WO2020091273A1 - Photoacoustic device for analyzing dissolved gas in oil - Google Patents

Photoacoustic device for analyzing dissolved gas in oil Download PDF

Info

Publication number
WO2020091273A1
WO2020091273A1 PCT/KR2019/013632 KR2019013632W WO2020091273A1 WO 2020091273 A1 WO2020091273 A1 WO 2020091273A1 KR 2019013632 W KR2019013632 W KR 2019013632W WO 2020091273 A1 WO2020091273 A1 WO 2020091273A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
photoacoustic
infrared
gas
measurement
Prior art date
Application number
PCT/KR2019/013632
Other languages
French (fr)
Korean (ko)
Inventor
박진엽
변상윤
박성민
박종민
정재기
최윤종
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Publication of WO2020091273A1 publication Critical patent/WO2020091273A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases

Definitions

  • the present invention relates to an optoacoustic device for analyzing gaseous gas in oil that can be easily analyzed.
  • PAS photoacoustic spectroscopy
  • the photoacoustic spectroscopy apparatus is equipped with an optical filter that can pass only the natural frequency band of a specific gas when it receives infrared rays.
  • an optical filter that can pass only the natural frequency band of a specific gas when it receives infrared rays.
  • the optical filter receives infrared rays and passes only a specific band frequency, and by analyzing the reaction (photoacoustic) between the infrared rays of the specific frequency and the measurement gas passed through, it is possible to confirm the type and concentration of the specific gas in the mixed gas.
  • a plurality of such optical filters is provided, and is rotated by the rotational driving force of the belt, so it can be selected as a type corresponding to the measurement gas.
  • the infrared light is irradiated to the mixed gas to be measured, the light reflectance is not high and absorption of infrared rays is not performed at the location of the infrared light source or the incident hole irradiated to the mixed gas. There is a problem that does not.
  • One embodiment of the present invention is to provide a photo-acoustic device for analyzing the gas in oil in order to stably irradiate the measurement gas without causing interference and diffuse reflection during the normal alignment of the optical filter and the infrared reflection process.
  • a photoacoustic cell in which a measurement gas is injected into the interior and an infrared inlet through which infrared light irradiated to the measurement gas passes is connected to generate a photoacoustic cell by generating a photoacoustic reaction by a reaction between the measurement gas and infrared, and a photoacoustic cell It is rotatably installed on the upper side and includes an optical filter unit through which an infrared light source passes, a driving unit providing rotational driving force to the optical filter unit, and a microphone converting the photoacoustic sound generated in the photoacoustic cell into an electrical signal.
  • the infrared inlet may include a tapered infrared incident hole.
  • the photoacoustic cell may include a cell body in which an installation space is formed inside, and a measurement cell installed on the inner side spaced apart from the inner wall surface of the cell body, and connected to a gas injection part and an infrared inlet part, respectively, into which a measurement gas is injected. have.
  • the infrared inlet is connected to the measurement cell in a protruding state, and an incidence body in which an inlet hole through which infrared rays are incident is formed, and a guide hole connected to the incidence body and guiding infrared rays incident through the inlet hole into the inside of the measurement cell are formed. It may include a tapered body.
  • the guide hole is formed through the incidence body and may be formed in an inverted trapezoidal cross section in the inner direction of the measurement cell.
  • a reflective coating may be attached to the inner wall surface of the guide hole and the inner wall surface of the inflow hole.
  • the optical filter unit includes a filter body in which a connection unit for connecting a driving unit is formed at a rotational center position, and a filter body radially formed with a plurality of filter holes around the connection unit, and a filter member installed in the filter hole to pass a predetermined frequency band of infrared rays. can do.
  • the driving unit may be a step motor having a rotating shaft connected to the connecting unit to transmit rotation driving force.
  • the photoacoustic sound in a state in which no diffuse reflection or interference is generated in the process of irradiating infrared light to the measurement gas, the photoacoustic sound can be stably generated by stably irradiating infrared light to the measurement gas.
  • the optical filter it is possible to align the optical filter in a state accurately positioned on the upper side of the infrared inlet by driving the step motor, and it is possible for the infrared ray to pass through the optical filter and stably irradiate to the measurement gas.
  • FIG. 1 is an exploded perspective view schematically showing an oil-based gas analysis photoacoustic device according to an embodiment of the present invention.
  • Figure 2 is a perspective view of a main portion schematically showing the infrared inlet installed in the photoacoustic cell according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2.
  • FIG. 4 is a perspective view schematically showing an optical filter unit according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view schematically showing an oil-based gas analysis photoacoustic device according to an embodiment of the present invention.
  • the oil-in-gas analysis photoacoustic device 100 includes an infrared inlet unit through which a measurement gas is injected and an infrared 36 irradiated to the measurement gas passes therethrough ( 30) is connected to the photoacoustic cell 10 to generate photoacoustic by the reaction of the measurement gas and infrared light, and is rotatably installed on the upper side of the photoacoustic cell 10, an optical filter through which an infrared light source 32 passes It includes a unit 40, a driving unit 60 for providing rotational driving force to the optical filter unit 40, and a microphone 70 for converting the photoacoustic sound generated in the photoacoustic cell 10 into an electrical signal.
  • the photoacoustic cell 10 may be installed to check the type and concentration of the measurement gas by introducing a measurement gas to be measured therein and reacting with the infrared light irradiated to the measurement gas.
  • the photoacoustic cell 10 is connected to an infrared inlet portion 30 through which a measurement gas is injected, and an infrared ray irradiated to the measurement gas passes through the photoacoustic sound generated by the reaction of the measurement gas and infrared rays. Analysis of the concentration or type of measurement gas can be performed.
  • the photoacoustic cell 10 is installed inside the cell body 11 in which the installation space 12 is formed inside, and spaced apart from the inner wall surface of the cell body 11, and the measurement gas and infrared rays are provided. It may include a measurement cell 13 through which photoacoustics are introduced.
  • the cell body 11 may have an installation space 12 maintained at a constant pressure therein.
  • the measurement cell 13 may be installed in the installation space 12 of the cell body 11.
  • the measuring cell 13 may be installed in a state spaced apart from the inner wall surface of the installation space 12 by a certain distance from the inside of the cell body 11.
  • the upper portion of the measurement cell 13 may be installed inside the installation space 12 in a state located at an upper position of the cell body 11.
  • the measurement cell 13 is installed in a state in which the bottom surface is spaced from the bottom surface of the cell body 11 and can be stably installed in an atmosphere maintained at a constant pressure in the installation space 12.
  • the measurement cell 13 is exemplarily described as being formed in a hexahedral shape inside the cell body 11, but is not necessarily limited thereto, and a part or the entirety of the outer surface may be appropriately changed to a round shape. Do.
  • the measurement cell 13 may be connected to a gas injection unit 20 for injecting a measurement gas, an infrared inlet 30 to allow infrared rays to be introduced into the injected measurement gas, and a microphone 70, respectively.
  • the gas injection unit 20 is connected to one side of the measurement cell 13, and thus a set amount of measurement gas may be connected to be injected into the measurement cell 13.
  • the measurement gas is an oil-in-gas used in a transformer in this embodiment.
  • the measurement gas is not necessarily limited to the gas in the transformer, and may be appropriately changed and applied to a predetermined gas for component and type analysis.
  • the measurement cell 13 may be provided with a gas discharge unit 21 for discharging the measurement gas injected therein.
  • An infrared inlet 30 may be installed on the measurement cell 13.
  • the infrared inlet 30 is installed on the upper portion of the measurement cell 13, and may be installed so that the infrared light irradiated by the predetermined infrared light source 32 is introduced into the measurement cell 13.
  • infrared rays may be irradiated from the infrared light source 32 and reflected by the concave reflector 34 to be irradiated inside the measurement cell 13 through the infrared inlet 30.
  • the infrared light is reflected by the concave reflection part 34 and is not necessarily limited to being irradiated to the infrared inflow part 30, and it is also possible to apply a change to be irradiated directly from the infrared light source 32.
  • FIG. 2 is a perspective view of a main part schematically showing an infrared inlet installed in an optoacoustic cell according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2.
  • the infrared inlet 30 is connected to the measurement cell 13 in a protruding state, and the incident body 31 through which infrared rays are incident, and is connected to the incident body 31 It may include a tapered body 33 that guides the infrared rays to enter the interior of the measurement cell (13).
  • the incident body 31 may be formed with an inlet hole 31a through which infrared light emitted from the infrared light source 32 flows.
  • the inflow hole 31a is formed to penetrate the incidence body 31 in the vertical direction, and it is exemplarily described that it is formed in the incidence body 31 to have a long cylindrical shape.
  • the inlet hole 31a is not necessarily limited to being formed as a single cylinder on the incidence body 31, and may be appropriately changed to a plurality of polygons.
  • the inflow hole 31a may be formed in a tapered shape inclined in the downward direction of the incidence body 31, or may be opened in a cylindrical shape to increase the amount of infrared radiation.
  • Infrared light passing through the inlet hole 31a of the incident body 31 may pass through the tapered body 33 and be irradiated into the measurement cell 13.
  • the tapered body 33 may be formed with a guide hole 33a connected to the incident body 31 and guiding infrared rays incident through the inlet hole 31a into the inside of the measurement cell 13.
  • the guide hole 33a is formed to penetrate the incidence body 31 up and down, and may be formed to stably enter infrared rays introduced through the incidence body 31 into the interior of the measurement cell 13.
  • the guide hole 33a may be formed in an inverted trapezoidal shape in which the size opened in the inner direction of the measurement cell 13 in this embodiment is reduced.
  • the infrared rays stably enter the inside of the measurement cell 13 through the guide action of the inverted trapezoidal shape of the guide hole 33a in the unscattered state while passing through the guide hole 33a.
  • infrared rays can effectively contact and react with the measurement gas inside the measurement cell 13 without being scattered, a photoacoustic signal according to contact between the measurement gas and infrared rays can be stably generated.
  • an optical filter unit 40 through which infrared rays generated from an infrared light source is transmitted may be installed above the photoacoustic cell 10.
  • the optical filter unit 40 is installed on the upper side of the photoacoustic cell 10, and a plurality of filter members 43 corresponding to the type of measurement gas is installed, so that infrared light having a specific band frequency corresponding to the measurement gas is provided. It can be selectively transmitted.
  • FIG. 4 is a perspective view schematically showing an optical filter unit according to an embodiment of the present invention.
  • the optical filter unit 40, the filter body formed with a filter hole (41a) formed on the side of the connecting portion 42 and the connecting portion 42 is connected to the driving unit 60 in the rotational center position 41 and a filter member 43 provided in the filter hole 41a.
  • the connection part 42 refers to a portion where the rotation shaft 61 of the driving part is inserted and fixed.
  • the filter body 41 may be rotatably installed in one direction or in the reverse direction by receiving rotational driving force from the driving unit 60.
  • the filter body 41 is exemplarily described as being stably rotated by transmission of the rotational driving force of the driving unit 60 and formed in a plate shape of engineering plastic material having appropriate durability.
  • the filter body 41 may be formed in a plate shape having a rounded edge for stable installation of the plurality of filter members 43 while preventing interference with adjacent facilities during a rotational operation process.
  • the filter body 41 is not necessarily limited to a round shape, and it is also possible to apply a change to an appropriate shape in response to the shape change of the filter member 43.
  • the filter member 43 is installed in each of the plurality of filter holes 41a formed in the filter body 41, and the filter holes 41a may be respectively installed in different types.
  • the filter member 43 may be installed in the filter hole 41a by changing the type corresponding to the type of measurement gas injected into the measurement cell 13.
  • the filter member 43 may be installed on the filter body 41 to selectively transmit a specific frequency band of infrared rays corresponding to the type of the measurement gas.
  • the infrared rays react with the measurement gas injected into the measurement cell 13 to generate photoacoustics, it is possible to easily check the type and concentration of the measurement gas. Analysis of the optical sound may be performed by the microphone 70 to be described later.
  • a chopper 50 having a transmission hole 51 through which infrared rays are transmitted in the direction of the filter member 43 is installed on the upper side of the optical filter unit 40.
  • the optical filter unit 40 may be appropriately rotated in one direction or in the reverse direction by a rotational driving force according to the driving of the driving unit 60.
  • the driving unit 60 may be applied as a step motor providing rotational driving force to the filter body 41 constituting the optical filter unit 40.
  • the same reference numerals are used for the driving unit and the step motor.
  • the rotating shaft is connected to the connection portion of the filter body 41, and thus it is possible to provide the rotational driving force to the optical filter portion step by step.
  • the optical filter unit 40 can be rotated step by step at a rotation angle set by the driving force of the step motor 60, so that the vertical alignment of the filter member 43 and the infrared inlet unit 30 is stable. It can be done.
  • the infrared light irradiated from the infrared light source 32 passes through the filter member 43 by the precise alignment of the filter member 43 and the infrared inlet 30, and is entirely introduced into the infrared inlet 30. Since it is possible, it is possible to effectively generate photoacoustics by reaction to a measurement gas and infrared rays.
  • a reflective coating unit 35 may be formed in a portion in which infrared rays pass through the inside of the infrared inlet unit 30.
  • the reflective coating unit 35 is applied to the inner wall surface of the entire portion of the infrared inlet 30 through which the infrared rays pass, and in this embodiment, the inlet hole 31a and the guide hole 33a formed in the infrared inlet unit 30 ) Is exemplarily described as being applied to the entire surface of the inner wall surface.
  • the infrared rays are incident on the infrared inlet 30, and the reflection action of the reflective coating unit 35 is generated in the process of being irradiated inside the measurement cell 13. It is possible to prevent the absorption effect from being generated in the process of passing, so that an effective irradiation action of infrared rays can be achieved.
  • the microphone 70 is installed on the side of the measurement cell 13 may be installed to sense the optical sound generated by the reaction of the infrared and the measurement gas inside the measurement cell (13).
  • the microphone 70 is installed so as to be capable of converting optical sound into an electrical signal, it is possible to check the type or concentration of the measurement gas according to the change in the electrical signal generated in the photoacoustic sound.
  • a change in size of the photoacoustic signal converted into an electrical signal occurs according to the concentration and the amount of light of the measurement gas, and it is possible to easily check the concentration or type of the measurement gas by analyzing the electrical signal converted by the microphone 70. Do.
  • the photoacoustic sound is stably irradiated to the measurement gas. It can be stably generated.

Abstract

A photoacoustic device for analyzing a dissolved gas in oil comprises: a photoacoustic cell into which a gas to be measured is injected, the photoacoustic cell being connected to an infrared ray inflow part through which an infrared ray emitted to the gas to be measured passes, wherein an optical sound caused by reaction between the gas to be measured and the infrared ray is generated in the photoacoustic cell; an optical filter part which is rotatably installed over the photoacoustic cell and through which the light of the infrared ray passes; a driving part for providing a rotation driving force to the optical filter; and a microphone for converting the optical sound generated in the photoacoustic cell into an electric signal.

Description

유중 가스 분석 광음향 장치Oil gas analysis photoacoustic device
본 발명은 유중 가스의 용이한 분석이 가능한 유중 가스 분석 광음향 장치에 관한 것이다.The present invention relates to an optoacoustic device for analyzing gaseous gas in oil that can be easily analyzed.
일반적으로 변압기 절연유에서 추출된 가스는 여러가지 가스가 혼합되어 있다. In general, various gases are mixed in the gas extracted from the transformer insulating oil.
혼합된 가스에서 원하는 측정 가스의 종류와 농도를 분석하기 위한 장치로 적외선 광원을 이용한 광음향 분광(PAS, Photoacoustic spectroscopy) 장치가 있다. As a device for analyzing the type and concentration of a desired measurement gas in a mixed gas, there is a photoacoustic spectroscopy (PAS) device using an infrared light source.
이러한 광음향 분광장치는, 적외선을 받으면 특정 가스의 고유주파수 대역만 통과시킬 수 있는 광학필터가 장착된다. 예를 들어 메탄, 에탄, 아세틸렌, 에틸렌 등에 대한 광학필터가 존재된다. The photoacoustic spectroscopy apparatus is equipped with an optical filter that can pass only the natural frequency band of a specific gas when it receives infrared rays. For example, there are optical filters for methane, ethane, acetylene and ethylene.
광학필터는 적외선을 받아 특정 대역 주파수만 통과시키게 되고 통과된 특정 주파수의 적외선과 측정 가스와의 반응(광음향)을 분석하면 혼합된 기체에서 특정 가스의 종류 및 농도를 확인할 수 있다.The optical filter receives infrared rays and passes only a specific band frequency, and by analyzing the reaction (photoacoustic) between the infrared rays of the specific frequency and the measurement gas passed through, it is possible to confirm the type and concentration of the specific gas in the mixed gas.
이러한 광학 필터는 복수개로 마련되며, 벨트의 회전 구동력에 의해 회전되는바, 측정 가스에 대응하는 종류로 선택될 수 있다. A plurality of such optical filters is provided, and is rotated by the rotational driving force of the belt, so it can be selected as a type corresponding to the measurement gas.
그러나 벨트의 회전비가 정확하지 않은 경우 광학 필터의 정렬 오류가 발생되는 바, 적외선이 측정 가스에 조사되는 과정에서 간섭 및 차단에 의해 적절하게 조사되지 않는 문제점이 있다. However, if the rotation ratio of the belt is not correct, an alignment error of the optical filter occurs, and thus there is a problem in that infrared rays are not properly irradiated by interference and blocking in the process of irradiating the measurement gas.
아울러, 적외선이 측정하고자 하는 혼합 가스에 조사되는 과정에서, 적외선 광원 주변 또는 혼합 가스에 조사되는 입사홀 등의 위치에서 빛의 반사도가 높지 않고 적외선의 흡수가 이루어지는바, 적외선의 효과적인 조사가 이루어지지 않는 문제점이 있다. In addition, since the infrared light is irradiated to the mixed gas to be measured, the light reflectance is not high and absorption of infrared rays is not performed at the location of the infrared light source or the incident hole irradiated to the mixed gas. There is a problem that does not.
본 발명의 일 실시예는 광학 필터를 정상 정렬하고 적외선 반사 과정에서 간섭 및 난반사가 발생되지 않고 측정 가스에 안정적으로 조사되도록 하는 유중 가스 분석 광음향 장치를 제공하고자 한다.One embodiment of the present invention is to provide a photo-acoustic device for analyzing the gas in oil in order to stably irradiate the measurement gas without causing interference and diffuse reflection during the normal alignment of the optical filter and the infrared reflection process.
본 발명의 일 실시예는, 내부에 측정 가스가 주입되고 측정 가스에 조사되는 적외선이 통과하는 적외선 유입부가 연결되어 측정 가스와 적외선의 반응에 의한 광음향이 발생되는 광음향 셀과, 광음향 셀의 상측에 회전 가능하게 설치되며 적외선 광원이 통과되는 광학 필터부와, 광학 필터부에 회전 구동력을 제공하는 구동부와, 광음향 셀에서 발생된 광음향을 전기적인 신호로 변환하는 마이크로폰을 포함한다.According to an embodiment of the present invention, a photoacoustic cell in which a measurement gas is injected into the interior and an infrared inlet through which infrared light irradiated to the measurement gas passes is connected to generate a photoacoustic cell by generating a photoacoustic reaction by a reaction between the measurement gas and infrared, and a photoacoustic cell It is rotatably installed on the upper side and includes an optical filter unit through which an infrared light source passes, a driving unit providing rotational driving force to the optical filter unit, and a microphone converting the photoacoustic sound generated in the photoacoustic cell into an electrical signal.
적외선 유입부는 테이퍼 형상의 적외선 입사홀을 포함할 수 있다. The infrared inlet may include a tapered infrared incident hole.
광음향 셀은, 내부에 설치 공간이 형성된 셀 바디와, 셀 바디의 내벽면에 이격된 내측에 설치되고 측면에는 측정 가스가 주입되는 가스 주입부와 적외선 유입부가 각각 연결되는 측정 셀을 포함할 수 있다. The photoacoustic cell may include a cell body in which an installation space is formed inside, and a measurement cell installed on the inner side spaced apart from the inner wall surface of the cell body, and connected to a gas injection part and an infrared inlet part, respectively, into which a measurement gas is injected. have.
적외선 유입부는, 측정 셀에 돌출된 상태로 연결되며 적외선이 입사되는 유입홀이 형성되는 입사 바디와, 입사 바디에 연결되며 유입홀을 통해 입사된 적외선을 측정 셀의 내부로 가이드하는 가이드홀이 형성되는 테이퍼 바디를 포함할 수 있다. The infrared inlet is connected to the measurement cell in a protruding state, and an incidence body in which an inlet hole through which infrared rays are incident is formed, and a guide hole connected to the incidence body and guiding infrared rays incident through the inlet hole into the inside of the measurement cell are formed. It may include a tapered body.
가이드홀은, 입사 바디에 관통 형성되며 측정 셀의 내부 방향으로 역사다리꼴 단면으로 형성될 수 있다.The guide hole is formed through the incidence body and may be formed in an inverted trapezoidal cross section in the inner direction of the measurement cell.
가이드홀의 내벽면과 유입홀의 내벽면에는 반사 코팅부가 부착될 수 있다. A reflective coating may be attached to the inner wall surface of the guide hole and the inner wall surface of the inflow hole.
광학 필터부는, 회전 중심 위치에 구동부가 연결되는 연결부가 형성되고, 연결부를 중심으로 방사상으로 복수개의 필터홀이 형성된 필터 바디와, 필터홀에 설치되어 적외선의 설정된 주파수 대역을 통과시키는 필터부재를 포함할 수 있다. The optical filter unit includes a filter body in which a connection unit for connecting a driving unit is formed at a rotational center position, and a filter body radially formed with a plurality of filter holes around the connection unit, and a filter member installed in the filter hole to pass a predetermined frequency band of infrared rays. can do.
구동부는, 연결부에 회전축이 연결되어 회전 구동력을 전달하는 스텝 모터일 수 있다.The driving unit may be a step motor having a rotating shaft connected to the connecting unit to transmit rotation driving force.
본 발명의 일 실시예에 따르면, 적외선을 측정 가스에 조사하는 과정에서 난반사 또는 간섭이 발생되지 않은 상태로, 적외선을 측정 가스에 안정적으로 조사하여 광음향이 안정적으로 발생되도록 할 수 있다. According to an embodiment of the present invention, in a state in which no diffuse reflection or interference is generated in the process of irradiating infrared light to the measurement gas, the photoacoustic sound can be stably generated by stably irradiating infrared light to the measurement gas.
본 발명의 일 실시예에 따르면, 광학 필터를 스텝 모터의 구동에 의해 적외선 유입부의 상측에 정확하게 위치된 상태로 정렬하는 것이 가능한 바, 적외선이 광학 필터를 통과하여 측정 가스에 안정적으로 조사되는 것이 가능하다. According to one embodiment of the present invention, it is possible to align the optical filter in a state accurately positioned on the upper side of the infrared inlet by driving the step motor, and it is possible for the infrared ray to pass through the optical filter and stably irradiate to the measurement gas. Do.
도 1은 본 발명의 일 실시예에 따른 유중 가스 분석 광음향 장치를 개략적으로 도시한 분해 사시도이다.1 is an exploded perspective view schematically showing an oil-based gas analysis photoacoustic device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 광 음향 셀에 설치되는 적외선 유입부를 개략적으로 도시한 요부 사시도이다.Figure 2 is a perspective view of a main portion schematically showing the infrared inlet installed in the photoacoustic cell according to an embodiment of the present invention.
도 3은 도 2의 Ⅲ-Ⅲ 선을 따라 잘라서 본 단면도이다. 3 is a cross-sectional view taken along line III-III of FIG. 2.
도 4는 본 발명의 일 실시예에 따른 광학 필터부를 개략적으로 도시한 사시도이다.4 is a perspective view schematically showing an optical filter unit according to an embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily practice. However, the present invention can be implemented in many different forms and is not limited to the embodiments described herein.
도 1은 본 발명의 일 실시예에 따른 유중 가스 분석 광음향 장치를 개략적으로 도시한 분해 사시도이다.1 is an exploded perspective view schematically showing an oil-based gas analysis photoacoustic device according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 유중 가스 분석 광음향 장치(100)는, 내부에 측정 가스가 주입되고 측정 가스에 조사되는 적외선(36)이 통과하는 적외선 유입부(30)가 연결되어 측정 가스와 적외선의 반응에 의한 광음향이 발생되는 광음향 셀(10)과, 광음향 셀(10)의 상측에 회전 가능하게 설치되며 적외선 광원(32)이 통과되는 광학 필터부(40)와, 광학 필터부(40)에 회전 구동력을 제공하는 구동부(60)와, 광음향 셀(10)에서 발생된 광음향을 전기적인 신호로 변환하는 마이크로폰(70)을 포함한다.As shown in FIG. 1, the oil-in-gas analysis photoacoustic device 100 according to an embodiment of the present invention includes an infrared inlet unit through which a measurement gas is injected and an infrared 36 irradiated to the measurement gas passes therethrough ( 30) is connected to the photoacoustic cell 10 to generate photoacoustic by the reaction of the measurement gas and infrared light, and is rotatably installed on the upper side of the photoacoustic cell 10, an optical filter through which an infrared light source 32 passes It includes a unit 40, a driving unit 60 for providing rotational driving force to the optical filter unit 40, and a microphone 70 for converting the photoacoustic sound generated in the photoacoustic cell 10 into an electrical signal.
광음향 셀(10)은 내부에 측정하고자 하는 측정 가스가 유입되고, 측정 가스에 조사된 적외선과의 반응에 의해 측정 가스의 종류와 농도를 확인하도록 설치될 수 있다.The photoacoustic cell 10 may be installed to check the type and concentration of the measurement gas by introducing a measurement gas to be measured therein and reacting with the infrared light irradiated to the measurement gas.
즉, 광음향 셀(10)은, 내부에 측정 가스가 주입되고, 측정 가스에 조사되는 적외선이 통과하는 적외선 유입부(30)가 연결되어, 측정 가스와 적외선의 반응에 의해 발생된 광음향에 의해 측정 가스의 농도 또는 종류의 분석이 이루어질 수 있다.That is, the photoacoustic cell 10 is connected to an infrared inlet portion 30 through which a measurement gas is injected, and an infrared ray irradiated to the measurement gas passes through the photoacoustic sound generated by the reaction of the measurement gas and infrared rays. Analysis of the concentration or type of measurement gas can be performed.
보다 구체적으로 설명하면, 광음향 셀(10)은, 내부에 설치 공간(12)이 형성된 셀 바디(11)와, 셀 바디(11)의 내벽면에 이격된 내측에 설치되고 측정 가스와 적외선이 유입되어 광음향이 발생되는 측정 셀(13)을 포함할 수 있다. More specifically, the photoacoustic cell 10 is installed inside the cell body 11 in which the installation space 12 is formed inside, and spaced apart from the inner wall surface of the cell body 11, and the measurement gas and infrared rays are provided. It may include a measurement cell 13 through which photoacoustics are introduced.
셀 바디(11)는 내부에 일정 압력으로 유지되는 설치 공간(12)이 형성될 수 있다. 이러한 셀 바디(11)의 설치 공간(12)에는 측정 셀(13)이 설치될 수 있다.The cell body 11 may have an installation space 12 maintained at a constant pressure therein. The measurement cell 13 may be installed in the installation space 12 of the cell body 11.
측정 셀(13)은 셀 바디(11)의 내부에서 설치 공간(12)의 내벽면과 일정 거리 이격된 상태로 설치될 수 있다. The measuring cell 13 may be installed in a state spaced apart from the inner wall surface of the installation space 12 by a certain distance from the inside of the cell body 11.
이러한 측정 셀(13)의 상부는 셀 바디(11)의 상부 위치에 위치된 상태로 설치 공간(12)의 내부에 설치될 수 있다. 측정 셀(13)은 저면이 셀 바디(11)의 저면으로부터 이격된 상태로 설치되는 바, 설치 공간(12)의 일정 압력으로 유지되는 분위기에서 안정적으로 설치되도록 할 수 있다.The upper portion of the measurement cell 13 may be installed inside the installation space 12 in a state located at an upper position of the cell body 11. The measurement cell 13 is installed in a state in which the bottom surface is spaced from the bottom surface of the cell body 11 and can be stably installed in an atmosphere maintained at a constant pressure in the installation space 12.
측정 셀(13)은 셀 바디(11)의 내부에서 육면체 형상으로 형성되는 것을 예시적으로 설명하지만, 이에 반드시 한정되는 것은 아니고, 외표면의 일부 또는 전체가 라운드 형상으로 적절하게 변경 적용되는 것도 가능하다. The measurement cell 13 is exemplarily described as being formed in a hexahedral shape inside the cell body 11, but is not necessarily limited thereto, and a part or the entirety of the outer surface may be appropriately changed to a round shape. Do.
이러한 측정 셀(13)에는 측정 가스의 주입을 위한 가스 주입부(20)와, 주입된 측정 가스에 적외선이 유입되도록 하는 적외선 유입부(30)와, 마이크로폰(70)이 각각 연결될 수 있다. The measurement cell 13 may be connected to a gas injection unit 20 for injecting a measurement gas, an infrared inlet 30 to allow infrared rays to be introduced into the injected measurement gas, and a microphone 70, respectively.
가스 주입부(20)는 측정 셀(13)의 일측에 연결되는바, 측정 가스의 설정량이 측정 셀(13)의 내부에 주입되도록 연결될 수 있다. 측정 가스는 본 실시예에서 변압기에 사용되는 유중 가스인 것을 예시적으로 설명한다. 그러나 측정 가스는 변압기 유중 가스로 반드시 한정되는 것은 아니고, 성분 및 종류 분석을 위한 소정의 가스로 적절하게 변경 적용될 수 있다. The gas injection unit 20 is connected to one side of the measurement cell 13, and thus a set amount of measurement gas may be connected to be injected into the measurement cell 13. It is exemplarily described that the measurement gas is an oil-in-gas used in a transformer in this embodiment. However, the measurement gas is not necessarily limited to the gas in the transformer, and may be appropriately changed and applied to a predetermined gas for component and type analysis.
한편, 측정 셀(13)에는 내부에 주입된 측정 가스의 배출을 위한 가스 배출부(21)가 함께 설치될 수 있다.Meanwhile, the measurement cell 13 may be provided with a gas discharge unit 21 for discharging the measurement gas injected therein.
이러한 측정 셀(13)의 상부에는 적외선 유입부(30)가 설치될 수 있다.An infrared inlet 30 may be installed on the measurement cell 13.
적외선 유입부(30)는, 측정 셀(13)의 상부에 설치되어, 소정의 적외선 광원(32)에 의해 조사된 적외선이 측정 셀(13)의 내부에 유입되도록 설치될 수 있다. The infrared inlet 30 is installed on the upper portion of the measurement cell 13, and may be installed so that the infrared light irradiated by the predetermined infrared light source 32 is introduced into the measurement cell 13.
즉, 적외선은 적외선 광원(32)에서 조사되어 오목 반사부(34)에 의해 반사되어 적외선 유입부(30)를 통해 측정 셀(13)의 내부에 조사될 수 있다. 물론, 적외선은 오목 반사부(34)에 반사되어 적외선 유입부(30)에 조사되는 것으로 반드시 한정되는 것은 아니고, 적외선 광원(32)으로부터 직접적으로 조사되게 변경 적용되는 것도 가능하다.That is, infrared rays may be irradiated from the infrared light source 32 and reflected by the concave reflector 34 to be irradiated inside the measurement cell 13 through the infrared inlet 30. Of course, the infrared light is reflected by the concave reflection part 34 and is not necessarily limited to being irradiated to the infrared inflow part 30, and it is also possible to apply a change to be irradiated directly from the infrared light source 32.
도 2는 본 발명의 일 실시예에 따른 광 음향 셀에 설치되는 적외선 유입부를 개략적으로 도시한 요부 사시도이고, 도 3은 도 2의 Ⅲ-Ⅲ 선을 따라 잘라서 본 단면도이다. 2 is a perspective view of a main part schematically showing an infrared inlet installed in an optoacoustic cell according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2.
도 2 및 도 3에 도시된 바와 같이, 적외선 유입부(30)는, 측정 셀(13)에 돌출된 상태로 연결되어 적외선이 입사되는 입사 바디(31)와, 입사 바디(31)에 연결되어 적외선이 측정 셀(13)의 내부로 입사되는 것을 가이드하는 테이퍼 바디(33)를 포함할 수 있다.2 and 3, the infrared inlet 30 is connected to the measurement cell 13 in a protruding state, and the incident body 31 through which infrared rays are incident, and is connected to the incident body 31 It may include a tapered body 33 that guides the infrared rays to enter the interior of the measurement cell (13).
입사 바디(31)는 적외선 광원(32)에서 조사되는 적외선이 유입되는 유입홀(31a)이 관통 형성될 수 있다.The incident body 31 may be formed with an inlet hole 31a through which infrared light emitted from the infrared light source 32 flows.
유입홀(31a)은 입사 바디(31)를 상하 방향으로 관통하도록 형성되는 것으로, 원통형의 긴 길이를 갖도록 입사 바디(31)에 형성되는 것을 예시적으로 설명한다. The inflow hole 31a is formed to penetrate the incidence body 31 in the vertical direction, and it is exemplarily described that it is formed in the incidence body 31 to have a long cylindrical shape.
그러나 유입홀(31a)은 입사 바디(31)에 원통형으로 하나로 형성되는 것으로 반드시 한정되는 것은 아니고, 다각형의 복수개로 적절하게 변경 적용되는 것도 가능하다. 이러한 유입홀(31a)은 입사 바디(31)의 하부 방향으로 경사진 테이퍼 형상으로 형성되는 것도 가능하고, 적외선의 조사량의 증대를 위해 원통형으로 개구되는 것도 가능하다.However, the inlet hole 31a is not necessarily limited to being formed as a single cylinder on the incidence body 31, and may be appropriately changed to a plurality of polygons. The inflow hole 31a may be formed in a tapered shape inclined in the downward direction of the incidence body 31, or may be opened in a cylindrical shape to increase the amount of infrared radiation.
이러한 입사 바디(31)의 유입홀(31a)을 통과한 적외선은 테이퍼 바디(33)를 통과하여 측정 셀(13)의 내부로 조사될 수 있다.Infrared light passing through the inlet hole 31a of the incident body 31 may pass through the tapered body 33 and be irradiated into the measurement cell 13.
테이퍼 바디(33)는, 입사 바디(31)에 연결되며 유입홀(31a)을 통해 입사된 적외선을 측정 셀(13)의 내부로 가이드하는 가이드홀(33a)이 형성될 수 있다. The tapered body 33 may be formed with a guide hole 33a connected to the incident body 31 and guiding infrared rays incident through the inlet hole 31a into the inside of the measurement cell 13.
가이드홀(33a)은 입사 바디(31)를 상하로 관통하도록 형성되어 입사 바디(31)를 통해 유입되는 적외선을 측정 셀(13)의 내부로 안정적으로 입사하도록 형성될 수 있다.The guide hole 33a is formed to penetrate the incidence body 31 up and down, and may be formed to stably enter infrared rays introduced through the incidence body 31 into the interior of the measurement cell 13.
이러한 가이드홀(33a)은 본 실시예에서 측정 셀(13)의 내부 방향으로 개구된 크기가 줄어드는 역사다리꼴 형상으로 형성될 수 있다. The guide hole 33a may be formed in an inverted trapezoidal shape in which the size opened in the inner direction of the measurement cell 13 in this embodiment is reduced.
따라서, 적외선은 가이드홀(33a)을 통과하면서 산란되지 않은 상태로 가이드홀(33a)의 역사다리꼴 형상에 의한 가이드 작용으로 측정 셀(13)의 내부로 안정적으로 입사되는 것이 가능하다. Therefore, it is possible that the infrared rays stably enter the inside of the measurement cell 13 through the guide action of the inverted trapezoidal shape of the guide hole 33a in the unscattered state while passing through the guide hole 33a.
이에 따라, 적외선은 산란되지 않은 상태에서 측정 셀(13)의 내부에서 측정 가스에 효과적으로 접촉 반응하는 것이 가능한바, 측정 가스와 적외선의 접촉에 따른 광음향 신호가 안정적으로 발생될 수 있다. Accordingly, since infrared rays can effectively contact and react with the measurement gas inside the measurement cell 13 without being scattered, a photoacoustic signal according to contact between the measurement gas and infrared rays can be stably generated.
한편, 광음향 셀(10)의 상측에는 적외선 광원에서 발생된 적외선이 투과되는 광학 필터부(40)가 설치될 수 있다.Meanwhile, an optical filter unit 40 through which infrared rays generated from an infrared light source is transmitted may be installed above the photoacoustic cell 10.
광학 필터부(40)는 광음향 셀(10)의 상측에 설치되어, 측정 가스의 종류에 대응하는 복수개의 필터부재(43)가 설치되는바, 측정 가스에 대응하는 특정 대역 주파수를 갖는 적외선을 선택적으로 투과시킬 수 있다.The optical filter unit 40 is installed on the upper side of the photoacoustic cell 10, and a plurality of filter members 43 corresponding to the type of measurement gas is installed, so that infrared light having a specific band frequency corresponding to the measurement gas is provided. It can be selectively transmitted.
도 4는 본 발명의 일 실시예에 따른 광학 필터부를 개략적으로 도시한 사시도이다.4 is a perspective view schematically showing an optical filter unit according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 광학 필터부(40)는, 회전 중심 위치에 구동부(60)가 연결되는 연결부(42)와 연결부(42)의 측면에 형성되는 필터홀(41a)이 형성된 필터 바디(41)와, 필터홀(41a)에 설치되는 필터부재(43)를 포함할 수 있다. 연결부(42)는 구동부의 회전축(61)이 삽입 고정되는 부분을 말한다.As shown in Figure 4, the optical filter unit 40, the filter body formed with a filter hole (41a) formed on the side of the connecting portion 42 and the connecting portion 42 is connected to the driving unit 60 in the rotational center position 41 and a filter member 43 provided in the filter hole 41a. The connection part 42 refers to a portion where the rotation shaft 61 of the driving part is inserted and fixed.
필터 바디(41)는 구동부(60)로부터 회전 구동력을 전달받아 일방향 또는 역방향으로 회전 가능하게 설치될 수 있다. The filter body 41 may be rotatably installed in one direction or in the reverse direction by receiving rotational driving force from the driving unit 60.
필터 바디(41)는 구동부(60)의 회전 구동력의 전달에 의해 안정적으로 회전 작동되며 적절한 내구성을 갖는 엔지니어링 플라스틱 재질의 플레이트 형상으로 형성되는 것을 예시적으로 설명한다. The filter body 41 is exemplarily described as being stably rotated by transmission of the rotational driving force of the driving unit 60 and formed in a plate shape of engineering plastic material having appropriate durability.
필터 바디(41)는 회전 작동 과정에서 인접 설비와 간섭을 방지하면서 복수개의 필터부재(43)의 안정적인 설치를 위해 가장자리가 라운드 형상인 플레이트 형상으로 형성될 수 있다. 물론 필터 바디(41)는 라운드 형상으로 반드시 한정되는 것은 아니고 필터부재(43)의 형상 변경에 대응하여 적절한 형상으로 변경 적용되는 것도 가능하다.The filter body 41 may be formed in a plate shape having a rounded edge for stable installation of the plurality of filter members 43 while preventing interference with adjacent facilities during a rotational operation process. Of course, the filter body 41 is not necessarily limited to a round shape, and it is also possible to apply a change to an appropriate shape in response to the shape change of the filter member 43.
필터부재(43)는 필터 바디(41)에 형성된 복수개의 필터홀(41a)에 각각 설치되는 것으로, 설치되는 종류를 달리하여 필터홀(41a)이 각각 설치될 수 있다. The filter member 43 is installed in each of the plurality of filter holes 41a formed in the filter body 41, and the filter holes 41a may be respectively installed in different types.
이러한, 필터부재(43)는 측정 셀(13)의 내부로 주입되는 측정 가스의 종류에 대응하여 종류를 달리하여 필터홀(41a)에 설치될 수 있다. The filter member 43 may be installed in the filter hole 41a by changing the type corresponding to the type of measurement gas injected into the measurement cell 13.
즉, 필터부재(43)는 측정가스의 종류에 대응하여 적외선의 특정 주파수 대역을 선택적으로 투과시키도록 필터 바디(41)에 설치될 수 있다. That is, the filter member 43 may be installed on the filter body 41 to selectively transmit a specific frequency band of infrared rays corresponding to the type of the measurement gas.
이에 따라 적외선은 측정 셀(13)의 내부에 주입된 측정 가스와 반응하여 광음향이 발생되는바, 측정가스의 종류 및 농도 등을 용이하게 확인하는 것이 가능하다. 이러한 광 음향의 분석은 후술하는 마이크로폰(70)에 의해 이루어질 수 있다.Accordingly, since the infrared rays react with the measurement gas injected into the measurement cell 13 to generate photoacoustics, it is possible to easily check the type and concentration of the measurement gas. Analysis of the optical sound may be performed by the microphone 70 to be described later.
광학 필터부(40)의 상측에는 적외선이 필터부재(43) 방향으로 투과되는 투과홀(51)이 형성된 쵸퍼(50)가 설치되는 것도 가능하다. It is also possible that a chopper 50 having a transmission hole 51 through which infrared rays are transmitted in the direction of the filter member 43 is installed on the upper side of the optical filter unit 40.
한편, 광학 필터부(40)는 구동부(60)의 구동에 따른 회전 구동력에 의해 일방향 또는 역방향으로 적절하게 회전될 수 있다. Meanwhile, the optical filter unit 40 may be appropriately rotated in one direction or in the reverse direction by a rotational driving force according to the driving of the driving unit 60.
구동부(60)는 광학 필터부(40)를 구성하는 필터 바디(41)에 회전 구동력을 제공하는 스텝 모터로 적용될 수 있다. 이하에서 구동부와 스텝 모터는 동일 참조 번호를 사용한다.The driving unit 60 may be applied as a step motor providing rotational driving force to the filter body 41 constituting the optical filter unit 40. Hereinafter, the same reference numerals are used for the driving unit and the step motor.
스텝 모터(60)는 회전축이 필터 바디(41)의 연결부에 연결되는 바, 회전 구동력을 광학 필터부(40)에 단계적으로 제공하는 것이 가능하다. In the step motor 60, the rotating shaft is connected to the connection portion of the filter body 41, and thus it is possible to provide the rotational driving force to the optical filter portion step by step.
이와 같이, 광학 필터부(40)는, 스텝 모터(60)의 구동력에 의해 설정된 회전 각도로 단계적으로 회전되는 것이 가능한바, 필터부재(43)와 적외선 유입부(30)의 수직 정렬이 안정적으로 이루어질 수 있다.In this way, the optical filter unit 40 can be rotated step by step at a rotation angle set by the driving force of the step motor 60, so that the vertical alignment of the filter member 43 and the infrared inlet unit 30 is stable. It can be done.
따라서 적외선 광원(32)에서 조사되는 적외선은, 필터부재(43)와 적외선 유입부(30)의 정확한 정렬 상태에 의해 필터부재(43)를 통과하여 적외선 유입부(30)의 내부로 전부 유입되는 것이 가능한바, 측정 가스와 적외선에 반응에 의한 광음향 발생이 효과적으로 이루어지는 것이 가능하다.Therefore, the infrared light irradiated from the infrared light source 32 passes through the filter member 43 by the precise alignment of the filter member 43 and the infrared inlet 30, and is entirely introduced into the infrared inlet 30. Since it is possible, it is possible to effectively generate photoacoustics by reaction to a measurement gas and infrared rays.
한편, 적외선 유입부(30)의 내부에서 적외선이 통과되면서 접촉되는 부분에는 반사 코팅부(35)가 형성될 수 있다.Meanwhile, a reflective coating unit 35 may be formed in a portion in which infrared rays pass through the inside of the infrared inlet unit 30.
반사 코팅부(35)는 적외선 유입부(30)에서 적외선이 통과되는 부분 전체의 내벽면에 도포되는 것으로, 본 실시예에서 적외선 유입부(30)에 형성된 유입홀(31a)과 가이드홀(33a)의 내벽면의 전체 표면에 도포되는 것을 예시적으로 설명한다. The reflective coating unit 35 is applied to the inner wall surface of the entire portion of the infrared inlet 30 through which the infrared rays pass, and in this embodiment, the inlet hole 31a and the guide hole 33a formed in the infrared inlet unit 30 ) Is exemplarily described as being applied to the entire surface of the inner wall surface.
따라서, 적외선은 적외선 유입부(30)에 입사되어 측정 셀(13)의 내부에 조사되는 과정에서 반사 코팅부(35)의 반사 작용이 발생되는바, 적외선이 난반사되거나 적외선 유입부(30)를 통과하는 과정에서 흡수 작용이 발생되지 않도록 하여, 적외선의 효과적인 조사 작용이 이루어지도록 할 수 있다.Therefore, the infrared rays are incident on the infrared inlet 30, and the reflection action of the reflective coating unit 35 is generated in the process of being irradiated inside the measurement cell 13. It is possible to prevent the absorption effect from being generated in the process of passing, so that an effective irradiation action of infrared rays can be achieved.
한편, 마이크로폰(70)은 측정 셀(13)의 측면에 설치되어 측정 셀(13)의 내부에서 적외선과 측정 가스의 반응에 의해 발생된 광 음향을 센싱하도록 설치될 수 있다.On the other hand, the microphone 70 is installed on the side of the measurement cell 13 may be installed to sense the optical sound generated by the reaction of the infrared and the measurement gas inside the measurement cell (13).
마이크로폰(70)은 광 음향을 전기적 신호로 변환 가능하게 설치되는바, 광음향에서 발생된 전기적 신호의 변화에 따라 측정 가스의 종류 또는 농도를 확인할 수 있다. Since the microphone 70 is installed so as to be capable of converting optical sound into an electrical signal, it is possible to check the type or concentration of the measurement gas according to the change in the electrical signal generated in the photoacoustic sound.
즉, 측정 가스의 농도와 광량에 따라 전기적 신호로 변환된 광음향 신호의 크기 변화가 발생되는 바, 마이크로폰(70)에서 변환된 전기적 신호를 분석하여 측정 가스의 농도 또는 종류의 용이한 확인이 가능하다. That is, a change in size of the photoacoustic signal converted into an electrical signal occurs according to the concentration and the amount of light of the measurement gas, and it is possible to easily check the concentration or type of the measurement gas by analyzing the electrical signal converted by the microphone 70. Do.
전술한 바와 같이, 본 실시예의 유중 가스 분석 광음향 장치(100)는, 적외선을 측정 가스에 조사하는 과정에서 난반사 또는 간섭이 발생되지 않은 상태로, 적외선을 측정 가스에 안정적으로 조사하여 광음향이 안정적으로 발생되도록 할 수 있다. As described above, in the gas analysis photoacoustic device 100 of the present embodiment, in the state in which no diffuse reflection or interference occurs in the process of irradiating infrared light to the measurement gas, the photoacoustic sound is stably irradiated to the measurement gas. It can be stably generated.
또한 필터부재(43)를 스텝 모터(60)의 구동에 의해 적외선 유입부(30)의 상측에 정확하게 위치된 상태로 정렬하는 것이 가능한바, 적외선이 필터부재(43)를 통과하여 측정 가스에 안정적으로 조사되는 것이 가능하다. In addition, it is possible to align the filter member 43 in a state accurately positioned on the upper side of the infrared inlet 30 by the driving of the step motor 60, since the infrared rays pass through the filter member 43 and are stable to the measurement gas. It is possible to be investigated.
이상을 통해 본 발명의 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the embodiments of the present invention have been described through the above, the present invention is not limited thereto, and it is possible to carry out various modifications within the scope of the claims and detailed description of the invention and the accompanying drawings. It is natural to fall within the scope.
-부호의 설명--Description of code-
10: 광음향 셀, 11: 셀 바디, 12: 설치 공간, 13: 측정 셀, 20:가스 주입부, 21: 가스 배출부, 30: 적외선 유입부, 31: 입사 바디, 31a: 유입홀, 32: 적외선 광원, 33: 테이퍼 바디, 33a: 가이드 홀, 34: 오목 반사부, 35: 반사 코팅부, 40: 광학 필터부, 41: 필터 바디, 41a: 필터홀, 42: 연결부, 43: 필터부재, 50: 쵸퍼, 51: 투과홀, 60: 구동부 및 스텝모터, 61: 회전축, 70: 마이크로폰10: optoacoustic cell, 11: cell body, 12: installation space, 13: measuring cell, 20: gas inlet, 21: gas outlet, 30: infrared inlet, 31: incident body, 31a: inlet hole, 32 : Infrared light source, 33: tapered body, 33a: guide hole, 34: concave reflection part, 35: reflective coating part, 40: optical filter part, 41: filter body, 41a: filter hole, 42: connection part, 43: filter member , 50: chopper, 51: transmission hole, 60: drive and step motor, 61: rotating shaft, 70: microphone

Claims (7)

  1. 내부에 측정 가스가 주입되고 상기 측정 가스에 조사되는 적외선이 통과하는 적외선 유입부가 연결되어, 상기 측정 가스와 상기 적외선의 반응에 의한 광음향이 발생되는 광음향 셀;A photoacoustic cell in which a measurement gas is injected therein and an infrared inlet through which infrared light irradiated to the measurement gas passes is connected to generate a photoacoustic reaction by the reaction between the measurement gas and the infrared light;
    상기 광음향 셀의 상측에 회전 가능하게 설치되며 적외선 광원이 통과되는 광학 필터부; An optical filter unit rotatably installed above the photoacoustic cell and through which an infrared light source passes;
    상기 광학 필터부에 회전 구동력을 제공하는 구동부; 및A driving unit providing rotational driving force to the optical filter unit; And
    상기 광음향 셀에서 발생된 광음향을 전기적인 신호로 변환하는 마이크로폰A microphone that converts the photoacoustic sound generated in the photoacoustic cell into an electrical signal
    을 포함하고, Including,
    상기 적외선 유입부는 테이퍼 형상의 적외선 입사홀을 포함하는 유중 가스 분석 광음향 장치.The infrared inlet portion is a gas-borne photoacoustic device comprising a tapered infrared incident hole.
  2. 제1항에 있어서,According to claim 1,
    상기 광음향 셀은,The photoacoustic cell,
    내부에 설치 공간이 형성된 셀 바디; 및A cell body having an installation space formed therein; And
    상기 셀 바디의 내벽면에 이격된 내측에 설치되고, 측면에는 상기 측정 가스가 주입되는 가스 주입부와 상기 적외선 유입부가 각각 연결되는 측정 셀The measurement cell is installed on the inner side of the inner wall surface of the cell body, and the side is connected to the gas injection portion and the infrared inlet portion to which the measurement gas is injected, respectively.
    을 포함하는 유중 가스 분석 광음향 장치.In-oil gas analysis photoacoustic device comprising a.
  3. 제2항에 있어서,According to claim 2,
    상기 적외선 유입부는, The infrared inlet,
    상기 측정 셀에 돌출된 상태로 연결되며 상기 적외선이 입사되는 유입홀이 형성되는 입사 바디; 및An incident body connected in a protruding state to the measurement cell and having an inlet hole through which the infrared rays are incident; And
    상기 입사 바디에 연결되며 상기 유입홀을 통해 입사된 적외선을 상기 측정 셀의 내부로 가이드하는 가이드홀이 형성되는 테이퍼 바디A tapered body connected to the incident body and having a guide hole for guiding infrared rays incident through the inlet hole into the inside of the measurement cell
    를 포함하는 유중 가스 분석 광음향 장치.In-oil gas analysis photoacoustic device comprising a.
  4. 제3항에 있어서,According to claim 3,
    상기 가이드홀은, 상기 입사 바디에 관통 형성되며 상기 측정 셀의 내부 방향으로 역사다리꼴 단면으로 형성되는 유중 가스 분석 광음향 장치.The guide hole is formed through the incidence body and is formed in an inverted trapezoidal cross section in the inner direction of the measuring cell.
  5. 제4항에 있어서, The method of claim 4,
    상기 가이드홀의 내벽면과 상기 유입홀의 내벽면에는 반사 코팅부가 부착되는 유중 가스 분석 광음향 장치.Oil-gas analysis photoacoustic device in which a reflective coating is attached to the inner wall surface of the guide hole and the inner wall surface of the inflow hole.
  6. 제1항에 있어서,According to claim 1,
    상기 광학 필터부는,The optical filter unit,
    회전 중심 위치에 상기 구동부가 연결되는 연결부가 형성되고, 상기 연결부를 중심으로 방사상으로 복수개의 필터홀이 형성된 필터 바디; 및A filter body in which a connection part to which the driving part is connected is formed at a rotation center position, and a plurality of filter holes are formed radially around the connection part; And
    상기 필터홀에 설치되어 상기 적외선의 설정된 주파수 대역을 통과시키는 필터부재Filter member installed in the filter hole to pass the set frequency band of the infrared ray
    를 포함하는 유중 가스 분석 광음향 장치.In-oil gas analysis photoacoustic device comprising a.
  7. 제6항에 있어서,The method of claim 6,
    상기 구동부는, 상기 연결부에 회전축이 연결되어 회전 구동력을 전달하는 스텝 모터인 유중 가스 분석 광음향 장치.In the driving unit, a rotating shaft is connected to the connection unit, and the stepped motor is a step motor that transmits rotational driving force.
PCT/KR2019/013632 2018-10-30 2019-10-17 Photoacoustic device for analyzing dissolved gas in oil WO2020091273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0131280 2018-10-30
KR1020180131280A KR102071569B1 (en) 2018-10-30 2018-10-30 Photoacoustic spectroscopy for analyzing dissolved gas

Publications (1)

Publication Number Publication Date
WO2020091273A1 true WO2020091273A1 (en) 2020-05-07

Family

ID=69805258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013632 WO2020091273A1 (en) 2018-10-30 2019-10-17 Photoacoustic device for analyzing dissolved gas in oil

Country Status (2)

Country Link
KR (1) KR102071569B1 (en)
WO (1) WO2020091273A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194343A (en) * 1992-09-30 1994-07-15 Gec Marconi Ltd Gas analyzer
US8322190B2 (en) * 2006-08-31 2012-12-04 Koninklijke Philips Electronics N.V. Optical cavity-enhanced photo acoustic trace gas detector with variable light intensity modulator
KR101409620B1 (en) * 2012-12-26 2014-06-18 주식회사 아이스기술 Apparatus for Measuring Gas
KR20160032863A (en) * 2014-09-17 2016-03-25 한국과학기술연구원 Infrared Gas Analyzer
CN106198393A (en) * 2016-09-21 2016-12-07 深圳市卓尔思科技有限公司 Gases Dissolved in Transformer Oil detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194343A (en) * 1992-09-30 1994-07-15 Gec Marconi Ltd Gas analyzer
US8322190B2 (en) * 2006-08-31 2012-12-04 Koninklijke Philips Electronics N.V. Optical cavity-enhanced photo acoustic trace gas detector with variable light intensity modulator
KR101409620B1 (en) * 2012-12-26 2014-06-18 주식회사 아이스기술 Apparatus for Measuring Gas
KR20160032863A (en) * 2014-09-17 2016-03-25 한국과학기술연구원 Infrared Gas Analyzer
CN106198393A (en) * 2016-09-21 2016-12-07 深圳市卓尔思科技有限公司 Gases Dissolved in Transformer Oil detection device

Also Published As

Publication number Publication date
KR102071569B1 (en) 2020-03-02

Similar Documents

Publication Publication Date Title
FI93994B (en) Detector combination for analyzer
EP0902271A3 (en) Apparatus and method for analyzing samples
US7151869B2 (en) Fiber-optic channel selecting apparatus
EP1380833A3 (en) Apparatus for spectrometrically measuring isotopic gas
GB2383127B (en) Device and method for investigating analytes in liquid suspension or solution
NO901792L (en) METHOD AND APPARATUS FOR MEASURING OPTICAL ABSORPTION OF GAS MIXTURES.
WO2022250353A1 (en) Optical detection device for fluid sample analysis
WO2017078504A2 (en) Process gas analyzing device
AU713058B2 (en) Apparatus and method for detecting chemiluminescent light
ES451500A1 (en) Apparatus for textile color analysis
WO2009125974A2 (en) Multi-channel bio reactor with fluorescence detector and on-line monitoring apparatus of it
WO2020091273A1 (en) Photoacoustic device for analyzing dissolved gas in oil
WO2014046375A1 (en) Microfluidic chip having flow cell for absorbance detection and absorbance detection device including same
MX9602282A (en) Luminometer.
US20210055223A1 (en) Transmission apparatus for examining samples in cavities of a microtiter plate and method for examining samples in cavities of a microtiter plate by means of transmission
WO2020138809A1 (en) Inspection device using terahertz wave
US3834821A (en) Multiple photometer assembly
WO2022102897A1 (en) Chamber-type tensile tester using diaphragm for tensile test in high pressure hydrogen environment
WO2016088926A1 (en) X-ray shielding device and shielding method
WO2013129755A1 (en) Spectroscopic inspection device
WO2016163577A1 (en) Fixing tool for nondestructive testing and nondestructive testing equipment using same
KR20060064565A (en) Arrangement for continuous determination of a substance
WO2020096292A1 (en) Cartridge of analysis apparatus for in vitro diagnosis
SE8901623D0 (en) DEVELOPMENT FOR AUTOMATIC PHOTOMETRIC ANALYSIS SMALL TESTING MIX
WO2022265183A1 (en) Device for detecting atmospheric hazardous substances

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879991

Country of ref document: EP

Kind code of ref document: A1