WO2020098339A1 - 电机转子结构及永磁电机 - Google Patents

电机转子结构及永磁电机 Download PDF

Info

Publication number
WO2020098339A1
WO2020098339A1 PCT/CN2019/103979 CN2019103979W WO2020098339A1 WO 2020098339 A1 WO2020098339 A1 WO 2020098339A1 CN 2019103979 W CN2019103979 W CN 2019103979W WO 2020098339 A1 WO2020098339 A1 WO 2020098339A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor
permanent magnet
rotor core
coercive force
Prior art date
Application number
PCT/CN2019/103979
Other languages
English (en)
French (fr)
Inventor
王敏
肖勇
李权锋
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to JP2021524457A priority Critical patent/JP7185777B2/ja
Publication of WO2020098339A1 publication Critical patent/WO2020098339A1/zh
Priority to US17/236,120 priority patent/US11336135B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • H02K21/046Windings on magnets for additional excitation ; Windings and magnets for additional excitation with rotating permanent magnets and stationary field winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/10Rotating armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators

Definitions

  • This application relates to the technical field of electric motors, in particular to a motor rotor structure and a permanent magnet motor.
  • the permanent magnet synchronous motor with adjustable flux can adjust the strength of the internal magnetic field of the motor according to the load condition of the motor.
  • Traditional permanent magnet motors rely on permanent magnets to provide magnetic flux, but permanent magnets provide a fixed magnetic field, and the internal magnetic field of the motor is difficult to adjust, making it difficult for permanent magnet motors to balance efficiency at high and low frequencies.
  • the maximum operating frequency of the motor is limited.
  • most permanent magnet motors can only expand the operating range through field weakening control, but the field weakening control has the problems of increasing the copper loss of the motor, reducing the motor efficiency, and limiting the speed range.
  • a motor rotor structure includes: a rotor core, the rotor core is provided with a plurality of radial slots in the circumferential direction, and a first magnetic isolation slot is provided between adjacent two radial slots;
  • Two permanent magnets with different coercive forces are installed in each radial slot.
  • the two permanent magnets with different coercive forces are distributed along the radial direction of the rotor core, and the two permanent magnets with different coercive forces are different. Both are magnetized along the tangential direction of the rotor core, and a second magnetic isolation slot is provided between the two permanent magnets with different coercive forces;
  • the rotor core When the magnetization directions of the two permanent magnets with different coercive forces are opposite, the rotor core is in a multi-pole state, and when the magnetization directions of the two permanent magnets with different coercive forces are the same, the rotor core is in a state of less magnetic poles.
  • the two permanent magnets with different coercive forces are a permanent magnet with a low coercive force and a permanent magnet with a high coercive force.
  • the permanent magnets with a low coercive force are arranged in the radial slots On the side close to the outer circle of the rotor, permanent magnets with higher coercive force are provided on the side of the radial slot close to the inner circle of the rotor.
  • the number of magnetic poles of the rotor core when the rotor core is in a state of less magnetic poles, the number of magnetic poles of the rotor core is n, and when the rotor core is in a state of multiple magnetic poles, the number of magnetic poles of the rotor core is 2n.
  • the two permanent magnets with different coercive forces are a permanent magnet with a lower coercive force and a permanent magnet with a higher coercive force
  • the permanent magnet with a lower coercive force has a coercive force of H1
  • the thickness is d1
  • the coercive force of the permanent magnet with high coercive force is H2
  • the thickness is d2, then d2 * H2 / H1 * 0.9 ⁇ d1 ⁇ d2 * H2 / H1 * 1.1.
  • the two permanent magnets with different coercive forces are a permanent magnet with a lower coercive force and a permanent magnet with a higher coercive force, and the residual magnet of the permanent magnet with a lower coercive force is Br1. If the width is L1, the remanence of the permanent magnet with high coercive force is Br2, and the width is L2, then L2 * Br2 / Br1 * 0.9 ⁇ L1 ⁇ L2 * Br2 / Br1 * 1.1.
  • both ends of the second magnetic isolation slot in the width direction are close to the outer circle of the rotor.
  • the rotor structure of the motor further includes a third magnetic isolation slot disposed at both ends of the second magnetic isolation slot near the outer circle of the rotor, and the width direction of the third magnetic isolation slot is parallel to the cut of the rotor core to.
  • the thickness of the third magnetic isolation slot ranges from 2g to 5g, where g is the air gap of the motor.
  • the thickness of the side of the radial slot close to the outer circle of the rotor is d
  • the width of the third magnetic isolation slot is L3, then 0.8 * d ⁇ L3 ⁇ 1.2 * d.
  • the thickness of the second magnetic isolation slot ranges from 2g to 5g, where g is the air gap of the motor.
  • the center angle formed by the center of the end of the second magnetic isolation slot near the rotor outer circle and the center of the end of the radial slot near the rotor outer circle is ⁇ , where 0.9 * ⁇ / n ⁇ ⁇ 1.1 * ⁇ / n, n is the number of poles of the rotor core in the state of few poles.
  • the two ends of the first magnetic isolation slot along the radial direction of the rotor core are close to the inner circle of the rotor and the outer circle of the rotor, respectively, and the thickness of the end of the first magnetic isolation slot near the inner circle of the rotor is greater than that of the other The thickness of one end.
  • the rotor structure of the motor further includes a fourth magnetic isolation slot disposed at an end of the first magnetic isolation slot near the outer circle of the rotor, and the width direction of the fourth magnetic isolation slot is parallel to the tangential direction of the rotor core.
  • a permanent magnet motor includes a stator iron core and a motor rotor structure.
  • the motor rotor structure is the motor rotor structure described in any of the above solutions.
  • the internal magnetic field of the motor rotor can be adjusted as needed.
  • the motor When the motor is running at low speed and high torque, the motor changes the magnetization direction of the permanent magnet with a relatively low coercive force in the rotor core through the armature current, so that the rotor core is in a multi-pole state. , The generated torque is larger.
  • the motor When the motor is running at high speed and small torque, the motor changes the magnetization direction of the permanent magnet with relatively low coercive force in the rotor core through the armature current, so that the rotor core is adjusted to a state of less magnetic poles, and the number of motor magnetic poles is reduced. , The generated torque is small, but the speed increases at the same electrical frequency. Therefore, the rotor structure of the motor can adjust the internal magnetic field according to the operating conditions of the motor, so that the rotor core is divided into a multi-pole state and a low-pole state, increasing the motor high-efficiency area and expanding the motor operating range.
  • the second magnetic isolation slot can reduce or even eliminate the influence of permanent magnets with relatively high coercive force on permanent magnets with relatively low coercive force during magnetization, and reduce the change of armature windings with relatively low coercive force.
  • the difficulty of the direction reduces the magnetizing current.
  • FIG. 1 is a schematic structural diagram of a rotor structure of a motor provided by an embodiment of the present application
  • FIG. 2 is a partially enlarged view of A in the structure shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a rotor structure of a motor provided by another embodiment of the present application.
  • FIG. 4 is a partially enlarged view of B in the structure shown in FIG. 3;
  • FIG. 5 is a magnetic circuit diagram when the rotor core of the structure shown in FIG. 1 is in a state of less magnetic poles;
  • FIG. 6 is a magnetic circuit diagram when the rotor core of the structure shown in FIG. 1 is in a multi-pole state.
  • a motor rotor structure 10 provided by an embodiment of the present application includes: a rotor core 100, which is provided with a plurality of radial slots 110 in the circumferential direction, and two adjacent radial slots 110 There is a first magnetic isolation slot 120 in between.
  • Two permanent magnets with different coercive forces are installed in each radial slot 110.
  • the two permanent magnets with different coercive forces are distributed along the radial direction of the rotor core 100, and the two coercive forces have different magnitudes.
  • the permanent magnets are magnetized along the tangential direction of the rotor core 100, and a second magnetic isolation slot 130 is provided between the two permanent magnets with different coercive forces.
  • the rotor core 100 When the magnetization directions of the two permanent magnets with different coercive forces are opposite, the rotor core 100 is in a multi-pole state, and when the magnetization directions of the two permanent magnets with different coercive forces are the same, the rotor core 100 is in a state of less magnetic poles.
  • two types of permanent magnets with different coercive forces refer to one of which is a permanent magnet with a relatively low coercive force (as shown in FIG. 1, a permanent magnet with a low coercive force 200), and the other It is a permanent magnet with a relatively high coercive force (as shown in FIG. 1). Therefore, when the magnetization direction of the permanent magnet with a relatively low coercive force changes, the permanent magnet with a relatively high coercive force does not change. Thereby, the number of magnetic poles of the rotor core 100 can be changed to adapt to the operating state of the motor and improve the efficiency of the motor.
  • the rotor core 100 is in a multi-pole state, which means a state in which the number of poles of the rotor core 100 is larger than the number of poles of the rotor core 100 in a state of fewer poles.
  • the multi-pole state of the rotor core 100 corresponds to a state where the number of magnetic poles of the motor is large.
  • the rotor core 100 is in a state of fewer magnetic poles, and refers to a state in which the number of magnetic poles of the rotor core 100 is smaller than the number of magnetic poles of the rotor core 100 in a multi-pole state.
  • the less magnetic pole state of the rotor core 100 corresponds to a state where the number of magnetic poles of the motor is small.
  • the first magnetic isolation slot 120 is used to separate the magnetic fields generated by the permanent magnets in the two adjacent radial slots 110 to avoid magnetic leakage.
  • the second magnetic isolation slot 130 is used to separate the magnetic fields generated by the two permanent magnets with different coercive force in each radial slot 110, so as to reduce or even eliminate the permanent magnet with relatively high coercive force during magnetization
  • the effect on the permanent magnet with relatively low coercive force reduces the difficulty of changing the magnetization direction of the permanent magnet with relatively low coercive force by the armature winding, and reduces the magnetizing current.
  • the internal magnetic field of the motor rotor can be adjusted as needed.
  • the motor When the motor is running at low speed and high torque, the motor changes the magnetization direction of the permanent magnet with a relatively low coercive force in the rotor core 100 through the armature current, so that the rotor core 100 is in a multi-pole state. The higher the number, the greater the torque.
  • the motor When the motor is running at high speed and small torque, the motor changes the magnetization direction of the permanent magnet with relatively low coercive force in the rotor core 100 through the armature current, so that the rotor core 100 is adjusted to a state of less magnetic poles, and the number of magnetic poles of the motor Reduced, the generated torque is smaller, but the speed increases at the same electrical frequency. Therefore, the rotor structure 10 of the motor can adjust the internal magnetic field according to the operating conditions of the motor, so that the rotor core 100 is divided into a multi-pole state and a low-pole state, which increases the motor high-efficiency area and expands the motor operating range.
  • both ends of the second magnetic isolation slot 130 in the width direction are close to the outer circle of the rotor.
  • the thickness of the second magnetic isolation slot 130 ranges from 2g to 5g, where g is the air gap of the motor.
  • the thickness of the second magnetic shielding groove 130 is shown by d3, that is, 2g ⁇ d3 ⁇ 5g.
  • the center angle between the center of the end of the second magnetic isolation slot 130 near the rotor outer circle and the center of the end of the radial slot 110 near the rotor outer circle is ⁇ , where 0.9 * ⁇ / n ⁇ ⁇ 1.1 * ⁇ / n, where n is the number of magnetic poles of the rotor core 100 in the state of fewer magnetic poles.
  • the motor rotor structure 10 further includes a third magnetic isolation slot 140 disposed at two ends of the second magnetic isolation slot 130 near the outer circle of the rotor.
  • the width direction of the third magnetic isolation slot 140 is parallel to the tangential direction of the rotor core 100.
  • the size of the third magnetic isolation slot 140 may be imposed on some constraints. It can be understood that the length direction of the third magnetic isolation slot 140 is along the axial direction of the rotor core 100. The length of the third magnetic isolation slot 140 is related to the axial length of the rotor core 100. Generally, the third magnetic isolation slot 140 is as long as the axial length of the rotor core 100 is long.
  • the aforementioned constraints on the size of the third magnetic isolation slot 140 are mainly constraints on its width and thickness. Referring to FIG. 4, in one embodiment, the thickness of the third magnetic isolation slot 140 may range from 2g to 5g, where g is the air gap of the motor. As shown in FIG.
  • the thickness of the third magnetic shielding groove 140 is shown by d4, that is, 2g ⁇ d4 ⁇ 5g.
  • d4 the width of the third magnetic isolation slot 140
  • the thickness of the side of the radial slot 110 near the outer circle of the rotor is d, then 0.8 * d ⁇ L3 ⁇ 1.2 * d.
  • the reasonable design of the size of the third magnetic isolation slot 140 can ensure that the structure of the rotor core 100 is reasonable and the stable operation of the motor is ensured.
  • the radial groove 110 is adapted to the permanent magnet installed therein.
  • the thickness of the radial groove 110 can be expressed by the thickness of the permanent magnet.
  • the permanent magnet near the outer circumference of the rotor is a permanent magnet 200 with a low coercive force.
  • the radial groove 110 is close to the outer side of the rotor
  • the thickness d on one side of the circle is equal to the thickness of the permanent magnet 200 with a lower coercive force (as shown in d1 in FIG. 2).
  • the radial groove 110 is close to the outer circle of the rotor
  • the thickness d on one side is equivalent to the thickness of the permanent magnet 300 with a higher coercive force (the size shown in d2 in FIG. 2).
  • both ends of the first magnetic isolation slot 120 along the radial direction of the rotor core 100 are respectively close to the inner circle of the rotor and the outer circle of the rotor, and the first magnetic isolation slot 120 is close to the rotor
  • the thickness of one end of the inner circle is greater than the thickness of the other end.
  • the motor rotor structure 10 further includes a fourth magnetic isolation slot 150.
  • the fourth magnetic isolation groove 150 is disposed at the end of the first magnetic isolation groove 120 near the outer circle of the rotor, and the width direction of the fourth magnetic isolation groove 150 is parallel to the tangential direction of the rotor core 100.
  • the thickness of the fourth magnetic isolation slot 150 may range from 2g to 5g, where g is the air gap of the motor. Assuming that the width of the fourth magnetic shielding slot 150 is L4 and the thickness of the side of the radial slot 110 near the outer circle of the rotor is d, then 0.8 * d ⁇ L4 ⁇ 1.2 * d. The reasonable design of the size of the fourth magnetic isolation slot 150 can ensure that the structure of the rotor core 100 is reasonable and the stable operation of the motor is ensured.
  • the arrangement of the two permanent magnets with different coercive forces in the radial groove 110 may be various.
  • the two permanent magnets with different coercive forces are a permanent magnet 200 with a low coercive force and a permanent magnet 300 with a high coercive force, and the ones with a low coercive force are
  • the permanent magnet 200 is provided on the side of the radial slot 110 close to the outer circle of the rotor
  • the permanent magnet 300 with a high coercive force is provided on the side of the radial slot 110 close to the inner circle of the rotor.
  • the set of permanent magnets 200 with low coercive force may be a single permanent magnet, or may be composed of multiple permanent magnets distributed along the axial direction of the rotor core 100.
  • the set of permanent magnets 300 with high coercive force may also be a single block of permanent magnets, or may be composed of multiple permanent magnets distributed along the axial direction of the rotor core 100.
  • the set of permanent magnets 200 with lower coercive force is arranged on the side of the radial slot 110 near the outer circle of the rotor, and the set of permanent magnets 300 with higher coercive force is arranged on the side of the inner circle of the radial slot 110 near the rotor Side.
  • the above-mentioned set of permanent magnets 200 with lower coercive force may be disposed on the side of the radial slot 110 near the inner circle of the rotor, and the above-mentioned set of permanent magnets with higher coercive force may be used.
  • the magnet 300 is disposed on the side of the radial slot 110 near the outer circle of the rotor.
  • the number of permanent magnets 200 having a low coercive force and the number of permanent magnets 300 having a high coercive force may not be only one set.
  • the permanent magnets 200 with lower coercive force in the same radial groove 110 are two groups, and the permanent magnets 300 with higher coercive force are one group.
  • Two sets of permanent magnets 200 with low coercive force and a set of permanent magnets 300 with high coercive force are alternately arranged in the radial slots 110 along the radial direction of the rotor core 100.
  • two sets of permanent magnets 200 with low coercive force can form two pairs of magnetic poles
  • a set of permanent magnets 300 with high coercive force can form a pair of magnetic poles.
  • only one group has a larger number of structural poles, and the rotor core 100 can be changed. Has many poles.
  • FIG. 5 shows a schematic diagram of the magnetic circuit of the rotor core 100 in the state of less magnetic poles
  • N and S inside the outer circle of the rotor in FIG. 5 show the magnetic pole distribution of each permanent magnet.
  • the N and S outside the rotor outer circle show the magnetic pole distribution of the rotor core 100 in the state of fewer magnetic poles.
  • FIG. 6 shows a schematic diagram of the magnetic circuit of the rotor core 100 in a multi-pole state.
  • N and S inside the rotor outer circle show the magnetic pole distribution of each permanent magnet.
  • N and S outside the rotor outer circle show the magnetic pole distribution of the rotor core 100 in the multi-pole state.
  • the number of magnetic poles of the rotor core 100 is n
  • the The number of magnetic poles is 2n.
  • the two types of permanent magnets in the rotor core 100 having different coercive forces have the same number of magnetic poles.
  • the number of permanent magnets 300 with high coercive force is the same as the number of permanent magnets 200 with low coercive force, that is, the poles of the permanent magnet 300 with high coercive force
  • the number is the same as the number of poles of the permanent magnet 200 having a low coercive force.
  • the rotor core 100 when the magnetization directions of the two permanent magnets with different coercive forces are the same, the rotor core 100 is in a state of fewer magnetic poles, and the number of magnetic poles of the rotor core 100 is n.
  • FIG. 6 when the magnetization directions of the two permanent magnets with different coercive forces are opposite, the rotor core 100 is in a state of fewer magnetic poles, and the number of magnetic poles of the rotor core 100 is 2n. This design makes the structure of the rotor core 100 more simplified and facilitates the arrangement of permanent magnets.
  • the two permanent magnets with different coercive forces are a permanent magnet 200 with a low coercive force and a permanent magnet 300 with a high coercive force.
  • the coercive force of the magnet 200 is H1
  • the thickness is d1
  • the coercive force of the permanent magnet 300 with a higher coercive force is H2
  • the thickness is d2, then d2 * H2 / H1 * 0.9 ⁇ d1 ⁇ d2 * H2 / H1 * 1.1.
  • the thickness of the permanent magnet 200 with a low coercive force is too small, the permanent magnet 200 with a low coercive force will have insufficient resistance to demagnetization, resulting in an uncontrollable demagnetization problem when the motor is running. If the thickness of the permanent magnet 200 with a low coercivity is too large, it will increase the difficulty of magnetization during magnetization, increase the magnetization current, and make it difficult to adjust the magnetization of the motor.
  • the thickness of the permanent magnet 200 with a low coercive force in this way, the demagnetization resistance of the two permanent magnets with different coercive forces can be guaranteed to be basically the same, so as to avoid the problem of uncontrollable demagnetization or difficulty in magnetization of the motor The problem.
  • the two permanent magnets with different coercive forces are a permanent magnet 200 with a low coercive force and a permanent magnet 300 with a high coercive force.
  • the remanence of the magnet 200 is Br1
  • the width is L1
  • the remanence of the permanent magnet 300 with high coercive force is Br2
  • the width is L2
  • An embodiment of the present application further provides a permanent magnet motor including a stator iron core and a motor rotor structure.
  • the motor rotor structure is the motor rotor structure 10 described in any one of the above solutions. Since the electronic rotor structure 10 has the above beneficial effects, when the operating state of the permanent magnet motor changes, the magnetization direction of the permanent magnet with a relatively low coercive force on the rotor core 100 can be changed using the armature current to realize the rotor pole of the motor Number adjustment to achieve the purpose of increasing the speed range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种电机转子结构,包括:转子铁芯(100),沿圆周方向设有多个径向槽(110),相邻两个径向槽(110)之间设有第一隔磁槽(120);每个径向槽(110)中均安装有两种矫顽力大小不同的永磁体,两种矫顽力大小不同的永磁体沿转子铁芯(100)的径向分布,且两种矫顽力大小不同的永磁体均沿转子铁芯(100)的切向充磁,两种矫顽力不同的永磁体之间设有第二隔磁槽(130);两种矫顽力大小不同的永磁体的磁化方向相反时,转子铁芯(100)处于多磁极状态,两种矫顽力大小不同的永磁体的磁化方向相同时,转子铁芯(100)处于少磁极状态。该电机转子结构,能够依据电机运行工况调整内部磁场,使转子铁芯(100)分为多磁极状态和少磁极状态,增大电机高效区,扩大电机运行范围。

Description

电机转子结构及永磁电机
相关申请
本申请要求2018年11月14日申请的,申请号为2018113516613,名称为“电机转子结构及永磁电机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电机技术领域,特别是涉及一种电机转子结构及永磁电机。
背景技术
磁通可调节的永磁同步电机依据电机的负载状况,对电机内部磁场的强弱进行调节。传统永磁电机依靠永磁体提供磁通,但永磁体提供磁场固定,电机内部磁场难以调节,使永磁电机难以兼顾高频和低频时的效率。且在供电电源电压固定的情况下,限制了电机的最高运行频率。目前,大多永磁电机只能通过弱磁控制扩大运行范围,但是弱磁控制存在增加电机铜损、降低电机效率、调速范围有限等问题。
发明内容
基于此,有必要针对传统的永磁电机通过弱磁控制扩大运行范围时,存在的电机铜损增加、电机效率降低、调速范围有限等问题,提供一种电机转子结构及永磁电机。
一种电机转子结构,包括:转子铁芯,转子铁芯沿圆周方向设有多个径向槽,相邻两个径向槽之间设有第一隔磁槽;
每个径向槽中均安装有两种矫顽力大小不同的永磁体,两种矫顽力大小不同的永磁体沿转子铁芯的径向分布,且两种矫顽力大小不同的永磁体均沿转子铁芯的切向充磁,两种矫顽力不同的永磁体之间设有第二隔磁槽;
两种矫顽力大小不同的永磁体的磁化方向相反时,转子铁芯处于多磁极状态,两种矫顽力大小不同的永磁体的磁化方向相同时,转子铁芯处于少磁极状态。
在其中一个实施例中,两种矫顽力大小不同的永磁体分别为矫顽力较低的永磁体和矫顽力较高的永磁体,矫顽力较低的永磁体设置于径向槽的靠近转子外圆的一侧,矫顽力较高的永磁体设置于径向槽的靠近转子内圆的一侧。
在其中一个实施例中,转子铁芯处于少磁极状态时,转子铁芯的磁极数为n,转子铁 芯处于多磁极状态时,转子铁芯的磁极数为2n。
在其中一个实施例中,两种矫顽力不同的永磁体分别为矫顽力较低的永磁体和矫顽力较高的永磁体,矫顽力较低的永磁体的矫顽力为H1,厚度为d1,矫顽力较高的永磁体的矫顽力为H2,厚度为d2,则有d2*H2/H1*0.9<d1<d2*H2/H1*1.1。
在其中一个实施例中,两种矫顽力不同的永磁体分别为矫顽力较低的永磁体和矫顽力较高的永磁体,矫顽力较低的永磁体的剩磁为Br1,宽度为L1,矫顽力较高的永磁体的剩磁为Br2,宽度为L2,则有L2*Br2/Br1*0.9<L1<L2*Br2/Br1*1.1。
在其中一个实施例中,第二隔磁槽的沿宽度方向的两端均靠近转子外圆。
在其中一个实施例中,电机转子结构还包括第三隔磁槽,设置于第二隔磁槽靠近转子外圆的两个端部,第三隔磁槽的宽度方向平行于转子铁芯的切向。
在其中一个实施例中,第三隔磁槽的厚度范围为2g~5g,其中g为电机气隙。
在其中一个实施例中,径向槽靠近转子外圆的一侧的厚度为d,第三隔磁槽的宽度为L3,则0.8*d<L3<1.2*d。
在其中一个实施例中,第二隔磁槽的厚度范围为2g~5g,其中g为电机气隙。
在其中一个实施例中,第二隔磁槽靠近转子外圆的端部的中心与径向槽靠近转子外圆的端部的中心构成的圆心角为α,其中0.9*π/n<α<1.1*π/n,n为少磁极状态下的转子铁芯的磁极数。
在其中一个实施例中,第一隔磁槽沿转子铁芯的径向的两端分别靠近转子的内圆和转子的外圆,且第一隔磁槽靠近转子内圆的一端的厚度大于另一端的厚度。
在其中一个实施例中,电机转子结构还包括第四隔磁槽,设置于第一隔磁槽靠近转子外圆的端部,第四隔磁槽的宽度方向平行于转子铁芯的切向。
一种永磁电机,包括定子铁芯和电机转子结构,电机转子结构为上述任一方案所述的电机转子结构。
本申请的有益效果包括:
通过设置两种矫顽力大小不同的永磁体,并利用第二隔磁槽将两种矫顽力大小不同的永磁体隔开,实现了电机转子内部磁场可根据需要进行调节。当电机运行于低速大转矩工况时,电机通过电枢电流改变转子铁芯中矫顽力相对较低的永磁体的磁化方向,使转子铁芯为多磁极状态,此时电机磁极数多,产生的转矩较大。当电机运行于高速小转矩工况时,电机通过电枢电流改变转子铁芯中矫顽力相对较低的永磁体的磁化方向,使转子铁芯调节为少磁极状态,电机磁极数减小,产生的转矩较小,但是相同电频率下转速增加。从而该电机转子结构,能够依据电机运行工况调整内部磁场,使转子铁芯分为多磁极状态和少磁 极状态,增大电机高效区,扩大电机运行范围。通过第二隔磁槽,能够减小甚至消除磁化时矫顽力相对较高的永磁体对矫顽力相对较低的永磁体的影响,降低电枢绕组改变矫顽力相对较低永磁体磁化方向的难度,减小磁化电流。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一实施例提供的电机转子结构的结构示意图;
图2为图1所示结构中A处的局部放大图;
图3为本申请另一实施例提供的电机转子结构的结构示意图;
图4为图3所示结构中B处的局部放大图;
图5为图1所示结构的转子铁芯处于少磁极状态时的磁路图;
图6为图1所示结构的转子铁芯处于多磁极状态时的磁路图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
请参见图1所示,本申请一实施例提供的电机转子结构10,包括:转子铁芯100,转子铁芯100沿圆周方向设有多个径向槽110,相邻两个径向槽110之间设有第一隔磁槽120。每个径向槽110中均安装有两种矫顽力大小不同的永磁体,两种矫顽力大小不同的永磁体沿转子铁芯100的径向分布,且两种矫顽力大小不同的永磁体均沿转子铁芯100的切向充磁,两种矫顽力不同的永磁体之间设有第二隔磁槽130。两种矫顽力大小不同的永磁体的 磁化方向相反时,转子铁芯100处于多磁极状态,两种矫顽力大小不同的永磁体的磁化方向相同时,转子铁芯100处于少磁极状态。
可以理解,两种矫顽力大小不同的永磁体,指的是其中一种为矫顽力相对较低的永磁体(如图1所示矫顽力较低的永磁体200),另一种为矫顽力相对较高的永磁体(如图1所示矫顽力较高的永磁体300)。由此,矫顽力相对较低的永磁体的磁化方向发生改变时,矫顽力相对较高的永磁体不发生变化。由此能够改变转子铁芯100的磁极数,以适应于电机的运行状态,提高电机效率。而转子铁芯100处于多磁极状态,指的是转子铁芯100的磁极数相对于少磁极状态时的转子铁芯100的磁极数较多的状态。转子铁芯100的多磁极状态对应的也是电机磁极数较多的状态。转子铁芯100处于少磁极状态,指的是转子铁芯100的磁极数相对于多磁极状态时的转子铁芯100的磁极数较少的状态。转子铁芯100的少磁极状态对应的也是电机磁极数较少的状态。第一隔磁槽120用于将相邻两个径向槽110中的永磁体所产生的磁场隔开,避免发生漏磁现象。第二隔磁槽130用于将每个径向槽110中的两种矫顽力大小不同的永磁体所产生的磁场隔开,以减小甚至消除磁化时矫顽力相对较高的永磁体对矫顽力相对较低的永磁体的影响,降低电枢绕组改变矫顽力相对较低永磁体磁化方向的难度,减小磁化电流。
通过设置两种矫顽力大小不同的永磁体,并利用第二隔磁槽130将两种矫顽力大小不同的永磁体隔开,实现了电机转子内部磁场可根据需要进行调节。当电机运行于低速大转矩工况时,电机通过电枢电流改变转子铁芯100中矫顽力相对较低的永磁体的磁化方向,使转子铁芯100为多磁极状态,此时电机磁极数多,产生的转矩较大。当电机运行于高速小转矩工况时,电机通过电枢电流改变转子铁芯100中矫顽力相对较低的永磁体的磁化方向,使转子铁芯100调节为少磁极状态,电机磁极数减小,产生的转矩较小,但是相同电频率下转速增加。从而该电机转子结构10,能够依据电机运行工况调整内部磁场,使转子铁芯100分为多磁极状态和少磁极状态,增大电机高效区,扩大电机运行范围。
参见图1,作为一种可实施的方式,第二隔磁槽130的沿宽度方向的两端均靠近转子外圆。通过将第二隔磁槽130的两端延伸到转子外圆一侧,能够有效减小漏磁。在一个实施例中,第二隔磁槽130的厚度范围为2g~5g,其中g为电机气隙。参见图2,第二隔磁槽130的厚度用d3示出,即2g<d3<5g。通过合理设计第二隔磁槽130的厚度,可保证第二隔磁槽130有效隔磁。
参见图1和图2,在一个实施例中,第二隔磁槽130靠近转子外圆的端部的中心与径向槽110靠近转子外圆的端部的中心构成的圆心角为α,其中0.9*π/n<α<1.1*π/n,n为少磁极状态下的转子铁芯100的磁极数。通过如此设计,可保证少磁极状态下的转子铁 芯100每极极弧系数一致。
参见图3,在一个实施例中,电机转子结构10还包括第三隔磁槽140,设置于第二隔磁槽130靠近转子外圆的两个端部。第三隔磁槽140的宽度方向平行于转子铁芯100的切向。通过设置第三隔磁槽140,可保证转子铁芯100的每极极弧系数一致。
其中,对第三隔磁槽140的尺寸可以进行一些约束。可以理解,第三隔磁槽140的长度方向为沿转子铁芯100的轴向方向。第三隔磁槽140的长度与转子铁芯100的轴向长度相关,一般转子铁芯100的轴向长度有多长,第三隔磁槽140就有多长。前述的对第三隔磁槽140尺寸的约束主要是约束其宽度和厚度。参见图4,在一个实施例中,第三隔磁槽140的厚度范围可以为2g~5g,其中g为电机气隙。如图4所示,第三隔磁槽140的厚度用d4示出,即2g<d4<5g。假设第三隔磁槽140的宽度为L3,径向槽110靠近转子外圆的一侧的厚度为d,则有0.8*d<L3<1.2*d。通过对第三隔磁槽140尺寸合理设计,能够保证转子铁芯100的结构合理,保证电机的稳定运行。
需要说明的是,径向槽110与安装于其中的永磁体是相适配的。径向槽110的厚度可用永磁体的厚度来表示。如图3所示,靠近转子外圆一侧的永磁体为矫顽力较低的永磁体200,在矫顽力较低的永磁体200厚度均匀的前提下,上述径向槽110靠近转子外圆的一侧的厚度d等同于该矫顽力较低的永磁体200的厚度(如图2中d1所示的尺寸)。可以理解,假设靠近转子外圆一侧的永磁体为矫顽力较高的永磁体300,在矫顽力较高的永磁体300厚度均匀的前提下,上述径向槽110靠近转子外圆的一侧的厚度d等同于该矫顽力较高的永磁体300的厚度(如图2中d2所示的尺寸)。
参见图1,作为一种可实施的方式,第一隔磁槽120沿转子铁芯100的径向的两端分别靠近转子的内圆和转子的外圆,且第一隔磁槽120靠近转子内圆的一端的厚度大于另一端的厚度。通过如此设计,可保证第一隔磁槽120有效隔磁。
参见图3,在一个实施例中,电机转子结构10还包括第四隔磁槽150。第四隔磁槽150设置于第一隔磁槽120靠近转子外圆的端部,第四隔磁槽150的宽度方向平行于转子铁芯100的切向。通过设置第四隔磁槽150,可保证转子铁芯100的每极极弧系数一致。
其中,对第四隔磁槽150的尺寸可以进行一些约束。参见上述第三隔磁槽140的尺寸的说明,第四隔磁槽150的厚度范围可以为2g~5g,其中g为电机气隙。假设第四隔磁槽150的宽度为L4,径向槽110靠近转子外圆的一侧的厚度为d,则有0.8*d<L4<1.2*d。通过对第四隔磁槽150尺寸合理设计,能够保证转子铁芯100的结构合理,保证电机的稳定运行。
两种矫顽力大小不同的永磁体在径向槽110中的布置情况可以为多种。参见图1,作 为一种可实施的方式,两种矫顽力大小不同的永磁体分别为矫顽力较低的永磁体200和矫顽力较高的永磁体300,矫顽力较低的永磁体200设置于径向槽110的靠近转子外圆的一侧,矫顽力较高的永磁体300设置于径向槽110的靠近转子内圆的一侧。本实施例中,位于同一径向槽110中的矫顽力较低的永磁体200和矫顽力较高的永磁体300分别只有一组。该一组矫顽力较低的永磁体200可以是一个整块的永磁体,也可以是由多块永磁体沿转子铁芯100轴向分布构成。该一组矫顽力较高的永磁体300也可以是一个整块的永磁体,或者可以是由多块永磁体沿转子铁芯100轴向分布构成。该一组矫顽力较低的永磁体200设置于径向槽110的靠近转子外圆的一侧,该一组矫顽力较高的永磁体300设置于径向槽110的靠近转子内圆的一侧。通过将矫顽力相对较低的永磁体设置于靠近转子外圆一侧,可有效降低对矫顽力相对较低的永磁体的磁化难度,便于改变转子铁芯100的磁极数。
在其他实施例中,也可以是将上述的一组矫顽力较低的永磁体200设置于径向槽110的靠近转子内圆的一侧,将上述的一组矫顽力较高的永磁体300设置于径向槽110的靠近转子外圆的一侧。又或者,矫顽力较低的永磁体200的组数和矫顽力较高的永磁体300的组数可以不是只有一组。例如,位于同一径向槽110中的矫顽力较低的永磁体200为两组,矫顽力较高的永磁体300为一组。两组矫顽力较低的永磁体200和一组矫顽力较高的永磁体300沿转子铁芯100的径向交替布置于径向槽110内。这样,两组矫顽力较低的永磁体200可形成两对磁极,一组矫顽力较高的永磁体300可形成一对磁极。相较于上述位于同一径向槽110中的矫顽力较低的永磁体200和矫顽力较高的永磁体300分别只有一组的结构磁极数较多,转子铁芯100中可供变化的磁极数多。
参见图5和图6,图5示出了转子铁芯100处于少磁极状态的磁路示意图,图5中转子外圆内侧的N、S示出了各永磁体的磁极分布图,图5中转子外圆外侧的N、S示出的是少磁极状态下的转子铁芯100的磁极分布。
图6示出了转子铁芯100处于多磁极状态的磁路示意图。图6中转子外圆内侧的N、S示出了各永磁体的磁极分布图,图6中转子外圆外侧的N、S示出的是多磁极状态下的转子铁芯100的磁极分布。
参见图5和图6,作为一种可实施的方式,转子铁芯100处于少磁极状态时,转子铁芯100的磁极数为n,转子铁芯100处于多磁极状态时,转子铁芯100的磁极数为2n。转子铁芯100中具有的两种矫顽力大小不同的永磁体,两种矫顽力大小不同的永磁体各自形成的磁极数是相等的。换句话说,就是转子铁芯100中,矫顽力较高的永磁体300的组数与矫顽力较低的永磁体200的组数相同,即矫顽力较高的永磁体300的磁极数与矫顽力较低的永磁体200的磁极数相同。参见图5,当两种矫顽力大小不同的永磁体的磁化方向相 同时,转子铁芯100处于少磁极状态,转子铁芯100的磁极数为n。参见图6,当两种矫顽力大小不同的永磁体的磁化方向相反时,转子铁芯100处于少磁极状态,转子铁芯100的磁极数为2n。如此设计,使得转子铁芯100的结构更加简化,便于永磁体的排布。
参见图2,作为一种可实施的方式,两种矫顽力不同的永磁体分别为矫顽力较低的永磁体200和矫顽力较高的永磁体300,矫顽力较低的永磁体200的矫顽力为H1,厚度为d1,矫顽力较高的永磁体300的矫顽力为H2,厚度为d2,则有d2*H2/H1*0.9<d1<d2*H2/H1*1.1。如果矫顽力较低的永磁体200厚度过小,会使矫顽力较低的永磁体200抗退磁能力不足,造成电机运行时不可控退磁问题。而矫顽力较低的永磁体200厚度过大,则会增加调磁时的磁化难度,增大磁化电流,使电机调磁困难。通过对矫顽力较低的永磁体200的厚度尺寸进行如此设计,可以保证两种矫顽力不同的永磁体的抗退磁能力基本相同,避免造成电机运行时不可控退磁问题或者电机调磁困难的问题。
参见图2,作为一种可实施的方式,两种矫顽力不同的永磁体分别为矫顽力较低的永磁体200和矫顽力较高的永磁体300,矫顽力较低的永磁体200的剩磁为Br1,宽度为L1,矫顽力较高的永磁体300的剩磁为Br2,宽度为L2,则有L2*Br2/Br1*0.9<L1<L2*Br2/Br1*1.1。通过如此设计,可以保证两种矫顽力不同的永磁体的磁通量基本相同,保证电机转矩脉动不会过大。
本申请一实施例还提供了一种永磁电机,包括定子铁芯和电机转子结构,电机转子结构为上述任一方案所述的电机转子结构10。由于电子转子结构10具有上述有益效果,在永磁电机运行状态发生变化时,可利用电枢电流对转子铁芯100上矫顽力相对较低的永磁体的磁化方向进行改变,实现电机转子磁极数调节,达到增加调速范围的目的。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种电机转子结构,其特征在于,包括:转子铁芯(100),所述转子铁芯(100)沿圆周方向设有多个径向槽(110),相邻两个所述径向槽(110)之间设有第一隔磁槽(120);
    每个所述径向槽(110)中均安装有两种矫顽力大小不同的永磁体,所述两种矫顽力大小不同的永磁体沿所述转子铁芯(100)的径向分布,且所述两种矫顽力大小不同的永磁体均沿所述转子铁芯(100)的切向充磁,所述两种矫顽力不同的永磁体之间设有第二隔磁槽(130);
    所述两种矫顽力大小不同的永磁体的磁化方向相反时,所述转子铁芯(100)处于多磁极状态,所述两种矫顽力大小不同的永磁体的磁化方向相同时,所述转子铁芯(100)处于少磁极状态。
  2. 根据权利要求1所述的电机转子结构,其特征在于,所述两种矫顽力大小不同的永磁体分别为矫顽力较低的永磁体(200)和矫顽力较高的永磁体(300),所述矫顽力较低的永磁体(200)设置于所述径向槽(110)的靠近转子外圆的一侧,所述矫顽力较高的永磁体(300)设置于所述径向槽(110)的靠近转子内圆的一侧。
  3. 根据权利要求1所述的电机转子结构,其特征在于,所述转子铁芯(100)处于少磁极状态时,所述转子铁芯(100)的磁极数为n,所述转子铁芯(100)处于多磁极状态时,所述转子铁芯(100)的磁极数为2n。
  4. 根据权利要求1所述的电机转子结构,其特征在于,所述两种矫顽力不同的永磁体分别为矫顽力较低的永磁体(200)和矫顽力较高的永磁体(300),所述矫顽力较低的永磁体(200)的矫顽力为H1,厚度为d1,所述矫顽力较高的永磁体(300)的矫顽力为H2,厚度为d2,则有d2*H2/H1*0.9<d1<d2*H2/H1*1.1。
  5. 根据权利要求1所述的电机转子结构,其特征在于,所述两种矫顽力不同的永磁体分别为矫顽力较低的永磁体(200)和矫顽力较高的永磁体(300),所述矫顽力较低的永磁体(200)的剩磁为Br1,宽度为L1,所述矫顽力较高的永磁体(300)的剩磁为Br2,宽度为L2,则有L2*Br2/Br1*0.9<L1<L2*Br2/Br1*1.1。
  6. 根据权利要求1所述的电机转子结构,其特征在于,所述第二隔磁槽(130)的沿宽度方向的两端均靠近转子外圆。
  7. 根据权利要求6所述的电机转子结构,其特征在于,还包括第三隔磁槽(140),设置于所述第二隔磁槽(130)靠近转子外圆的两个端部,所述第三隔磁槽(140)的宽度方向平行于所述转子铁芯(100)的切向。
  8. 根据权利要求7所述的电机转子结构,其特征在于,所述第三隔磁槽(140)的厚度范围为2g~5g,其中g为电机气隙。
  9. 根据权利要求7所述的电机转子结构,其特征在于,所述径向槽(110)靠近转子外圆的一侧的厚度为d,所述第三隔磁槽(140)的宽度为L3,则0.8*d<L3<1.2*d。
  10. 根据权利要求1所述的电机转子结构,其特征在于,所述第二隔磁槽(130)的厚度范围为2g~5g,其中g为电机气隙。
  11. 根据权利要求1所述的电机转子结构,其特征在于,所述第二隔磁槽(130)靠近转子外圆的端部的中心与所述径向槽(110)靠近转子外圆的端部的中心构成的圆心角为α,其中0.9*π/n<α<1.1*π/n,n为少磁极状态下的所述转子铁芯(100)的磁极数。
  12. 根据权利要求1所述的电机转子结构,其特征在于,所述第一隔磁槽(120)沿所述转子铁芯(100)的径向的两端分别靠近转子的内圆和转子的外圆,且所述第一隔磁槽(120)靠近转子内圆的一端的厚度大于另一端的厚度。
  13. 根据权利要求12所述的电机转子结构,其特征在于,还包括第四隔磁槽(150),设置于所述第一隔磁槽(120)靠近转子外圆的端部,所述第四隔磁槽(150)的宽度方向平行于所述转子铁芯(100)的切向。
  14. 一种永磁电机,其特征在于,包括定子铁芯和电机转子结构,所述电机转子结构为权利要求1-13任一项所述的电机转子结构(10)。
PCT/CN2019/103979 2018-11-14 2019-09-02 电机转子结构及永磁电机 WO2020098339A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021524457A JP7185777B2 (ja) 2018-11-14 2019-09-02 モータの回転子構造及び永久磁石モータ
US17/236,120 US11336135B2 (en) 2018-11-14 2021-04-21 Motor rotor structure and permanent magnet motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811351661.3 2018-11-14
CN201811351661.3A CN109347229B (zh) 2018-11-14 2018-11-14 电机转子结构及永磁电机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/236,120 Continuation US11336135B2 (en) 2018-11-14 2021-04-21 Motor rotor structure and permanent magnet motor

Publications (1)

Publication Number Publication Date
WO2020098339A1 true WO2020098339A1 (zh) 2020-05-22

Family

ID=65315388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103979 WO2020098339A1 (zh) 2018-11-14 2019-09-02 电机转子结构及永磁电机

Country Status (4)

Country Link
US (1) US11336135B2 (zh)
JP (1) JP7185777B2 (zh)
CN (1) CN109347229B (zh)
WO (1) WO2020098339A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301958A (zh) * 2018-11-08 2019-02-01 珠海格力电器股份有限公司 电机转子结构及永磁电机
CN109347229B (zh) 2018-11-14 2024-05-14 珠海格力电器股份有限公司 电机转子结构及永磁电机
CN109873511B (zh) * 2019-03-04 2021-03-02 哈尔滨工业大学 反凸极式切向充磁型多相永磁容错电机
EP3952066A4 (en) * 2019-03-28 2022-04-06 Mitsubishi Electric Corporation ELECTRIC LATHE
CN110518727B (zh) * 2019-08-30 2021-10-29 珠海格力节能环保制冷技术研究中心有限公司 转子结构及具有其的电机
CN113629916B (zh) * 2021-08-05 2022-07-15 中山大洋电机股份有限公司 一种转子结构及其应用的永磁同步电机
US20230307970A1 (en) * 2022-03-22 2023-09-28 Niron Magnetics, Inc. Magnetic circuit with more than one magnet type

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202231589U (zh) * 2011-09-29 2012-05-23 中国矿业大学 一种可控励磁永磁同步电机
CN102624181A (zh) * 2012-03-30 2012-08-01 岳群生 一种永磁同步电动机优化设计方法
JP5977155B2 (ja) * 2012-11-26 2016-08-24 アイチエレック株式会社 永久磁石電動機
CN106208450A (zh) * 2016-08-01 2016-12-07 哈尔滨工业大学 增磁式内置切向可调磁通电机
CN109347229A (zh) * 2018-11-14 2019-02-15 珠海格力电器股份有限公司 电机转子结构及永磁电机
CN209104916U (zh) * 2018-11-14 2019-07-12 珠海格力电器股份有限公司 电机转子结构及永磁电机

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048371U (ja) * 1983-09-09 1985-04-05 株式会社日立製作所 回転子
FR2791483B1 (fr) 1999-03-22 2004-06-25 Valeo Equip Electr Moteur Machine tournante comportant des aimants de compositions differentes
US20070152527A1 (en) * 2005-12-23 2007-07-05 Okuma Corporation Reluctance motor
JP5085071B2 (ja) * 2006-08-11 2012-11-28 株式会社東芝 永久磁石式回転電機の回転子
JP5134846B2 (ja) * 2007-03-26 2013-01-30 株式会社東芝 永久磁石電動機ドライブシステム
CN101232205A (zh) * 2008-01-25 2008-07-30 东南大学 可变磁通永磁同步电动机
JP5361261B2 (ja) * 2008-06-20 2013-12-04 株式会社東芝 永久磁石式回転電機
JP5329902B2 (ja) 2008-10-10 2013-10-30 アスモ株式会社 回転電機のロータ構造
JP5889340B2 (ja) 2012-01-30 2016-03-22 三菱電機株式会社 永久磁石埋込型電動機の回転子、及びこの回転子を備えた電動機、及びこの電動機を備えた圧縮機、及びこの圧縮機を備えた空気調和機
CN202475066U (zh) * 2012-03-31 2012-10-03 浙江中龙电机股份有限公司 永磁同步电动机转子切向结构
JP5904907B2 (ja) 2012-08-28 2016-04-20 三菱電機株式会社 回転電機の回転子
WO2014033863A1 (ja) 2012-08-29 2014-03-06 株式会社安川電機 回転電機およびロータ
US9692266B2 (en) * 2014-07-22 2017-06-27 GM Global Technology Operations LLC Spoke-type PM machine with bridge
CN106300729B (zh) * 2015-05-29 2019-11-12 珠海格力电器股份有限公司 永磁电机转子及永磁同步电机
WO2017021078A1 (en) * 2015-08-05 2017-02-09 Abb Schweiz Ag Rotor for electric machine, and manufacturing method of rotor
JP6452841B2 (ja) * 2015-11-02 2019-01-16 三菱電機株式会社 電動機、ロータ、圧縮機および冷凍空調装置
JP6709712B2 (ja) * 2016-10-07 2020-06-17 東芝産業機器システム株式会社 同期リラクタンス型回転電機
KR101918064B1 (ko) * 2017-03-14 2018-11-13 엘지전자 주식회사 가변자속 모터
CN107994703A (zh) * 2017-12-21 2018-05-04 珠海格力节能环保制冷技术研究中心有限公司 电机转子和永磁电机
CN108023421B (zh) * 2017-12-21 2024-05-28 珠海格力电器股份有限公司 电机转子和永磁电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202231589U (zh) * 2011-09-29 2012-05-23 中国矿业大学 一种可控励磁永磁同步电机
CN102624181A (zh) * 2012-03-30 2012-08-01 岳群生 一种永磁同步电动机优化设计方法
JP5977155B2 (ja) * 2012-11-26 2016-08-24 アイチエレック株式会社 永久磁石電動機
CN106208450A (zh) * 2016-08-01 2016-12-07 哈尔滨工业大学 增磁式内置切向可调磁通电机
CN109347229A (zh) * 2018-11-14 2019-02-15 珠海格力电器股份有限公司 电机转子结构及永磁电机
CN209104916U (zh) * 2018-11-14 2019-07-12 珠海格力电器股份有限公司 电机转子结构及永磁电机

Also Published As

Publication number Publication date
US20210242736A1 (en) 2021-08-05
US11336135B2 (en) 2022-05-17
JP7185777B2 (ja) 2022-12-07
JP2022506845A (ja) 2022-01-17
CN109347229B (zh) 2024-05-14
CN109347229A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2020098339A1 (zh) 电机转子结构及永磁电机
CN109274240A (zh) 复合型非晶合金轴向磁通电机
CN103208894B (zh) 自起动式同步磁阻电机及其转子
CN103441592A (zh) 新型磁通可调永磁同步电机
CN104578659A (zh) 一种磁通切换型并联混合永磁记忆电机
CN106026583A (zh) 一种基于磁场调制双定子混合励磁电动机
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
CN110601481B (zh) 一种双转子永磁同步磁阻电机及配置方法
WO2020098345A1 (zh) 电机转子、永磁电机和洗衣机
US11984764B2 (en) Rotor and permanent magnet motor
CN209805521U (zh) 直接起动同步磁阻电机转子结构、电机
CN108768027A (zh) 电机转子和永磁电机
WO2020093773A1 (zh) 电机转子结构及永磁电机
WO2020088085A1 (zh) 电机转子及永磁电机
CN215186137U (zh) 转子组件和自起动永磁同步磁阻电机
CN210142972U (zh) 一种高磁阻扭矩集中绕组无刷电机
JP2015053801A (ja) 回転電機
CN208955768U (zh) 电机转子及永磁电机
CN112968545A (zh) 转子组件和自起动永磁同步磁阻电机
CN112003401A (zh) 转子、电机、压缩机及空调器、车辆
US9225213B2 (en) Electrical rotating machine
CN113872406B (zh) 一种双转子轴向混合励磁双凸极电机
CN108777522A (zh) 电机转子和永磁电机
CN208623519U (zh) 一种高功率密度高效率的轴向磁通永磁电机
WO2016203530A1 (ja) 永久磁石埋込型電動機及び圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885140

Country of ref document: EP

Kind code of ref document: A1