WO2020093703A1 - 一种煤矿采空区充填体承载压缩率监测***及其监测方法 - Google Patents

一种煤矿采空区充填体承载压缩率监测***及其监测方法 Download PDF

Info

Publication number
WO2020093703A1
WO2020093703A1 PCT/CN2019/092465 CN2019092465W WO2020093703A1 WO 2020093703 A1 WO2020093703 A1 WO 2020093703A1 CN 2019092465 W CN2019092465 W CN 2019092465W WO 2020093703 A1 WO2020093703 A1 WO 2020093703A1
Authority
WO
WIPO (PCT)
Prior art keywords
filling body
ground
monitoring system
filling
thickness
Prior art date
Application number
PCT/CN2019/092465
Other languages
English (en)
French (fr)
Inventor
张吉雄
李猛
朱存利
黄艳利
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to RU2020136009A priority Critical patent/RU2769392C1/ru
Priority to US17/253,126 priority patent/US11414991B2/en
Priority to CA3104367A priority patent/CA3104367C/en
Priority to AU2019376725A priority patent/AU2019376725B2/en
Publication of WO2020093703A1 publication Critical patent/WO2020093703A1/zh
Priority to ZA2020/06725A priority patent/ZA202006725B/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • E21F17/185Rock-pressure control devices with or without alarm devices; Alarm devices in case of roof subsidence
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/005Methods or devices for placing filling-up materials in underground workings characterised by the kind or composition of the backfilling material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/02Supporting means, e.g. shuttering, for filling-up materials

Definitions

  • the invention belongs to the technical field of green filling and mining of coal resources, and particularly relates to a monitoring system and a monitoring method of a bearing compression ratio of a filling body in a coal mine goaf.
  • the main purpose is to prevent the ground from collapsing, on the other hand, it can also effectively solve the problem of surface gangue accumulation and achieve the goal of gangue without lifting wells and filling in situ.
  • the judgment of the compressibility of the filling body is only the initial process of compaction, using the principle of "equivalent mining height", introducing the concept of equivalent mining height, namely: equivalent mining height It is the mining height of the working face minus the height after the filling body of the goaf is compacted.
  • the present invention provides a monitoring system and monitoring method for the bearing compressibility of the filling body of coal mine goaf to solve the problem of bearing compressibility of the filling body in the process of solid filling and mining, It can not only monitor the compression ratio of the filling body, but also improve the filling efficiency.
  • a loading compression rate monitoring system for a filling body in a coal mine goaf includes a ground information processing system, a ground seismic source control system, and a ground monitoring system, which are all set on the ground above the filling body, wherein,
  • the ground information processing system is used to receive the electrical signal from the ground monitoring system and process the electrical signal, wherein the electrical signal is converted from the reflected wave signal of the filling body through the geophone of the ground monitoring system, according to
  • the energy consumption of the wave can be used to determine the depth of the signal emitted by the vibratory source; according to the difference between the thickness of the filling body after the filling body is compacted by the initial pressure of 2MPa and the thickness when the filling body reaches stability, the filling body is calculated according to the formula of bearing compression ratio Bearing compression ratio.
  • the ground seismic source control system is used to adjust the vibration amplitude of the seismic source on the ground according to the depth of the filling body to be tested to form a stereo signal to the gob area filling body direction with the controllable seismic source as the center of the upper surface;
  • the ground monitoring system is a geophone, which is used to receive the reflected waves emitted from the bottom of the geophone at different depths and angles due to the degree of compaction of the filling body, and convert it into an electrical signal to transmit to the ground information processing system;
  • the detector detects that the effective depth of the coal seam is 100-300m, and the maximum effective thickness is 3.5m.
  • the angle ⁇ between the reflected wave and the horizon ranges from 30 ° to 90 °.
  • the geophones are arranged at the ground position corresponding to the filling body.
  • the geophones are arranged along the coal seam, forming a ground monitoring arrangement line above the working surface centered on the source control system and extending along the direction to both sides of the ground source control system
  • the detectors are evenly distributed along a straight line, and the two branches are arranged with detectors every 20m.
  • the ground source control system transmits the source to the filling body of the underground goaf; according to the difference in the elasticity of the filling body under different degrees of compaction, the ground monitoring system receives different reflected wave signals and converts the transmitted wave signals into electrical signals for transmission to the ground
  • the information processing system judges the depth reached by the source signal, calculates the thickness of the filling body, and determines the bearing compression ratio of the filling body in the goaf according to the thickness change of the filling body.
  • the above-mentioned monitoring system and method for monitoring the bearing compression ratio of the filling body of coal mine goaf specifically includes the following steps:
  • the ground impact control system After using 2Mpa force to compact the fill in the mined-out area, the ground impact control system generates vibration to the ground impact and sends a signal to make the elastic wave propagate in the filling body with different degrees of compaction; the ground monitoring system (3 ) Receive the reflected waves from the filling bodies with different degrees of compaction, and convert the received reflected wave signals into electrical signals through the detector and transmit them to the information processing system for analysis, and finally test the height of the filling body after the first compaction h 1 ;
  • the thickness h 1 of the filling body after initial filling in the mined-out area is taken, and the thickness at the time of stabilization is h 2.
  • the bearing compressive rate of the filling body is calculated according to the calculation formula of bearing compressive rate (h 1 -h 2 ) / h 1 .
  • a monitoring system and monitoring method for the load compression ratio of a filling body in a coal mine goaf has the following advantages: the method uses green solid filling coal mining method and geophysical exploration technology The combination can not only maintain good development of the environment under the premise of green mining, but also monitor the change of the thickness of the filling body during the process of solid filling and mining, improve the efficiency of solid filling, and realize green mining.
  • the method of the invention is novel, integrates geophysical exploration technology and solid filling coal mining technology, and has good promotion value.
  • FIG. 1 is a system layout diagram of a monitoring system and a monitoring method of a bearing compression ratio of a filling body in a coal mine goaf of the present invention.
  • the invention discloses a monitoring system and a monitoring method for a bearing compression ratio of a filling body in a coal mine goaf.
  • the exploration technology is applied to the coal mining technology for filling in a coal mine, and the bearing compression of the filling body in the goaf is monitored in real time
  • the method mainly includes a ground information processing system, a ground source control system, and a ground monitoring system. According to the location of the filling depth of the goaf, the information processing system, source control system and monitoring system are arranged on the ground; the source control system generates a certain intensity of vibration and sends a signal to the filling body.
  • the reflected waves received by the ground monitoring system will be different, and finally the data is transmitted to the information processing system for data processing.
  • the monitoring is started. Over time, the filling body will be gradually compacted until the thickness of the filling body no longer changes, that is, the filling body reaches stability, and finally the bearing compression ratio is used.
  • the formula calculates the compression ratio of the filling body.
  • the invention provides a monitoring system and a monitoring method of a bearing compression ratio of a filling body in a mined-out area of a coal mine. While monitoring the thickness change of the filling body, it also effectively improves the filling efficiency and effect in the filling process.
  • Fig. 1 it is a monitoring system and monitoring method for the bearing compressibility of the filling body of coal mine goaf: using the principle of geophysical exploration, the seismic source is emitted to the filling body of the underground goaf, according to the elasticity of the filling body under different degrees of compaction The difference, the reflected wave signal received on the ground is different, to determine the depth of the source signal, and then to determine the thickness of the filling body, according to the thickness of the filling body to determine the bearing compression ratio of the goaf filling body.
  • the monitoring system includes a ground information processing system 1, a ground source control system 2, and a ground information monitoring system 3.
  • the ground information processing system 1 is used to receive the electrical signal from the ground monitoring system 3 and process the electrical signal, wherein the electrical signal is converted from the reflected wave signal of the filling body 5 by the detector of the ground monitoring system 3 Incoming, according to the energy consumption of the wave to determine the depth of the signal emitted by the vibrating source; according to the difference between the thickness of the filling body 5 and the thickness of the filling body 5 when the filling body 5 is compacted by the initial pressure of 2MPa, and according to the load
  • the compression ratio formula calculates the load compression ratio of the filling body 5.
  • the ground source control system 2 is used to adjust the vibration amplitude of the source on the ground according to the depth of the filling body 5 to be tested to form a stereo signal to the gob area filling body 5 direction with the controllable source as the center of the upper surface.
  • the ground source control system 2 emits shock waves to the filling body, as the buried depth of the coal seam increases, the angle between the reflected wave from the filling body and the level gradually increases.
  • the angle ⁇ between the reflected wave and the horizon ranges from 30 ° to 90 °.
  • the minimum angle ⁇ of the reflected wave is 30 °.
  • the maximum angle ⁇ of the reflected wave is 90 °.
  • the ground source system sends shock waves to the filling body.
  • the shock waves reach the filling body and are reflected back, and are received by the geophone.
  • the ground information monitoring system 3 is a geophone, which receives the reflected wave 4 emitted from the bottom of the geophone at different depths and angles due to the different degrees of compaction of the filling body 5.
  • the source of the reflected wave 4 is judged according to the density of the rock layer and the filling body 5 are different.
  • the effective depth of the coal seam that can be detected by the geophone is 100-300m, and the maximum effective thickness is 3.5m. With the increase of the buried depth of the coal seam, the reflected wave 4 signal gradually weakens, resulting in a decrease in the accuracy of the monitoring data.
  • the invention discloses a monitoring system and monitoring method for the bearing compression ratio of a filling body in a coal mine goaf, which includes the following steps:
  • ground shock source control system 2 After using 2Mpa force to compact the fill in the mined-out area, the ground shock source control system 2 generates a shock to the ground and sends a signal to make the elastic wave propagate in the filling body with different degrees of compaction; ground monitoring system 3 Receive the reflected waves from the filling bodies with different degrees of compaction, and convert the received reflected wave signals into electrical signals through the detector and transmit them to the information processing system 1 for analysis, and finally test the height of the filling body after the first compaction h 1 ;
  • the thickness h 1 of the filling body after initial filling in the mined-out area is taken, and the thickness at the time of stabilization is h 2.
  • the bearing compressive rate of the filling body is calculated according to the calculation formula of bearing compressive rate (h 1 -h 2 ) / h 1 .
  • the system and method for monitoring the bearing compression ratio of the filling body of the coal mine goaf are described as follows: the ground information processing system 1, the ground source control system 2, and the ground monitoring system 3 are combined to fill the goaf after filling The body's bearing compression ratio is monitored.
  • the main mining coal seam is 200m above the mining area transportation railway line, and its mechanical repair workshop is located above the main coal mining seam.
  • mining "three under" coal seams has become an inevitable choice for the mine.
  • the 121101 working face of the mine is located obliquely below the transport railway. The working face adopts solid filling coal mining method.
  • the coal depth of the working face is 270m
  • the thickness of the recoverable coal bed is 3.05m
  • the inclination of the coal bed is 10 ° at 121101
  • the principle of geophysical exploration is used to arrange the seismic source control system, information monitoring system and information processing system above the filling body, the geophones are arranged along the coal seam, 25 geophones are arranged on each side, every 20 A detector is arranged in meters. A total of 50 detectors are arranged.
  • the monitoring started from the beginning of the filling until the thickness of the filling body no longer changes, that is, the thickness of the filling body tends to be stable under the action of the overlying rock layer.
  • the monitored data is shown in the following table:
  • Table 1 Recording table of monitoring data of thickness change of filling body

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种煤矿采空区充填体(5)承载压缩率监测***及其监测方法,根据采空区充填体(5)埋深的位置,在地面布置地面信息处理***(1)、地面震源控制***(2)、地面监测***(3);其中由地面震源控制***(2)产生一定强度的震动,向充填体(5)发出信号。根据不同压实程度下充填体(5)弹性的差异,地面监测***(3)接受到的反射波(4)就会不一样,最后数据传输到地面信息处理***(1)进行数据处理。从充填体(5)被充填入采空区后开始监测,随着时间的变化,充填体(5)将会逐渐被压实,一直监测到充填体(5)厚度不再发生变化为止,最后利用承载压缩率公式计算得到充填体(5)承载压缩率。

Description

一种煤矿采空区充填体承载压缩率监测***及其监测方法 技术领域
本发明属于煤炭资源绿色充填开采技术领域,具体涉及一种煤矿采空区充填体承载压缩率监测***及其监测方法。
背景技术
目前,随着煤炭资源的开发利用,在煤炭的开采过程中,造成矸石山堆积,地表的塌陷等环境问题,对周边的人民造成大量的经济损失,国家高度重视煤炭开采对环境的影响,由此,固体充填开采技术作为绿色开采技术在部分地区得到广泛的应用。
在进行固体充填开采的过程中,主要目的是防止地表的塌陷,另一方面也可以有效解决地表矸石的堆积的问题,实现矸石不升井,就地充填的目标。但是在进行充填开采的过程中,对于充填体的压缩率的判断只是最初的进行压实的过程中,利用“等价采高”的原理,引入等价采高的概念即:等价采高为工作面采高减去采空区充填体压实后的高度等。但对于充填过后,顶板岩层的运动还会导致充填体的进一步压实,因此如何在充填过后的一段时间内,甚至在充填的过程中,就能准确的监测到充填体承载压缩率是煤炭资源绿色充填开采面临的重要难题。为了有效的提高充填效率,尽量减少地表的下沉,在采用充填开采的同时,探索如何实现采空区充填体承载压缩率的监测方法和高效的充填采空区具有重要意义。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种煤矿采空区充填体承载压缩率监测***及其监测方法,解决固体充填开采过程中,充填体的承载压缩率的问题,不仅可以监测充填体承载压缩率,也可提高充填的效率。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种煤矿采空区充填体承载压缩率监测***,包括均设置在充填体上方地面上的地面信息处理***、地面震源控制***、地面监测***,其中,
所述地面信息处理***用于接收所述来自地面监测***的电信号,并且对电信号进行处理,其***号是由充填体的反射波信号经地面监测***的检波器转化得来的,根据波的能量消耗来判断可控震源发射的信号到达的深度;根据充填体受到2MPa初始压力压实后充填体的厚度和充填体达到稳定时的厚度之差,依据承载压缩率公式计算充填 体的承载压缩率。
所述地面震源控制***用于根据待测试的充填体深度调整地面上震源的震动幅度,形成以可控震源为上表面中心向采空区充填体方向发射立体信号;
所述地面监测***为检波器,用于接收来自检波器底部不同深度、不同角度由于充填体的压实程度不同而发射出的反射波,并转换成电信号,传输至地面信息处理***;
进一步的,所述检波器监测到煤层的有效深度为100~300m,最大有效厚度为3.5m。
进一步的,在整个煤层的有效深度范围内,反射波与水平之间夹角α的范围是30°~90°。
进一步的,在充填体对应的地面位置进行检波器的布置,检波器沿煤层走向布置,形成在工作面上方以震源控制***为中心,沿走向向地面震源控制***两侧伸展的地面监测布置线路,检波器沿直线均匀分布,两侧分支每隔20m布置一个检波器。
进一步的,地面震源控制***向地下采空区充填体发射震源;根据不同压实程度下充填体弹性的差异,地面监测***接收的反射波信号不同并且将发射波信号转换成电信号传输给地面信息处理***,以此判断震源信号所达到的深度,计算出充填体的厚度,并根据充填体的厚度变化来确定采空区充填体承载压缩率。
上述的一种煤矿采空区充填体承载压缩率监测***及其监测方法,具体包括如下步骤:
(1)在进行测试之前查明开采煤层的厚度和采高以及煤层的埋深;
(2)根据所要测试的充填体,确定采空区充填体对应地面的位置,在检波器沿走向布置的过程中,每隔20m布置一个检波器,使得反射波与水平的夹角α在30~90°之间,于此同时在地面上布置对应的地面信息处理***、地面震源控制***和地面监测***;
(3)对采空区充填体采用2Mpa的力压实后,通过地面震源控制***对地面冲击产生震动,发出信号,使得弹性波在不同压实程度的充填体中传播;地面监测***(3)接收来自不同压实程度充填体中的反射波,并且通过检波器将接收的反射波信号转换成电信号并传输给信息处理***进行分析,最终测试第一次压实后的充填体高度h 1
(4)继续对充填体厚度进行监测,直到充填体的厚度不再发生改变即达到稳定;
(5)记采空区初始充填后的充填体厚度h 1,达到稳定时的厚度为h 2,根据承载压缩率的计算公式(h 1-h 2)/h 1计算充填体的承载压缩率。
有益效果:本发明提供的一种煤矿采空区充填体承载压缩率监测***及其监测方法,与现有技术相比,具有以下优势:该方法将绿色固体充填采煤方法和地球物理勘探技术相结合,既能在绿色开采的前提下保持环境的良好的发展,又能在固体充填开采的过程中对充填体厚度的变化进行监测,提高固体充填的效率,实现绿色化开采。本发明方法新颖,集地球物理勘探技术、固体充填采煤技术于一体,具有很好的推广价值。
附图说明
图1为本发明一种煤矿采空区充填体承载压缩率监测***及其监测方法***布置图。
图中:1-地面信息处理***;2-地面震源控制***;3-地面信息监测***(检波器);4-反射波;5-充填体
具体实施方式
本发明公开了一种煤矿采空区充填体承载压缩率监测***及其监测方法,利用地球物理勘探的原理,将勘探技术应用于煤矿充填采煤技术,实时监测采空区充填体的承载压缩率,提升煤矿充填开采的充填效果。该方法主要包括地面信息处理***、地面震源控制***、地面监测***。根据采空区充填体埋深的位置,在地面布置信息处理***、震源控制***、监测***;其中由震源控制***产生一定强度的震动,向充填体发出信号。根据不同压实程度下充填体弹性的差异,地面监测***接受到的反射波就会不一样,最后数据传输到信息处理***进行数据处理。从充填体被充填入采空区后开始监测,随着时间的变化,充填体将会逐渐被压实,一直监测到充填体厚度不再发生变化即充填体达到稳定为止,最后利用承载压缩率公式计算得到充填体承载压缩率。本发明提供了一种煤矿采空区充填体承载压缩率监测***及其监测方法,监控充填体厚度变化的同时,也有效提高了充填过程中的充填效率与效果。
下面结合附图和实施例对本发明作更进一步的说明。
如图1所示为一种煤矿采空区充填体承载压缩率监测***及其监测方法:利用地球物理勘探的原理,向地下采空区充填体发射震源,根据不同压实程度下充填体弹性的差异,地面接收的反射波信号不同,来判断震源信号所达到的深度,进而可以判断出充填体的厚度,根据充填体的厚度变化来确定采空区充填体承载压缩率。
该监测***包括地面信息处理***1、地面震源控制***2、地面信息监测***3。
所述地面信息处理***1用于接收所述来自地面监测***3的电信号,并且对电信 号进行处理,其***号是由充填体5的反射波信号经地面监测***3的检波器转化得来的,根据波的能量消耗来判断可控震源发射的信号到达的深度;根据充填体5受到2MPa初始压力压实后充填体5的厚度和充填体5达到稳定时的厚度之差,依据承载压缩率公式计算充填体5的承载压缩率。
所述地面震源控制***2用于根据待测试的充填体5深度调整地面上震源的震动幅度,形成以可控震源为上表面中心向采空区充填体5方向发射立体信号。由地面震源控制***2向充填体发射震动波时,随着煤层的埋深增加,从充填体处发出的反射波与水平之间的夹角逐渐增大。在整个煤层的有效深度范围内,反射波与水平之间夹角α的范围是30°~90°。当煤层达到有效的最浅埋深100m时反射波的最小夹角α是30°,当反射波按照原来的路线返回时,其反射波夹角α最大是90°。
地面震源***向充填体发射震动波,震动波到达充填体反射回来,由检波器进行接收。
所述地面信息监测***3为检波器,接收来自检波器底部不同深度、不同角度由于充填体5的压实程度不同而发射出的反射波4。其中根据岩层和充填体5的密实度不同,判断反射波4的来源。检波器所能监测到煤层的有效深度为100~300m,最大有效厚度为3.5m,所能监测到的煤层随着埋深的增加,反射波4的信号逐渐减弱,导致监测数据精度的降低。本发明专利的一种煤矿采空区充填体承载压缩率监测***及其监测方法,包括如下步骤:
(1)在进行测试之前查明开采煤层的厚度和采高以及煤层的埋深;
(2)根据所要测试的充填体5,确定采空区充填体5对应地面的位置,在检波器沿走向布置的过程中,每隔20m布置一个检波器,使得反射波与水平的夹角a在30°~90°之间,于此同时在地面上布置对应的地面信息处理***1、地面震源控制***2、地面监测***3;
(3)对采空区充填体采用2Mpa的力压实后,通过地面震源控制***2对地面冲击产生震动,发出信号,使得弹性波在不同压实程度的充填体中传播;地面监测***3接收来自不同压实程度充填体中的反射波,并且通过检波器将接收的反射波信号转换成电信号并传输给信息处理***1进行分析,最终测试第一次压实后的充填体高度h 1
(4)继续对充填体厚度进行监测,直到充填体的厚度不再发生改变即达到稳定;
(5)记采空区初始充填后的充填体厚度h 1,达到稳定时的厚度为h 2,根据承载压 缩率的计算公式(h 1-h 2)/h 1计算充填体的承载压缩率。
所述的一种煤矿采空区充填体承载压缩率监测***及其监测方法,其特征在于地面信息处理***1、地面震源控制***2、地面监测***3相结合,对采空区充填后充填体的承载压缩率进行监测。
实施案例
某矿区区域内铁路、建筑物密集,主要可采煤层其正上方偏200m处有矿区运输铁路线路,且其机械修理车间位于主采煤层之上,导致该矿的“三下”压煤严重,开采“三下”煤层成为该矿的必然选择。该矿的121101工作面位于运输铁路的斜下方,工作面采用固体充填采煤法,其工作面煤层埋深为270m,可采煤层的厚度为3.05m,煤层的倾角为10°,在121101工作面充填开采的过程中利用地球物理勘探的原理在充填体的上方布置震源控制***、信息监测***和信息处理***,检波器沿煤层走向布置,每一侧布置25个检波器,每隔20米布置一个检波器。一共布置50个检波器。
其中在121101工作面整个充填开采的过程中,从充填初期开始监测一直监测到充填体的厚度不再发生变化为止即充填体的厚度在上覆岩层的作用下趋于稳定。监测到的数据如下表所示:
表1充填体厚度变化监测数据记录表
Figure PCTCN2019092465-appb-000001
在121101工作面进行充填开采的整个过程中,对采空区充填体的变化进行实时的监控,在工作面的整个充填开采的过程中,监测煤层最终充填开采完毕充填体趋于稳定时,监测得到充填体的承载压缩率k的值为0.067,在工作面充填开采后,矿区运输铁路仍能正常使用。因此,通过采用一种煤矿采空区充填体承载压缩率监测方法既能监控充填体厚度变化,也可有效提高充填过程中的充填效率与效果。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也 应视为本发明的保护范围。

Claims (6)

  1. 一种煤矿采空区充填体承载压缩率监测***,其特征在于:包括均设置在充填体上方地面上的地面信息处理***(1)、地面震源控制***(2)、地面监测***(3),其中,
    所述地面信息处理***(1)用于接收所述来自地面监测***(3)的电信号,并且对电信号进行处理,其***号是由充填体的反射波信号经地面监测***的检波器转化得来的,根据波的能量消耗来判断可控震源发射的信号到达的深度;根据充填体受到2MPa初始压力压实后充填体的厚度和充填体达到稳定时的厚度之差,依据承载压缩率公式计算充填体的承载压缩率。
    所述地面震源控制***(2)用于根据待测试的充填体深度调整地面上震源的震动幅度,形成以可控震源为上表面中心向采空区充填体方向发射立体信号;
    所述地面监测***(3)为检波器,用于接收来自检波器底部不同深度、不同角度由于充填体的压实程度不同而发射出的反射波,并转换成电信号,传输至地面信息处理***(1);
  2. 根据权利要求1所述的一种煤矿采空区充填体承载压缩率监测***,其特征在于:所述检波器监测到煤层的有效深度为100~300m,最大有效厚度为3.5m。
  3. 根据权利要求1所述的一种煤矿采空区充填体承载压缩率监测***,其特征在于:在整个煤层的有效深度范围内,反射波与水平之间夹角α的范围是30°~90°。
  4. 根据权利要求1所述的一种煤矿采空区充填体承载压缩率监测***,其特征在于:在充填体对应的地面位置进行检波器的布置,检波器沿煤层走向布置,形成在工作面上方以震源控制***为中心,沿走向向地面震源控制***(2)两侧伸展的地面监测布置线路,检波器沿直线均匀分布,两侧分支每隔20m布置一个检波器。
  5. 根据权利要求1至4任一所述的一种煤矿采空区充填体承载压缩率监测***的监测方法,其特征在于:地面震源控制***(2)向地下采空区充填体发射震源;根据不同压实程度下充填体弹性的差异,地面监测***(3)接收的反射波信号不同并且将发射波信号转换成电信号传输给地面信息处理***(1),以此判断震源信号所达到的深度,计算出充填体的厚度,并根据充填体的厚度变化来确定采空区充填体承载压缩率。
  6. 根据权利要求5所述的一种煤矿采空区充填体承载压缩率监测***的监测方法,其特征在于:具体包括如下步骤:
    (1)在进行测试之前查明开采煤层的厚度和采高以及煤层的埋深;
    (2)根据所要测试的充填体,确定采空区充填体对应地面的位置,在检波器沿走向布置的过程中,每隔20m布置一个检波器,使得反射波与水平的夹角α在30~90°之间,于此同时在地面上布置对应的地面信息处理***(1)、地面震源控制***(2)和地面监测***(3);
    (3)对采空区充填体采用2Mpa的力压实后,通过地面震源控制***(2)对地面冲击产生震动,发出信号,使得弹性波在不同压实程度的充填体中传播;地面监测***(3)接收来自不同压实程度充填体中的反射波,并且通过检波器将接收的反射波信号转换成电信号并传输给信息处理***(1)进行分析,最终测试第一次压实后的充填体高度h 1
    (4)继续对充填体厚度进行监测,直到充填体的厚度不再发生改变即达到稳定;
    (5)记采空区初始充填后的充填体厚度h 1,达到稳定时的厚度为h 2,根据承载压缩率的计算公式(h 1-h 2)/h 1计算充填体的承载压缩率。
PCT/CN2019/092465 2018-11-06 2019-06-24 一种煤矿采空区充填体承载压缩率监测***及其监测方法 WO2020093703A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2020136009A RU2769392C1 (ru) 2018-11-06 2019-06-24 Система мониторинга, поддерживающая степень сжатия наполняемого образования в выработанном пространстве угольной шахты, и способ мониторинга
US17/253,126 US11414991B2 (en) 2018-11-06 2019-06-24 System and method for monitoring bearing compression rate of filler in coal mine gob area
CA3104367A CA3104367C (en) 2018-11-06 2019-06-24 System and method for monitoring bearing compression rate of filler in coal mine gob area
AU2019376725A AU2019376725B2 (en) 2018-11-06 2019-06-24 Monitoring system for bearing compression rate of filling body in coal mine goaf and monitoring method thereof
ZA2020/06725A ZA202006725B (en) 2018-11-06 2020-10-28 Monitoring system for bearing compression rate of filling body in coal mine goaf and monitoring method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811313339.1A CN109441541B (zh) 2018-11-06 2018-11-06 一种煤矿采空区充填体承载压缩率监测***及其监测方法
CN201811313339.1 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020093703A1 true WO2020093703A1 (zh) 2020-05-14

Family

ID=65550825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092465 WO2020093703A1 (zh) 2018-11-06 2019-06-24 一种煤矿采空区充填体承载压缩率监测***及其监测方法

Country Status (7)

Country Link
US (1) US11414991B2 (zh)
CN (1) CN109441541B (zh)
AU (1) AU2019376725B2 (zh)
CA (1) CA3104367C (zh)
RU (1) RU2769392C1 (zh)
WO (1) WO2020093703A1 (zh)
ZA (1) ZA202006725B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109441541B (zh) 2018-11-06 2020-01-03 中国矿业大学 一种煤矿采空区充填体承载压缩率监测***及其监测方法
CN111577381A (zh) * 2020-05-11 2020-08-25 中铁第四勘察设计院集团有限公司 采空区充填结构及采空区治理方法
CN112360548B (zh) * 2020-11-24 2022-08-26 西安科技大学 巷旁混凝土充填体全服务周期稳定性监测预警***及方法
CN112611803A (zh) * 2020-12-29 2021-04-06 中国矿业大学 一种矸石充填压实率监测方法
CN112578022A (zh) * 2020-12-29 2021-03-30 中国矿业大学 一种充填开采充填率监测方法
CN113434819B (zh) * 2021-06-24 2023-08-01 中国矿业大学 工作面采动对采空区矿震活动影响时间和距离的确定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167326A (ja) * 1992-11-30 1994-06-14 Hazama Gumi Ltd 締め固め度の管理方法
CN105181463A (zh) * 2015-10-23 2015-12-23 山东科技大学 一种含水矸石压缩试验装置及其试验方法
CN204945096U (zh) * 2015-09-11 2016-01-06 湖南省楚嘉科技发展有限公司 一种回填土密实度检测装置
CN109441541A (zh) * 2018-11-06 2019-03-08 中国矿业大学 一种煤矿采空区充填体承载压缩率监测***及其监测方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU985324A1 (ru) * 1981-08-04 1982-12-30 Московский Ордена Трудового Красного Знамени Геологоразведочный Институт Им.С.Орджоникидзе Способ определени прочности твердеющего закладочного массива
HU206161B (en) * 1985-01-30 1992-08-28 Tatabanyai Banyak Vallalat Device for indicating kinetic processes in situ, in a solid medium
US4736349A (en) * 1987-04-24 1988-04-05 Mobil Oil Corporation Method for estimating shear wave reflection data from acquired compressional wave reflection data
US5721710A (en) * 1995-09-29 1998-02-24 Atlantic Richfield Company High fidelity vibratory source seismic method with source separation
US5719821A (en) * 1995-09-29 1998-02-17 Atlantic Richfield Company Method and apparatus for source separation of seismic vibratory signals
EP1516961B1 (de) * 2003-09-19 2013-12-25 Ammann Aufbereitung AG Verfahren zur Ermittlung einer Bodensteifigkeit und Bodenverdichtungsvorrichtung
CN102109613B (zh) * 2009-12-23 2012-11-14 中国石油天然气股份有限公司 一种复杂地质条件下目标储层有效厚度的确定方法
CN102426384B (zh) * 2011-09-06 2014-06-04 赵永贵 一种探测地下采空区和岩溶分布的方法
US8724428B1 (en) * 2012-11-15 2014-05-13 Cggveritas Services Sa Process for separating data recorded during a continuous data acquisition seismic survey
CN104360395B (zh) * 2014-11-18 2018-02-27 煤炭科学技术研究院有限公司 一种井上下全空间地震波数据采集***和勘探方法
CN104564075A (zh) * 2015-01-30 2015-04-29 河北煤炭科学研究院 一种通过观测充填敏感层变化指导充填开采的工艺方法
CN104656143A (zh) * 2015-03-18 2015-05-27 成都科特柯本科技有限公司 一种模拟微地震监测压裂效果的实验装置及其实验方法
CN104834007B (zh) * 2015-05-04 2017-09-26 中国石油天然气股份有限公司 地震反演过程中计算碳酸盐岩缝洞型储层充填程度的方法
CN105589094A (zh) * 2015-12-16 2016-05-18 辽宁工程技术大学 一种不明采空区探测装置与方法
CN105952452B (zh) * 2016-04-22 2017-12-26 中国矿业大学 油囊式固体充填采煤三维物理相似模拟实验装置及方法
CN109310748A (zh) * 2016-05-21 2019-02-05 传染病研究所 用于治疗继发性结核和非结核分枝杆菌感染的组合物和方法
CN106338763B (zh) * 2016-08-23 2019-02-15 中国石油天然气股份有限公司 一种确定地震剖面显示数据的方法及装置
CN107219553B (zh) * 2017-06-06 2019-11-08 中国石油化工股份有限公司 基于gr分频反演的暗河充填预测方法
CN107328385B (zh) * 2017-08-15 2023-04-18 山东科技大学 采空区顶底板变形与充填体应力监测一体化装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167326A (ja) * 1992-11-30 1994-06-14 Hazama Gumi Ltd 締め固め度の管理方法
CN204945096U (zh) * 2015-09-11 2016-01-06 湖南省楚嘉科技发展有限公司 一种回填土密实度检测装置
CN105181463A (zh) * 2015-10-23 2015-12-23 山东科技大学 一种含水矸石压缩试验装置及其试验方法
CN109441541A (zh) * 2018-11-06 2019-03-08 中国矿业大学 一种煤矿采空区充填体承载压缩率监测***及其监测方法

Also Published As

Publication number Publication date
US11414991B2 (en) 2022-08-16
US20210277779A1 (en) 2021-09-09
CN109441541B (zh) 2020-01-03
ZA202006725B (en) 2021-09-29
AU2019376725B2 (en) 2021-09-09
AU2019376725A1 (en) 2020-11-19
CA3104367A1 (en) 2020-05-14
CA3104367C (en) 2023-09-05
CN109441541A (zh) 2019-03-08
RU2769392C1 (ru) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2020093703A1 (zh) 一种煤矿采空区充填体承载压缩率监测***及其监测方法
CN106779231B (zh) 一种基于采空区压力监测的煤矿采空区飓风灾害预警方法
Ma et al. Ground movement resulting from underground backfill mining in a nickel mine (Gansu Province, China)
Liu et al. Undersea safety mining of the large gold deposit in Xinli District of Sanshandao Gold Mine
CN102788991A (zh) 基于z分量的透射槽波高密度快速探测方法
CN102495434A (zh) 地下工程超前地质预报的方法
CN106324683A (zh) 用于地铁盾构隧道前方孤石探测的声波装置及方法
CN102866417A (zh) 一种地下溶洞地震跨孔ct探测及层析成像装置及方法
CN106089304A (zh) 一种基于地层施工多功能电气控制预警通信***
CN202837558U (zh) 一种地下溶洞地震跨孔ct探测及层析成像装置
CN106248672B (zh) 一种基于dic技术的现场孔内岩体裂纹扩展模式识别方法及***
CN112965136B (zh) 一种富水岩溶隧道的多手段超前探测方法
CN105589094A (zh) 一种不明采空区探测装置与方法
AU2016407579A1 (en) Diffracted wave-based detection method for small-sized collapse pillar of working face
CN112965139B (zh) 一种复杂地质条件隧道超前地质综合预报方法
CN115126505B (zh) 一种覆岩结构稳定性的精准提升方法
Zhang et al. The study on roadway layout in coordination of mining coal seams base on failure of floor strata
CN203204166U (zh) 一种改进的tsp超前地质预报传感器安装套管
Wang et al. In situ stress measurement method of deep borehole based on multi-array ultrasonic scanning technology
Zhang et al. Establishment of experimental sites in three Swedish mines to monitor the in-situ performance of ground support systems associated with mining-induced seismicity
Liu et al. A comparative experimental study on advance geological prediction between TETSP and TSP303
Yang et al. Investigation on the height of fracture zone in goaf of steep coal seam based on microseismic monitoring
Weng et al. Surface Deformation Mechanism Analysis of Village under Repeated Mining of 12200 stope in Huancheng Mine
Stolárik et al. Analysis of load of the tunnel definitive lining due to vibrations of various sources
Manthei et al. Experience on acoustic wave propagation in rock salt in the frequency range 1-100 kHz and conclusions with respect to the feasibility of a rock salt dome as neutrino detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019376725

Country of ref document: AU

Date of ref document: 20190624

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3104367

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881810

Country of ref document: EP

Kind code of ref document: A1