WO2020097944A1 - 一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法 - Google Patents

一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法 Download PDF

Info

Publication number
WO2020097944A1
WO2020097944A1 PCT/CN2018/116072 CN2018116072W WO2020097944A1 WO 2020097944 A1 WO2020097944 A1 WO 2020097944A1 CN 2018116072 W CN2018116072 W CN 2018116072W WO 2020097944 A1 WO2020097944 A1 WO 2020097944A1
Authority
WO
WIPO (PCT)
Prior art keywords
yaw error
interval
data set
inherent deviation
wind speed
Prior art date
Application number
PCT/CN2018/116072
Other languages
English (en)
French (fr)
Inventor
杨秦敏
鲍雨浓
陈积明
孙优贤
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to PCT/CN2018/116072 priority Critical patent/WO2020097944A1/zh
Publication of WO2020097944A1 publication Critical patent/WO2020097944A1/zh
Priority to US17/319,120 priority patent/US11649803B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/329Azimuth or yaw angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/802Calibration thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a method for identifying and compensating the inherent deviation of the yaw error of a wind turbine, in particular to a method for identifying and compensating the inherent deviation of the yaw error of a wind turbine based on a true power curve.
  • Figure 2 is a schematic diagram of the yaw control strategy of the wind turbine.
  • the specific control strategy of the yaw system and actuator is to ensure that the value of the yaw error is as small as possible.
  • the physical meaning in practice is to control as much as possible.
  • the sweep surface of the blades of the wind turbine is directly facing the incoming wind direction, that is, the angle of controlling the yaw error ⁇ is as close to 0 ° as possible.
  • the determination of the yaw error angle of the wind turbine adopts a direct measurement method: that is, the wind direction indicator is installed behind the nacelle and the zero line of the wind direction indicator is calibrated to be parallel to the direction of the nacelle; Under normal operating conditions, the sensor feeds back the measured wind direction value to the yaw system. Based on its own yaw control strategy, the yaw system controls the cabin to adjust to the direction of the incoming wind.
  • the yaw system controls the cabin to adjust to the direction of the incoming wind.
  • the zero error of the wind turbine cabin wind direction indicator needs to be determined. For this problem, it is very meaningful to identify the inherent deviation value of yaw error and feedback and compensate it to the yaw system, so as to achieve the purpose of improving the output performance of the wind power generation system.
  • the purpose of the present invention is to fill the technical gap in the field of performance improvement of wind turbines based on intelligent identification and compensation technology based on data analysis, and to propose a method for identifying and compensating the inherent deviation of yaw errors of wind turbines based on real power curves.
  • This method is based on data analysis and fits the true power curve of the wind turbine in different yaw error intervals under the premise of considering the power curve outlier detection and designs corresponding indicators to quantify the performance, and finally combines simple and effective yaw
  • the identification criterion of inherent deviation of error and the compensation strategy of inherent deviation of yaw error realize the identification and compensation of inherent deviation of yaw error, and have high practical application value for improving the power generation performance of wind turbine.
  • a method for identifying and compensating the inherent deviation of yaw error of a wind turbine based on a true power curve including the following steps:
  • the identification criterion of yaw error inherent deviation is defined as follows: the quantitative performance index PI k of the true power curve ⁇ PC k ⁇ under all M yaw error intervals in step 4) is arranged from large to small, and the maximum quantization performance is determined The index of the interval corresponding to the index PI max is k ′, then the calculation formula of the identification result of the inherent deviation value of yaw error ⁇ im is as follows
  • ⁇ lb and ⁇ ub are the lower and upper bounds of the yaw error range to be analyzed, respectively.
  • step 2) of the method the method of dividing the interval of the yaw error inherent deviation analysis data set ⁇ X i ⁇ is as follows:
  • step 3 the process of acquiring the true power curve of the wind turbine under M yaw error intervals is as follows:
  • step 3-d) Use the mean distance discrimination (AVDC) outlier detection algorithm to detect the 2M ′ intervals in step 3-c) respectively Perform suspected outlier detection and record the number of suspected outliers in the jth interval as
  • the set of suspected outliers in the normalized yaw error inherent deviation analysis data set is
  • the mean distance discrimination (AVDC) outlier detection algorithm is specifically: for the interval where the number of data M ′ k, seg, j is less than the given minimum threshold ⁇ M ′ , it is considered that the interval is normalized to the inherent deviation analysis of yaw error Set of suspected outliers in the data set for Otherwise, for the jth wind speed interval or the jth power interval, the normalized yaw error inherent deviation analysis data set within the interval is first calculated Various wind speed-power data points Discriminant distance Further set the proportion of suspected outliers And determine the number of suspected outliers in the j-th interval Judging the distance from big to small Before the sorting method is determined The data constitute the set of suspected outliers in the normalized yaw error inherent deviation analysis data set of the j-th interval
  • n 1, 2, 3, ..., M ′ k, seg, j ;
  • the criterion for determining true outliers is defined as: the data set for inherent deviation analysis of the yaw error of the j-th interval Any data point Q in, if it belongs to a set of suspected outliers And belong to the set of LOF discriminating outliers Or DBSCAN to distinguish outlier sets One, then point Q is the true outlier in the jth interval;
  • the final outlier judgment criterion is defined as: analysis data set for inherent deviation of yaw error Any data point in Q ′, if it is in the normalized yaw error inherent deviation analysis data set The corresponding data point Q in is a true outlier in a wind speed interval or a power interval, then point Q ′ is the yaw error inherent deviation analysis data set The final outlier.
  • step 3-h) Determine the standard data set for the analysis of the inherent deviation of yaw error obtained in step 3-g) The maximum value v max corresponding to the wind speed in, and divide the interval with the fixed wind speed interval ⁇ v as the wind speed interval, and analyze the standard data set of the inherent deviation of the yaw error under the kth yaw error interval Based on the further division of wind speed information, the standard data set for inherent deviation analysis of yaw error in the qth wind speed interval defined as
  • M k, q is the standard data set for inherent deviation analysis of yaw error at the qth wind speed interval
  • M k is the standard data set for the analysis of the inherent deviation of yaw error in the k-th yaw error interval
  • the number of the wind speed interval is divided, the calculation formula is as follows
  • the function is an upward rounding function
  • d k is the total chord length normalized by the coordinates corresponding to the center points of all power curve fittings, ie
  • the least square B spline fitting algorithm is used to fit the power curve under the k-th yaw error interval, and the fitting function B k (t) is defined as follows:
  • step 3-c) of the method the normalized yaw error inherent deviation analysis data set
  • the division method is as follows:
  • step 3-d) of the method the mean distance discrimination (AVDC) outlier detection algorithm is used.
  • AVDC mean distance discrimination
  • the function is an upward rounding function
  • step 4) of the method the definition of the quantitative performance indicator PI k is as follows:
  • N h is the value converted from 1 year to hours;
  • CAP is the rated power of the wind turbine to be analyzed; Is the median wind speed in the k-th yaw error interval and in the j-th wind speed interval, ie And Is the true power curve ⁇ PC k ⁇ of the k-th yaw error interval
  • the F ( ⁇ ) function is the cumulative probability distribution function of Rayleigh distribution, the specific formula is as follows
  • v ave is the average annual wind speed of the wind turbine to be analyzed.
  • the present invention has the following innovative advantages and significant effects:
  • the method of restricting the operating conditions is carried out by dividing the wind speed and power interval Sectional research to ensure that the power curve data is unified to a certain extent in the operating conditions of the wind turbine; at the same time, combining the advantages of multiple outlier detection algorithms, it breaks through the application limit of a single outlier detection algorithm and makes the wind turbine power curve fit The result is more true and accurate;
  • FIG. 1 is a flowchart of a method for identifying and compensating the inherent deviation of yaw error of a wind turbine based on power curve analysis of the present invention
  • FIG. 2 is a schematic diagram of the angle correlation relationship of the inherent deviation of the yaw error of the wind turbine in the application field of the present invention
  • FIG. 3 is a scatter diagram of the original data of the power curve of the wind turbine in step 1) in the embodiment of the present invention
  • step 2-a is a histogram of the frequency distribution of yaw error before compensation in step 2-a) in the embodiment of the present invention
  • FIG. 5 is a graph showing the original scatter of the normalized power curve and the related results of wind speed & power division in the step 2-c) to step 3-c) in the embodiment of the present invention with a yaw error interval of [-1 °, 0 °] ;
  • FIG. 6 is an AVDC suspected outlier detection result graph under yaw error interval of [-1 °, 0 °] and wind speed division data in the embodiment;
  • FIG. 10 and FIG. 11 are the LOF discriminating outlier detection result graph and the DBSCAN discriminating outlier detection result graph under the yaw error interval of [-1 °, 0 °] and power division data respectively in the embodiment;
  • 13 is a graph of detection results of real outliers under power division data in an embodiment with a yaw error interval of [-1 °, 0 °];
  • 15 is a graph showing the correlation results of the true power curve of the standard data set for the analysis of the inherent deviation of the yaw error in the embodiment where the yaw error interval is [-1 °, 0 °];
  • 16 and 17 are graphs showing the results of the quantized performance index of the power curve in the yaw error interval before and after the compensation of the inherent deviation of the yaw error in the embodiment.
  • the data used in this embodiment is GH Bladed 3.82.
  • the simulation data in the wind file is used to analyze and study the identification and compensation method of the inherent deviation of the yaw error of the wind turbine.
  • the data sampling interval is 10 minutes, and the data information lasts 5 years, with a total of 284,405 entries.
  • the relevant information included in the data set is shown in Table 1 and Table 2:
  • Variable name Variable meaning Variable unit Wind speed v Current wind speed of wind turbine cabin m / s Active power P Current active power of wind turbine kW Ambient temperature T Wind turbine operating ambient temperature °C Ambient air pressure B Operating pressure of wind turbine Pa Yaw error ⁇ Current wind turbine yaw error °
  • the yaw error measured in GH Bladed does not have the inherent deviation of the yaw error in the measurement process of the wind vane during the actual application process, so the measured value is artificially +5 in the simulation process ° way to simulate the actual deviation of -5 ° yaw error in the actual process.
  • all the above simulation data is used by default to implement the identification and compensation method of the inherent deviation of the yaw error.
  • the method result is the identification result of the inherent deviation of the yaw error of the wind turbine module and the method is verified by the compensation
  • the detailed implementation steps are as follows:
  • the function is an upward rounding function
  • the criterion for determining true outliers is defined as: the data set for inherent deviation analysis of the yaw error of the j-th interval Any data point Q in, if it belongs to a set of suspected outliers And belong to the set of LOF discriminating outliers Or DBSCAN to distinguish outlier sets One, then point Q is the true outlier in the jth interval; for this embodiment, the normalized yaw error under the wind speed interval (ws) and power interval (ap) determined based on the true outlier judgment criteria
  • the detection results of the true outliers in the inherent deviation analysis data set are shown as “ ⁇ ” symbols in FIG. 12 and FIG. 13, respectively, and the remaining normal data points are indicated by “•” symbols.
  • the final outlier judgment criterion is defined as: analysis data set for inherent deviation of yaw error Any data point in Q ′, if it is in the normalized yaw error inherent deviation analysis data set The corresponding data point Q in is a real outlier in a wind speed interval or a real outlier in a power interval, then point Q ′ is the yaw error inherent deviation analysis data set The final outlier.
  • the true outlier detection result of the normalized yaw error inherent deviation analysis data set is judged based on the final outlier judgment criterion, that is, the result of the ⁇ Outlier k ⁇ data set is shown by the “ ⁇ ” symbol in FIG. 14 It shows that the final normal data points are all indicated by the " ⁇ " symbol.
  • step 3-h) Determine the standard data set for the analysis of the inherent deviation of the yaw error obtained in step 3-g) The maximum value v max corresponding to the wind speed in, and divide the interval with the fixed wind speed interval ⁇ v as the wind speed interval, and analyze the standard data set of the inherent deviation of the yaw error under the kth yaw error interval Based on the further division of wind speed information, the standard data set for inherent deviation analysis of yaw error in the qth wind speed interval defined as
  • M k, q is the standard data set for inherent deviation analysis of yaw error at the qth wind speed interval
  • M k is the standard data set for the analysis of the inherent deviation of yaw error in the k-th yaw error interval
  • the number of the wind speed interval is divided, the calculation formula is as follows
  • the function is an upward rounding function
  • d k is the total chord length normalized by the coordinates corresponding to the center points of all power curve fittings, ie
  • the least square B spline fitting algorithm is used to fit the power curve under the k-th yaw error interval, and the fitting function B k (t) is defined as follows:
  • N h is the value converted from 1 year to hours;
  • CAP is the rated power of the wind turbine to be analyzed; Is the median wind speed in the k-th yaw error interval and in the j-th wind speed interval, ie And Is the true power curve ⁇ PC k ⁇ of the k-th yaw error interval
  • the F ( ⁇ ) function is the cumulative probability distribution function of Rayleigh distribution, the specific formula is as follows
  • v ave is the average annual wind speed of the wind turbine to be analyzed.
  • the values of relevant important parameters are as follows: N h is calculated as 8760 according to 365 days in a year; CAP is the rated power value of this type of wind turbine, which is 1550kW; v ave is the average wind speed of the simulated wind file 7m / s , Corresponding to the calculation results of the quantized performance index PI k of the true power curve under 20 yaw error intervals, as shown in FIG. 16.
  • the identification criterion of yaw error inherent deviation is defined as follows: the quantitative performance index PI k of the true power curve ⁇ PC k ⁇ under all M yaw error intervals in step 4) is arranged from large to small, and the maximum quantization performance is determined The index of the interval corresponding to the index PI max is k ′, then the calculation formula of the identification result of the inherent deviation value of yaw error ⁇ im is as follows
  • ⁇ lb and ⁇ ub are the lower and upper bounds of the yaw error range to be analyzed, respectively.
  • the method for identifying and compensating the inherent deviation of the yaw error of the wind turbine based on the real power curve mainly includes the division of the yaw error interval, the detection of the outliers of the power curve data of the wind turbine, the fitting of the true power curve of the wind turbine, and the quantitative index of the power curve It is composed of calculation and identification and compensation of inherent deviation of yaw error.
  • Figure 1 is the specific flow of real-time and application of the identification and compensation method of the inherent deviation of the yaw error of the wind turbine based on the real power curve. The entire embodiment is analyzed based on the SCADA data of the wind turbine according to the process shown in FIG.
  • Figures 2 to 17 are the results of various links in the process of identifying and compensating the inherent deviation of the yaw error of the wind turbine using the method based on the real power curve of the present invention for identifying and compensating the inherent deviation of the yaw error of the wind turbine.
  • Enterprises that increase demand have strong application value and significance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法。该方法基于包括风速、有功功率以及偏航误差等在内的风电机组数据采集与监视控制(SCADA)***实时运行数据,首先对数据进行一定程度的预处理之后依据一定偏航误差间隔划分功率曲线数据,并结合离群点判别方法通过真实功率曲线拟合流程分别对不同偏航误差间隔下的功率曲线进行拟合,进一步将不同功率曲线进行量化分析并基于区间判断准则确定偏航误差固有偏差值的区间范围,最终将辨识得到的固有偏差值补偿至偏航误差测量值上。该方法基于数据驱动,对风电机组运行数据无特殊要求,具有较强的普适性,对风电机组的性能提升有着很强的应用价值。

Description

一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法 技术领域
本发明涉及一种风电机组偏航误差固有偏差辨识及补偿方法,特别涉及一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法。
背景技术
在传统化石能源资源匮乏和污染严重的现代社会,风能作为一种无污染、可再生的新能源而广泛为大众所青睐,风电产业也由此成为国内外大力发展的新型可再生能源产业之一。在我国,近十年来有关风电场的建设与相关研究工作无论是从数量上还是质量上来说都有着显著的提升,但在大力发展风力发电行业的同时,也伴随着风电机组自身的不断退化所导致的一系列负面因素。现今风电机组在使用的过程中,由于风速具有间歇性与高度不确定性的特点,对风电机组本身的性能评估造成了较大的影响,而准确对风电机组的性能状况进行评估并积极探究风电机组的性能提升有效手段则是提高风电在新能源发电中竞争力的重中之重。
目前,风力发电***在应对风向变化时,通过偏航***进行调整的方式来获得最大的风能捕获效率。如图2所示为风电机组偏航控制策略示意图,其中偏航***及执行器的具体控制策略是希望保证偏航误差的值尽可能的小,体现到实际中的物理意义即为尽可能控制风电机组的叶片扫掠面正对来流风向,即控制偏航误差θ的角度尽可能的接近0°。在当今风电行业的相关应用中,风电机组对于偏航误差角度的确定采用直接测量的方式:即在机舱后方安装风向仪并将风向仪零刻线的位置校准至与机舱方向平行;在风电机组的正常运行状况下,传感器将测量得到的风向值反馈给偏航***,偏航***基于自身的偏航控制策略,控制机舱向正对来流风方向调整。但风向仪在实际安装与运行维护时主要存在着以下两大问题:
(1)装机工人往往不会借助测量设备,而是仅凭经验或目测的方式进行风向仪零刻线位置的校准;
(2)风向仪在实际运行下的反复转动过程中同样可能由于机械原因出现回程误差。这两方面的逐渐积累往往会给偏航误差角度的测量带来较大的误差,从而影响偏航***的性能。
因此,在基于数据分析的智能辨识与补偿技术在风电机组的性能提升领域的相关研究仍然处于技术空白的背景下,基于控制器改进的研究思路,需要针对风电机组机舱风向仪零位误差的确定这一问题,将偏航误差固有偏差值进行辨识并反馈补偿至偏航***中,从而达到提升风力发电***出力性能的目的是十分有意义的。
发明内容
本发明目的在于填补基于数据分析的智能辨识与补偿技术在风电机组的性能提升领域的技术空白,提出一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法。该方法基于数据分析,在考虑功率曲线离群点检测的前提下对风电机组在不同偏航误差区间下的真实功率曲线进行拟合并设计相应的指标进行性能量化,最终结合简单有效的偏航误差固有偏差辨识准则及偏航误差固有偏差补偿策略实现对偏航误差固有偏差的辨识与补偿,对风电机组的发电出力性能提升具有很高的实际应用价值。
本发明的目的通过以下的技术方案实现:一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法,包括以下步骤:
1)根据待分析风电机组偏航误差固有偏差辨识及补偿需求,读取相应需求周期内总计N条待分析风电机组的SCADA***中测量得到的风电机组运行数据信息,该信息包含风速{v i}、有功功率{P i}以及偏航误差{θ i},将信息数据集记为风电机组偏航误差固有偏差分析数据集{X i},其中i=1,2,3,…,N;
2)将步骤1)中的风电机组偏航误差固有偏差分析数据集{X i}以一定的偏航误差间隔划分为M个区间,记第k个偏航误差划分区间中的数据个数为N k、偏航误差固有偏差分析数据集为
Figure PCTCN2018116072-appb-000001
其中k=1,2,3,…,M,l=1,2,3,…,N k
3)基于步骤2)中M个区间的偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000002
分别拟合出M条真实功率曲线,记第k个偏航误差区间下的真实功率曲线为{PC k},其中k=1,2,3,…,M;
4)分别计算步骤3)中M个偏航误差区间下的真实功率曲线{PC k}各自的量化性能指标PI k,其中k=1,2,3,…,M;
5)通过偏航误差固有偏差辨识准则确定该风电机组的偏航误差固有偏差值θ im的辨识结果,并将该偏差值θ im直接以增量形式补偿到偏航误差实际测量值θ上,得到最终补偿后的偏航误差真实值θ′,即θ′=θ+θ im
所述偏航误差固有偏差辨识准则定义如下:将步骤4)中所有M个偏航误差区间下真实功率曲线{PC k}的量化性能指标PI k由大到小进行排列,并确定最大量化性能指标PI max对应的区间下标k′,则偏航误差固有偏差值θ im的辨识结果计算公式如下
Figure PCTCN2018116072-appb-000003
其中θ lb和θ ub分别为待分析偏航误差范围的下界和上界。
作为更进一步描述,所述方法步骤2)中,偏航误差固有偏差分析数据集{X i}区间划分方法步骤如下:
2-a)绘制偏航误差{θ i}的频率分布直方图,并基于频率分布直方图的分布情况设定待分析偏航误差范围的下界θ lb和上界θ ub
2-b)设定偏航误差固有偏差分析数据集{X i}的区间划分个数M;
2-c)以
Figure PCTCN2018116072-appb-000004
为偏航误差区间划分间隔,对偏航误差固有偏差分析数据集{X i}进行划分,并仅保留风速和功率信息作为偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000005
作为更进一步描述,所述方法步骤3)中,M个偏航误差区间下风电机组真实功率曲线获取流程如下:
3-a)设定真实功率曲线获取初始区间k=1;
3-b)将第k个偏航误差区间下偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000006
中的风速信息和功率信息分别进行最大值-最小值归一化处理,记归一化偏航误差固有偏差分析数据集为
Figure PCTCN2018116072-appb-000007
其中l=1,2,3,…,N k
3-c)分别按照一定的风速间隔(ws)和功率间隔(ap)将步骤3-b)中的归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000008
划分为M′个区间,并分别记第j个区间中的数据个数为M′ k,seg,j、归一化偏航误差固有偏差分析数据集为
Figure PCTCN2018116072-appb-000009
其中seg={ws,ap},j=1,2,3,…,M′,n=1,2,3,…,M′ k,seg,j
3-d)利用均值距离判别(AVDC)离群点检测算法分别对步骤3-c)中的2M′个区间
Figure PCTCN2018116072-appb-000010
进行疑似离群点检测,并分别记第j个区间的疑似离群点个数为
Figure PCTCN2018116072-appb-000011
归一化偏航误差固有偏差分析数据集中的疑似离群点集为
Figure PCTCN2018116072-appb-000012
其中seg={ws,ap},j=1,2,3,…,M′,n=1,2,3,…,M′ k,seg,j
所述均值距离判别(AVDC)离群点检测算法具体为:对于数据个数M′ k,seg,j小于给定最小阈值δ M′的区间,认为该区间归一化偏航误差固有偏差分析数据集中的疑似离群点集
Figure PCTCN2018116072-appb-000013
Figure PCTCN2018116072-appb-000014
;否则对于第j个风速区间或第j个功率区间,首先计算区间内归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000015
中各风速-功率数据点
Figure PCTCN2018116072-appb-000016
的判别距离
Figure PCTCN2018116072-appb-000017
进一步设定疑似离群点的占比
Figure PCTCN2018116072-appb-000018
并确定第j个区间中疑似离群点个数
Figure PCTCN2018116072-appb-000019
通过由大到小对判别距离
Figure PCTCN2018116072-appb-000020
进行排序的方式确定前
Figure PCTCN2018116072-appb-000021
个数据构成第j个区间的归一化偏航误差固有偏差分析数据集中的疑似离群点集
Figure PCTCN2018116072-appb-000022
所述判别距离
Figure PCTCN2018116072-appb-000023
的计算方式具体如下:
Figure PCTCN2018116072-appb-000024
其中
Figure PCTCN2018116072-appb-000025
分别为归一化偏航误差固有偏差分析数据集第j个风速区间内的功率平均值和第j个功率区间内的风速平均值,其中n=1,2,3,…,M′ k,seg,j
3-e)分别利用局部异常因子(LOF)以及考虑噪声的基于密度的聚类(DBSCAN)这两种离群点检测算法对步骤3-c)中的2M′个区间
Figure PCTCN2018116072-appb-000026
进行判别离群点检测,并分别记第j个区间的判别离群点个数为
Figure PCTCN2018116072-appb-000027
归一化偏航误差固有偏差分析数据集中的判别离群点集为
Figure PCTCN2018116072-appb-000028
其中seg={ws,ap},j=1,2,3,…,M′,n=1,2,3,…,M′ k,seg,j,method={LOF,DBSCAN};
3-f)基于真实离群点判别准则,从步骤3-d)的归一化偏航误差固有偏差分析数据集中的疑似离群点集
Figure PCTCN2018116072-appb-000029
和步骤3-e)的归一化偏航误差固有偏差分析数据集中的判别离群点集
Figure PCTCN2018116072-appb-000030
中获取真实离群点集
Figure PCTCN2018116072-appb-000031
其中seg={ws,ap},j=1,2,3,…,M′,method={LOF,DBSCAN};
所述真实离群点判别准则定义为:对于第j个区间的偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000032
中的任一数据点Q,若其属于疑似离群点集
Figure PCTCN2018116072-appb-000033
并且属于LOF判别离群点集
Figure PCTCN2018116072-appb-000034
或DBSCAN判别离群点集
Figure PCTCN2018116072-appb-000035
之一,则点Q为第j个区间的真实离群点;
3-g)基于步骤3-f)中得到的各风速区间真实离群点集
Figure PCTCN2018116072-appb-000036
以及各功率区间真实离群点集
Figure PCTCN2018116072-appb-000037
利用最终离群点判断准则获得偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000038
的最终离群点判别结果集{Outlier k}并加以剔除,记剔除离群点后的偏航误差固有偏差分析标准数据集为
Figure PCTCN2018116072-appb-000039
所述最终离群点判断准则定义为:对于偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000040
中的任一数据点Q′,若其在归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000041
中对应的数据点Q是某风速区间或某功率区间的真实离群点,则点Q′为偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000042
的最终离群点。
3-h)确定步骤3-g)中获取到的偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000043
中的风速对应的最大值v max,并以固定风速间隔Δv为风速区间划分间隔,将第k个偏航误差区间下偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000044
进一步基于风速信息进行划分,则第q个风速区间下的偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000045
定义为
Figure PCTCN2018116072-appb-000046
q=1,2,3,…,M k m=1,2,3,…,M k,q
其中M k,q为第q个风速区间下的偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000047
中的数据个数;M k 为第k个偏航误差区间下偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000048
的风速区间划分个数,计算公式如下
Figure PCTCN2018116072-appb-000049
其中
Figure PCTCN2018116072-appb-000050
函数为向上取整函数;
3-i)计算每个风速区间下的偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000051
中的平均风速
Figure PCTCN2018116072-appb-000052
以及平均功率
Figure PCTCN2018116072-appb-000053
并将所有平均风速和平均功率分别进行最大值-最小值归一化处理,得到归一化后的平均风速
Figure PCTCN2018116072-appb-000054
和平均功率
Figure PCTCN2018116072-appb-000055
3-j)基于平均风速
Figure PCTCN2018116072-appb-000056
以及平均功率
Figure PCTCN2018116072-appb-000057
确定每个风速区间下的功率曲线拟合中心点
Figure PCTCN2018116072-appb-000058
方式如下:若第j个风速区间下的偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000059
中的数据个数M k,q=0,则认为无功率曲线拟合中心点;反之则认为功率曲线拟合中心点
Figure PCTCN2018116072-appb-000060
3-k)补充定义中心点
Figure PCTCN2018116072-appb-000061
并记第k个偏航误差区间下的功率曲线拟合中心点个数为M′ k,计算每个功率曲线拟合中心点
Figure PCTCN2018116072-appb-000062
对应的参数值
Figure PCTCN2018116072-appb-000063
公式为
Figure PCTCN2018116072-appb-000064
其中
Figure PCTCN2018116072-appb-000065
为两个相邻的功率曲线拟合中心点
Figure PCTCN2018116072-appb-000066
Figure PCTCN2018116072-appb-000067
对应坐标归一化后的弦长,即
Figure PCTCN2018116072-appb-000068
d k为所有功率曲线拟合中心点对应坐标归一化后的总弦长,即
Figure PCTCN2018116072-appb-000069
3-1)采用最小二乘B样条拟合算法对第k个偏航误差区间下的功率曲线进行拟合,其拟合函数B k(t)定义如下:
Figure PCTCN2018116072-appb-000070
其中N r,p(t)为阶数为p的第r段B样条拟合函数的标准函数,t为最小二乘B样条拟合函数的自变量,
Figure PCTCN2018116072-appb-000071
为该最小二乘B样条拟合函数的第r个控制点;
Figure PCTCN2018116072-appb-000072
为分段节点,s=0,1,2,…,p-1,p,p+1,…,M′ k-1,M′ k,M′ k+1,…,M′ k+p,其计算公式如下:
Figure PCTCN2018116072-appb-000073
3-m)基于如下最小二乘优化函数确定B样条拟合函数B k(t)中的所有控制点
Figure PCTCN2018116072-appb-000074
Figure PCTCN2018116072-appb-000075
3-n)将求解得到的最小二乘B样条拟合函数B k(t)转换为自变量为风速v的多项式形式,作为第k个偏航误差区间下的真实功率曲线结果{PC k};
3-o)设置待分析区间k=k+1,并重复进行步骤3-b)至步骤4-n),直到j>M为止。
作为更进一步描述,所述方法步骤3-c)中,归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000076
的划分方法具体如下:
3-c-a)确定归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000077
的区间划分个数M′;
3-c-b)以
Figure PCTCN2018116072-appb-000078
为划分间隔,将数据集
Figure PCTCN2018116072-appb-000079
分别按照风速和功率进行均匀划分,得到各风速区间和各功率区间下的归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000080
Figure PCTCN2018116072-appb-000081
作为更进一步描述,所述方法步骤3-d)中,利用均值距离判别(AVDC)离群点检测算法进行
Figure PCTCN2018116072-appb-000082
中各区间内疑似离群点检测,算法详细流程如下:
3-d-a)设定初始离群点检测区间j=1;
3-d-b)若第j个区间对应归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000083
中的数据个数M′ k,seg,j小于给定最小阈值δ M′,则认为第j个区间的疑似离群点个数
Figure PCTCN2018116072-appb-000084
为0、归一化偏航误差固有偏差分析数据集中的疑似离群点集
Figure PCTCN2018116072-appb-000085
Figure PCTCN2018116072-appb-000086
并跳至步骤3-d-g)继续执行;反之则继续执行步骤3-d-c);
3-d-c)设定疑似离群点在第j个区间归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000087
中的占比
Figure PCTCN2018116072-appb-000088
并计算第j个区间中疑似离群点个数
Figure PCTCN2018116072-appb-000089
计算公式定义为
Figure PCTCN2018116072-appb-000090
其中
Figure PCTCN2018116072-appb-000091
函数为向上取整函数;
3-d-d)计算第j个风速区间归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000092
中各数据点
Figure PCTCN2018116072-appb-000093
的风速判别距离
Figure PCTCN2018116072-appb-000094
计算公式如下
Figure PCTCN2018116072-appb-000095
其中
Figure PCTCN2018116072-appb-000096
为第j个风速区间内归一化偏航误差固有偏差分析数据集的功率平均值;
3-d-e)计算第j个功率区间归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000097
中各数据点
Figure PCTCN2018116072-appb-000098
的风速判别距离
Figure PCTCN2018116072-appb-000099
计算公式如下
Figure PCTCN2018116072-appb-000100
其中
Figure PCTCN2018116072-appb-000101
为第j个功率区间内归一化偏航误差固有偏差分析数据集的风速平均值;
3-d-f)将第j个区间的判别距离数据集
Figure PCTCN2018116072-appb-000102
分别由大到小进行排序,并分别选取排序后的判别距离数据集中的前
Figure PCTCN2018116072-appb-000103
个数据,构成第j个区间的归一化偏航误差固有偏差分析数据集中的疑似离群点集
Figure PCTCN2018116072-appb-000104
其中n=1,2,3,…,M′ k,ap,j
3-d-g)设置检测区间j=j+1,并重复进行步骤3-d-b)至步骤3-d-f),直到j>M′为止。
作为更进一步描述,所述方法步骤4)中,量化性能指标PI k的定义如下:
Figure PCTCN2018116072-appb-000105
其中N h为1年时间转化为小时的数值;CAP为待分析风电机组的额定功率;
Figure PCTCN2018116072-appb-000106
为第k个偏航误差区间下、第j个风速区间中的风速中值,即
Figure PCTCN2018116072-appb-000107
Figure PCTCN2018116072-appb-000108
为第k个偏航误差区间的真实功率曲线{PC k}上
Figure PCTCN2018116072-appb-000109
对应的功率值,且
Figure PCTCN2018116072-appb-000110
F(·)函数为Rayleigh分布的累计概率分布函数,具体公式如下
Figure PCTCN2018116072-appb-000111
其中v ave为待分析风电机组的年平均风速。
与现有技术相比,本发明具有以下创新优势及显著效果:
1)针对现有风电机组功率曲线离群点检测及判别算法中未考虑不同工况给判别流程带来的影响这一问题,通过风速及功率区间划分的方式来约束运行工况的方式来进行分段研究,保证功率曲线数据在风电机组运行工况方面一定程度的统一;同时结合多种离群点检测算法的优势,突破单一离群点检测算法的应用限制,使风电机组功率曲线拟合结果更真实、准确;
2)创新性地提出一种基于功率曲线分析的风电机组偏航误差固有偏差辨识及补偿方法,填补基于数据分析的智能辨识与补偿技术在风电机组的性能提升领域的技术空白。
3)设计了包括风电机组真实功率曲线拟合、功率曲线性能量化指标构建、偏航误差固有偏差辨识以及偏航误差固有偏差补偿策略制定等步骤在内的风电机组性能提升流程,具有较强的实用性、可靠性与扩展性。
附图说明
图1是本发明基于功率曲线分析的风电机组偏航误差固有偏差辨识及补偿方法流程图;
图2是本发明应用领域内风电机组偏航误差固有偏差等角度相关关系示意图;
图3是本发明实施例中步骤1)中风电机组功率曲线原始数据散点图;
图4是本发明实施例中步骤2-a)中补偿前的偏航误差频率分布直方图;
图5是本发明实施例中步骤2-c)至步骤3-c)中偏航误差区间为[-1°,0°]的归一化功率曲线原始散点以及风速&功率划分相关结果图;
图6是实施例中偏航误差区间为[-1°,0°]、风速划分数据下的AVDC疑似离群点检测结果图;
图7是实施例中偏航误差区间为[-1°,0°]、功率划分数据下的AVDC疑似离群点检测结果图;
图8、图9分别是实施例中偏航误差区间为[-1°,0°]、风速划分数据下的LOF判别离群点检测结果图和DBSCAN判别离群点检测结果图;
图10、图11分别是实施例中偏航误差区间为[-1°,0°]、功率划分数据下的LOF判别离群点检测结果图和DBSCAN判别离群点检测结果图;
图12是实施例中偏航误差区间为[-1°,0°]、风速划分数据下的真实离群点检测结果图;
图13是实施例中偏航误差区间为[-1°,0°]、功率划分数据下的真实离群点检测结果图;
图14是实施例中偏航误差区间为[-1°,0°]下偏航误差固有偏差分析数据集的最终离群点检测结果图;
图15是实施例中偏航误差区间为[-1°,0°]下偏航误差固有偏差分析标准数据集的真实功率曲线相关结果图;
图16、图17分别是实施例中偏航误差固有偏差补偿前、后各偏航误差区间下功率曲线量化性能指标结果图。
具体实施方式
以下结合附图对本发明的具体实施方法与工作原理作如下详述:
实施例
由于风电场中的风电机组在不同时段内运行时的风况很难完全一致,出于对本发明专利方法有效性的验证,本实施例中采用的数据为GH Bladed 3.82在同一型号风电机组、同一风文件下的仿真数据来对风电机组偏航误差固有偏差辨识及补偿方法进行分析研究。数据采样间隔为10min,数据信息为期5年,总计284405条。数据集包括的相关信息如表1、表2所示:
表1 GH Bladed 3.82下对某型号风电机组在某风文件下的部分仿真数据
数据序号 风速 有功功率 环境温度 环境气压 偏航误差
105679 4.2992 81.0290 25.0000 100463.2887 5.7852
105680 4.5417 81.8810 25.0000 100463.2887 15.2980
105681 4.9667 82.8700 25.0000 100463.2887 1.6641
235640 11.6990 1504.7000 25.0000 100463.2887 6.0619
235641 11.5200 1549.5000 25.0000 100463.2887 9.1317
235642 11.1470 1550.0000 25.0000 100463.2887 -0.0520
表2 GH Bladed 3.82下对某型号风电机组的仿真数据集变量信息
变量名称 变量含义 变量单位
风速v 当前风电机组机舱风速 m/s
有功功率P 当前风电机组有功功率 kW
环境温度T 风电机组运行环境温度
环境气压B 风电机组运行环境气压 Pa
偏航误差θ 当前风电机组偏航误差 °
值得一提的是,GH Bladed中测量得到的偏航误差并没有实际应用过程中风向仪在测量过程中测量过程中存在的偏航误差固有偏差,因此在仿真过程中采用将测量值人为+5°的方式来模拟实际过程中存在-5°偏航误差固有偏差的现象。本实施例中默认利用上述全部仿真数据来进行偏航误差固有偏差辨识与补偿方法的实施,方法结果为得到的风电机组片偏航误差固有偏差的辨识结果并通过补偿手段进行方法有效性的验证,其详细实施步骤具体如下:
1)根据待分析风电机组偏航误差固有偏差辨识及补偿需求,读取相应需求周期内总计N条待分析风电机组的SCADA***中测量得到的风电机组运行数据信息,该信息包含风速{v i}、有功功率{P i}以及偏航误差{θ i},将信息数据集记为风电机组偏航误差固有偏差分析数据集{X i},其中i=1,2,3,…,N;根据表1以及表2所列出的数据集变量信息描述,本实施例中的数据集包括了本步骤中的所有必要信息,图3所示的结果为本步骤中风电机组功率曲线原始数据散点图;
2)将步骤1)中的风电机组偏航误差固有偏差分析数据集{X i}以一定的偏航误差间隔划分为M个区间,记第k个偏航误差划分区间中的数据个数为N k、偏航误差固有偏差分析数据集为
Figure PCTCN2018116072-appb-000112
其中k=1,2,3,…,M,l=1,2,3,…,N k;偏航误差固有偏差分析数据集{X i}区间划分的一种优选方法步骤如下,但不限于此:
2-a)绘制偏航误差{θ i}的频率分布直方图,并基于频率分布直方图的分布情况设定待分析偏航误差范围的下界θ lb和上界θ ub;本实施例中的偏航误差频率分布直方图如图4所示,从图中选取10%分位数与90%分位数就近取整值作为待分析偏航误差的下界θ lb和上界θ ub,10%和90%分位数值为-13.984°和5.273°,进一步通过就进取整方式后确定θ lb为-14°,θ ub为5°;
2-b)设定偏航误差固有偏差分析数据集{X i}的区间划分个数M;在本实施例中,M取20;
2-c)以
Figure PCTCN2018116072-appb-000113
为偏航误差区间划分间隔,对偏航误差固有偏差分析数据集{X i}进行划分,并仅保留风速和功率信息作为偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000114
在本实施例中,由 于篇幅限制原因,仅给出对应偏航误差区间为[-1°,0°]的功率曲线散点数据图,如图5所示。
3)基于步骤2)中M个区间的偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000115
分别拟合出M条真实功率曲线,记第k个偏航误差区间下的真实功率曲线为{PC k},其中k=1,2,3,…,M;风电机组真实功率曲线获取的一种优选算法流程如下:
3-a)设定真实功率曲线获取初始区间k=1;
3-b)将第k个偏航误差区间下偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000116
中的风速信息和功率信息分别进行最大值-最小值归一化处理,记归一化偏航误差固有偏差分析数据集为
Figure PCTCN2018116072-appb-000117
其中l=1,2,3,…,N k;在本实施例中,归一化后的偏航误差固有偏差分析数据集为
Figure PCTCN2018116072-appb-000118
散点图如图5中黑色数据点所示;
3-c)分别按照一定的风速间隔(ws)和功率间隔(ap)将步骤3-b)中的归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000119
划分为M′个区间,并分别记第j个区间中的数据个数为M′ k,seg,j、归一化偏航误差固有偏差分析数据集为
Figure PCTCN2018116072-appb-000120
其中seg={ws,ap},j=1,2,3,…,M′,n=1,2,3,…,M′ k,seg,j;归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000121
的一种优选划分方法具体如下,但不限于此:
3-c-a)确定归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000122
的区间划分个数M′;在本实施例中,M′取20;
3-c-b)以
Figure PCTCN2018116072-appb-000123
为划分间隔,将数据集
Figure PCTCN2018116072-appb-000124
分别按照风速和功率进行均匀划分,得到各风速区间和各功率区间下的归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000125
Figure PCTCN2018116072-appb-000126
在本实施例中,风速&功率划分相关结果如图5中虚线及点虚线所示。
3-d)利用均值距离判别(AVDC)离群点检测算法分别对步骤3-c)中的2M′个区间
Figure PCTCN2018116072-appb-000127
进行疑似离群点检测,并分别记第j个区间的疑似离群点个数为
Figure PCTCN2018116072-appb-000128
归一化偏航误差固有偏差分析数据集中的疑似离群点集为
Figure PCTCN2018116072-appb-000129
其中seg={ws,ap},j=1,2,3,…,M′,n=1,2,3,…,M′ k,seg,j;利用均值距离判别(AVDC)离群点检测算法进行
Figure PCTCN2018116072-appb-000130
中各区间内疑似离群点检测,算法详细流程如下:
3-d-a)设定初始离群点检测区间j=1;
3-d-b)若第j个区间对应归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000131
中的数据个数M′ k,seg,j小于给定最小阈值δ M′,则认为第j个区间的疑似离群点个数
Figure PCTCN2018116072-appb-000132
为0、归一化偏航误差固有偏差分析数据集中的疑似离群点集
Figure PCTCN2018116072-appb-000133
Figure PCTCN2018116072-appb-000134
并跳至步骤3-d-g)继续执行;反之则继续执行步骤3-d-c);
3-d-c)设定疑似离群点在第j个区间归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000135
中的 占比
Figure PCTCN2018116072-appb-000136
并计算第j个区间中疑似离群点个数
Figure PCTCN2018116072-appb-000137
计算公式定义为
Figure PCTCN2018116072-appb-000138
其中
Figure PCTCN2018116072-appb-000139
函数为向上取整函数;
3-d-d)计算第j个风速区间归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000140
中各数据点
Figure PCTCN2018116072-appb-000141
的风速判别距离
Figure PCTCN2018116072-appb-000142
计算公式如下
Figure PCTCN2018116072-appb-000143
其中
Figure PCTCN2018116072-appb-000144
为第j个风速区间内归一化偏航误差固有偏差分析数据集的功率平均值;
3-d-e)计算第j个功率区间归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000145
中各数据点
Figure PCTCN2018116072-appb-000146
的风速判别距离
Figure PCTCN2018116072-appb-000147
计算公式如下
Figure PCTCN2018116072-appb-000148
其中
Figure PCTCN2018116072-appb-000149
为第j个功率区间内归一化偏航误差固有偏差分析数据集的风速平均值;
3-d-f)将第j个区间的判别距离数据集
Figure PCTCN2018116072-appb-000150
分别由大到小进行排序,并分别选取排序后的判别距离数据集中的前
Figure PCTCN2018116072-appb-000151
个数据,构成第j个区间的归一化偏航误差固有偏差分析数据集中的疑似离群点集
Figure PCTCN2018116072-appb-000152
其中n=1,2,3,…,M′ k,ap,j
3-d-g)设置检测区间j=j+1,并重复进行步骤3-d-b)至步骤3-d-f),直到j>M′为止。由于篇幅限制,本实施例中有关离群点的相关分析均略去各过程参数的计算过程及结果,相关重要参数取值如下:给定最小阈值δ M′取10,疑似离群点占比
Figure PCTCN2018116072-appb-000153
均取0.02。最终基于风速间隔(ws)和功率间隔(ap)的归一化偏航误差固有偏差分析数据集中的疑似离群点检测结果分别如图6、图7中的“×”符号所示,其余正常数据点以“·”符号表示。
3-e)分别利用局部异常因子(LOF)以及考虑噪声的基于密度的聚类(DBSCAN)这两种离群点检测算法对步骤3-c)中的2M′个区间
Figure PCTCN2018116072-appb-000154
进行判别离群点检测,并分别记第j个区间的判别离群点个数为
Figure PCTCN2018116072-appb-000155
归一化偏航误差固有偏差分析数据集中的判别离群点集为
Figure PCTCN2018116072-appb-000156
其中seg={ws,ap},j=1,2,3,…,M′,n=1,2,3,…,M′ k,seg,j,method={LOF,DBSCAN};本实施例中,有关LOF判别离群点检测的相关重要参数取值如下:给定最小阈值δ M′取10,LOF判别离群点占比
Figure PCTCN2018116072-appb-000157
均取0.02,k距离计算中的邻域参数k取10;有关DBSCAN判别离群点检测的相关重要参数取值如下:给定最小阈值δ M′取10,ε邻域判别半径eps取0.02,核心点判别参数MinPts取10。最终基于风速间隔(ws)和功率间隔(ap)的归一化偏航误差固有偏差分析数据集中的LOF及DBSCAN判别离群点检测结果分别如图8、图9、图10和图11中的“×”符号所示,其余正常数据点均以“·”符号表示。
3-f)基于真实离群点判别准则,从步骤3-d)的归一化偏航误差固有偏差分析数据集中的疑似离群点集
Figure PCTCN2018116072-appb-000158
和步骤3-e)的归一化偏航误差固有偏差分析数据集中的判别离群点集
Figure PCTCN2018116072-appb-000159
中获取真实离群点集
Figure PCTCN2018116072-appb-000160
其中seg={ws,ap},j=1,2,3,…,M′,method={LOF,DBSCAN};
所述真实离群点判别准则定义为:对于第j个区间的偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000161
中的任一数据点Q,若其属于疑似离群点集
Figure PCTCN2018116072-appb-000162
并且属于LOF判别离群点集
Figure PCTCN2018116072-appb-000163
或DBSCAN判别离群点集
Figure PCTCN2018116072-appb-000164
之一,则点Q为第j个区间的真实离群点;针对本实施例,基于真实离群点判断准则判断出的风速间隔(ws)和功率间隔(ap)下归一化偏航误差固有偏差分析数据集真实离群点检测结果分别如图12和图13中的“×”符号所示,其余正常数据点均以“·”符号表示。
3-g)基于步骤3-f)中得到的各风速区间真实离群点集
Figure PCTCN2018116072-appb-000165
以及各功率区间真实离群点集
Figure PCTCN2018116072-appb-000166
利用最终离群点判断准则获得偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000167
的最终离群点判别结果集{Outlier k}并加以剔除,记剔除离群点后的偏航误差固有偏差分析标准数据集为
Figure PCTCN2018116072-appb-000168
所述最终离群点判断准则定义为:对于偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000169
中的任一数据点Q′,若其在归一化偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000170
中对应的数据点Q是某风速区间的真实离群点或某功率区间的真实离群点,则点Q′为偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000171
的最终离群点。针对本实施例,基于最终离群点判断准则判断出归一化偏航误差固有偏差分析数据集真实离群点检测结果,即{Outlier k}数据集结果如图14中的“×”符号所示,最终的正常数据点均以“·”符号表示。
3-h)确定步骤3-g)中获取到的偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000172
中的风速对应的最大值v max,并以固定风速间隔Δv为风速区间划分间隔,将第k个偏航误差区间下偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000173
进一步基于风速信息进行划分,则第q个风速区间下的偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000174
定义为
Figure PCTCN2018116072-appb-000175
q=1,2,3,…,Mk m=1,2,3,…,M k,q
其中M k,q为第q个风速区间下的偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000176
中的数据个数;M k为第k个偏航误差区间下偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000177
的风速区间划分个数,计算公式如下
Figure PCTCN2018116072-appb-000178
其中
Figure PCTCN2018116072-appb-000179
函数为向上取整函数;
3-i)计算每个风速区间下的偏航误差固有偏差分析数据集
Figure PCTCN2018116072-appb-000180
中的平均风速
Figure PCTCN2018116072-appb-000181
以及平均功率
Figure PCTCN2018116072-appb-000182
并将所有平均风速和平均功率分别进行最大值-最小值归一化处理,得到归一化后的平均风速
Figure PCTCN2018116072-appb-000183
和平均功率
Figure PCTCN2018116072-appb-000184
3-j)基于平均风速
Figure PCTCN2018116072-appb-000185
以及平均功率
Figure PCTCN2018116072-appb-000186
确定每个风速区间下的功率曲线拟合中心点
Figure PCTCN2018116072-appb-000187
确定方式如下:若第j个风速区间下的偏航误差固有偏差分析标准数据集
Figure PCTCN2018116072-appb-000188
中的数据个数M k,q=0,则认为该区间内无功率曲线拟合中心点;反之则认为该区间内的功率曲线拟合中心点
Figure PCTCN2018116072-appb-000189
3-k)补充定义中心点
Figure PCTCN2018116072-appb-000190
并记第k个偏航误差区间下的功率曲线拟合中心点个数为M′ k,计算每个功率曲线拟合中心点
Figure PCTCN2018116072-appb-000191
对应的参数值
Figure PCTCN2018116072-appb-000192
公式为
Figure PCTCN2018116072-appb-000193
其中
Figure PCTCN2018116072-appb-000194
为两个相邻的功率曲线拟合中心点
Figure PCTCN2018116072-appb-000195
Figure PCTCN2018116072-appb-000196
对应坐标归一化后的弦长,即
Figure PCTCN2018116072-appb-000197
d k为所有功率曲线拟合中心点对应坐标归一化后的总弦长,即
Figure PCTCN2018116072-appb-000198
3-1)采用最小二乘B样条拟合算法对第k个偏航误差区间下的功率曲线进行拟合,其拟合函数B k(t)定义如下:
Figure PCTCN2018116072-appb-000199
其中N r,p(t)为阶数为p的第r段B样条拟合函数的标准函数,t为最小二乘B样条拟合函数的自变量,
Figure PCTCN2018116072-appb-000200
为该最小二乘B样条拟合函数的第r个控制点;
Figure PCTCN2018116072-appb-000201
为分段节点,s=0,1,2,…,p-1,p,p+1,…,M′ k-1,M′ k,M′ k+1,…,M′ k+p,其计算公式如下:
Figure PCTCN2018116072-appb-000202
3-m)基于如下最小二乘优化函数确定B样条拟合函数B k(t)中的所有控制点
Figure PCTCN2018116072-appb-000203
Figure PCTCN2018116072-appb-000204
3-n)将求解得到的最小二乘B样条拟合函数B k(t)转换为自变量为风速v的多项式形式,作为第k个偏航误差区间下的真实功率曲线结果{PC k};
3-o)设置待分析区间k=k+1,并重复进行步骤3-b)至步骤4-n),直到j>M为止。由于篇幅限制,本实施例中有关功率曲线的拟合均略去各过程参数的计算过程及次要结果,相关重要参数取值如下:风速对应最大值为v max=28.9760m/s,固定风速间隔Δv=2m/s,第14个偏航误差区间为[-1°,0°]的功率曲线相关数据中风速区间划分个数为15,对应真实功率曲线拟合中心点及拟合结果如图15中“■”符号及曲线所示。
4)分别计算步骤3)中M个偏航误差区间下的真实功率曲线{PC k}各自的量化性能指标PI k,其中k=1,2,3,…,M;量化性能指标PIk的一种优选定义如下,但不限于此:
Figure PCTCN2018116072-appb-000205
其中N h为1年时间转化为小时的数值;CAP为待分析风电机组的额定功率;
Figure PCTCN2018116072-appb-000206
为第k个偏航误差区间下、第j个风速区间中的风速中值,即
Figure PCTCN2018116072-appb-000207
Figure PCTCN2018116072-appb-000208
为第k个偏航误差区间的真实功率曲线{PC k}上
Figure PCTCN2018116072-appb-000209
对应的功率值,且
Figure PCTCN2018116072-appb-000210
F(·)函数为Rayleigh分布的累计概率分布函数,具体公式如下
Figure PCTCN2018116072-appb-000211
其中v ave为待分析风电机组的年平均风速。在本实施例中,相关重要参数取值如下:N h按照1年365天计算取8760;CAP为该型号风电机组的额定功率值,取1550kW;v ave取仿真风文件的平均风速7m/s,对应20个偏航误差区间下的真实功率曲线各自量化性能指标PI k计算结果如图16所示。
5)通过偏航误差固有偏差辨识准则确定该风电机组的偏航误差固有偏差值θ im的辨识结果,并将该偏差值θ im直接以增量形式补偿到偏航误差实际测量值θ上,得到最终补偿后的偏航误差真实值θ′,即θ′=θ+θ im
所述偏航误差固有偏差辨识准则定义如下:将步骤4)中所有M个偏航误差区间下真实功率曲线{PC k}的量化性能指标PI k由大到小进行排列,并确定最大量化性能指标PI max对应的区间下标k′,则偏航误差固有偏差值θ im的辨识结果计算公式如下
Figure PCTCN2018116072-appb-000212
其中θ lb和θ ub分别为待分析偏航误差范围的下界和上界。在本实施例中,图16中真实功率曲线的量化性能指标PIk的最大值PI max使用“★”符号标注出,可以看出最大值对应的区间序 号为9号,即偏航误差区间为[-6°,-5°],则可以根据偏航误差固有偏差值θ im的辨识结果计算公式计算出偏航误差固有偏差值的辨识结果为-5.5°;进一步基于偏航误差固有偏差补偿策略,通过将偏航误差测量值θ人为加5.5°变为修正后的θ′,即θ′=θ+5.5°;将修正后的结果作为偏航控制输入重新对该风电机组在同一风文件下进行补偿后的数据仿真,经过同样的分析流程可以得到如图17所示的真实功率曲线各自量化性能指标PI k计算结果,相关重要参数如下:偏航误差的频率分布直方图的10%和90%分位数分别为-9.681°和10.498°,即偏航误差下界θ lb和上界θ ub分别为-10°和10°;区间划分个数M取20;风速对应最大值为v max=28.9760m/s,固定风速间隔Δv=2m/s,其他关键参数与补偿前的参数相同。从图17中可以看出,经过偏航误差固有偏差的辨识及补偿之后,最大值对应的区间序号为10号,即补偿后偏航误差固有偏差的辨识区间为[0°,1°],由此可见固有偏差的补偿提升了在固有偏差存在下的偏航控制的效果,从功率曲线量化指标结果值上同样也可以看出,相同偏航位置下的功率曲线量化指标结果也有20~30h不等的显著提升,相比与辨识补偿前的性能提升约0.8%~1.2%。
至此,基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法的有效性与实用性在GH Bladed 3.82仿真软件的仿真数据集上成功验证。
本发明基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法,主要包括基于偏航误差区间划分、风电机组功率曲线数据离群点检测、风电机组真实功率曲线拟合、功率曲线量化指标计算以及偏航误差固有偏差的辨识与补偿等环节组成。图1为基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法实时与应用的具体流程。整个实施例按照图1中所示的流程,基于风电机组SCADA数据进行分析,通过对不同偏航误差区间下风电机组的真实功率曲线进行拟合并最终基于偏航误差固有偏差的辨识准则与补偿策略来实现风电机组的性能提升需求。图2-图17为使用本发明基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法进行风电机组偏航误差固有偏差的辨识与补偿流程中各个环节的结果,对具有风电机组的性能提升需求的企业有着很强的应用价值及意义。

Claims (6)

  1. 一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法,其特征在于,包括以下步骤:
    1)根据待分析风电机组偏航误差固有偏差辨识及补偿需求,读取相应需求周期内总计N条待分析风电机组的SCADA***中测量得到的风电机组运行数据信息,该信息包含风速{v i}、有功功率{P i}以及偏航误差{θ i},将信息数据集记为风电机组偏航误差固有偏差分析数据集{X i},其中i=1,2,3,…,N;
    2)将步骤1)中的风电机组偏航误差固有偏差分析数据集{X i}以一定的偏航误差间隔划分为M个区间,记第k个偏航误差划分区间中的数据个数为N k、偏航误差固有偏差分析数据集为
    Figure PCTCN2018116072-appb-100001
    其中k=1,2,3,…,M,l=1,2,3,…,N k
    3)基于步骤2)中M个区间的偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100002
    分别拟合出M条真实功率曲线,记第k个偏航误差区间下的真实功率曲线为{PC k},其中k=1,2,3,…,M;
    4)分别计算步骤3)中M个偏航误差区间下的真实功率曲线{PC k}各自的量化性能指标PI k,其中k=1,2,3,…,M;
    5)通过偏航误差固有偏差辨识准则确定该风电机组的偏航误差固有偏差值θ im的辨识结果,并将该偏差值θ im直接以增量形式补偿到偏航误差实际测量值θ上,得到最终补偿后的偏航误差真实值θ′,即θ′=θ+θ im
    所述偏航误差固有偏差辨识准则定义如下:将步骤4)中所有M个偏航误差区间下真实功率曲线{PC k}的量化性能指标PI k由大到小进行排列,并确定最大量化性能指标PI max对应的区间下标k′,则偏航误差固有偏差值θ im的辨识结果计算公式如下
    Figure PCTCN2018116072-appb-100003
    其中θ lb和θ ub分别为待分析偏航误差范围的下界和上界。
  2. 根据权利要求1所述的一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法,其特征在于,所述步骤2)中,偏航误差固有偏差分析数据集{X i}区间划分方法步骤如下:
    2-a)绘制偏航误差{θ i}的频率分布直方图,并基于频率分布直方图的分布情况设定待分析偏航误差范围的下界θ lb和上界θ ub
    2-b)设定偏航误差固有偏差分析数据集{X i}的区间划分个数M;
    2-c)以
    Figure PCTCN2018116072-appb-100004
    为偏航误差区间划分间隔,对偏航误差固有偏差分析数据集{X i}进行划分,并仅保留风速和功率信息作为偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100005
  3. 根据权利要求1所述的一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法,其特征在于,所述步骤3)中,M个偏航误差区间下风电机组真实功率曲线获取流程如下:
    3-a)设定真实功率曲线获取初始区间k=1;
    3-b)将第k个偏航误差区间下偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100006
    中的风速信息和功率信息分别进行最大值-最小值归一化处理,记归一化偏航误差固有偏差分析数据集为
    Figure PCTCN2018116072-appb-100007
    其中l=1,2,3,…,N k
    3-c)分别按照一定的风速间隔(ws)和功率间隔(ap)将步骤3-b)中的归一化偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100008
    划分为M′个区间,并分别记第j个区间中的数据个数为M′ k,seg,j、归一化偏航误差固有偏差分析数据集为
    Figure PCTCN2018116072-appb-100009
    其中seg={ws,ap},j=1,2,3,…,M′,n=1,2,3,…,M′ k,seg,j
    3-d)利用均值距离判别(AVDC)离群点检测算法分别对步骤3-c)中的2M′个区间
    Figure PCTCN2018116072-appb-100010
    进行疑似离群点检测,并分别记第j个区间的疑似离群点个数为
    Figure PCTCN2018116072-appb-100011
    归一化偏航误差固有偏差分析数据集中的疑似离群点集为
    Figure PCTCN2018116072-appb-100012
    其中seg={ws,ap},j=1,2,3,…,M′,n=1,2,3,…,M′ k,seg,j
    所述均值距离判别(AVDC)离群点检测算法具体为:对于数据个数M′ k,seg,j小于给定最小阈值δ M′的区间,认为该区间归一化偏航误差固有偏差分析数据集中的疑似离群点集
    Figure PCTCN2018116072-appb-100013
    Figure PCTCN2018116072-appb-100014
    否则对于第j个风速区间或第j个功率区间,首先计算区间内归一化偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100015
    中各风速-功率数据点
    Figure PCTCN2018116072-appb-100016
    的判别距离
    Figure PCTCN2018116072-appb-100017
    进一步设定疑似离群点的占比
    Figure PCTCN2018116072-appb-100018
    并确定第j个区间中疑似离群点个数
    Figure PCTCN2018116072-appb-100019
    通过由大到小对判别距离
    Figure PCTCN2018116072-appb-100020
    进行排序的方式确定前
    Figure PCTCN2018116072-appb-100021
    个数据构成第j个区间的归一化偏航误差固有偏差分析数据集中的疑似离群点集
    Figure PCTCN2018116072-appb-100022
    所述判别距离
    Figure PCTCN2018116072-appb-100023
    的计算方式具体如下:
    Figure PCTCN2018116072-appb-100024
    其中
    Figure PCTCN2018116072-appb-100025
    分别为归一化偏航误差固有偏差分析数据集第j个风速区间内的功率平均值和第j个功率区间内的风速平均值,其中n=1,2,3,…,M′ k,seg,j
    3-e)分别利用局部异常因子(LOF)以及考虑噪声的基于密度的聚类(DBSCAN)这两种离群点检测算法对步骤3-c)中的2M′个区间
    Figure PCTCN2018116072-appb-100026
    进行判别离群点检测,并分别记第j个区间的判别离群点个数为
    Figure PCTCN2018116072-appb-100027
    归一化偏航误差固有偏差分析数据集中的判别离群点集为
    Figure PCTCN2018116072-appb-100028
    其中seg={ws,ap},j=1,2,3,…,M′,n=1,2,3,…,M′ k,seg,j,method={LOF,DBSCAN};
    3-f)基于真实离群点判别准则,从步骤3-d)的归一化偏航误差固有偏差分析数据集中的疑似离群点集
    Figure PCTCN2018116072-appb-100029
    和步骤3-e)的归一化偏航误差固有偏差分析数据集中的判别离群点集
    Figure PCTCN2018116072-appb-100030
    中获取真实离群点集
    Figure PCTCN2018116072-appb-100031
    其中seg={ws,ap},j=1,2,3,…,M′,method={LOF,DBSCAN};
    所述真实离群点判别准则定义为:对偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100032
    中的任一数据点Q,若其属于疑似离群点集
    Figure PCTCN2018116072-appb-100033
    且属于LOF判别离群点集
    Figure PCTCN2018116072-appb-100034
    或DBSCAN判别离群点集
    Figure PCTCN2018116072-appb-100035
    之一,则点Q为第j个区间的真实离群点;
    3-g)基于步骤3-f)中得到的各风速区间真实离群点集
    Figure PCTCN2018116072-appb-100036
    以及各功率区间真实离群点集
    Figure PCTCN2018116072-appb-100037
    利用最终离群点判断准则获得偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100038
    的最终离群点判别结果集{Outlier k}并加以剔除,记剔除离群点后的偏航误差固有偏差分析标准数据集为
    Figure PCTCN2018116072-appb-100039
    所述最终离群点判断准则定义为:对于偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100040
    中的任一数据点Q′,若其在归一化偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100041
    中对应的数据点Q是某风速区间或某功率区间的真实离群点,则点Q′为偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100042
    的最终离群点。
    3-h)确定步骤3-g)中获取到的偏航误差固有偏差分析标准数据集
    Figure PCTCN2018116072-appb-100043
    中的风速对应的最大值v max,并以固定风速间隔Δv为风速区间划分间隔,将第k个偏航误差区间下偏航误差固有偏差分析标准数据集
    Figure PCTCN2018116072-appb-100044
    进一步基于风速信息进行划分,则第q个风速区间下的偏航误差固有偏差分析标准数据集
    Figure PCTCN2018116072-appb-100045
    定义为
    Figure PCTCN2018116072-appb-100046
    其中M k,q为第q个风速区间下的偏航误差固有偏差分析标准数据集
    Figure PCTCN2018116072-appb-100047
    中的数据个数;Mk为第k个偏航误差区间下偏航误差固有偏差分析标准数据集
    Figure PCTCN2018116072-appb-100048
    的风速区间划分个数,计算公式如下
    Figure PCTCN2018116072-appb-100049
    其中
    Figure PCTCN2018116072-appb-100050
    函数为向上取整函数;
    3-i)计算每个风速区间下的偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100051
    中的平均风速
    Figure PCTCN2018116072-appb-100052
    以及 平均功率
    Figure PCTCN2018116072-appb-100053
    并将所有平均风速和平均功率分别进行最大值-最小值归一化处理,得到归一化后的平均风速
    Figure PCTCN2018116072-appb-100054
    和平均功率
    Figure PCTCN2018116072-appb-100055
    3-j)基于平均风速
    Figure PCTCN2018116072-appb-100056
    以及平均功率
    Figure PCTCN2018116072-appb-100057
    确定每个风速区间下的功率曲线拟合中心点
    Figure PCTCN2018116072-appb-100058
    方式如下:若第j个风速区间下的偏航误差固有偏差分析标准数据集
    Figure PCTCN2018116072-appb-100059
    中的数据个数M k,q=0,则认为无功率曲线拟合中心点;反之则认为功率曲线拟合中心点
    Figure PCTCN2018116072-appb-100060
    3-k)补充定义中心点
    Figure PCTCN2018116072-appb-100061
    并记第k个偏航误差区间下的功率曲线拟合中心点个数为M′ k,计算每个功率曲线拟合中心点
    Figure PCTCN2018116072-appb-100062
    对应的参数值
    Figure PCTCN2018116072-appb-100063
    公式为
    Figure PCTCN2018116072-appb-100064
    其中
    Figure PCTCN2018116072-appb-100065
    为两个相邻的功率曲线拟合中心点
    Figure PCTCN2018116072-appb-100066
    Figure PCTCN2018116072-appb-100067
    对应坐标归一化后的弦长,即
    Figure PCTCN2018116072-appb-100068
    d k为所有功率曲线拟合中心点对应坐标归一化后的总弦长,即
    Figure PCTCN2018116072-appb-100069
    3-1)采用最小二乘B样条拟合算法对第k个偏航误差区间下的功率曲线进行拟合,其拟合函数B k(t)定义如下:
    Figure PCTCN2018116072-appb-100070
    其中N r,p(t)为阶数为p的第r段B样条拟合函数的标准函数,t为最小二乘B样条拟合函数的自变量,
    Figure PCTCN2018116072-appb-100071
    为该最小二乘B样条拟合函数的第r个控制点;
    Figure PCTCN2018116072-appb-100072
    为分段节点,s=0,1,2,…,p-1,p,p+1,…,M′ k-1,M′ k,M′ k+1,…,M′ k+p,其计算公式如下:
    Figure PCTCN2018116072-appb-100073
    3-m)基于如下最小二乘优化函数确定B样条拟合函数B k(t)中的所有控制点
    Figure PCTCN2018116072-appb-100074
    Figure PCTCN2018116072-appb-100075
    3-n)将求解得到的最小二乘B样条拟合函数B k(t)转换为自变量为风速v的多项式形式,作为第k个偏航误差区间下的真实功率曲线结果{PC k};
    3-o)设置待分析区间k=k+1,并重复进行步骤3-b)至步骤3-n),直到j>M为止。
  4. 根据权利要求3所述的一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法,其特征在于,所述步骤3-c)中,归一化偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100076
    的划分方 法具体如下:
    3-c-a)确定归一化偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100077
    的区间划分个数M′;
    3-c-b)以
    Figure PCTCN2018116072-appb-100078
    为划分间隔,将数据集
    Figure PCTCN2018116072-appb-100079
    分别按照风速和功率进行均匀划分,得到各风速区间和各功率区间下的归一化偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100080
    Figure PCTCN2018116072-appb-100081
  5. 根据权利要求3所述的一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法,其特征在于,所述步骤3-d)中,利用均值距离判别(AVDC)离群点检测算法进行
    Figure PCTCN2018116072-appb-100082
    中各区间内疑似离群点检测,算法详细流程如下:
    3-d-a)设定初始离群点检测区间j=1;
    3-d-b)若第j个区间对应归一化偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100083
    中的数据个数M′ k,seg,j小于给定最小阈值δ M′,则认为第j个区间的疑似离群点个数
    Figure PCTCN2018116072-appb-100084
    为0、归一化偏航误差固有偏差分析数据集中的疑似离群点集
    Figure PCTCN2018116072-appb-100085
    Figure PCTCN2018116072-appb-100086
    并跳至步骤3-d-g)继续执行;反之则继续执行步骤3-d-c);
    3-d-c)设定疑似离群点在第j个区间归一化偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100087
    中的占比
    Figure PCTCN2018116072-appb-100088
    并计算第j个区间中疑似离群点个数
    Figure PCTCN2018116072-appb-100089
    计算公式定义为
    Figure PCTCN2018116072-appb-100090
    其中
    Figure PCTCN2018116072-appb-100091
    函数为向上取整函数;
    3-d-d)计算第j个风速区间归一化偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100092
    中各数据点
    Figure PCTCN2018116072-appb-100093
    的风速判别距离
    Figure PCTCN2018116072-appb-100094
    计算公式如下
    Figure PCTCN2018116072-appb-100095
    其中
    Figure PCTCN2018116072-appb-100096
    为第j个风速区间内归一化偏航误差固有偏差分析数据集的功率平均值;
    3-d-e)计算第j个功率区间归一化偏航误差固有偏差分析数据集
    Figure PCTCN2018116072-appb-100097
    中各数据点
    Figure PCTCN2018116072-appb-100098
    的风速判别距离
    Figure PCTCN2018116072-appb-100099
    计算公式如下
    Figure PCTCN2018116072-appb-100100
    其中
    Figure PCTCN2018116072-appb-100101
    为第j个功率区间内归一化偏航误差固有偏差分析数据集的风速平均值;
    3-d-f)将第j个区间的判别距离数据集
    Figure PCTCN2018116072-appb-100102
    分别由大到小进行排序,并分别选取排序后的判别距离数据集中的前
    Figure PCTCN2018116072-appb-100103
    个数据,构成第j个区间的归一化偏航误差固有偏差分析数据集中的疑似离群点集
    Figure PCTCN2018116072-appb-100104
    其中n=1,2,3,…,M′ k,ap,j
    3-d-g)设置检测区间j=j+1,并重复进行步骤3-d-b)至步骤3-d-f),直到j>M′为止。
  6. 根据权利要求1所述的一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方 法,其特征在于,所述步骤4)中,量化性能指标PI k的定义如下:
    Figure PCTCN2018116072-appb-100105
    其中N h为1年时间转化为小时的数值;CAP为待分析风电机组的额定功率;
    Figure PCTCN2018116072-appb-100106
    为第k个偏航误差区间下、第j个风速区间中的风速中值,即
    Figure PCTCN2018116072-appb-100107
    Figure PCTCN2018116072-appb-100108
    为第k个偏航误差区间的真实功率曲线{PC k}上
    Figure PCTCN2018116072-appb-100109
    对应的功率值,且
    Figure PCTCN2018116072-appb-100110
    F(·)函数为Rayleigh分布的累计概率分布函数,具体公式如下
    Figure PCTCN2018116072-appb-100111
    其中v ave为待分析风电机组的年平均风速。
PCT/CN2018/116072 2018-11-18 2018-11-18 一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法 WO2020097944A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/116072 WO2020097944A1 (zh) 2018-11-18 2018-11-18 一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法
US17/319,120 US11649803B2 (en) 2018-11-18 2021-05-13 Method of identification and compensation of inherent deviation of yaw error of wind turbine based on true power curve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116072 WO2020097944A1 (zh) 2018-11-18 2018-11-18 一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/319,120 Continuation US11649803B2 (en) 2018-11-18 2021-05-13 Method of identification and compensation of inherent deviation of yaw error of wind turbine based on true power curve

Publications (1)

Publication Number Publication Date
WO2020097944A1 true WO2020097944A1 (zh) 2020-05-22

Family

ID=70731302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116072 WO2020097944A1 (zh) 2018-11-18 2018-11-18 一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法

Country Status (2)

Country Link
US (1) US11649803B2 (zh)
WO (1) WO2020097944A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111260503A (zh) * 2020-01-13 2020-06-09 浙江大学 一种基于聚类中心优化的风电机组功率曲线离群点检测方法
CN112267972A (zh) * 2020-10-22 2021-01-26 华能国际电力股份有限公司 一种风电机组功率曲线异常智能判定方法
CN112380699A (zh) * 2020-11-13 2021-02-19 龙源(北京)风电工程技术有限公司 一种基于多维分析的风电机组偏航误差预警分析方法
CN112800103A (zh) * 2020-12-09 2021-05-14 华能陕西发电有限公司 一种scada数据挖掘的风电机组功率曲线的获取***及方法
CN112879220A (zh) * 2021-03-16 2021-06-01 上海电气风电集团股份有限公司 风机控制方法、***和可读存储介质
CN112966395A (zh) * 2021-03-31 2021-06-15 华能国际电力股份有限公司 一种风电机组偏航***静态误差的计算方法
CN113236507A (zh) * 2021-05-28 2021-08-10 中南大学 一种风电机组偏航静态误差诊断方法和***
CN113848347A (zh) * 2021-07-29 2021-12-28 尚特杰电力科技有限公司 一种风力发电机测风仪健康状态检测方法
CN115422503A (zh) * 2022-07-22 2022-12-02 中广核新能源(定远)有限公司 风力发电机组功率曲线绘制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061052A1 (en) * 2018-09-17 2020-03-26 American Superconductor Corporation Yaw auto-calibration for a wind turbine generator
CN113931808A (zh) * 2021-10-25 2022-01-14 中国华能集团清洁能源技术研究院有限公司 风电机组偏航误差的诊断方法及装置
CN114638312A (zh) * 2022-03-24 2022-06-17 申能新能源(青海)有限公司 一种风电功率无监督式学习分类算法
CN114841021B (zh) * 2022-07-04 2022-10-11 北京航空航天大学杭州创新研究院 数字孪生模型的修正方法、装置、电子设备和存储介质
CN117436024B (zh) * 2023-12-19 2024-03-08 湖南翰文云机电设备有限公司 一种基于钻机运行数据分析的故障诊断方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213182A (zh) * 2011-05-12 2011-10-12 北京金风科创风电设备有限公司 偏航误差角获得方法及偏航控制方法/装置和风力发电机组
US8890349B1 (en) * 2012-01-19 2014-11-18 Northern Power Systems, Inc. Load reduction system and method for a wind power unit
CN105909466A (zh) * 2016-04-18 2016-08-31 华电电力科学研究院 风力发电机组偏航误差分析方法
CN106014878A (zh) * 2016-06-30 2016-10-12 华北电力科学研究院有限责任公司 风力发电机组偏航***动作误差的测试方法及***
CN106150904A (zh) * 2016-07-01 2016-11-23 华北电力科学研究院有限责任公司 一种风力发电机组偏航***控制性能优化方法及***
CN107944175A (zh) * 2017-12-06 2018-04-20 浙江大学 一种考虑风湍流强度的风机真实功率曲线获取方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2175129A1 (en) * 2008-10-10 2010-04-14 Siemens Aktiengesellschaft Adaptive adjustment of the blade pitch angle of a wind turbine
WO2020061052A1 (en) * 2018-09-17 2020-03-26 American Superconductor Corporation Yaw auto-calibration for a wind turbine generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213182A (zh) * 2011-05-12 2011-10-12 北京金风科创风电设备有限公司 偏航误差角获得方法及偏航控制方法/装置和风力发电机组
US8890349B1 (en) * 2012-01-19 2014-11-18 Northern Power Systems, Inc. Load reduction system and method for a wind power unit
CN105909466A (zh) * 2016-04-18 2016-08-31 华电电力科学研究院 风力发电机组偏航误差分析方法
CN106014878A (zh) * 2016-06-30 2016-10-12 华北电力科学研究院有限责任公司 风力发电机组偏航***动作误差的测试方法及***
CN106150904A (zh) * 2016-07-01 2016-11-23 华北电力科学研究院有限责任公司 一种风力发电机组偏航***控制性能优化方法及***
CN107944175A (zh) * 2017-12-06 2018-04-20 浙江大学 一种考虑风湍流强度的风机真实功率曲线获取方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZAHNG, WEI ET AL.: "Non-official translation: Research on Yaw Correction Analysis Method for Wind Turbine", HUADAIN TECHNOLOGY, vol. 39, no. 4, 30 April 2017 (2017-04-30), pages 71 - 73, ISSN: 1674-1951 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111260503A (zh) * 2020-01-13 2020-06-09 浙江大学 一种基于聚类中心优化的风电机组功率曲线离群点检测方法
CN111260503B (zh) * 2020-01-13 2023-10-27 浙江大学 一种基于聚类中心优化的风电机组功率曲线离群点检测方法
CN112267972A (zh) * 2020-10-22 2021-01-26 华能国际电力股份有限公司 一种风电机组功率曲线异常智能判定方法
CN112267972B (zh) * 2020-10-22 2023-05-05 华能国际电力股份有限公司 一种风电机组功率曲线异常智能判定方法
CN112380699A (zh) * 2020-11-13 2021-02-19 龙源(北京)风电工程技术有限公司 一种基于多维分析的风电机组偏航误差预警分析方法
CN112380699B (zh) * 2020-11-13 2024-05-17 龙源(北京)风电工程技术有限公司 一种基于多维分析的风电机组偏航误差预警分析方法
CN112800103B (zh) * 2020-12-09 2023-03-03 华能陕西发电有限公司 一种scada数据挖掘的风电机组功率曲线的获取***及方法
CN112800103A (zh) * 2020-12-09 2021-05-14 华能陕西发电有限公司 一种scada数据挖掘的风电机组功率曲线的获取***及方法
CN112879220A (zh) * 2021-03-16 2021-06-01 上海电气风电集团股份有限公司 风机控制方法、***和可读存储介质
CN112879220B (zh) * 2021-03-16 2022-11-01 上海电气风电集团股份有限公司 风机控制方法、***和可读存储介质
CN112966395B (zh) * 2021-03-31 2023-09-19 华能国际电力股份有限公司 一种风电机组偏航***静态误差的计算方法
CN112966395A (zh) * 2021-03-31 2021-06-15 华能国际电力股份有限公司 一种风电机组偏航***静态误差的计算方法
CN113236507B (zh) * 2021-05-28 2022-08-19 中南大学 一种风电机组偏航静态误差诊断方法和***
CN113236507A (zh) * 2021-05-28 2021-08-10 中南大学 一种风电机组偏航静态误差诊断方法和***
CN113848347A (zh) * 2021-07-29 2021-12-28 尚特杰电力科技有限公司 一种风力发电机测风仪健康状态检测方法
CN115422503A (zh) * 2022-07-22 2022-12-02 中广核新能源(定远)有限公司 风力发电机组功率曲线绘制方法
CN115422503B (zh) * 2022-07-22 2023-10-17 中广核新能源(定远)有限公司 风力发电机组功率曲线绘制方法

Also Published As

Publication number Publication date
US11649803B2 (en) 2023-05-16
US20210262439A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2020097944A1 (zh) 一种基于真实功率曲线的风电机组偏航误差固有偏差辨识及补偿方法
CN109740175B (zh) 一种面向风电机组功率曲线数据的离群点判别方法
CN103631681B (zh) 一种在线修复风电场异常数据的方法
CN107944175B (zh) 一种考虑风湍流强度的风机真实功率曲线获取方法
CN111322205A (zh) 风电机组风向标零位误差辨识方法及校正方法
WO2023201552A1 (en) County-wide photovoltaic prediction method based on cluster division and data enhancement
CN110674864B (zh) 一种含同步相量量测装置的风电异常数据辨识方法
CN105512766A (zh) 一种风电场功率预测方法
CN109779848B (zh) 全场风速修正函数的获得方法、装置及风电场
CN109167387A (zh) 风场风电功率预测方法
CN110503153B (zh) 基于差分进化算法和支持向量机的光伏***故障诊断方法
CN106529741B (zh) 一种基于空间相关特征的超短期风电功率预测方法
CN103489046A (zh) 风电场短期功率预测方法
CN106570790B (zh) 一种计及风速数据分段特性的风电场出力数据修复方法
CN113379142B (zh) 一种基于风速修正和融合模型的短期风电功率预测方法
CN111342499B (zh) 一种基于风功率预测数据的风电场实时调度方法
CN111260503A (zh) 一种基于聚类中心优化的风电机组功率曲线离群点检测方法
CN113153633A (zh) 一种风电机组风向仪静态偏差校准方法
CN115314406A (zh) 一种基于图像分析的输电线路的智能缺陷检测方法
CN112800103B (zh) 一种scada数据挖掘的风电机组功率曲线的获取***及方法
CN116662829B (zh) 一种场群风机标准功率曲线定义规则和偏差验证方法
CN115898787A (zh) 一种风电机组静态偏航误差动态识别方法及装置
CN107977727B (zh) 一种基于社会发展和气候因素预测光缆网阻断概率的方法
CN116365500A (zh) 基于特殊地域集合预报的风电场发电功率预测方法
Wu et al. A combined algorithm for data cleaning of wind power scatter diagram considering actual engineering characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940250

Country of ref document: EP

Kind code of ref document: A1