WO2020095453A1 - Layering/molding device - Google Patents

Layering/molding device Download PDF

Info

Publication number
WO2020095453A1
WO2020095453A1 PCT/JP2018/041750 JP2018041750W WO2020095453A1 WO 2020095453 A1 WO2020095453 A1 WO 2020095453A1 JP 2018041750 W JP2018041750 W JP 2018041750W WO 2020095453 A1 WO2020095453 A1 WO 2020095453A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
processing
height
optical system
light receiving
Prior art date
Application number
PCT/JP2018/041750
Other languages
French (fr)
Japanese (ja)
Inventor
秀 多久島
河野 裕之
良次 澤
大嗣 森田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020556460A priority Critical patent/JP6964801B2/en
Priority to PCT/JP2018/041750 priority patent/WO2020095453A1/en
Publication of WO2020095453A1 publication Critical patent/WO2020095453A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/286Optical filters, e.g. masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a layered modeling apparatus that forms a modeled product by melting and stacking a processing material at a processing position.
  • DED Directed Energy Deposition
  • the DED metal laminating apparatus supplies a metal material such as a metal wire or a metal powder as a processing material to a base plate from a supply port, and fuses the metal material with a laser, an electron beam, or the like to form a modeled object.
  • the metal material can be uniformly laminated. Can not.
  • the metal material is supplied from the supply port higher than the appropriate value range to the formed object, in other words, if the height of the object is lower than the design value, the supplied metal The material becomes droplets, and unevenness occurs on the modeled object.
  • the formed object is supplied from the supply port lower than the appropriate value range, in other words, if the height of the object is higher than the design value, the metal material becomes the object. An unmelted residue occurs due to the effect of being pressed too much.
  • a method of measuring the height of a modeled object there is a light cutting method.
  • a line beam is irradiated as an illumination light for measurement to an object, the illumination light is obliquely incident on the object, and a light receiving optical system is arranged so that the light reflected by the object can be received.
  • the illumination light receives the reflected light reflected on the object.
  • the height distribution of the object is calculated from the light receiving position of the reflected light in the light receiving optical system by the principle of triangulation.
  • the reflected light reflected on the object is received by an image sensor or the like.
  • the position of the center of gravity of the reflected light image is calculated from the intensity distribution on the image sensor, and the distance to the object is calculated as the displacement.
  • an error occurs in the calculation result of the center of gravity, and thus a measurement error occurs in the height measurement result.
  • an optical filter that transmits only the wavelength of the illumination light for measurement is attached to the light receiving optical system, and the transmission wavelength is changed according to the spread angle of the illumination light.
  • the processing position of the additive manufacturing device is high enough to melt the processing material such as metal. Therefore, at the processing position of the additive manufacturing apparatus, extremely high-intensity heat radiation light is generated.
  • high-luminance thermal radiation when measuring the height of the formed object, the thermal radiation becomes high-intensity ambient light, so the reflected light obtained from the image on the image sensor The position of the center of gravity of the image becomes unstable, and an error occurs in the measured value.
  • the high-brightness thermal radiation light generated at the processing position has a wide spectrum and includes light having a wavelength generally used as illumination light for measurement.
  • the present invention has been made to solve the above problems, and an object thereof is to obtain a layered modeling apparatus capable of suppressing deterioration of measurement accuracy during processing of the height of a formed modeled object.
  • the additive manufacturing apparatus performs additional processing by stacking the molten processing material at the processing position while moving the processing position on the work, It is a layered modeling device that repeats additional processing to form a modeled object, and a processing optical system that images the processing light that melts the processing material at the processing position and a measurement position different from the processing position on the workpiece for measurement It is formed on the workpiece based on the measurement illumination that emits the illumination light, the light receiving optical system that includes the light receiving element that receives the reflected light that the illumination light reflects at the measurement position, and the light receiving position of the reflected light on the light receiving element.
  • the light receiving optical system transmits the light at the image forming position of the reflected light which is reflected at the measurement position and is incident on the light receiving element, and is incident from the processing position.
  • the light image formation position Characterized in that it comprises a light shielding mask for shielding light.
  • the present invention it is possible to suppress the deterioration of the measurement accuracy during the processing of the height of the formed object.
  • FIG. 1 is a perspective view showing a configuration of a layered modeling apparatus according to a first embodiment.
  • FIG. 3 is a diagram showing a control circuit according to the first embodiment.
  • the figure which shows the cross section of the XZ plane of the additive manufacturing apparatus in the III-III line of FIG. The figure which shows the height of the supply port of the metal wire with respect to the modeling thing concerning Embodiment 1.
  • Flowchart showing a procedure of wire height control according to the first embodiment The figure which shows the wire height in case the additive manufacturing apparatus concerning Embodiment 1 processes a 2nd layer.
  • FIG. 3 is a diagram showing a control circuit according to the first embodiment.
  • the figure which shows the cross section of the XZ plane of the additive manufacturing apparatus in the III-III line of FIG. The figure which shows the
  • FIG. 3 is a diagram showing an image of a line beam formed on a light receiving element when a line beam is applied to the modeled object according to the first embodiment.
  • FIG. 3 is a diagram showing an outline of an imaging result of an image sensor which is a light receiving element being processed according to the first embodiment
  • FIG. 3 is a diagram showing an image output from the image sensor according to the first embodiment.
  • FIG. 3 is a diagram showing a configuration example of a light-shielding mask according to the first embodiment.
  • FIG. 3 is a diagram showing an image of a line beam formed on a light receiving element when a line beam is applied to the modeled object according to the first embodiment.
  • FIG. 3 is a diagram showing an outline of an imaging result
  • FIG. 6 is a diagram showing a relationship between the thickness of the light-shielding mask and the region of the light-shielding portion according to the second embodiment.
  • the figure of the 1st example which shows the XY section at the time of performing the process which changed the formation direction of the modeling thing concerning Embodiment 3.
  • the figure of the 2nd example which shows the XY cross section at the time of performing the process which changed the formation direction of the modeling thing concerning Embodiment 3.
  • the figure of the 3rd example which shows the XY cross section at the time of performing the process which changed the formation direction of the modeling thing concerning Embodiment 3.
  • FIG. 1 is a perspective view showing the configuration of the additive manufacturing apparatus 100 according to the first embodiment.
  • the layered manufacturing apparatus 100 is assumed to be a metal layering apparatus that uses metal as a processing material, but other processing materials such as resin may be used. ..
  • the modeled object formed by the additive manufacturing apparatus 100 may be referred to as a laminate.
  • the additive manufacturing apparatus 100 of the present embodiment includes a processing laser 1, a processing head 2, a fixture 5, a drive stage 6, a line illumination 8, a calculation unit 9, and a control unit 10.
  • the processing laser 1 is a light source that emits processing light used for modeling processing for forming the modeled object 4 on the work 3.
  • a fiber laser using a semiconductor laser or a CO 2 laser is used as the processing laser 1.
  • the wavelength of the processing light emitted by the processing laser 1 is 1070 nm.
  • the processing light is focused at the processing position in a point shape, and hence the processing position is hereinafter referred to as a processing point.
  • the layered modeling apparatus 100 forms the modeled object 4 by melting and laminating the processing material 7 at each processing position while moving the processing position on the work 3, that is, while scanning.
  • the work 3 is placed on the drive stage 6 and fixed on the drive stage 6 by the fixture 5.
  • the work 3 serves as a base when the modeled object 4 is formed.
  • a base plate is assumed as the work 3, but any object having a three-dimensional shape may be used.
  • the scanning of the processing point means that the processing point moves along a defined path, that is, along a defined trajectory.
  • the additive manufacturing apparatus 100 performs additional processing by stacking the molten processing material 7 at the processing point while moving the processing point that is the processing position on the work 3.
  • the additive manufacturing apparatus 100 performs additional processing by stacking the molten processing material 7 at processing points that move on the work 3. More specifically, the additive manufacturing apparatus 100 drives the drive stage 6 to move the candidate point of the processing position on the work 3. At least one of the candidate points on the movement path is a processing point where the processing material 7 is laminated. At the processing point, the additive manufacturing apparatus 100 melts the processing material 7 supplied for performing additional processing with processing light.
  • the layered modeling apparatus 100 stacks the beads generated by solidifying the molten processing material 7 by repeating scanning of the processing points to form the modeled article 4 on the work 3.
  • the drive stage 6 is often a 5-axis stage that can scan in XYZ three axes and can also rotate in the XY plane and the YZ plane.
  • the X axis is the horizontal axis
  • the Y axis is the vertical axis
  • the Z axis is the height axis.
  • the drive stage 6 is scanned on five axes, but the processing head 2 may be scanned.
  • the line illumination 8 irradiates the measurement position on the work 3 with a line beam 40, which is a linear illumination light for measurement, in order to measure the height of the formed object 4.
  • the measurement position is a position different from the processing point.
  • the line illumination 8 is also called measurement illumination.
  • the line beam 40 is reflected at the measurement position.
  • the light receiving optical system is arranged so that the light reflected at the measurement position can be received. Further, the light receiving optical system is arranged so as to have an optical axis that is oblique to the optical axis of the line beam 40.
  • the light source of the line illumination 8 is a green laser near the wavelength of 550 nm or a blue laser near the wavelength of 420 nm, which is far from the peak wavelength of the thermal radiation light. It is desirable to use.
  • the illumination light used to measure the height of the modeled object 4 does not have to be the line beam 40, and may be a spot beam that is the illumination light condensed in a dot shape. If the spot beam is used, the height of the illuminated point on the work 3 can be measured. On the other hand, if the line beam 40 is used, the height distribution of the illuminated range on the work 3 can be measured. In the present embodiment, the line beam 40 is used to measure the height of the modeled object 4.
  • the calculation unit 9 calculates the height of the modeled object 4 at the position irradiated with the line beam 40 based on the trigonometric principle based on the light receiving position of the reflected light of the line beam 40 in the light receiving optical system.
  • the height of the modeled object 4 is the position of the upper surface of the modeled object 4 in the Z direction.
  • the control unit 10 also controls the processing conditions in the additional processing using the height calculated by the calculation unit 9. More specifically, the control unit 10 uses the height of the modeled object 4 calculated by the calculation unit 9 to drive the processing laser 1, the driving condition of the driving stage 6, and the metal to be the processing material 7.
  • the processing conditions such as the driving conditions of the wire supply unit that supplies the wire are optimized.
  • the driving condition of the wire supply unit includes the height for supplying the metal wire.
  • the line illumination 8, the light receiving optical system, and the calculation unit 9 form a height measuring device.
  • the arithmetic unit 9 and the control unit 10 according to the embodiment are realized by a processing circuit that is an electronic circuit that performs each process.
  • This processing circuit may be dedicated hardware, or may be a control circuit including a memory and a CPU (Central Processing Unit) that executes a program stored in the memory.
  • the memory corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory, a magnetic disk, an optical disk, and the like.
  • the processing circuit is a control circuit including a CPU
  • the control circuit is, for example, the control circuit 200 having the configuration shown in FIG.
  • the control circuit 200 includes a processor 200a, which is a CPU, and a memory 200b.
  • a processor 200a which is a CPU
  • a memory 200b When implemented by the control circuit 200 shown in FIG. 2, it is implemented by the processor 200a reading and executing a program stored in the memory 200b and corresponding to each process.
  • the memory 200b is also used as a temporary memory in each processing executed by the processor 200a.
  • FIG. 3 is a diagram showing a cross section of the additive manufacturing apparatus 100 taken along the line III-III in FIG. 1 taken along the XZ plane.
  • the processing head 2 includes a light projecting lens 11, a beam splitter 12, an objective lens 13, a condenser lens 14, a light shielding mask 15, a second imaging optical system 16, and a light receiving unit 17.
  • the processing head 2 includes a processing optical system 20 that forms an image of the processing light emitted from the processing laser 1 at a processing position on the work 3, and a light receiving optical system that measures the height of the modeled object 4 formed on the work 3. And a system 30.
  • the first image forming optical system including the objective lens 13 and the condenser lens 14, the light shielding mask 15, the second image forming optical system 16, and the light receiving unit 17 constitute a light receiving optical system 30.
  • the light receiving optical system 30 is also called a measurement optical system.
  • the processing light emitted from the processing laser 1 passes through the light projecting lens 11, is reflected by the beam splitter 12 toward the work 3, and is condensed at the processing point on the work 3 using the objective lens 13.
  • the light projecting lens 11, the beam splitter 12, and the objective lens 13 constitute a processing optical system 20 provided in the processing head 2.
  • the focal length of the light projecting lens 11 is 200 mm.
  • the focal length of the objective lens 13 is 460 mm.
  • the surface of the beam splitter 12 is coated to increase the reflectance of the wavelength of the processing light emitted from the processing laser 1 and to transmit the light of the wavelength shorter than the wavelength of the processing light.
  • the additive manufacturing apparatus 100 supplies a metal wire or metal powder as a processing material 7 to a processing point while scanning the work 3 in the ⁇ X direction by driving the drive stage 6. As a result, as the processing point is scanned, the processing material 7 is melted by the processing light at the processing point and then solidified so that the bead extends in the + X direction. The formed bead becomes a part of the molded article 4.
  • a new bead is formed on a part of the work 3 that is the base or a part of the modeled part 4 that has already been modeled, so that a part of the new modeled object 4 is formed.
  • the processed material 7 is laminated to form the modeled product 4 as the final product.
  • description will be made assuming that a metal wire is used as the processing material 7.
  • the height measuring line illumination 8 is attached to the side surface of the processing head 2 and irradiates the line beam 40 toward the measurement position on the work 3 or the formed object 4. In the present embodiment, the measurement position is located behind the processing point in the scanning direction of the processing point.
  • the measurement position is not limited to the rear of the processing point as long as it is a position different from the processing point, and may be, for example, the front of the processing point.
  • the measurement position is determined in consideration of the supply direction of the processing material 7 and the like. For example, if the measurement position is on the side opposite to the supply direction of the processing material 7 with respect to the processing point, it becomes easy to illuminate the measurement position without being interrupted by the processing material 7. Further, the measurement position may move in correspondence with the movement of the processing point.
  • the bead is described as being formed so as to extend linearly, but the bead formed in a dot shape is connected to form one bead, and other bead forming methods. But good.
  • the line beam 40 is orthogonal to the direction in which the bead is formed, that is, the direction in which the drive stage 6 moves, and forms a beam that spreads in a direction parallel to the upper surface of the drive stage 6, for example, the Y direction. It is formed by using a cylindrical lens or the like.
  • the divergence of the beam refers to the base of the isosceles triangle formed by the line beam 40.
  • the line beam 40 irradiates the formed object 4 that has been formed in a line shape.
  • the line beam 40 irradiated at the measurement position is reflected at the measurement position, enters the objective lens 13, passes through the beam splitter 12, and is condensed by the condenser lens 14 at the first image formation position.
  • the objective lens 13 and the condenser lens 14 are collectively referred to as a first imaging optical system.
  • a light-shielding mask 15 is installed at the first image forming position, which is the image forming plane of the condenser lens 14.
  • the light-shielding mask 15 is based on a transmissive material such as glass, and a light-shielding material that shields light is formed by vapor deposition or the like at the image formation position of light from the processing point.
  • the light-shielding mask 15 can be manufactured by vapor-depositing a light-shielding material such as chromium oxide on a transparent material such as glass.
  • the light-shielding mask 15 may have another configuration as long as it has a function of blocking the image forming position of the light from the processing point and not shielding the image forming position of the reflected light from the measurement position.
  • the light transmitted through the light shielding mask 15 is imaged on the light receiving unit 17 by using the second imaging optical system 16.
  • the second image forming optical system 16 is configured in the same manner as the first image forming optical system using, for example, two lenses, but may be one lens or three or more lenses, and the light receiving unit 17 may include It only needs to have a function of forming an image.
  • an area camera or the like having a light receiving element such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used, but it may have a configuration including a light receiving element in which pixels are arranged two-dimensionally.
  • CMOS Complementary Metal Oxide Semiconductor
  • a bandpass filter that transmits only the irradiation wavelength of the line beam 40 is preferably provided in the optical system from the beam splitter 12 to the light receiving unit 17.
  • the bandpass filter it is possible to remove light of an unnecessary wavelength, such as processing light, heat radiation light, or ambient light.
  • the light receiving optical system 30 includes the light blocking mask 15 that blocks the light emitted at the processing point and entering the light receiving element, and does not block the reflected light reflected at the measurement position and entering the light receiving element.
  • the light receiving optical system 30 transmits light at the image forming position of the reflected light which is reflected at the measurement position and enters the light receiving element, and blocks light at the image forming position of the light incident from the processing position.
  • a mask 15 is provided.
  • FIG. 4 is a diagram showing the height of the supply port of the metal wire with respect to the modeled article 4 according to the first embodiment.
  • the height of the metal wire supply port refers to the height of the metal wire supply port based on the upper surface of the work 3.
  • the height of the supply port of the metal wire may be simply referred to as the height of the supply port.
  • the height of the tip of the metal wire can be calculated from the height of the supply port.
  • the output amount of the metal wire from the supply port represents the length from the supply port to the tip of the metal wire.
  • the height of the tip of the metal wire can be controlled.
  • the amount of metal wire emitted from the supply port is controlled to be constant, and the height of the supply port and the height of the tip of the metal wire have a one-to-one correspondence.
  • the range of the appropriate height of the supply port depends on the height of the modeled article 4 that has already been modeled. As shown in FIG.
  • an appropriate height range of the supply port corresponding to the formed object 4 is ha ⁇ ⁇ .
  • the height of the supply port is the center of the range of ha ⁇ ⁇ . That is, in FIG. 4A, the height of the supply port is ha.
  • ha + ⁇ is shown as the upper limit value 51.
  • ha- ⁇ is shown as the lower limit value 50.
  • the height of the supply port is ha, which is within the range of ha ⁇ ⁇ , so that no problem occurs in the processing result.
  • FIG. 4A the height of the supply port is ha, which is within the range of ha ⁇ ⁇ , so that no problem occurs in the processing result.
  • the height hb of the supply port is hb> ha + ⁇ , which is outside the range of ha ⁇ ⁇ .
  • the metal wire melted by the processing light is not sufficiently adhered to the formed modeled object 4 and a droplet is generated. Unevenness occurs on the molded article 4.
  • the height hc of the supply port is hc ⁇ ha- ⁇ , which is outside the range of ha ⁇ ⁇ . In this case, the metal wire is excessively pressed in the direction of the formed article 4 and the metal wire is not completely melted even when the processing light is irradiated, and a metal wire that remains unmelted is generated.
  • the metal wire left unmelted is included in the modeled object 4 after processing.
  • the height of the supply port may be maintained constant.
  • the height of the modeled object 4 formed up to the previous time is not the designed value, or the height of the modeled object 4 is not constant depending on the position.
  • the height of the modeled product up to the previous stacking will actually be increased even if the supply port is raised by one design height from the height of the previous stacking.
  • the height of the supply port may not be within the appropriate range of the supply port corresponding to the part to be laminated this time. It is also possible that the height of the modeled article 4 is not constant depending on the position.
  • FIG. 5 is a diagram showing an XZ cross section of a processing point during processing according to the first embodiment.
  • a region in which the processing light is irradiated to the processing point during the additional processing and the metal wire is melted on the work 3 is called a melt pool.
  • the linear shaped object 4 can be added in the X direction.
  • the temperature near the melt pool at the processing point is high, as the drive stage 6 is moved, the melt pool is naturally cooled and solidifies into a certain shape as a metal bead.
  • the beads 4 are stacked to form the shaped article 4.
  • the end of the melt pool is located at the center of the processing point, that is, at a distance W from the optical axis of the processing laser beam. Since the processing material is melted in the melt pool, it is difficult to accurately measure the height of the formed object. Therefore, it is desirable that the irradiation position of the line beam 40 for measuring the height be a position separated by a distance W or more from the center of the processing point. For example, it is desirable that the irradiation position of the line beam 40 for measuring the height be a position separated by a distance L from the center of the processing point. That is, it is desirable that the measurement position at which the height is measured is located outside the range in which the processing material 7 is melted during processing.
  • the irradiation position of the line beam 40 When the irradiation position of the line beam 40 is far from the processing point, the bead is sufficiently solidified and it is easy to measure.
  • the installation position needs to be separated from the processing head 2. Will grow. Further, when the installation position of the line beam 40 is near the processing head 2, the irradiation angle becomes vertical, and therefore the displacement of the irradiation position of the line beam 40 with respect to the height change is small, and the height resolution is lowered. Further, when the imaging system is installed coaxially with the processing head 2, it is necessary to increase the field of view, so the resolution is lowered. When the image pickup system is provided separately from the processing head 2, the device becomes large. As described above, the measurement position is determined in consideration of various matters. In particular, the measurement position needs to be determined in consideration of the height range in which measurement is required. The height range in which measurement is required is determined according to the specifications of the additive manufacturing apparatus 100.
  • the light receiving position on the light receiving element of the reflected light obtained by reflecting the height measuring illumination light such as the line beam 40 at the measuring position changes depending on the height of the measuring position.
  • the range on the light receiving element where the reflected light reflected at the measurement position is received and the image of the range in which the processing material 7 is melted during processing are It is necessary to set the measurement position so as not to overlap the range on the light receiving element where an image is formed when the light shielding mask 15 is not provided. With this configuration, it is possible to optically separate the reflected light from the measurement position and the disturbance light generated at the processing position.
  • the light-shielding mask 15 shields the thermal radiation light emitted from the processing point so as not to be received by the light-receiving element, and transmits the reflected light reflected at the measurement position without shielding it.
  • the light blocking mask 15 is configured to block only the range of the optical path where the thermal radiation light emitted from the processing point enters the light receiving element.
  • the light-shielding mask 15 is configured to shield the height range where measurement is required, except for the range of the optical path where the reflected light reflected at the measurement position enters the light receiving element.
  • FIG. 6 is a flowchart showing a procedure of wire height control according to the first embodiment.
  • the wire height is the height of the tip of the processing material 7 to which the processing light is irradiated, with the upper surface of the work 3 as a reference.
  • the wire height is the height of the tip of the processing material 7 when the processing material 7 is not melted.
  • the measurable distance between the heights of the modeled objects 4 is determined by the frame rate of the image sensor used as the light receiving element in the light receiving unit 17 and the scanning speed of the processing axis (scanning speed of the processing point).
  • the frame rate is F [fps]
  • the moving speed of the drive stage 6 is v [mm / s]
  • the moving range of the drive stage 6 is P ⁇ Q [mm]
  • the maximum P / ⁇ ⁇ Q / ⁇ height measurement result can be measured during the processing of the first layer.
  • the layered manufacturing apparatus 100 changes the height of the wire (step S4) and starts the additional processing of the nth layer (step S5).
  • the additive manufacturing apparatus 100 starts measuring the height of the modeled object 4 after the processing of the nth layer (step S6), and stores the height of the modeled object 4 with respect to the measurement position so that the additional processing of the nth layer is performed. It ends (step S7).
  • step S8 Yes When the additive manufacturing of all the layers is completed by the additive manufacturing apparatus 100 (step S8, Yes), the process ends.
  • the additive manufacturing of all layers has not been completed by the additive manufacturing apparatus 100 (step S8, No) the process returns to step S4.
  • FIG. 7 is a diagram showing a wire height when the additive manufacturing apparatus 100 according to the first embodiment processes the second layer.
  • the region I can be modeled at the height T1 as designed, and the region II can be formed. Is T2 higher than the design, and the region III is T3 lower than the design.
  • the wire is Tave-separated in the + Z direction and the second layer processing is started.
  • the design loading amount for one layer, the maximum value of the measured height measurement results, or the median value may be used. Then, when the second layer is stacked at each processing position, depending on the difference between the measured heights T1 to T3 in each region of the first layer and the target stacking height (2 ⁇ T1) of the second layer.
  • the control unit 10 changes the processing conditions.
  • the processing conditions are set so that the heights of the modeled objects 4 in all the areas after the second layer become uniform. Change to reduce the stacking amount of the second layer. For example, the processing laser output is reduced or the wire supply amount is reduced.
  • the processing conditions are changed so that the heights of the modeled objects 4 in all regions after the second layer become uniform. Increase the stacking amount.
  • the processing laser output is increased or the wire supply amount is increased.
  • the height of the modeled article 4 after stacking is measured.
  • the measured height of the second layer is a relative height based on the height of the first layer
  • the total stacking amount can be calculated by adding it to the measurement result of the first layer.
  • the height of the modeled article 4 is determined in consideration of the adjusted height of the processing head 2. In this way, using the result of the bead height measured during the (n-1) th stacking, the wire height is increased by a certain amount during the nth stacking, and the processing conditions are adjusted with respect to the height change at each processing position. Control is performed so that the stacking amount at all processing positions becomes uniform after each layer is processed. By doing so, the height of the wire with respect to the modeled object 4 can always be maintained at ha ⁇ ⁇ , so that machining can be continued without causing machining defects.
  • FIG. 8 is an enlarged XZ cross section of the modeled article 4 onto which the line illumination 8 according to the first embodiment is projected.
  • FIG. 9 is a diagram showing an image of the line beam 40 formed on the light receiving element when the modeled object 4 according to the first embodiment is irradiated with the line beam 40.
  • the line beam 40 emitted by the line illumination 8 is sufficiently stronger than the ambient light, only the line beam 40 appears in the image acquired by the light receiving element. Due to the difference in height between the modeled object 4 and the work 3, the irradiation position of the line beam 40 is projected with a deviation of ⁇ X ′.
  • ⁇ X ′ M1 ⁇ M2 ⁇ ⁇ X.
  • the height of the model 4 can be calculated from the difference in the irradiation position of the line beam 40 between the upper surface of the work 3 and the upper surface of the model 4. Even if the height of the modeled object 4 becomes higher than the upper surface of the work 3 and the reflected light of the line beam 40 from the upper surface of the work 3 cannot be received, the line beam 40 reflected from the upper surface of the modeled object 4 in the field of view. It is possible to calculate the distance from the sensor by using the irradiation position of.
  • the irradiation position of the line beam 40 is generally calculated from the X-direction center of gravity position of the projection pattern of the line beam 40.
  • the output in the X direction is calculated for each Y-direction pixel, and the center of gravity position is calculated from the cross-sectional intensity distribution of the line beam 40.
  • the calculation method of the irradiation position of the line beam 40 is not limited to the barycentric position, but may be appropriately selected such as the peak position of the light amount.
  • the irradiation width of the line beam 40 needs to be large enough to calculate the irradiation position. For example, in the case of calculating the center of gravity, if the center of gravity is too narrow, the center of gravity cannot be calculated. Therefore, about 5 to 10 pixels is desirable.
  • the line length of the line beam 40 (irradiation width of the line beam 40) may be sufficiently longer than the width of the modeled object 4.
  • the luminance barycentric position in the X direction is calculated for each pixel in the Y direction of the image, and the result is converted into the height, whereby the cross-sectional distribution of the height of the model 4 in the width direction of the model 4 is obtained.
  • a spot beam is used as the illumination light used to measure the height of the modeled object 4
  • the cross-sectional distribution of the height of the modeled object 4 cannot be measured, but the spot size is appropriately selected. By doing so, it is possible to perform measurement with less error.
  • FIG. 10 is a diagram showing an outline of the image formation result of the image sensor which is the light receiving element being processed according to the first embodiment.
  • the thermal radiation light imaged on the image sensor is also multiple-reflected in the transparent resin for protecting the surface of the image sensor or reflected by the metal part of the light receiving portion 17 of the image sensor to generate stray light. It is possible to make it.
  • the heat radiation light is shielded in the imaging system by using the light shielding mask 15 so that the heat radiation does not reach the light receiving element.
  • the light shielding mask 15 is installed at the focal position of the first image forming optical system. An image on the side of the work 3 is formed at a magnification M1 at the focal position of the first image forming optical system.
  • FIG. 11 is a diagram showing an image output from the image sensor according to the first embodiment. As shown in FIG. 11, in the image output from the image sensor, the light from the processing point is blocked, and the stray light that is incident along with the reflected light of the line beam 40 can be removed.
  • FIG. 12 is a diagram showing a configuration example of the light shielding mask 15 according to the first embodiment.
  • FIG. 13 is another diagram showing a configuration example of the light shielding mask 15 according to the first embodiment.
  • the configuration of the light-shielding mask 15 for example, when a circular housing is used, the configuration is shown in which only the processed portion is shielded as shown in FIG. 12, but only the line beam 40 is transmitted as shown in FIG. However, it suffices that the image forming position of the processing point is shielded from light.
  • FIG. 14 is another view showing a cross section of the additive manufacturing apparatus 100 taken along line III-III in FIG. 1 taken along the XZ plane.
  • the central axis of the objective lens 13 and the central axis of the condenser lens 14 or the central axis of the second imaging optical system 16 are orthogonal to the central axis of the objective lens 13. Axis and are offset.
  • the objective lens 13 is a lens that collects the processing light at the processing position. Further, the condenser lens 14 and the second image forming optical system 16 form a third image forming optical system that forms an image of the reflected light of the measurement illumination light that has passed through the objective lens 13 on the light receiving unit 17. Make up the system.
  • the position of the central axis of the third imaging optical system that forms the reflected light that has passed through the objective lens 13 on the light receiving unit 17 is the objective lens 13 that collects the processed light at the processing position.
  • the position of the central axis of is different.
  • the central axis of the third image forming optical system that forms an image of the reflected light that has passed through the objective lens 13 on the light receiving unit 17 has the processing light at the processing position.
  • the same effect can be obtained by using a configuration that is inclined with respect to the central axis of the objective lens 13 that collects.
  • the shape of the lens surface of the condenser lens 14 may be changed.
  • the visual field of the light receiving unit 17 may be wider than the range in which the line beam 40 moves within the height measuring range, and the second imaging optical system 16 that expands only the moving range of the line beam 40 is used.
  • the resolution of the line beam 40 can be increased, and the height measurement accuracy can be improved.
  • the height measuring method when the work 3 is scanned in the -X direction and the beads are formed so as to extend in the wire supply direction, that is, the + X direction.
  • this result may be used in the next processing.
  • the work 3 may be scanned in the + X direction opposite to the wire installation direction so that the bead extends in the direction opposite to the wire installation direction, that is, in the ⁇ X direction.
  • the processing condition since the height of the modeled object 4 processed last time is measured immediately before the current processing, the processing condition may be controlled immediately after the measurement.
  • the layered modeling apparatus 100 can suppress deterioration in the accuracy of measuring the height of the formed article 4 that has been formed.
  • Embodiment 2 The additive manufacturing apparatus according to the second embodiment has the same configuration as the additive manufacturing apparatus according to the first embodiment, but the configuration of the height measuring optical system is different.
  • the additive manufacturing apparatus according to the second embodiment of the present invention has a configuration in which the light shielding plate in the height measuring optical system is provided immediately before the image sensor, which is a light receiving element, not at the focus position of the first imaging optical system. is there. Therefore, there is an advantage that the second imaging optical system 16 can be omitted and the entire apparatus can be downsized.
  • FIG. 15 is a diagram showing an XZ section of the additive manufacturing apparatus according to the second embodiment.
  • the configurations of the processing laser 1, the processing optical system 20, and the line illumination 8 are the same as those in the first embodiment.
  • the reflected light from the modeling object 4 that has passed through the beam splitter 12 is directly imaged on the light receiving element of the light receiving unit 17 by the condenser lens 14. Further, by installing the light shielding mask 15 immediately before the light receiving element, that is, between the light receiving element and the first imaging optical system, the heat radiation light from the processing point is shielded, and only the reflected light of the line beam 40 is provided. Is imaged on the image sensor.
  • the light-shielding mask 15 is attached to the image sensor, for example, by a method such as adhesion.
  • FIG. 16 is a diagram showing the relationship between the thickness of the light shielding mask 15 and the region of the light shielding portion according to the second embodiment. As shown in FIG.
  • the machining point is shielded from light, and the modeling object 4 has high height measurement accuracy even during processing. Since the height of the device can be measured, there is an advantage that the entire device can be downsized.
  • Embodiment 3 The additive manufacturing apparatus of the third embodiment has the same configuration as that of the first embodiment or the second embodiment, but the shape of the line beam 40 used for height measurement is different.
  • the irradiation shape of the line beam 40 is not a straight line but a circular shape centered on the processing point.
  • the rotation mechanism of the drive stage 6 can be eliminated, and the device can be downsized. For example, if the drive stage 6 is rotated in the XY plane, it is possible to set the measurement position to be in front of or behind the processing point even when scanning is performed obliquely with respect to the X axis and the Y axis. However, by making the irradiation shape of the line beam 40 circular, at least part of the measurement position can be located in front of or behind the processing point without rotating the drive stage 6.
  • FIG. 17 is a diagram of a first example showing an XY cross section in the case of performing processing in which the forming direction of the modeled article 4 according to the third embodiment is changed.
  • the drive stage 6 shown in FIG. 17 is a rotary stage that rotates in the XY plane.
  • a range surrounded by a dotted line indicates a range in which the additive manufacturing apparatus 100 is expected to form the modeled article 4.
  • the work 3 is rotated by ⁇ degrees using the rotary stage on the XY plane on the drive stage 6 to perform modeling. Since it can be performed, the processing direction is always constant.
  • FIG. 18 is a diagram of a second example showing an XY cross section in the case of performing processing in which the forming direction of the modeled article 4 according to the third embodiment is changed.
  • the drive stage 6 shown in FIG. 18 is not a rotation stage and does not rotate in the XY plane.
  • the operating speed in the X-axis direction and the operating speed in the Y-axis direction should be controlled to an appropriate ratio.
  • FIG. 19 is a diagram of a third example showing an XY cross section in the case of performing processing in which the forming direction of the modeled article 4 according to the third embodiment is changed.
  • the drive stage 6 shown in FIG. 19 is not a rotary stage and does not rotate in the XY plane. In FIG. 19, a circular line beam 40 is used.
  • the line beam 40 is irradiated in a circular shape centering on the processing point, so that the modeling object always has a constant distance from the processing point regardless of the processing direction.
  • the height of 4 can be measured.
  • the wire is loaded from the + X direction, it is generally processed in the range of 180 degrees from the + Y direction to the ⁇ X direction to the ⁇ Y direction.
  • the circular line beam 40 has been described here, it does not have to be strictly circular, and may have an elliptical shape, and there is no problem even if it is partially interrupted such as a semicircle.
  • the line beam 40 is already formed by using the line beam 40 regardless of the direction in which the processing point is scanned as long as the angle of the line range of the line beam that can be taken during the additional processing is 90 degrees or more.
  • the height of the modeled object 4 can be measured.
  • the central angle may be 90 degrees or more. If a 90-degree arc-shaped line beam from the -X direction to the + Y direction is used, when the bead is formed so as to extend in the + X direction and the -Y direction, the measurement immediately after processing is performed. When the beads are formed so as to extend in the ⁇ X direction and the + Y direction, the measurement is performed immediately before the processing.
  • the angle of the tangential line range may be 90 degrees or more.
  • a square shape such as a square shape may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Powder Metallurgy (AREA)

Abstract

This layering/molding device performs additive processing by layering a melted processing material (7) at a processing position while moving the processing position over a workpiece (3), and forms a molded object (4) by repeating the additive processing. The layering/molding device is characterized by comprising: a processing optical system (20) that forms, at the processing position, processing light for melting the processing material (7); a line illuminator (8) that radiates illumination light for measurement to a measurement position which is different from the processing position on the workpiece (3); a light-receiving optical system (30) provided with a light-receiving part (17) that receives reflected light resulting from reflection of the illumination light at the measurement position; and a calculation unit that calculates, on the basis of a position at which the reflected light is received on the light-receiving part (17), the height of the molded object (4) that is formed on the workpiece (3). The layering/molding device is further characterized in that the light-receiving optical system (30) comprises a light-blocking mask (15) that allows light to pass at a light-forming position of reflected light which is reflected at the measurement position and enters the light-receiving part (17), and that blocks light at a light-forming position of light that enters from the processing position.

Description

積層造形装置Additive manufacturing equipment
 本発明は、加工位置で加工材料を溶融して積層することで造形物を形成する積層造形装置に関する。 The present invention relates to a layered modeling apparatus that forms a modeled product by melting and stacking a processing material at a processing position.
 3Dプリンタのように加工材料を積層して3次元の造形物を形成する積層造形技術において、加工材料である金属を積層する方式として、指向性エネルギー堆積(DED:Directed Energy Deposition)方式がある。DED金属積層装置は、供給口から金属ワイヤ、金属粉末等の金属材料を加工材料としてベースプレートに供給し、レーザまたは電子ビームなどで金属材料を溶融して積層することで造形物を形成する。しかし、形成済みの造形物に対して金属材料を供給するための、ベースプレートと加工材料の供給口との間の高さが適切な値の範囲から外れると、均一に金属材料を積層することができない。例えば、形成済みの造形物に対して、適切な値の範囲よりも高い供給口から金属材料が提供された場合、言い換えれば造形物の高さが設計値よりも低い場合には、供給した金属材料が溶滴となり、造形物に凹凸が生じる。一方、形成済みの造形物に対して、適切な値の範囲よりも低い供給口から供給された場合、言い換えれば造形物の高さが設計値よりも高い場合には、金属材料が造形物に押し付けられ過ぎる影響で溶け残りが発生する。 In the additive manufacturing technology that forms a three-dimensional model by laminating processing materials like a 3D printer, there is a Directed Energy Deposition (DED) method as a method for laminating a metal that is a processing material. The DED metal laminating apparatus supplies a metal material such as a metal wire or a metal powder as a processing material to a base plate from a supply port, and fuses the metal material with a laser, an electron beam, or the like to form a modeled object. However, when the height between the base plate and the processing material supply port for supplying the metal material to the formed object is out of the appropriate value range, the metal material can be uniformly laminated. Can not. For example, if the metal material is supplied from the supply port higher than the appropriate value range to the formed object, in other words, if the height of the object is lower than the design value, the supplied metal The material becomes droplets, and unevenness occurs on the modeled object. On the other hand, if the formed object is supplied from the supply port lower than the appropriate value range, in other words, if the height of the object is higher than the design value, the metal material becomes the object. An unmelted residue occurs due to the effect of being pressed too much.
 したがって、形成済みの造形物の高さを計測し、金属材料を供給する高さを適切な値の範囲に制御する必要がある。造形物の高さを計測する方法として、光切断方式がある。光切断方式では、計測用の照明光としてラインビームを対象物に照射し、照明光が対象物に斜めに入射し、対象物で反射された光を受光できるように配置されている受光光学系により、照明光が対象物上で反射された反射光を受光する。光切断方式では、三角測量の原理により、受光光学系における反射光の受光位置から対象物の高さ分布を算出する。具体的には、対象物上で反射される反射光は、イメージセンサなどで受光される。イメージセンサ上の強度分布から反射光の像の重心位置が算出され、対象物までの距離が変位として算出される。計測用の照明光以外の外乱光がイメージセンサに入射すると、重心の計算結果に誤差が生じるため、高さ計測結果に測定誤差が生じる。特許文献1には、外乱光を除去するために、計測用の照明光の波長のみを透過する光学フィルタを受光光学系に取り付け、照明光の広がり角に応じて、透過波長を変化させることで、光の入射角の増加に伴う反射波長変化によって生じた波長の光を透過させ、外乱光を除去し、高さ計測誤差を減少させる方法が記載されている。 Therefore, it is necessary to measure the height of the formed object and control the height at which the metal material is supplied to an appropriate value range. As a method of measuring the height of a modeled object, there is a light cutting method. In the optical cutting method, a line beam is irradiated as an illumination light for measurement to an object, the illumination light is obliquely incident on the object, and a light receiving optical system is arranged so that the light reflected by the object can be received. Thus, the illumination light receives the reflected light reflected on the object. In the light cutting method, the height distribution of the object is calculated from the light receiving position of the reflected light in the light receiving optical system by the principle of triangulation. Specifically, the reflected light reflected on the object is received by an image sensor or the like. The position of the center of gravity of the reflected light image is calculated from the intensity distribution on the image sensor, and the distance to the object is calculated as the displacement. When ambient light other than the illumination light for measurement enters the image sensor, an error occurs in the calculation result of the center of gravity, and thus a measurement error occurs in the height measurement result. In Patent Document 1, in order to remove ambient light, an optical filter that transmits only the wavelength of the illumination light for measurement is attached to the light receiving optical system, and the transmission wavelength is changed according to the spread angle of the illumination light. , A method of transmitting light having a wavelength caused by a change in reflected wavelength with an increase in incident angle of light, removing ambient light, and reducing a height measurement error.
特開2012-242134号公報JP, 2012-242134, A
 しかしながら、積層造形装置の加工位置は、金属等の加工材料を溶かす程の高温になる。このため、積層造形装置の加工位置では、非常に高輝度な熱輻射光が発生する。このような高輝度な熱輻射光が発生すると、形成済みの造形物の高さを計測する場合に、熱輻射光が高輝度の外乱光となるため、イメージセンサ上の像から得られる反射光の像の重心位置が不安定になり、計測値にも誤差が生じる。また、加工位置で発生する高輝度な熱輻射光は、広いスペクトルを有し、一般に計測用の照明光に用いられる波長の光も含まれる。このため、特許文献1に記載された方法では、計測用の照明光の波長のみを透過する波長選択フィルタを用いているため、加工位置から発生する熱輻射光を完全に除去することができず、形成済みの造形物の高さの加工中の計測精度が劣化するという課題があった。 However, the processing position of the additive manufacturing device is high enough to melt the processing material such as metal. Therefore, at the processing position of the additive manufacturing apparatus, extremely high-intensity heat radiation light is generated. When such high-luminance thermal radiation is generated, when measuring the height of the formed object, the thermal radiation becomes high-intensity ambient light, so the reflected light obtained from the image on the image sensor The position of the center of gravity of the image becomes unstable, and an error occurs in the measured value. Further, the high-brightness thermal radiation light generated at the processing position has a wide spectrum and includes light having a wavelength generally used as illumination light for measurement. Therefore, in the method described in Patent Document 1, since the wavelength selection filter that transmits only the wavelength of the illumination light for measurement is used, the thermal radiation light generated from the processing position cannot be completely removed. However, there is a problem that the accuracy of measurement of the height of the formed object during processing deteriorates.
 本発明は、上記のような課題を解決するためになされたものであり、形成済みの造形物の高さの加工中の計測精度の劣化を抑制することができる積層造形装置を得ることを目的とする。 The present invention has been made to solve the above problems, and an object thereof is to obtain a layered modeling apparatus capable of suppressing deterioration of measurement accuracy during processing of the height of a formed modeled object. And
 上述した課題を解決し、目的を達成するために、本発明にかかる積層造形装置は、ワーク上で加工位置を移動させながら溶融した加工材料を加工位置で積層することで付加加工を行うとともに、付加加工を繰り返して造形物を形成する積層造形装置であって、加工材料を溶融する加工光を加工位置に結像する加工光学系と、ワーク上の加工位置とは異なる計測位置に計測用の照明光を照射する計測用照明と、照明光が計測位置で反射した反射光を受光する受光素子を備える受光光学系と、受光素子上における反射光の受光位置に基づいて、ワーク上に形成された造形物の高さを演算する演算部と、を備え、受光光学系は、計測位置で反射して受光素子に入射する反射光の結像位置では光を透過させ、加工位置から入射される光の結像位置では光を遮光する遮光マスクを備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the additive manufacturing apparatus according to the present invention performs additional processing by stacking the molten processing material at the processing position while moving the processing position on the work, It is a layered modeling device that repeats additional processing to form a modeled object, and a processing optical system that images the processing light that melts the processing material at the processing position and a measurement position different from the processing position on the workpiece for measurement It is formed on the workpiece based on the measurement illumination that emits the illumination light, the light receiving optical system that includes the light receiving element that receives the reflected light that the illumination light reflects at the measurement position, and the light receiving position of the reflected light on the light receiving element. The light receiving optical system transmits the light at the image forming position of the reflected light which is reflected at the measurement position and is incident on the light receiving element, and is incident from the processing position. At the light image formation position Characterized in that it comprises a light shielding mask for shielding light.
 本発明によれば、形成済みの造形物の高さの加工中の計測精度の劣化を抑制することができるという効果を奏する。 According to the present invention, it is possible to suppress the deterioration of the measurement accuracy during the processing of the height of the formed object.
実施の形態1にかかる積層造形装置の構成を示す斜視図1 is a perspective view showing a configuration of a layered modeling apparatus according to a first embodiment. 実施の形態1にかかる制御回路を示す図FIG. 3 is a diagram showing a control circuit according to the first embodiment. 図1のIII-III線における積層造形装置のXZ平面の断面を示す図The figure which shows the cross section of the XZ plane of the additive manufacturing apparatus in the III-III line of FIG. 実施の形態1にかかる造形物に対する金属ワイヤの供給口の高さを示す図The figure which shows the height of the supply port of the metal wire with respect to the modeling thing concerning Embodiment 1. 実施の形態1にかかる加工中の加工点のXZ断面を示す図The figure which shows the XZ cross section of the processing point during processing concerning Embodiment 1. 実施の形態1にかかるワイヤ高さ制御の手順を示すフローチャートFlowchart showing a procedure of wire height control according to the first embodiment 実施の形態1にかかる積層造形装置が第二層目を加工する場合のワイヤ高さを示す図The figure which shows the wire height in case the additive manufacturing apparatus concerning Embodiment 1 processes a 2nd layer. 実施の形態1にかかるライン照明が投影された造形物の拡大したXZ断面を示す図The figure which shows the expanded XZ cross section of the modeled object by which the line illumination concerning Embodiment 1 was projected. 実施の形態1にかかる造形物にラインビームを照射した際の受光素子上に結像されたラインビームの画像を示す図FIG. 3 is a diagram showing an image of a line beam formed on a light receiving element when a line beam is applied to the modeled object according to the first embodiment. 実施の形態1にかかる加工中の受光素子であるイメージセンサの結像結果の概略を示す図FIG. 3 is a diagram showing an outline of an imaging result of an image sensor which is a light receiving element being processed according to the first embodiment 実施の形態1にかかるイメージセンサから出力される画像を示す図FIG. 3 is a diagram showing an image output from the image sensor according to the first embodiment. 実施の形態1にかかる遮光マスクの構成例を示す図FIG. 3 is a diagram showing a configuration example of a light-shielding mask according to the first embodiment. 実施の形態1にかかる遮光マスクの構成例を示す別の図Another diagram showing a configuration example of the light-shielding mask according to the first embodiment. 図1のIII-III線における積層造形装置のXZ平面の断面を示す別の図Another view showing a cross section of the additive manufacturing apparatus taken along the line XIII-III in FIG. 実施の形態2にかかる積層造形装置のXZ断面を示す図The figure which shows the XZ cross section of the additive manufacturing apparatus concerning Embodiment 2. 実施の形態2にかかる遮光マスクの厚みと遮光部の領域との関係を示す図FIG. 6 is a diagram showing a relationship between the thickness of the light-shielding mask and the region of the light-shielding portion according to the second embodiment. 実施の形態3にかかる造形物の形成方向を変更した加工を行う場合のXY断面を示す1つ目の例の図The figure of the 1st example which shows the XY section at the time of performing the process which changed the formation direction of the modeling thing concerning Embodiment 3. 実施の形態3にかかる造形物の形成方向を変更した加工を行う場合のXY断面を示す2つ目の例の図The figure of the 2nd example which shows the XY cross section at the time of performing the process which changed the formation direction of the modeling thing concerning Embodiment 3. 実施の形態3にかかる造形物の形成方向を変更した加工を行う場合のXY断面を示す3つ目の例の図The figure of the 3rd example which shows the XY cross section at the time of performing the process which changed the formation direction of the modeling thing concerning Embodiment 3.
 以下に、本発明の実施の形態にかかる積層造形装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The additive manufacturing apparatus according to the embodiment of the present invention will be described below in detail with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、実施の形態1にかかる積層造形装置100の構成を示す斜視図である。なお、以降の実施の形態も含めて、積層造形装置100は、金属を加工材料として使用する金属積層装置であるものとするが、樹脂等の他の加工材料を使用するものであっても良い。また、積層造形装置100によって形成される造形物は、積層物と呼ばれることもある。本実施の形態の積層造形装置100は、加工用レーザ1と、加工ヘッド2と、固定具5と、駆動ステージ6と、ライン照明8と、演算部9と、制御部10とを備える。
Embodiment 1.
FIG. 1 is a perspective view showing the configuration of the additive manufacturing apparatus 100 according to the first embodiment. In addition, including the following embodiments, the layered manufacturing apparatus 100 is assumed to be a metal layering apparatus that uses metal as a processing material, but other processing materials such as resin may be used. .. Further, the modeled object formed by the additive manufacturing apparatus 100 may be referred to as a laminate. The additive manufacturing apparatus 100 of the present embodiment includes a processing laser 1, a processing head 2, a fixture 5, a drive stage 6, a line illumination 8, a calculation unit 9, and a control unit 10.
 加工用レーザ1は、ワーク3上に造形物4を形成する造形加工に用いられる加工光を発する光源である。加工用レーザ1は、半導体レーザを用いたファイバレーザ、またはCOレーザが用いられる。例えば、加工用レーザ1が照射する加工光の波長は、1070nmである。一般的に、加工光は加工位置に点状に集光されるので、以降では加工位置を加工点と呼ぶ。積層造形装置100は、ワーク3上の加工位置を移動させながら、すなわち、走査しながら、走査の度に加工位置で加工材料7を溶融して積層することで造形物4を形成する。 The processing laser 1 is a light source that emits processing light used for modeling processing for forming the modeled object 4 on the work 3. As the processing laser 1, a fiber laser using a semiconductor laser or a CO 2 laser is used. For example, the wavelength of the processing light emitted by the processing laser 1 is 1070 nm. Generally, the processing light is focused at the processing position in a point shape, and hence the processing position is hereinafter referred to as a processing point. The layered modeling apparatus 100 forms the modeled object 4 by melting and laminating the processing material 7 at each processing position while moving the processing position on the work 3, that is, while scanning.
 ワーク3は、駆動ステージ6に載せられ、固定具5で駆動ステージ6の上に固定される。ワーク3は、造形物4が形成される際の土台となるものである。ここでは、ワーク3としてベースプレートを想定するが、3次元形状を有する物体であれば良い。駆動ステージ6が駆動されることで、加工ヘッド2に対するワーク3の位置が変化し、ワーク3上の加工点が走査される。加工点が走査されるとは、定められた経路に沿って、すなわち定められた軌跡を描くように加工点が移動することを意味する。積層造形装置100は、ワーク3上で加工位置である加工点を移動させながら、溶融した加工材料7を加工点で積層することで付加加工を行う。言い換えると、積層造形装置100は、ワーク3上を移動する加工点で、溶融した加工材料7を積層することで付加加工を行う。より具体的には、積層造形装置100は、駆動ステージ6を駆動することで、ワーク3上で加工位置の候補点を移動させる。移動経路上の候補点の少なくとも1点が、加工材料7が積層される加工点となる。積層造形装置100は、加工点において、付加加工を行うために供給される加工材料7を加工光で溶融する。積層造形装置100は、加工点の走査を繰り返すことで、溶融した加工材料7が凝固して生成されたビードを積層して、ワーク3上に造形物4を形成する。駆動ステージ6は、XYZの3軸の走査が可能であり、XY面内、YZ面内での回転も行うことができる5軸ステージが使用されることが多い。例えば、X軸は横軸であり、Y軸は縦軸であり、Z軸は高さ軸である。ここでは、駆動ステージ6を5軸で走査するものとするが、加工ヘッド2を走査しても良い。 The work 3 is placed on the drive stage 6 and fixed on the drive stage 6 by the fixture 5. The work 3 serves as a base when the modeled object 4 is formed. Here, a base plate is assumed as the work 3, but any object having a three-dimensional shape may be used. By driving the drive stage 6, the position of the work 3 with respect to the processing head 2 changes, and the processing point on the work 3 is scanned. The scanning of the processing point means that the processing point moves along a defined path, that is, along a defined trajectory. The additive manufacturing apparatus 100 performs additional processing by stacking the molten processing material 7 at the processing point while moving the processing point that is the processing position on the work 3. In other words, the additive manufacturing apparatus 100 performs additional processing by stacking the molten processing material 7 at processing points that move on the work 3. More specifically, the additive manufacturing apparatus 100 drives the drive stage 6 to move the candidate point of the processing position on the work 3. At least one of the candidate points on the movement path is a processing point where the processing material 7 is laminated. At the processing point, the additive manufacturing apparatus 100 melts the processing material 7 supplied for performing additional processing with processing light. The layered modeling apparatus 100 stacks the beads generated by solidifying the molten processing material 7 by repeating scanning of the processing points to form the modeled article 4 on the work 3. The drive stage 6 is often a 5-axis stage that can scan in XYZ three axes and can also rotate in the XY plane and the YZ plane. For example, the X axis is the horizontal axis, the Y axis is the vertical axis, and the Z axis is the height axis. Here, the drive stage 6 is scanned on five axes, but the processing head 2 may be scanned.
 ライン照明8は、形成済みの造形物4の高さを計測するために、ワーク3上の計測位置に計測用のライン状の照明光であるラインビーム40を照射する。計測位置は、加工点とは異なる位置となる。ライン照明8は計測用照明とも呼ばれる。ラインビーム40は計測位置で反射する。計測位置で反射した光を受光できるように受光光学系は配置される。また、受光光学系は、ラインビーム40の光軸に対して斜め方向の光軸を持つように配置される。加工時に発生する熱輻射光のピーク波長が赤外であるため、ライン照明8の光源には、熱輻射光のピーク波長から離れた、波長550nm付近の緑色レーザ、または波長420nm付近の青色レーザを用いることが望ましい。なお、造形物4の高さを計測するために用いられる照明光は、ラインビーム40である必要はなく、点状に集光された照明光であるスポットビームであっても良い。スポットビームを用いれば、ワーク3上の照明された点の高さを計測できる。一方、ラインビーム40を用いれば、ワーク3上の照明された範囲の高さ分布を計測できる。本実施の形態では、造形物4の高さを計測するためにラインビーム40が用いられるものとする。 The line illumination 8 irradiates the measurement position on the work 3 with a line beam 40, which is a linear illumination light for measurement, in order to measure the height of the formed object 4. The measurement position is a position different from the processing point. The line illumination 8 is also called measurement illumination. The line beam 40 is reflected at the measurement position. The light receiving optical system is arranged so that the light reflected at the measurement position can be received. Further, the light receiving optical system is arranged so as to have an optical axis that is oblique to the optical axis of the line beam 40. Since the peak wavelength of the thermal radiation light generated during processing is infrared, the light source of the line illumination 8 is a green laser near the wavelength of 550 nm or a blue laser near the wavelength of 420 nm, which is far from the peak wavelength of the thermal radiation light. It is desirable to use. The illumination light used to measure the height of the modeled object 4 does not have to be the line beam 40, and may be a spot beam that is the illumination light condensed in a dot shape. If the spot beam is used, the height of the illuminated point on the work 3 can be measured. On the other hand, if the line beam 40 is used, the height distribution of the illuminated range on the work 3 can be measured. In the present embodiment, the line beam 40 is used to measure the height of the modeled object 4.
 演算部9は、ラインビーム40の反射光の受光光学系における受光位置に基づいて、三角測量の原理によって、ラインビーム40が照射された位置における造形物4の高さを演算する。造形物4の高さは、造形物4の上面のZ方向の位置となる。また、制御部10は、演算部9で演算された高さを用いて、付加加工における加工条件を制御する。より具体的には、制御部10は、演算部9で演算された造形物4の高さを用いて、加工用レーザ1の駆動条件、および駆動ステージ6の駆動条件、加工材料7となる金属ワイヤを供給するワイヤ供給部の駆動条件などの加工条件を最適化する。ワイヤ供給部の駆動条件には、金属ワイヤを供給する高さが含まれる。ライン照明8、受光光学系、および演算部9は、高さ計測装置を構成する。 The calculation unit 9 calculates the height of the modeled object 4 at the position irradiated with the line beam 40 based on the trigonometric principle based on the light receiving position of the reflected light of the line beam 40 in the light receiving optical system. The height of the modeled object 4 is the position of the upper surface of the modeled object 4 in the Z direction. The control unit 10 also controls the processing conditions in the additional processing using the height calculated by the calculation unit 9. More specifically, the control unit 10 uses the height of the modeled object 4 calculated by the calculation unit 9 to drive the processing laser 1, the driving condition of the driving stage 6, and the metal to be the processing material 7. The processing conditions such as the driving conditions of the wire supply unit that supplies the wire are optimized. The driving condition of the wire supply unit includes the height for supplying the metal wire. The line illumination 8, the light receiving optical system, and the calculation unit 9 form a height measuring device.
 実施の形態にかかる演算部9および制御部10は、各処理を行う電子回路である処理回路により実現される。 The arithmetic unit 9 and the control unit 10 according to the embodiment are realized by a processing circuit that is an electronic circuit that performs each process.
 本処理回路は、専用のハードウェアであっても、メモリ及びメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央演算装置)を備える制御回路であってもよい。ここでメモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの、不揮発性または揮発性の半導体メモリ、磁気ディスク、光ディスクなどが該当する。本処理回路がCPUを備える制御回路である場合、この制御回路は例えば、図2に示す構成の制御回路200となる。 This processing circuit may be dedicated hardware, or may be a control circuit including a memory and a CPU (Central Processing Unit) that executes a program stored in the memory. Here, the memory corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory, a magnetic disk, an optical disk, and the like. When the processing circuit is a control circuit including a CPU, the control circuit is, for example, the control circuit 200 having the configuration shown in FIG.
 図2に示すように、制御回路200は、CPUであるプロセッサ200aと、メモリ200bとを備える。図2に示す制御回路200により実現される場合、プロセッサ200aがメモリ200bに記憶された、各処理に対応するプログラムを読みだして実行することにより実現される。また、メモリ200bは、プロセッサ200aが実施する各処理における一時メモリとしても使用される。 As shown in FIG. 2, the control circuit 200 includes a processor 200a, which is a CPU, and a memory 200b. When implemented by the control circuit 200 shown in FIG. 2, it is implemented by the processor 200a reading and executing a program stored in the memory 200b and corresponding to each process. The memory 200b is also used as a temporary memory in each processing executed by the processor 200a.
 図3は、図1のIII-III線における積層造形装置100のXZ平面の断面を示す図である。加工ヘッド2は、投光レンズ11と、ビームスプリッタ12と、対物レンズ13と、集光レンズ14と、遮光マスク15と、第二の結像光学系16と、受光部17とを備える。加工ヘッド2は、加工用レーザ1から照射される加工光をワーク3上の加工位置に結像する加工光学系20と、ワーク3上に形成された造形物4の高さ計測を行う受光光学系30とを備える。対物レンズ13および集光レンズ14を備える第一の結像光学系、遮光マスク15、第二の結像光学系16、および受光部17は、受光光学系30を構成する。受光光学系30は、計測光学系とも呼ばれる。加工用レーザ1から出射した加工光は、投光レンズ11を透過し、ビームスプリッタ12でワーク3の方向に反射され、対物レンズ13を用いてワーク3上の加工点に集光される。投光レンズ11、ビームスプリッタ12、および対物レンズ13は、加工ヘッド2に備えられる加工光学系20を構成する。例えば、投光レンズ11の焦点距離は200mmである。例えば、対物レンズ13の焦点距離は460mmである。ビームスプリッタ12の表面には、加工用レーザ1から照射される加工光の波長の反射率を高くし、加工光の波長より短い波長の光を透過するようなコーティングが行われる。積層造形装置100は、駆動ステージ6を駆動することでワーク3を-X方向に走査しながら、金属ワイヤまたは金属粉末を加工材料7として加工点に供給する。この結果、加工点が走査されるのに従って、加工点において加工光によって加工材料7が溶融された後に凝固して+X方向にビードが延びていくように形成される。形成されたビードが造形物4の一部となる。 FIG. 3 is a diagram showing a cross section of the additive manufacturing apparatus 100 taken along the line III-III in FIG. 1 taken along the XZ plane. The processing head 2 includes a light projecting lens 11, a beam splitter 12, an objective lens 13, a condenser lens 14, a light shielding mask 15, a second imaging optical system 16, and a light receiving unit 17. The processing head 2 includes a processing optical system 20 that forms an image of the processing light emitted from the processing laser 1 at a processing position on the work 3, and a light receiving optical system that measures the height of the modeled object 4 formed on the work 3. And a system 30. The first image forming optical system including the objective lens 13 and the condenser lens 14, the light shielding mask 15, the second image forming optical system 16, and the light receiving unit 17 constitute a light receiving optical system 30. The light receiving optical system 30 is also called a measurement optical system. The processing light emitted from the processing laser 1 passes through the light projecting lens 11, is reflected by the beam splitter 12 toward the work 3, and is condensed at the processing point on the work 3 using the objective lens 13. The light projecting lens 11, the beam splitter 12, and the objective lens 13 constitute a processing optical system 20 provided in the processing head 2. For example, the focal length of the light projecting lens 11 is 200 mm. For example, the focal length of the objective lens 13 is 460 mm. The surface of the beam splitter 12 is coated to increase the reflectance of the wavelength of the processing light emitted from the processing laser 1 and to transmit the light of the wavelength shorter than the wavelength of the processing light. The additive manufacturing apparatus 100 supplies a metal wire or metal powder as a processing material 7 to a processing point while scanning the work 3 in the −X direction by driving the drive stage 6. As a result, as the processing point is scanned, the processing material 7 is melted by the processing light at the processing point and then solidified so that the bead extends in the + X direction. The formed bead becomes a part of the molded article 4.
 加工点が走査されるたびに、土台となるワーク3または造形済みの造形物4の一部の上に新たにビードが積層されることで、新たな造形物4の一部が形成される。この動作を繰り返すことで、加工材料7が積層されて最終生成物である造形物4が形成される。本実施の形態では、加工材料7として金属ワイヤが用いられるものとして説明を進める。高さ計測用のライン照明8は、加工ヘッド2の側面に取り付けられ、ワーク3または形成済みの造形物4上の計測位置に向けてラインビーム40を照射する。本実施の形態においては、計測位置は、加工点の走査方向における、加工点の後方に位置するものとする。ワーク3が-X方向に走査される場合、加工点はワーク3上を+X方向に走査されるので、加工点の後方は-X方向となり、ビードは、+X方向にビードが延びていくように形成される。計測位置は、加工点と異なる位置であれば、加工点の後方に限定されず、例えば、加工点の前方であっても良い。計測位置は、加工材料7の供給方向などを考慮して決定される。例えば、計測位置は、加工点を基準として加工材料7の供給方向と反対側とすれば、加工材料7に遮られることなく計測位置を照明するのが容易となる。また、計測位置は、加工点の移動に対応して移動するものとしてもよい。ここで、以降の実施の形態も含めて、ビードは線状に延びるように形成されるものとして説明するが、点状に形成したビードを繋げて一つのビードとするなど、その他のビード形成方法でも良い。 Each time the machining point is scanned, a new bead is formed on a part of the work 3 that is the base or a part of the modeled part 4 that has already been modeled, so that a part of the new modeled object 4 is formed. By repeating this operation, the processed material 7 is laminated to form the modeled product 4 as the final product. In the present embodiment, description will be made assuming that a metal wire is used as the processing material 7. The height measuring line illumination 8 is attached to the side surface of the processing head 2 and irradiates the line beam 40 toward the measurement position on the work 3 or the formed object 4. In the present embodiment, the measurement position is located behind the processing point in the scanning direction of the processing point. When the workpiece 3 is scanned in the -X direction, the machining point is scanned in the + X direction on the workpiece 3, so that the back of the machining point is the -X direction, and the bead extends in the + X direction. It is formed. The measurement position is not limited to the rear of the processing point as long as it is a position different from the processing point, and may be, for example, the front of the processing point. The measurement position is determined in consideration of the supply direction of the processing material 7 and the like. For example, if the measurement position is on the side opposite to the supply direction of the processing material 7 with respect to the processing point, it becomes easy to illuminate the measurement position without being interrupted by the processing material 7. Further, the measurement position may move in correspondence with the movement of the processing point. Here, including the following embodiments, the bead is described as being formed so as to extend linearly, but the bead formed in a dot shape is connected to form one bead, and other bead forming methods. But good.
 ラインビーム40は、ビードが造形される方向、つまり駆動ステージ6が移動する方向に対して直角であり、駆動ステージ6の上面に対して平行な方向、例えば、Y方向に広がったビームを形成するようシリンドリカルレンズなどを用いて形成される。ここでビームの広がりとは、ラインビーム40が形成する二等辺三角形の底辺の部分を示す。ラインビーム40は、形成済みの造形物4にライン状に照射される。計測位置に照射されたラインビーム40は計測位置で反射され、対物レンズ13に入射し、ビームスプリッタ12を透過して、集光レンズ14により第一の結像位置に集光される。対物レンズ13と集光レンズ14とを合わせて第一の結像光学系と呼ぶ。 The line beam 40 is orthogonal to the direction in which the bead is formed, that is, the direction in which the drive stage 6 moves, and forms a beam that spreads in a direction parallel to the upper surface of the drive stage 6, for example, the Y direction. It is formed by using a cylindrical lens or the like. Here, the divergence of the beam refers to the base of the isosceles triangle formed by the line beam 40. The line beam 40 irradiates the formed object 4 that has been formed in a line shape. The line beam 40 irradiated at the measurement position is reflected at the measurement position, enters the objective lens 13, passes through the beam splitter 12, and is condensed by the condenser lens 14 at the first image formation position. The objective lens 13 and the condenser lens 14 are collectively referred to as a first imaging optical system.
 集光レンズ14の結像面である第一の結像位置には遮光マスク15が設置されている。遮光マスク15は、ガラスなどの透過材料をベースとしており、加工点からの光の結像位置には、光を遮光する遮光材が蒸着などにより形成される。遮光マスク15は、例えば、ガラスなどの透過材料上に酸化クロムなどの遮光材料を蒸着することで製作できる。遮光マスク15は、加工点からの光の結像位置は遮光し、計測位置からの反射光の結像位置は遮光しない機能を有していれば、その他の構成でも良い。遮光マスク15を透過した光は第二の結像光学系16を用いて受光部17に結像される。第二の結像光学系16は、例えば、レンズ2枚を用いて第一の結像光学系と同様に構成されるが、レンズ1枚、または3枚以上のレンズでも良く、受光部17に結像できる機能を有していれば良い。受光部17は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの受光素子を搭載したエリアカメラなどが用いられるが、二次元に画素が配列された受光素子を備える構成であれば良い。なお、ビームスプリッタ12から受光部17までの光学系内に、ラインビーム40の照射波長のみを透過するバンドパスフィルタを入れておくことが望ましい。バンドパスフィルタを備えることで、加工光、熱輻射光、または外乱光などのうち、不必要な波長の光を除去することができる。以上のように、受光光学系30は、加工点で発せられて受光素子に入射する光は遮光し、計測位置で反射して受光素子に入射する反射光は遮光しない遮光マスク15を備える。換言すれば、受光光学系30は、計測位置で反射して受光素子に入射する反射光の結像位置では光を透過させ、加工位置から入射される光の結像位置では光を遮光する遮光マスク15を備える。 A light-shielding mask 15 is installed at the first image forming position, which is the image forming plane of the condenser lens 14. The light-shielding mask 15 is based on a transmissive material such as glass, and a light-shielding material that shields light is formed by vapor deposition or the like at the image formation position of light from the processing point. The light-shielding mask 15 can be manufactured by vapor-depositing a light-shielding material such as chromium oxide on a transparent material such as glass. The light-shielding mask 15 may have another configuration as long as it has a function of blocking the image forming position of the light from the processing point and not shielding the image forming position of the reflected light from the measurement position. The light transmitted through the light shielding mask 15 is imaged on the light receiving unit 17 by using the second imaging optical system 16. The second image forming optical system 16 is configured in the same manner as the first image forming optical system using, for example, two lenses, but may be one lens or three or more lenses, and the light receiving unit 17 may include It only needs to have a function of forming an image. As the light receiving unit 17, an area camera or the like having a light receiving element such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used, but it may have a configuration including a light receiving element in which pixels are arranged two-dimensionally. A bandpass filter that transmits only the irradiation wavelength of the line beam 40 is preferably provided in the optical system from the beam splitter 12 to the light receiving unit 17. By providing the bandpass filter, it is possible to remove light of an unnecessary wavelength, such as processing light, heat radiation light, or ambient light. As described above, the light receiving optical system 30 includes the light blocking mask 15 that blocks the light emitted at the processing point and entering the light receiving element, and does not block the reflected light reflected at the measurement position and entering the light receiving element. In other words, the light receiving optical system 30 transmits light at the image forming position of the reflected light which is reflected at the measurement position and enters the light receiving element, and blocks light at the image forming position of the light incident from the processing position. A mask 15 is provided.
 積層造形装置100は、加工点に加工材料7として金属ワイヤを供給し、加工点に加工光を照射することで、形成済みの造形物4の上に新たな層を積層して新たな造形物4とする付加加工を行う。図4は、実施の形態1にかかる造形物4に対する金属ワイヤの供給口の高さを示す図である。ここで、金属ワイヤの供給口の高さとは、ワーク3の上面を基準とした金属ワイヤの供給口の高さを示す。以降では、金属ワイヤの供給口の高さは、単に供給口の高さと呼ばれることもある。なお、供給口からの金属ワイヤの出射量を既知の値に設定しておけば、供給口の高さから金属ワイヤの先端部の高さも算出することができる。供給口からの金属ワイヤの出射量は、供給口から金属ワイヤの先端部までの長さを表す。供給口の高さを制御することによって、金属ワイヤの先端部の高さを制御することができる。ここでは、供給口からの金属ワイヤの出射量は一定となるように制御され、供給口の高さと金属ワイヤの先端部の高さとは1対1に対応するものとする。また、供給口の適切な高さの範囲は、造形済みの造形物4の高さに依存する。図4に示す通り、形成済みの造形物4に対して金属ワイヤを適切な高さで供給できなければ、加工結果に不具合が発生する。例えば、図4(a)に示すように形成済みの造形物4に応じた供給口の適切な高さ範囲をha±αとする。図4(a)では、供給口の高さは、ha±αの範囲の中央である。つまり、図4(a)では、供給口の高さが、haである。図4(a)においてha+αを上限値51として示す。図4(a)においてha-αを下限値50として示す。図4(a)では、供給口の高さはhaであり、ha±αの範囲内であるため、加工結果に不具合は発生しない。しかし、図4(b)では、供給口の高さhbは、hb>ha+αであり、ha±αの範囲外である。この場合、金属ワイヤが溶解する位置が造形物4から離れているため、加工光が照射されて溶けた金属ワイヤが形成済みの造形物4に十分付着せず、溶滴が発生し、加工後の造形物4に凹凸が発生する。また、図4(c)では、供給口の高さhcは、hc<ha-αであり、ha±αの範囲外である。この場合、金属ワイヤが形成済みの造形物4の方向に押し付けられすぎ、加工光が照射されても金属ワイヤが全て溶けきらず、溶け残りの金属ワイヤが発生する。この結果、加工後の造形物4に溶け残った金属ワイヤが含まれてしまう。このように、形成済みの造形物4に応じた供給口の高さを加工中に適切な値に維持し続けることが高精度な加工には不可欠である。ワーク3に対して造形物4を加工し始める1層目の場合、ワーク3の高さが平坦であれば、供給口の高さを一定に維持して加工すればよい。 The layered modeling apparatus 100 supplies a metal wire as the processing material 7 to the processing point and irradiates the processing point with processing light, thereby stacking a new layer on the formed model 4 and forming a new modeled object. Additional processing of 4 is performed. FIG. 4 is a diagram showing the height of the supply port of the metal wire with respect to the modeled article 4 according to the first embodiment. Here, the height of the metal wire supply port refers to the height of the metal wire supply port based on the upper surface of the work 3. Hereinafter, the height of the supply port of the metal wire may be simply referred to as the height of the supply port. If the amount of the metal wire emitted from the supply port is set to a known value, the height of the tip of the metal wire can be calculated from the height of the supply port. The output amount of the metal wire from the supply port represents the length from the supply port to the tip of the metal wire. By controlling the height of the supply port, the height of the tip of the metal wire can be controlled. Here, the amount of metal wire emitted from the supply port is controlled to be constant, and the height of the supply port and the height of the tip of the metal wire have a one-to-one correspondence. Further, the range of the appropriate height of the supply port depends on the height of the modeled article 4 that has already been modeled. As shown in FIG. 4, if the metal wire cannot be supplied to the formed object 4 that has been formed at an appropriate height, a problem will occur in the processing result. For example, as shown in FIG. 4A, an appropriate height range of the supply port corresponding to the formed object 4 is ha ± α. In FIG. 4A, the height of the supply port is the center of the range of ha ± α. That is, in FIG. 4A, the height of the supply port is ha. In FIG. 4A, ha + α is shown as the upper limit value 51. In FIG. 4A, ha-α is shown as the lower limit value 50. In FIG. 4A, the height of the supply port is ha, which is within the range of ha ± α, so that no problem occurs in the processing result. However, in FIG. 4B, the height hb of the supply port is hb> ha + α, which is outside the range of ha ± α. In this case, since the position where the metal wire melts is far from the modeled object 4, the metal wire melted by the processing light is not sufficiently adhered to the formed modeled object 4 and a droplet is generated. Unevenness occurs on the molded article 4. Further, in FIG. 4C, the height hc of the supply port is hc <ha-α, which is outside the range of ha ± α. In this case, the metal wire is excessively pressed in the direction of the formed article 4 and the metal wire is not completely melted even when the processing light is irradiated, and a metal wire that remains unmelted is generated. As a result, the metal wire left unmelted is included in the modeled object 4 after processing. As described above, it is indispensable for highly accurate processing to maintain the height of the supply port corresponding to the formed object 4 at an appropriate value during processing. In the case of the first layer in which the work 3 is to be machined, if the height of the work 3 is flat, the height of the supply port may be maintained constant.
 しかし、2層目以降は、前回(前層)までに形成済みの造形物上に加工を行う必要がある。ここで、前回までに形成済みの造形物4の高さが設計値通りの高さになっていない場合、または位置によって造形物4の高さが一定になっていない場合が考えられる。この場合には、前回の積層時の供給口の高さから、設計上の1層分の高さだけ供給口を上昇させても、実際には、前回の積層時までの造形物の高さが設計値と異なる部分では、供給口の高さが今回積層する部分に対応する供給口の適切な範囲内ではない可能性がある。また、位置によって造形物4の高さが一定になっていない場合も考えられる。もし、2層目では適切な高さ範囲(ha±α)、言い換えると許容誤差範囲に入っていたとしても、複数回加工を行い、n層目(n≧2)を加工する場合には積層誤差がn回加算されるため、許容誤差範囲(ha±α)に入らない可能性がある。ここで、加工後の造形物4の高さを計測し、次回の加工時にこの高さ情報を利用して、制御を行う必要がある。 However, from the second layer onward, it is necessary to process on the molded object that has been formed by the previous time (previous layer). Here, it is conceivable that the height of the modeled object 4 formed up to the previous time is not the designed value, or the height of the modeled object 4 is not constant depending on the position. In this case, the height of the modeled product up to the previous stacking will actually be increased even if the supply port is raised by one design height from the height of the previous stacking. In the part where is different from the design value, the height of the supply port may not be within the appropriate range of the supply port corresponding to the part to be laminated this time. It is also possible that the height of the modeled article 4 is not constant depending on the position. Even if the height of the second layer is within the appropriate height range (ha ± α), in other words, even if it is within the allowable error range, if the processing is performed a plurality of times and the nth layer (n ≧ 2) is processed, the lamination is performed. Since the error is added n times, it may not fall within the allowable error range (ha ± α). Here, it is necessary to measure the height of the modeled article 4 after processing, and to control by using this height information at the time of the next processing.
 ここで、計測された形成済みの造形物4の高さを用いて、形成済みの造形物4に対して金属ワイヤを適切な高さに維持する方法について説明する。造形物4の加工後に、加工とは別に再び同一経路を計測のために走査し、形成済みの造形物4の高さを計測することも可能である。しかし、この場合には、1層の付加加工に対して、加工経路を2度走査する必要があるため、時間がかかる。ここで、加工中に形成済みの造形物4の高さを計測することで、1層の付加加工に対する加工経路の走査回数を一度にしつつ、付加加工と形成済みの造形物4の高さの計測の両方を行うことができる。図5は、実施の形態1にかかる加工中の加工点のXZ断面を示す図である。付加加工時に加工点に加工光が照射され、ワーク3上で金属ワイヤが溶けた状態となっている領域をメルトプールと呼ぶ。例えば、-X方向にワーク3を載せた駆動ステージ6を走査すれば、X方向に直線状の造形物4を付加することができる。加工点のメルトプール近傍は高温となっているが、駆動ステージ6を移動させていくと、メルトプールは自然冷却され、金属のビードとして一定の形状に凝固する。このビードが積層されて造形物4が形成される。 Here, a method of using the measured height of the formed article 4 to maintain the metal wire at an appropriate height with respect to the formed article 4 will be described. It is also possible to measure the height of the formed object 4 by scanning the same path again for measurement after processing the object 4 separately from the processing. However, in this case, since it is necessary to scan the processing path twice for one layer of additional processing, it takes time. Here, by measuring the height of the formed article 4 that has been formed during processing, the number of times of scanning of the processing path for one layer of additional processing is set to one, and the height of the formed article 4 that has been formed by the additional processing is determined. Both measurements can be performed. FIG. 5 is a diagram showing an XZ cross section of a processing point during processing according to the first embodiment. A region in which the processing light is irradiated to the processing point during the additional processing and the metal wire is melted on the work 3 is called a melt pool. For example, if the drive stage 6 on which the work 3 is placed is scanned in the −X direction, the linear shaped object 4 can be added in the X direction. Although the temperature near the melt pool at the processing point is high, as the drive stage 6 is moved, the melt pool is naturally cooled and solidifies into a certain shape as a metal bead. The beads 4 are stacked to form the shaped article 4.
 ここで、メルトプール端を加工点の中心、つまり加工用レーザ光の光軸から距離Wだけ離れた位置とする。メルトプールでは加工材料が溶融しており、形成済みの造形物の高さを正確に計測することが困難である。したがって、高さの計測を行うためのラインビーム40の照射位置は加工点の中心から距離W以上離れた位置とすることが望ましい。例えば、高さの計測を行うためのラインビーム40の照射位置は加工点の中心から距離L離れた位置とすることが望ましい。すなわち、高さが計測される計測位置は、加工時に加工材料7が溶解している範囲から外れた位置とすることが望ましい。ラインビーム40の照射位置は加工点から遠い方がビードも十分凝固しており計測しやすいが、ラインビーム40の照射角度を一定にする場合、設置位置を加工ヘッド2から離す必要があり、装置が大きくなる。また、ラインビーム40の設置位置を加工ヘッド2近傍にする場合には照射角度が垂直になるため、高さ変化に対するラインビーム40の照射位置の変位が少ないため、高さ分解能が低下する。また、撮像系を加工ヘッド2と同軸に設置する場合には、視野を大きくする必要があるため、解像度が低下する。撮像系を加工ヘッド2と別で設ける場合には装置が大型化する。以上のように、計測位置は、様々な事項を考慮して決定することになる。特に、計測位置は、計測が必要となる高さ範囲を考慮して決定する必要がある。計測が必要となる高さ範囲は、積層造形装置100の仕様に応じて決定される。 ▽ Here, the end of the melt pool is located at the center of the processing point, that is, at a distance W from the optical axis of the processing laser beam. Since the processing material is melted in the melt pool, it is difficult to accurately measure the height of the formed object. Therefore, it is desirable that the irradiation position of the line beam 40 for measuring the height be a position separated by a distance W or more from the center of the processing point. For example, it is desirable that the irradiation position of the line beam 40 for measuring the height be a position separated by a distance L from the center of the processing point. That is, it is desirable that the measurement position at which the height is measured is located outside the range in which the processing material 7 is melted during processing. When the irradiation position of the line beam 40 is far from the processing point, the bead is sufficiently solidified and it is easy to measure. However, when the irradiation angle of the line beam 40 is made constant, the installation position needs to be separated from the processing head 2. Will grow. Further, when the installation position of the line beam 40 is near the processing head 2, the irradiation angle becomes vertical, and therefore the displacement of the irradiation position of the line beam 40 with respect to the height change is small, and the height resolution is lowered. Further, when the imaging system is installed coaxially with the processing head 2, it is necessary to increase the field of view, so the resolution is lowered. When the image pickup system is provided separately from the processing head 2, the device becomes large. As described above, the measurement position is determined in consideration of various matters. In particular, the measurement position needs to be determined in consideration of the height range in which measurement is required. The height range in which measurement is required is determined according to the specifications of the additive manufacturing apparatus 100.
 ラインビーム40などの高さ計測用の照明光が計測位置で反射された反射光の受光素子上における受光位置は、計測位置の高さによって変化する。ここで、計測が必要となる高さ範囲に対して、計測位置で反射された反射光が受光される受光素子上の範囲と、加工時に加工材料7が溶解している範囲の像とが、遮光マスク15がない場合に結像される受光素子上の範囲と重ならないように、計測位置を設定する必要がある。このように構成することで、計測位置からの反射光と加工位置で発生する外乱光とを、光学的に分離することが可能となる。遮光マスク15は、加工点から放射される熱輻射光は受光素子上で受光されないように遮光し、計測位置で反射された反射光は遮光せずに透過する。例えば、遮光マスク15は、加工点から放射される熱輻射光が受光素子に入射する光路の範囲だけを遮光するように構成される。また、例えば、遮光マスク15は、計測が必要となる高さ範囲に対して、計測位置で反射される反射光が受光素子に入射する光路の範囲を除いて遮光するように構成される。 -The light receiving position on the light receiving element of the reflected light obtained by reflecting the height measuring illumination light such as the line beam 40 at the measuring position changes depending on the height of the measuring position. Here, with respect to the height range in which measurement is required, the range on the light receiving element where the reflected light reflected at the measurement position is received and the image of the range in which the processing material 7 is melted during processing are It is necessary to set the measurement position so as not to overlap the range on the light receiving element where an image is formed when the light shielding mask 15 is not provided. With this configuration, it is possible to optically separate the reflected light from the measurement position and the disturbance light generated at the processing position. The light-shielding mask 15 shields the thermal radiation light emitted from the processing point so as not to be received by the light-receiving element, and transmits the reflected light reflected at the measurement position without shielding it. For example, the light blocking mask 15 is configured to block only the range of the optical path where the thermal radiation light emitted from the processing point enters the light receiving element. Further, for example, the light-shielding mask 15 is configured to shield the height range where measurement is required, except for the range of the optical path where the reflected light reflected at the measurement position enters the light receiving element.
 図6は、実施の形態1にかかるワイヤ高さ制御の手順を示すフローチャートである。ここで、ワイヤ高さとは、ワーク3の上面を基準とした、加工光が照射される加工材料7の先端部の高さである。なお、ワイヤ高さは、加工材料7が溶融していない状態での加工材料7の先端部の高さである。まず、積層造形装置100は、一層目の付加加工を開始する(ステップS1)。また、積層造形装置100は、加工後の造形物4の高さの計測を開始し(ステップS2)、計測位置に対する造形物4の高さを保存することで一層目の付加加工が終了する(ステップS3)。ここで、計測できる造形物4の高さの間隔は、受光部17で受光素子として用いるイメージセンサのフレームレートと加工軸の走査速度(加工点の走査速度)とで決定される。例えば、フレームレートF[fps]、駆動ステージ6の移動速度v[mm/s]とすると、造形物4の高さの加工点の走査方向の計測間隔Λ[mm]は、Λ=v/Fとなる。また、駆動ステージ6の移動範囲をP×Q[mm]とすると、一層目の加工時で最大P/Λ×Q/Λの高さ計測結果を測定することができる。この後、積層造形装置100は、ワイヤの高さを変更し(ステップS4)、n層目の付加加工を開始する(ステップS5)。積層造形装置100は、n層目の加工後の造形物4の高さの計測を開始し(ステップS6)、計測位置に対する造形物4の高さを保存することでn層目の付加加工が終了する(ステップS7)。積層造形装置100が、全ての層の付加加工が終了した場合(ステップS8,Yes)、処理は終了する。積層造形装置100が、全ての層の付加加工が終了していない場合(ステップS8,No)、処理はステップS4に戻る。 FIG. 6 is a flowchart showing a procedure of wire height control according to the first embodiment. Here, the wire height is the height of the tip of the processing material 7 to which the processing light is irradiated, with the upper surface of the work 3 as a reference. The wire height is the height of the tip of the processing material 7 when the processing material 7 is not melted. First, the additive manufacturing apparatus 100 starts the additional processing of the first layer (step S1). Further, the layered modeling apparatus 100 starts measuring the height of the modeled object 4 after processing (step S2), and saves the height of the modeled object 4 with respect to the measurement position, whereby the first additional processing is completed ( Step S3). Here, the measurable distance between the heights of the modeled objects 4 is determined by the frame rate of the image sensor used as the light receiving element in the light receiving unit 17 and the scanning speed of the processing axis (scanning speed of the processing point). For example, assuming that the frame rate is F [fps] and the moving speed of the drive stage 6 is v [mm / s], the measurement interval Λ [mm] in the scanning direction between the processing points at the height of the modeled object 4 is Λ = v / F. Becomes Further, when the moving range of the drive stage 6 is P × Q [mm], the maximum P / Λ × Q / Λ height measurement result can be measured during the processing of the first layer. After that, the layered manufacturing apparatus 100 changes the height of the wire (step S4) and starts the additional processing of the nth layer (step S5). The additive manufacturing apparatus 100 starts measuring the height of the modeled object 4 after the processing of the nth layer (step S6), and stores the height of the modeled object 4 with respect to the measurement position so that the additional processing of the nth layer is performed. It ends (step S7). When the additive manufacturing of all the layers is completed by the additive manufacturing apparatus 100 (step S8, Yes), the process ends. When the additive manufacturing of all layers has not been completed by the additive manufacturing apparatus 100 (step S8, No), the process returns to step S4.
 図7は、実施の形態1にかかる積層造形装置100が第二層目を加工する場合のワイヤ高さを示す図である。二層目を加工する場合には、例えば、図7に示すように、一層目で形成された造形物4の高さを計測した結果、領域Iは設計通り高さT1で造形でき、領域IIは設計より高いT2となり、領域IIIは設計より低いT3であったとする。ここで、全ての領域の高さ計測結果の平均値Tave=T1を用いてワイヤ高さを調整する場合、ワイヤを+Z方向にTave離して二層目の加工を始める。ここで、二層目加工時のワイヤ高さ調整には、一層分の設計積載量、計測した高さ計測結果の最大値、または中央値などを用いても良い。そして、各加工位置に二層目を積層する場合には、一層目の各領域での計測高さT1~T3と二層目での目標積層高さ(2×T1)との差分に応じて、制御部10は加工条件を変更する。 FIG. 7 is a diagram showing a wire height when the additive manufacturing apparatus 100 according to the first embodiment processes the second layer. When processing the second layer, for example, as shown in FIG. 7, as a result of measuring the height of the modeled object 4 formed in the first layer, the region I can be modeled at the height T1 as designed, and the region II can be formed. Is T2 higher than the design, and the region III is T3 lower than the design. Here, when adjusting the wire height by using the average value Tave = T1 of the height measurement results of all the regions, the wire is Tave-separated in the + Z direction and the second layer processing is started. Here, for the wire height adjustment during the processing of the second layer, the design loading amount for one layer, the maximum value of the measured height measurement results, or the median value may be used. Then, when the second layer is stacked at each processing position, depending on the difference between the measured heights T1 to T3 in each region of the first layer and the target stacking height (2 × T1) of the second layer. The control unit 10 changes the processing conditions.
 もし、領域Iのように、計測したワイヤ高さT1=一層目での目標造形高さの場合は、標準の加工条件(加工レーザ出力、ワイヤ供給量、駆動ステージ6の走査速度など)で加工を行う。一方、領域IIのように、計測したワイヤ高さT2>一層目での目標造形高さの場合には二層目後に全ての領域の造形物4の高さが均一になるよう、加工条件を変更して二層目の積層量を少なくする。例えば、加工レーザ出力を小さくしたり、ワイヤの供給量を少なくしたりする。また、計測したワイヤ高さT3<一層目での目標造形高さの場合、二層目後に全ての領域の造形物4の高さが均一になるよう、加工条件を変更して二層目の積層量を多くする。例えば、加工レーザ出力を大きくしたり、ワイヤの供給量を多くしたりする。そして、二層目積層時も積層後の造形物4の高さを計測する。なお、計測された二層目の高さが、一層目の高さを基準とする相対的な高さである場合、一層目の計測結果に加算して総積層量を算出することができる。また、各層を積層する度に加工ヘッド2の高さを調整する場合には、調整された加工ヘッド2の高さを考慮して、造形物4の高さが求められる。このように、n-1回目の積層時に計測したビード高さの結果を用いて、n回目の積層時にワイヤ高さを一定量上昇させ、各加工位置での高さ変化に対しては加工条件を制御することで、各層加工終了後に全ての加工位置の積層量が均一になるよう制御を行う。こうすることで常に造形物4に対するワイヤ高さをha±αに維持することができるため、加工不具合を発生させずに加工を継続することができる。 If the measured wire height T1 is equal to the target modeling height in the first layer, as in region I, processing is performed under standard processing conditions (processing laser output, wire supply amount, scanning speed of drive stage 6, etc.). I do. On the other hand, when the measured wire height T2> the target modeling height in the first layer as in the area II, the processing conditions are set so that the heights of the modeled objects 4 in all the areas after the second layer become uniform. Change to reduce the stacking amount of the second layer. For example, the processing laser output is reduced or the wire supply amount is reduced. When the measured wire height T3 <the target modeling height in the first layer, the processing conditions are changed so that the heights of the modeled objects 4 in all regions after the second layer become uniform. Increase the stacking amount. For example, the processing laser output is increased or the wire supply amount is increased. Then, even when the second layer is stacked, the height of the modeled article 4 after stacking is measured. When the measured height of the second layer is a relative height based on the height of the first layer, the total stacking amount can be calculated by adding it to the measurement result of the first layer. Further, when adjusting the height of the processing head 2 each time each layer is laminated, the height of the modeled article 4 is determined in consideration of the adjusted height of the processing head 2. In this way, using the result of the bead height measured during the (n-1) th stacking, the wire height is increased by a certain amount during the nth stacking, and the processing conditions are adjusted with respect to the height change at each processing position. Control is performed so that the stacking amount at all processing positions becomes uniform after each layer is processed. By doing so, the height of the wire with respect to the modeled object 4 can always be maintained at ha ± α, so that machining can be continued without causing machining defects.
 次に、加工後のビード高さを計測するための、光切断方式を用いた高さ計測動作について説明する。図8は、実施の形態1にかかるライン照明8が投影された造形物4の拡大したXZ断面を示す図である。図8において、ワーク3上に対する造形物4の高さをΔZとし、ラインビーム40の照射角度をθとすると、ワーク3上と造形物4上のラインビーム40の照射位置の差異ΔXは、ΔX=ΔZ/tanθで表される。図9は、実施の形態1にかかる造形物4にラインビーム40を照射した際の受光素子上に結像されたラインビーム40の画像を示す図である。ライン照明8が照射するラインビーム40は、環境光より十分強いため、受光素子で取得される画像にはラインビーム40のみが写る。造形物4とワーク3との高さの違いにより、ラインビーム40の照射位置はΔX’ずれて投影される。ここで、第一の結像光学系の倍率M1、第二の結像光学系16の倍率M2を用いると、ΔX’=M1×M2×ΔXとなる。イメージセンサの1画素の大きさをWとすると、1画素当たりの高さ変位量ΔZ’は、ΔZ’=W×tanθ/(M1×M2)と表される。例えば、W=5.5μm、M1=1/2、M2=1、θ=72degとすると、ΔZ’=30μmとなる。このようにイメージセンサ画像のラインビーム40の投影位置から、三角測量の原理により、センサから対象物までの高さを算出することができる。 Next, the height measurement operation using the optical cutting method for measuring the bead height after processing will be described. FIG. 8 is an enlarged XZ cross section of the modeled article 4 onto which the line illumination 8 according to the first embodiment is projected. In FIG. 8, assuming that the height of the modeled object 4 with respect to the work 3 is ΔZ and the irradiation angle of the line beam 40 is θ, the difference ΔX between the irradiation positions of the line beam 40 on the workpiece 3 and the modeled object 4 is ΔX. = ΔZ / tan θ FIG. 9 is a diagram showing an image of the line beam 40 formed on the light receiving element when the modeled object 4 according to the first embodiment is irradiated with the line beam 40. Since the line beam 40 emitted by the line illumination 8 is sufficiently stronger than the ambient light, only the line beam 40 appears in the image acquired by the light receiving element. Due to the difference in height between the modeled object 4 and the work 3, the irradiation position of the line beam 40 is projected with a deviation of ΔX ′. Here, when the magnification M1 of the first image forming optical system and the magnification M2 of the second image forming optical system 16 are used, ΔX ′ = M1 × M2 × ΔX. When the size of one pixel of the image sensor is W, the height displacement amount ΔZ ′ per pixel is expressed as ΔZ ′ = W × tan θ / (M1 × M2). For example, if W = 5.5 μm, M1 = 1/2, M2 = 1, and θ = 72 deg, then ΔZ ′ = 30 μm. In this way, the height from the sensor to the object can be calculated from the projection position of the line beam 40 of the image sensor image by the principle of triangulation.
 また、ワーク3の上面と造形物4の上面とのラインビーム40の照射位置の差異から造形物4の高さを算出することができる。もし、造形物4の高さがワーク3上面に対して高くなり、ワーク3上面からのラインビーム40の反射光が受光できなくなったとしても、視野内の造形物4上面から反射したラインビーム40の照射位置を用いて、センサからの距離を算出することができる。ラインビーム40の照射位置は、一般にラインビーム40の投影パターンのX方向重心位置から計算される。各Y方向画素に対して、X方向の出力を算出し、ラインビーム40の断面強度分布から重心位置を算出する。ここで、ラインビーム40の照射位置の算出方法は重心位置に限らず、光量のピーク位置など適切に選択される。ラインビーム40の照射幅は、照射位置の算出に対して十分な大きさである必要がある。例えば、重心計算の場合には、狭すぎると重心計算ができず、太すぎるとビームの強度パターン変化の影響で誤差が生じやすい。このため、5~10pixel程度が望ましい。また、ラインビーム40のラインの長さ(ラインビーム40の照射幅)は造形物4の幅に対して十分長ければ良い。このように画像のY方向の各画素に対してX方向の輝度重心位置を算出し、この結果を高さに換算することで、造形物4の幅方向における造形物4の高さの断面分布を計測することができる。造形物4の高さを計測するために用いられる照明光として、スポットビームを用いる場合には、造形物4の高さの断面分布を計測することはできないが、スポットの大きさを適切に選択することで、誤差の少ない測定が可能となる。 The height of the model 4 can be calculated from the difference in the irradiation position of the line beam 40 between the upper surface of the work 3 and the upper surface of the model 4. Even if the height of the modeled object 4 becomes higher than the upper surface of the work 3 and the reflected light of the line beam 40 from the upper surface of the work 3 cannot be received, the line beam 40 reflected from the upper surface of the modeled object 4 in the field of view. It is possible to calculate the distance from the sensor by using the irradiation position of. The irradiation position of the line beam 40 is generally calculated from the X-direction center of gravity position of the projection pattern of the line beam 40. The output in the X direction is calculated for each Y-direction pixel, and the center of gravity position is calculated from the cross-sectional intensity distribution of the line beam 40. Here, the calculation method of the irradiation position of the line beam 40 is not limited to the barycentric position, but may be appropriately selected such as the peak position of the light amount. The irradiation width of the line beam 40 needs to be large enough to calculate the irradiation position. For example, in the case of calculating the center of gravity, if the center of gravity is too narrow, the center of gravity cannot be calculated. Therefore, about 5 to 10 pixels is desirable. The line length of the line beam 40 (irradiation width of the line beam 40) may be sufficiently longer than the width of the modeled object 4. In this way, the luminance barycentric position in the X direction is calculated for each pixel in the Y direction of the image, and the result is converted into the height, whereby the cross-sectional distribution of the height of the model 4 in the width direction of the model 4 is obtained. Can be measured. When a spot beam is used as the illumination light used to measure the height of the modeled object 4, the cross-sectional distribution of the height of the modeled object 4 cannot be measured, but the spot size is appropriately selected. By doing so, it is possible to perform measurement with less error.
 ここまでは、加工していない状態でラインビーム40から造形物4の高さを算出する方法について説明したが、加工中に計測する場合には、加工点が高輝度な発光点となり、加工点から出た熱輻射光により、発生する撮像系内での迷光により、計測誤差が発生する。図10は、実施の形態1にかかる加工中の受光素子であるイメージセンサの結像結果の概略を示す図である。遮光マスク15がない状態で加工中にラインビーム40をイメージセンサに結像すると、加工点から発光した熱輻射光もイメージセンサ上に結像される。上述の通り、ラインビーム40の照射位置をメルトプールから離しているため、加工点から出た熱輻射光とラインビーム40の反射光とを分離することが可能である。しかし、遮光マスク15を用いない結像系では、加工点から発生した熱輻射光が撮像系の筐体内で反射して迷光となることが考えられる。熱輻射光の輝度が信号光であるラインビーム40の輝度に対して十分小さければ問題は無いが、レーザ加工により発生する加工点の熱輻射光の輝度は非常に大きい。このため、筐体内で発生する迷光が無視できないと考えられる。また、イメージセンサに結像された熱輻射光も、イメージセンサ表面保護用の透明樹脂内で多重反射したり、イメージセンサの受光部17の金属部などで反射したりすることで、迷光を発生させることが考えられる。 Up to this point, the method of calculating the height of the modeled object 4 from the line beam 40 in the unprocessed state has been described, but when measuring during processing, the processing point becomes a high-luminance light emitting point, and the processing point A measurement error occurs due to stray light in the imaging system that is generated by the heat radiation light emitted from the. FIG. 10 is a diagram showing an outline of the image formation result of the image sensor which is the light receiving element being processed according to the first embodiment. When the line beam 40 is imaged on the image sensor during processing without the light-shielding mask 15, the thermal radiation light emitted from the processing point is also imaged on the image sensor. As described above, since the irradiation position of the line beam 40 is separated from the melt pool, it is possible to separate the heat radiation light emitted from the processing point and the reflected light of the line beam 40. However, in an imaging system that does not use the light-shielding mask 15, it is conceivable that the thermal radiation light generated from the processing point is reflected in the housing of the imaging system and becomes stray light. There is no problem if the brightness of the heat radiation light is sufficiently smaller than the brightness of the line beam 40 that is the signal light, but the brightness of the heat radiation light at the processing point generated by the laser processing is very high. Therefore, it is considered that the stray light generated in the housing cannot be ignored. In addition, the thermal radiation light imaged on the image sensor is also multiple-reflected in the transparent resin for protecting the surface of the image sensor or reflected by the metal part of the light receiving portion 17 of the image sensor to generate stray light. It is possible to make it.
 このように、高輝度な加工点による熱輻射光が原因で発生する撮像系内の迷光が、信号光であるラインビーム40とともに受光素子に入射した場合には、ノイズとなり輝度重心位置の算出結果に誤差が生じる。ここで、できるだけ迷光の発生を抑えるためにも、遮光マスク15を用いて撮像系内で熱輻射光を遮光し、熱輻射光が受光素子に到達しないようにする。図3で示したとおり、遮光マスク15は第一の結像光学系の焦点位置に設置される。第一の結像光学系の焦点位置には、ワーク3側の像が倍率M1で結像される。このため、メルトプールの大きさをφ2Wとすると、加工点から発生した熱輻射光を遮光するためには、遮光部の大きさをφ2W×M1以上にすれば良い。しかし、遮光部の大きさが大きすぎるとラインビーム40も遮光されてしまうため、φ2(L-ΔL)×M1以下にする必要がある。図11は、実施の形態1にかかるイメージセンサから出力される画像を示す図である。図11に示すように、イメージセンサから出力される画像は、加工点からの光が遮光され、ラインビーム40の反射光とともに入射していた迷光も除去することができる。遮光マスク15の設置位置は第一の結像光学系の焦点位置としたが、厳密に焦点位置に合わせる必要は無く、遮光位置からずれた場合には、このずれの量に応じて遮光部の大きさを大きく設計しておけば、同様の効果が得られる。図12は、実施の形態1にかかる遮光マスク15の構成例を示す図である。図13は、実施の形態1にかかる遮光マスク15の構成例を示す別の図である。遮光マスク15の構成としては、例えば、円形の筐体を用いる場合、図12に示すように加工部のみを遮光する構成を示したが、ラインビーム40だけを透過する図13に示すような構成でも良く、加工点の結像位置が遮光されていれば良い。 As described above, when stray light in the imaging system caused by thermal radiation due to a high-luminance processing point enters the light-receiving element together with the line beam 40 that is the signal light, it becomes noise and the calculation result of the luminance barycentric position is obtained. Error occurs. Here, in order to suppress the generation of stray light as much as possible, the heat radiation light is shielded in the imaging system by using the light shielding mask 15 so that the heat radiation does not reach the light receiving element. As shown in FIG. 3, the light shielding mask 15 is installed at the focal position of the first image forming optical system. An image on the side of the work 3 is formed at a magnification M1 at the focal position of the first image forming optical system. Therefore, when the size of the melt pool is φ2W, the size of the light blocking portion may be set to φ2W × M1 or more in order to block the heat radiation light generated from the processing point. However, if the size of the light shielding portion is too large, the line beam 40 is also shielded. Therefore, it is necessary to set φ2 (L−ΔL) × M1 or less. FIG. 11 is a diagram showing an image output from the image sensor according to the first embodiment. As shown in FIG. 11, in the image output from the image sensor, the light from the processing point is blocked, and the stray light that is incident along with the reflected light of the line beam 40 can be removed. Although the installation position of the light-shielding mask 15 is the focus position of the first imaging optical system, it is not necessary to strictly align with the focus position. The same effect can be obtained if the size is designed large. FIG. 12 is a diagram showing a configuration example of the light shielding mask 15 according to the first embodiment. FIG. 13 is another diagram showing a configuration example of the light shielding mask 15 according to the first embodiment. As the configuration of the light-shielding mask 15, for example, when a circular housing is used, the configuration is shown in which only the processed portion is shielded as shown in FIG. 12, but only the line beam 40 is transmitted as shown in FIG. However, it suffices that the image forming position of the processing point is shielded from light.
 ここで、本発明における高さ計測装置では、ラインビーム40のみを透過する遮光マスク15を用いるため、加工用と高さ計測用とを併用しない集光レンズ14および第二の結像光学系16は、ラインビーム40のみを受光部17に結像できる光学系であった方が良い。図14は、図1のIII-III線における積層造形装置100のXZ平面の断面を示す別の図である。例えば、図14に示すように、対物レンズ13の中心軸に対して直角な方向に、対物レンズ13の中心軸と、集光レンズ14の中心軸または第二の結像光学系16の中心軸とを軸ずれさせておく。ここで、対物レンズ13は、加工位置に加工光を集光するレンズである。また、集光レンズ14および第二の結像光学系16は、計測用の照明光の反射光のうち、対物レンズ13を透過した反射光を受光部17に結像する第三の結像光学系を構成する。 Here, in the height measuring device according to the present invention, since the light-shielding mask 15 that transmits only the line beam 40 is used, the condensing lens 14 and the second imaging optical system 16 that do not use both for processing and for height measurement. Is preferably an optical system capable of focusing only the line beam 40 on the light receiving unit 17. FIG. 14 is another view showing a cross section of the additive manufacturing apparatus 100 taken along line III-III in FIG. 1 taken along the XZ plane. For example, as shown in FIG. 14, the central axis of the objective lens 13 and the central axis of the condenser lens 14 or the central axis of the second imaging optical system 16 are orthogonal to the central axis of the objective lens 13. Axis and are offset. Here, the objective lens 13 is a lens that collects the processing light at the processing position. Further, the condenser lens 14 and the second image forming optical system 16 form a third image forming optical system that forms an image of the reflected light of the measurement illumination light that has passed through the objective lens 13 on the light receiving unit 17. Make up the system.
 したがって、図14における構成では、対物レンズ13を透過した反射光を受光部17に結像する第三の結像光学系の中心軸の位置は、加工位置に加工光を集光する対物レンズ13の中心軸の位置とは異なっている。このような構成とすることで、計測用の照明光であるラインビーム40の反射光をできるだけレンズの収差の影響を受けずに受光素子に結像できるようになり、高さ計測精度を向上できる。上記のように中心軸の位置をずらした構成とする代わりに、対物レンズ13を透過した反射光を受光部17に結像する第三の結像光学系の中心軸が、加工位置に加工光を集光する対物レンズ13の中心軸に対して傾いた構成とすることでも同様の効果が得られる。また、集光レンズ14のレンズ面の形状を変更しても良い。また、受光部17の視野は、高さ計測範囲内でラインビーム40が移動する範囲より広ければよく、ラインビーム40の移動範囲だけを拡大するような第二の結像光学系16を用いることでラインビーム40の解像度を上げることができ、高さ計測精度を向上することができる。 Therefore, in the configuration of FIG. 14, the position of the central axis of the third imaging optical system that forms the reflected light that has passed through the objective lens 13 on the light receiving unit 17 is the objective lens 13 that collects the processed light at the processing position. The position of the central axis of is different. With such a configuration, the reflected light of the line beam 40, which is the illumination light for measurement, can be focused on the light receiving element without being affected by the aberration of the lens as much as possible, and the height measurement accuracy can be improved. .. Instead of the configuration in which the position of the central axis is shifted as described above, the central axis of the third image forming optical system that forms an image of the reflected light that has passed through the objective lens 13 on the light receiving unit 17 has the processing light at the processing position. The same effect can be obtained by using a configuration that is inclined with respect to the central axis of the objective lens 13 that collects. Further, the shape of the lens surface of the condenser lens 14 may be changed. Further, the visual field of the light receiving unit 17 may be wider than the range in which the line beam 40 moves within the height measuring range, and the second imaging optical system 16 that expands only the moving range of the line beam 40 is used. Thus, the resolution of the line beam 40 can be increased, and the height measurement accuracy can be improved.
 ここでは、-X方向にワーク3を走査して、ワイヤの供給される方向、つまり+X方向にビードが延びるように形成する場合の高さ計測方法を述べた。この場合、加工直後の造形物4の高さが計測されるので、次回加工時にこの結果を使用すれば良い。一方、ワイヤを設置する方向と逆側の+X方向にワーク3を走査して、ワイヤを設置する方向と反対方向、つまり-X方向にビードが延びるように形成することもできる。この場合、前回加工した造形物4の高さが今回の加工の直前に計測されるので、計測直後に加工条件を制御すればよい。ただし、前回加工時の積層物の平均積層高さを、今回の走査を開始する前のワイヤ高さ調整時に知ることができないため、設計値などを用いてワイヤ高さの調整を行い、設計値からの積層量の差異を計測して、この結果を加工時の制御に反映する。 Described here is the height measuring method when the work 3 is scanned in the -X direction and the beads are formed so as to extend in the wire supply direction, that is, the + X direction. In this case, since the height of the modeled article 4 immediately after processing is measured, this result may be used in the next processing. On the other hand, the work 3 may be scanned in the + X direction opposite to the wire installation direction so that the bead extends in the direction opposite to the wire installation direction, that is, in the −X direction. In this case, since the height of the modeled object 4 processed last time is measured immediately before the current processing, the processing condition may be controlled immediately after the measurement. However, it is not possible to know the average stack height of the stack during the previous processing when adjusting the wire height before starting this scan, so adjust the wire height using the design value, etc. The difference in the stacking amount from is measured, and this result is reflected in the control during processing.
 このように、ライン照明8を用いた光切断方式の高さ計測系を積層造形装置100に組込み、加工中に造形物4の高さを計測する場合において、高さ計測の撮像系内で一度、加工点の像を結像し、この結像位置を遮光するような遮光部を有する遮光マスク15を結像面に設置し、第二の結像光学系16を用いて、遮光マスク15を透過したライン照明8のみを結像することで、高輝度な加工点から発生する熱輻射光の筐体内、または受光部17で発生する迷光を抑制し、高精度に造形物4の高さを計測することが可能となる。よって、積層造形装置100は、形成済みの造形物4の高さの計測の精度の劣化を抑制することができる。 In this way, when the height measurement system of the light cutting method using the line illumination 8 is incorporated in the layered modeling apparatus 100 and the height of the modeled article 4 is measured during processing, once in the imaging system for height measurement, A light-shielding mask 15 having a light-shielding portion that forms an image of the processing point and shields this image-forming position is provided on the image-forming surface, and the light-shielding mask 15 is formed by using the second image-forming optical system 16. By forming an image of only the transmitted line illumination 8, stray light generated in the housing of the heat radiation light generated from the high-intensity processing point or in the light receiving unit 17 is suppressed, and the height of the modeled object 4 is accurately adjusted. It becomes possible to measure. Therefore, the layered modeling apparatus 100 can suppress deterioration in the accuracy of measuring the height of the formed article 4 that has been formed.
実施の形態2.
 本実施の形態2にかかる積層造形装置は、実施の形態1における積層造形装置と構成は同様であるが、高さ計測光学系の構成が異なる。本発明の実施の形態2にかかる積層造形装置は、高さ計測光学系内の遮光板を第一の結像光学系の焦点位置ではなく、受光素子であるイメージセンサの直前に設けた構成である。したがって、第二の結像光学系16を省略することができ、装置全体の小型化が可能となるという利点がある。
Embodiment 2.
The additive manufacturing apparatus according to the second embodiment has the same configuration as the additive manufacturing apparatus according to the first embodiment, but the configuration of the height measuring optical system is different. The additive manufacturing apparatus according to the second embodiment of the present invention has a configuration in which the light shielding plate in the height measuring optical system is provided immediately before the image sensor, which is a light receiving element, not at the focus position of the first imaging optical system. is there. Therefore, there is an advantage that the second imaging optical system 16 can be omitted and the entire apparatus can be downsized.
 図15は、実施の形態2にかかる積層造形装置のXZ断面を示す図である。加工用レーザ1、加工光学系20、およびライン照明8の構成は実施の形態1と同様である。本実施の形態では、ビームスプリッタ12を透過した造形物4からの反射光を集光レンズ14で受光部17の受光素子に直接結像する。また、受光素子の直前に、つまり受光素子と第一の結像光学系との間に遮光マスク15を設置することで、加工点からの熱輻射光を遮光し、ラインビーム40の反射光のみをイメージセンサに結像する。遮光マスク15は、例えば、イメージセンサ上に接着などの方法で取り付ける。遮光マスク15上の遮光部の大きさは、設置されるイメージセンサの画素からの距離によって設定する必要がある。遮光したいメルトプールの領域をφMとすると、第一の結像光学系によって結像されたイメージセンサ上での大きさはφM’=φM×M1となる。図16は、実施の形態2にかかる遮光マスク15の厚みと遮光部の領域との関係を示す図である。図16のように、イメージセンサの光線の入射角R、遮光部のイメージセンサ画素表面からの距離Dとすると、遮光部の領域φSの大きさは、φS=φM’+2×Dtan(R)とすれば良い。ただし、遮光マスク15の厚み、つまり距離Dが大きくなるとこの分、遮光部の領域φSを大きくする必要があり、イメージセンサに結像されるラインビーム40の反射光線も遮光してしまう可能性がある。このため、遮光マスク15の厚みは極力薄くすることが望ましい。 FIG. 15 is a diagram showing an XZ section of the additive manufacturing apparatus according to the second embodiment. The configurations of the processing laser 1, the processing optical system 20, and the line illumination 8 are the same as those in the first embodiment. In the present embodiment, the reflected light from the modeling object 4 that has passed through the beam splitter 12 is directly imaged on the light receiving element of the light receiving unit 17 by the condenser lens 14. Further, by installing the light shielding mask 15 immediately before the light receiving element, that is, between the light receiving element and the first imaging optical system, the heat radiation light from the processing point is shielded, and only the reflected light of the line beam 40 is provided. Is imaged on the image sensor. The light-shielding mask 15 is attached to the image sensor, for example, by a method such as adhesion. The size of the light shielding portion on the light shielding mask 15 needs to be set according to the distance from the pixel of the image sensor to be installed. If the area of the melt pool to be shielded is φM, the size on the image sensor formed by the first image forming optical system is φM ′ = φM × M1. FIG. 16 is a diagram showing the relationship between the thickness of the light shielding mask 15 and the region of the light shielding portion according to the second embodiment. As shown in FIG. 16, assuming that the incident angle R of the light ray of the image sensor is D and the distance D from the image sensor pixel surface of the light shielding portion, the size of the light shielding portion area φS is φS = φM ′ + 2 × Dtan (R). Just do it. However, if the thickness of the light-shielding mask 15, that is, the distance D is increased, the area φS of the light-shielding portion needs to be increased accordingly, and the reflected light of the line beam 40 imaged on the image sensor may also be shielded. is there. Therefore, it is desirable that the light-shielding mask 15 be as thin as possible.
 このように、実施の形態2の積層造形装置では、高さ計測部の結像光学系を一つにしても、加工点を遮光して、加工中にも高い高さ計測精度で造形物4の高さを計測することができるため、装置全体の小型化が可能となるメリットがある。 As described above, in the layered modeling apparatus according to the second embodiment, even if there is only one imaging optical system in the height measuring unit, the machining point is shielded from light, and the modeling object 4 has high height measurement accuracy even during processing. Since the height of the device can be measured, there is an advantage that the entire device can be downsized.
実施の形態3.
 本実施の形態3の積層造形装置は、実施の形態1、または実施の形態2におけるものと構成は同様であるが、高さ計測に用いるラインビーム40の形状が異なる。本発明の実施の形態3による積層造形装置は、ラインビーム40の照射形状が直線ではなく、加工点を中心とした円形形状である。このようにラインビーム40の照射形状を円形とすることで、加工形状が直線ではなく、加工点の走査方向が加工中に変化する場合にも、造形物4に対して直角に横切る方向つまり、造形物4の幅方向にライン照明8を照射することができるため、駆動ステージ6の回転機構を無くすことができ、装置を小型化できる。例えば、駆動ステージ6をXY平面内で回転させれば、X軸、Y軸に対して斜め方向に走査する場合でも、計測位置が加工点の前方または後方となるようにすることができる。しかし、ラインビーム40の照射形状を円形とすることで、駆動ステージ6を回転させなくても、計測位置の少なくとも一部が、加工点の前方または後方となるようにすることができる。
Embodiment 3.
The additive manufacturing apparatus of the third embodiment has the same configuration as that of the first embodiment or the second embodiment, but the shape of the line beam 40 used for height measurement is different. In the layered manufacturing apparatus according to the third embodiment of the present invention, the irradiation shape of the line beam 40 is not a straight line but a circular shape centered on the processing point. By making the irradiation shape of the line beam 40 circular in this way, even when the machining shape is not a straight line and the scanning direction of the machining point changes during machining, a direction that intersects the modeled object 4 at a right angle, that is, Since it is possible to irradiate the line illumination 8 in the width direction of the modeled object 4, the rotation mechanism of the drive stage 6 can be eliminated, and the device can be downsized. For example, if the drive stage 6 is rotated in the XY plane, it is possible to set the measurement position to be in front of or behind the processing point even when scanning is performed obliquely with respect to the X axis and the Y axis. However, by making the irradiation shape of the line beam 40 circular, at least part of the measurement position can be located in front of or behind the processing point without rotating the drive stage 6.
 図17は、実施の形態3にかかる造形物4の形成方向を変更した加工を行う場合のXY断面を示す1つ目の例の図である。図17に記載される駆動ステージ6は、XY平面内で回転する回転ステージである。なお、図17以降において、点線で囲われた範囲は、積層造形装置100が造形物4を形成する予定の範囲を示す。図17のように、駆動ステージ6を用いて造形物4の形成方向を変更した加工を行う場合には、駆動ステージ6上のXY平面における回転ステージを用いてワーク3をβ度回転させ造形を行うことができるので、加工方向は常に一定である。この場合、直線状のラインビーム40を用いても、常に造形物4の加工方向に対して垂直にラインビーム40を照射することができる。図18は、実施の形態3にかかる造形物4の形成方向を変更した加工を行う場合のXY断面を示す2つ目の例の図である。図18に記載される駆動ステージ6は回転ステージではなく、XY平面内で回転しない。図18のように、回転ステージがない場合に造形物4の形成方向を変更した加工を行う場合には、X軸方向の動作速度とY軸方向の動作速度とを適切な比率に制御することで、加工方向を変更することができるが、XY平面に対して斜め方向に加工する必要がある。しかし、直線状のラインビーム40を用いると、斜め方向に加工する場合に、造形物4が延びるように積層される方向に対して垂直な断面を計測することができなくなる。図19は、実施の形態3にかかる造形物4の形成方向を変更した加工を行う場合のXY断面を示す3つ目の例の図である。図19に記載される駆動ステージ6は回転ステージではなく、XY平面内で回転しない。図19では、円形のラインビーム40を用いる。この場合、斜め方向に造形物4の加工を行っても、ラインビーム40が加工点を中心とした円形状で照射されるため、加工方向に寄らず、常に加工点から一定の距離の造形物4の高さを計測することができる。ワイヤを+X方向から装填する場合、一般には、+Y方向~-X方向~-Y方向の180度の範囲で加工されることが多い。このため、ここでは、円形のラインビーム40について説明したが、厳密に円形である必要はなく、楕円形状であっても良く、半円など、一部途切れていても問題はない。ラインビーム40は、付加加工中にとりうるラインビームのラインの範囲の角度が90度以上であれば、加工点がどの方向に走査される場合であっても、ラインビーム40を用いて形成済みの造形物4の高さ測定が可能である。例えば、円弧状のラインビームの場合、中心角が90度以上であればよい。もし、-X方向から+Y方向までの90度の円弧状のラインビームを用いるとすると、+X方向、-Y方向にビードが延びるように形成される場合には、加工直後を計測することとなり、-X方向、+Y方向にビードが延びるように形成される場合には、加工直前を計測することとなる。また、曲線状のラインビームであれば、接線方向のラインの範囲の角度が90度以上であればよい。また、加工方向が互いに垂直な2方向だけであれば、正方形などの四角形状でも良い。 FIG. 17 is a diagram of a first example showing an XY cross section in the case of performing processing in which the forming direction of the modeled article 4 according to the third embodiment is changed. The drive stage 6 shown in FIG. 17 is a rotary stage that rotates in the XY plane. In addition, in FIG. 17 and subsequent figures, a range surrounded by a dotted line indicates a range in which the additive manufacturing apparatus 100 is expected to form the modeled article 4. As shown in FIG. 17, when performing processing in which the forming direction of the modeled object 4 is changed using the drive stage 6, the work 3 is rotated by β degrees using the rotary stage on the XY plane on the drive stage 6 to perform modeling. Since it can be performed, the processing direction is always constant. In this case, even if the linear line beam 40 is used, the line beam 40 can always be irradiated perpendicularly to the processing direction of the modeled object 4. FIG. 18 is a diagram of a second example showing an XY cross section in the case of performing processing in which the forming direction of the modeled article 4 according to the third embodiment is changed. The drive stage 6 shown in FIG. 18 is not a rotation stage and does not rotate in the XY plane. As shown in FIG. 18, when performing processing in which the forming direction of the modeled object 4 is changed when there is no rotary stage, the operating speed in the X-axis direction and the operating speed in the Y-axis direction should be controlled to an appropriate ratio. Thus, the processing direction can be changed, but it is necessary to process in an oblique direction with respect to the XY plane. However, if the linear line beam 40 is used, it becomes impossible to measure a cross section perpendicular to the direction in which the modeled objects 4 are stacked so as to extend when processing in an oblique direction. FIG. 19 is a diagram of a third example showing an XY cross section in the case of performing processing in which the forming direction of the modeled article 4 according to the third embodiment is changed. The drive stage 6 shown in FIG. 19 is not a rotary stage and does not rotate in the XY plane. In FIG. 19, a circular line beam 40 is used. In this case, even if the modeling object 4 is processed in an oblique direction, the line beam 40 is irradiated in a circular shape centering on the processing point, so that the modeling object always has a constant distance from the processing point regardless of the processing direction. The height of 4 can be measured. When the wire is loaded from the + X direction, it is generally processed in the range of 180 degrees from the + Y direction to the −X direction to the −Y direction. For this reason, although the circular line beam 40 has been described here, it does not have to be strictly circular, and may have an elliptical shape, and there is no problem even if it is partially interrupted such as a semicircle. The line beam 40 is already formed by using the line beam 40 regardless of the direction in which the processing point is scanned as long as the angle of the line range of the line beam that can be taken during the additional processing is 90 degrees or more. The height of the modeled object 4 can be measured. For example, in the case of an arc-shaped line beam, the central angle may be 90 degrees or more. If a 90-degree arc-shaped line beam from the -X direction to the + Y direction is used, when the bead is formed so as to extend in the + X direction and the -Y direction, the measurement immediately after processing is performed. When the beads are formed so as to extend in the −X direction and the + Y direction, the measurement is performed immediately before the processing. Further, in the case of a curved line beam, the angle of the tangential line range may be 90 degrees or more. Further, as long as the processing directions are only two directions perpendicular to each other, a square shape such as a square shape may be used.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are examples of the content of the present invention, and can be combined with another known technique, and the configurations of the configurations are not departing from the scope of the present invention. It is also possible to omit or change parts.
 1 加工用レーザ、2 加工ヘッド、3 ワーク、4 造形物、5 固定具、6 駆動ステージ、7 加工材料、8 ライン照明、9 演算部、10 制御部、11 投光レンズ、12 ビームスプリッタ、13 対物レンズ、14 集光レンズ、15 遮光マスク、16 第二の結像光学系、17 受光部、20 加工光学系、30 受光光学系、40 ラインビーム、50 下限値、51 上限値、100 積層造形装置、200 制御回路、200a プロセッサ、200b メモリ。 1 processing laser, 2 processing head, 3 workpiece, 4 modeling object, 5 fixture, 6 driving stage, 7 processing material, 8 line illumination, 9 arithmetic unit, 10 control unit, 11 projecting lens, 12 beam splitter, 13 Objective lens, 14 condenser lens, 15 light-shielding mask, 16 second imaging optical system, 17 light receiving part, 20 processing optical system, 30 light receiving optical system, 40 line beam, 50 lower limit value, 51 upper limit value, 100 additive manufacturing Device, 200 control circuit, 200a processor, 200b memory.

Claims (9)

  1.  ワーク上で加工位置を移動させながら溶融した加工材料を前記加工位置で積層することで付加加工を行うとともに、前記付加加工を繰り返して造形物を形成する積層造形装置であって、
     前記加工材料を溶融する加工光を前記加工位置に結像する加工光学系と、
     前記ワーク上の前記加工位置とは異なる計測位置に計測用の照明光を照射する計測用照明と、
     前記照明光が前記計測位置で反射した反射光を受光する受光素子を備える受光光学系と、
     前記受光素子上における前記反射光の受光位置に基づいて、前記ワーク上に形成された造形物の高さを演算する演算部と、
     を備え、
     前記受光光学系は、
     前記計測位置で反射して前記受光素子に入射する反射光の結像位置では光を透過させ、前記加工位置から入射される光の結像位置では光を遮光する遮光マスクを備えることを特徴とする積層造形装置。
    A laminated modeling apparatus for performing additional processing by stacking molten processing material at the processing position while moving the processing position on a work, and forming a molded article by repeating the additional processing,
    A processing optical system for forming an image of processing light for melting the processing material at the processing position,
    Measurement illumination for irradiating measurement illumination light at a measurement position different from the processing position on the workpiece,
    A light receiving optical system including a light receiving element that receives the reflected light that the illumination light reflects at the measurement position,
    Based on the light receiving position of the reflected light on the light receiving element, a calculation unit for calculating the height of the modeled object formed on the work,
    Equipped with
    The light receiving optical system,
    A light-shielding mask that transmits light at an image-forming position of reflected light that is reflected at the measurement position and enters the light-receiving element, and blocks light at an image-forming position of light incident from the processing position. Additive modeling device.
  2.  前記受光光学系は、
     前記計測位置で反射された前記反射光を第一の結像位置に結像する第一の結像光学系と、
     前記第一の結像位置に結像した光を前記受光素子上に結像する第二の結像光学系と、
     を備え、
     前記第一の結像位置に前記遮光マスクが設置されることを特徴とする請求項1に記載の積層造形装置。
    The light receiving optical system,
    A first image forming optical system for forming an image of the reflected light reflected at the measurement position at a first image forming position,
    A second image forming optical system for forming an image of the light imaged at the first image forming position on the light receiving element,
    Equipped with
    The additive manufacturing apparatus according to claim 1, wherein the light-shielding mask is installed at the first image forming position.
  3.  前記受光光学系は、
     前記計測位置で反射された前記反射光を前記受光素子上に結像する結像光学系を備え、
     前記受光素子と前記結像光学系との間に前記遮光マスクが設置されることを特徴とする請求項1に記載の積層造形装置。
    The light receiving optical system,
    An imaging optical system for imaging the reflected light reflected at the measurement position on the light receiving element,
    The additive manufacturing apparatus according to claim 1, wherein the light shielding mask is installed between the light receiving element and the imaging optical system.
  4.  前記加工光学系は、前記加工位置に前記加工光を集光する対物レンズを備え、
     前記受光光学系は、前記対物レンズを透過した前記反射光を前記受光素子に結像する第三の結像光学系を備え、
     前記第三の結像光学系の中心軸の位置は、前記対物レンズの中心軸の位置とは異なっている、
     または、前記第三の結像光学系の中心軸は、前記対物レンズの中心軸に対して傾いていることを特徴とする請求項1から3のいずれか1つに記載の積層造形装置。
    The processing optical system includes an objective lens that condenses the processing light at the processing position,
    The light receiving optical system includes a third image forming optical system that forms an image of the reflected light transmitted through the objective lens on the light receiving element,
    The position of the central axis of the third imaging optical system is different from the position of the central axis of the objective lens,
    Alternatively, the central axis of the third imaging optical system is tilted with respect to the central axis of the objective lens, and the additive manufacturing apparatus according to claim 1.
  5.  前記造形物に前記加工材料を付着させる高さの範囲に対して、前記計測位置で反射された前記反射光が受光される前記受光素子上の範囲と、前記付加加工を行う際に前記加工材料が溶融する範囲の像が、前記遮光マスクがない場合に結像される前記受光素子上の範囲とが重ならないように、前記計測位置が設定されることを特徴とする請求項1から4のいずれか1つに記載の積層造形装置。 With respect to the range of the height at which the processing material is attached to the modeled object, the range on the light receiving element where the reflected light reflected at the measurement position is received, and the processing material when the additional processing is performed. 5. The measurement position is set so that an image in a range in which is melted does not overlap with a range on the light receiving element formed when the light shielding mask is not provided. The additive manufacturing apparatus according to any one of claims.
  6.  前記遮光マスクは、前記高さの範囲に対して、前記計測位置で反射された前記反射光が前記受光素子に入射する光路の範囲を除いて遮光することを特徴とする請求項5に記載の積層造形装置。 The said light-shielding mask shields the said range of height except the range of the optical path in which the said reflected light reflected in the said measurement position injects into the said light receiving element, It is characterized by the above-mentioned. Additive modeling equipment.
  7.  前記計測用の照明光は、ライン状に照射されるラインビームであることを特徴とする請求項1から6のいずれか1つに記載の積層造形装置。 The additive manufacturing device for measurement is a line beam that is emitted in a line, and the additive manufacturing apparatus according to any one of claims 1 to 6.
  8.  前記付加加工中にとりうる前記ラインビームのラインの範囲の角度が90度以上であることを特徴とする請求項7に記載の積層造形装置。 The additive manufacturing apparatus according to claim 7, wherein an angle of a line range of the line beam that can be taken during the additional processing is 90 degrees or more.
  9.  前記計測位置は、前記加工位置に対応して移動し、
     前記造形物の前記計測位置における高さに基づいて、前記計測位置における前記付加加工の加工条件を制御する制御部を備えることを特徴とする請求項1から8のいずれか1つに記載の積層造形装置。
    The measurement position moves corresponding to the processing position,
    The stacking device according to any one of claims 1 to 8, further comprising a control unit configured to control a processing condition of the additional processing at the measurement position based on a height of the modeled object at the measurement position. Modeling equipment.
PCT/JP2018/041750 2018-11-09 2018-11-09 Layering/molding device WO2020095453A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020556460A JP6964801B2 (en) 2018-11-09 2018-11-09 Laminated modeling equipment
PCT/JP2018/041750 WO2020095453A1 (en) 2018-11-09 2018-11-09 Layering/molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041750 WO2020095453A1 (en) 2018-11-09 2018-11-09 Layering/molding device

Publications (1)

Publication Number Publication Date
WO2020095453A1 true WO2020095453A1 (en) 2020-05-14

Family

ID=70610787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041750 WO2020095453A1 (en) 2018-11-09 2018-11-09 Layering/molding device

Country Status (2)

Country Link
JP (1) JP6964801B2 (en)
WO (1) WO2020095453A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022554302A (en) * 2019-11-06 2022-12-28 ナノトロニクス イメージング インコーポレイテッド Systems, methods and media for manufacturing processes
JP2023517260A (en) * 2019-09-10 2023-04-25 ナノトロニクス イメージング インコーポレイテッド Systems, methods and media for manufacturing processes
US11731368B2 (en) 2018-04-02 2023-08-22 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112862A (en) * 1994-10-17 1996-05-07 Japan Synthetic Rubber Co Ltd Optical forming device
JP2009083326A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Manufacturing method of optical member and optical member formed by the same
JP2012242134A (en) * 2011-05-16 2012-12-10 Jfe Steel Corp Shape measurement device and optical filter used for the same
JP2015157420A (en) * 2014-02-25 2015-09-03 日本電子株式会社 Three-dimensional laminate molding apparatus
WO2018053299A1 (en) * 2016-09-15 2018-03-22 Arconic Inc. Systems and methods for z-height measurement and adjustment in additive manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112862A (en) * 1994-10-17 1996-05-07 Japan Synthetic Rubber Co Ltd Optical forming device
JP2009083326A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Manufacturing method of optical member and optical member formed by the same
JP2012242134A (en) * 2011-05-16 2012-12-10 Jfe Steel Corp Shape measurement device and optical filter used for the same
JP2015157420A (en) * 2014-02-25 2015-09-03 日本電子株式会社 Three-dimensional laminate molding apparatus
WO2018053299A1 (en) * 2016-09-15 2018-03-22 Arconic Inc. Systems and methods for z-height measurement and adjustment in additive manufacturing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11731368B2 (en) 2018-04-02 2023-08-22 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing
JP2023517260A (en) * 2019-09-10 2023-04-25 ナノトロニクス イメージング インコーポレイテッド Systems, methods and media for manufacturing processes
JP2022554302A (en) * 2019-11-06 2022-12-28 ナノトロニクス イメージング インコーポレイテッド Systems, methods and media for manufacturing processes

Also Published As

Publication number Publication date
JP6964801B2 (en) 2021-11-10
JPWO2020095453A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
CN112955270B (en) Lamination shaping device
US20230001645A1 (en) Method For Calibrating A Device For Producing A Three-Dimensional Object And Device Configured For Implementing Said Method
CN110605388B (en) System for additive manufacturing and measurement method of additive manufacturing process
US20190270161A1 (en) Calibrating a scanner device
TWI464362B (en) Apparatus for measuring a height and obtaining a focused image of and object and method thereof
US5999245A (en) Proximity exposure device with distance adjustment device
WO2020095453A1 (en) Layering/molding device
JP2019504182A (en) Module and method for additive manufacturing equipment
JP7385743B2 (en) equipment and equipment
CN113784832A (en) Monitoring and process control of additive manufacturing of workpieces
JP6765569B1 (en) Laminated modeling equipment, laminated modeling method, and laminated modeling program
WO2020179114A1 (en) Calibration member for laminate molding device, laminate molding device, and laminate molding method
JP4543069B2 (en) Maskless exposure system
CN114630721B (en) Lamination shaping device
US11933597B2 (en) System and method for optical object coordinate determination
JP3180229B2 (en) Automatic focusing device
JP2007042858A (en) Projection aligner
JP2021041437A (en) Position adjustment method and position adjustment device
JPH104055A (en) Automatic focusing device and manufacture of device using it
WO2023062842A1 (en) Processing device, processing method, and substrate manufacturing method
JP2014199861A (en) Pattern drawing apparatus and pattern drawing method
JP2020051875A (en) Projector and use method of the same
JPH10141933A (en) Method and instrument for measuring flatness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939415

Country of ref document: EP

Kind code of ref document: A1