easily bend or wind up the display panel.
  • FIG. 8 is an enlarged vertical cross-sectional view of a main part showing a second embodiment of a full-color LED display panel according to the present invention.
  • the ultraviolet ray blocking layer 4 is provided on the fluorescent light emitting layer 2 corresponding to at least one pixel.
  • the ultraviolet blocking layers 4 are provided only on the pixels 6 or the pixel rows 9 and are separated from each other by the gaps 10 provided between the adjacent pixels 6 or the pixel rows 9.
  • the ultraviolet cut layer 4 is a transparent photosensitive resin in which at least one of an ultraviolet absorber and an ultraviolet reflector is uniformly dispersed.
  • the ultraviolet cut layer 4 may be a stretchable resin in which at least one of an ultraviolet absorber and an ultraviolet reflector is uniformly dispersed, as in the first embodiment.
  • Such a second embodiment can be manufactured as follows.
  • the formation of the ultraviolet ray blocking layer 4 which is different from the first embodiment will be described.
  • a transparent photosensitive resin liquid for example, an ultraviolet absorber and an ultraviolet reflector, which are homogenized by dissolving, dispersing, and kneading, is applied to the entire surface of the wiring substrate 5 while covering the fluorescent light emitting layer 2.
  • the ultraviolet light blocking layer 4 is patterned and formed on the fluorescent light emitting layer 2 by exposing and developing.
  • the wavelength for exposing the photosensitive resin liquid is in the wavelength range different from the absorption wavelength of the ultraviolet absorber.
  • the ultraviolet ray cut layer 4 is formed so that the film thickness on the fluorescent light emitting layer 2 can sufficiently cut the ultraviolet light (leakage light 12) emitted from the LED 1 and transmitted through the fluorescent light emitting layer 2.
  • the ultraviolet ray blocking layer 4 may be provided by using an on-demand patterning method such as in jet.
  • a coating liquid formed by uniformly dissolving, dispersing, and kneading an ultraviolet absorber and an ultraviolet reflector in a photosensitive or thermosetting transparent resin is formed on the front surface of the fluorescent light emitting layer 2 (light
  • the UV cut layer 4 may be provided by applying the UV cut layer 4 only on the emission surface) and then by UV curing or heat curing.
  • the ultraviolet blocking layer 4 may be removed by laser processing except on the pixels 6 or the pixel rows 9.
  • a coating liquid formed by dissolving, dispersing, and kneading an ultraviolet absorber and an ultraviolet reflector in a photosensitive or thermosetting transparent resin by covering the fluorescent light emitting layer 2 with the coating liquid is formed.
  • ultraviolet curing or heat curing may be performed to provide the ultraviolet blocking layer 4, and laser processing may be performed so that each pixel 6 or each pixel row 9 is separated from each other by irradiating laser light from the display surface side. ..
  • the wavelength of the laser used at this time is preferably such that the ultraviolet absorber has a higher ultraviolet absorption sensitivity.
  • the second embodiment shown in FIG. 8 is completed by patterning the ultraviolet blocking layer 4 so that the ultraviolet blocking layer 4 remains on the fluorescent light emitting layer 2 corresponding to at least one pixel.
  • the pixel 6 or the pixel row 9 having the ultraviolet ray blocking layer 4 on the upper surface is separated from the adjacent pixel 6 or the pixel row 9, it is easy to bend or wind the display panel. Can be done.
  • FIG. 9 is a vertical sectional view showing a third embodiment of a full-color LED display panel according to the present invention.
  • a general-purpose ultraviolet cut film 14 for example, a general-purpose ultraviolet cut film 14 is provided on the stretchable stretchable resin layer 13 that covers the plurality of pixels 6 and that transmits visible light. It is laminated and adhered. Therefore, unlike the first embodiment, the extensible resin layer 13 does not contain the ultraviolet absorber and the ultraviolet reflector.
  • the ultraviolet cut film 14 may be either an ultraviolet absorbing film or an ultraviolet reflecting film.
  • the extensible resin layer 13 has sufficient tensile stress generated in the ultraviolet cut film 14 when the extensible resin layer 13 is stretched when the LED display panel is bent or wound on the wiring substrate 5 side. It is preferably formed with a thickness that can be absorbed. This facilitates bending or winding of the display panel.
  • FIG. 10 is a vertical sectional view showing a fourth embodiment of a full-color LED display panel according to the present invention.
  • the difference from the first embodiment is that at least both opposite ends of the ultraviolet cut film 14 serving as the ultraviolet cut layer 4 are fixed to the wiring board 5 with an adhesive 16.
  • the UV cut film 14 has a length required when the display panel is bent or wound up. Therefore, when the display panel is held horizontally, the ultraviolet cut film 14 bends as shown in FIG. Therefore, when displaying an image with the display panel held horizontally, it is preferable that both ends of the display panel, to which the ultraviolet cut film 14 is joined, be rounded so that the ultraviolet cut film 14 is stretched on the display surface.
  • the full-color LED display panel provided with the ultraviolet cut layer 4 that covers the plurality of pixels 6 and transmits visible light and reflects or absorbs ultraviolet light has been described.
  • the ultraviolet cut layer 4 is not necessarily required to solve the problem of facilitating bending or winding of the display panel.

Abstract

The present invention comprises: a plurality of LEDs 1 for emitting ultraviolet light of near-ultraviolet or ultraviolet rays, the LEDs 1 being arranged in matrix form on a flexible wiring board 5; a plurality of fluorescence emission layers 2 provided in correspondence to trichromatic lights on the light-emission side of the three LEDs 1 equivalent to one pixel, the fluorescence emission layers 2 conducting wavelength conversion to the fluorescence of the corresponding color by being excited by the ultraviolet light; and a light-shielding wall 3 provided enclosing the LEDs 1 and fluorescence emission layers 2, the light-shielding wall 3 including a light-shielding film 8 that reflects or absorbs the ultraviolet light and fluorescence and that is provided on the surface of a transparent partition 7 composed of a photosensitive resin, the light-shielding wall 3 being provided with a space 10 for separating adjacent pixel rows 9 from each other.

Description

フルカラーLED表示パネルFull color LED display panel
 本発明は、紫外光によって励起されて対応色の蛍光に波長変換する複数の蛍光発光層を備えたフルカラーLED(light-emitting diode)表示パネルに関し、特に、表示パネルの折り曲げ又は巻取りを容易にするフルカラーLED表示パネルに係るものである。 The present invention relates to a full-color LED (light-emitting diode) display panel including a plurality of fluorescent light emitting layers that are excited by ultraviolet light and wavelength-converted into fluorescent light of a corresponding color, and particularly, it is easy to bend or wind the display panel. The present invention relates to a full color LED display panel.
 従来のこの種のフルカラーLED表示パネルは、第1の基板上にマトリクス状に配置され、近紫外又は紫外発光する複数のLEDと、該複数のLEDに夫々対応させて透明な第2の基板上に形成され、近紫外又は紫外線によって励起されて発光する複数の赤色蛍光体、緑色蛍光体及び青色蛍光体を有するものとなっている(例えば、特許文献1参照)。 A conventional full-color LED display panel of this kind is arranged on a first substrate in a matrix and has a plurality of LEDs emitting near-ultraviolet light or ultraviolet light and a transparent second substrate corresponding to the plurality of LEDs. And has a plurality of red phosphors, green phosphors, and blue phosphors that are excited by near-ultraviolet light or ultraviolet light to emit light (see, for example, Patent Document 1).
特開2008-205985号公報JP, 2008-205985, A
 しかし、このような従来のフルカラーLED表示パネルにおいては、上記第1の基板は、シリコン基板若しくは石英基板、又は、ガラス基板若しくはセラミック基板であり、可撓性を有する基板を想定していなかった。したがって、パネルの折り曲げ又は巻取りを容易にする技術的配慮は何らなされていなかった。 However, in such a conventional full-color LED display panel, the first substrate is a silicon substrate or a quartz substrate, or a glass substrate or a ceramic substrate, and a flexible substrate was not assumed. Therefore, no technical consideration was given to facilitating bending or winding of the panel.
 そこで、本発明は、このような問題に対処し、表示パネルの折り曲げ又は巻取りを容易にするフルカラーLED表示パネルを提供することを目的とする。 Therefore, an object of the present invention is to provide a full-color LED display panel that addresses such problems and facilitates bending or winding of the display panel.
 上記目的を達成するために、本発明によるフルカラーLED表示パネルは、可撓性を有する配線基板上にマトリクス状に配置され、近紫外又は紫外線の紫外光を放出する複数のLEDと、1画素に相当する三つの前記LEDの光放出面側に三原色光に対応させて設けられ、前記紫外光によって励起されて対応色の蛍光に波長変換する複数の蛍光発光層と、前記LED及び前記蛍光発光層を取り囲んで設けられ、感光性樹脂から成る透明な隔壁の表面に前記紫外光及び前記蛍光を反射又は吸収する遮光膜を設けた遮光壁と、を備え、前記遮光壁には、隣接する画素又は隣接する画素列を互いに分離する隙間が設けられているものである。 In order to achieve the above-mentioned object, a full-color LED display panel according to the present invention is arranged in a matrix on a flexible wiring substrate, and has a plurality of LEDs emitting near-ultraviolet or ultraviolet light and one pixel. A plurality of fluorescent light emitting layers provided on the light emitting surface side of the corresponding three LEDs corresponding to the three primary color lights, and wavelength-converted into fluorescent light of the corresponding color by being excited by the ultraviolet light, and the LED and the fluorescent light emitting layer. And a light-shielding wall provided with a light-shielding film that reflects or absorbs the ultraviolet light and the fluorescence on the surface of a transparent partition wall made of a photosensitive resin, and the light-shielding wall includes adjacent pixels or A gap is provided to separate adjacent pixel columns from each other.
 本発明によれば、隣接する画素又は隣接する画素列が互いに分離されているので、表示パネルの折り曲げ又は巻取りを容易にすることができる。したがって、持ち運びに便利なフルカラー表示パネルを提供することができる。 According to the present invention, since the adjacent pixels or the adjacent pixel columns are separated from each other, it is possible to easily bend or wind the display panel. Therefore, a full-color display panel that is convenient to carry can be provided.
本発明によるフルカラーLED表示パネルの第1の実施形態を示す平面図であり、(a)は全体図、(b)は一部を巻き取った状態を示す斜視図である。FIG. 1 is a plan view showing a first embodiment of a full-color LED display panel according to the present invention, (a) is an overall view, and (b) is a perspective view showing a partly wound state. 図1(a)のA-A線断面矢視図である。FIG. 2 is a sectional view taken along the line AA of FIG. 図2の要部拡大断面図である。It is a principal part expanded sectional view of FIG. 本発明によるフルカラーLED表示パネルの基本構造を示す要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of an essential part showing the basic structure of a full-color LED display panel according to the present invention. 伸長性樹脂と紫外線吸収剤との配合率をパラメータとして385nmの紫外線透過率と紫外線カット層の膜厚との関係を示したグラフである。6 is a graph showing the relationship between the ultraviolet transmittance at 385 nm and the film thickness of the ultraviolet cut layer, with the blending ratio of the stretchable resin and the ultraviolet absorber as a parameter. 紫外線カット層の効果を示す参考例であり、(a)は紫外線カット層が無い場合を示し、(b)は紫外線カット層がある場合を示している。It is the reference example which shows the effect of the ultraviolet ray cut layer, (a) shows the case where there is no ultraviolet ray cut layer, (b) has shown the case where there is an ultraviolet ray cut layer. 上記第1の実施形態の変形例を示す平面図である。It is a top view which shows the modification of the said 1st Embodiment. 本発明によるフルカラーLED表示パネルの第2の実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 2nd Embodiment of the full color LED display panel by this invention. 本発明によるフルカラーLED表示パネルの第3の実施形態を示す縦断面図である。FIG. 6 is a vertical sectional view showing a third embodiment of a full-color LED display panel according to the present invention. 本発明によるフルカラーLED表示パネルの第4の実施形態を示す縦断面図である。It is a longitudinal section showing a 4th embodiment of a full-color LED display panel by the present invention.
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるフルカラーLED表示パネルの第1の実施形態を示す平面図であり、(a)は全体図、(b)は一部を巻き取った状態を示す斜視図である。また、図2は、図1(a)のA-A線断矢視面図、図3は図2の要部拡大断面図である。このフルカラーLED表示パネルは、映像をフルカラー表示するもので、複数のLED1と、複数の蛍光発光層2と、遮光壁3と、紫外線カット層4と、を備えて構成されている。なお、図1,2においては、図面が煩雑になるのを避けるために紫外線カット層4を図示省略している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a plan view showing a first embodiment of a full-color LED display panel according to the present invention, (a) is an overall view, and (b) is a perspective view showing a state in which a part is wound. 2 is a sectional view taken along the line AA of FIG. 1A, and FIG. 3 is an enlarged cross-sectional view of a main part of FIG. This full-color LED display panel displays an image in full-color, and includes a plurality of LEDs 1, a plurality of fluorescent light emitting layers 2, a light shielding wall 3, and an ultraviolet ray blocking layer 4. Note that, in FIGS. 1 and 2, the ultraviolet ray blocking layer 4 is omitted in order to avoid complication of the drawings.
 上記複数のLED1は、近紫外又は紫外線の紫外光を放出するものであり、例えばポリイミドのような可撓性を有する樹脂製の配線基板5上に所定の間隔でマトリクス状に配置して設けられたマイクロLEDである。なお、上記配線基板5には、外部に設けられた駆動回路から上記複数のLED1の夫々に点灯及び消灯の駆動電流を供給することができるように配線が設けられている。 The plurality of LEDs 1 emit near-ultraviolet or ultraviolet rays of ultraviolet light, and are arranged in a matrix at predetermined intervals on a wiring board 5 made of a flexible resin such as polyimide. It is a micro LED. Wiring is provided on the wiring board 5 so that driving currents for lighting and extinguishing can be supplied to each of the plurality of LEDs 1 from a driving circuit provided outside.
 1画素に相当する三つのLED1の光放出面側には、夫々三原色光に対応させて蛍光発光層2が設けられている。この蛍光発光層2は、LED1から放出される近紫外又は紫外線の紫外光によって励起されて蛍光を発光するものであり、1画素内の三つのLED1に対応して赤色を発光する赤色蛍光発光層2Rと、緑色を発光する緑色蛍光発光層2Gと、青色を発光する青色蛍光発光層2Bと、を備えている。 Fluorescent light emitting layers 2 are provided on the light emitting surface side of the three LEDs 1 corresponding to one pixel, respectively corresponding to the three primary color lights. The fluorescent light emitting layer 2 is a red fluorescent light emitting layer that is excited by ultraviolet light of near-ultraviolet light or ultraviolet light emitted from the LED 1 and emits fluorescence, and emits red light corresponding to the three LEDs 1 in one pixel. 2R, a green fluorescent light emitting layer 2G that emits green light, and a blue fluorescent light emitting layer 2B that emits blue light.
 各色対応の蛍光発光層2は、対応色の蛍光色素(顔料又は染料)を含有する蛍光レジストである。 The fluorescent light emitting layer 2 corresponding to each color is a fluorescent resist containing a fluorescent dye (pigment or dye) of a corresponding color.
 図1(b)に示すように、上記LED1及び赤、緑及び青色蛍光発光層2R,2G,2Bを取り囲んで遮光壁3が設けられている。この遮光壁3は、各色対応の蛍光発光層2を互いに隔てるものであり、図3に示すように透明な感光性樹脂の塗膜をフォトリソグラフィー技術により露光及び現像して形成された隔壁7の表面に被着させて、LED1から放出される紫外光及び該紫外光によって蛍光発光層2が励起されて発光する蛍光を反射又は吸収する遮光膜8を備えたものである。 As shown in FIG. 1B, a light shielding wall 3 is provided surrounding the LED 1 and the red, green and blue fluorescent light emitting layers 2R, 2G, 2B. The light shielding wall 3 separates the fluorescent light emitting layers 2 corresponding to respective colors from each other, and as shown in FIG. 3, a partition 7 formed by exposing and developing a transparent photosensitive resin coating film by a photolithography technique. It is provided with a light-shielding film 8 which is adhered to the surface and reflects or absorbs the ultraviolet light emitted from the LED 1 and the fluorescence emitted by the fluorescence emitting layer 2 being excited by the ultraviolet light.
 この場合、上記透明な感光性樹脂の厚みは、該感光性樹脂を加工して形成される遮光壁3のトップ面の位置が配線基板5上に配置されたLED1のトップ面の位置よりも高くなるように設定するのがよい。詳細には、上記感光性樹脂の厚みは、LED1のトップ面から遮光壁3が約10μm~約40μmだけ突出するような厚みとするのがよい。なお、一実施例において、配線基板5の上面からLED1のトップ面までの高さは約10μmであるが、これに限定されない。 In this case, the thickness of the transparent photosensitive resin is such that the position of the top surface of the light shielding wall 3 formed by processing the photosensitive resin is higher than the position of the top surface of the LED 1 arranged on the wiring board 5. It is better to set Specifically, the thickness of the photosensitive resin is preferably such that the light shielding wall 3 projects from the top surface of the LED 1 by about 10 μm to about 40 μm. In one embodiment, the height from the upper surface of the wiring board 5 to the top surface of the LED 1 is about 10 μm, but the height is not limited to this.
 より詳細には、上記透明な感光性樹脂は、上記蛍光発光層2中への蛍光色素の充填率を上げるために、隔壁7として高さ対幅のアスペクト比が約1以上を可能とする材料が選択される。より好ましくは、上記アスペクト比が約3以上を可能とする高アスペクト材料であるのが望ましい。このような材料としては、例えば日本化薬株式会社製のSU-8 3000や、東京応化工業株式会社製のTMMR S2000シリーズ等のMEMS(Micro Electronic Mechanical System)用永久膜フォトレジストや、新日鉄住友化学株式会社製のV-259PHAシリーズ等がある。 More specifically, the transparent photosensitive resin is a material that enables the partition wall 7 to have an aspect ratio of height to width of about 1 or more in order to increase the filling rate of the fluorescent dye in the fluorescent light emitting layer 2. Is selected. More preferably, it is a high aspect material that enables the aspect ratio to be about 3 or more. Such materials include, for example, SU-83000 manufactured by Nippon Kayaku Co., Ltd., TMMR S2000 series manufactured by Tokyo Ohka Kogyo Co., Ltd., and permanent film photoresists for MEMS (Micro Electronic Mechanical System), and Nippon Steel Sumitomo Chemical. There is V-259PHA series manufactured by corporation.
 なお、上記感光性樹脂は、一般的に、隔壁7の隣接する開口11間の幅、隔壁7の高さ及びアスペクト比のうち、少なくとも1つのパラメータに基づいて選択される。 The photosensitive resin is generally selected based on at least one parameter among the width between the adjacent openings 11 of the partition wall 7, the height of the partition wall 7 and the aspect ratio.
 さらに、上記遮光壁3には、図1(a)及び図2に示すように複数の画素6が一列に並んだ画素列9を隣接する画素列9から分離する隙間10が設けられている。これにより、画素列9と交差する方向の表示パネルの折り曲げ又は巻取りを容易にすることができる。 Further, the light shielding wall 3 is provided with a gap 10 for separating a pixel row 9 in which a plurality of pixels 6 are arranged in a row from an adjacent pixel row 9 as shown in FIGS. Accordingly, it is possible to easily bend or wind the display panel in the direction intersecting with the pixel row 9.
 複数の上記画素列9(又は画素6)を覆って、図3に示すように可視光を透過すると共に紫外光を反射又は吸収する紫外線カット層4が設けられている。この紫外線カット層4は、LED1から放出され、蛍光発光層2を透過した一部の紫外光(漏れ光12)が表示面側に漏れ出すのを防止したり、外光に含まれる紫外線により蛍光発光層2が発光して色再現を悪くするのを防止したりするためのものであり、図3に示すように、紫外線吸収剤及び紫外線反射剤の内、少なくとも何れか1種類が均一に分散された可視光を透過する伸縮自在な伸長性樹脂を複数の画素列9を覆って設けた塗膜である。 An ultraviolet cut layer 4 that covers the plurality of pixel rows 9 (or pixels 6) and that transmits visible light and reflects or absorbs ultraviolet light is provided as shown in FIG. The ultraviolet cut layer 4 prevents a part of the ultraviolet light (leakage light 12) emitted from the LED 1 and transmitted through the fluorescent light emitting layer 2 from leaking to the display surface side, or is fluorescent by the ultraviolet light included in the external light. This is for preventing the light emitting layer 2 from emitting light and deteriorating the color reproduction. As shown in FIG. 3, at least one of the ultraviolet absorber and the ultraviolet reflector is uniformly dispersed. It is a coating film provided with a stretchable stretchable resin that transmits the visible light and covers a plurality of pixel rows 9.
 次に、このように構成されたフルカラーLED表示パネルの第1の実施形態の製造について説明する。
 先ず、可撓性を有する例えばポリイミド等から成る樹脂製の配線基板5を準備する。この配線基板5には、マトリクス状に配置される複数のLED1の電極に対応させて複数の電極パッドが設けられており、該電極パッドと外部の駆動回路とを電気的に接続する配線が施されている。
Next, the manufacture of the first embodiment of the full-color LED display panel thus configured will be described.
First, a flexible wiring board 5 made of resin such as polyimide is prepared. The wiring board 5 is provided with a plurality of electrode pads corresponding to the electrodes of the plurality of LEDs 1 arranged in a matrix, and wiring for electrically connecting the electrode pads to an external drive circuit is provided. Has been done.
 次いで、配線基板5上の電極パッドに対応して、導電性弾性突起部が形成される。詳細には、配線基板5の全面にフォトスペーサ用のレジストを塗布したのち、フォトマスクを使用して露光し、現像して電極パッド上に突起をパターニング形成する。その後、上記突起及び電極パッド上に、互いに導通させた状態で金又はアルミニウム等の良導電性の導電体膜をスパッタリングや蒸着等により成膜して導電性弾性突起部を形成する。 Next, conductive elastic protrusions are formed corresponding to the electrode pads on the wiring board 5. More specifically, a resist for a photo spacer is applied to the entire surface of the wiring board 5, exposed using a photo mask, and developed to form protrusions on the electrode pads by patterning. After that, a conductive material film having good conductivity such as gold or aluminum is formed on the projection and the electrode pad in a conductive state by sputtering, vapor deposition, or the like to form a conductive elastic projection portion.
 より詳細には、導電体膜を成膜する前に、フォトリソグラフィーにより電極パッド上を除く周辺部分にレジスト層を形成し、導電体膜の成膜後に溶解液でレジスト層を溶解させると共に、レジスト層上の導電体膜をリフトオフする。 More specifically, before forming the conductor film, a resist layer is formed by photolithography in the peripheral portion except on the electrode pad, and after forming the conductor film, the resist layer is dissolved with a dissolution liquid and the resist layer is formed. Lift off the conductor film on the layer.
 なお、導電性弾性突起部は、フォトレジストに銀等の導電性微粒子を添加した導電性フォトレジスト又は導電性高分子を含む導電性フォトレジストで形成した突起であってもよい。この場合は、導電性弾性突起部は、配線基板5の上面の全面に導電性フォトレジストを所定厚みで塗布した後、フォトマスクを使用して露光し、現像して電極パッド上に突起としてパターニング形成される。 Note that the conductive elastic protrusion may be a protrusion formed of a conductive photoresist in which conductive fine particles such as silver are added to the photoresist or a conductive photoresist containing a conductive polymer. In this case, the conductive elastic protrusions are formed by applying a conductive photoresist on the entire upper surface of the wiring substrate 5 with a predetermined thickness, exposing it using a photomask, and developing it to form protrusions on the electrode pads. It is formed.
 このように、上記導電性弾性突起部は、フォトリソグラフィープロセスを適用して形成することができるので、位置及び形状に高い精度を確保することができ、LED1の電極の間隔が10μm程度より狭くなっても容易に形成することができる。したがって、マイクロLEDを適用した高精細なフルカラーLED表示パネルの製造が可能となる。 As described above, since the conductive elastic protrusions can be formed by applying the photolithography process, it is possible to secure high accuracy in position and shape, and the interval between the electrodes of the LED 1 becomes narrower than about 10 μm. However, it can be easily formed. Therefore, it becomes possible to manufacture a high-definition full-color LED display panel to which the micro LED is applied.
 また、導電性弾性突起部は、LED1の押圧によりLED1の電極に弾性変形して接触するので、後述するように複数のLED1を同時に押圧した場合にも、各LED1の各電極を導電性弾性突起部に確実に接触させることができる。したがって、フルカラーLED表示パネルの製造歩留りを向上することができる。 In addition, since the conductive elastic projection portion elastically deforms and contacts the electrode of the LED 1 when the LED 1 is pressed, even when a plurality of LEDs 1 are simultaneously pressed as will be described later, each electrode of each LED 1 has a conductive elastic projection. The part can be surely contacted. Therefore, the manufacturing yield of the full-color LED display panel can be improved.
 次に、例えばサファイア基板上にLED表示パネルのサブピクセルのピッチと同じピッチでマトリクス状に配置して形成された、近紫外又は紫外線の紫外光を放出する複数のLED1が、その電極が上記配線基板5の電極パッドに合致するように配線基板5に対してアライメントされる。このアライメントは、サファイア基板及び配線基板5に予め設けられたアライメントマークを使用して行われる。 Next, for example, a plurality of LEDs 1 for emitting near-ultraviolet or ultraviolet light, which are formed by arranging them in a matrix at the same pitch as the sub-pixel pitch of the LED display panel on a sapphire substrate, have electrodes whose wiring is the above wiring. The wiring board 5 is aligned so as to match the electrode pads of the board 5. This alignment is performed using the alignment marks provided in advance on the sapphire substrate and the wiring substrate 5.
 次いで、サファイア基板が配線基板5に対して圧着され、複数のLED1の電極が配線基板5の複数の電極パッドに電気的に接続される。その後、配線基板5上のLED1の対応領域にて、電極パッドを除く部分に予めパターンニングして設けられた感光性接着剤を加熱硬化又は紫外線硬化させて複数のLED1を配線基板5に接着固定する。 Next, the sapphire substrate is pressure-bonded to the wiring board 5, and the electrodes of the plurality of LEDs 1 are electrically connected to the plurality of electrode pads of the wiring board 5. After that, in a region corresponding to the LEDs 1 on the wiring board 5, a photosensitive adhesive which is pre-patterned and provided on a portion other than the electrode pads is heat-cured or UV-cured to bond and fix the plurality of LEDs 1 to the wiring board 5. To do.
 続いて、公知の技術によりサファイア基板側から、該サファイア基板とLED1との界面にレーザ光を照射してサファイア基板からLED1をレーザリフトオフする。これにより、複数のLED1を配線基板5上にマトリクス状に配置したLEDアレイ基板が完成する。 Next, the interface between the sapphire substrate and the LED 1 is irradiated with laser light from the sapphire substrate side by a known technique to laser-off the LED 1 from the sapphire substrate. As a result, an LED array substrate in which a plurality of LEDs 1 are arranged in a matrix on the wiring substrate 5 is completed.
 次に、配線基板5の全面を覆って遮光壁用の透明な感光性樹脂の樹脂液を、配線基板5に設置されたLED1のトップ面から遮光壁3が約10μm~約40μmだけ突出するような厚みとなるように塗布する。ここで使用する感光性樹脂は、アスペクト比が約3以上を可能とする、例えば日本化薬株式会社製のSU-8 3000や、東京応化工業株式会社製のTMMR S2000シリーズ等のMEMS(Micro Electronic Mechanical System)用永久膜フォトレジスト等の高アスペクト材料である。但し、これらに限定されない。 Next, a resin solution of a transparent photosensitive resin for the light shielding wall covering the entire surface of the wiring board 5 is applied so that the light shielding wall 3 projects from the top surface of the LED 1 installed on the wiring board 5 by about 10 μm to about 40 μm. Apply so that it has a uniform thickness. The photosensitive resin used here has an aspect ratio of about 3 or more. For example, SU-8 3000 manufactured by Nippon Kayaku Co., Ltd., or MEMS (Micro Electronic Electronic) such as TMMR S2000 series manufactured by Tokyo Ohka Kogyo Co., Ltd. It is a high aspect material such as permanent film photoresist for mechanical system. However, it is not limited to these.
 次いで、フォトマスクを使用するフォトリソグラフィー技術により上記感光性樹脂を露光及び現像して、感光性樹脂に各LED1を内包する開口11を配線基板5に達する深さで形成する。同時に、三原色光に対応する三つのLED1を1単位の画素6として該画素6が一列に並んだ画素列9を隣接する画素列9から分離する隙間10を形成する。この場合、残った感光性樹脂が各LED1を離隔する隔壁7となる。 Next, the photosensitive resin is exposed and developed by a photolithography technique using a photomask to form an opening 11 including each LED 1 in the photosensitive resin with a depth reaching the wiring board 5. At the same time, three LEDs 1 corresponding to the three primary color lights are used as one unit of pixel 6 to form a gap 10 for separating a pixel row 9 in which the pixels 6 are arranged in a row from an adjacent pixel row 9. In this case, the remaining photosensitive resin becomes the partition wall 7 that separates each LED 1.
 続いて、スパッタリング、蒸着又はめっきにより開口11内及び隔壁7の表面に紫外光及び該紫外光により励起されて蛍光発光層2が発光する蛍光を反射する、例えばアルミニウム又はニッケル等の遮光膜8を形成する。なお、この遮光膜8は、紫外光又は蛍光を吸収するものであってもよい。 Subsequently, a light-shielding film 8 made of, for example, aluminum or nickel, which reflects ultraviolet light and the fluorescence emitted by the fluorescent light-emitting layer 2 upon being excited by the ultraviolet light, is formed on the inside of the opening 11 and the surface of the partition wall 7 by sputtering, vapor deposition, or plating. Form. The light shielding film 8 may absorb ultraviolet light or fluorescence.
 次に、表示面側から可視光又は紫外線のレーザ光を照射して、隔壁7のトップ面及び開口11内のLED1のトップ面を含む開口11の底面に被着した上記遮光膜8を除去する。これにより、開口11の内壁に遮光膜8を被着させて有する遮光壁3が完成する。 Next, visible light or ultraviolet laser light is irradiated from the display surface side to remove the light shielding film 8 adhered to the bottom surface of the opening 11 including the top surface of the partition wall 7 and the top surface of the LED 1 in the opening 11. .. As a result, the light shielding wall 3 having the light shielding film 8 adhered to the inner wall of the opening 11 is completed.
 なお、遮光壁3の形成は、上記方法に限られず、別の透明基板に形成した遮光壁3を、LED1を備えた配線基板5に接着した後、上記透明基板をレーザリフトオフしてもよい。 The formation of the light shielding wall 3 is not limited to the above method, and the light shielding wall 3 formed on another transparent substrate may be bonded to the wiring substrate 5 provided with the LED 1 and then the transparent substrate may be laser lifted off.
 次いで、図4に示すような各開口11内に対応色の蛍光発光層2が形成される。詳細には、遮光壁3に囲まれた各色対応の開口11内に、対応色の蛍光色素(顔料又は染料)を含有する蛍光レジストを例えばインクジェットにより充填した後、これを乾燥させて蛍光発光層2を形成する。又はLEDアレイ基板(配線基板5)の全面に蛍光レジストを塗布した後、フォトマスクを使用して露光及び現像する工程を各色対応の蛍光レジストに対して実行し、遮光壁3で囲まれた各色対応の開口11内に対応色の蛍光発光層2を形成してもよい。 Next, the fluorescent light emitting layer 2 of the corresponding color is formed in each opening 11 as shown in FIG. Specifically, a fluorescent resist containing a fluorescent dye (pigment or dye) of a corresponding color is filled in the opening 11 corresponding to each color surrounded by the light shielding wall 3 by, for example, an inkjet, and then dried to dry the fluorescent light emitting layer. Form 2. Alternatively, after the fluorescent resist is applied to the entire surface of the LED array substrate (wiring substrate 5), a step of exposing and developing using a photomask is performed on the fluorescent resist corresponding to each color, and each color surrounded by the light shielding wall 3 The fluorescent light emitting layer 2 of the corresponding color may be formed in the corresponding opening 11.
 図4に示すように、LED1から放出された近紫外又は紫外線の紫外光のうち、一部の紫外光が蛍光発光層2を透過して、漏れ光12として表示画面側に漏れ出すおそれがある。このような紫外線の漏れ光12は、人体に悪影響を及ぼすおそれがある。また、外光に含まれる紫外線が、蛍光発光層2を励起して発光させ、色再現を劣化させるおそれもある。そこで、本発明においては、表示面を覆って紫外線カット層4がさらに設けられる。 As shown in FIG. 4, of the near-ultraviolet or ultraviolet rays emitted from the LED 1, some of the ultraviolet rays may pass through the fluorescent light emitting layer 2 and leak to the display screen side as leaked light 12. .. The leaked light 12 of the ultraviolet rays may adversely affect the human body. Further, ultraviolet rays contained in the external light may excite the fluorescent light emitting layer 2 to emit light, which may deteriorate the color reproduction. Therefore, in the present invention, the ultraviolet cut layer 4 is further provided so as to cover the display surface.
 上記紫外線カット層4は、図3に示すように複数の画素列9を覆って設けられる。この紫外線カット層4は、可視光を透過すると共に紫外光を反射又は吸収するもので、上記第1の実施形態においては、紫外線カット層4は、紫外線吸収剤及び紫外線反射剤の内、少なくとも何れか1種類が均一に分散された可視光を透過する伸縮自在な伸長性樹脂を複数の画素列9を覆って設けた塗膜である。この塗膜は、LED1から放出され、蛍光発光層2を透過する紫外線の漏れ光12を十分に吸収し得る膜厚とするのが望ましい。 The ultraviolet cut layer 4 is provided so as to cover a plurality of pixel rows 9 as shown in FIG. The ultraviolet cut layer 4 transmits visible light and reflects or absorbs ultraviolet light. In the first embodiment, the ultraviolet cut layer 4 is at least one of an ultraviolet absorber and an ultraviolet reflector. This is a coating film in which one kind is uniformly dispersed and stretchable stretchable resin that transmits visible light is provided to cover a plurality of pixel rows 9. It is desirable that this coating film has a thickness capable of sufficiently absorbing the leaked light 12 of the ultraviolet rays emitted from the LED 1 and transmitted through the fluorescent light emitting layer 2.
 一実施例として、上記紫外線カット層4は、伸長性樹脂液として、例えば新日鉄住金化学株式会社製のVPA300を使用し、該伸長性樹脂液に、例えば富士フィルム株式会社製のFUV-002Bの紫外線吸収剤を溶解・分散・混練等して均一化させて形成した塗布液を、配線基板5を覆って塗布した後、乾燥させて形成される。 As one example, the ultraviolet cut layer 4 uses, for example, VPA300 manufactured by Nippon Steel & Sumitomo Metal Corporation as the stretchable resin liquid, and the stretchable resin liquid contains, for example, UV rays of FUV-002B manufactured by Fuji Film Co., Ltd. It is formed by coating the wiring substrate 5 with a coating solution formed by homogenizing the absorbent by dissolving, dispersing, kneading, etc., and then drying it.
 図5は伸長性樹脂と紫外線吸収剤との配合率をパラメータとして385nmの紫外線透過率と紫外線カット層4の膜厚との関係を示したグラフである。
 紫外線カット層4の特性としては、紫外線を少なくとも約99%カットし得ることが望ましい。そのためには、伸長性樹脂と紫外線吸収剤との配合率として、10%(紫外線吸収剤)が選択された場合には、紫外線カット層4の膜厚、特に蛍光発光層2上の膜厚は、少なくとも30μmとするのが望ましい。また、上記配合率が33%(紫外線吸収剤)の場合には、紫外線カット層4の蛍光発光層2上の膜厚は、少なくとも10μm~20μm程度に設定しても十分である。
FIG. 5 is a graph showing the relationship between the ultraviolet transmittance of 385 nm and the film thickness of the ultraviolet cut layer 4 with the compounding ratio of the stretchable resin and the ultraviolet absorber as a parameter.
As a characteristic of the ultraviolet ray blocking layer 4, it is desirable that at least about 99% of ultraviolet rays can be cut off. To this end, when 10% (ultraviolet absorber) is selected as the compounding ratio of the extensible resin and the ultraviolet absorber, the thickness of the ultraviolet cut layer 4, particularly the thickness on the fluorescent light emitting layer 2, is , At least 30 μm is desirable. Further, when the compounding ratio is 33% (ultraviolet absorber), it is sufficient to set the film thickness of the ultraviolet cut layer 4 on the fluorescent light emitting layer 2 to at least about 10 μm to 20 μm.
 図6は紫外線カット層4の効果を示す参考例であり、(a)は紫外線カット層4が無い場合を示し、(b)は紫外線カット層4がある場合を示している。同図から分かるように、図6(a)においては、LED1からの紫外線の漏れが観測されるが、同図(b)においては、紫外線の漏れが無く、紫外線カット層4の効果が確認された。 6A and 6B are reference examples showing the effect of the ultraviolet blocking layer 4, where FIG. 6A shows the case without the ultraviolet blocking layer 4 and FIG. 6B shows the case with the ultraviolet blocking layer 4. As can be seen from FIG. 6, leakage of ultraviolet rays from the LED 1 is observed in FIG. 6 (a), but in FIG. 6 (b), there is no leakage of ultraviolet rays and the effect of the ultraviolet cut layer 4 is confirmed. It was
 なお、上記第1の実施形態においては、遮光壁3に隣接する画素列9を互いに分離する隙間10が設けられている場合について説明したが、これに限られず、遮光壁3には、図7に示すように、縦横に交差させて隣接する画素6を互いに分離する隙間10が設けられていてもよい。 In addition, in the said 1st Embodiment, although the case where the clearance gap 10 which isolate | separates the pixel column 9 adjacent to the light-shielding wall 3 from each other was provided, it is not restricted to this and FIG. As shown in, a gap 10 may be provided so as to vertically and horizontally cross each other and separate adjacent pixels 6 from each other.
 上記第1の実施形態によれば、遮光壁3には、隣接する画素6又は隣接する画素列9を互いに分離する隙間10が設けられており、表示パネルの折り曲げ又は巻取りを容易に行うことができる。また、紫外線カット層4は、可視光を透過する伸縮自在な伸長性樹脂に紫外線吸収剤及び紫外線反射剤の内、少なくとも何れか1種類を均一に分散させたものであるため、表示パネルを配線基板5側に折り曲げ又は巻き取った際にも紫外線カット層4に加わる引張応力が緩和され、これによっても表示パネルの折り曲げ又は巻取りを容易に行うことができる。 According to the first embodiment, the light shielding wall 3 is provided with the gap 10 for separating the adjacent pixels 6 or the adjacent pixel rows 9 from each other, so that the display panel can be easily bent or wound. You can In addition, since the ultraviolet ray blocking layer 4 is made of a stretchable resin that is transparent and capable of transmitting visible light, at least one of an ultraviolet ray absorbing agent and an ultraviolet ray reflecting agent is uniformly dispersed. The tensile stress applied to the ultraviolet ray blocking layer 4 is relaxed even when it is bent or wound up on the substrate 5 side, which also makes it possible to easily bend or wind up the display panel.
 図8は本発明によるフルカラーLED表示パネルの第2の実施形態を示す要部拡大縦断面図である。第1の実施形態と相違する部分は、紫外線カット層4が少なくとも1画素相当の蛍光発光層2上に設けられている点である。詳細には、紫外線カット層4は、隣接する画素6間又は画素列9間に設けられた隙間10によって互いに分離されて、画素6又は画素列9上にのみ設けられている。 FIG. 8 is an enlarged vertical cross-sectional view of a main part showing a second embodiment of a full-color LED display panel according to the present invention. The difference from the first embodiment is that the ultraviolet ray blocking layer 4 is provided on the fluorescent light emitting layer 2 corresponding to at least one pixel. In detail, the ultraviolet blocking layers 4 are provided only on the pixels 6 or the pixel rows 9 and are separated from each other by the gaps 10 provided between the adjacent pixels 6 or the pixel rows 9.
 この場合、紫外線カット層4は、透明な感光性樹脂に紫外線吸収剤及び紫外線反射剤の内、少なくとも何れか1種類を均一に分散させたものである。又は、紫外線カット層4は、第1の実施形態と同様に、伸長性樹脂に紫外線吸収剤及び紫外線反射剤の内、少なくとも何れか1種類を均一に分散させたものであってもよい。 In this case, the ultraviolet cut layer 4 is a transparent photosensitive resin in which at least one of an ultraviolet absorber and an ultraviolet reflector is uniformly dispersed. Alternatively, the ultraviolet cut layer 4 may be a stretchable resin in which at least one of an ultraviolet absorber and an ultraviolet reflector is uniformly dispersed, as in the first embodiment.
 このような第2の実施形態は、次のようにして製造することができる。ここでは、第1の実施形態と相違する紫外線カット層4の形成について説明する。
 先ず、透明な感光性樹脂液に例えば紫外線吸収剤及び紫外線反射剤を溶解・分散・混練等で均一化させた塗布液を、蛍光発光層2を覆って配線基板5の全面に塗布した後、露光及び現像して蛍光発光層2上に紫外線カット層4をパターニング形成する。この場合、感光性樹脂液を露光するための波長は、紫外線吸収剤の吸収波長と異なる波長領域のものが使用される。また、紫外線カット層4は、蛍光発光層2上の膜厚がLED1から放出され蛍光発光層2を透過する紫外光(漏れ光12)を十分にカットし得る厚みとなるように形成する。
Such a second embodiment can be manufactured as follows. Here, the formation of the ultraviolet ray blocking layer 4 which is different from the first embodiment will be described.
First, a transparent photosensitive resin liquid, for example, an ultraviolet absorber and an ultraviolet reflector, which are homogenized by dissolving, dispersing, and kneading, is applied to the entire surface of the wiring substrate 5 while covering the fluorescent light emitting layer 2. The ultraviolet light blocking layer 4 is patterned and formed on the fluorescent light emitting layer 2 by exposing and developing. In this case, the wavelength for exposing the photosensitive resin liquid is in the wavelength range different from the absorption wavelength of the ultraviolet absorber. Further, the ultraviolet ray cut layer 4 is formed so that the film thickness on the fluorescent light emitting layer 2 can sufficiently cut the ultraviolet light (leakage light 12) emitted from the LED 1 and transmitted through the fluorescent light emitting layer 2.
 又は、紫外線カット層4は、インジェット等のオンデマンドなパターニング方式を利用して設けてもよい。この場合、例えば紫外線吸収剤及び紫外線反射剤を感光性又は熱硬化型の透明な樹脂に溶解・分散・混練等で均一化して形成した塗布液を、インクジェット等により蛍光発光層2の前面(光放出面)にのみ塗布した後、紫外線硬化又は加熱硬化させて紫外線カット層4を設けてもよい。 Alternatively, the ultraviolet ray blocking layer 4 may be provided by using an on-demand patterning method such as in jet. In this case, for example, a coating liquid formed by uniformly dissolving, dispersing, and kneading an ultraviolet absorber and an ultraviolet reflector in a photosensitive or thermosetting transparent resin is formed on the front surface of the fluorescent light emitting layer 2 (light The UV cut layer 4 may be provided by applying the UV cut layer 4 only on the emission surface) and then by UV curing or heat curing.
 又は、紫外線カット層4は、画素6上又は画素列9上を除いてレーザ加工して除去してもよい。この場合は、例えば紫外線吸収剤及び紫外線反射剤を感光性又は熱硬化型の透明な樹脂に溶解・分散・混練等で均一化して形成した塗布液を、蛍光発光層2を覆って配線基板5の全面に塗布した後、紫外線硬化又は加熱硬化させて紫外線カット層4を設け、表示面側からレーザ光を照射して各画素6又は各画素列9を互いに切り離すようにレーザ加工してもよい。この際に使用するレーザの波長は、上記紫外線吸収剤の紫外線吸収感度がより高いものが望ましい。 Alternatively, the ultraviolet blocking layer 4 may be removed by laser processing except on the pixels 6 or the pixel rows 9. In this case, for example, a coating liquid formed by dissolving, dispersing, and kneading an ultraviolet absorber and an ultraviolet reflector in a photosensitive or thermosetting transparent resin by covering the fluorescent light emitting layer 2 with the coating liquid is formed. After being applied to the entire surface of the substrate, ultraviolet curing or heat curing may be performed to provide the ultraviolet blocking layer 4, and laser processing may be performed so that each pixel 6 or each pixel row 9 is separated from each other by irradiating laser light from the display surface side. .. The wavelength of the laser used at this time is preferably such that the ultraviolet absorber has a higher ultraviolet absorption sensitivity.
 以上のようにして、紫外線カット層4が少なくとも1画素相当の蛍光発光層2上に残るように紫外線カット層4をパターニングすることにより、図8に示す第2の実施形態が完成する。 As described above, the second embodiment shown in FIG. 8 is completed by patterning the ultraviolet blocking layer 4 so that the ultraviolet blocking layer 4 remains on the fluorescent light emitting layer 2 corresponding to at least one pixel.
 上記第2の実施形態によれば、上面に紫外線カット層4を備えた画素6又は画素列9が隣接する画素6又は画素列9から分離されているので、表示パネルの折り曲げ又は巻取りを容易に行うことができる。 According to the second embodiment, since the pixel 6 or the pixel row 9 having the ultraviolet ray blocking layer 4 on the upper surface is separated from the adjacent pixel 6 or the pixel row 9, it is easy to bend or wind the display panel. Can be done.
 図9は本発明によるフルカラーLED表示パネルの第3の実施形態を示す縦断面図である。第1の実施形態と相違する部分は、複数の画素6を覆って設けられた可視光を透過する伸縮自在な伸長性樹脂層13上に紫外線カット層4として、例えば汎用の紫外線カットフィルム14を積層接着したものである。したがって、第1の実施形態と違って、伸長性樹脂層13には、紫外線吸収剤及び紫外線反射剤は混入されていない。なお、紫外線カットフィルム14は、紫外線吸収フィルム及び紫外線反射フィルムの何れであってもよい。 FIG. 9 is a vertical sectional view showing a third embodiment of a full-color LED display panel according to the present invention. The part different from the first embodiment is that a general-purpose ultraviolet cut film 14, for example, a general-purpose ultraviolet cut film 14 is provided on the stretchable stretchable resin layer 13 that covers the plurality of pixels 6 and that transmits visible light. It is laminated and adhered. Therefore, unlike the first embodiment, the extensible resin layer 13 does not contain the ultraviolet absorber and the ultraviolet reflector. The ultraviolet cut film 14 may be either an ultraviolet absorbing film or an ultraviolet reflecting film.
 第3の実施形態において、伸長性樹脂層13は、LED表示パネルを配線基板5側に折り曲げ又は巻き取った際に、伸長性樹脂層13が伸びて紫外線カットフィルム14に生じる引張応力を十分に吸収し得る厚みで形成するのがよい。これにより、表示パネルの折り曲げ又は巻取りが容易になる。 In the third embodiment, the extensible resin layer 13 has sufficient tensile stress generated in the ultraviolet cut film 14 when the extensible resin layer 13 is stretched when the LED display panel is bent or wound on the wiring substrate 5 side. It is preferably formed with a thickness that can be absorbed. This facilitates bending or winding of the display panel.
 図10は本発明によるフルカラーLED表示パネルの第4の実施形態を示す縦断面図である。第1の実施形態と異なる部分は、紫外線カット層4として紫外線カットフィルム14の対向する少なくとも両端部が接着剤16により配線基板5に固定されている点である。 FIG. 10 is a vertical sectional view showing a fourth embodiment of a full-color LED display panel according to the present invention. The difference from the first embodiment is that at least both opposite ends of the ultraviolet cut film 14 serving as the ultraviolet cut layer 4 are fixed to the wiring board 5 with an adhesive 16.
 この場合、紫外線カットフィルム14は、表示パネルを折り曲げ又は巻き取った際に必要な長さを有したものである。したがって、表示パネルを水平に保持したときには、紫外線カットフィルム14は、図10に示すように撓むことになる。そこで、表示パネルを水平に保持した状態で映像表示する際には、表示パネルの紫外線カットフィルム14を接合した両端部を丸めて紫外線カットフィルム14が表示面に張設されるようにするとよい。 In this case, the UV cut film 14 has a length required when the display panel is bent or wound up. Therefore, when the display panel is held horizontally, the ultraviolet cut film 14 bends as shown in FIG. Therefore, when displaying an image with the display panel held horizontally, it is preferable that both ends of the display panel, to which the ultraviolet cut film 14 is joined, be rounded so that the ultraviolet cut film 14 is stretched on the display surface.
 なお、上記実施形態においては、複数の画素6を覆って、可視光を透過すると共に紫外光を反射又は吸収する紫外線カット層4を設けたフルカラーLED表示パネルについて説明したが、本発明はこれに限られず、表示パネルの折り曲げ又は巻取りを容易にするという課題解決のためには、上記紫外線カット層4は必ずしも必要とされない。 In addition, in the above-described embodiment, the full-color LED display panel provided with the ultraviolet cut layer 4 that covers the plurality of pixels 6 and transmits visible light and reflects or absorbs ultraviolet light has been described. The ultraviolet cut layer 4 is not necessarily required to solve the problem of facilitating bending or winding of the display panel.
 また、上記実施形態は、本発明が理解及び実施できる程度に概略的に示したものであり、本発明はこれに限定されるものではない。本発明は、特許請求の範囲に示された技術的思想の範囲を逸脱しない限り種々に変更及び修正をすることができる。 Further, the above-described embodiments are schematically shown to the extent that the present invention can be understood and implemented, and the present invention is not limited to this. The present invention can be variously changed and modified without departing from the scope of the technical idea shown in the claims.
 1…LED
 2…蛍光発光層
 2R…赤色蛍光発光層
 2G…緑色蛍光発光層
 2B…青色蛍光発光層
 3…遮光壁
 4…紫外線カット層
 5…配線基板
 6…画素
 7…隔壁
 8…遮光膜
 9…画素列
 10…隙間
 13…伸長性樹脂層
 14…紫外線カットフィルム
 16…接着剤
1 ... LED
2 ... Fluorescent light emitting layer 2R ... Red fluorescent light emitting layer 2G ... Green fluorescent light emitting layer 2B ... Blue fluorescent light emitting layer 3 ... Shading wall 4 ... UV blocking layer 5 ... Wiring substrate 6 ... Pixel 7 ... Partition wall 8 ... Shading film 9 ... Pixel column 10 ... Gap 13 ... Extensible resin layer 14 ... UV cut film 16 ... Adhesive

Claims (6)

  1.  可撓性を有する配線基板上にマトリクス状に配置され、近紫外又は紫外線の紫外光を放出する複数のLEDと、
     1画素に相当する三つの前記LEDの光放出面側に三原色光に対応させて設けられ、前記紫外光によって励起されて対応色の蛍光に波長変換する複数の蛍光発光層と、
     前記LED及び前記蛍光発光層を取り囲んで設けられ、感光性樹脂から成る透明な隔壁の表面に前記紫外光及び前記蛍光を反射又は吸収する遮光膜を設けた遮光壁と、
    を備え、
     前記遮光壁には、隣接する画素又は隣接する画素列を互いに分離する隙間が設けられていることを特徴とするフルカラーLED表示パネル。
    A plurality of LEDs that are arranged in a matrix on a flexible wiring substrate and emit near-ultraviolet or ultraviolet light.
    A plurality of fluorescent light emitting layers provided on the light emitting surface side of the three LEDs corresponding to one pixel so as to correspond to the three primary color lights and wavelength-converted into fluorescent light of the corresponding color by being excited by the ultraviolet light;
    A light-shielding wall that is provided so as to surround the LED and the fluorescent light-emitting layer and has a light-shielding film that reflects or absorbs the ultraviolet light and the fluorescent light on the surface of a transparent partition wall made of a photosensitive resin,
    Equipped with
    The full-color LED display panel is characterized in that the light shielding wall is provided with a gap for separating adjacent pixels or adjacent pixel columns from each other.
  2.  複数の前記画素を覆って、可視光を透過すると共に前記紫外光を反射又は吸収する紫外線カット層をさらに設けたことを特徴とする請求項1記載のフルカラーLED表示パネル。 The full-color LED display panel according to claim 1, further comprising an ultraviolet cut layer which covers the plurality of pixels and transmits visible light and reflects or absorbs the ultraviolet light.
  3.  前記紫外線カット層は、紫外線吸収剤及び紫外線反射剤の内、少なくとも何れか1種類が均一に分散された可視光を透過する伸縮自在な伸長性樹脂を前記複数の画素を覆って設けた塗膜であることを特徴とする請求項2記載のフルカラーLED表示パネル。 The ultraviolet cut layer is a coating film in which at least one of an ultraviolet absorber and an ultraviolet reflector is uniformly stretched and stretchable and stretchable resin that transmits visible light and covers the plurality of pixels. The full color LED display panel according to claim 2, wherein
  4.  前記紫外線カット層は、少なくとも1画素相当の前記蛍光発光層上に設けられていることを特徴とする請求項2又は3記載のフルカラーLED表示パネル。 The full-color LED display panel according to claim 2 or 3, wherein the ultraviolet ray blocking layer is provided on the fluorescent light emitting layer corresponding to at least one pixel.
  5.  前記紫外線カット層は、前記複数の画素を覆って設けられた可視光を透過する伸縮自在な伸長性樹脂層上に積層接着された紫外線カットフィルムであることを特徴とする請求項2記載のフルカラーLED表示パネル。 The full color according to claim 2, wherein the ultraviolet cut layer is an ultraviolet cut film laminated and adhered on a stretchable stretchable resin layer which covers the plurality of pixels and transmits visible light. LED display panel.
  6.  前記紫外線カット層は、対向する少なくとも両端部が接着剤により前記配線基板に固定された紫外線カットフィルムであることを特徴とする請求項2記載のフルカラーLED表示パネル。  The full-color LED display panel according to claim 2, wherein the ultraviolet cut layer is an ultraviolet cut film in which at least both ends facing each other are fixed to the wiring board with an adhesive.
PCT/JP2019/039693 2018-11-16 2019-10-08 Full-color led display panel WO2020100470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-215569 2018-11-16
JP2018215569A JP2020085960A (en) 2018-11-16 2018-11-16 Full-color led display panel

Publications (1)

Publication Number Publication Date
WO2020100470A1 true WO2020100470A1 (en) 2020-05-22

Family

ID=70730711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039693 WO2020100470A1 (en) 2018-11-16 2019-10-08 Full-color led display panel

Country Status (3)

Country Link
JP (1) JP2020085960A (en)
TW (1) TW202029166A (en)
WO (1) WO2020100470A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380769A (en) * 2020-06-16 2021-09-10 友达光电股份有限公司 Display device
CN114023785A (en) * 2021-11-02 2022-02-08 业成科技(成都)有限公司 Display device
CN114927605A (en) * 2022-03-16 2022-08-19 惠科股份有限公司 Display panel and preparation method thereof
US20220399479A1 (en) * 2021-06-11 2022-12-15 Applied Materials, Inc. High pixel density structures and methods of making

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023534276A (en) * 2020-07-15 2023-08-08 ルミレッズ リミテッド ライアビリティ カンパニー Low Z-height LED array package with TSV support structure
CN112270893A (en) * 2020-09-09 2021-01-26 深圳市奥拓电子股份有限公司 Ultraviolet LED excited fluorescence display method, device and system
WO2022124169A1 (en) * 2020-12-07 2022-06-16 Agc株式会社 Transparent display device, laminated glass, and method for producing transparent display device
WO2022204212A2 (en) * 2021-03-25 2022-09-29 Applied Materials, Inc. Micro-led displays to reduce subpixel crosstalk and methods of manufacture
WO2024059434A1 (en) * 2022-09-15 2024-03-21 Applied Materials, Inc. Pixel isolation structures and methods of making them

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218674A (en) * 2007-03-02 2008-09-18 Toyoda Gosei Co Ltd Led light-emitting display device
JP2017139464A (en) * 2016-02-04 2017-08-10 晶元光電股▲ふん▼有限公司 Light emitting device and manufacturing method of the same
US20180233536A1 (en) * 2014-10-17 2018-08-16 Intel Corporation Microled display & assembly
JP2019102664A (en) * 2017-12-04 2019-06-24 株式会社ブイ・テクノロジー Method for manufacturing led display panel
JP2019140361A (en) * 2018-02-15 2019-08-22 株式会社ブイ・テクノロジー Full color LED display panel and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218674A (en) * 2007-03-02 2008-09-18 Toyoda Gosei Co Ltd Led light-emitting display device
US20180233536A1 (en) * 2014-10-17 2018-08-16 Intel Corporation Microled display & assembly
JP2017139464A (en) * 2016-02-04 2017-08-10 晶元光電股▲ふん▼有限公司 Light emitting device and manufacturing method of the same
JP2019102664A (en) * 2017-12-04 2019-06-24 株式会社ブイ・テクノロジー Method for manufacturing led display panel
JP2019140361A (en) * 2018-02-15 2019-08-22 株式会社ブイ・テクノロジー Full color LED display panel and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380769A (en) * 2020-06-16 2021-09-10 友达光电股份有限公司 Display device
CN113380769B (en) * 2020-06-16 2023-06-02 友达光电股份有限公司 Display device
US20220399479A1 (en) * 2021-06-11 2022-12-15 Applied Materials, Inc. High pixel density structures and methods of making
CN114023785A (en) * 2021-11-02 2022-02-08 业成科技(成都)有限公司 Display device
CN114023785B (en) * 2021-11-02 2024-02-20 业成光电(深圳)有限公司 Display device
CN114927605A (en) * 2022-03-16 2022-08-19 惠科股份有限公司 Display panel and preparation method thereof

Also Published As

Publication number Publication date
JP2020085960A (en) 2020-06-04
TW202029166A (en) 2020-08-01

Similar Documents

Publication Publication Date Title
WO2020100470A1 (en) Full-color led display panel
US20200295224A1 (en) Manufacturing method for led display panel
US20200243739A1 (en) Board connection structure, board mounting method, and micro-led display
WO2018221081A1 (en) Full-color led display panel
JP6642604B2 (en) Electro-optical device, method of manufacturing electro-optical device, and electronic equipment
WO2020049896A1 (en) Method for manufacturing led display panel, and led display panel
JP5974910B2 (en) Display panel and display device
TW201921667A (en) Full-color led display panel
US20200411588A1 (en) Full-Color Led Diplay Panel And Method For Manufacturing Same
US20200373350A1 (en) Full-Color Led Display Panel And Method For Manufacturing Same
JP2020013954A (en) Board connection structure, micro led display and component mounting method
CN114566581A (en) Display panel and method for manufacturing display panel
JP2021056386A (en) Method for manufacturing led display device and led display device
WO2020100862A1 (en) Display device and method for manufacturing same, electronic device, and illumination device
WO2023119759A1 (en) Color conversion substrate and display device
TW202334717A (en) Display device and manufacturing method thereof
JP2022060724A (en) Display device and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885377

Country of ref document: EP

Kind code of ref document: A1