WO2020091479A1 - Lithium electrode and lithium secondary battery comprising same - Google Patents

Lithium electrode and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2020091479A1
WO2020091479A1 PCT/KR2019/014641 KR2019014641W WO2020091479A1 WO 2020091479 A1 WO2020091479 A1 WO 2020091479A1 KR 2019014641 W KR2019014641 W KR 2019014641W WO 2020091479 A1 WO2020091479 A1 WO 2020091479A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
protective layer
ion
electrically conductive
electrolyte
Prior art date
Application number
PCT/KR2019/014641
Other languages
French (fr)
Korean (ko)
Inventor
박은경
장민철
정보라
윤석일
손병국
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980012939.0A priority Critical patent/CN111712949B/en
Priority to EP19877644.5A priority patent/EP3745506B1/en
Priority to ES19877644T priority patent/ES2925381T3/en
Priority to PL19877644.5T priority patent/PL3745506T3/en
Priority to US16/975,333 priority patent/US11978852B2/en
Priority claimed from KR1020190137931A external-priority patent/KR102388263B1/en
Publication of WO2020091479A1 publication Critical patent/WO2020091479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium electrode having a protective layer capable of preventing the growth of lithium dendrites and a lithium secondary battery comprising the same.
  • Lithium metal compared to other electrochemical systems with lithium intercalated carbon anodes, and nickel or cadmium electrodes, for example, reducing the energy density of the cell by increasing the weight and volume of the anode in the presence of a non-electroactive material Since it has low weight and high capacity characteristics, it is very interesting as an anode active material for electrochemical cells.
  • a lithium metal negative electrode, or a negative electrode mainly containing lithium metal provides an opportunity to construct a lighter and higher energy density battery than a battery such as a lithium-ion, nickel metal hydride, or nickel-cadmium battery.
  • lithium ion batteries have an energy density of 700 wh / l using graphite as a cathode and lithium cobalt oxide (LCO) as a cathode.
  • LCO lithium cobalt oxide
  • a field requiring a high energy density has been expanded, and the need to increase the energy density of a lithium ion battery has been continuously raised. For example, it is necessary to increase the energy density to increase the mileage to 500 km or more per charge of an electric vehicle.
  • lithium electrodes are increasing to increase the energy density of lithium ion batteries.
  • lithium metal is a metal that is highly reactive and difficult to handle, which is difficult to handle in a process.
  • a lithium metal When a lithium metal is used as the negative electrode of a lithium secondary battery, the lithium metal reacts with impurities such as an electrolyte, water or an organic solvent, and a lithium salt to form a solid electrolyte interphase (SEI).
  • SEI solid electrolyte interphase
  • Such a passivation layer causes a difference in the current density on the local area to promote the formation of dendritic dendrites by lithium metal during charging, and gradually grows during charging and discharging to cause an internal short circuit between the anode and the cathode.
  • dendrites have mechanically weak necks (bottle neck) to form inert lithium (dead lithium) that loses electrical contact with the current collector during discharge, thereby reducing the capacity of the battery, shortening the cycle life, and stability of the battery. Has a bad effect on
  • Korean Patent Publication No. 2018-0032168 relates to a negative electrode including a multiple protective layer, and a protective layer that protects a lithium metal layer and maintains an interface with the lithium metal layer, a protective layer that physically suppresses the growth of dendrites And by forming a multiple protective layer including a protective layer for supporting the structure of the protective layer, it is disclosed that the problem of volume expansion of the cell due to lithium dendrites can be solved.
  • Patent Document 1 Korean Patent Publication No. 2018-0032168
  • Patent Document 2 Korean Patent Publication No. 2018-0036564
  • the present inventors formed a protective layer on the lithium electrode, but sequentially from the surface of the lithium metal, a first protective layer having excellent ion conductivity and excellent electrical conductivity and physical strength A multiple protective layer including a second protective layer was formed on the lithium electrode.
  • the multiple layers of protection can suppress the growth of lithium dendrites in the lithium electrode and minimize the growth of lithium dendrites even when defects occur.
  • an object of the present invention is to provide a lithium electrode having multiple protective layers.
  • Another object of the present invention is to provide a lithium secondary battery including a lithium electrode having a multiple protective layer as described above.
  • the present invention lithium metal; And a protective layer formed on at least one surface of the lithium metal, wherein the protective layer comprises: a first protective layer formed on at least one surface of the lithium metal; And a second protective layer formed on the first protective layer, wherein the first protective layer includes an ion conductive electrolyte, and the second protective layer includes an electrically conductive matrix and a crosslinked ion conductive electrolyte. electrode.
  • the present invention also provides a lithium secondary battery comprising a lithium electrode comprising the lithium electrode.
  • the lithium electrode is formed of multiple protective layers including first and second protective layers sequentially formed on the surface of the lithium metal, and the lithium metal during charging and discharging by the first protective layer in contact with the lithium metal It can prevent the volume change.
  • the first protective layer since the second protective layer is in the form of an ion conductive electrolyte cross-linked inside and on the surface of the electrically conductive matrix, the first protective layer has a higher ion conductivity than the second protective layer, and thus is formed from the lithium metal.
  • the growth of lithium dendrites can be suppressed by preventing electrons from being focused with the lithium dendrites.
  • the second protective layer is formed on the first protective layer, and is electrically connected to lithium metal as charging and discharging proceeds, so that lithium dendrites are included only inside the first protective layer, and lithium outside the lithium electrode. Dendrites can be prevented from growing.
  • the second protective layer may further enhance the lithium dendrite growth suppression effect by mechanically suppressing the growth of lithium dendrites due to its excellent strength.
  • FIG. 1 is a schematic diagram of a lithium electrode according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the principle of preventing the growth of lithium dendrites in a lithium electrode according to an embodiment of the present invention.
  • the present invention is a lithium metal; And it relates to a lithium electrode including a multiple protective layer formed on the lithium metal, the multiple protective layer includes a first protective layer and a second protective layer sequentially stacked on at least one surface of the lithium metal.
  • the second protective layer 22 may appear to have two layers formed, but as will be described later, a cross-linked ion conductive electrolyte is also formed inside the electrically conductive matrix, and an ion conductive electrolyte is also formed on the surface to form two layers. It is to be seen only, reference numeral 22 in the illustrated drawing refers to one layer called the second protective layer.
  • FIG. 1 is a schematic diagram of a lithium electrode according to an embodiment of the present invention.
  • a lithium electrode 1 includes a lithium metal 10; A first protective layer 21 formed on one surface of the lithium metal 10; And a second protective layer 22 formed on the first protective layer 21.
  • the first protective layer 21 and the second protective layer 22 including the multiple protective layer 20 are referred to.
  • FIG. 2 is a schematic view showing the principle of preventing the growth of lithium dendrites in a lithium electrode according to an embodiment of the present invention.
  • lithium dendrites 11 are formed on one surface of the lithium metal 10 to be in electrical contact with the second protective layer 22.
  • the electrons (e ⁇ ) of the second protective layer 22 having excellent electrical conductivity are uniformly transmitted to the entire surface and the ionic conductivity of the first protective layer 21 is higher than that of the second protective layer 22, lithium ions It is reduced in the first protective layer 21 rich in (Li + ), so that the lithium dendrites 11 are formed only inside the first protective layer 21 and the lithium dendrites grow outside the lithium electrode 1. Can be prevented.
  • the first protective layer is formed on at least one surface of the lithium metal, it is possible to prevent the phenomenon of depletion of lithium ions on the surface of the lithium metal.
  • the first protective layer may include an ion conductive electrolyte, and the ion conductive electrolyte may include an ion conductive polymer.
  • the ion-conducting polymer includes polyethylene oxide (Poly (ethylene oxide): PEO), polypropylene oxide (Poly (polypropylene oxide: PPO), polyacrylonitrile (PAN)) and polyvinylidene fluoride (Poly ( vinylidene fluoride): PVDF).
  • the ion-conducting electrolyte may be in a liquid, gel or solid phase, and preferably in a solid phase.
  • the ion-conducting electrolyte may include an ion-conducting polymer and a lithium salt, and if necessary, an additive may be further included.
  • the lithium salt and the additive are as described below in the description related to the second protective layer.
  • the weight ratio of the monomer constituting the ion-conducting polymer and lithium may be 10 to 30: 1, preferably 15 to 25: 1, and when the weight ratio is satisfied, an excellent ion conductivity and a lithium dendrite suppression effect may be best.
  • the ion-conducting polymer may have a weight ratio of 10 to 30: 1 of ethyl oxide and lithium.
  • the ion conductivity of the first protective layer may be 10 -5 to 10 -2 S / cm, preferably 10 -4 to 10 -3 S / cm. If the amount is less than the above range, lithium ion may be depleted on the surface of the lithium metal, and thus battery performance may be deteriorated. If the ion conductivity is increased, battery performance is not further improved.
  • the second protective layer is formed on the first protective layer, and electrons are transferred to the surface of the lithium metal having a relatively large amount of lithium ions compared to the second protective layer, that is, the first protective layer.
  • the electrons By preventing the electrons from being focused on the lithium dendrites generated in the first protective layer, it serves to suppress the growth of lithium dendrites.
  • the second protective layer may include an electrically conductive matrix and a crosslinked ion conductive electrolyte.
  • the electrically conductive matrix may be in the form of a three-dimensional structure in which an internal space is formed.
  • the interior space may be referred to as pore.
  • An ion conductive electrolyte may be filled in the inner space of the electrically conductive matrix, and the electrically conductive matrix is enclosed by the crosslinked ion conductive electrolyte, that is, the crosslinked ion conductive electrolyte on the surface of the electrically conductive matrix It may be formed.
  • the electrical conductivity can be made uniform on the surface of the lithium electrode, thereby suppressing the growth of lithium dendrites.
  • the growth of lithium dendrites can be suppressed, thereby preventing the occurrence of dead lithium in electrical contact.
  • the weight ratio of the ion conductive polymer contained in the ion conductive electrolyte cross-linked with the electrically conductive matrix may be 3: 7 to 7: 3.
  • the electrically conductive matrix exceeds the prescribed weight range as described above, the content of the ion-conducting polymer is relatively reduced, so the Li ion conductivity of the protective layer is very low, and more Li grows on the protective layer, resulting in the growth of Li dendrites. It is difficult to suppress.
  • the electrically conductive matrix is outside the prescribed weight range as described above and is smaller than the appropriate weight, vertical / horizontal electrical conductivity may be lowered and uniform electron transfer to the electrode surface may be difficult.
  • the crosslinked ion-conducting electrolyte may be in a solid phase, and the ion-conducting electrolyte may include 25 to 50% by weight of the remaining components excluding the solvent in the electrolyte together with the ion-conducting polymer. In other words, compared to 100% by weight of the ion conductive polymer, the content of the remaining components excluding the solvent in the electrolyte may be 25 to 50% by weight. At this time, the remaining components other than the solvent in the electrolyte may be a lithium salt and an additive.
  • the weight ratio of the monomer constituting the ion-conducting polymer and lithium may be 10 to 30: 1, preferably 15 to 25: 1, and when the weight ratio is satisfied, an excellent electrical conductivity and a lithium dendrite suppression effect may be best.
  • the ion-conducting polymer may have a weight ratio of 10 to 30: 1 of ethyl oxide and lithium.
  • the crosslinked ion conductive electrolyte may include a crosslinking agent, and the crosslinking agent is polyethylene glycol diacrylate (PEGDA), polyethylene glycol dimethacrylate (PEGDMA). ), Polypropylene glycol diacrylate (Poly (propylene glycol) diacrylate: PPGDA) and polypropylene glycol dimethacrylate (Poly (propylene glycol) dimethacrylate: PPGDMA).
  • PEGDA polyethylene glycol diacrylate
  • PEGDMA polyethylene glycol dimethacrylate
  • PPGDA polypropylene glycol diacrylate
  • PPGDMA polypropylene glycol dimethacrylate
  • the weight ratio of the ion conductive polymer and the crosslinking agent may be 70 to 90: 10 to 30, and when the weight ratio range is satisfied, a crosslinked ion conductive electrolyte layer that is effective in suppressing lithium dendrite growth may be formed because of excellent modulus.
  • the ion conductive electrolyte exhibits a crosslinked form as described above, so that the ion conductivity is lower than that of the first protective layer including the non-crosslinked ion conductive electrolyte.
  • the sheet resistance of the second protective layer is 5 x 10 -2 ⁇ / sq. To 1000 ⁇ / sq., Preferably 1 ⁇ 10 -2 ⁇ / sq. To about 500 ⁇ / sq, more preferably from 1 x 10 -. 2 ⁇ / sq. To 300 ⁇ / sq. If it is less than the above range, it is difficult to suppress the growth of Li dendrites because there is more Li growing on the protective layer, and if it is above the range, the life characteristics of the battery may be deteriorated by acting as a large resistance layer.
  • the ion conductivity of the second protective layer is 1x10 -6 S / cm to 1x10 -2 S / cm at room temperature, preferably 1x10 -5 S / cm to 1x10 -2 S / cm, more preferably May be 1x10 -4 S / cm to 1x10 -2 S / cm. If it is less than the above range, the ion conductivity is not good, so there is more Li growing on the protective layer, so it is difficult to suppress the growth of Li dendrites, and a protective layer exceeding the above range cannot be formed.
  • the ion conductivity of the second protective layer may mean vertical lithium ion conductivity.
  • the ionic conductivity of the first protective layer is higher than the ionic conductivity of the second protective layer.
  • the electrically conductive material included in the electrically conductive matrix is uniformly distributed while forming a three-dimensional structure throughout the electrically conductive matrix, so that the protective layer can exhibit uniform electrical conductivity.
  • the electrically conductive material may be at least one selected from the group consisting of electrically conductive metals, semiconductors, and electrically conductive polymers.
  • the electrically conductive metal may be at least one selected from the group consisting of copper, gold, silver, aluminum, nickel, zinc, carbon, tin and indium.
  • the semiconductor may be one or more selected from the group consisting of silicon and germanium.
  • the electrically conductive polymer is PEDOT (poly (3,4-ethylenedioxythiophene)), polyaniline, polypyrrole, polythiophene, polyacetylene, polyphenylene and polyphenylene It may be at least one selected from the group consisting of poly (thienylene vinylene).
  • the ion conductive electrolyte contained in the electrically conductive matrix may include an ion conductive polymer.
  • the ion-conducting polymer includes polyethylene oxide (Poly (ethylene oxide): PEO), polypropylene oxide (Poly (polypropylene oxide: PPO), polyacrylonitrile (PAN)) and polyvinylidene fluoride (Poly ( vinylidene fluoride): PVDF).
  • the ion-conducting electrolyte may be in a liquid, gel or solid phase.
  • the form of such an ion-conducting electrolyte may be determined according to the properties of the ion-conducting polymer.
  • the liquid or gel electrolyte contained in the liquid or gel ion conductive electrolyte may further include a lithium salt, a non-aqueous solvent, and additional additives.
  • the solid phase ion conductive electrolyte may further include a lithium salt and additional additives.
  • the lithium salt is LiCl, LiBr, LiI, LiNO 3 , LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carboxylate, 4-phenyl lithium borate And it may be one or more selected from the group consisting of lithium imide.
  • non-aqueous solvent included in the ion conductive electrolyte those commonly used in electrolytes for lithium secondary batteries can be used without limitation, for example, ether, ester, amide, linear carbonate, cyclic carbonate, etc., respectively, alone or It can be used by mixing two or more kinds. Among them, a cyclic carbonate, a linear carbonate, or a carbonate compound that is a slurry thereof may be included.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinyl ethylene carbonate, and any one selected from the group consisting of halides, or a slurry of two or more of them.
  • halides include, but are not limited to, fluoroethylene carbonate (FEC).
  • linear carbonate compound may be any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate or these Among them, two or more kinds of slurries may be used, but are not limited thereto.
  • the carbonate-based organic solvents ethylene carbonate and propylene carbonate, which are cyclic carbonates, are high-viscosity organic solvents and have a high dielectric constant, so that lithium salts in the electrolyte can be better dissociated, such as dimethyl carbonate and diethyl carbonate.
  • a low-viscosity, low-permittivity linear carbonate is mixed and used in an appropriate ratio, an electrolyte having a higher electrical conductivity can be prepared.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether and ethylpropyl ether, or two or more of them may be used. , But is not limited thereto.
  • esters include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • ⁇ -valerolactone and ⁇ -caprolactone any one selected from the group or two or more of them may be used, but is not limited thereto.
  • the additive included in the ion conductive electrolyte may be at least one selected from the group consisting of fluoroethylene carbonate (FEC), 1,3-propanesultone (1,3-PS) and vinyl ethylene carbonate (VEC), , Preferably fluoroethylene carbonate (FEC).
  • the content of the additive may be 2 to 13% by weight, preferably 3 to 10% by weight, more preferably 4 to 8% by weight based on the total weight of the electrolyte. If it is within the above range, the life characteristics of the lithium secondary battery can be improved, and the thickness expansion rate of the lithium secondary battery can be reduced.
  • the present invention also relates to a method of manufacturing a lithium electrode, (A) forming a first protective layer on a lithium metal; (B) forming a second protective layer on the release film; And (C) transferring the second protective layer on the first protective layer.
  • a first protective layer may be formed on the lithium metal.
  • the first protective layer includes an ion conductive electrolyte as described above, and the ion conductive electrolyte includes an ion conductive polymer.
  • a mixed solution is formed and applied onto the release film to form an ion-conductive electrolyte layer, and then transferred to lithium metal to form a first protective layer.
  • the ion-conductive polymer may be dissolved in an electrolyte solution to form a mixed solution, and applied to a lithium electrode to form a first protective layer.
  • the concentration of the mixed solution may be 15 to 35% by weight based on the weight of the solid content, in this case, the first protective layer forming process can be made smoothly, and the defective rate of the manufactured first protective layer can also be reduced. have.
  • the material and thickness of the release film are not particularly limited, and various films may be used.
  • a polyethylene terephthalate (PET) film, a polyethylene (PE) film, a polypropylene (PP) film, a silicone-based release film, etc. can be used, and the release film thickness is, for example, 12 ⁇ m to 80 ⁇ m.
  • the coating method may be solution casting, spray casting, spraying or rolling, but is not limited thereto.
  • the first protective layer may be in the form of a layer or a film, and an initiator may be used together so that such a form is well formed.
  • the initiators are azobisisobutyronitrile, benzoyl peroxide, t-butylperoxy-2-ethyl-hexanoate, cumyl peroxide, t-butyl peroxide and 1,1-di (t-butylperoxy) It may be one or more selected from the group consisting of cyclohexane.
  • a second protective layer may be formed on the release film.
  • the second protective layer is in a form including an electrically conductive matrix and a crosslinked ion conductive electrolyte.
  • the manufacturing method of the second protective layer (b1) forming a crosslinked ion conductive electrolyte layer by coating a release film with a mixture of an ion conductive polymer, a crosslinking agent, and a lithium salt; And (b2) depositing an electrically conductive material on the crosslinked ion conductive electrolyte layer to form a second protective layer including an electrically conductive matrix and a crosslinked ion conductive electrolyte.
  • an ion conductive polymer and a crosslinking agent are dissolved in an electrolyte solution in a release film to form a mixed solution and coated on the release film to form a crosslinked ion conductive electrolyte layer.
  • the concentration of the mixed solution may be 15 to 35% by weight based on the weight of the solid content, in this case, the first protective layer forming process can be made smoothly, and the defective rate of the prepared second protective layer can also be reduced. have.
  • the material and thickness of the release film are not particularly limited, and various films may be used.
  • a polyethylene terephthalate (PET) film, a polyethylene (PE) film, a polypropylene (PP) film, a silicone-based release film, etc. can be used, and the release film thickness is, for example, 12 ⁇ m to 80 ⁇ m.
  • the coating method may be solution casting, spray casting, spraying or rolling, but is not limited thereto.
  • an initiator may be used together to form the crosslinked ion conductive electrolyte layer.
  • the initiators are azobisisobutyronitrile, benzoyl peroxide, t-butylperoxy-2-ethyl-hexanoate, cumyl peroxide, t-butyl peroxide and 1,1-di (t-butylperoxy) It may be one or more selected from the group consisting of cyclohexane.
  • an electrically conductive material may be deposited on the crosslinked ion conductive electrolyte layer to form a second protective layer including an electrically conductive matrix and a crosslinked ion conductive electrolyte.
  • particles of the electrically conductive material penetrate into the cross-linked ion conductive electrolyte layer during deposition, and particles of the electrically conductive material are inserted into the cross-linked ion conductive electrolyte layer.
  • the particles of the electrically conductive material inserted into the crosslinked ion conductive electrolyte layer may be in the form of an island or may be connected to each other to form a skeleton of a three-dimensional structure to form an electrically conductive matrix.
  • the island shape and the 3D structure may be formed together.
  • a cross-linked ion conductive electrolyte may be included in the inner space of the electrically conductive matrix, or a cross-linked ion conductive electrolyte may be formed on the surface of the electrically conductive matrix to surround the electrically conductive matrix.
  • a lithium electrode may be formed by transferring the second protective layer on the first protective layer.
  • the lithium metal may be formed on a current collector.
  • the current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • the current collector may be one or more selected from the group consisting of copper, stainless steel, aluminum, nickel, titanium, and calcined carbon.
  • the present invention also relates to a lithium secondary battery comprising a lithium electrode as described above.
  • the lithium electrode may be included as a negative electrode, and the lithium secondary battery may include an electrolyte solution provided between the negative electrode and the positive electrode.
  • the shape of the lithium secondary battery is not limited, and may be, for example, coin, flat, cylindrical, horn, button, sheet or stacked.
  • the lithium secondary battery may further include a tank for storing the positive electrode electrolyte and the negative electrode electrolyte, and a pump that moves each electrolyte solution to the electrode cell, and may be manufactured as a flow battery.
  • the electrolyte solution may be an electrolyte solution impregnated with the negative electrode and the positive electrode.
  • the lithium secondary battery may further include a separator provided between the negative electrode and the positive electrode.
  • the separator positioned between the negative electrode and the positive electrode may be used as long as it separates or insulates the negative electrode and the positive electrode from each other and enables ion transport between the negative electrode and the positive electrode.
  • it may be a non-conductive porous film or an insulating porous film. More specifically, a polymer nonwoven fabric such as a nonwoven fabric of polypropylene material or a nonwoven fabric of polyphenylene sulfide material; Alternatively, a porous film of an olefin-based resin such as polyethylene or polypropylene can be exemplified, and it is also possible to use two or more of these together.
  • the lithium secondary battery may further include a positive electrode electrolyte on the positive electrode side and a negative electrode electrolyte on the negative electrode side separated by a separator.
  • the positive electrode electrolyte and the negative electrode electrolyte may each include a solvent and an electrolytic salt.
  • the positive electrode electrolyte and the negative electrode electrolyte may be the same as or different from each other.
  • the electrolyte solution may be an aqueous electrolyte solution or a non-aqueous electrolyte solution.
  • the aqueous electrolyte solution may include water as a solvent
  • the non-aqueous electrolyte solution may include a non-aqueous solvent as a solvent.
  • the non-aqueous solvent may be selected to be generally used in the art, and is not particularly limited, for example, carbonate-based, ester-based, ether-based, ketone-based, organosulfur-based, organophosphorous ), Aprotic solvent, and combinations thereof.
  • the electrolytic salt refers to dissociation into a cation and an anion in a water or non-aqueous organic solvent, and is not particularly limited as long as it can deliver lithium ions in a lithium secondary battery, and can be selected generally used in the art.
  • the concentration of the electrolytic salt in the electrolytic solution may be 0.1 M or more and 3 M or less. In this case, charge and discharge characteristics of the lithium secondary battery can be effectively expressed.
  • the electrolyte may be a solid electrolyte membrane or a polymer electrolyte membrane.
  • the solid electrolyte membrane and the polymer electrolyte membrane are not particularly limited, and those generally used in the art may be employed.
  • the solid electrolyte membrane may include a composite metal oxide
  • the polymer electrolyte membrane may be a membrane provided with a conductive polymer inside the porous substrate.
  • the positive electrode means an electrode that accepts electrons and reduces lithium-containing ions when the battery is discharged from a lithium secondary battery. Conversely, when the battery is charged, it acts as a negative electrode (oxidizing electrode), oxidizing the positive electrode active material to release electrons and lose lithium-containing ions.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the material of the positive electrode active material of the positive electrode active material layer is not particularly limited as long as it is applied to a lithium secondary battery together with the negative electrode to reduce lithium-containing ions during discharge and oxidize during charging.
  • the lithium secondary battery may be a lithium-sulfur battery, and the composite material based on sulfur (S) is not particularly limited, and in the art. It is possible to select and apply a commonly used anode material.
  • the present specification provides a battery module including the lithium secondary battery as a unit battery.
  • the battery module may be formed by stacking with a bipolar plate provided between two or more lithium secondary batteries according to one embodiment of the present specification.
  • the bipolar plate may be porous to supply air supplied from the outside to the positive electrode included in each lithium air battery.
  • the bipolar plate may include porous stainless steel or porous ceramic.
  • the battery module may be specifically used as a power source for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, or power storage devices.
  • a first protective layer including an ion conductive electrolyte layer was formed on one surface of a lithium metal having a thickness of 20 ⁇ m.
  • a cross-linked ion conductive electrolyte layer was formed on one surface of a silicone-based release film (SKC Hass).
  • Cu was deposited on one surface of the crosslinked ion conductive electrolyte layer. As the Cu is vacuum-deposited on one surface of the ion-conducting electrolyte layer, Cu particles penetrate the ion-conducting electrolyte layer and go inside, where the Cu particles are electrically connected to each other inside the ion-conducting electrolyte layer, so that a space is formed therein.
  • a second protective layer was prepared by forming a Cu matrix in the form of a three-dimensional structure.
  • a lithium electrode was manufactured by transferring the second protective layer on the first protective layer.
  • Li / Li Symmetric Cell was prepared. Since the first protective layer and the second protective layer function as a separator, a separate separator was not used.
  • a lithium electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that only the ion conductive nitrile layer (first protective layer) was formed on the lithium electrode.
  • a lithium electrode and a lithium secondary battery were prepared in the same manner as in Example 1, except that only the ion conductive electrolyte layer crosslinked on the lithium electrode (unformed Cu matrix in the second protective layer) was formed.
  • a lithium electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the protective layer was not formed.
  • the lithium secondary battery was charged and discharged at a current of 0.5 mA / cm 2 and a capacity of 1 mAh / cm 2 at 60 ° C. to measure life characteristics.
  • a modulus was measured at 60 ° C using a dynamic viscoelasticity measuring device (DMA, PerkinElmer DMA 8000) (E ': Storage modulus, E' ': Loss modulus, tan ⁇ (E '' / E ').
  • DMA dynamic viscoelasticity measuring device
  • Table 1 shows the results of measuring the life characteristics and modulus of elasticity.

Abstract

The present invention relates to a lithium electrode and a lithium secondary battery including same, and more particularly comprises a first and a second protection layer sequentially stacked on at least one surface of a lithium metal, wherein the second protection layer includes an electrically conductive matrix and a cross-linked ion conductive electrolyte formed on the inside and the surface of the electrically conductive matrix, and thus the first protection layer has higher ion conductivity than the second protection layer. Therefore, the present invention can suppress growth of lithium dendrites by preventing electrons from flocking to the lithium dendrites formed by the lithium metal, and can physically suppress the growth of the lithium dendrites by the second protection layer at the same time.

Description

리튬 전극 및 이를 포함하는 리튬 이차전지Lithium electrode and lithium secondary battery comprising the same
본 출원은 2018년 10월 31일자 한국 특허 출원 제10-2018-0131652호 및 2019년 10월 31일자 한국 특허 출원 제10-2019-0137931호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0131652 filed on October 31, 2018 and Korean Patent Application No. 10-2019-0137931 filed on October 31, 2019. All content disclosed in the literature is included as part of this specification.
본 발명은 리튬 덴드라이트의 성장을 방지할 수 있는 보호층이 형성된 리튬 전극 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a lithium electrode having a protective layer capable of preventing the growth of lithium dendrites and a lithium secondary battery comprising the same.
최근까지, 음극으로 리튬을 사용하는 고에너지 밀도 전지를 개발하는데 있어 상당한 관심이 있어 왔다. 예를 들어, 비-전기 활성 재료의 존재로 음극의 중량 및 부피를 증가시켜서 전지의 에너지 밀도를 감소시키는 리튬 삽입된 탄소 음극, 및 니켈 또는 카드뮴 전극을 갖는 다른 전기화학 시스템과 비교하여, 리튬 금속은 저중량 및 고용량 특성을 갖기 때문에, 전기화학 전지의 음극 활물질로서 매우 관심을 끌고 있다. 리튬 금속 음극, 또는 리튬 금속을 주로 포함하는 음극은, 리튬-이온, 니켈 금속 수소화물 또는 니켈-카드뮴 전지와 같은 전지보다는 경량화되고 고에너지 밀도를 갖는 전지를 구성할 기회를 제공한다. 이러한 특징들은 프리미엄이 낮은 가중치로 지불되는, 휴대폰 및 랩-탑 컴퓨터와 같은 휴대용 전자 디바이스용 전지에 대해 매우 바람직하다.Until recently, there has been considerable interest in developing high energy density cells using lithium as the negative electrode. Lithium metal compared to other electrochemical systems with lithium intercalated carbon anodes, and nickel or cadmium electrodes, for example, reducing the energy density of the cell by increasing the weight and volume of the anode in the presence of a non-electroactive material Since it has low weight and high capacity characteristics, it is very interesting as an anode active material for electrochemical cells. A lithium metal negative electrode, or a negative electrode mainly containing lithium metal, provides an opportunity to construct a lighter and higher energy density battery than a battery such as a lithium-ion, nickel metal hydride, or nickel-cadmium battery. These features are highly desirable for batteries for portable electronic devices such as cell phones and laptop computers, where the premium is paid at low weight.
종래의 리튬 이온전지는 음극에 그라파이트, 양극에 LCO(Lithium Cobalt Oxide)를 사용하여 700 wh/l 수준의 에너지 밀도를 가지고 있다. 하지만, 최근 높은 에너지 밀도를 필요로 하는 분야가 확대되고 있어, 리튬 이온전지의 에너지 밀도를 증가시켜야 할 필요성이 지속적으로 제기되고 있다. 예를 들어, 전기자동차의 1회 충전 시 주행거리를 500 km 이상으로 늘리기 위해서도 에너지 밀도의 증가가 필요하다.Conventional lithium ion batteries have an energy density of 700 wh / l using graphite as a cathode and lithium cobalt oxide (LCO) as a cathode. However, in recent years, a field requiring a high energy density has been expanded, and the need to increase the energy density of a lithium ion battery has been continuously raised. For example, it is necessary to increase the energy density to increase the mileage to 500 km or more per charge of an electric vehicle.
리튬 이온전지의 에너지 밀도를 높이기 위하여 리튬 전극의 사용이 증가하고 있다. 그러나, 리튬 금속은 반응성이 크고 취급하기 어려운 금속으로서 공정에서 다루기가 어려운 문제가 있다.The use of lithium electrodes is increasing to increase the energy density of lithium ion batteries. However, lithium metal is a metal that is highly reactive and difficult to handle, which is difficult to handle in a process.
리튬 이차전지의 음극으로 리튬금속을 사용할 경우, 리튬금속은 전해질, 물 또는 유기용매등의 불순물, 리튬염 등과 반응하여 부동태층(SEI: Solid Electrolyte Interphase)을 형성한다. 이와 같은 부동태층은 국부상의 전류밀도 차이를 초래하여 충전시 리튬 금속에 의한 수지상의 덴드라이트의 형성을 촉진시키고, 충방전시 점차적으로 성장하여 양극와 음극 사이의 내부 단락을 유발한다. 또한, 덴드라이트는 기계적으로 약한 부분(bottle neck)을 가지고 있어 방전중에 집전체와 전기적 접촉을 상실하는 불활성 리튬(dead lithium)을 형성함으로서 전지의 용량을 감소시키고 싸이클 수명을 단축시키며, 전지의 안정성에 좋지 않은 영향을 미친다.When a lithium metal is used as the negative electrode of a lithium secondary battery, the lithium metal reacts with impurities such as an electrolyte, water or an organic solvent, and a lithium salt to form a solid electrolyte interphase (SEI). Such a passivation layer causes a difference in the current density on the local area to promote the formation of dendritic dendrites by lithium metal during charging, and gradually grows during charging and discharging to cause an internal short circuit between the anode and the cathode. In addition, dendrites have mechanically weak necks (bottle neck) to form inert lithium (dead lithium) that loses electrical contact with the current collector during discharge, thereby reducing the capacity of the battery, shortening the cycle life, and stability of the battery. Has a bad effect on
이와 같은 리튬 금속 음극의 문제점을 개선하기 위하여, 다양한 조성 또는 형태를 가지는 보호층이 형성된 리튬 금속 음극이 개발되어 왔다.In order to improve the problems of the lithium metal negative electrode, a lithium metal negative electrode having a protective layer having various compositions or forms has been developed.
한국공개특허 제2018-0032168호는 다중 보호층을 포함하는 음극에 관한 것으로, 리튬 금속층을 보호하기 하여, 상기 리튬 금속층과의 계면을 유지시키는 보호층, 덴드라이트의 성장을 물리적으로 억제하는 보호층 및 상기 보호층의 구조를 지지하는 보호층을 포함하는 다중 보호층을 형성함으로써, 리튬 덴드라이트로 인한 셀의 부피팽창 문제를 해결할 수 있음을 개시하고 있다.Korean Patent Publication No. 2018-0032168 relates to a negative electrode including a multiple protective layer, and a protective layer that protects a lithium metal layer and maintains an interface with the lithium metal layer, a protective layer that physically suppresses the growth of dendrites And by forming a multiple protective layer including a protective layer for supporting the structure of the protective layer, it is disclosed that the problem of volume expansion of the cell due to lithium dendrites can be solved.
이와 같이, 지금까지는 리튬 금속 음극을 사용하는 전지에서, 리튬 금속의 덴드라이트 성장 방지를 위하여 보호층 개발에 대한 연구가 이루어져 왔으며, 리튬 금속 음극에 있어서, 리튬 덴드라이트 성장에 의한 전지 성능 저하 문제는 여전히 해결해야 할 과제로 인식되고 있는 바, 더욱 다양한 형태로 리튬 금속을 보호할 수 있는 보호층이 형성된 리튬 금속 음극의 개발이 시급한 실정이다.As such, in the battery using a lithium metal negative electrode, research on the development of a protective layer has been conducted to prevent the growth of dendrites of lithium metal. In the lithium metal negative electrode, the problem of deterioration in battery performance due to the growth of lithium dendrites is As it is still recognized as a problem to be solved, there is an urgent need to develop a lithium metal negative electrode having a protective layer capable of protecting lithium metal in various forms.
[선행기술문헌][Advanced technical literature]
(특허문헌 1) 한국공개특허 제2018-0032168호(Patent Document 1) Korean Patent Publication No. 2018-0032168
(특허문헌 2) 한국공개특허 제2018-0036564호(Patent Document 2) Korean Patent Publication No. 2018-0036564
본 발명자들은 상기 문제점을 해결하기 위해 다각적으로 연구를 수행한 결과, 리튬 전극에 보호층을 형성하되, 리튬 금속의 표면으로부터 순차적으로, 이온 전도성이 우수한 제1 보호층 및 전기전도성과 물리적 강도가 우수한 제2 보호층을 포함하는 다중 보호층을 상기 리튬 전극에 형성하였다. 이와 같은 다중 보호층에 의해 상기 리튬 전극에서 리튬 덴드라이트의 성장을 억제할 수 있고, defect가 발생하더라도 리튬 덴드라이트의 성장을 최소화할 수 있다.As a result of various studies to solve the above problems, the present inventors formed a protective layer on the lithium electrode, but sequentially from the surface of the lithium metal, a first protective layer having excellent ion conductivity and excellent electrical conductivity and physical strength A multiple protective layer including a second protective layer was formed on the lithium electrode. The multiple layers of protection can suppress the growth of lithium dendrites in the lithium electrode and minimize the growth of lithium dendrites even when defects occur.
따라서, 본 발명은 목적은 다중 보호층이 형성된 리튬 전극을 제공하는 것이다.Accordingly, an object of the present invention is to provide a lithium electrode having multiple protective layers.
또한, 본 발명의 다른 목적은 상술한 바와 같이 다중 보호층이 형성된 리튬 전극을 포함하는 리튬 이차전지를 제공하는 것이다.In addition, another object of the present invention is to provide a lithium secondary battery including a lithium electrode having a multiple protective layer as described above.
상기 목적을 달성하기 위해, 본 발명은, 리튬 금속; 및 상기 리튬 금속의 적어도 일면에 형성된 보호층;을 포함하는 리튬 전극에 있어서, 상기 보호층은 상기 리튬 금속의 적어도 일면에 형성된 제1 보호층; 및 상기 제1 보호층 상에 형성된 제2 보호층을 포함하며, 상기 제1 보호층은 이온 전도성 전해질을 포함하고, 상기 제2 보호층은 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함하는, 리튬 전극.In order to achieve the above object, the present invention, lithium metal; And a protective layer formed on at least one surface of the lithium metal, wherein the protective layer comprises: a first protective layer formed on at least one surface of the lithium metal; And a second protective layer formed on the first protective layer, wherein the first protective layer includes an ion conductive electrolyte, and the second protective layer includes an electrically conductive matrix and a crosslinked ion conductive electrolyte. electrode.
본 발명은 또한, 상기 리튬 전극을 포함하는 리튬 전극을 포함하는 리튬 이차전지를 제공한다.The present invention also provides a lithium secondary battery comprising a lithium electrode comprising the lithium electrode.
본 발명에 따르면, 리튬 전극은 리튬 금속의 표면에 순차적으로 형성된 제1 및 제2 보호층을 포함하는 다중 보호층이 형성되어 있으며, 리튬 금속과 접하고 있는 제1 보호층에 의해 충방전시 리튬 금속의 부피 변화를 방지할 수 있다.According to the present invention, the lithium electrode is formed of multiple protective layers including first and second protective layers sequentially formed on the surface of the lithium metal, and the lithium metal during charging and discharging by the first protective layer in contact with the lithium metal It can prevent the volume change.
또한, 상기 제2 보호층은 전기 전도성 매트릭스의 내부와 표면에 가교된 이온 전도성 전해질이 형성된 형태가 되므로, 제1 보호층이 제2 보호층에 비해 이온 전도도가 높게 되고, 이에 상기 리튬 금속으로부터 형성되는 리튬 덴드라이트로 전자가 쏠리는 현상을 방지함으로써 리튬 덴드라이트의 성장을 억제할 수 있다.In addition, since the second protective layer is in the form of an ion conductive electrolyte cross-linked inside and on the surface of the electrically conductive matrix, the first protective layer has a higher ion conductivity than the second protective layer, and thus is formed from the lithium metal. The growth of lithium dendrites can be suppressed by preventing electrons from being focused with the lithium dendrites.
또한, 상기 제2 보호층은 제1 보호층 상에 형성되어, 충방전이 진행됨에 따라 리튬 금속과 전기적으로 연결되어 리튬 덴드라이트가 제1 보호층 내부에서만 포함되어 있도록 하여, 리튬 전극 외부로 리튬 덴드라이트가 성장하는 것을 방지할 수 있다.In addition, the second protective layer is formed on the first protective layer, and is electrically connected to lithium metal as charging and discharging proceeds, so that lithium dendrites are included only inside the first protective layer, and lithium outside the lithium electrode. Dendrites can be prevented from growing.
또한, 상기 제2 보호층은 우수한 강도로 인하여 리튬 덴드라이트의 성장을 기계적으로 억제함으로써, 리튬 덴드라이트 성장 억제 효과를 더욱 강화할 수 있다.In addition, the second protective layer may further enhance the lithium dendrite growth suppression effect by mechanically suppressing the growth of lithium dendrites due to its excellent strength.
도 1은 본 발명의 일 구현예에 따른 리튬 전극의 모식도이다. 1 is a schematic diagram of a lithium electrode according to an embodiment of the present invention.
도 2 는 본 발명의 일 구현예에 따른 리튬 전극에서 리튬 덴드라이트의 성장이 방지되는 원리를 나타낸 모식도이다.2 is a schematic view showing the principle of preventing the growth of lithium dendrites in a lithium electrode according to an embodiment of the present invention.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid understanding of the present invention.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims should not be interpreted as being limited to ordinary or lexical meanings, and the inventor can appropriately define the concept of terms in order to best describe his or her invention. Based on the principle that it should be interpreted as meanings and concepts consistent with the technical spirit of the present invention.
리튬 전극Lithium electrode
본 발명은 리튬 금속; 및 상기 리튬 금속 상에 형성된 다중 보호층을 포함하는 리튬 전극에 관한 것이며, 상기 다중 보호층은 상기 리튬 금속의 적어도 일면에 순차적으로 적층된 제1 보호층 및 제2 보호층을 포함한다. 제2 보호층은(22)은 두 개의 층이 형성된 것으로 보일 수도 있으나, 후술하는 바와 같이, 전기 전도성 매트릭스의 내부에도 가교된 이온 전도성 전해질이 형성되고, 표면에도 이온 전도성 전해질이 형성되어 두 개의 층으로 보이는 것일 뿐, 도시된 도면의 도면부호 22는 제2 보호층이라는 하나의 층을 가리키는 것이다.The present invention is a lithium metal; And it relates to a lithium electrode including a multiple protective layer formed on the lithium metal, the multiple protective layer includes a first protective layer and a second protective layer sequentially stacked on at least one surface of the lithium metal. The second protective layer 22 may appear to have two layers formed, but as will be described later, a cross-linked ion conductive electrolyte is also formed inside the electrically conductive matrix, and an ion conductive electrolyte is also formed on the surface to form two layers. It is to be seen only, reference numeral 22 in the illustrated drawing refers to one layer called the second protective layer.
이하, 도면을 참조하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
도 1은 본 발명의 일 구현예에 따른 리튬 전극의 모식도이다. 1 is a schematic diagram of a lithium electrode according to an embodiment of the present invention.
도 1을 참조하면, 본 발명에 따른 리튬 전극(1)은 리튬 금속(10); 리튬 금속(10)의 일면에 형성된 제1 보호층(21); 및 제1 보호층(21) 상에 형성된 제2 보호층(22);을 포함한다. 이때, 제1 보호층(21) 및 제2 보호층(22)을 포함하여 다중 보호층(20)이라 한다.Referring to FIG. 1, a lithium electrode 1 according to the present invention includes a lithium metal 10; A first protective layer 21 formed on one surface of the lithium metal 10; And a second protective layer 22 formed on the first protective layer 21. In this case, the first protective layer 21 and the second protective layer 22 including the multiple protective layer 20 are referred to.
도 2는 본 발명의 일 구현예에 따른 리튬 전극에서 리튬 덴드라이트의 성장이 방지되는 원리를 나타낸 모식도이다.2 is a schematic view showing the principle of preventing the growth of lithium dendrites in a lithium electrode according to an embodiment of the present invention.
도 2를 참조하면, 충방전이 진행됨에 따라 리튬 금속(10)의 일면에 리튬 덴드라이트(11)가 생성되어 제2 보호층(22)과 전기적으로 접촉하게 된다. 이때, 전기 전도성이 우수한 제2 보호층(22)의 전자(e-)가 전면적으로 고르게 전달되고 제2 보호층(22)에 비해 제1 보호층(21)의 이온 전도도가 높기 때문에, 리튬 이온(Li+)가 풍부한 제1 보호층(21)에서 환원이 되어 리튬 덴드라이트(11)는 제1 보호층(21) 내부에서만 형성되고 리튬 전극(1)의 외부로 리튬 덴드라이트가 성장하는 것을 방지할 수 있다.Referring to FIG. 2, as charging and discharging proceeds, lithium dendrites 11 are formed on one surface of the lithium metal 10 to be in electrical contact with the second protective layer 22. At this time, since the electrons (e ) of the second protective layer 22 having excellent electrical conductivity are uniformly transmitted to the entire surface and the ionic conductivity of the first protective layer 21 is higher than that of the second protective layer 22, lithium ions It is reduced in the first protective layer 21 rich in (Li + ), so that the lithium dendrites 11 are formed only inside the first protective layer 21 and the lithium dendrites grow outside the lithium electrode 1. Can be prevented.
본 발명에 있어서, 상기 제1 보호층은 리튬 금속의 적어도 일 표면에 형성되며, 상기 리튬 금속의 표면에서 리튬 이온이 고갈되는 현상을 방지할 수 있다.In the present invention, the first protective layer is formed on at least one surface of the lithium metal, it is possible to prevent the phenomenon of depletion of lithium ions on the surface of the lithium metal.
상기 제1 보호층은 이온 전도성 전해질을 포함할 수 있고, 상기 이온 전도성 전해질은 이온 전도성 고분자를 포함할 수 있다.The first protective layer may include an ion conductive electrolyte, and the ion conductive electrolyte may include an ion conductive polymer.
상기 이온 전도성 고분자는 폴리에틸렌옥사이드(Poly(ethylene oxide): PEO), 폴리프로필렌옥사이드(Poly(polypropylene oxide: PPO), 폴리아크릴로니트릴(Poly(acrylonitrile): PAN) 및 폴리비닐리덴 플루오라이드(Poly(vinylidene fluoride): PVDF)로 이루어진 군에서 선택되는 1종 이상일 수 있다.The ion-conducting polymer includes polyethylene oxide (Poly (ethylene oxide): PEO), polypropylene oxide (Poly (polypropylene oxide: PPO), polyacrylonitrile (PAN)) and polyvinylidene fluoride (Poly ( vinylidene fluoride): PVDF).
또한, 상기 이온 전도성 전해질의 액상, 겔상 또는 고체상일 수 있으며, 바람직하게는 고체상일 수 있다. 상기 이온 전도성 전해질이 고체상일 경우, 상기 이온 전도성 전해질은 이온 전도성 고분자 및 리튬염을 포함하는 것일 수 있으며, 필요에 따라, 첨가제를 추가로 포함할 수도 있다. 리튬염 및 첨가제는 하기 제2 보호층과 관련된 설명에서 후술하는 바와 같다.In addition, the ion-conducting electrolyte may be in a liquid, gel or solid phase, and preferably in a solid phase. When the ion-conducting electrolyte is in a solid phase, the ion-conducting electrolyte may include an ion-conducting polymer and a lithium salt, and if necessary, an additive may be further included. The lithium salt and the additive are as described below in the description related to the second protective layer.
상기 이온 전도성 고분자를 이루는 단량체와 리튬의 중량비는 10 내지 30:1, 바람직하게는 15 내지 25 : 1 일 수 있으며, 상기 중량비를 만족할 경우, 우수한 이온 전도도 및 리튬 덴드라이트 억제 효과가 가장 좋을 수 있다. 예컨대, 상기 이온 전도성 고분자는 이루는 에틸옥사이드와 리튬의 중량비가 10 내지 30 : 1인 것일 수 있다.The weight ratio of the monomer constituting the ion-conducting polymer and lithium may be 10 to 30: 1, preferably 15 to 25: 1, and when the weight ratio is satisfied, an excellent ion conductivity and a lithium dendrite suppression effect may be best. . For example, the ion-conducting polymer may have a weight ratio of 10 to 30: 1 of ethyl oxide and lithium.
상기 제1 보호층의 이온 전도도는 10-5 내지 10-2 S/cm, 바람직하게는 10-4 내지 10-3 S/cm 일 수 있다. 상기 범위 미만이면 리튬 금속 표면에서 리튬 이온이 고갈되는 현상이 발생할 수도 있어 전지 성능이 저하될 수 있고, 상기 범위 초과일 경우 이온 전도도가 증가하더라도 전지 성능이 더 향상되는 것은 아니다.The ion conductivity of the first protective layer may be 10 -5 to 10 -2 S / cm, preferably 10 -4 to 10 -3 S / cm. If the amount is less than the above range, lithium ion may be depleted on the surface of the lithium metal, and thus battery performance may be deteriorated. If the ion conductivity is increased, battery performance is not further improved.
본 발명에 있어서, 상기 제2 보호층은 상기 제1 보호층 상에 형성되며, 제2 보호층에 비해 리튬 이온이 상대적을 많이 존재하는 리튬 금속의 표면, 즉, 제1 보호층으로 전자가 전달되도록 하여 제1 보호층에 생성되는 리튬 덴드라이트로 전자가 쏠리는 현상을 방지하여 리튬 덴드라이트의 성장을 억제하는 역할을 한다.In the present invention, the second protective layer is formed on the first protective layer, and electrons are transferred to the surface of the lithium metal having a relatively large amount of lithium ions compared to the second protective layer, that is, the first protective layer. By preventing the electrons from being focused on the lithium dendrites generated in the first protective layer, it serves to suppress the growth of lithium dendrites.
상기 제2 보호층은 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함할 수 있다. 상기 전기 전도성 매트릭스는 내부 공간이 형성된 3차원 구조체 형태일 수 있다. 상기 내부 공간을 기공이라 지칭할 수 있다.The second protective layer may include an electrically conductive matrix and a crosslinked ion conductive electrolyte. The electrically conductive matrix may be in the form of a three-dimensional structure in which an internal space is formed. The interior space may be referred to as pore.
상기 전기 전도성 매트릭스의 내부 공간에 이온 전도성 전해질이 채워질 수 있을 수도 있고, 상기 전기 전도성 매트릭스가 상기 가교된 이온 전도성 전해질에 의해 감싸진 형태, 즉, 상기 전기 전도성 매트릭스의 표면에 상기 가교된 이온 전도성 전해질이 형성된 형태일 수도 있다.An ion conductive electrolyte may be filled in the inner space of the electrically conductive matrix, and the electrically conductive matrix is enclosed by the crosslinked ion conductive electrolyte, that is, the crosslinked ion conductive electrolyte on the surface of the electrically conductive matrix It may be formed.
상기 제2 보호층의 이와 같은 형태로 인하여 리튬 전극의 표면에 전기 전도도를 균일하게 할 수 있어 리튬 덴드라이트의 성장을 억제할 수 있다.Due to this form of the second protective layer, the electrical conductivity can be made uniform on the surface of the lithium electrode, thereby suppressing the growth of lithium dendrites.
또한, 상기 제2 보호층 자체의 강도로 인하여 리튬 덴드라이트의 성장을 억제하고, 이에 따라 전기적 접촉이 끓어진 리튬(dead Li)의 발생을 방지할 수 있다In addition, due to the strength of the second protective layer itself, the growth of lithium dendrites can be suppressed, thereby preventing the occurrence of dead lithium in electrical contact.
또한, 상기 제2 보호층에서, 상기 전기 전도성 매트릭스와 가교된 이온 전도성 전해질에 포함된 이온 전도성 고분자의 중량비는 3:7 내지 7:3 일 수 있다. 상기와 같이 규정된 중량 범위를 벗어나 전기 전도성 매트릭스가 적정 중량보다 많을 경우, 이온 전도성 고분자의 함량이 상대적으로 감소되므로 보호층의 Li 이온 전도성이 매우 낮아 보호층 위에서 자라는 Li이 더 많아서 Li 덴드라이트 성장을 억제하기 어렵다. 반대로, 상기와 같이 규정된 중량 범위를 벗어나 전기 전도성 매트릭스가 적정 중량보다 작을 경우, 수직/수평적 전기 전도도가 저하되어 전극 표면에 균일한 전자 전달이 어려울 수 있다.In addition, in the second protective layer, the weight ratio of the ion conductive polymer contained in the ion conductive electrolyte cross-linked with the electrically conductive matrix may be 3: 7 to 7: 3. When the electrically conductive matrix exceeds the prescribed weight range as described above, the content of the ion-conducting polymer is relatively reduced, so the Li ion conductivity of the protective layer is very low, and more Li grows on the protective layer, resulting in the growth of Li dendrites. It is difficult to suppress. Conversely, if the electrically conductive matrix is outside the prescribed weight range as described above and is smaller than the appropriate weight, vertical / horizontal electrical conductivity may be lowered and uniform electron transfer to the electrode surface may be difficult.
상기 가교된 이온 전도성 전해질은 고체상일 수 있으며, 상기 이온 전도성 전해질은 이온 전도성 고분자와 함께 전해액에서 용매를 제외한 나머지 성분을 25 내지 50 중량% 포함할 수 있다. 다시 말해, 상기 이온 전도성 고분자 100 중량% 대비, 상기 전해액에서 용매를 제외한 나머지 성분의 함량은 25 내지 50 중량% 일 수 있다. 이때, 상기 전해액에서 용매를 제외한 나머지 성분은 리튬염과 첨가제일 수 있다.The crosslinked ion-conducting electrolyte may be in a solid phase, and the ion-conducting electrolyte may include 25 to 50% by weight of the remaining components excluding the solvent in the electrolyte together with the ion-conducting polymer. In other words, compared to 100% by weight of the ion conductive polymer, the content of the remaining components excluding the solvent in the electrolyte may be 25 to 50% by weight. At this time, the remaining components other than the solvent in the electrolyte may be a lithium salt and an additive.
상기 이온 전도성 고분자를 이루는 단량체와 리튬의 중량비는 10 내지 30:1, 바람직하게는 15 내지 25 : 1 일 수 있으며, 상기 중량비를 만족할 경우, 우수한 전기 전도도 및 리튬 덴드라이트 억제 효과가 가장 좋을 수 있다. 예컨대, 상기 이온 전도성 고분자는 이루는 에틸옥사이드와 리튬의 중량비가 10 내지 30 : 1인 것일 수 있다.The weight ratio of the monomer constituting the ion-conducting polymer and lithium may be 10 to 30: 1, preferably 15 to 25: 1, and when the weight ratio is satisfied, an excellent electrical conductivity and a lithium dendrite suppression effect may be best. . For example, the ion-conducting polymer may have a weight ratio of 10 to 30: 1 of ethyl oxide and lithium.
또한, 상기 가교된 이온 전도성 전해질은 가교제를 포함할 수 있으며, 상기 가교제는 폴리에틸렌글리콜디아크릴레이트(Poly(ethylene glycol) diacrylate: PEGDA), 폴리에틸렌글리콜디메타크릴레이트(Poly(ethylene glycol) dimethacrylate: PEGDMA), 폴리프로필렌글리콜디아크릴레이트(Poly(propylene glycol) diacrylate: PPGDA) 및 폴리프로필렌글리콜디메타크릴레이트(Poly(propylene glycol) dimethacrylate: PPGDMA)로 이루어진 군에서 선택되는 1종 이상일 수 있다.In addition, the crosslinked ion conductive electrolyte may include a crosslinking agent, and the crosslinking agent is polyethylene glycol diacrylate (PEGDA), polyethylene glycol dimethacrylate (PEGDMA). ), Polypropylene glycol diacrylate (Poly (propylene glycol) diacrylate: PPGDA) and polypropylene glycol dimethacrylate (Poly (propylene glycol) dimethacrylate: PPGDMA).
상기 이온 전도성 고분자와 가교제의 중량비는 70 내지 90 : 10 내지 30 일 수 있으며, 상기 중량비 범위를 만족할 경우, 모듈러스가 우수하여 리튬 덴드라이트 성장 억제에 효율적인 가교된 이온 전도성 전해질층이 형성될 수 있다.The weight ratio of the ion conductive polymer and the crosslinking agent may be 70 to 90: 10 to 30, and when the weight ratio range is satisfied, a crosslinked ion conductive electrolyte layer that is effective in suppressing lithium dendrite growth may be formed because of excellent modulus.
상기 제2 보호층에서 이온 전도성 전해질이 위와 같이 가교된 형태를 나타내어, 가교되지 않은 이온 전도성 전해질을 포함하는 제1 보호층에 비해 이온 전도도가 낮아지게 된다.In the second protective layer, the ion conductive electrolyte exhibits a crosslinked form as described above, so that the ion conductivity is lower than that of the first protective layer including the non-crosslinked ion conductive electrolyte.
본 발명에 있어서, 상기 제2 보호층의 면저항은 5 x 10-2 Ω/sq. 내지 1000 Ω/sq., 바람직하게는 1x10-2 Ω/sq. 내지 500 Ω/sq., 보다 바람직하게는 1 x 10- 2 Ω/sq. 내지 300 Ω/sq 일 수 있다. 상기 범위 미만일 경우는 보호층 위에서 자라는 Li이 더 많아서 Li 덴드라이트 성장을 억제하기 어렵고, 상기 범위 초과이면 큰 저항층으로 작용하여 전지의 수명 특성이 저하될 수 있다. In the present invention, the sheet resistance of the second protective layer is 5 x 10 -2 Ω / sq. To 1000 Ω / sq., Preferably 1 × 10 -2 Ω / sq. To about 500 Ω / sq, more preferably from 1 x 10 -. 2 Ω / sq. To 300 Ω / sq. If it is less than the above range, it is difficult to suppress the growth of Li dendrites because there is more Li growing on the protective layer, and if it is above the range, the life characteristics of the battery may be deteriorated by acting as a large resistance layer.
본 발명에 있어서, 상기 제2 보호층의 이온 전도도는 상온에서 1x10-6 S/cm 내지 1x10-2 S/cm, 바람직하게는 1x10-5 S/cm 내지 1x10-2 S/cm, 보다 바람직하게는 1x10-4 S/cm 내지 1x10-2 S/cm 일 수 있다. 상기 범위 미만이면 이온 전도도가 좋지 않아 보호층 위에서 자라는 Li이 더 많아서 Li 덴드라이트 성장을 억제하기 어렵고, 상기 범위 초과인 보호층은 형성될 수가 없다. 상기 제2 보호층의 이온 전도도는 수직 리튬 이온 전도도를 의미하는 것일 수도 있다.In the present invention, the ion conductivity of the second protective layer is 1x10 -6 S / cm to 1x10 -2 S / cm at room temperature, preferably 1x10 -5 S / cm to 1x10 -2 S / cm, more preferably May be 1x10 -4 S / cm to 1x10 -2 S / cm. If it is less than the above range, the ion conductivity is not good, so there is more Li growing on the protective layer, so it is difficult to suppress the growth of Li dendrites, and a protective layer exceeding the above range cannot be formed. The ion conductivity of the second protective layer may mean vertical lithium ion conductivity.
상기 제1 보호층의 이온 전도도 범위와 상기 제2 보호층의 이온 전도도 범위 내에서, 상기 제1 보호층의 이온 전도도가 제2 보호층의 이온 전도도 보다 더 높게 나타난다.Within the ionic conductivity range of the first protective layer and the ionic conductivity range of the second protective layer, the ionic conductivity of the first protective layer is higher than the ionic conductivity of the second protective layer.
본 발명에 있어서, 상기 전기 전도성 매트릭스에 포함된 전기 전도성 물질은 상기 전기 전도성 매트릭스 전체에 걸쳐 3차원 구조체를 형성하면서 균일하게 분포되므로, 상기 보호층이 균일한 전기 전도도를 나타낼 수 있도록 할 수 있다.In the present invention, the electrically conductive material included in the electrically conductive matrix is uniformly distributed while forming a three-dimensional structure throughout the electrically conductive matrix, so that the protective layer can exhibit uniform electrical conductivity.
상기 전기 전도성 물질은 전기 전도성 금속, 반도체 및 전기 전도성 고분자로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 전기 전도성 금속은 구리, 금, 은, 알루미늄, 니켈, 아연, 탄소, 주석 및 인듐으로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 반도체는 실리콘 및 게르마늄으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 전기 전도성 고분자는 PEDOT (poly(3,4-ethylenedioxythiophene)), 폴리아닐린 (polyaniline), 폴리피롤 (polypyrrole), 폴리사이오펜 (polythiophene), 폴리아세틸렌 (polyacetylene), 폴리페닐렌 (polyphenylene) 및 폴리시에닐렌 비닐렌 (poly(thienylene vinylene))으로 이루어진 군에서 선택된 1종 이상일 수 있다.The electrically conductive material may be at least one selected from the group consisting of electrically conductive metals, semiconductors, and electrically conductive polymers. The electrically conductive metal may be at least one selected from the group consisting of copper, gold, silver, aluminum, nickel, zinc, carbon, tin and indium. The semiconductor may be one or more selected from the group consisting of silicon and germanium. The electrically conductive polymer is PEDOT (poly (3,4-ethylenedioxythiophene)), polyaniline, polypyrrole, polythiophene, polyacetylene, polyphenylene and polyphenylene It may be at least one selected from the group consisting of poly (thienylene vinylene).
본 발명에 있어서, 상기 전기 전도성 매트릭스에 포함된 이온 전도성 전해질은 이온 전도성 고분자를 포함할 수 있다. In the present invention, the ion conductive electrolyte contained in the electrically conductive matrix may include an ion conductive polymer.
상기 이온 전도성 고분자는 폴리에틸렌옥사이드(Poly(ethylene oxide): PEO), 폴리프로필렌옥사이드(Poly(polypropylene oxide: PPO), 폴리아크릴로니트릴(Poly(acrylonitrile): PAN) 및 폴리비닐리덴 플루오라이드(Poly(vinylidene fluoride): PVDF)로 이루어진 군에서 선택되는 1종 이상일 수 있다.The ion-conducting polymer includes polyethylene oxide (Poly (ethylene oxide): PEO), polypropylene oxide (Poly (polypropylene oxide: PPO), polyacrylonitrile (PAN)) and polyvinylidene fluoride (Poly ( vinylidene fluoride): PVDF).
또한, 상기 이온 전도성 전해질은 액상, 겔상 또는 고체상일 수 있다. 이와 같은 이온 전도성 전해질의 형태는, 상기 이온 전도성 고분자의 특성에 따라 결정될 수 있다.In addition, the ion-conducting electrolyte may be in a liquid, gel or solid phase. The form of such an ion-conducting electrolyte may be determined according to the properties of the ion-conducting polymer.
상기 액상 또는 겔상 이온 전도성 전해질에 포함된 액상 또는 겔상 전해액은 리튬염, 비수계 용매 및 추가로 첨가제를 더 포함할 수 있다. 상기 고체상 이온 전도성 전해질에는 리튬염 및 추가로 첨가제를 더 포함할 수 있다.The liquid or gel electrolyte contained in the liquid or gel ion conductive electrolyte may further include a lithium salt, a non-aqueous solvent, and additional additives. The solid phase ion conductive electrolyte may further include a lithium salt and additional additives.
상기 리튬염은 LiCl, LiBr, LiI, LiNO3, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬 및 리튬 이미드로 이루어진 군에서 선택되는 1종 이상일 수 있다.The lithium salt is LiCl, LiBr, LiI, LiNO 3 , LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carboxylate, 4-phenyl lithium borate And it may be one or more selected from the group consisting of lithium imide.
또한, 상기 이온 전도성 전해질에 포함되는 비수계 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 슬러리인 카보네이트 화합물을 포함할 수 있다.In addition, as the non-aqueous solvent included in the ion conductive electrolyte, those commonly used in electrolytes for lithium secondary batteries can be used without limitation, for example, ether, ester, amide, linear carbonate, cyclic carbonate, etc., respectively, alone or It can be used by mixing two or more kinds. Among them, a cyclic carbonate, a linear carbonate, or a carbonate compound that is a slurry thereof may be included.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리가 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinyl ethylene carbonate, and any one selected from the group consisting of halides, or a slurry of two or more of them. Examples of these halides include, but are not limited to, fluoroethylene carbonate (FEC).
또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 슬러리 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다. 특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 만들 수 있다.In addition, specific examples of the linear carbonate compound may be any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate or these Among them, two or more kinds of slurries may be used, but are not limited thereto. Particularly, among the carbonate-based organic solvents, ethylene carbonate and propylene carbonate, which are cyclic carbonates, are high-viscosity organic solvents and have a high dielectric constant, so that lithium salts in the electrolyte can be better dissociated, such as dimethyl carbonate and diethyl carbonate. When a low-viscosity, low-permittivity linear carbonate is mixed and used in an appropriate ratio, an electrolyte having a higher electrical conductivity can be prepared.
또한, 상기 비수계 용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, as the ether in the non-aqueous solvent, any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether and ethylpropyl ether, or two or more of them may be used. , But is not limited thereto.
또한, 상기 비수계 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.Further, among the non-aqueous solvents, esters include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, γ-butyrolactone, γ-valerolactone, and γ-caprolactone. , σ-valerolactone and ε-caprolactone, any one selected from the group or two or more of them may be used, but is not limited thereto.
또한, 상기 이온 전도성 전해질에 포함되는 첨가제는 플루오로에틸렌카보네이트(FEC), 1,3-프로판술톤(1,3-PS) 및 비닐에틸렌카보네이트(VEC)로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 바람직하게는 플루오로에틸렌카보네이트(FEC) 일 수 있다.In addition, the additive included in the ion conductive electrolyte may be at least one selected from the group consisting of fluoroethylene carbonate (FEC), 1,3-propanesultone (1,3-PS) and vinyl ethylene carbonate (VEC), , Preferably fluoroethylene carbonate (FEC).
상기 첨가제의 함량은 상기 전해액 전체 중량을 기준으로 2 내지 13 중량%, 바람직하게는 3 내지 10 중량%, 보다 바람직하게는 4 내지 8 중량% 일 수 있다. 이 상기 범위 내인 경우, 리튬 이차 전지의 수명 특성을 개선할 수 있고, 리튬 이차전지의 두께 팽창률을 저감할 수 있다. The content of the additive may be 2 to 13% by weight, preferably 3 to 10% by weight, more preferably 4 to 8% by weight based on the total weight of the electrolyte. If it is within the above range, the life characteristics of the lithium secondary battery can be improved, and the thickness expansion rate of the lithium secondary battery can be reduced.
리튬 전극의 제조방법Manufacturing method of lithium electrode
본 발명은 또한, 리튬 전극의 제조방법에 관한 것으로, (A) 리튬 금속 상에 제1 보호층을 형성하는 단계; (B) 이형필름 상에 제2 보호층을 형성하는 단계; 및 (C) 상기 제1 보호층 상에 상기 제2 보호층을 전사하는 단계;를 포함할 수 있다. The present invention also relates to a method of manufacturing a lithium electrode, (A) forming a first protective layer on a lithium metal; (B) forming a second protective layer on the release film; And (C) transferring the second protective layer on the first protective layer.
이하, 각 단계별로 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail in each step.
상기 (A) 단계에서는 리튬 금속 상에 제1 보호층을 형성할 수 있다.In the step (A), a first protective layer may be formed on the lithium metal.
상기 제1 보호층은 전술한 바와 같이 이온 전도성 전해질을 포함하고, 상기 이온 전도성 전해질은 이온 전도성 고분자를 포함한다.The first protective layer includes an ion conductive electrolyte as described above, and the ion conductive electrolyte includes an ion conductive polymer.
상기 이온 전도성 고분자를 전해액에 용해시켜 혼합 용액을 만들어, 상기 이형필름 상에 도포하여 이온 전도성 전해질층을 형성한 후, 리튬 금속에 전사하여 제1 보호층을 형성할 수 있다. 또는, 상기 이온 전도성 고분자를 전해액에 용해시켜 혼합 용액을 만들어, 리튬 전극에 도포하여 제1 보호층을 형성할 수 있다. 이때, 상기 혼합 용액의 농도는 고형분 중량을 기준으로 15 내지 35 중량%일 수 있으며, 이 경우, 제1 보호층 형성 공정이 원활하게 이루어질 수 있고, 제조된 제1 보호층의 불량율도 감소시킬 수 있다.After dissolving the ion-conducting polymer in an electrolytic solution, a mixed solution is formed and applied onto the release film to form an ion-conductive electrolyte layer, and then transferred to lithium metal to form a first protective layer. Alternatively, the ion-conductive polymer may be dissolved in an electrolyte solution to form a mixed solution, and applied to a lithium electrode to form a first protective layer. At this time, the concentration of the mixed solution may be 15 to 35% by weight based on the weight of the solid content, in this case, the first protective layer forming process can be made smoothly, and the defective rate of the manufactured first protective layer can also be reduced. have.
상기 이형필름의 재료 및 두께는 특별히 제한되지 않으며, 각종 필름이 사용될 수 있다. 이형필름으로, 예를 들면, 폴리에틸렌테레프탈레이트(PET) 필름, 폴리에틸렌(PE) 필름, 폴리프로필렌(PP) 필름, 실리콘계 이형필름 등을 사용할 수 있으며, 이형필름 두께는, 예를 들면, 12㎛ 내지 80㎛를 가질 수 있다.The material and thickness of the release film are not particularly limited, and various films may be used. As the release film, for example, a polyethylene terephthalate (PET) film, a polyethylene (PE) film, a polypropylene (PP) film, a silicone-based release film, etc. can be used, and the release film thickness is, for example, 12 μm to 80 μm.
상기 도포 방법은 용액 캐스팅, 스프레이 캐스팅, 스프레잉 또는 롤링일 수 있으나, 이에 제한되는 것은 아니다.The coating method may be solution casting, spray casting, spraying or rolling, but is not limited thereto.
또한, 상기 제1 보호층은 레이어 또는 필름 형태일 수 있으며, 이와 같은 형태가 잘 형성될 수 있도록 개시제를 함께 사용할 수 도 있다. 상기 개시제는 아조비스이소부티로니트릴, 벤조일퍼옥사이드, t-부틸퍼옥시-2-에틸-헥사노에이트, 큐밀퍼옥사이드, t-부틸퍼옥사이드 및 1,1-디(t-부틸퍼옥시)시클로헥산으로 이루어진 군으로부터 선택된 1 종 이상일 수 있다.In addition, the first protective layer may be in the form of a layer or a film, and an initiator may be used together so that such a form is well formed. The initiators are azobisisobutyronitrile, benzoyl peroxide, t-butylperoxy-2-ethyl-hexanoate, cumyl peroxide, t-butyl peroxide and 1,1-di (t-butylperoxy) It may be one or more selected from the group consisting of cyclohexane.
상기 (B) 단계에서는 이형필름 상에 제2 보호층을 형성할 수 있다.In the step (B), a second protective layer may be formed on the release film.
상기 제2 보호층은 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함하는 형태이다.The second protective layer is in a form including an electrically conductive matrix and a crosslinked ion conductive electrolyte.
상기 제2 보호층의 제조방법은, (b1) 이형필름에 이온 전도성 고분자, 가교제 및 리튬염의 혼합물을 도포하여 가교된 이온 전도성 전해질층을 형성하는 단계; 및 (b2) 상기 가교된 이온 전도성 전해질층에 전기 전도성 물질을 증착하여, 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함하는 제2 보호층을 형성하는 단계;를 포함할 수 있다.The manufacturing method of the second protective layer, (b1) forming a crosslinked ion conductive electrolyte layer by coating a release film with a mixture of an ion conductive polymer, a crosslinking agent, and a lithium salt; And (b2) depositing an electrically conductive material on the crosslinked ion conductive electrolyte layer to form a second protective layer including an electrically conductive matrix and a crosslinked ion conductive electrolyte.
(b1) 단계에서는, 이형필름에 이온 전도성 고분자 및 가교제를 전해액에 용해시켜 혼합 용액을 만들어 이형필름 상에 도포하여 가교된 이온 전도성 전해질층을 형성할 수 있다. 이때, 상기 혼합 용액의 농도는 고형분 중량을 기준으로 15 내지 35 중량%일 수 있으며, 이 경우, 제1 보호층 형성 공정이 원활하게 이루어질 수 있고, 제조된 제2 보호층의 불량율도 감소시킬 수 있다.In the step (b1), an ion conductive polymer and a crosslinking agent are dissolved in an electrolyte solution in a release film to form a mixed solution and coated on the release film to form a crosslinked ion conductive electrolyte layer. At this time, the concentration of the mixed solution may be 15 to 35% by weight based on the weight of the solid content, in this case, the first protective layer forming process can be made smoothly, and the defective rate of the prepared second protective layer can also be reduced. have.
상기 이형필름의 재료 및 두께는 특별히 제한되지 않으며, 각종 필름이 사용될 수 있다. 이형필름으로, 예를 들면, 폴리에틸렌테레프탈레이트(PET) 필름, 폴리에틸렌(PE) 필름, 폴리프로필렌(PP) 필름, 실리콘계 이형필름 등을 사용할 수 있으며, 이형필름 두께는, 예를 들면, 12㎛ 내지 80㎛를 가질 수 있다.The material and thickness of the release film are not particularly limited, and various films may be used. As the release film, for example, a polyethylene terephthalate (PET) film, a polyethylene (PE) film, a polypropylene (PP) film, a silicone-based release film, etc. can be used, and the release film thickness is, for example, 12 μm to 80 μm.
상기 도포 방법은 용액 캐스팅, 스프레이 캐스팅, 스프레잉 또는 롤링일 수 있으나, 이에 제한되는 것은 아니다.The coating method may be solution casting, spray casting, spraying or rolling, but is not limited thereto.
또한, 상기 가교된 이온 전도성 절해질층을 형성하기 위하여, 개시제를 함께 사용할 수도 있다. 상기 개시제는 아조비스이소부티로니트릴, 벤조일퍼옥사이드, t-부틸퍼옥시-2-에틸-헥사노에이트, 큐밀퍼옥사이드, t-부틸퍼옥사이드 및 1,1-디(t-부틸퍼옥시)시클로헥산으로 이루어진 군으로부터 선택된 1 종 이상일 수 있다.In addition, an initiator may be used together to form the crosslinked ion conductive electrolyte layer. The initiators are azobisisobutyronitrile, benzoyl peroxide, t-butylperoxy-2-ethyl-hexanoate, cumyl peroxide, t-butyl peroxide and 1,1-di (t-butylperoxy) It may be one or more selected from the group consisting of cyclohexane.
상기 (b2) 단계에서는, 상기 가교된 이온 전도성 전해질층에 전기 전도성 물질을 증착하여, 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함하는 제2 보호층을 형성할 수 있다.In the step (b2), an electrically conductive material may be deposited on the crosslinked ion conductive electrolyte layer to form a second protective layer including an electrically conductive matrix and a crosslinked ion conductive electrolyte.
이때, 상기 전기 전도성 물질은 증착시 상기 전기 전도성 물질의 입자들이 상기 가교된 이온 전도성 전해질층을 뚫고 내부로 들어가서, 상기 가교된 이온 전도성 전해질층 내부에 상기 전기 전도성 물질의 입자들이 삽입된 형태가 된다. 상기 가교된 이온 전도성 전해질층 내부에 삽입되어 있는 전기 전도성 물질의 입자들은 섬(island) 형태로 삽입된 형태일 수도 있고, 입자들끼리 연결되어 3차원 구조체의 골격을 이루어 전기 전도성 매트릭스를 형성할 수도 있으며, 상기 섬 형태와 3차원 구조체가 함께 형성될 형태일 수 있다.At this time, in the electrically conductive material, particles of the electrically conductive material penetrate into the cross-linked ion conductive electrolyte layer during deposition, and particles of the electrically conductive material are inserted into the cross-linked ion conductive electrolyte layer. . The particles of the electrically conductive material inserted into the crosslinked ion conductive electrolyte layer may be in the form of an island or may be connected to each other to form a skeleton of a three-dimensional structure to form an electrically conductive matrix. The island shape and the 3D structure may be formed together.
다시 말해, 상기 전기 전도성 매트릭스의 내부 공간에 가교된 이온 전도성 전해질이 포함된 형태일 수도 있고, 또한, 상기 전기 전도성 매트릭스의 표면에 가교된 이온 전도성 전해질 형성되어 전기 전도성 매트릭스를 감싼 형태일 수도 있다.In other words, a cross-linked ion conductive electrolyte may be included in the inner space of the electrically conductive matrix, or a cross-linked ion conductive electrolyte may be formed on the surface of the electrically conductive matrix to surround the electrically conductive matrix.
상기 (C) 단계에서는 상기 제1 보호층 상에 상기 제2 보호층을 전사하여 리튬 전극을 형성할 수 있다.In the step (C), a lithium electrode may be formed by transferring the second protective layer on the first protective layer.
상기 리튬 금속은 집전체 상에 형성된 것일 수 있다. 상기 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 예컨대, 상기 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄 및 소성 탄소로 이루어진 군에서 선택되는 1종 이상일 수 있다.The lithium metal may be formed on a current collector. The current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery. For example, the current collector may be one or more selected from the group consisting of copper, stainless steel, aluminum, nickel, titanium, and calcined carbon.
리튬 이차전지Lithium secondary battery
본 발명은 또한, 전술한 바와 같은 리튬 전극을 포함하는 리튬 이차전지에 관한 것이다.The present invention also relates to a lithium secondary battery comprising a lithium electrode as described above.
상기 리튬 이차전지에 있어서, 상기 리튬 전극은 음극으로서 포함될 수 있으며, 상기 리튬 이차전지는 상기 음극과 양극 사이에 구비된 전해액을 포함할 수 있다.In the lithium secondary battery, the lithium electrode may be included as a negative electrode, and the lithium secondary battery may include an electrolyte solution provided between the negative electrode and the positive electrode.
상기 리튬 이차전지의 형태는 제한되지 않으며, 예를 들어, 코인형, 평판형, 원통형, 뿔형, 버튼형, 시트형 또는 적층형일 수 있다. 또한, 상기 리튬 이차전지는 양극 전해액 및 음극 전해액을 보관하는 각각의 탱크 및 각각의 전해액을 전극셀로 이동시키는 펌프를 더 포함하여, 플로우 배터리로 제조될 수도 있다.The shape of the lithium secondary battery is not limited, and may be, for example, coin, flat, cylindrical, horn, button, sheet or stacked. In addition, the lithium secondary battery may further include a tank for storing the positive electrode electrolyte and the negative electrode electrolyte, and a pump that moves each electrolyte solution to the electrode cell, and may be manufactured as a flow battery.
상기 전해액은 상기 음극과 양극이 함침된 전해질액일 수 있다. The electrolyte solution may be an electrolyte solution impregnated with the negative electrode and the positive electrode.
상기 리튬 이차전지는 상기 음극과 양극 사이에 구비된 분리막을 더 포함할 수 있다. 상기 음극과 양극 사이에 위치하는 분리막은 음극과 양극을 서로 분리 또는 절연시키고, 음극과 양극 사이에 이온 수송을 가능하게 하는 것이면, 어느 것이나 사용 가능하다. 예를 들어, 비전도성 다공성막 또는 절연성 다공성막일 수 있다. 더욱 구체적으로 폴리프로필렌 소재의 부직포나 폴리페닐렌 설파이드 소재의 부직포와 같은 고분자 부직포; 또는 폴리에틸렌이나 폴리프로필렌과 같은 올레핀계 수지의 다공성 필름을 예시할 수 있으며, 이들을 2종 이상 병용하는 것도 가능하다.The lithium secondary battery may further include a separator provided between the negative electrode and the positive electrode. The separator positioned between the negative electrode and the positive electrode may be used as long as it separates or insulates the negative electrode and the positive electrode from each other and enables ion transport between the negative electrode and the positive electrode. For example, it may be a non-conductive porous film or an insulating porous film. More specifically, a polymer nonwoven fabric such as a nonwoven fabric of polypropylene material or a nonwoven fabric of polyphenylene sulfide material; Alternatively, a porous film of an olefin-based resin such as polyethylene or polypropylene can be exemplified, and it is also possible to use two or more of these together.
상기 리튬 이차전지는 분리막에 의해 구분된 양극 측의 양극 전해액 및 음극 측의 음극 전해액을 더 포함할 수 있다. 상기 양극 전해액 및 음극 전해액은 각각 용매 및 전해염을 포함할 수 있다. 상기 양극 전해액 및 음극 전해액은 서로 동일하거나 서로 상이할 수 있다.The lithium secondary battery may further include a positive electrode electrolyte on the positive electrode side and a negative electrode electrolyte on the negative electrode side separated by a separator. The positive electrode electrolyte and the negative electrode electrolyte may each include a solvent and an electrolytic salt. The positive electrode electrolyte and the negative electrode electrolyte may be the same as or different from each other.
상기 전해액은 수계 전해액 또는 비수계 전해액일 수 있다. 상기 수계 전해액은 용매로서 물을 포함할 수 있으며, 상기 비수계 전해액은 용매로서 비수계 용매를 포함할 수 있다.The electrolyte solution may be an aqueous electrolyte solution or a non-aqueous electrolyte solution. The aqueous electrolyte solution may include water as a solvent, and the non-aqueous electrolyte solution may include a non-aqueous solvent as a solvent.
상기 비수계 용매는 당 기술분야에서 일반적으로 사용하는 것을 선택할 수 있으며, 특별히 한정하지 않으나, 예를 들면, 카보네이트계, 에스테르계, 에테르계, 케톤계, 유기황(organosulfur)계, 유기인(organophosphorous)계, 비양성자성 용매 및 이들의 조합으로 이루어지는 군으로부터 선택될 수 있다.The non-aqueous solvent may be selected to be generally used in the art, and is not particularly limited, for example, carbonate-based, ester-based, ether-based, ketone-based, organosulfur-based, organophosphorous ), Aprotic solvent, and combinations thereof.
상기 전해염은 물 또는 비수계 유기용매에서 양이온 및 음이온으로 해리되는 것을 말하며, 리튬 이차전지에서 리튬 이온을 전달할 수 있다면 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용하는 것을 선택할 수 있다.The electrolytic salt refers to dissociation into a cation and an anion in a water or non-aqueous organic solvent, and is not particularly limited as long as it can deliver lithium ions in a lithium secondary battery, and can be selected generally used in the art.
상기 전해액에서 전해염의 농도는 0.1 M 이상 3 M 이하일 수 있다. 이 경우 리튬 이차전지의 충방전 특성이 효과적으로 발현될 수 있다.The concentration of the electrolytic salt in the electrolytic solution may be 0.1 M or more and 3 M or less. In this case, charge and discharge characteristics of the lithium secondary battery can be effectively expressed.
상기 전해질은 고체 전해질막 또는 고분자 전해질막일 수 있다.The electrolyte may be a solid electrolyte membrane or a polymer electrolyte membrane.
상기 고체 전해질막 및 고분자 전해질막의 재질은 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용되는 것을 채용할 수 있다. 예를 들면, 상기 고체 전해질막은 복합금속산화물을 포함할 수 있으며, 상기 고분자 전해질막은 다공성 기재의 내부에 전도성 고분자가 구비된 막일 수 있다.Materials of the solid electrolyte membrane and the polymer electrolyte membrane are not particularly limited, and those generally used in the art may be employed. For example, the solid electrolyte membrane may include a composite metal oxide, and the polymer electrolyte membrane may be a membrane provided with a conductive polymer inside the porous substrate.
상기 양극은 리튬 이차전지에서 전지가 방전될 때 전자를 받아들이며 리튬 함유 이온이 환원되는 전극을 의미한다. 반대로, 전지의 충전 시에는 음극(산화전극)의 역할을 수행하여 양극 활물질이 산화되어 전자를 내보내고 리튬 함유 이온을 잃게 된다.The positive electrode means an electrode that accepts electrons and reduces lithium-containing ions when the battery is discharged from a lithium secondary battery. Conversely, when the battery is charged, it acts as a negative electrode (oxidizing electrode), oxidizing the positive electrode active material to release electrons and lose lithium-containing ions.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함할 수 있다.The positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
본 명세서에서, 상기 음극과 함께 리튬 이차전지에 적용되어 방전시 리튬 함유 이온이 환원하고 충전시에 산화될 수 있다면 상기 양극 활물질층의 양극 활물질의 재질은 특별히 한정되지 않는다. 예를 들면, 전이금속 산화물 또는 황(S)을 기반으로 하는 복합재일 수 있으며, 구체적으로 LiCoO2, LiNiO2, LiFePO4, LiMn2O4, LiNixCoyMnzO2(여기서, x+y+z=1), Li2FeSiO4, Li2FePO4F 및 Li2MnO3 중 적어도 하나를 포함할 수 있다.In this specification, the material of the positive electrode active material of the positive electrode active material layer is not particularly limited as long as it is applied to a lithium secondary battery together with the negative electrode to reduce lithium-containing ions during discharge and oxidize during charging. For example, it may be a transition metal oxide or a composite material based on sulfur (S), specifically LiCoO 2 , LiNiO 2 , LiFePO 4 , LiMn 2 O 4 , LiNi x Co y MnzO 2 (here, x + y + z = 1), Li 2 FeSiO 4 , Li 2 FePO 4 F, and Li 2 MnO 3 .
또한, 상기 양극이 황(S)을 기반으로 하는 복합재인 경우에는 상기 리튬 이차전지는 리튬-황 전지일 수 있으며, 상기 황(S)을 기반으로 하는 복합재는 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용되는 양극 재료를 선택하여 적용할 수 있다.In addition, when the positive electrode is a composite material based on sulfur (S), the lithium secondary battery may be a lithium-sulfur battery, and the composite material based on sulfur (S) is not particularly limited, and in the art. It is possible to select and apply a commonly used anode material.
본 명세서는 상기 리튬 이차전지를 단위 전지로 포함하는 전지 모듈을 제공한다.The present specification provides a battery module including the lithium secondary battery as a unit battery.
상기 전지 모듈은 본 명세서의 하나의 실시 상태에 따른 2 이상의 리튬 이차전지 사이에 구비된 바이폴라(bipolar) 플레이트로 스택킹(stacking)하여 형성될 수 있다.The battery module may be formed by stacking with a bipolar plate provided between two or more lithium secondary batteries according to one embodiment of the present specification.
상기 리튬 이차전지가 리튬 공기 전지인 경우, 상기 바이폴라 플레이트는 외부에서 공급되는 공기를 리튬 공기 전지 각각에 포함된 양극에 공급할 수 있도록 다공성일 수 있다. 예를 들어, 다공성 스테인레스 스틸 또는 다공성 세라믹을 포함할 수 있다.When the lithium secondary battery is a lithium air battery, the bipolar plate may be porous to supply air supplied from the outside to the positive electrode included in each lithium air battery. For example, it may include porous stainless steel or porous ceramic.
상기 전지 모듈은 구체적으로 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력 저장장치의 전원으로 사용될 수 있다.The battery module may be specifically used as a power source for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, or power storage devices.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely illustrative of the present invention, and it is apparent to those skilled in the art that various changes and modifications can be made within the scope and technical scope of the present invention. It is natural that changes and modifications fall within the scope of the appended claims.
실시예 1Example 1
(1)제1 보호층 형성(1) Formation of first protective layer
두께가 20 ㎛인 리튬 금속의 일 표면에 이온 전도성 전해질층을 포함하는 제1 보호층을 형성하였다. A first protective layer including an ion conductive electrolyte layer was formed on one surface of a lithium metal having a thickness of 20 μm.
아세토니트릴 용매에 리튬염인 LiFSI를 용해시킨 전해액에, 이온 전도성 고분자인 PEO(Poly(ethylene oxide), 분자량: 1,000,000)를 혼합한 후, 용액 캐스팅 방법으로 실리콘계 이형필름(SKC Hass社)의 일면에 코팅시켜 이온 전도성 전해질층을 형성하였다. 이후, 상온에서 24시간 동안 진공 건조하여 균일한 막을 형성하였고, 이를 20㎛ 두께의 리튬 음극 위에 전사하여 제1 보호층을 형성하였다. 이때, 상기 아세토니트릴 용매 대비 상기 이온 전도성 고분자(PEO)와 리튬염(LiFSI)의 고형분 함량은 20 중량%가 되도록 하였고, 상기 PEO에 포함된 EO(ethylene oxide)와 LiFSI에 포함된 Li의 중량비가 20:1이 되도록 하였다 (EO : Li = 20 : 1).After mixing the electrolyte, PEO (Poly (ethylene oxide), molecular weight: 1,000,000), which is an ion-conductive polymer, in an electrolyte solution in which LiFSI, a lithium salt, is dissolved in an acetonitrile solvent, a solution casting method is applied to one side of a silicone-based release film (SKC Hass). The ion conductive electrolyte layer was formed by coating. Thereafter, vacuum drying was performed at room temperature for 24 hours to form a uniform film, which was transferred onto a lithium anode having a thickness of 20 μm to form a first protective layer. At this time, the solid content of the ion conductive polymer (PEO) and lithium salt (LiFSI) compared to the acetonitrile solvent was set to be 20% by weight, and the weight ratio of EO (ethylene oxide) contained in the PEO and Li contained in LiFSI It was set to 20: 1 (EO: Li = 20: 1).
(2)제2 보호층 형성(2) Formation of second protective layer
실리콘계 이형필름(SKC Hass社)의 일면에 가교된 이온 전도성 전해질층을 형성하였다.A cross-linked ion conductive electrolyte layer was formed on one surface of a silicone-based release film (SKC Hass).
아세토니트릴 용매에 리튬염인 LiFSI를 용해시킨 전해액에, 이온 전도성 고분자인 PEO(Poly(ethylene oxide), 분자량: 1000,000), 가교제인 PEGDA(Poly(ethylene glycol) diacrylate) 및 개시제인 벤조일퍼옥사이드(2 중량%)를 혼합한 후, 용액 캐스팅 방법으로, 상기 이형필름의 일 표면에 코팅시킨 후, 80℃에서 1시간 진공건조 및 가열하여, 가교된 이온 전도성 전해질층을 형성하였다 (중량비, PEG: PEGDA = 80 : 20, EO : Li = 16 : 1).In an electrolyte solution in which LiFSI, a lithium salt, was dissolved in an acetonitrile solvent, PEO (Poly (ethylene oxide), molecular weight: 1000,000), an ion conductive polymer, PEGDA (Poly (ethylene glycol) diacrylate), a crosslinking agent, and benzoyl peroxide, an initiator After mixing (2% by weight), the solution was cast, and then coated on one surface of the release film, followed by vacuum drying and heating at 80 ° C for 1 hour to form a crosslinked ion conductive electrolyte layer (weight ratio, PEG : PEGDA = 80: 20, EO: Li = 16: 1).
상기 가교된 이온 전도성 전해질층의 일 표면에 Cu를 증착하였다. 상기 Cu를 이온 전도성 전해질층의 일 표면에 진공 증착시킴에 따라, Cu 입자들이 이온 전도성 전해질층을 뚫고 내부로 들어가서 이온 전도성 전해질층 내부에서 상기 Cu 입자들이 서로 전기적으로 연결되어, 내부에 공간이 형성된 3차원 구조체 형태의 Cu 매트릭스를 형성하여, 제2 보호층을 제조하였다.Cu was deposited on one surface of the crosslinked ion conductive electrolyte layer. As the Cu is vacuum-deposited on one surface of the ion-conducting electrolyte layer, Cu particles penetrate the ion-conducting electrolyte layer and go inside, where the Cu particles are electrically connected to each other inside the ion-conducting electrolyte layer, so that a space is formed therein. A second protective layer was prepared by forming a Cu matrix in the form of a three-dimensional structure.
(3)리튬 전극 제조(3) Lithium electrode manufacturing
상기 제2 보호층을 제1 보호층 상에 전사시켜 리튬 전극을 제조하였다.A lithium electrode was manufactured by transferring the second protective layer on the first protective layer.
(4)리튬 이차전지 제조(4) Lithium secondary battery manufacturing
상기 제조된 리튬 전극을 이용하여, Li/Li Symmetric Cell을 제조하였다. 상기 제1 보호층 및 제2 보호층이 분리막 기능을 하므로, 별도 분리막은 사용하지 않았다.Using the prepared lithium electrode, Li / Li Symmetric Cell was prepared. Since the first protective layer and the second protective layer function as a separator, a separate separator was not used.
비교예 1Comparative Example 1
리튬 전극 상에 이온 전도성 질해질층(제1 보호층) 만을 형성한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬 전극 및 리튬 이차전지를 제조하였다.A lithium electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that only the ion conductive nitrile layer (first protective layer) was formed on the lithium electrode.
비교예 2Comparative Example 2
리튬 전극 상에 가교된 이온 전도성 전해질층(제2 보호층 중 Cu 매트릭스 미형성) 만을 형성한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬 전극 및 리튬 이차전지를 제조하였다.A lithium electrode and a lithium secondary battery were prepared in the same manner as in Example 1, except that only the ion conductive electrolyte layer crosslinked on the lithium electrode (unformed Cu matrix in the second protective layer) was formed.
비교예 3Comparative Example 3
보호층을 형성하지 않은 것을 제외하고, 실시예 1과 동일한 방법으로 리튬 전극 및 리튬 이차전지를 제조하였다.A lithium electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the protective layer was not formed.
실험예 1Experimental Example 1
실시예 및 비교예에서 리튬 이차전지에 대하여, 60℃에서 0.5 mA/㎠ 전류 및 1 mAh/㎠ 용량으로 충방전을 실시하여, 수명특성을 측정하였다.In Examples and Comparative Examples, the lithium secondary battery was charged and discharged at a current of 0.5 mA / cm 2 and a capacity of 1 mAh / cm 2 at 60 ° C. to measure life characteristics.
또한, 실시예 및 비교예의 리튬 전극의 보호층에 대하여 동적 점탄성 측정장치(DMA, PerkinElmer DMA 8000)이용하여, 60℃에서 모듈러스를 측정하였다 (E': 보존 탄성률(Storage modulus), E'': 손실 탄성률(Loss modulus), tanδ(E''/E'). In addition, for the protective layers of the lithium electrodes of Examples and Comparative Examples, a modulus was measured at 60 ° C using a dynamic viscoelasticity measuring device (DMA, PerkinElmer DMA 8000) (E ': Storage modulus, E' ': Loss modulus, tanδ (E '' / E ').
하기 표 1에 상기 수명특성 및 탄성률 측정결과를 기재하였다. Table 1 below shows the results of measuring the life characteristics and modulus of elasticity.
제1 보호층이온 전도도(S/cm)First protective layer ion conductivity (S / cm) 제2 보호층이온 전도도(S/cm)Second protective layer ion conductivity (S / cm) E'(Mpa, 60℃)E '(Mpa, 60 ℃) E"(Mpa, 60℃)E "(Mpa, 60 ℃) δ(°, 60℃)δ (°, 60 ℃) Short발생시점(cycle)Short occurrence time (cycle)
실시예 1Example 1 3x10-4 3x10 -4 3x10-5 3x10 -5 55.555.5 7.07.0 7.47.4 2828
비교예 1Comparative Example 1 3x10-4 3x10 -4 -- 측정불가Measurement impossible 측정불가Measurement impossible 측정불가Measurement impossible 1313
비교예 2Comparative Example 2 -- 3x10-5 3x10 -5 55.055.0 7.07.0 7.47.4 1717
비교예 3Comparative Example 3 -- -- -- -- -- 0(조립시 short)0 (short when assembled)
상기 표 1에 기재된 바와 같이, 실시예 1의 리튬 전극의 경우 수명특성이 가장 우수한 것을 알 수 있다.As shown in Table 1, it can be seen that the lithium electrode of Example 1 has the best life characteristics.
또한, 비교예 1과 같이 이온 전도성 전해질층의 경우 모듈러스의 측정이 불가하였으며, 비교예 2와 같이 가교된 이온 전도성 전해질층은 모듈러스가 비교적 우수하게 나타났다. 실시예 1의 이온 전도성 전해질층이 형성된 제1 보호층 및 전기 전도성 매트릭스와 가교된 이온 전도성 전해질층이 형성된 제2 보호층이 형성됨으로 인하여, 모듈러스가 가장 우수한 것으로 나타났다.In addition, in the case of the ion conductive electrolyte layer as in Comparative Example 1, it was impossible to measure the modulus, and the crosslinked ion conductive electrolyte layer as in Comparative Example 2 showed a relatively good modulus. Since the first protective layer on which the ion conductive electrolyte layer of Example 1 was formed and the second protective layer on which the ion conductive electrolyte layer was crosslinked with the electrically conductive matrix were formed, the modulus was found to be the best.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described above by way of limited embodiments and drawings, the present invention is not limited by this, and is described below by the person skilled in the art to which the present invention pertains, and the technical idea of the present invention. Of course, various modifications and variations are possible within the scope of the equivalent claims.

Claims (10)

  1. 리튬 금속; 및 상기 리튬 금속의 적어도 일면에 형성된 보호층;을 포함하는 리튬 전극에 있어서,Lithium metal; And a protective layer formed on at least one surface of the lithium metal, wherein the lithium electrode comprises:
    상기 보호층은 상기 리튬 금속의 적어도 일면에 형성된 제1 보호층; 및 상기 제1 보호층 상에 형성된 제2 보호층을 포함하며,The protective layer may include a first protective layer formed on at least one surface of the lithium metal; And a second protective layer formed on the first protective layer,
    상기 제1 보호층은 이온 전도성 전해질을 포함하고,The first protective layer includes an ion conductive electrolyte,
    상기 제2 보호층은 전기 전도성 매트릭스 및 가교된 이온 전도성 전해질을 포함하는, 리튬 전극.The second protective layer includes an electrically conductive matrix and a crosslinked ion conductive electrolyte, a lithium electrode.
  2. 제1항에 있어서,According to claim 1,
    상기 제1 보호층의 이온 전도도는 제2 보호층의 이온 전도도에 비해 큰 것인, 리튬 전극.The ion conductivity of the first protective layer is greater than that of the second protective layer, the lithium electrode.
  3. 제1항에 있어서,According to claim 1,
    상기 제1 보호층의 이온 전도성 전해질은 이온 전도성 고분자 및 리튬염을 포함하고,The ion conductive electrolyte of the first protective layer includes an ion conductive polymer and a lithium salt,
    상기 제2 보호층의 가교된 이온 전도성 전해질은 이온 전도성 고분자, 가교제 및 리튬염을 포함하는 것인, 리튬 전극.The cross-linked ion conductive electrolyte of the second protective layer includes an ion conductive polymer, a crosslinking agent, and a lithium salt.
  4. 제3항에 있어서,According to claim 3,
    상기 이온 전도성 고분자는 폴리에틸렌옥사이드(Poly(ethylene oxide): PEO), 폴리프로필렌옥사이드(Poly(polypropylene oxide: PPO), 폴리아크릴로니트릴(Poly(acrylonitrile): PAN) 및 폴리비닐리덴 플루오라이드(Poly(vinylidene fluoride): PVDF)로 이루어진 군에서 선택되는 1종 이상인, 리튬 전극.The ion-conducting polymer includes polyethylene oxide (Poly (ethylene oxide): PEO), polypropylene oxide (Poly (polypropylene oxide: PPO), polyacrylonitrile (PAN)) and polyvinylidene fluoride (Poly ( vinylidene fluoride): one or more lithium electrodes selected from the group consisting of PVDF).
  5. 제3항에 있어서,According to claim 3,
    상기 가교제는 폴리에틸렌글리콜디아크릴레이트(Poly(ethylene glycol) diacrylate: PEGDA), 폴리에틸렌글리콜디메타크릴레이트(Poly(ethylene glycol) dimethacrylate: PEGDMA), 폴리프로필렌글리콜디아크릴레이트(Poly(propylene glycol) diacrylate: PPGDA) 및 폴리프로필렌글리콜디메타크릴레이트(Poly(propylene glycol) dimethacrylate: PPGDMA)로 이루어진 군에서 선택되는 1종 이상인, 리튬 전극.The crosslinking agent is polyethylene glycol diacrylate (Poly (ethylene glycol) diacrylate: PEGDA), polyethylene glycol dimethacrylate (Poly (ethylene glycol) dimethacrylate: PEGDMA), polypropylene glycol diacrylate (Poly (propylene glycol) diacrylate: PPGDA) and polypropylene glycol dimethacrylate (Poly (propylene glycol) dimethacrylate (PPGDMA) at least one selected from the group consisting of, lithium electrode.
  6. 제3항에 있어서,According to claim 3,
    상기 리튬염은 LiCl, LiBr, LiI, LiNO3, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬 및 리튬 이미드로 이루어진 군에서 선택되는 1종 이상인, 리튬 전극.The lithium salt is LiCl, LiBr, LiI, LiNO 3 , LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carboxylate, 4-phenyl lithium borate And at least one lithium electrode selected from the group consisting of lithium imide.
  7. 제1항에 있어서,According to claim 1,
    상기 전기 전도성 매트릭스는 전기 전도성 금속, 반도체 및 전기 전도성 고분자로 이루어진 군에서 선택되는 1종 이상의 전기 전도성 물질을 포함하는, 리튬 전극.The electrically conductive matrix includes one or more electrically conductive materials selected from the group consisting of electrically conductive metals, semiconductors, and electrically conductive polymers, lithium electrodes.
  8. 제7항에 있어서,The method of claim 7,
    상기 전기 전도성 금속은 구리, 금, 은, 알루미늄, 니켈, 아연, 탄소, 주석 및 인듐으로 이루어진 군에서 선택된 1종 이상이고,The electrically conductive metal is at least one selected from the group consisting of copper, gold, silver, aluminum, nickel, zinc, carbon, tin and indium,
    상기 반도체는 실리콘 및 게르마늄으로 이루어진 군에서 선택되는 1종 이상이며, The semiconductor is at least one selected from the group consisting of silicon and germanium,
    상기 전기 전도성 고분자는 PEDOT (poly(3,4-ethylenedioxythiophene)), 폴리아닐린 (polyaniline), 폴리피롤 (polypyrrole), 폴리사이오펜 (polythiophene), 폴리아세틸렌 (polyacetylene), 폴리페닐렌 (polyphenylene) 및 폴리시에닐렌 비닐렌 (poly(thienylene vinylene))으로 이루어진 군에서 선택된 1종 이상인, 리튬 전극.The electrically conductive polymer is PEDOT (poly (3,4-ethylenedioxythiophene)), polyaniline, polypyrrole, polythiophene, polyacetylene, polyphenylene and polyphenylene At least one lithium electrode selected from the group consisting of poly (thienylene vinylene).
  9. 제1항에 있어서,According to claim 1,
    상기 제2 보호층은 전기 전도성 매트릭스의 내부와 표면에 가교된 이온 전도성 전해질이 형성된 것인, 리튬 전극.The second protective layer is a lithium electrode in which an ion conductive electrolyte cross-linked is formed on the inside and the surface of the electrically conductive matrix.
  10. 제1항 내지 제9항 중 어느 한 항의 리튬 전극을 포함하는 리튬 이차전지.A lithium secondary battery comprising the lithium electrode of any one of claims 1 to 9.
PCT/KR2019/014641 2018-10-31 2019-10-31 Lithium electrode and lithium secondary battery comprising same WO2020091479A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980012939.0A CN111712949B (en) 2018-10-31 2019-10-31 Lithium electrode and lithium secondary battery comprising same
EP19877644.5A EP3745506B1 (en) 2018-10-31 2019-10-31 Lithium electrode and lithium secondary battery comprising same
ES19877644T ES2925381T3 (en) 2018-10-31 2019-10-31 Lithium electrode and secondary lithium battery comprising the same
PL19877644.5T PL3745506T3 (en) 2018-10-31 2019-10-31 Lithium electrode and lithium secondary battery comprising same
US16/975,333 US11978852B2 (en) 2018-10-31 2019-10-31 Lithium electrode and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180131652 2018-10-31
KR10-2018-0131652 2018-10-31
KR1020190137931A KR102388263B1 (en) 2018-10-31 2019-10-31 Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
KR10-2019-0137931 2019-10-31

Publications (1)

Publication Number Publication Date
WO2020091479A1 true WO2020091479A1 (en) 2020-05-07

Family

ID=70464205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014641 WO2020091479A1 (en) 2018-10-31 2019-10-31 Lithium electrode and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2020091479A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789074A (en) * 2021-07-28 2021-12-14 南京同宁新材料研究院有限公司 Lithium negative electrode protective layer and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241060B2 (en) * 1971-11-19 1977-10-15
KR100542213B1 (en) * 2003-10-31 2006-01-10 삼성에스디아이 주식회사 Negative electrode of lithium metal battery and lithium metal battery comprisng same
KR20140006639A (en) * 2012-07-06 2014-01-16 삼성전자주식회사 Anode for lithium air battery and lithium air battery comprising the anode
KR20170099375A (en) * 2016-02-23 2017-08-31 주식회사 엘지화학 Electrode with porous passivation layer, manufacturing method thereof, and lithium secondary battery comprising the same
KR20180019822A (en) * 2016-08-17 2018-02-27 현대자동차주식회사 Anode for lithium air battery and preparation method thereof
KR20180032168A (en) 2016-09-21 2018-03-29 주식회사 엘지화학 Anode comprising multi passivation layers and lithium secondary battery comprising the same
KR20180036564A (en) 2016-09-30 2018-04-09 주식회사 엘지화학 Anode with buffer layer made by conductive textile, lithium secondary battery containing the same
KR20180131652A (en) 2017-05-30 2018-12-11 중부대학교 산학협력단 Fermented-white ginseng extracts containing increased ginsenoside Rd, Rg3 and Rg5 and method thereof
KR20190137931A (en) 2017-05-22 2019-12-11 닛산 지도우샤 가부시키가이샤 Automatic parking control method and automatic parking control device of a vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241060B2 (en) * 1971-11-19 1977-10-15
KR100542213B1 (en) * 2003-10-31 2006-01-10 삼성에스디아이 주식회사 Negative electrode of lithium metal battery and lithium metal battery comprisng same
KR20140006639A (en) * 2012-07-06 2014-01-16 삼성전자주식회사 Anode for lithium air battery and lithium air battery comprising the anode
KR20170099375A (en) * 2016-02-23 2017-08-31 주식회사 엘지화학 Electrode with porous passivation layer, manufacturing method thereof, and lithium secondary battery comprising the same
KR20180019822A (en) * 2016-08-17 2018-02-27 현대자동차주식회사 Anode for lithium air battery and preparation method thereof
KR20180032168A (en) 2016-09-21 2018-03-29 주식회사 엘지화학 Anode comprising multi passivation layers and lithium secondary battery comprising the same
KR20180036564A (en) 2016-09-30 2018-04-09 주식회사 엘지화학 Anode with buffer layer made by conductive textile, lithium secondary battery containing the same
KR20190137931A (en) 2017-05-22 2019-12-11 닛산 지도우샤 가부시키가이샤 Automatic parking control method and automatic parking control device of a vehicle
KR20180131652A (en) 2017-05-30 2018-12-11 중부대학교 산학협력단 Fermented-white ginseng extracts containing increased ginsenoside Rd, Rg3 and Rg5 and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3745506A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789074A (en) * 2021-07-28 2021-12-14 南京同宁新材料研究院有限公司 Lithium negative electrode protective layer and preparation method and application thereof
CN113789074B (en) * 2021-07-28 2022-08-26 南京同宁新材料研究院有限公司 Lithium negative electrode protective layer and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2018034526A1 (en) Anode comprising multiple protective layers, and lithium secondary battery comprising same
WO2017217596A1 (en) Composite electrolyte for lithium metal battery, method for manufacturing same, and lithium metal battery comprising same
WO2018164494A1 (en) Negative electrode with carbon-based thin film, manufacturing method therefor, and lithium secondary battery comprising same
WO2018012694A1 (en) Lithium secondary battery having lithium metal formed on cathode and manufacturing method therefor
WO2019112167A1 (en) Negative electrode for lithium metal battery and lithium metal battery comprising same
KR102388263B1 (en) Lithium Metal Electrode and Lithium Secondary Battery Comprising the Same
WO2015065102A1 (en) Lithium secondary battery
WO2012074300A2 (en) Lithium secondary battery
WO2020153822A1 (en) Lithium secondary battery
WO2019013449A1 (en) Anode comprising electrode protective layer and lithium secondary battery employing same
WO2019212315A1 (en) Method for manufacturing electrode comprising polymer-based solid electrolyte, and electrode manufactured by method
WO2020091453A1 (en) Lithium secondary battery
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
WO2018056615A1 (en) Negative electrode comprising multiple protection layers and lithium secondary battery comprising same
WO2020159236A1 (en) Method for pre-lithiation of negative electrode for secondary battery
WO2019045399A2 (en) Lithium secondary battery
WO2019059637A2 (en) Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
KR102388262B1 (en) Lithium metal electrode and lithium secondary battery comprising the same
WO2018164402A1 (en) Electrode assembly and lithium battery comprising same
WO2017213441A1 (en) Lithium battery
WO2022092688A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021071125A1 (en) Lithium secondary battery and method for manufacturing lithium secondary battery
WO2019221410A1 (en) Negative electrode including electrode protective layer, and lithium secondary battery employing same
WO2020091479A1 (en) Lithium electrode and lithium secondary battery comprising same
WO2020091426A1 (en) Lithium electrode and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019877644

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019877644

Country of ref document: EP

Effective date: 20200910

NENP Non-entry into the national phase

Ref country code: DE