WO2020098746A1 - 永磁同步电机控制算法中电流环硬件加速方法 - Google Patents

永磁同步电机控制算法中电流环硬件加速方法 Download PDF

Info

Publication number
WO2020098746A1
WO2020098746A1 PCT/CN2019/118519 CN2019118519W WO2020098746A1 WO 2020098746 A1 WO2020098746 A1 WO 2020098746A1 CN 2019118519 W CN2019118519 W CN 2019118519W WO 2020098746 A1 WO2020098746 A1 WO 2020098746A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
current
signal
current loop
pwm
Prior art date
Application number
PCT/CN2019/118519
Other languages
English (en)
French (fr)
Inventor
李磊
李桂阳
张雷
Original Assignee
苏州绿控新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州绿控新能源科技有限公司 filed Critical 苏州绿控新能源科技有限公司
Publication of WO2020098746A1 publication Critical patent/WO2020098746A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present application relates to the technical field of motor load / unload control, for example, to a current loop hardware acceleration method in a permanent magnet synchronous motor control algorithm.
  • PMSM permanent magnet synchronous motors
  • This application provides a current loop hardware acceleration method in a permanent magnet synchronous motor control algorithm. It uses the combination of MCU and FPGA architecture and uses FPGA's ability to process data in parallel to implement the current loop in the permanent magnet synchronous motor control algorithm.
  • a hardware acceleration method of current loop in the control algorithm of permanent magnet synchronous motor, including MCU, FPGA, FPGA is responsible for calculating the current loop, FPGA obtains current commands from MCU, samples three-phase current from current sensor, and obtains rotor position from resolver decoder chip. The current loop is internally calculated, and then the pulse width modulation signal (PWM) duty cycle is sent to the drive circuit.
  • PWM pulse width modulation signal
  • the FPGA includes a communication module, an algorithm processing unit module, a current sampling module, a position reading module, and a PWM module.
  • the current command issued by the MCU is transmitted to the communication module, and the communication module transmits the current command to the algorithm processing unit module.
  • the external current sensor connects the three-phase current signal to the current sampling module, the resolver decoding chip imports the rotor position signal to the position reading module, and the algorithm processing unit module reads the three-phase current signal and the rotor After the position signal, the current loop is internally calculated, and then the PWM duty ratio is output to the PWM module, and then the PWM module sends the PWM duty ratio to the external driving circuit.
  • the communication module is used for communication between the MCU and the FPGA, that is, obtaining the current command from the MCU.
  • the current sampling module is used to collect three-phase current signals and send them to the algorithm processing unit.
  • the position reading module is used to communicate with the resolver decoding chip and send the obtained rotor signal to the algorithm processing unit.
  • the algorithm processing unit module includes an instruction processing unit, a decoupling module, space vector modulation and a fault monitoring module; the instruction processing module processes the instruction signal according to the failure signal, if a failure occurs, the instruction is set to 0, otherwise the instruction is issued Send to the decoupling module; the decoupling module takes the current command signal, rotor position signal, three-phase current signal as input, runs the current loop decoupling control algorithm, and outputs the voltage control signal to the space vector modulation module; the space vector modulation The module calculates the duty cycle of the PWM drive signal according to the voltage control signal and sends it to the PWM module; the fault monitoring module monitors whether the control algorithm is in error and feeds the fault signal back to the command processing module.
  • the PWM module generates a complementary PWM driving waveform according to the duty cycle of the PWM driving signal in the algorithm processing unit and outputs it to the driving circuit.
  • FIG. 1 is a schematic block diagram of a current loop hardware acceleration method in a permanent magnet synchronous motor control algorithm provided by an embodiment of this application;
  • FIG. 2 is a schematic block diagram of internal logic of an algorithm processing unit module provided by an embodiment of the present application.
  • a hardware acceleration method of the current loop in the control algorithm of the permanent magnet synchronous motor see Figure 1, Figure 2: including MCU, FPGA, FPGA is responsible for computing the current loop, FPGA obtains current instructions from the MCU, samples three-phase current from the current sensor, from the spin The variable decoding chip obtains the rotor position, internally calculates the current loop, and then sends the pulse width modulation signal (PWM) duty cycle to the drive circuit.
  • PWM pulse width modulation signal
  • the FPGA includes a communication module, an algorithm processing unit module, a current sampling module, a position reading module, and a PWM module.
  • the current command issued by the MCU is transmitted to the communication module.
  • the communication module transmits the current command to the algorithm processing unit module.
  • the phase current signal is connected to the current sampling module, the resolver decoding chip imports the rotor position signal to the position reading module, and the algorithm processing unit module internally calculates the current loop after reading the three-phase current signal and the rotor position signal, and then takes the PWM
  • the duty cycle is output to the PWM module, and then the PWM module sends the PWM duty cycle to the external drive circuit.
  • the communication module is used for communication between the MCU and the FPGA, that is, obtaining the current command from the MCU.
  • the current sampling module is used to collect three-phase current signals and send them to the algorithm processing unit. .
  • the position reading module is used to communicate with the resolver decoding chip and send the obtained rotor signal to the algorithm processing unit.
  • the algorithm processing unit module includes an instruction processing unit, a decoupling module, space vector modulation and a fault monitoring module; the instruction processing module processes the instruction signal according to the failure signal, if a failure occurs, the instruction is set to 0, otherwise the instruction is issued to the decoupling Module; Decoupling module takes current command signal, rotor position signal, three-phase current signal as input, runs current loop decoupling control algorithm, and outputs voltage control signal to space vector modulation module; space vector modulation module calculates PWM drive according to voltage control signal The signal duty cycle is sent to the PWM module; the fault monitoring module monitors the control algorithm for errors and feeds back the fault signal to the command processing module.
  • the PWM module generates complementary PWM driving waveforms according to the duty cycle of the PWM driving signal in the algorithm processing unit and outputs them to the driving circuit.
  • the Chinese name of the MCU in the article is the main control chip, and the Chinese name of the FPGA is the field programmable gate array device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种永磁同步电机控制算法中电流环硬件加速方法,其通过MCU和FPGA组合的架构方式,利用FPGA并行处理数据的能力,实现永磁同步电机控制算法中的电流环。其包括MCU、FPGA,FPGA负责运算电流环,FPGA从MCU获取电流指令,从电流传感器采样三相电流,从旋变解码芯片获取转子位置,在内部运算电流环,之后将PWM占空比发送至驱动电路。

Description

永磁同步电机控制算法中电流环硬件加速方法
本公开要求在2018年11月14日提交中国专利局、申请号为201811352318.0的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及电机加减载控制的技术领域,例如涉及一种永磁同步电机控制算法中电流环硬件加速方法。
背景技术
新能源车用电机一般采用永磁同步电机(PMSM),PMSM的控制多采用矢量控制技术,电流环是其中的重要环节。电流环运算需要一定的时间资源。在现有的硬件水平下,该时间资源限制了电流环控制的带宽。
发明内容
本申请提供了一种永磁同步电机控制算法中电流环硬件加速方法,其通过MCU和FPGA组合的架构方式,利用FPGA并行处理数据的能力,实现永磁同步电机控制算法中的电流环。
一种永磁同步电机控制算法中电流环硬件加速方法,包括MCU、FPGA,FPGA负责运算电流环,FPGA从MCU获取电流指令,从电流传感器采样三相电流,从旋变解码芯片获取转子位置,在内部运算电流环,之后将脉宽调制信号(PWM)占空比发送至驱动电路。
所述FPGA包括通信模块、算法处理单元模块、电流采样模块、位置读取模块、PWM模块,所述MCU发出的电流指令传递至通信模块,所述通信模块将电流指令传递至算法处理单元模块,外部的电流传感器将三相电流信号接入至所述电流采样模块,旋变解码芯片将转子位置信号导入至所述位置读取模块,所述算法处理单元模块通过读取三相电流信号、转子位置信号后内部运算电流环,之后将PWM占空比输出至PWM模块,然后所述PWM模块将PWM占空比发送至外部驱动电路。
所述通信模块用于MCU与FPGA之间的通信,即从MCU获取电流指令。
所述电流采样模块用于采集三相电流信号送给算法处理单元。
所述位置读取模块用于与旋变解码芯片进行通讯,将得到的转子信号送给算法处理单元。
所述算法处理单元模块包括指令处理单元、解耦模块、空间矢量调制和故障监测模块;所述指令处理模块根据故障信号处理指令信号,若发生故障,则将指令置为0,否则将指令下发至解耦模块;所述解耦模块以电流指令信号、转子位置信号、三相电流信号为输入,运行电流环解耦控制算法,输出电压控制信号至空间矢量调制模块;所述空间矢量调制模块根据电压控制信号计算PWM驱动信号占空比,并下发至PWM模块;所述故障监测模块监测控制算法是否出错,并将故障信号反馈给指令处理模块。
所述PWM模块根据算法处理单元中的PWM驱动信号占空比产生互补的PWM驱动波形,输出至驱动电路。
采用本申请技术方案后,通过MCU+FPGA的电机控制架构,利用FPGA并行处理数据的能力,实现永磁同步电机控制算法中的电流环,在不改变开关频率的条件下扩展电流环的带宽,利用MCU的灵活性和FPGA处理数据的快速性,提高位置环和速度环的性能
附图说明
图1为本申请一实施例提供的永磁同步电机控制算法中的电流环硬件加速方法示意框图;
图2为本申请一实施例提供的算法处理单元模块内部逻辑示意框图。
具体实施方式
下面结合附图和具体实施例对本申请作具体解释。
一种永磁同步电机控制算法中电流环硬件加速方法,见图1、图2:包括MCU、FPGA,FPGA负责运算电流环,FPGA从MCU获取电流指令,从电流传感器采样三相电流,从旋变解码芯片获取转子位置,在内部运算电流环,之后将脉宽调制信号(PWM)占空比发送至驱动电路。
FPGA包括通信模块、算法处理单元模块、电流采样模块、位置读取模块、PWM模块,MCU发出的电流指令传递至通信模块,通信模块将电流指令传递至算法处理单元模块,外部的电流传感器将三相电流信号接入至电流采样模块,旋变解码芯片将转子位置信号导入至位置读取模块,算法处理单元模块通过读 取三相电流信号、转子位置信号后内部运算电流环,之后将PWM占空比输出至PWM模块,然后PWM模块将PWM占空比发送至外部驱动电路。
通信模块用于MCU与FPGA之间的通信,即从MCU获取电流指令。
电流采样模块用于采集三相电流信号送给算法处理单元。。
位置读取模块用于与旋变解码芯片进行通讯,将得到的转子信号送给算法处理单元。
算法处理单元模块包括指令处理单元、解耦模块、空间矢量调制和故障监测模块;指令处理模块根据故障信号处理指令信号,若发生故障,则将指令置为0,否则将指令下发至解耦模块;解耦模块以电流指令信号、转子位置信号、三相电流信号为输入,运行电流环解耦控制算法,输出电压控制信号至空间矢量调制模块;空间矢量调制模块根据电压控制信号计算PWM驱动信号占空比,并下发至PWM模块;故障监测模块监测控制算法是否出错,并将故障信号反馈给指令处理模块。
其中电流环解耦控制算法另行编写,不在本申请的保护范围内,故不再赘述。
PWM模块根据算法处理单元中的PWM驱动信号占空比产生互补的PWM驱动波形,输出至驱动电路。
文中MCU的中文名称为主控芯片,FPGA的中文名称为现场可编程门阵列器件。
其工作原理如下:通过MCU+FPGA的电机控制架构,利用FPGA并行处理数据的能力,实现永磁同步电机控制算法中的电流环,在不改变开关频率的条件下扩展电流环的带宽,利用MCU的灵活性和FPGA处理数据的快速性,提高位置环和速度环的性能。

Claims (7)

  1. 一种永磁同步电机控制算法中电流环硬件加速方法,包括:MCU、FPGA,FPGA负责运算电流环,FPGA从MCU获取电流指令,从电流传感器采样三相电流,从旋变解码芯片获取转子位置,在内部运算电流环,之后将PWM占空比发送至驱动电路。
  2. 如权利要求1所述的一种永磁同步电机控制算法中电流环硬件加速方法,其中,所述FPGA包括通信模块、算法处理单元模块、电流采样模块、位置读取模块、PWM模块,所述MCU发出的电流指令传递至通信模块,所述通信模块将电流指令传递至算法处理单元模块,外部的电流传感器将三相电流信号接入至所述电流采样模块,旋变解码芯片将转子位置信号导入至所述位置读取模块,所述算法处理单元模块通过读取三相电流信号、转子位置信号后内部运算电流环,之后将PWM占空比输出至PWM模块,然后所述PWM模块将PWM占空比发送至外部驱动电路。
  3. 如权利要求2所述的一种永磁同步电机控制算法中电流环硬件加速方法,其中,所述通信模块用于MCU与FPGA之间的通信,即从MCU获取电流指令。
  4. 如权利要求3所述的一种永磁同步电机控制算法中电流环硬件加速方法,其中,所述电流采样模块用于采集三相电流信号送给算法处理单元。
  5. 如权利要求4所述的一种永磁同步电机控制算法中电流环硬件加速方法,其中,所述位置读取模块用于与旋变解码芯片进行通讯,将得到的转子信号送给算法处理单元。
  6. 如权利要求2所述的一种永磁同步电机控制算法中电流环硬件加速方法,其中,所述算法处理单元模块包括指令处理单元、解耦模块、空间矢量调制和故障监测模块;所述指令处理模块根据故障信号处理指令信号,若发生故障,则将指令置为0,否则将指令下发至解耦模块;所述解耦模块以电流指令信号、转子位置信号、三相电流信号为输入,运行电流环解耦控制算法,输出电压控制信号至空间矢量调制模块;所述空间矢量调制模块根据电压控制信号计算PWM驱动信号占空比,并下发至PWM模块;所述故障监测模块监测控制算法是否出错,并将故障信号反馈给指令处理模块。
  7. 如权利要求2所述的一种永磁同步电机控制算法中电流环硬件加速方法,其中,所述PWM模块根据算法处理单元中的PWM驱动信号占空比产生互补的PWM驱动波形,输出至驱动电路。
PCT/CN2019/118519 2018-11-14 2019-11-14 永磁同步电机控制算法中电流环硬件加速方法 WO2020098746A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811352318.0A CN109194230A (zh) 2018-11-14 2018-11-14 一种永磁同步电机控制算法中电流环硬件加速方法
CN201811352318.0 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020098746A1 true WO2020098746A1 (zh) 2020-05-22

Family

ID=64939082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118519 WO2020098746A1 (zh) 2018-11-14 2019-11-14 永磁同步电机控制算法中电流环硬件加速方法

Country Status (2)

Country Link
CN (1) CN109194230A (zh)
WO (1) WO2020098746A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194230A (zh) * 2018-11-14 2019-01-11 苏州绿控新能源科技有限公司 一种永磁同步电机控制算法中电流环硬件加速方法
CN111064393A (zh) * 2019-12-31 2020-04-24 苏州绿控传动科技股份有限公司 一种多轴永磁同步电机控制装置
CN113037150A (zh) * 2021-03-15 2021-06-25 成都卡诺普自动化控制技术有限公司 基于dsp+fpga伺服实现工业机器人多轴控制的方法
CN113267995B (zh) * 2021-04-27 2022-08-26 长春同泽科技有限公司 一种驱动控制装置、控制方法及矿井运输车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741295A (zh) * 2009-12-31 2010-06-16 陕西捷普控制技术有限公司 基于单个fpga芯片的多稀土永磁同步电机驱动***
US20110127942A1 (en) * 2008-11-11 2011-06-02 Shenzhen Academy Of Aerospace Technology Control System of Multi-Shaft Servo Motor
US8779705B2 (en) * 2011-02-25 2014-07-15 Deere & Company Synchronization of position and current measurements in an electric motor control application using an FPGA
CN104579031A (zh) * 2013-10-29 2015-04-29 北京精密机电控制设备研究所 一种基于fpga芯片的多路永磁同步电机控制电路
CN205029582U (zh) * 2015-10-29 2016-02-10 哈尔滨理工大学 一种内置式永磁同步电机控制装置
CN107547025A (zh) * 2017-10-22 2018-01-05 南京理工大学 超高速永磁同步电机的冗余容错控制***及方法
CN109194230A (zh) * 2018-11-14 2019-01-11 苏州绿控新能源科技有限公司 一种永磁同步电机控制算法中电流环硬件加速方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904504B (zh) * 2012-11-01 2015-08-19 重庆长安汽车股份有限公司 一种车用永磁同步电机控制***
CN103516279B (zh) * 2013-09-17 2016-05-25 广东工业大学 一种基于fpga的永磁同步电机控制芯片
CN103701382B (zh) * 2013-12-17 2016-01-20 华中科技大学 一种基于fpga的永磁同步电机电流环带宽扩展装置
GB2535457B (en) * 2015-02-13 2017-06-14 Thales Holdings Uk Plc Digital motor control unit
CN105932925A (zh) * 2016-06-02 2016-09-07 上海新时达电气股份有限公司 一种基于fpga的电流环控制***和伺服装置
CN206193479U (zh) * 2016-11-03 2017-05-24 赛赫智能设备(上海)股份有限公司 一种基于soc构架的agv专用低压伺服驱动器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110127942A1 (en) * 2008-11-11 2011-06-02 Shenzhen Academy Of Aerospace Technology Control System of Multi-Shaft Servo Motor
CN101741295A (zh) * 2009-12-31 2010-06-16 陕西捷普控制技术有限公司 基于单个fpga芯片的多稀土永磁同步电机驱动***
US8779705B2 (en) * 2011-02-25 2014-07-15 Deere & Company Synchronization of position and current measurements in an electric motor control application using an FPGA
CN104579031A (zh) * 2013-10-29 2015-04-29 北京精密机电控制设备研究所 一种基于fpga芯片的多路永磁同步电机控制电路
CN205029582U (zh) * 2015-10-29 2016-02-10 哈尔滨理工大学 一种内置式永磁同步电机控制装置
CN107547025A (zh) * 2017-10-22 2018-01-05 南京理工大学 超高速永磁同步电机的冗余容错控制***及方法
CN109194230A (zh) * 2018-11-14 2019-01-11 苏州绿控新能源科技有限公司 一种永磁同步电机控制算法中电流环硬件加速方法

Also Published As

Publication number Publication date
CN109194230A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2020098746A1 (zh) 永磁同步电机控制算法中电流环硬件加速方法
US10038396B2 (en) Motor control device and motor drive device
CN103701382A (zh) 一种基于fpga的永磁同步电机电流环带宽扩展装置
CN109951116B (zh) 一种基于双电流传感器的开关磁阻电机***及控制方法
CN103414427A (zh) 无刷直流电机控制方法
CN103516279B (zh) 一种基于fpga的永磁同步电机控制芯片
CN102957369A (zh) 一种基于dsp处理器的无刷直流电机调速装置
CN107171602B (zh) 一种无刷直流电机回馈制动运行的pwm控制方法
CN102291062A (zh) 一种基于fpga的高精度多电机控制方法
CN107748524A (zh) 基于单片机和fpga的双电机高速高精伺服控制***及其方法
WO2019141086A1 (zh) 五相逆变器双三相电机驱动电路及***矢量控制方法
CN103607149A (zh) 一种超声电机舵伺服***及其控制方法
CN204761340U (zh) 基于dsp的三闭环控制直流变频压缩机
CN108599659B (zh) 基于实时运动控制平台以及fpga的伺服***及其控制方法
CN102684578A (zh) 一种电机转矩直接控制***
CN111064393A (zh) 一种多轴永磁同步电机控制装置
CN103872960A (zh) 基于软件死区补偿的矢量控制器
CN105763135A (zh) 一种基于占空比dtc电压矢量pwm调制方法
CN108811530B (zh) 空间微飞轮驱动控制方法及驱动控制***
CN108173472B (zh) 一种双三相电机五相逆变器及控制方法
Wang et al. Functional design of FPGA in a brushless DC motor system based on FPGA and DSP
Sun et al. An SoC-based platform for integrated multi-axis motion control and motor drive
CN211859992U (zh) 一种基于tms320f28335的永磁同步电机控制器
CN204761359U (zh) 一种电机驱动器用的霍尔校准***
CN202918235U (zh) 一种基于dsp处理器的无刷直流电机调速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884746

Country of ref document: EP

Kind code of ref document: A1