WO2020094979A1 - Dispositif de type pneumatique à éléments filaires souples pour véhicule - Google Patents

Dispositif de type pneumatique à éléments filaires souples pour véhicule Download PDF

Info

Publication number
WO2020094979A1
WO2020094979A1 PCT/FR2019/052630 FR2019052630W WO2020094979A1 WO 2020094979 A1 WO2020094979 A1 WO 2020094979A1 FR 2019052630 W FR2019052630 W FR 2019052630W WO 2020094979 A1 WO2020094979 A1 WO 2020094979A1
Authority
WO
WIPO (PCT)
Prior art keywords
radially
type device
pneumatic type
revolution
radially outer
Prior art date
Application number
PCT/FR2019/052630
Other languages
English (en)
Inventor
Matthieu Bonnamour
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Publication of WO2020094979A1 publication Critical patent/WO2020094979A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/02Closed, e.g. toroidal, tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • B60C7/146Non-inflatable or solid tyres characterised by means for increasing resiliency using springs extending substantially radially, e.g. like spokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/0207Carcasses comprising an interrupted ply, i.e. where the carcass ply does not continuously extend from bead to bead but is interrupted, e.g. at the belt area, into two or more portions of the same ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/1807Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers comprising fabric reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • D03D11/02Fabrics formed with pockets, tubes, loops, folds, tucks or flaps
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • D03D27/02Woven pile fabrics wherein the pile is formed by warp or weft
    • D03D27/10Fabrics woven face-to-face, e.g. double velvet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C2009/0215Partial carcass reinforcing plies, i.e. the plies neither crossing the equatorial plane nor folded around the bead core

Definitions

  • Pneumatic type device with flexible wire elements for vehicle.
  • the present invention relates to a pneumatic type device, intended to equip a vehicle.
  • This pneumatic type device is preferably designed for passenger vehicles, but can a priori be used on any other type of vehicle such as two-wheeled vehicles, heavy vehicles, agricultural, civil engineering or airplanes or, more generally, on any rolling device.
  • a conventional tire is a toric structure, intended to be mounted on a rim, pressurized by an inflation gas and crushed on a ground under the action of a load.
  • the tire has at every point of its rolling surface, intended to come into contact with a ground, a double curvature: a circumferential curvature and a meridian curvature.
  • circumferential curvature is meant a curvature in a circumferential plane, defined by a circumferential direction, tangent to the rolling surface of the tire in the rolling direction of the tire, and a radial direction, perpendicular to the axis of rotation of the tire.
  • meridian curvature is meant a curvature in a meridian or radial plane, defined by an axial direction, parallel to the axis of rotation of the tire, and a radial direction, perpendicular to the axis of rotation of the tire.
  • the expression “radially interior, respectively radially exterior” means “closer, respectively farther from the axis of rotation of the tire”.
  • the expression “axially interior, respectively axially exterior” means “closer, respectively farther from the equatorial plane of the tire”, the equatorial plane of the tire being the plane passing through the middle of the tire rolling surface and perpendicular to the axis of rotation of the tire.
  • the flattening of the tire on a horizontal ground, in a circumferential plane and in a meridian plane is conditioned by the values of the radii of curvature, respectively circumferential and meridian, at the points of the surface of bearing positioned at the limits of the tire's contact area with the ground.
  • This flattening is all the easier when these radii of curvature are large, that is to say that the curvatures are small, the curvature at a point, in the mathematical sense, being the inverse of the radius of curvature.
  • the flattening of the tire impacts the performance of the tire, in particular rolling resistance, grip, wear and noise.
  • a conventional tire of the prior art generally has a large meridian curvature, that is to say a small meridian radius of curvature, at the axial ends of the tread, called shoulders, when the pneumatic, mounted on its mounting rim and inflated to its recommended operating pressure, is subject to its service load.
  • the mounting rim, working pressure and service load are defined by standards, such as, for example, the standards of the European Tire and Rim Technical Organization (ETRTO).
  • ERRTO European Tire and Rim Technical Organization
  • a conventional tire carries the load applied, essentially by the axial ends of the tread, or shoulders, and by the sidewalls connecting the tread to beads ensuring the mechanical connection of the tire with its mounting rim. It is known that a meridian flattening of a conventional tire, with a small meridian curvature at the shoulders, is generally difficult to obtain.
  • Document WO 2017005713 A1 proposes a device of the pneumatic type with improved flattening of its tread compared to a conventional tire, when it is subjected to a load.
  • This pneumatic type device comprises a radially external structure of revolution, intended to come into contact with a ground, a radially interior structure of revolution, intended to come into contact with a mounting means, two sides connecting these two structures together. revolution and delimiting an interior annular space, and a load-bearing structure constituted by identical load-bearing elements which, when the tire is subjected to a load, are extended outside the area of contact of the tire with the ground and in compression in the 'contact area, and two sides.
  • the supporting elements are fixed and are connected respectively to the radially inner face of the radially outer structure of revolution by a radially outer fabric and to the radially outer face of the radially inner structure of revolution by a radially inner fabric, so that the he assembly consisting of the supporting structure, the radially outer fabric and the radially inner fabric constitutes a sandwich structure.
  • the average surface density D of the load-bearing elements per unit area of the radially outer structure of revolution is at least equal to (S / S
  • the document WO 2018020164 A1 is an improvement of the pneumatic type device described in the document WO 2017005713 A1 previously described, with a further improved flattening of its tread compared to a conventional tire, when it is subjected at a charge.
  • This document describes in particular strand bearing elements of the bearing structure having an initial length L P strictly greater than the mean radial height H and at most equal to 1.1 times the mean radial height H of the interior annular space, defined as the distance between the radially inner face of the radially outer structure of revolution and by the radially outer face of the radially inner structure of revolution.
  • This distance H is measured on the pneumatic type device in its initial state, that is to say mounted on its mounting means, inflated to a recommended pressure but not subjected to a load Z.
  • the recommended pressure may if necessary be zero: in this case, the tire is uninflated and supports the load only by its structure.
  • An initial length Lp of carrier element strictly greater than the average radial height H implies that any carrier element is relaxed in the initial state of the pneumatic type device.
  • the elongation of the load-bearing elements allows greater radii of curvature in any circumferential plane, at the entry and exit of the contact area, and therefore facilitates the circumferential flattening of the pneumatic type device.
  • the initial length L P of the load-bearing element was greater than 1.1 times the average radial height H, any load-bearing element would remain relaxed and the load-bearing structure could not fulfill its load-bearing function.
  • the document WO 2017103490 A1 describes an advantageous embodiment of the sandwich structure constituted by the support structure, the radially outer fabric and the radially inner fabric of the pneumatic type device described in the document WO 2017005713 A1.
  • This document describes a sandwich structure, constituted by an assembly comprising a first woven or knitted structure impregnated comprising a first fabric or knitted fabric and a first layer of a first polymeric composition, a second woven or knitted structure impregnated comprising a second fabric or knitting and a second layer of a second polymeric composition, a carrying structure comprising carrying elements connecting the first and second fabrics or knits together and at least one sacrificial means for temporarily holding the first and second woven or knitted structures impregnated one with respect to the other, connecting the first and second fabrics or knits to each other, the sacrificial means being arranged so as to break before the load-bearing elements when the first and second woven or knitted structures impregnated are removed from one 'other.
  • the support structure, the radially outer fabric and the radially inner fabric, constituting the sandwich structure can be made up of various types of materials:
  • polymeric materials such as an aliphatic polyamide, for example nylon, an aromatic polyamide, for example aramid, or a polyester, for example a polyethylene terephthalate (PET),
  • an aliphatic polyamide for example nylon
  • an aromatic polyamide for example aramid
  • a polyester for example a polyethylene terephthalate (PET)
  • the pneumatic type device could generate a level of interior noise degraded compared to a standard tire.
  • the interior noise is here defined by a noise at low frequencies, perceived inside a vehicle driving on a ground with high granularity, the frequencies being between 80 Hz and 800 Hz. Consequently, certain materials constituting the load-bearing elements the supporting structure is not suitable for the internal noise generated.
  • the present invention therefore aims to provide a device of the type
  • tire for vehicle with a supporting structure allowing an improvement of the flattening, with a reduction of the internal noise generated.
  • a pneumatic type device intended to equip a vehicle, comprising: a radially outer structure of revolution whose axis of revolution is the axis of rotation of the pneumatic type device and intended to come into contact with a ground by means of a tread comprising at least one elastomeric material, the radially outer structure of revolution having two axial ends and a radially inner face, and the radially outer structure of revolution comprising a circumferential reinforcement,
  • a radially interior structure of revolution coaxial with the radially exterior structure of rotation and intended to ensure the connection of the pneumatic type device with a mounting means on the vehicle, the radially interior structure of revolution having two axial ends and a radially facing exterior, and the radially interior structure of revolution comprising at least one polymeric material,
  • -a supporting structure constituted by a plurality of identical supporting wire elements, each having a medium section Sp, not interconnected in the inner annular space and extending continuously from a radially outer connecting structure, having a surface S E and secured to the radially inner face of the radially outer structure of revolution, up to a radially inner connecting structure, having a surface Si and secured to the radially outer face of the structure of radially inner revolution, so that, when the pneumatic type device is inflated to a nominal pressure P and crushed under a nominal radial load Z on a ground, at least part of the load-bearing elements, connected to the portion of the radially outer structure of revolution not in contact with the ground, are in tension,
  • the bearing assembly having an equivalent tangent modulus of rigidity in extension E and and a equivalent secant modulus of rigidity in extension E es , respectively defined for the value of the radial extension of the carrier assembly, diametrically opposite the contact area, achieved when the pneumatic type device is inflated to a nominal pressure P and crushed under a nominal radial load Z,
  • a pneumatic type device thus essentially comprises two coaxial structures of revolution, respectively radially exterior and radially interior, separated radially by an interior annular space and connected together, in the current zone, by a support assembly and, at their respective axial ends, by two flanks, themselves reinforced by a carcass reinforcement.
  • the radially outer structure of revolution is intended to come into contact with a ground by means of a tread comprising at least one elastomeric material and comprises a circumferential reinforcement reinforcing contributing to the resumption of inflation forces and road holding of the pneumatic type device.
  • the radially inner revolution structure coaxial with the radially outer revolution structure, is intended to ensure the connection of the pneumatic type device with a mounting means on the vehicle, such as a rim, and comprises at least one polymeric material, most often elastomeric.
  • the pneumatic type device also comprises two sidewalls, connecting two by two the axial ends of the structures of revolution respectively radially exterior and radially interior and axially delimiting the interior annular space. Consequently, the interior annular space constitutes a closed cavity which can be pressurized by an inflation gas.
  • the sidewalls according to their design and, in particular, according to their structural rigidity, can participate more or less in carrying the applied radial load.
  • the sidewalls generally comprise at least one elastomeric material and most often a reinforcing reinforcement.
  • the sides may or may not be directly linked to the supporting structure. If they are not directly linked to the supporting structure, the sidewalls have an autonomous mechanical behavior, without affecting the proper mechanical functioning of the supporting structure.
  • the pneumatic type device in combination with the two structures of revolution respectively radially exterior and radially interior, they close the interior annular space which then constitutes a closed cavity which can be pressurized or not by an inflation gas.
  • the pneumatic type device In the case of effective pressurization by an inflation gas, the pneumatic type device then has pneumatic rigidity, due to the pressure, which will also contribute to the carrying of the applied radial load.
  • the inflation pressure is at least equal to 0.5 bar, preferably at least equal to 1 bar. The higher the pressure, the greater the contribution of the pneumatic rigidity to the carrying of the applied radial load.
  • the carrier assembly ensures almost entire load bearing, the sides only playing a protective role against possible attack by elements external to the pneumatic device.
  • the nominal load is equal to 80% of the maximum load as defined by ETRTO, for example in the document entitled “ETRTO - STANDARDS MANU AL - 2018 " The maximum load depends on the dimensions of the tire and its standard or reinforced version.
  • the nominal load is the nominal load as defined above of a device operating with a pressurized cavity of the same dimensions in its standard version. Obviously, by in the absence of pressure, it will be understood that the pressure in the cavity is equal to atmospheric pressure.
  • the nominal pressure is equal to 2.1 bars for a tire in its standard version and equal to 2.5 bars for a tire in its reinforced version, and this whatever its size.
  • the nominal pressure is equal to atmospheric pressure.
  • the pneumatic type device also comprises a carcass reinforcement extending radially in each sidewall and axially at least partially in the radially outer structure of revolution and at least partially in the radially interior structure of revolution.
  • the carcass reinforcement positioned in each flank, contributes to the resumption of forces and the limitation of deformations, which generate the internal pressure, at the flanks. This contribution requires a mechanical anchoring of said carcass reinforcement with respect to the respectively radially exterior and radially interior structures of revolution: this is the reason why the carcass reinforcement, extending radially in each sidewall, extends axially at least partly in the radially outer structure of revolution and at least partly in the radially interior structure of revolution.
  • carcass reinforcement preferably means a reinforcing reinforcement comprising at least one carcass layer formed by reinforcements coated in an elastomeric mixture. Most often, such a carcass reinforcement comprises a single carcass layer, but it can also be constituted by two superposed carcass layers, the respective reinforcements of which are crossed from one layer to the next.
  • the operating principle of a pneumatic type device is to carry a radial load applied to the pneumatic type device, at least in part by means of a load-bearing structure, made up of load-bearing elements not interconnected in the interior annular space and at least a portion of them, positioned outside the contact area of the pneumatic type device with the ground, are tensioned.
  • the carrier elements positioned in the contact area may or may not be tensioned, under the action of the radial load, depending on the level of the pre-tension possibly applied to the carrier elements during the manufacture of the pneumatic type device, of its mounting on a mounting means and / or its inflation.
  • the support structure is constituted by a plurality of identical support elements, that is to say, whose geometric characteristics and the constituent materials are identical.
  • the carrier elements are not interconnected, that is to say two to two independent, in the interior annular space.
  • the supporting elements are not mechanically linked to each other in the interior annular space, so that they have independent mechanical behaviors. For example, they are not linked together to form a network or a trellis.
  • each carrier element extends continuously from a radially outer connecting structure, having a surface S E and secured to the radially inner face of the radially outer structure of revolution, to a connecting structure radially interior, having a surface Si and integral with the radially exterior face of the radially interior structure of revolution.
  • each load-bearing element extends along a generally rectilinear trajectory comprising a first end connected to the radially external connection structure and a second end connected to the radially internal connection structure.
  • the load-bearing elements are not directly linked to the radially outer and radially inner structures of revolution, but are interfaced with them by means of connecting structures.
  • connecting structures are most often joined to the corresponding structures of revolution by vulcanization, by gluing or any other fixing method.
  • These connecting structures can be, for example, constituted by woven fabrics.
  • These connecting structures can if necessary be integrated into the corresponding structures of revolution, for example in the case of the anchoring of the ends of the load-bearing elements in the structures of revolution.
  • the load-bearing elements of the load-bearing structure are moreover stranded, that is to say one-dimensional elements assimilated to wires.
  • each carrier element can be characterized geometrically by its length L P and by its average section Sp, which is the average of the sections obtained by cutting the carrier element by all the cylindrical surfaces, coaxial with the two structures of revolution radially exterior and radially exterior respectively, and radially between said two structures of revolution.
  • the mean section Sp is equal to this constant section.
  • a rectangular average section Sp having a length L and a width 1
  • has an aspect ratio K L / l
  • a load-bearing element is said to be linear or one-dimensional when the smallest characteristic dimension E of its mean section Sp is at most equal to 0.02 times the mean radial height at rest H 0 of the interior annular space, and when the aspect ratio K of its mean section Sp is at most equal to 3.
  • the average radial height at rest Ho of the interior annular space is the distance between the radially interior face of the radially exterior structure of revolution and the radially face outside of the radially inner structure of revolution, measured on the non-inflated pneumatic type device.
  • each load-bearing element has a high slenderness, in the radial direction.
  • a form ratio K of its mean section Sp at most equal to 3 means that the largest characteristic dimension L of its mean section Sp is at most equal to 3 times the smallest characteristic dimension E of its mean section Sp.
  • a supporting wire element has a mechanical behavior of the wire type, that is to say that it can only be subjected to extension or compression forces along its mean line.
  • the textile reinforcements constituted by an assembly of textile yarns, or the metal cables, constituted by an assembly of metallic threads, can be considered as load-bearing elements, because their average section Sp being substantially circular, the aspect ratio K is equal to 1, therefore less than 3.
  • the strand carrying elements may be radial, that is to say form a zero angle with a radial direction perpendicular to the axis of rotation of the tire.
  • the supporting wire elements are perpendicular to the two structures of revolution respectively radially exterior and radially interior and have lengths Lp which can be between 0.5 times and 1.1 times the average radial height H of the interior annular space.
  • the average radial height H of the interior annular space is the distance between the radially interior face of the radially exterior structure of revolution and the radially exterior face of the radially interior structure of revolution, measured on the pneumatic type device mounted and inflated to a nominal pressure P.
  • the supporting elements can also form a non-zero angle with a radial direction.
  • the assembly constituted by the support structure and the two connecting structures respectively radially exterior and radially interior, called support assembly, is a sandwich structure similar to a composite material.
  • This composite material can be characterized mechanically by a constitutive law representing the evolution of the stress in extension, applied to the composite material in a direction normal to the connection structures, according to its deformation in extension or elongation.
  • This behavior law can typically be determined by a static tensile test on a test piece constituted by a sample of the sandwich structure, comprising the structure carrier connected to the two connecting structures.
  • the tensile specimen used has the form of a thick hollow circular cylinder having an internal diameter equal to 38 mm and an external diameter equal to 60 mm, each end of said cylinder being fixed by gluing to a hollow disc having an internal diameter equal to 26 mm and an outside diameter equal to 70 mm.
  • the tensile test is carried out at imposed deformation with a tensile speed of 200 mm / min.
  • it is known to determine an equivalent tangent modulus of rigidity in extension E and and an equivalent secant modulus of rigidity in extension E es .
  • the equivalent tangent modulus of rigidity in extension E and is the slope of the line tangent to the law of behavior at the point considered.
  • the equivalent secant modulus of rigidity in extension E es is the slope of the line passing through the origin of the reference frame and the point considered of the law of behavior.
  • the inventors have chosen to determine, for the bearing assembly, an equivalent tangent modulus of rigidity in extension E and and an equivalent secant modulus of rigidity in extension E es , for the value of radial extension of the bearing assembly, diametrically to opposite of the contact area, reached when the pneumatic type device is inflated to a nominal pressure P and crushed under a nominal radial load Z.
  • the equivalent tangent modulus of rigidity in extension E and of the carrier assembly is at most equal to 1 MPa.
  • the noise level generated by the pneumatic type device is generally correlated to the equivalent tangent modulus of rigidity in extension E and of the carrier assembly. More specifically, for a pneumatic type device corresponding to a conventional dimension for a passenger vehicle, for example of the 255/35 R 19 type, the noise level is an increasing non-linear function of the equivalent tangent modulus of rigidity in extension E and of the carrier assembly, with strong growth below 1 MPa, weaker growth between 1 MPa and 2 MPa, to reach an almost constant maximum level above 2 MPA. Consequently, the inventors fixed at 1 MPa the threshold of equivalent tangent modulus of rigidity in extension E and of the load-bearing assembly, below which the noise level is considered to be acceptable.
  • a tangent modulus of rigidity in extension E and of the sufficiently small carrier assembly gives the carrier assembly a flexibility making it possible to significantly dampen the transmission of rolling vibrations from the pneumatic type device to the wheel, and thus reduce the interior noise in the vehicle.
  • the equivalent tangent modulus of rigidity in extension E and of the carrier assembly is therefore considered to be a relevant parameter with regard to the generation of noise. It is defined for the value of the radial extension of the carrier assembly, diametrically opposite the contact area, reached when the pneumatic type device is inflated to a nominal pressure P and crushed under a nominal radial load Z
  • the deformation of the support assembly under the action of a tensile force applied perpendicular to the connecting structures is called radial extension of the support assembly.
  • the nominal pressure P and the nominal radial load Z are recommended values, as defined for example by the ETRTO standards.
  • this equivalent tangent modulus of rigidity in extension can be determined, in a known manner, from the constitutive law in extension of the bearing assembly obtained by a test of static traction on test piece: it is the slope of the line tangent to the law of behavior at the point considered.
  • the equivalent tangent modulus of rigidity in extension E and of the carrier assembly is a function of the tangent modulus of rigidity in extension E t of each wire bearing element, but also modules of rigidity in extension of the connecting structures as well as rigidities of the interfaces between the supporting wire elements and the connecting structures.
  • the tangent modulus of rigidity in extension E t of each wire support element is defined for the elongation value of the wire support element reached when the pneumatic type device is inflated to a nominal pressure P and crushed under a nominal radial load Z .
  • the equivalent tangent modulus of rigidity in extension E and of the load-bearing assembly is also a function of the surface density D of stranded load elements, defined as the ratio between the sum of the average sections Sp of the stranded load elements and the average arithmetic S M of the surface S E of the radially exterior connection structure and of the surface Si of the radially interior connection structure.
  • D of stranded load elements defined as the ratio between the sum of the average sections Sp of the stranded load elements and the average arithmetic S M of the surface S E of the radially exterior connection structure and of the surface Si of the radially interior connection structure.
  • the tangent equivalent module of rigidity in extension E and of the bearing assembly is substantially equal to the product of the tangent modulus of rigidity in extension E t of each supporting wire element by the surface density D of supporting wire elements.
  • the equivalent secant module of rigidity in extension E eq of the carrier assembly is at least equal to 0.1 MPa.
  • the equivalent secant modulus of rigidity in extension E eq of the carrier assembly is considered to be a relevant parameter with respect to the radial deformation, or radial deflection, of the pneumatic type device, when the latter is inflated and subjected to a radial load.
  • this equivalent secant modulus of rigidity in extension can be determined, in a known manner, from the constitutive law in extension of the bearing assembly obtained by a static tensile test on test piece: this is the slope of the line passing by the origin of the reference mark and by the point considered of the constitutive law.
  • the carrier assembly having a surface density D of wire carrier elements, defined as the ratio between the sum of the average sections Sp of the wire carrier elements and the arithmetic mean S M of the surface S E of the structure of radially exterior connection and of the surface If of the radially interior connection structure, the surface density D of the supporting wire elements is at most equal to 10%.
  • the surface density D of supporting wire elements is defined for a carrier assembly at rest, that is to say not subject to mechanical stresses. Above 10%, the surface density D of the supporting wire elements becomes too high, which results in an excessive number of supporting wire elements, and consequently an excessive mass and material cost of the supporting structure.
  • the surface density D of wire carrier elements is constant both in the circumferential direction and in the axial direction, that is to say that the distribution of the carrier elements is uniform both circumferentially and axially .
  • the advantage of a constant surface density is that it contributes to giving the strip of bearing an almost cylindrical geometry, with a so-called “daisy effect” reduced compared to other pneumatic type devices of the prior art.
  • the surface density D of filar carrier elements may be variable in the circumferential direction and / or in the axial direction, that is to say that the distribution of the carrier elements is not necessarily circumferentially uniform and / or axially.
  • the surface density D of the bearing load elements taken into account is an average surface density.
  • the surface density D of filar carrier elements is at least equal to 0.05%. Below 0.05%, the surface density D of the supporting wire elements becomes too low, which causes, in the supporting wire elements, high stresses likely to cause their rupture, as well as excessive point forces at the level of the interfaces with the connecting structures capable of causing the rupture of the bearing assembly.
  • the tangent modulus of rigidity in extension E t of any strand bearing element is advantageously at most equal to 2000 MPa, this tangent module being defined for the value of elongation of the strand bearing element reached opposite to l contact area when the pneumatic type device is inflated to a nominal pressure P and crushed under a nominal radial load Z.
  • the tangent modulus of rigidity in extension of any strand bearing element must be sufficiently small, c that is to say the flexible carrier element flexible enough, to give the carrier assembly flexibility making it possible to significantly dampen the transmission of rolling vibrations from the pneumatic type device to the wheel, and thus reduce the internal noise in the vehicle.
  • the tangent modulus of rigidity in extension E t of the filar load-bearing element is equal to K t * Lo / So, I being the tangent rigidity in extension, L o being the initial length at rest and So the initial section at rest of l wire element.
  • the tangent modulus of rigidity in extension E t is determined for a level of deformation DL / L 0 of a wire support element positioned opposite the contact area, when the pneumatic type device is inflated to a nominal pressure P and crushed under a nominal radial load Z.
  • the tangent rigidity in extension K t is deduced from the traction curve "force (N) / elongation (mm)" of the filar load-bearing element.
  • the secant modulus of rigidity in extension E s of any strand bearing element is also advantageously at least equal to 1 MPa, this secant module being defined for the value of elongation of the strand bearing element reached opposite to the contact area when the pneumatic type device is inflated to a nominal pressure P and crushed under a nominal radial load Z.
  • the supporting wire element being very flexible, the surface density D of supporting wire elements necessary to ensure the wearing of the applied radial load becomes very high, and therefore results in an excessive load-bearing mass.
  • the secant modulus of rigidity in extension E s of the filar load-bearing element is equal to K s * L 0 / S 0 , K s being the secant rigidity in extension, L o being the initial length at rest and So the initial section at rest of the wire carrying element.
  • This secant modulus of rigidity in extension E s is determined for a level of deformation DL / Lo of a filar carrier element positioned opposite the contact area, when the pneumatic type device is inflated to a nominal pressure P and crushed under a nominal radial load Z.
  • the secant stiffness in extension K s is deduced from the traction curve "force (N) / elongation (mm)" of the filar load-bearing element.
  • any strand carrying element comprises a polymeric material such as an aliphatic polyamide, an aromatic polyamide, a polyester, an elastane or any combination of the preceding materials.
  • the aforementioned materials have the advantage of guaranteeing a satisfactory compromise between the load carrying capacity of the carrier assembly and the endurance of the strand bearing elements, by virtue of an adapted pre-tension of said strand bearing elements.
  • any supporting wire element forms, in a circumferential plane and with a radial direction, an angle AXp at most equal to 5 °.
  • the angle AXp is not zero, that is to say in the case of a load-bearing structure made up of non-radial wire support elements in a circumferential plane, the load-bearing structure makes a contribution to the circumferential rigidity of the pneumatic type device.
  • any strand bearing element forms, in a meridian plane and with a radial direction, an angle AYp at least equal to 5 ° and at most equal to 45 °.
  • the radially outer connecting structure and the radially inner connecting structure of the carrier assembly are respectively constituted by a radially outer fabric and by a radially inner fabric.
  • the two respectively radially exterior and radially interior connection structures acting as interfaces between the load-bearing elements and the structures of revolution, respectively radially exterior and radially interior, are two fabrics.
  • fabric is meant a structure obtained by weaving elementary threads which can be made up of various types of material.
  • the surface S E of the radially outer fabric is not necessarily identical to the surface S of the radially inner face of the radially outer structure of revolution to which it is secured.
  • the radially outer fabric is not necessarily continuous and may consist of juxtaposed fabric elements: in this case, the surface S E of the radially outer fabric is the sum of the surfaces of the juxtaposed fabric elements.
  • the surface S E is at most equal to the surface S, that is to say that the radially exterior fabric does not necessarily entirely cover the radially interior face of the radially exterior structure of revolution.
  • the surface Si of the radially inner fabric is at most equal to the surface S 'of the radially outer face of the radially inner revolution structure to which it is secured, that is to say that the fabric radially interior does not necessarily entirely cover the radially exterior face of the radially interior structure of revolution.
  • the radially inner fabric is not necessarily continuous and may consist of juxtaposed fabric elements: in this case, the surface Si of radially inner fabric is the sum of the surfaces of the juxtaposed fabric elements.
  • This design with fabrics as connecting structures advantageously makes it possible to have a sandwich structure which can be produced independently and integrated in a single block during the manufacture of the pneumatic type device.
  • the sandwich structure thus obtained can be joined to the respectively radially exterior and radially interior structures of revolution by vulcanization, bonding or any other method of respectively radially exterior and radially interior tissue bonding.
  • the radially outer fabric is a woven fabric comprising interlacing of a first family of threads, mutually parallel, each thread of the first family of the fabric radially exterior forming, with a circumferential direction of the pneumatic type device, an angle AE at least equal to 10 ° and at most equal to 45 °, and of a second family of wires, mutually parallel, the respective wires of the two families of threads being symmetrical with respect to an equatorial plane of the pneumatic type device and the radially inner fabric is a woven fabric comprising interlaces of a first family of threads, mutually parallel, each thread of the first family of the radially inner fabric forming, with the circumferential direction of the pneumatic type device, an angle AI substantially equal to 45 °, and of a second family of wires, mutually parallel, the respective wires of the two families of wires being symmetrical with respect to an equatorial plane of the device pneumatic type.
  • a woven fabric during its manufacture, usually consists of interlacing of a first family of threads parallel to each other, called weft threads, and of a second family of threads parallel to each other, called warp threads, perpendicular to the weft threads.
  • the mechanical characteristics of such a fabric such as its rigidity in extension and its tensile strength, depending on the direction of the weft or that of the warp, depend on the characteristics of the elementary threads, such as, for elementary threads in textile , the titer, expressed in tex or g / l000 m, the toughness, expressed in cN / tex, and the standard contraction, expressed in%, these elementary threads being distributed according to a given density, expressed in number of threads / dm. All these characteristics are a function of the material of the wires and of the design of these wires.
  • a woven fabric as previously described is, first, linked to the ends of the carrier elements as a constituent element of the sandwich structure.
  • the sandwich structure thus comprises at least one screened fabric intended to be bonded, generally by bonding or vulcanization, either to the radially inner face of the radially outer structure of revolution, to become the radially outside screened fabric, either on the radially outer face of the radially inner revolution structure, to become the radially inner woven fabric.
  • the screened fabric is intended to become the radially outside screened fabric or the radially inside screened fabric, it is placed on a cylindrical surface, so that the warp and weft threads, perpendicular to each other, form initially, with the circumferential direction XX 'of the pneumatic type device, an angle substantially equal to 45 °.
  • the pneumatic type device After assembly of the sandwich structure in the pneumatic type device, the pneumatic type device is shaped, that is to say the diameter of the structure radially outer revolution increases while the diameter of the radially inner revolution structure remains constant. If the screened fabric is radially outer, its radial distance from the axis of revolution of the pneumatic type device increases significantly during shaping, its circumferential length increases and the angle formed by the warp threads and the weft yarns, with the circumferential direction XX 'of the pneumatic type device, initially equal to 45 °, decreases and becomes at least equal to 10 ° and at most equal to 45 °, after conformation.
  • the screened fabric is radially internal, its radial distance relative to the axis of revolution of the pneumatic type device remains almost constant during the shaping, its circumferential length does not vary or little and the angle formed by the son of warp and weft threads, with the circumferential direction XX 'of the pneumatic type device, initially equal to 45 °, remains substantially equal to 45 °, after conformation.
  • the radially outer fabric is a woven fabric comprising interlacing of a first family of threads, parallel to each other, each thread of the first family of the radially outer fabric forming, with a circumferential direction of the pneumatic type device, an angle AE at most equal to 5 °, and of a second family of wires, mutually parallel, the respective wires of the two families of wires forming between them an angle BE at least equal to 85 ° and at most 95 °
  • the radially inner fabric is a woven fabric comprising interlaces of a first family of threads, mutually parallel, each thread of the first family of the radially inner fabric forming, with the circumferential direction of the device of pneumatic type, an angle AI at most equal to 5 °, and of a second family of wires, mutually parallel, the respective wires of the two families of sons between them an angle BE at least equal to 85 ° and at most 95 °.
  • Such fabrics are conformable during inflation of the
  • any strand carrying element advantageously comprises at least one radially outer end portion integrated into the radially outer woven fabric and formed by interlacing with respect to at least one wire of a of the two families of sons and parallel to the other family of sons
  • any strand carrying element also advantageously comprises at least one radially inner end portion integrated into the radially inner woven fabric and formed by interlacing with respect to at least one wire. one of the two families of sons and parallel to the other families of sons.
  • the carrier assembly comprises two respectively radially exterior and radially interior woven fabrics and wire support elements constituted by wires, the end portions of which are integrated in each fabric respectively radially exterior and radially interior, parallel to the one of the families of fabric threads.
  • wire support elements constituted by wires, the end portions of which are integrated in each fabric respectively radially exterior and radially interior, parallel to the one of the families of fabric threads.
  • Such a sandwich structure has the advantage of being able to be produced in a single weaving step.
  • several wire carrying elements are constituted by a continuous wire passing alternately through each fabric respectively radially exterior and radially interior.
  • the respectively radially exterior and radially interior fabrics comprise a polymeric material such as an aliphatic polyamide, an aromatic polyamide, a polyester, an elastane, or a metallic material, such as steel, or a glass or carbon material or any combination of the above materials.
  • a polymeric material such as an aliphatic polyamide, an aromatic polyamide, a polyester, an elastane, or a metallic material, such as steel, or a glass or carbon material or any combination of the above materials.
  • Polymers, in particular elastomers, and metal, such as steel, are commonly used in the tire industry. Glass and carbon are possible alternative materials for use in tires.
  • the radially outer connecting structure and the radially inner connecting structure of the carrier assembly are respectively integrated in the radially outer revolution structure and in the radially outer revolution structure. This is the case, for example, for an anchoring of the ends of the supporting wire elements directly in the structures of revolution radially exterior and radially interior respectively.
  • This second embodiment is a priori more complex to manufacture than the first preferred embodiment with fabrics as connecting structures.
  • the radially inner structure of revolution comprises, on a radially inner face, a connecting layer intended to be fixed to the mounting means on the vehicle.
  • the bonding layer generally comprises at least one elastomeric material, but not necessarily of reinforcing reinforcement.
  • Layer fixation connection on the mounting means can be achieved by gluing, by locking means on the wheel or, possibly, by the only hooping resulting from the inflation pressure forces of the pneumatic type device.
  • the tension in each wire support element is zero in order to avoid any relaxation of the material or materials constituting the wire support elements.
  • the invention also relates to a mounted assembly comprising a pneumatic device according to one of the previously described embodiments, mounted on a mounting means on the vehicle.
  • FIGS. 1 to 6 presented below:
  • - Figure 1 perspective view in partial section of a pneumatic type device according to the invention.
  • - Figure 2A view of a circumferential section of a pneumatic type device according to the invention, in the crushed state, with compression of the strand carrier elements in Making contact.
  • - Figure 2B view of a circumferential section of a pneumatic type device according to the invention, in the crushed state, with tensioning of the strand carrier elements in Making contact.
  • - Figure 3A view of a meridian section of a pneumatic type device according to the invention, in the crushed state, with compression of the strand carrier elements in the contact area.
  • - Figure 4A view in meridian section of a sandwich structure comprising two woven fabrics and a supporting structure.
  • - Figure 4B top view of a sandwich structure comprising two woven fabrics and a supporting structure.
  • FIG. 6 evolution of the interior noise level as a function of the tangent equivalent module of rigidity in extension of an assembly carrying a pneumatic type device according to the invention.
  • Figure 1 shows a perspective view in partial section of a pneumatic type device 1 according to the invention, mounted on a mounting means 4 or rim, and comprising a radially outer structure of revolution 2 having a face radially interior 23 and two axial ends 24, a radially interior structure of revolution 3 having a radially exterior face 33 and two axial ends 34, an interior annular space 5, a support assembly 8 comprising a support structure 6 and two respectively radially connecting structures exterior 71 and radially interior 72, and two sides 9.
  • the radially exterior structure of revolution 2 has an axis of revolution which is the axis of rotation YY ′ of the pneumatic type device and is intended to come into contact with a ground by l 'Intermediate of a tread 21 comprising at least one elastomeric material.
  • the radially outer structure of revolution 2 comprises a circumferential reinforcing reinforcement 22, constituted, in the present case, by a single reinforcing layer.
  • the radially inner revolution structure 3, coaxial with the radially outer revolution structure 2, is intended to ensure the connection of the pneumatic type device 1 with the mounting means 4.
  • the radially inner revolution structure 3 comprises at least one polymeric material , most often an elastomeric blend.
  • the interior annular space 5 is radially delimited by the respectively radially exterior 2 and radially interior 3 revolution structures.
  • the load-bearing structure 6 constituted by a plurality of identical thread supporting elements 61, not interconnected in the interior annular space 5 and extending continuously from a radially outer connecting structure 71, integral with the radially inner face 23 of the radially outer revolution structure 2, up to a radially connecting structure interior 72, secured to the radially exterior face 33 of the radially interior structure of revolution 3, at least a portion of the load-bearing elements 61, connected to the portion of the radially exterior structure of revolution 2 not in contact with the ground, are in tension .
  • the two radially outer 71 and radially inner 72 connecting structures of the carrier assembly 8 are linked, and most often bonded, respectively to the radially inner face 23 of the radially outer revolution structure 2 and to the radially outer face 33 of the radially inner revolution structure 3.
  • the pneumatic type device 1 comprises two sidewalls 9, connecting the axial ends (24, 34) of the respectively radially outer 2 and radially inner 3 revolution structures and axially delimiting the annular space interior 5, so that the interior annular space 5 constitutes a closed cavity which can be pressurized by an inflation gas.
  • the pneumatic type device 1 comprises a carcass reinforcement (10, 11) extending radially in each sidewall 9 and axially at least partly in the radially outer structure of revolution 2 and at least partly in the structure of revolution radially inner 3.
  • the carcass reinforcement (10, 11) is constituted by two carcass reinforcement portions each extending radially in a sidewall 9, from a first end positioned in the radially outer revolution structure 2 up to a second end positioned in the radially inner structure of revolution 3.
  • the respective first ends and the respective second ends of the two carcass reinforcement portions are disjoint.
  • FIG. 2A shows a circumferential section of a pneumatic type device 1 according to the invention, mounted on a mounting means 4, in its inflated and crushed state, that is to say subjected to a radial load nominal Z, with compression of the supporting wire elements 61 in the contact area.
  • the carrying structure 6 is constituted by a plurality of supporting wire elements 61, not interconnected in the interior annular space 5 and connecting the radially outer revolution structure 2 to the radially interior revolution structure 3.
  • the pneumatic type device 1, subjected to a nominal radial load Z is in contact with a flat ground by a contact surface A, having a circumferential length X A.
  • Figure 2B shows a circumferential section of a pneumatic type device 1 according to the invention, mounted on a mounting means 4, in its inflated and crushed state, that is to say subjected to a radial load nominal Z, with extension of load-bearing elements wires 61 in the contact area.
  • the supporting wire elements 61 remain in extension and are not subjected to buckling, because of the pre-tension which was generally applied to them during the manufacture of the pneumatic type device, of its mounting on a means mounting and / or inflation.
  • the pneumatic type device 1 comprises a structure of revolution radially outer 2 having a radially inner face 23 and two axial ends 24 and comprising a tread 21 and a reinforcement 22, a radially inner revolution structure 3 having a radially outer face 33 and two axial ends 34, an inner annular space 5 of height H, a support assembly 8 comprising a support structure 6 with wire support elements 61 and two respectively radially external connection structures 71, having a surface S E , and radially interior 72, having a connection surface Si , two sides 9 and a carcass reinforcement (10, 11).
  • the pneumatic type device 1, subjected to a nominal radial load Z, is in contact with a flat ground by a contact surface A.
  • the supporting wire elements 61, positioned at the 'opposite to the contact area are under tension, while the load-bearing elements 61, connected to the portion of radially outer structure of revolution 2 in contact with the ground, are subjected to buckling in compression.
  • FIG. 3B shows a wire or one-dimensional support element 61 having a circular average section Sp, and a length L P.
  • the mean section Sp is defined by a smaller characteristic dimension E and a larger characteristic dimension L both equal, in the example presented, to the diameter of the circle, and characterized by its form ratio K equal to L / E, therefore equal to 1 in this case.
  • the smallest characteristic dimension E of the average section Sp of the carrier element 61 that is to say in its present case, its diameter, is at most equal to 0.02 times the average radial height H of l interior annular space 5.
  • FIG. 4A is a view in meridian section of a support assembly 8 comprising two connection structures (71, 72) of the woven fabric type and a support structure 6.
  • the two woven fabrics (71, 72) are intended for becoming the radially outer and radially inner fabrics respectively, after integration into the pneumatic type device.
  • Each screened fabric (71, 72) is formed by perpendicular intertwining of a first family of threads (711, 721), called weft threads, and of a second family of threads (712, 722), called warp threads.
  • the wired supporting elements 61 of the carrying structure 6 are constituted by continuous wires connecting the two screened fabrics (71, 72) and comprising portions (611, 612) intersecting with the respective weft son (711, 721) of said woven fabrics (71, 72), parallel to the warp threads (712, 722) and constituting the ends of the carrying elements 61 integrated in each fabric.
  • the advantage of such a design is that it can weave the sandwich structure in one step.
  • FIG. 4B shows a top view of a support assembly 8 comprising two connecting structures (71, 72) of woven fabric type and a support structure 6.
  • the woven fabric 71 shown is formed by perpendicular intersections of the first family of sons 711, called weft threads, and of the second family of threads 712, called warp threads.
  • FIG. 4B shows portions of threads 611, intersected with the weft threads 711, parallel to the warp threads 712 and constituting ends of the carrying elements 61 integrated in the screened fabric 71.
  • FIG. 5 is a typical behavior law of a support assembly, constituted by the support structure and the two connecting structures, respectively radially exterior and radially interior, which is a sandwich structure comparable to an equivalent composite material.
  • This equivalent composite material can be characterized mechanically by a constitutive law representing the evolution of the stress in extension L / S, applied to the composite material in a direction normal to the connection structures, according to its deformation in extension or relative elongation DL / L.
  • This behavior law can typically be determined by a static tensile test on a test piece constituted by a sample of the sandwich structure, comprising the load-bearing structure connected to the two connecting structures.
  • the equivalent tangent modulus of rigidity in extension E is defined by the slope of the line tangent to the constitutive law at the point considered and the equivalent secant modulus of rigidity in extension E es is defined by the slope of the line passing through the origin of the reference frame and by the point considered of the law of behavior.
  • the inventors have chosen to determine, for the bearing assembly, an equivalent tangent modulus of rigidity in extension E and and an equivalent secant modulus of rigidity in extension E es , for the value of radial extension of the bearing assembly, diametrically to opposite of the contact area, reached when the pneumatic type device is inflated to a nominal pressure P and crushed under a nominal radial load Z. It should be noted that every single supporting element, taken individually, has a law of behavior of this type.
  • FIG. 6 is a graph representing the evolution of the interior noise level B, expressed in base 100 with respect to a maximum noise level defined as equal to 100, as a function of the equivalent tangent modulus of rigidity in extension E and of the carrier assembly of a pneumatic type device, expressed in MPa.
  • This curve is a theoretical curve, resulting from a numerical simulation.
  • the noise level B is an increasing nonlinear function of the equivalent tangent modulus of rigidity in extension E and of the assembly, with a strong growth below 1 MPa, a weakest growth between 1 MPa and 2 MPa, to reach an almost constant maximum level above 2 MPa. Consequently, the inventors fixed at 1 MPa the threshold of equivalent tangent modulus of rigidity in extension E and , below which the noise level is considered acceptable, typically less than 95, the maximum noise level being defined by convention as equal. 100.
  • the pneumatic type device for a passenger vehicle having the noise performance characteristics shown in FIG. 6, corresponds to a tire of dimension 255/35 R19 XL having a load index equal to 96, inflated at a nominal pressure P equal to 2.5 bars and subjected to a nominal radial load Z equal to 557 daN.
  • the load-bearing assembly of this pneumatic-type device is constituted by a load-bearing structure, constituted by identical thread-carrying elements made of elastane, and two connecting structures, respectively radially exterior and radially interior, constituted by woven polyester fabrics of polyethylene terephthalate type. (FART).
  • the supporting wire elements form, in a circumferential plane and with a radial direction, a zero angle AXp, that is to say are radial in a circumferential plane.
  • the supporting wire elements are elastane yarns, made up of a filament yarn having a titer equal to 187 tex (g / l000m).
  • Such an elastane wire has, at the nominal operating point of the pneumatic type device, resulting from the application of the nominal pressure and load conditions described above, a tangent modulus of rigidity in extension E t and a secant module of rigidity in extension E s substantially equal to each other and equal to 0.24 MPa, corresponding respectively to a tangent rigidity in extension K ' t and a secant rigidity in extension K' s substantially equal to each other and equal to 0.55 cN / tex, these two rigidities in extension being deduced from a traction curve "force (N) / relative elongation (%)" of the wire having a substantially linear evolution up to the operating point considered.
  • the supporting wire elements are distributed with a density equal to 216,000 reinforcements / m 2 , corresponding to a surface density equal to 3.4%.
  • the strand carrying elements have a titer equal to 187 tex or 187 g / km (or 187c10 6 g / mm), and that, on the other hand, the density of the elastane is approximately 1 2 ⁇ 10 3 g / mm 3 , it is possible to calculate the area of a section of a filar carrier element
  • the woven fabrics respectively radially outside and radially inside comprise interlacing of a first family of threads, parallel to each other and forming, with a circumferential direction of the pneumatic type device, an angle A E equal to 0 °, and a second family of wires, parallel to each other, the respective wires of the two families of wires forming between them an angle B equal to 90 °.
  • the equivalent tangent modulus of rigidity in extension E and of the bearing assembly, at the nominal operating point is equal to 0.24 MPa, therefore less than 1 MPa.
  • the equivalent secant modulus of rigidity in extension E es of the bearing assembly, at the nominal operating point is also substantially equal to 0.24 MPa, due to the substantially linear behavior of the equivalent material of the bearing assembly up to 'at the operating point considered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Tires In General (AREA)

Abstract

La présente invention concerne un dispositif de type pneumatique (1), destiné à équiper un véhicule, comprenant un assemblage porteur (8) permettant une amélioration de la mise à plat, et a pour objectif une réduction du bruit intérieur généré. Un dispositif de type pneumatique (1) selon l'invention comprend essentiellement deux structures de révolution coaxiales, respectivement radialement extérieure (2) et radialement intérieure (3), séparées radialement par un espace annulaire intérieur (5), reliées entre elles, en zone courante, par un assemblage porteur (8), constitué par une structure porteuse (6), comprenant des éléments porteurs filaires (61), une structure de liaison radialement extérieure (71) et une structure de liaison radialement intérieure (72),etreliées entre elles, au niveau de leurs extrémités axiales respectives (24, 34), par deux flancs (9), eux-mêmes renforcés par une armature de carcasse (10, 11). Selon l'invention, le module tangent équivalent de rigidité en extension E et de l'assemblage porteur (8) au plus égal à 1 MPa.

Description

Dispositif de type pneumatique à éléments filaires souples pour véhicule.
[0001] La présente invention concerne un dispositif de type pneumatique, destiné à équiper un véhicule. Ce dispositif de type pneumatique est conçu préférentiellement pour des véhicules de tourisme, mais peut être a priori utilisé sur tout autre type de véhicule tels que des véhicules à deux roues, des véhicules poids lourds, agricoles, de génie civil ou des avions ou, plus généralement, sur tout dispositif roulant.
[0002] Un pneumatique classique est une structure torique, destinée à être montée sur une jante, pressurisée par un gaz de gonflage et écrasée sur un sol sous l’action d’une charge. Le pneumatique possède en tout point de sa surface de roulement, destinée à entrer en contact avec un sol, une double courbure: une courbure circonférentielle et une courbure méridienne. Par courbure circonférentielle, on entend une courbure dans un plan circonférentiel, défini par une direction circonférentielle, tangente à la surface de roulement du pneumatique selon la direction de roulement du pneumatique, et une direction radiale, perpendiculaire à l’axe de rotation du pneumatique. Par courbure méridienne, on entend une courbure dans un plan méridien ou radial, défini par une direction axiale, parallèle à l’axe de rotation du pneumatique, et une direction radiale, perpendiculaire à l’axe de rotation du pneumatique.
[0003] Dans ce qui suit, l’expression «radialement intérieur, respectivement radialement extérieur» signifie «plus proche, respectivement plus éloigné de l’axe de rotation du pneumatique». L’expression «axialement intérieur, respectivement axialement extérieur» signifie «plus proche, respectivement plus éloigné du plan équatorial du pneumatique», le plan équatorial du pneumatique étant le plan passant par le milieu de la surface de roulement du pneumatique et perpendiculaire à l’axe de rotation du pneumatique.
[0004] Il est connu que la mise à plat du pneumatique sur un sol horizontal, dans un plan circonférentiel et dans un plan méridien, est conditionnée par les valeurs des rayons de courbure respectivement circonférentiel et méridien, au niveau des points de la surface de roulement positionnés aux limites de l’aire de contact du pneumatique avec le sol. Cette mise à plat est d’autant plus facilitée que ces rayons de courbure sont grands, c’est-à-dire que les courbures sont petites, la courbure en un point, au sens mathématique, étant l’inverse du rayon de courbure. Il est également connu que la mise à plat du pneumatique impacte les performances du pneumatique, en particulier la résistance au roulement, l’adhérence, l’usure et le bruit. [0005] Par conséquent, l’homme du métier, spécialiste du pneumatique, cherchant à obtenir le bon compromis entre les performances attendues du pneumatique telles que, de façon non exhaustive, l’usure, l’adhérence, l’endurance, la résistance au roulement et le bruit, a développé des solutions alternatives au pneumatique classique pour optimiser sa mise à plat.
[0006] Un pneumatique classique de l’état de la technique a généralement une grande courbure méridienne, c’est-à-dire un petit rayon de courbure méridien, au niveau des extrémités axiales de la bande de roulement, appelées épaules, lorsque le pneumatique, monté sur sa jante de montage et gonflé à sa pression d’utilisation recommandée, est soumis à sa charge de service. La jante de montage, la pression d’utilisation et la charge de service sont définies par des normes, telles que, par exemple, les normes de la European Tyre and Rim Technical Organisation (ETRTO). Un pneumatique classique porte la charge appliquée, essentiellement par les extrémités axiales de la bande de roulement, ou épaules, et par les flancs reliant la bande roulement à des bourrelets assurant la liaison mécanique du pneumatique avec sa jante de montage. Il est connu qu’une mise à plat méridienne d’un pneumatique classique, avec une petite courbure méridienne au niveau des épaules, est généralement difficile à obtenir.
[0007] Le document WO 2017005713 Al propose un dispositif de type pneumatique avec une mise à plat améliorée de sa bande de roulement par rapport à un pneumatique classique, lorsqu’il est soumis à une charge. Ce dispositif de type pneumatique comprend une structure de révolution radial ement extérieure, destinée à entrer en contact avec un sol, une structure de révolution radialement intérieure, destinée à entrer en contact avec un moyen de montage, deux flancs reliant entre elles ces deux structures de révolution et délimitant un espace annulaire intérieure, et une structure porteuse constituée par des éléments porteurs identiques qui, lorsque le pneumatique est soumis à une charge, sont en extension en dehors de l’aire de contact du pneumatique avec le sol et en compression dans l’aire de contact, et deux flancs. Les éléments porteurs sont fïlaires et sont reliés respectivement à la face radialement intérieure de la structure de révolution radialement extérieure par un tissu radialement extérieur et à la face radialement extérieure de la structure de révolution radialement intérieure par un tissu radialement intérieur, de telle sorte que l’ensemble constitué par la structure porteuse, le tissu radialement extérieur et le tissu radialement intérieur constitue une structure sandwich. En outre, la densité surfacique moyenne D des éléments porteurs par unité de surface de structure de révolution radialement extérieure, exprimée en l/m2, est au moins égale à (S/S| )*Z/(A*F1), où S est la surface, en m2, de la face radialement intérieure de la structure de révolution radialement extérieure, SE est la surface de liaison, en m2, du tissu radialement extérieur avec la face radialement intérieure de la structure de révolution radialement extérieure, Z est la charge radiale nominale, en N, A est la surface de contact au sol, en m2, et Fr la force à rupture, en N, d’un élément porteur.
[000S] Le document WO 2018020164 Al est un perfectionnement du dispositif de type pneumatique décrit dans le document WO 2017005713 Al précédemment décrit, avec une mise à plat encore améliorée de sa bande de roulement par rapport à un pneumatique classique, lorsqu’il est soumis à une charge. Ce document décrit en particulier des éléments porteurs fïlaires de la structure porteuse ayant une longueur initiale LP strictement supérieure à la hauteur radiale moyenne H et au plus égale à 1.1 fois la hauteur radiale moyenne H de l’espace annulaire intérieur, défini comme la distance entre la face radialement intérieure de la structure de révolution radialement extérieure et par la face radialement extérieure de la structure de révolution radialement intérieure. Cette distance H est mesurée sur le dispositif de type pneumatique dans son état initial, c’est-à-dire monté sur son moyen de montage, gonflé à une pression recommandée mais non soumis à une charge Z. La pression recommandée peut le cas échéant être nulle : dans ce cas, le pneu est non gonflé et supporte la charge uniquement par sa structure. Une longueur initiale Lp d’élément porteur strictement supérieure à la hauteur radiale moyenne H implique que tout élément porteur est détendu dans l’état initial du dispositif de type pneumatique. Lorsque le dispositif de type pneumatique est soumis à la charge Z, les éléments porteurs, hors de Faire de contact avec le sol, se tendent, et au moins une partie d’entre eux deviennent rectilignes, car la hauteur radiale moyenne augmente en dehors de Faire de contact, du fait de l’apparition d’une contre-flèche. Les éléments porteurs, dans Faire de contact, restent en revanche détendus. L’allongement des éléments porteurs sous charge autorise de plus grands rayons de courbure dans tout plan circonférentiel, en entrée et en sortie d’aire de contact, et donc facilite la mise à plat circonférentielle du dispositif de type pneumatique. En revanche, si la longueur initiale LP d’élément porteur était supérieure à 1.1 fois la hauteur radiale moyenne H, tout élément porteur resterait détendu et la structure porteuse ne pourrait pas assurer sa fonction de port de charge.
[0009] Le document WO 2017103490 Al décrit un mode de réalisation avantageux de la structure sandwich constituée par la structure porteuse, le tissu radialement extérieur et le tissu radialement intérieur du dispositif de type pneumatique décrit dans le document WO 2017005713 Al. Ce document décrit une structure sandwich, constituée par un assemblage comprenant une première structure tissée ou tricotée imprégnée comprenant un premier tissu ou tricot et une première couche d’une première composition polymérique, une deuxième structure tissée ou tricotée imprégnée comprenant un deuxième tissu ou tricot et une deuxième couche d’une deuxième composition polymérique, une structure porteuse comprenant des éléments porteurs reliant les premier et deuxième tissus ou tricots entre eux et au moins un moyen sacrificiel de maintien temporaire des première et deuxième structures tissées ou tricotées imprégnées l’une par rapport à l’autre, reliant les premier et deuxième tissus ou tricots entre eux, le moyen sacrificiel étant agencé de façon à rompre avant les éléments porteurs lorsqu’on écarte les première et deuxième structures tissées ou tricotées imprégnées l’une de l’autre.
[0010] Comme décrit dans le document WO 2017005713 Al, la structure porteuse, le tissu radialement extérieur et le tissu radialement intérieur, constituant la structure sandwich, peuvent être constitués par divers types de matériaux :
-des matériaux polymériques, tels qu’un polyamide aliphatique, par exemple un nylon, un polyamide aromatique, par exemple l’aramide, ou un polyester, par exemple un polyéthylène téréphtalate (PET),
-des matériaux métalliques, tels que l’acier,
-ou des matériaux de type verre ou carbone ou toute combinaison des précédents matériaux.
[0011] Les inventeurs ont toutefois constaté qu’avec une structure porteuse constituée par certains des matériaux précédemment cités, tel que, par exemple, un polyester de type polyéthylène téréphtalate (PET), le dispositif de type pneumatique pouvait générer un niveau de bruit intérieur dégradé par rapport à un pneumatique standard. Le bruit intérieur est ici défini par un bruit à basses fréquences, perçu à l’intérieur d’un véhicule roulant sur un sol à forte granularité, les fréquences étant comprises entre 80 Hz et 800 Hz. Par conséquent, certains matériaux constitutifs des éléments porteurs fïlaires de la structure porteuse ne sont pas adaptés vis-à-vis du bruit intérieur généré.
[0012] La présente invention a donc pour objectif de proposer un dispositif de type
pneumatique pour véhicule avec une structure porteuse permettant une amélioration de la mise à plat, avec une réduction du bruit intérieur généré.
[0013] Ce but a été ateint, selon l’invention, par un dispositif de type pneumatique, destiné à équiper un véhicule, comprenant: -une structure de révolution radialement extérieure dont l’axe de révolution est l’axe de rotation du dispositif de type pneumatique et destinée à entrer en contact avec un sol par l’intermédiaire d’une bande de roulement comprenant au moins un matériau élastomérique, la structure de révolution radialement extérieure ayant deux extrémités axiales et une face radialement intérieure, et la structure de révolution radialement extérieure comprenant une armature circonférentielle de renforcement,
-une structure de révolution radialement intérieure, coaxiale à la structure de révolution radialement extérieure et destinée à assurer la liaison du dispositif de type pneumatique avec un moyen de montage sur le véhicule, la structure de révolution radialement intérieure ayant deux extrémités axiales et une face radialement extérieure, et la structure de révolution radialement intérieure comprenant au moins un matériau polymérique,
-un espace annulaire intérieur radialement délimité par la face radialement intérieure de la structure de révolution radialement extérieure et par la face radialement extérieure de la structure de révolution radialement intérieure,
-deux flancs, reliant deux à deux les extrémités axiales des structures de révolution respectivement radialement extérieure et radialement intérieure et délimitant axialement l’espace annulaire intérieur,
-une armature de carcasse s’étendant radialement dans chaque flanc et axialement au moins en partie dans la structure de révolution radialement extérieure et au moins en partie dans la structure de révolution radialement intérieure,
-une structure porteuse constituée par une pluralité d’éléments porteurs fïlaires identiques, ayant chacun une section moyenne Sp, non reliés entre eux dans l’espace annulaire intérieur et s’étendant continûment à partir d’une structure de liaison radialement extérieure, ayant une surface SE et solidarisée avec la face radialement intérieure de la structure de révolution radialement extérieure, jusqu’à une structure de liaison radialement intérieure, ayant une surface Si et solidarisée avec la face radialement extérieure de la structure de révolution radialement intérieure, de telle sorte que, lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z sur un sol, au moins une partie des éléments porteurs, reliés à la portion de la structure de révolution radialement extérieure non en contact avec le sol, sont en tension,
-la structure porteuse, la structure de liaison radialement extérieure et la structure de liaison radialement intérieure constituant un assemblage porteur,
-l’assemblage porteur ayant un module tangent équivalent de rigidité en extension Eet et un module sécant équivalent de rigidité en extension Ees, respectivement définis pour la valeur d’extension radiale de l’assemblage porteur, diamétralement à l’opposé de l’aire de contact, atteinte lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z,
-le module tangent équivalent de rigidité en extension Eet de l’assemblage porteur étant au plus égal à 1 MPa.
[0014] Un dispositif de type pneumatique selon l’invention comprend ainsi essentiellement deux structures de révolution coaxiales, respectivement radialement extérieure et radialement intérieure, séparées radialement par un espace annulaire intérieur et reliées entre elles, en zone courante, par un assemblage porteur et, au niveau de leurs extrémités axiales respectives, par deux flancs, eux-mêmes renforcés par une armature de carcasse.
[0015] La structure de révolution radialement extérieure est destinée à entrer en contact avec un sol par l’intermédiaire d’une bande de roulement comprenant au moins un matériau élastomérique et comprend une armature circonférentielle de renforcement contribuant à la reprise des efforts de gonflage et à la tenue de route du dispositif de type pneumatique.
[0016] La structure de révolution radialement intérieure, coaxiale à la structure de révolution radialement extérieure, est destinée à assurer la liaison du dispositif de type pneumatique avec un moyen de montage sur le véhicule, tel qu’une jante, et comprend au moins un matériau polymérique, le plus souvent élastomérique.
[0017] Le dispositif de type pneumatique comprend également deux flancs, reliant deux à deux les extrémités axiales des structures de révolution respectivement radialement extérieure et radialement intérieure et délimitant axialement l’espace annulaire intérieur. Par conséquent l’espace annulaire intérieur constitue une cavité fermée pouvant être pressurisée par un gaz de gonflage. Les flancs, selon leur conception et, en particulier, selon leur rigidité structurelle, peuvent participer plus ou moins au port de la charge radiale appliquée. Les flancs comprennent généralement au moins un matériau élastomérique et le plus souvent une armature de renforcement. Les flancs peuvent ou non être liés directement à la structure porteuse. Dans le cas où ils ne sont pas liés directement à la structure porteuse, les flancs ont un comportement mécanique autonome, sans incidence sur le fonctionnement mécanique propre de la structure porteuse. En outre, en combinaison avec les deux structures de révolution respectivement radialement extérieure et radialement intérieure, ils ferment l’espace annulaire intérieur qui constitue alors une cavité fermée pouvant être pressurisée ou non par un gaz de gonflage. Dans le cas d’une pressurisation effective par un gaz de gonflage, le dispositif de type pneumatique présente alors une rigidité pneumatique, due à la pression, qui va également contribuer au port de la charge radiale appliquée. Usuellement, pour une utilisation sur un véhicule de tourisme, la pression de gonflage est au moins égale à 0.5 bar, de préférence au moins égale à 1 bar. Plus la pression est élevée, plus la contribution de la rigidité pneumatique au port de la charge radiale appliquée est élevée. En l’absence de pressurisation et dans le cas d’une faible rigidité structurelle des flancs, sous réserve d’une rigidité circonférentielle suffisante de l’armature de renforcement comprise dans la structure de révolution radialement extérieure, l’assemblage porteur assure la quasi-totalité du port de la charge, les flancs ne jouant qu’un rôle de protection vis-à-vis des agressions éventuelles par des éléments extérieurs au dispositif de type pneumatique.
[0018] Dans le cas d’un dispositif fonctionnant avec une cavité pressurisée, la charge nominale est égale à 80% de la charge maximale telle que définie par l’ETRTO, par exemple dans le document intitulé « ETRTO - STANDARDS MANU AL - 2018 ». La charge maximale est fonction des dimensions du pneumatique et de sa version standard ou renforcée. Dans le cas d’un dispositif fonctionnant en l’absence de pression, la charge nominale est la charge nominale telle que définie ci-dessus d’un dispositif fonctionnant avec une cavité pressurisée de même dimensions dans sa version standard. Bien évidemment, par en l’absence de pression, on comprendra que la pression dans la cavité est égale à la pression atmosphérique.
[0019] Dans le cas d’un dispositif fonctionnant avec une cavité pressurisée, la pression nominale est égale à 2,1 bars pour un pneumatique dans sa version standard et égale à 2,5 bars pour un pneumatique dans sa version renforcée, et ce quelle que soit sa dimension. Bien évidemment, dans le cas d’un dispositif fonctionnant en l’absence de pression, la pression nominale est égale à la pression atmosphérique.
[0020] Le dispositif de type pneumatique comprend aussi une armature de carcasse s’étendant radialement dans chaque flanc et axialement au moins en partie dans la structure de révolution radialement extérieure et au moins en partie dans la structure de révolution radialement intérieure. L’armature de carcasse, positionnée dans chaque flanc, contribue à la reprise des efforts et à la limitation des déformations, que génère la pression interne, au niveau des flancs. Cette contribution nécessite un ancrage mécanique de ladite armature de carcasse par rapport aux structures de révolution respectivement radialement extérieure et radialement intérieure : c’est la raison pour laquelle l’armature de carcasse, s’étendant radialement dans chaque flanc, s’étend axialement au moins en partie dans la structure de révolution radialement extérieure et au moins en partie dans la structure de révolution radialement intérieure. En l’absence de cette armature de carcasse renforçant les flancs, la tenue mécanique des flancs à la pression serait plus faible, et leurs déformations excessives. Par armature de carcasse, on entend préférentiellement une armature de renforcement comprenant au moins une couche de carcasse constituée par des renforts enrobés dans un mélange élastomérique. Le plus souvent, une telle armature de carcasse comprend une unique couche de carcasse, mais elle peut également être constituée par deux couches de carcasse superposées dont les renforts respectifs sont croisés d’une couche à la suivante.
[0021] Le principe de fonctionnement d’un dispositif de type pneumatique selon l’invention est de porter une charge radiale appliquée au dispositif de type pneumatique, au moins en partie par l’intermédiaire d’une structure porteuse, constituée d’éléments porteurs non reliés entre eux dans l’espace annulaire intérieur et dont au moins une partie d’entre eux, positionnés en dehors de l’aire de contact du dispositif de type pneumatique avec le sol, sont mis en tension. Les éléments porteurs positionnés dans l’aire de contact peuvent ou non être mis en tension, sous l’action de la charge radiale, selon le niveau de la pré-tension éventuellement appliquée aux éléments porteurs lors de la fabrication du dispositif de type pneumatique, de son montage sur un moyen de montage et/ou son gonflage.
[0022] La structure porteuse est constituée par une pluralité d’éléments porteurs identiques, c’est-à-dire dont les caractéristiques géométriques et les matériaux constitutifs sont identiques.
[0023] De plus, les éléments porteurs sont, non reliés entre eux, c’est-à-dire deux à deux indépendants, dans l’espace annulaire intérieur. En d’autres termes, les éléments porteurs sont non liés mécaniquement entre eux dans l’espace annulaire intérieur, de telle sorte qu’ils ont des comportements mécaniques indépendants. Par exemple, ils ne sont pas liés entre eux de façon à former un réseau ou un treillis.
[0024] Enfin, chaque élément porteur s’étend continûment à partir d’une structure de liaison radialement extérieure, ayant une surface SE et solidarisée avec la face radialement intérieure de la structure de révolution radialement extérieure, jusqu’à une structure de liaison radialement intérieure, ayant une surface Si et solidarisée avec la face radialement extérieure de la structure de révolution radialement intérieure. Autrement dit chaque élément porteur s’étend selon une trajectoire généralement rectiligne comprenant une première extrémité reliée à la structure de liaison radialement extérieure et une deuxième extrémité reliée à la structure de liaison radialement intérieure. Généralement, les éléments porteurs ne sont pas liés directement aux structures de révolution radialement extérieure et radialement intérieure, mais sont en interface avec elles par l’intermédiaire de structures de liaison. Ces structures de liaison sont le plus souvent solidarisées aux structures de révolution correspondantes par vulcanisation, par collage ou tout autre procédé de fixation. Ces structures de liaison peuvent être, par exemple, constituées par des tissus tramés Ces structures de liaison peuvent le cas échéant être intégrées dans les structures de révolution correspondantes, par exemple dans le cas de l’ancrage des extrémités des éléments porteurs dans les structures de révolution.
[0025] Les éléments porteurs de la structure porteuse sont en outre fïlaires, c’est-à-dire des éléments unidimensionnels assimilés à des fils.
[0026] Plus précisément, chaque élément porteur peut être caractérisé géométriquement par sa longueur LP et par sa section moyenne Sp, qui est la moyenne des sections obtenues par la coupe de l’élément porteur par toutes les surfaces cylindriques, coaxiales aux deux structures de révolution respectivement radialement extérieure et radialement extérieure, et radialement comprises entre lesdites deux structures de révolution. Dans le cas le plus fréquent d’une section constante de l’élément porteur, la section moyenne Sp est égale à cette section constante. La section moyenne Sp de l’élément porteur est caractérisée par une plus grande dimension caractéristique L et une plus petite dimension caractéristique E, dont le rapport K=L/E est appelé rapport de forme. A titre d’exemples, une section moyenne Sp circulaire, ayant un diamètre égal à d, a un rapport de forme K=l, une section moyenne Sp rectangulaire, ayant une longueur L et une largeur 1, a un rapport de forme K=L/l, et une section moyenne Sp elliptique, ayant un grand axe A et un petit axe a, a un rapport de forme K=A/a.
[0027] Par définition, un élément porteur est dit fïlaire ou unidimensionnel lorsque que la plus petite dimension caractéristique E de sa section moyenne Sp est au plus égale à 0.02 fois la hauteur radiale moyenne au repos H0 de l’espace annulaire intérieur, et lorsque le rapport de forme K de sa section moyenne Sp est au plus égal à 3. La hauteur radiale moyenne au repos Ho de l’espace annulaire intérieur est la distance entre la face radialement intérieure de la structure de révolution radialement extérieure et la face radialement extérieure de la structure de révolution radialement intérieure, mesurée sur le dispositif de type pneumatique non gonflé. Une plus petite dimension caractéristique E de la section moyenne Sp de l’élément porteur au plus égale à 0.02 fois la hauteur radiale moyenne au repos H0 de l’espace annulaire intérieur exclut tout élément porteur massif, ayant un volume important. En d’autres termes, chaque élément porteur a un élancement élevé, selon la direction radiale. Un rapport de forme K de sa section moyenne Sp au plus égal à 3 signifie que la plus grande dimension caractéristique L de sa section moyenne Sp est au plus égale à 3 fois la plus petite dimension caractéristique E de sa section moyenne Sp.
[0028] Un élément porteur fïlaire a un comportement mécanique de type fïlaire, c’est-à-dire qu’il ne peut être soumis qu’à des efforts d’extension ou de compression selon sa ligne moyenne. Parmi les composants couramment utilisés dans le domaine du pneumatique, les renforts textiles, constitués par un assemblage de filés textiles, ou les câbles métalliques, constitués par un assemblage de fils métalliques, peuvent être considérés comme des éléments porteurs fïlaires, car leur section moyenne Sp étant sensiblement circulaire, le rapport de forme K est égal à 1, donc inférieur à 3.
[0029] Les éléments porteurs fïlaires peuvent être radiaux, c’est-à-dire former un angle nul avec une direction radiale perpendiculaire à l’axe de rotation du pneumatique. Dans ce cas, les éléments porteurs fïlaires sont perpendiculaires aux deux structures de révolution respectivement radialement extérieure et radialement intérieure et ont des longueurs Lp pouvant être comprises entre 0.5 fois et 1.1 fois la hauteur radiale moyenne H de l’espace annulaire intérieur. La hauteur radiale moyenne H de l’espace annulaire intérieur est la distance entre la face radialement intérieure de la structure de révolution radialement extérieure et la face radialement extérieure de la structure de révolution radialement intérieure, mesurée sur le dispositif de type pneumatique monté et gonflé à une pression nominale P. Toutefois, les éléments porteurs peuvent également former un angle non nul avec une direction radiale.
[0030] L’assemblage constitué par la structure porteuse et les deux structures de liaison respectivement radialement extérieure et radialement intérieure, appelé assemblage porteur, est une structure sandwich assimilable à un matériau composite. Ce matériau composite peut être caractérisé mécaniquement par une loi de comportement représentant l’évolution de la contrainte en extension, appliquée au matériau composite selon une direction normale aux structures de liaison, en fonction de sa déformation en extension ou allongement. Cette loi de comportement peut être déterminée typiquement par un essai de traction statique sur une éprouvette constituée par un échantillon de la structure sandwich, comprenant la structure porteuse reliée aux deux structures de liaison. L’éprouvette de traction utilisée a la forme d’un cylindre circulaire creux épais ayant un diamètre intérieur égal à 38 mm et un diamètre extérieur égal à 60 mm, chacune des extrémités dudit cylindre étant fixée par collage à un disque creux ayant un diamètre intérieur égal à 26 mm et un diamètre extérieur égal à 70 mm. Le test de traction est réalisé à déformation imposée avec une vitesse de traction de 200 mm/min. En tout point de la loi de comportement ainsi obtenue, il est connu de déterminer un module tangent équivalent de rigidité en extension Eet et un module sécant équivalent de rigidité en extension Ees. Le module tangent équivalent de rigidité en extension Eet est la pente de la droite tangente à la loi de comportement au point considéré. Le module sécant équivalent de rigidité en extension Ees est la pente de la droite passant par l’origine du repère et par le point considéré de la loi de comportement. Les inventeurs ont choisi de déterminer, pour l’assemblage porteur, un module tangent équivalent de rigidité en extension Eet et un module sécant équivalent de rigidité en extension Ees, pour la valeur d’extension radiale de l’assemblage porteur, diamétralement à l’opposé de l’aire de contact, atteinte lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z.
[0031] Selon l’invention, le module tangent équivalent de rigidité en extension Eet de l’assemblage porteur est au plus égal à 1 MPa.
[0032] Les inventeurs ont en effet montré que le niveau de bruit généré par le dispositif de type pneumatique est globalement corrélé au module tangent équivalent de rigidité en extension Eet de l’assemblage porteur. Plus précisément, pour un dispositif de type pneumatique correspondant à une dimension classique pour un véhicule de tourisme, par exemple de type 255/35 R 19, le niveau de bruit est une fonction non linéaire croissante du module tangent équivalent de rigidité en extension Eet de l’assemblage porteur, avec une forte croissance en-dessous de 1 MPa, une plus faible croissance entre 1 MPa et 2 MPa, pour atteindre un niveau maximal quasi constant au-delà de 2 MPA. Par conséquent les inventeurs ont fixé à 1 MPa le seuil de module tangent équivalent de rigidité en extension Eet de l’assemblage porteur, en deçà duquel le niveau de bruit est considéré comme acceptable.
[0033] En effet un module tangent de rigidité en extension Eet de l’assemblage porteur suffisamment petit confère à l’assemblage porteur une souplesse permettant d’amortir signifîcativement la transmission des vibrations de roulage du dispositif de type pneumatique à la roue, et de diminuer ainsi le bruit intérieur dans le véhicule. [0034] Le module tangent équivalent de rigidité en extension Eet de l’assemblage porteur est donc considéré comme un paramètre pertinent vis-à-vis de la génération du bruit. Il est défini pour la valeur d’extension radiale de l’assemblage porteur, diamétralement à l’opposé de l’aire de contact, atteinte lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z. On appelle extension radiale de l’assemblage porteur la déformation de l’assemblage porteur sous l’action d’une force de traction appliquée perpendiculairement aux structures de liaison. La pression nominale P et la charge radiale nominale Z sont des valeurs recommandées, telles que définies par exemple par les normes ETRTO. Comme décrit précédemment, ce module tangent équivalent de rigidité en extension peut être déterminé, de façon connue, à partir de la loi de comportement en extension de l’assemblage porteur obtenue par un test de traction statique sur éprouvette : c’est la pente de la droite tangente à la loi de comportement au point considéré.
[0035] Le module tangent équivalent de rigidité en extension Eet de l’assemblage porteur est fonction du module tangent de rigidité en extension Et de chaque élément porteur fïlaire, mais aussi des modules de rigidités en extension des structures de liaison ainsi que des rigidités des interfaces entre les éléments porteurs fïlaires et les structures de liaison. Le module tangent de rigidité en extension Et de chaque élément porteur fïlaire est défini pour la valeur d’allongement de l’élément porteur fïlaire atteinte lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z.
[0036] Le module tangent équivalent de rigidité en extension Eet de l’assemblage porteur est également fonction de la densité surfacique D d’éléments porteurs fïlaires, définie comme le rapport entre la somme des sections moyennes Sp des éléments porteurs fïlaires et la moyenne arithmétique SM de la surface SE de la structure de liaison radialement extérieure et de la surface Si de la structure de liaison radialement intérieure. Pour des caractéristiques données d’éléments porteurs fïlaires, en termes de géométrie et de matériau, le module tangent équivalent de rigidité en extension Eet de l’assemblage porteur est une fonction croissante de la densité surfacique D d’éléments porteurs fïlaires.
[0037] Dans le cas particulier où les éléments porteurs fïlaires sont radiaux, c’est-à-dire, sont perpendiculaires aux structures de liaison, et où les structures de liaison, ainsi que les interfaces entre les éléments porteurs fïlaires et les structures de liaison sont suffisamment rigides, le module tangent équivalent de rigidité en extension Eet de l’assemblage porteur est sensiblement égal au produit du module tangent de rigidité en extension Et de chaque élément porteur fïlaire par la densité surfacique D d’éléments porteurs fïlaires.
[0038] Avantageusement, le module sécant équivalent de rigidité en extension Eeq de l’assemblage porteur est au moins égal à 0.1 MPa.
[0039] Le module sécant équivalent de rigidité en extension Eeq de l’assemblage porteur est considéré comme un paramètre pertinent vis-à-vis de la déformation radiale, ou flèche radiale, du dispositif de type pneumatique, lorsque celui-ci est gonflé et soumis à une charge radiale. Il est défini pour la valeur d’extension radiale de l’assemblage porteur, diamétralement à l’opposé de l’aire de contact, atteinte lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z. Comme décrit précédemment, ce module sécant équivalent de rigidité en extension peut être déterminé, de façon connue, à partir de la loi de comportement en extension de l’assemblage porteur obtenue par un test de traction statique sur éprouvette : c’est la pente de la droite passant par l’origine du repère et par le point considéré de la loi de comportement.
[0040] En deçà d’une valeur de module sécant équivalent de rigidité en extension Eeq égale à 0.1 MPa, l’assemblage porteur devient trop souple et les éléments porteurs fïlaires peuvent être soumis à des allongements excessifs susceptibles d’entraîner leur rupture.
[0041] Egalement avantageusement, l’assemblage porteur ayant une densité surfacique D d’éléments porteurs fïlaires, définie comme le rapport entre la somme des sections moyennes Sp des éléments porteurs fïlaires et la moyenne arithmétique SM de la surface SE de la structure de liaison radialement extérieure et de la surface Si de la structure de liaison radialement intérieure, la densité surfacique D d’éléments porteurs fïlaires est au plus égale à 10%. La densité surfacique D d’éléments porteurs fïlaires est définie pour un assemblage porteur au repos, c’est-à-dire non soumis à des sollicitations mécaniques. Au-delà de 10%, la densité surfacique D d’éléments porteurs fïlaires devient trop élevée, ce qui entraîne un nombre d’éléments porteurs fïlaires trop important, et par conséquent une masse et un coût de matière de la structure porteuse excessifs.
[0042] Généralement, la densité surfacique D d’éléments porteurs fïlaires est constante à la fois selon la direction circonférentielle et selon la direction axiale, c’est-à-dire que la répartition des éléments porteurs est uniforme à la fois circonférentiellement et axialement. L’avantage d’une densité surfacique constante est de contribuer à conférer à la bande de roulement une géométrie quasi cylindrique, avec un effet dit de « mise en marguerite » diminué par rapport à d’autres dispositifs de type pneumatique de l’état de la technique.
[0043] Toutefois, la densité surfacique D d’éléments porteurs fïlaires peut être variable selon la direction circonférentielle et/ou selon la direction axiale, c’est-à-dire que la répartition des éléments porteurs n’est pas nécessairement uniforme circonférentiellement et/ou axialement. Dans ce cas, la densité surfacique D d’éléments porteurs fïlaires prise en compte est une densité surfacique moyenne.
[0044] Encore avantageusement la densité surfacique D d’éléments porteurs fïlaires est au moins égale à 0.05%. En deçà de 0.05%, la densité surfacique D d’éléments porteurs fïlaires devient trop faible, ce qui entraîne, dans les éléments porteurs fïlaires, des contraintes élevées susceptibles d’entraîner leur rupture, ainsi que des efforts ponctuels excessifs au niveau des interfaces avec les structures de liaison susceptibles de provoquer la rupture de l’assemblage porteur.
[0045] Le module tangent de rigidité en extension Et de tout élément porteur fïlaire est avantageusement au plus égal à 2000 MPa, ce module tangent étant défini pour la valeur d’allongement de l’élément porteur fïlaire atteinte à l’opposé de l’aire de contact lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z. En d’autres termes, le module tangent de rigidité en extension de tout élément porteur fïlaire doit être suffisamment petit, c’est-à-dire l’élément porteur fïlaire suffisamment souple, pour conférer à l’assemblage porteur une souplesse permettant d’amortir significativement la transmission des vibrations de roulage du dispositif de type pneumatique à la roue, et de diminuer ainsi le bruit intérieur dans le véhicule. Le module tangent de rigidité en extension Et de l’élément porteur fïlaire est égal à Kt*Lo/So, I étant la rigidité tangente en extension, Lo étant la longueur initiale au repos et So la section initiale au repos de l’élément porteur fïlaire. Le module tangent de rigidité en extension Et est déterminé pour un niveau de déformation DL/L0 d’un élément porteur fïlaire positionné à l’opposé de l’aire de contact, lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z. La rigidité tangente en extension Kt est déduite de la courbe de traction «force (N)/ allongement (mm)» de l’élément porteur fïlaire.
[0046] Le module sécant de rigidité en extension Es de tout élément porteur fïlaire est encore avantageusement au moins égal à 1 MPa, ce module sécant étant défini pour la valeur d’allongement de l’élément porteur fïlaire atteinte à l’opposé de l’aire de contact lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z. En deçà de 1 MPa, l’élément porteur fïlaire étant très souple, la densité surfacique D d’éléments porteurs fïlaires nécessaire pour assurer le port de la charge radiale appliquée devient très élevée, et donc entraîne une masse de structure porteuse excessive. Le module sécant de rigidité en extension Es de l’élément porteur fïlaire est égal à Ks* L0/ S0, Ks étant la rigidité sécante en extension, Lo étant la longueur initiale au repos et So la section initiale au repos de l’élément porteur fïlaire. Ce module sécant de rigidité en extension Es est déterminé pour un niveau de déformation DL/Lo d’un élément porteur fïlaire positionné à l’opposé de l’aire de contact, lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z. La rigidité sécante en extension Ks est déduite de la courbe de traction «force (N)/ allongement (mm)» de l’élément porteur fïlaire.
[0047] Selon des variantes avantageuses des matériaux constitutifs des éléments porteurs fïlaires, tout élément porteur fïlaire comprend un matériau polymérique tel qu’un polyamide aliphatique, un polyamide aromatique, un polyester, un élasthanne ou toute combinaison des précédents matériaux. Les matériaux précédemment cités présentent l’avantage de garantir un compromis satisfaisant entre la capacité de port de charge de l’assemblage porteur et l’endurance des éléments porteurs fïlaires, grâce à une pré-tension adaptée desdits éléments porteurs fïlaires.
[0048] Avantageusement tout élément porteur fïlaire forme, dans un plan circonférentiel et avec une direction radiale, un angle AXp au plus égal à 5°. Dans le cas où l’angle AXp est non nul, c’est-à-dire dans le cas d’une structure porteuse constituée d’éléments porteurs fïlaires non radiaux dans un plan circonférentiel, la structure porteuse apporte une contribution à la rigidité circonférentielle du dispositif de type pneumatique.
[0049] Encore avantageusement tout élément porteur fïlaire forme, dans un plan méridien et avec une direction radiale, un angle AYp au moins égal à 5° et au plus égal à 45°. Une structure porteuse constituée d’éléments porteurs fïlaires, formant un angle AYP non nul, c’est-à-dire non radiaux dans un plan méridien, apporte ainsi une contribution à la rigidité axiale, ou transversale, du dispositif de type pneumatique.
[0050] Selon un premier mode de réalisation préféré, la structure de liaison radialement extérieure et la structure de liaison radialement intérieure de l’assemblage porteur sont respectivement constituées par un tissu radialement extérieur et par un tissu radialement intérieur.
[0051] Ainsi les deux structures de liaison respectivement radialement extérieure et radialement intérieure, agissant en qualité d’interfaces entre les éléments porteurs et les structures de révolution respectivement radialement extérieure et radialement intérieure, sont deux tissus. Par tissu, on entend une structure obtenue par tissage de fils élémentaires pouvant être constitués par divers types de matériaux.
[0052] Il est à noter que la surface SE du tissu radialement extérieur n’est pas nécessairement identique à la surface S de la face radialement intérieure de la structure de révolution radialement extérieure à laquelle il est solidarisé. De plus, le tissu radialement extérieur n’est pas obligatoirement continu et peut être constitué d’éléments de tissu juxtaposés : dans ce cas, la surface SE du tissu radialement extérieur est la somme des surfaces des éléments de tissu juxtaposés. En pratique, la surface SE est au plus égale à la surface S, c’est-à-dire que le tissu radialement extérieur ne recouvre pas nécessairement intégralement la face radialement intérieure de la structure de révolution radialement extérieure.
[0053] De même, la surface Si du tissu radialement intérieur est au plus égale à la surface S’ de la face radialement extérieure de la structure de révolution radialement intérieure à laquelle il est solidarisé, c’est-à-dire que le tissu radialement intérieur ne recouvre pas nécessairement intégralement la face radialement extérieure de la structure de révolution radialement intérieure. Comme pour le tissu radialement extérieur, le tissu radialement intérieur n’est pas obligatoirement continu et peut être constitué d’éléments de tissu juxtaposés : dans ce cas, la surface Si du tissu radialement intérieur est la somme des surfaces des éléments de tissu juxtaposés.
[0054] Cette conception avec des tissus comme structures de liaison permet avantageusement d’avoir une structure sandwich pouvant être fabriquée de façon indépendante et intégrée d’un seul bloc lors de la fabrication du dispositif de type pneumatique. La structure sandwich ainsi obtenue peut être solidarisée aux structures de révolution respectivement radialement extérieure et radialement intérieure par vulcanisation, collage ou tout autre procédé de liaison des tissus respectivement radialement extérieur et radialement intérieur.
[0055] Selon une première variante du premier mode de réalisation préféré, le tissu radialement extérieur est un tissu tramé comprenant des entrecroisements d’une première famille de fils, parallèles entre eux, chaque fil de la première famille du tissu radialement extérieur formant, avec une direction circonférentielle du dispositif de type pneumatique, un angle AE au moins égal à 10° et au plus égal à 45°, et d’une deuxième famille de fils, parallèles entre eux, les fils respectifs des deux familles de fils étant symétriques par rapport à un plan équatorial du dispositif de type pneumatique et le tissu radialement intérieur est un tissu tramé comprenant des entrecroisements d’une première famille de fils, parallèles entre eux, chaque fil de la première famille du tissu radialement intérieur formant, avec la direction circonférentielle du dispositif de type pneumatique, un angle AI sensiblement égal à 45°, et d’une deuxième famille de fils, parallèles entre eux, les fils respectifs des deux familles de fils étant symétriques par rapport à un plan équatorial du dispositif de type pneumatique.
[0056] De façon générale, un tissu tramé, lors de sa fabrication, est constitué usuellement par des entrecroisements d’une première famille de fils parallèles entre eux, appelés fils de trame, et d’une deuxième famille de fils parallèles entre eux, appelés fils de chaîne, perpendiculaires aux fils de trame. Les caractéristiques mécaniques d’un tel tissu telles que sa rigidité en extension et sa force à rupture en traction, selon le sens de la trame ou celui de la chaîne, dépendent des caractéristiques des fils élémentaires, telles que, pour des fils élémentaires en textile, le titre, exprimé en tex ou g/l000 m, la ténacité, exprimée en cN/ tex, et la contraction standard, exprimée en %, ces fils élémentaires étant répartis selon une densité donnée, exprimée en nombre de fils/dm. Toutes ces caractéristiques sont fonction du matériau constitutif des fils et de la conception de ces fils.
[0057] Un tissu tramé tel que précédemment décrit est, dans un premier temps, lié aux extrémités des éléments porteurs en tant qu’ élément constitutif de la structure sandwich. Dans le cas le plus général, la structure sandwich comprend ainsi au moins un tissu tramé destiné à être lié, généralement par collage ou vulcanisation, soit à la face radialement intérieure de la structure de révolution radialement extérieure, pour devenir le tissu tramé radialement extérieur, soit à la face radialement extérieure de la structure de révolution radialement intérieure, pour devenir le tissu tramé radialement intérieur.
[0058] Que le tissu tramé soit destiné à devenir le tissu tramé radialement extérieur ou le tissu tramé radialement intérieur, il est posé sur une surface cylindrique, de telle sorte que les fils de chaîne et de trame, perpendiculaires entre eux, forment initialement, avec la direction circonférentielle XX’ du dispositif de type pneumatique, un angle sensiblement égal à 45°.
[0059] Après assemblage de la structure sandwich dans le dispositif de type pneumatique, le dispositif de type pneumatique est conformé, c’est-à-dire le diamètre de la structure de révolution radialement extérieure augmente alors que le diamètre de la structure de révolution radialement intérieure reste constant. Si le tissu tramé est radialement extérieur, sa distance radiale par rapport à l’axe de révolution du dispositif de type pneumatique augmente de façon significative au cours de la conformation, sa longueur circonférentielle augmente et l’angle formé par les fils de chaîne et les fils de trame, avec la direction circonférentielle XX’ du dispositif de type pneumatique, initialement égal à 45°, diminue et devient au moins égal à 10° et au plus égal à 45°, après conformation. Si le tissu tramé est radialement intérieur, sa distance radiale par rapport à l’axe de révolution du dispositif de type pneumatique reste quasi constante au cours de la conformation, sa longueur circonférentielle ne varie pas ou peu et l’angle formé par les fils de chaîne et les fils de trame, avec la direction circonférentielle XX’ du dispositif de type pneumatique, initialement égal à 45°, reste sensiblement égal à 45°, après conformation.
[0060] Selon une deuxième variante du premier mode de réalisation préféré, le tissu radialement extérieur est un tissu tramé comprenant des entrecroisements d’une première famille de fils, parallèles entre eux, chaque fil de la première famille du tissu radialement extérieur formant, avec une direction circonférentielle du dispositif de type pneumatique, un angle AE au plus égal à 5°, et d’une deuxième famille de fils, parallèles entre eux, les fils respectifs des deux familles de fils formant entre eux un angle BE au moins égal à 85° et au plus à 95° et le tissu radialement intérieur est un tissu tramé comprenant des entrecroisements d’une première famille de fils, parallèles entre eux, chaque fil de la première famille du tissu radialement intérieur formant, avec la direction circonférentielle du dispositif de type pneumatique, un angle AI au plus égal à 5°, et d’une deuxième famille de fils, parallèles entre eux, les fils respectifs des deux familles de fils entre eux un angle BE au moins égal à 85° et au plus à 95°. De tels tissus sont conformables lors du gonflage du dispositif de type pneumatique, c’est-à-dire que les divers angles précédemment décrits, pour les tissus tramés, restent sensiblement constants lors de la mise en pression, ce qui permet de conserver une angulation sensiblement constante des éléments porteurs fïlaires.
[0061] Dans le cas d’un tissu radialement extérieur tramé, tout élément porteur fïlaire comprend avantageusement au moins une portion d’extrémité radialement extérieure intégrée au tissu radialement extérieur tramé et constituée par des entrecroisements par rapport à au moins un fil d’une des deux familles de fils et parallèle à l’autre famille de fils [0062] Dans le cas d’un tissu radialement intérieur tramé, tout élément porteur fïlaire comprend également avantageusement au moins une portion d’extrémité radialement intérieure intégrée au tissu radialement intérieur tramé et constituée par des entrecroisements par rapport à au moins un fil d’une des deux familles de fils et parallèle à l’autre familles de fils.
[0063] Préférentiellement l’assemblage porteur comprend deux tissus respectivement radialement extérieur et radialement intérieur tramés et des éléments porteurs fïlaires constitués par des fils, dont les portions d’extrémités sont intégrées dans chaque tissu respectivement radialement extérieur et radialement intérieur, parallèlement à l’une des familles de fils du tissu. Une telle structure sandwich présente l’avantage de pouvoir être fabriquée en une seule étape de tissage. Selon une variante particulière, plusieurs éléments porteurs fïlaires sont constitués par un fil continu passant alternativement dans chaque tissu respectivement radialement extérieur et radialement intérieur.
[0064] En ce qui concerne la nature des matériaux, les tissus respectivement radialement extérieur et radialement intérieur comprennent un matériau polymérique tel qu’un polyamide aliphatique, un polyamide aromatique, un polyester, un élasthanne, ou un matériau métallique, tel que l’acier, ou un matériau de type verre ou carbone ou toute combinaison des précédents matériaux. Les polymères, en particulier les élastomères, et le métal, tel que l’acier, sont couramment utilisés dans le domaine du pneumatique. Le verre et le carbone sont des matériaux alternatifs envisageables pour une utilisation en pneumatique.
[0065] Selon un deuxième mode de réalisation, la structure de liaison radialement extérieure et la structure de liaison radialement intérieure de l’assemblage porteur sont respectivement intégrées dans la structure de révolution radialement extérieure et dans la structure de révolution radialement extérieure. C’est le cas, par exemple, pour un ancrage des extrémités des éléments porteurs fïlaires directement dans les structures de révolution respectivement radialement extérieure et radialement intérieure. Ce deuxième mode de réalisation est a priori plus complexe à fabriquer que le premier mode de réalisation préféré avec des tissus comme structures de liaison.
[0066] Avantageusement la structure de révolution radialement intérieure comprend, sur une face radialement intérieure, une couche de liaison destinée à être fixée sur le moyen de montage sur le véhicule. La couche de liaison comprend généralement au moins un matériau élastomérique, mais pas nécessairement d’armature de renforcement. La fixation de la couche de liaison sur le moyen de montage peut être réalisée par collage, par des moyens de blocage sur la roue ou, éventuellement, par le seul frettage résultant des forces de pression de gonflage du dispositif de type pneumatique.
[0067] Afin de fabriquer le dispositif de type pneumatique précédemment décrit, on met en œuvre un procédé comprenant:
-une étape d’assemblage d’une ébauche crue du dispositif de type pneumatique durant laquelle on enroule, autour d’un support d’assemblage sensiblement de révolution autour d’un axe de révolution, l’assemblage porteur tel que décrit précédemment, selon la direction circonférentielle du support d’assemblage,
- une étape de moulage de l’ébauche crue assemblée durant laquelle on écarte radialement la structure de liaison radialement extérieure par rapport à structure de liaison radialement intérieure, et
- une étape de chauffage de l’ébauche crue moulée de façon à faire réticuler au moins en partie l’ébauche crue moulée.
Durant l’étape de chauffage de l’ébauche crue moulée, la tension dans chaque élément porteur filaire est nulle afin d’éviter toute relaxation du ou des matériaux constitutifs des éléments porteurs fïlaires.
[0068] L’invention a également pour objet un ensemble monté comprenant un dispositif pneumatique selon l’un des modes de réalisation précédemment décrits, monté sur un moyen de montage sur le véhicule.
[0069] La présente invention sera mieux comprise à l’aide des figures 1 à 6 présentées ci- après:
-Figure 1 : vue en perspective et en coupe partielle d’un dispositif de type pneumatique selon l’invention.
-Figure 2A : vue d’une coupe circonférentielle d’un dispositif de type pneumatique selon l’invention, dans l’état écrasé, avec mise en compression des éléments de porteurs fïlaires dans Faire de contact.
-Figure 2B : vue d’une coupe circonférentielle d’un dispositif de type pneumatique selon l’invention, dans l’état écrasé, avec mise en tension des éléments de porteurs fïlaires dans Faire de contact.
-Figure 3A: vue d’une coupe méridienne d’un dispositif de type pneumatique selon l’invention, dans l’état écrasé, avec mise en compression des éléments de porteurs fïlaires dans l’aire de contact.
-Figure 3B: vue en perspective d’un élément porteur.
-Figure 4A: vue en coupe méridienne d’une structure sandwich comprenant deux tissus tramés et une structure porteuse.
-Figure 4B: vue de dessus d’une structure sandwich comprenant deux tissus tramés et une structure porteuse.
-Figure 5: loi de comportement-type d’un assemblage porteur d’un dispositif de type pneumatique selon l’invention.
-Figure 6: évolution du niveau de bruit intérieur en fonction du module tangent équivalent de rigidité en extension d’un assemblage porteur d’un dispositif de type pneumatique selon l’invention.
[0070] La figure 1 présente une vue en perspective et en coupe partielle d’un dispositif de type pneumatique 1 selon l’invention, monté sur un moyen de montage 4 ou jante, et comprenant une structure de révolution radialement extérieure 2 ayant une face radialement intérieure 23 et deux extrémités axiales 24, une structure de révolution radialement intérieure 3 ayant une face radialement extérieure 33 et deux extrémités axiales 34, un espace annulaire intérieur 5, un assemblage porteur 8 comprenant une structure porteuse 6 et deux structures de liaison respectivement radialement extérieure 71 et radialement intérieure 72, et deux flancs 9. La structure de révolution radialement extérieure 2 a un axe de révolution qui est l’axe de rotation YY’ du dispositif de type pneumatique et est destinée à entrer en contact avec un sol par l’intermédiaire d’une bande de roulement 21 comprenant au moins un matériau élastomérique. En outre la structure de révolution radialement extérieure 2 comprend une armature circonférentielle de renforcement 22, constituée, dans le cas présent, par une seule couche de renforcement. La structure de révolution radialement intérieure 3, coaxiale à la structure de révolution radialement extérieure 2, est destinée à assurer la liaison du dispositif de type pneumatique 1 avec le moyen de montage 4. La structure de révolution radialement intérieure 3 comprend au moins un matériau polymérique, le plus souvent un mélange élastomérique. L’espace annulaire intérieur 5 est radialement délimité par les structures de révolution respectivement radialement extérieure 2 et radialement intérieure 3. La structure porteuse 6 constituée par une pluralité d’éléments porteurs fïlaires identiques 61, non reliés entre eux dans l’espace annulaire intérieur 5 et s’étendant continûment à partir d’une structure de liaison radialement extérieure 71, solidarisée avec la face radialement intérieure 23 de la structure de révolution radialement extérieure 2, jusqu’à une structure de liaison radialement intérieure 72, solidarisée avec la face radialement extérieure 33 de la structure de révolution radialement intérieure 3, au moins une partie des éléments porteurs 61, reliés à la portion de la structure de révolution radialement extérieure 2 non en contact avec le sol, sont en tension. Les deux structures de liaison radialement extérieure 71 et radialement intérieure 72 de l’assemblage porteur 8 sont liées, et le plus souvent collées, respectivement à la face radialement intérieure 23 de la structure de révolution radialement extérieure 2 et à la face radialement extérieure 33 de la structure de révolution radialement intérieure 3. En outre, le dispositif de type pneumatique 1 comprend deux flancs 9, reliant les extrémités axiales (24, 34) des structures de révolution respectivement radialement extérieure 2 et radialement intérieure 3 et délimitant axialement l’espace annulaire intérieur 5, de telle sorte que l’espace annulaire intérieur 5 constitue une cavité fermée pouvant être pressurisée par un gaz de gonflage. Enfin, le dispositif de type pneumatique 1 comprend une armature de carcasse (10, 11) s’étendant radialement dans chaque flanc 9 et axialement au moins en partie dans la structure de révolution radialement extérieure 2 et au moins en partie dans la structure de révolution radialement intérieure 3. L’armature de carcasse (10, 11) est constituée par deux portions d’armature de carcasse s’étendant radialement chacune dans un flanc 9, à partir d’une première extrémité positionnée dans la structure de révolution radialement extérieure 2 jusqu’à une deuxième extrémité positionnée dans la structure de révolution radialement intérieure 3. Dans le cas présent, les premières extrémités respectives et les deuxièmes extrémités respectives des deux portions d’armature de carcasse sont disjointes.
[0071] La figure 2A présente une coupe circonférentielle d’un dispositif de type pneumatique 1 selon l’invention, monté sur un moyen de montage 4, dans son état gonflé et écrasé, c’est-à- dire soumis à une charge radiale nominale Z, avec une mise en compression d’éléments porteurs fïlaires 61 dans l’aire de contact. La structure porteuse 6 est constituée par une pluralité d’éléments porteurs fïlaires 61, non reliés entre eux dans l’espace annulaire intérieur 5 et reliant la structure de révolution radialement extérieure 2 à la structure de révolution radialement intérieure 3. Le dispositif de type pneumatique 1, soumis à une charge radiale nominale Z, est en contact avec un sol plan par une surface de contact A, ayant une longueur circonférentielle XA.
[0072] La figure 2B présente une coupe circonférentielle d’un dispositif de type pneumatique 1 selon l’invention, monté sur un moyen de montage 4, dans son état gonflé et écrasé, c’est-à- dire soumis à une charge radiale nominale Z, avec une mise en extension d’éléments porteurs fïlaires 61 dans l’aire de contact. Dans ce cas, les éléments porteurs fïlaires 61 restent en extension et ne sont pas soumis à un flambage, en raison de la pré-tension qui leur a été généralement appliquée lors de la fabrication du dispositif de type pneumatique, de son montage sur un moyen de montage et/ou son gonflage.
[0073] La figure 3A présente une coupe méridienne d’un dispositif de type pneumatique 1 selon l’invention, monté sur un moyen de montage 4. Comme décrit pour la figure 1, le dispositif de type pneumatique 1 comprend une structure de révolution radialement extérieure 2 ayant une face radialement intérieure 23 et deux extrémités axiales 24 et comprenant une bande de roulement 21 et une armature de renforcement 22, une structure de révolution radialement intérieure 3 ayant une face radialement extérieure 33 et deux extrémités axiales 34, un espace annulaire intérieur 5 de hauteur H, un assemblage porteur 8 comprenant une structure porteuse 6 avec des éléments porteurs fïlaires 61 et deux structures de liaison respectivement radialement extérieure 71, ayant une surface SE, et radialement intérieure 72, ayant une surface de liaison Si, deux flancs 9 et une armature de carcasse (10, 11). Le dispositif de type pneumatique 1 , soumis à une charge radiale nominale Z, est en contact avec un sol plan par une surface de contact A. Comme vu précédemment, dans le cas de la figure 2A, les éléments porteurs fïlaires 61, positionnés à l’opposé de l’aire de contact sont en tension, alors que les éléments porteurs 61, reliés à la portion de structure de révolution radialement extérieure 2 en contact avec le sol, sont soumis à un flambage en compression.
[0074] La figure 3B présente un élément porteur fïlaire ou unidimensionnel 61 ayant une section moyenne Sp circulaire, et une longueur LP. La section moyenne Sp est définie par une plus petite dimension caractéristique E et une plus grande dimension caractéristique L toutes deux égales, dans l’exemple présenté, au diamètre du cercle, et caractérisée par son rapport de forme K égal à L/E, donc égal à 1 dans le cas présent. En outre la plus petite dimension caractéristique E de la section moyenne Sp de l’élément porteur 61, c’est-à-dire, dans le cas présent, son diamètre, est au plus égale à 0.02 fois la hauteur radiale moyenne H de l’espace annulaire intérieur 5.
[0075] La figure 4A est une vue en coupe méridienne d’un assemblage porteur 8 comprenant deux structures de liaison (71, 72) de type tissus tramés et une structure porteuse 6. Les deux tissus tramés (71, 72) sont destinés à devenir les tissus respectivement radialement extérieur et radialement intérieur, après intégration dans le dispositif de type pneumatique. Chaque tissu tramé (71, 72) est constitué par des entrecroisements perpendiculaires d’une première famille de fils (711, 721), appelés fils de trame, et d’une deuxième famille de fils (712, 722), appelés fils de chaîne. En outre les éléments porteurs filaires 61 de la structure porteuse 6 sont constitués par des fils continus reliant les deux tissus tramés (71, 72) et comprenant des portions (611, 612) entrecroisées avec les fils de trame (711, 721) respectifs desdits tissus tramés (71, 72), parallèles aux fils de chaîne (712, 722) et constituant les extrémités des éléments porteurs 61 intégrées dans chaque tissu. L’avantage d’une telle conception est de pouvoir tisser la structure sandwich en une étape.
[0076] La figure 4B présente une vue de dessus d’un assemblage porteur 8 comprenant deux structures de liaison (71, 72) de type tissus tramés et une structure porteuse 6. Le tissu tramé 71 représenté est constitué par des entrecroisements perpendiculaires de la première famille de fils 711, appelés fils de trame, et de la deuxième famille de fils 712, appelés fils de chaîne. En outre, la figure 4B montre des portions de fils 611, entrecroisées avec les fils de trame 711, parallèles aux fils de chaîne 712 et constituant des extrémités des éléments porteurs 61 intégrées dans le tissu tramé 71.
[0077] La figure 5 est une loi de comportement-type d’un assemblage porteur, constitué par la structure porteuse et les deux structures de liaison respectivement radialement extérieure et radialement intérieure, qui est une structure sandwich assimilable à un matériau composite équivalent. Ce matériau composite équivalent peut être caractérisé mécaniquement par une loi de comportement représentant l’évolution de la contrainte en extension L/S, appliquée au matériau composite selon une direction normale aux structures de liaison, en fonction de sa déformation en extension ou allongement relatif DL/L. Cette loi de comportement peut être déterminée typiquement par un essai de traction statique sur une éprouvette constituée par un échantillon de la structure sandwich, comprenant la structure porteuse reliée aux deux structures de liaison. En tout point de la loi de comportement ainsi obtenue, le module tangent équivalent de rigidité en extension Eet est défini par la pente de la droite tangente à la loi de comportement au point considéré et le module sécant équivalent de rigidité en extension Ees est défini par la pente de la droite passant par l’origine du repère et par le point considéré de la loi de comportement. Les inventeurs ont choisi de déterminer, pour l’assemblage porteur, un module tangent équivalent de rigidité en extension Eet et un module sécant équivalent de rigidité en extension Ees, pour la valeur d’extension radiale de l’assemblage porteur, diamétralement à l’opposé de l’aire de contact, atteinte lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z. Il est à noter que tout élément porteur fïlaire, pris individuellement, a une loi de comportement de ce type.
[0078] La figure 6 est un graphe représentant l’évolution du niveau de bruit intérieur B, exprimé en base 100 par rapport à un niveau de bruit maximal défini comme égal à 100, en fonction du module tangent équivalent de rigidité en extension Eet de l’assemblage porteur d’un dispositif de type pneumatique, exprimé en MPa. Cette courbe est une courbe théorique, issue d’une simulation numérique. Le niveau de bruit B est une fonction non linéaire croissante du module tangent équivalent de rigidité en extension Eet de l’assemblage, avec une forte croissance en-dessous de 1 MPa, une plus faible croissance entre 1 MPa et 2 MPa, pour atteindre un niveau maximal quasi constant au-delà de 2 MPA. Par conséquent les inventeurs ont fixé à 1 MPa le seuil de module tangent équivalent de rigidité en extension Eet, en deçà duquel le niveau de bruit est considéré comme acceptable, typiquement inférieur à 95, le niveau maximal de bruit étant défini par convention comme égal à 100.
[0079] Le dispositif de type pneumatique pour véhicule de tourisme selon l’invention, présentant les caractéristiques de performance bruit représentées sur la figure 6, correspond à un pneumatique de dimension 255/35 R19 XL présentant un indice de charge égal à 96, gonflé à une pression nominale P égale à 2.5 bars et soumis à une charge radiale nominale Z égale à 557 daN. L’assemblage porteur de ce dispositif de type pneumatique est constitué par une structure porteuse, constituée par des éléments porteurs fïlaires identiques en élasthanne, et deux structures de liaison respectivement radialement extérieure et radialement intérieure, constitués par des tissus tramés en polyester de type polyéthylène téréphtalate (PET). Les éléments porteurs fïlaires forment, dans un plan circonférentiel et avec une direction radiale, un angle AXp nul, c’est-à-dire sont radiaux dans un plan circonférentiel. Les éléments porteurs fïlaires sont des fils en élasthanne, constitués d’un filé de filaments ayant un titre égal à 187 tex (g/l000m). Un tel fil en élasthanne a, au point de fonctionnement nominal du dispositif de type pneumatique, résultant de l’application des conditions de pression et de charge nominales décrites ci-dessus, un module tangent de rigidité en extension Et et un module sécant de rigidité en extension Es sensiblement égaux entre eux et égaux à 0.24 MPa, correspondant respectivement à une rigidité tangente en extension K’t et une rigidité sécante en extension K’s sensiblement égales entre elles et égales à 0.55 cN/tex, ces deux rigidités en extension étant déduites d’une courbe de traction «force (N)/ allongement relatif (%)» du fil ayant une évolution sensiblement linéaire jusqu’au point de fonctionnement considéré. En outre les éléments porteurs fïlaires sont répartis avec une densité égale à 216000 renforts/m2, correspondant à une densité surfacique égale à 3.4%. En effet, dans l’exemple présent, sachant que, d’une part, les éléments porteurs fïlaires ont un titre égal à 187 tex soit 187 g/km (ou 187c106 g/mm), et que, d’autre part, la masse volumique de l’élasthanne est d’environ 1 2xl0 3 g/mm3, il est possible de calculer la surface d’une section d’un élément porteur fïlaire
So = (187c10 6) / (l.2xl0 3) = 0.156 mm2. Dans l’hypothèse d’une densité d’éléments porteurs fïlaires égale à 216000 renforts/m2, la surface totale des sections des éléments porteurs fïlaires est égale à 216000 x 0.156 = 33696 mm2, pour 1 m2 de structure de liaison. La densité surfacique est donc égale à 33696 / 1.106 = 0.034, soit une densité surfacique de 3.4%. Les tissus tramés respectivement radialement extérieur et radialement intérieur comprennent des entrecroisements d’une première famille de fils, parallèles entre eux et formant, avec une direction circonférentielle du dispositif de type pneumatique, un angle AE égal à 0°, et d’une deuxième famille de fils, parallèles entre eux, les fils respectifs des deux familles de fils formant entre eux un angle B égal à 90°. Les fils en PET de la première famille formant un angle AE égal à 0°, appelés fils de chaîne, sont constitués d’un filé de filaments ayant un titre égal à 110 tex. Les fils en PET de la deuxième famille formant un angle BE avec la première famille égal à 90°, appelés fils de trame, sont constitués d’un filé de filaments ayant un titre égal à 170 tex. Dans les hypothèses précédentes décrites, le module tangent équivalent de rigidité en extension Eet de l’assemblage porteur, au point de fonctionnement nominal, est égal à 0.24 MPa, donc inférieur à 1 MPa. Il est à noter que le module sécant équivalent de rigidité en extension Ees de l’assemblage porteur, au point de fonctionnement nominal, est également sensiblement égal à 0.24 MPa, en raison du comportement sensiblement linéaire du matériau équivalent de l’assemblage porteur jusqu’au point de fonctionnement considéré.

Claims

Revendications
1. Dispositif de type pneumatique (1), destiné à équiper un véhicule, comprenant:
-une structure de révolution radialement extérieure (2) dont l’axe de révolution est l’axe de rotation (YY’) du dispositif de type pneumatique et destinée à entrer en contact avec un sol par l’intermédiaire d’une bande de roulement (21) comprenant au moins un matériau élastomérique, la structure de révolution radialement extérieure (2) ayant deux extrémités axiales (24) et une face radialement intérieure (23), et la structure de révolution radialement extérieure (2) comprenant une armature circonférentielle de renforcement (22),
-une structure de révolution radialement intérieure (3), coaxiale à la structure de révolution radialement extérieure (2) et destinée à assurer la liaison du dispositif de type pneumatique avec un moyen de montage (4) sur le véhicule, la structure de révolution radialement intérieure (3) ayant deux extrémités axiales (34) et une face radialement extérieure (33), et la structure de révolution radialement intérieure (3) comprenant au moins un matériau polymérique,
-un espace annulaire intérieur (5) radialement délimité par la face radialement intérieure (23) de la structure de révolution radialement extérieure (2) et par la face radialement extérieure (33) de la structure de révolution radialement intérieure (3), -deux flancs (9), reliant deux à deux les extrémités axiales (24, 34) des structures de révolution respectivement radialement extérieure (2) et radialement intérieure (3) et délimitant axialement l’espace annulaire intérieur (5),
-une armature de carcasse (10, 11) s’étendant radialement dans chaque flanc (9) et axialement au moins en partie dans la structure de révolution radialement extérieure (2) et au moins en partie dans la structure de révolution radialement intérieure (3),
-une structure porteuse (6) constituée par une pluralité d’éléments porteurs fïlaires identiques (61), ayant chacun une section moyenne Sp, non reliés entre eux dans l’espace annulaire intérieur (5) et s’étendant continûment à partir d’une structure de liaison radialement extérieure (71), ayant une surface SE et solidarisée avec la face radialement intérieure (23) de la structure de révolution radialement extérieure (2), jusqu’à une structure de liaison radialement intérieure (72), ayant une surface Si et solidarisée avec la face radialement extérieure (33) de la structure de révolution radialement intérieure (3), de telle sorte que, lorsque le dispositif de type pneumatique est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z sur un sol, au moins une partie des éléments porteurs (61), reliés à la portion de la structure de révolution radialement extérieure (2) non en contact avec le sol, sont en tension,
-la structure porteuse (6), la structure de liaison radialement extérieure (71) et la structure de liaison radialement intérieure (72) constituant un assemblage porteur (8),
-l’assemblage porteur (8) ayant un module tangent équivalent de rigidité en extension Eet et un module sécant équivalent de rigidité en extension Ees, respectivement définis pour la valeur d’extension radiale de l’assemblage porteur (8), diamétralement à l’opposé de l’aire de contact, atteinte lorsque le dispositif de type pneumatique (1) est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z,
caractérisé en ce que le module tangent équivalent de rigidité en extension Eet de l’assemblage porteur (8) est au plus égal à 1 MPa.
2. Dispositif de type pneumatique (1) selon la revendication 1, dans lequel le module sécant équivalent de rigidité en extension Eeq de l’assemblage porteur (8) est au moins égal à 0.1 MPa.
3. Dispositif de type pneumatique (1) selon l’une des revendications 1 ou 2,
l’assemblage porteur (8) ayant une densité surfacique D d’éléments porteurs fïlaires (61), définie comme le rapport entre la somme des sections moyennes Sp des éléments porteurs fïlaires (61) et la moyenne arithmétique SM de la surface SE de la structure de liaison radialement extérieure (71) et de la surface Si de la structure de liaison radialement intérieure (72), dans lequel la densité surfacique D d’éléments porteurs fïlaires (61) est au plus égale à 10%.
4. Dispositif de type pneumatique (1) selon l’une quelconque des revendications 1 à 3, l’assemblage porteur (8) ayant une densité surfacique D d’éléments porteurs fïlaires (61), définie comme le rapport entre la somme des sections moyennes Sp des éléments porteurs fïlaires (61) et la moyenne arithmétique SM de la surface SE de la structure de liaison radialement extérieure (71) et de la surface Si de la structure de liaison radialement intérieure (72), dans lequel la densité surfacique D d’éléments porteurs fïlaires (61) est au moins égale à 0.05%.
5. Dispositif de type pneumatique (1) selon l’une quelconque des revendications 1 à
4, tout élément porteur fïlaire (61) ayant un module tangent de rigidité en extension Et, défini pour la valeur d’allongement de l’élément porteur fïlaire (61) atteinte lorsque le dispositif de type pneumatique (1) est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z, dans lequel le module tangent de rigidité en extension Et de tout élément porteur fïlaire (61) est au plus égal à 2000 MPa.
6. Dispositif de type pneumatique (1) selon l’une quelconque des revendications 1 à
5, tout élément porteur fïlaire (61) ayant un module sécant de rigidité en extension Es, défini pour la valeur d’allongement de l’élément porteur fïlaire (61) atteinte lorsque le dispositif de type pneumatique (1) est gonflé à une pression nominale P et écrasé sous une charge radiale nominale Z, dans lequel le module sécant de rigidité en extension Es de tout élément porteur fïlaire (61) est au moins égal à 1 MPa.
7. Dispositif de type pneumatique (1) selon l’une quelconque des revendications 1 à
6, dans lequel tout élément porteur fïlaire (61) comprend un matériau polymérique tel qu’un polyamide aliphatique, un polyamide aromatique, un polyester, un élasthanne ou toute combinaison des précédents matériaux.
8. Dispositif de type pneumatique (1) selon l’une quelconque des revendications 1 à
7, dans lequel tout élément porteur fïlaire (61) forme, dans un plan circonférentiel (XZ) et avec une direction radiale (ZZ’), un angle AXP au plus égal à 5°.
9. Dispositif de type pneumatique (1) selon l’une quelconque des revendications 1 à
8, dans lequel tout élément porteur fïlaire (61) forme, dans un plan méridien (YZ) et avec une direction radiale (ZZ’), un angle AYP au moins égal à 5° et au plus égal à 45°.
10. Dispositif de type pneumatique (1) selon l’une quelconque des revendications 1 à
9, dans lequel la structure de liaison radialement extérieure (71) et la structure de liaison radialement intérieure (72) de l’assemblage porteur (8) sont respectivement constituées par un tissu radialement extérieur (71) et par un tissu radialement intérieur (72).
11. Dispositif de type pneumatique (1) selon la revendication 10, dans lequel le tissu radialement extérieur (71) est un tissu tramé comprenant des entrecroisements d’une première famille de fils (711), parallèles entre eux, chaque fil de la première famille (711) du tissu radialement extérieur (71) formant, avec une direction circonférentielle (XX’) du dispositif de type pneumatique, un angle AE au moins égal à 10° et au plus égal à 45°, et d’une deuxième famille de fils (712), parallèles entre eux, les fils respectifs des deux familles de fils (711, 712) étant symétriques par rapport à un plan équatorial (XZ) du dispositif de type pneumatique et dans lequel le tissu radialement intérieur (72) est un tissu tramé comprenant des entrecroisements d’une première famille de fils (721), parallèles entre eux, chaque fil de la première famille (721) du tissu radialement intérieur (72) formant, avec la direction circonférentielle (XX’) du dispositif de type pneumatique, un angle Ai sensiblement égal à 45°, et d’une deuxième famille de fils (722), parallèles entre eux, les fils respectifs des deux familles de fils (721, 722) étant symétriques par rapport à un plan équatorial (XZ) du dispositif de type pneumatique.
12. Dispositif de type pneumatique (1) selon la revendication 10, dans lequel le tissu radialement extérieur (71) est un tissu tramé comprenant des entrecroisements d’une première famille de fils (711), parallèles entre eux, chaque fil de la première famille (711) du tissu radialement extérieur (71) formant, avec une direction circonférentielle (XX’) du dispositif de type pneumatique, un angle AE au plus égal à 5°, et d’une deuxième famille de fils (712), parallèles entre eux, les fils respectifs des deux familles de fils (711, 712) formant entre eux un angle BE au moins égal à 85° et au plus à 95° et dans lequel le tissu radialement intérieur (72) est un tissu tramé comprenant des entrecroisements d’une première famille de fils (721), parallèles entre eux, chaque fil de la première famille (721) du tissu radialement intérieur (72) formant, avec la direction circonférentielle (XX’) du dispositif de type pneumatique, un angle Ai au plus égal à 5°, et d’une deuxième famille de fils (722), parallèles entre eux, les fils respectifs des deux familles de fils (721, 722) entre eux un angle BE au moins égal à 85° et au plus à 95°.
13. Dispositif de type pneumatique (1) selon l’une des revendications 11 ou 12, dans lequel tout élément porteur fïlaire (61) comprend au moins une portion d’extrémité radialement extérieure (611) intégrée au tissu radialement extérieur tramé (71) et constituée par des entrecroisements par rapport à au moins un fil d’une des deux familles de fils (711, 712) et parallèle à l’autre famille de fils (711, 712).
14. Dispositif de type pneumatique (1) selon l’une quelconque des revendications 11 à 13, dans lequel tout élément porteur fïlaire (61) comprend au moins une portion d’ extrémité radialement intérieure (612) intégrée au tissu radialement intérieur tramé (72) et constituée par des entrecroisements par rapport à au moins un fil d’une des deux familles de fils (721, 722) et parallèle à l’autre familles de fils (721, 722).
15. Ensemble monté (1, 4) comprenant un dispositif de type pneumatique (1) selon l’une quelconque des revendications précédentes monté sur un moyen de montage (4) sur le véhicule.
PCT/FR2019/052630 2018-11-09 2019-11-06 Dispositif de type pneumatique à éléments filaires souples pour véhicule WO2020094979A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1860329 2018-11-09
FRFR1860329 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020094979A1 true WO2020094979A1 (fr) 2020-05-14

Family

ID=68887064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052630 WO2020094979A1 (fr) 2018-11-09 2019-11-06 Dispositif de type pneumatique à éléments filaires souples pour véhicule

Country Status (1)

Country Link
WO (1) WO2020094979A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005713A1 (fr) 2015-07-06 2017-01-12 Compagnie Generale Des Etablissements Michelin Dispositif de type pneumatique pour vehicule
WO2017103490A1 (fr) 2015-12-17 2017-06-22 Compagnie Generale Des Etablissements Michelin Ensemble pour pneumatique comprenant des tissu(s) ou tricot(s) imprégnés et un moyen de maintien sacrificiel
WO2017103491A1 (fr) * 2015-12-17 2017-06-22 Compagnie Generale Des Etablissements Michelin Assemblage pour pneumatique comprenant des tissu(s) ou tricot(s) comprenant des éléments filaires pré-encollés
EP3231637A1 (fr) * 2016-04-13 2017-10-18 The Goodyear Tire & Rubber Company Bande de cisaillement et pneu non pneumatique
WO2018020164A1 (fr) 2016-07-29 2018-02-01 Compagnie Generale Des Etablissements Michelin Dispositif de type pneumatique pour véhicule
WO2018130783A1 (fr) * 2017-01-12 2018-07-19 Compagnie Generale Des Etablissements Michelin Assemblage comprenant un tissu partiellement rompable et une structure porteuse
WO2018130785A1 (fr) * 2017-01-12 2018-07-19 Compagnie Generale Des Etablissements Michelin Assemblage pour pneumatique comprenant une structure rompable et une structure porteuse

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005713A1 (fr) 2015-07-06 2017-01-12 Compagnie Generale Des Etablissements Michelin Dispositif de type pneumatique pour vehicule
WO2017103490A1 (fr) 2015-12-17 2017-06-22 Compagnie Generale Des Etablissements Michelin Ensemble pour pneumatique comprenant des tissu(s) ou tricot(s) imprégnés et un moyen de maintien sacrificiel
WO2017103491A1 (fr) * 2015-12-17 2017-06-22 Compagnie Generale Des Etablissements Michelin Assemblage pour pneumatique comprenant des tissu(s) ou tricot(s) comprenant des éléments filaires pré-encollés
EP3231637A1 (fr) * 2016-04-13 2017-10-18 The Goodyear Tire & Rubber Company Bande de cisaillement et pneu non pneumatique
WO2018020164A1 (fr) 2016-07-29 2018-02-01 Compagnie Generale Des Etablissements Michelin Dispositif de type pneumatique pour véhicule
WO2018130783A1 (fr) * 2017-01-12 2018-07-19 Compagnie Generale Des Etablissements Michelin Assemblage comprenant un tissu partiellement rompable et une structure porteuse
WO2018130785A1 (fr) * 2017-01-12 2018-07-19 Compagnie Generale Des Etablissements Michelin Assemblage pour pneumatique comprenant une structure rompable et une structure porteuse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EUROPEAN TYRE AND RIM TECHNICAL ORGANISATION: "E T R T O StANDARDS MANUAL 2003", 1 February 2001 (2001-02-01), XP055608675, Retrieved from the Internet <URL:http://bushie39.com.au/wp-content/uploads/2015/12/ETRTO-Standards-Manual-2003.pdf> [retrieved on 20190725] *

Similar Documents

Publication Publication Date Title
EP3319814B1 (fr) Dispositif de type pneumatique pour vehicule
EP3247574B1 (fr) Dispositif de type pneumatique pour vehicule
EP3390114B1 (fr) Ensemble pour pneumatique comprenant des tissu(s) ou tricot(s) imprégnés et un moyen de maintien sacrificiel
EP3568289B1 (fr) Assemblage comprenant une structure élastique et une structure porteuse
EP3568290B1 (fr) Assemblage comprenant un tissu partiellement rompable et une structure porteuse
EP3390115B1 (fr) Assemblage pour pneumatique comprenant des tissu(s) ou tricot(s) comprenant des éléments filaires pré-encollés
EP3247575B1 (fr) Dispositif de type pneumatique pour vehicule
EP3568291B1 (fr) Assemblage pour pneumatique comprenant une structure rompable et une structure porteuse, pneumatique et procédé de fabrication dudit pneu
EP3707016B1 (fr) Pneumatique pour vehicule de tourisme
EP3490814A1 (fr) Dispositif de type pneumatique pour véhicule
EP3174737B1 (fr) Armature de sommet de pneumatique pour avion
EP2931538B1 (fr) Bourrelet de pneumatique pour vehicule lourd
WO2020094979A1 (fr) Dispositif de type pneumatique à éléments filaires souples pour véhicule
EP3877199B1 (fr) Procede de fabrication d&#39;un pneumatique
WO2018020163A1 (fr) Dispositif de type pneumatique pour vehicule
FR3106530A1 (fr) architecture optimisée de pneumatique de type poids-lourd, agricole ou génie civil
EP3642052B1 (fr) Dispositif de type pneumatique pour véhicule
FR3112311A1 (fr) Pneumatique pour véhicule de tourisme

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820827

Country of ref document: EP

Kind code of ref document: A1