WO2020091013A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2020091013A1
WO2020091013A1 PCT/JP2019/042923 JP2019042923W WO2020091013A1 WO 2020091013 A1 WO2020091013 A1 WO 2020091013A1 JP 2019042923 W JP2019042923 W JP 2019042923W WO 2020091013 A1 WO2020091013 A1 WO 2020091013A1
Authority
WO
WIPO (PCT)
Prior art keywords
containers
container
electrolytic solution
holes
secondary battery
Prior art date
Application number
PCT/JP2019/042923
Other languages
French (fr)
Japanese (ja)
Inventor
計匡 梅里
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2020091013A1 publication Critical patent/WO2020091013A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the disclosed embodiment relates to a secondary battery.
  • the secondary battery includes a plurality of first containers, a second container, a supply unit, an electrolytic solution, and a positive electrode and a negative electrode.
  • the plurality of first containers have a plurality of through holes at the bottom.
  • the second container is located on the lower surface of the plurality of first containers and is connected to the plurality of first containers through the plurality of through holes.
  • the supply unit supplies gas to the second container.
  • the electrolytic solution is arranged in each first container of the plurality of first containers.
  • the positive electrode and the negative electrode are arranged in the electrolytic solution.
  • the ratio of the inner height of each of the plurality of first containers to the inner height of the second container is equal to or more than the following mathematical expression when the number of the first containers is k.
  • FIG. 1 is a diagram showing an outline of the secondary battery according to the first embodiment.
  • FIG. 2 is a diagram schematically showing an electrode unit included in each cell of the secondary battery according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a connection between electrodes in an electrode unit included in each cell of the secondary battery according to the first embodiment.
  • FIG. 4A is a diagram illustrating the liquid level of the electrolytic solution in the secondary battery according to the first embodiment.
  • FIG. 4B is a diagram illustrating the liquid surface height of the electrolytic solution in the secondary battery according to the first embodiment.
  • FIG. 4C is a diagram illustrating the liquid surface height of the electrolytic solution in the secondary battery according to the first embodiment.
  • FIG. 5A is a diagram showing an outline of a generating unit included in the secondary battery according to the first modified example of the first embodiment.
  • FIG. 5B is a diagram schematically showing a generator included in the secondary battery according to the second modified example of the first embodiment.
  • FIG. 5C is a diagram showing an outline of a generation unit included in the secondary battery according to the third modified example of the first embodiment.
  • FIG. 5D is a diagram illustrating an outline of a generation unit included in the secondary battery according to the fourth modified example of the first embodiment.
  • FIG. 6 is a diagram showing an outline of a generating unit included in the secondary battery according to the fifth modified example of the first embodiment.
  • FIG. 7 is a perspective view showing an outline of a generator included in the secondary battery according to the fifth modified example of the first embodiment.
  • FIG. 8 is a figure which shows the outline of the production
  • FIG. 9A is a diagram showing an outline of a generator included in a secondary battery according to a seventh modified example of the first embodiment.
  • 9B is a cross-sectional view taken along the line AA of FIG. 9A.
  • FIG. 10 is a diagram showing an outline of the secondary battery according to the second embodiment.
  • FIG. 11 is a diagram showing an outline of the secondary battery according to the third embodiment.
  • FIG. 12 is a diagram showing an outline of the secondary battery according to the fourth embodiment.
  • FIG. 13 is a diagram showing an outline of the secondary battery according to the fifth embodiment.
  • FIG. 9A is a diagram showing an outline of a generator included in a secondary battery according to a seventh modified example of the first embodiment.
  • 9B is a cross-sectional view taken along the line AA of FIG. 9A.
  • FIG. 10 is a
  • FIG. 14 is a figure which shows the outline of the secondary battery which concerns on 6th Embodiment.
  • FIG. 15 is a diagram showing an outline of the secondary battery according to the seventh embodiment.
  • FIG. 16 is a figure which shows the outline of the secondary battery which concerns on the 1st modification of 7th Embodiment.
  • FIG. 17 is a diagram showing an outline of a secondary battery according to a second modification of the seventh embodiment.
  • FIG. 18 is a diagram showing an outline of a secondary battery according to a third modified example of the seventh embodiment.
  • FIG. 19 is a diagram showing an arrangement example of communication holes.
  • FIG. 20A is a diagram showing an example of a communication hole.
  • FIG. 20B is a diagram showing an example of the communication hole.
  • FIG. 20C is a diagram showing an example of the communication hole.
  • FIG. 20D is a diagram showing an example of the communication hole.
  • FIG. 20E is a diagram showing an example of the communication hole.
  • FIG. 1 is a diagram showing an outline of the secondary battery according to the first embodiment.
  • the secondary battery 1 shown in FIG. 1 includes a reaction unit 10, a generation unit 19, and a supply unit 14.
  • the reaction part 10 includes a plurality of cells 10-1 to 10-8 stacked along the Y-axis direction as the first direction. Further, the plurality of cells 10-1 to 10-8 have a plurality of ejection ports 11a at the bottoms thereof.
  • the cells 10-1 to 10-8 are an example of a plurality of first containers.
  • the plurality of ejection ports 11a are an example of a plurality of first through holes.
  • the number of cells 10-1 to 10-8 included in the reaction part 10 is merely an example, and may be 7 or less or 9 or more. Further, the plurality of first through holes may be simply referred to as “a plurality of through holes”.
  • FIG. 1 illustrates a three-dimensional Cartesian coordinate system that includes the Z-axis with the vertical upward direction as the positive direction and the vertical downward direction as the negative direction.
  • Such an orthogonal coordinate system may also be shown in other drawings used in the description below.
  • the same components as those of the secondary battery 1 shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted or simplified.
  • the cells 10-1 to 10-8 are partitioned by partition walls 30 arranged along the ZX plane.
  • Each of the cells 10-1 to 10-8 contains an electrode portion 20, an electrolytic solution 6, and a powder 7.
  • the secondary battery 1 is a device that floats the bubbles 8 generated in the generating unit 19 in the electrolytic solution 6 to cause the electrolytic solution 6 contained in the cells 10-1 to 10-8 to flow.
  • FIG. 2 is a diagram schematically showing an electrode unit included in each cell of the secondary battery according to the first embodiment.
  • the electrode unit 20 includes a positive electrode 2, a negative electrode 3, and diaphragms 4 and 5.
  • the positive electrode 2 is a conductive member containing, for example, a nickel compound, a manganese compound or a cobalt compound as a positive electrode active material.
  • a nickel compound for example, nickel oxyhydroxide, nickel hydroxide, cobalt compound-containing nickel hydroxide or the like can be used.
  • the manganese compound for example, manganese dioxide or the like can be used.
  • the cobalt compound for example, cobalt hydroxide, cobalt oxyhydroxide or the like can be used.
  • the positive electrode 2 may include graphite, carbon black, a conductive resin, or the like.
  • the positive electrode 2 may be nickel metal, cobalt metal, manganese metal, or an alloy thereof.
  • the positive electrode 2 contains, for example, the above-described positive electrode active material, a conductor, and other additives as a plurality of particles.
  • the positive electrode 2 includes, for example, a paste-like positive electrode material containing a granular active material and a conductor mixed in a predetermined ratio together with a binder that contributes to shape retention. It is obtained by press-fitting into a foam metal having properties, forming it into a desired shape, and drying.
  • the negative electrode 3 contains a negative electrode active material as a metal.
  • a metal plate such as stainless steel or copper, or a stainless steel or copper plate whose surface is plated with nickel, tin, or zinc can be used.
  • the negative electrode 3 may be formed by partially oxidizing the plated surface.
  • the negative electrode 3 includes a negative electrode 3a and a negative electrode 3b which are arranged to face each other with the positive electrode 2 interposed therebetween.
  • the positive electrode 2 and the negative electrode 3 are arranged so that the negative electrode 3a, the positive electrode 2, and the negative electrode 3b are sequentially arranged at predetermined intervals along the Y-axis direction.
  • the diaphragms 4 and 5 are arranged so as to sandwich both sides in the thickness direction of the positive electrode 2, that is, the Y-axis direction.
  • the diaphragms 4 and 5 are made of a material that allows movement of ions contained in the electrolytic solution 6.
  • examples of the material of the diaphragms 4 and 5 include anion conductive materials so that the diaphragms 4 and 5 have hydroxide ion conductivity.
  • examples of the anion conductive material include gel-like anion conductive material having a three-dimensional structure such as organic hydrogel, and solid polymer type anion conductive material.
  • the solid polymer type anion conductive material is, for example, an oxide, a hydroxide or a layered double hydroxide containing a polymer and at least one element selected from the groups 1 to 17 of the periodic table.
  • Compound at least one compound selected from the group consisting of sulfuric acid compounds and phosphoric acid compounds.
  • the diaphragms 4 and 5 are preferably composed of a dense material so as to suppress the permeation of a metal ion complex such as [Zn (OH) 4 ] 2 ⁇ having an ionic radius larger than that of hydroxide ions. It has a predetermined thickness.
  • a dense material for example, a material having a relative density of 90% or more, more preferably 92% or more, still more preferably 95% or more calculated by the Archimedes method can be mentioned.
  • the predetermined thickness is, for example, 10 ⁇ m to 1000 ⁇ m, more preferably 50 ⁇ m to 500 ⁇ m.
  • the electrolytic solution 6 is an alkaline aqueous solution containing 6 mol ⁇ dm ⁇ 3 or more of alkali metal.
  • the alkali metal is, for example, potassium.
  • an aqueous solution of potassium hydroxide having a concentration of 6 to 13 moldm ⁇ 3 , particularly 6 to 6.7 moldm ⁇ 3 can be used as the electrolytic solution 6.
  • an alkali metal such as lithium or sodium may be added as a hydroxide (lithium hydroxide, sodium hydroxide) for the purpose of suppressing oxygen generation.
  • the electrolytic solution 6 contains a zinc component.
  • the zinc component is dissolved in the electrolytic solution 6 as [Zn (OH) 4 ] 2 ⁇ .
  • the zinc component for example, zinc oxide or zinc hydroxide can be used.
  • the electrolytic solution 6 can be prepared by adding ZnO at a ratio of 0.5 mol to an aqueous solution of 1 dm 3 of potassium hydroxide and adding powder 7 described later as needed.
  • the electrolyte solution 6 which has not been used or has finished discharging is, for example, 1 ⁇ 10 ⁇ 4 mol ⁇ dm ⁇ 3 or more and 5 mol ⁇ dm ⁇ 3 or less, preferably 1 ⁇ 10 ⁇ 3 mol ⁇ dm ⁇ 3 or more and 2.5 mol ⁇ dm.
  • a zinc component of -3 or less can be contained.
  • the powder 7 contains zinc.
  • the powder 7 is, for example, zinc oxide, zinc hydroxide, or the like processed or produced into a powder form.
  • the powder 7 is easily dissolved in an alkaline aqueous solution, but is not dissolved in the zinc-saturated electrolytic solution 6 but is dispersed or floated, and a part of the powder 7 is mixed in the electrolytic solution 6 in a precipitated state.
  • the electrolytic solution 6 is allowed to stand for a long time, most of the powder 7 may be settled in the electrolytic solution 6, but if the electrolytic solution 6 causes convection or the like, it is settled.
  • Part of the powder 7 is dispersed or suspended in the electrolytic solution 6. That is, the powder 7 is movably present in the electrolytic solution 6.
  • movable here does not mean that the powder 7 can move only in a local space formed between other powders 7 in the surroundings, but the powder 7 can be moved to another position in the electrolytic solution 6. By moving, the powder 7 is exposed to the electrolytic solution 6 other than the initial position. Further, in the movable category, the powder 7 can be moved to the vicinity of both the positive electrode 2 and the negative electrode 3, and the powder 7 can be almost anywhere in the electrolytic solution 6 existing in the housing 17. Includes being able to move.
  • [Zn (OH) 4 ] 2 ⁇ dissolved in the electrolytic solution 6 is consumed, the powder 7 mixed in the electrolytic solution 6 is mixed in the electrolytic solution 6 so that the powder 7 and the electrolytic solution 6 maintain an equilibrium state with each other. [Zn (OH) 4 ] 2 ⁇ dissolved therein dissolves so as to approach the saturation concentration.
  • the powder 7 can adjust the zinc concentration in the electrolytic solution 6 and can maintain high ionic conductivity of the electrolytic solution 6.
  • the bubbles 8 are composed of, for example, a gas inert to the positive electrode 2, the negative electrode 3, and the electrolytic solution 6.
  • a gas inert examples include nitrogen gas, helium gas, neon gas, and argon gas.
  • the generating unit 19 is arranged below the reaction unit 10.
  • the generation unit 19 includes a hollow portion 9 that temporarily stores the gas supplied from the supply unit 14.
  • the top plate 11 of the generating unit 19 arranged so as to cover the hollow portion 9 also serves as the inner bottom 10 e of the reaction unit 10. That is, the generating unit 19 is located on the lower surface of the cells 10-1 to 10-8 as the plurality of first containers.
  • the generation unit 19 is an example of a second container.
  • the top plate 11 has a plurality of discharge ports 11a arranged along the X-axis direction and the Y-axis direction.
  • the generating unit 19 is connected to the cells 10-1 to 10-8 as the plurality of first containers via the plurality of discharge ports 11a.
  • the generator 19 discharges the gas supplied from the supply unit 14 from the discharge port 11a to generate bubbles 8 in the electrolytic solution 6 arranged inside each of the cells 10-1 to 10-8.
  • the ejection port 11a has a diameter of, for example, 0.05 mm or more and 0.5 mm or less.
  • the diameter of the discharge port 11a By defining the diameter of the discharge port 11a in this way, it is possible to reduce the problem that the electrolytic solution 6 and the powder 7 enter from the discharge port 11a into the hollow portion 9 of the generation unit 19 during operation of the supply unit 14. Further, it is possible to give a pressure loss suitable for generating the bubbles 8 to the gas discharged from the discharge port 11a.
  • the interval (pitch) along the X-axis direction of the discharge ports 11a is, for example, 2.5 mm or more and 50 mm or less, and may be 10 mm or less.
  • the discharge port 11a is not limited in size or interval as long as it is arranged so that the generated bubbles 8 can be appropriately flowed between the positive electrode 2 and the negative electrode 3 facing each other.
  • the bubbles 8 generated by the gas supplied into the electrolytic solution 6 housed in the cells 10-1 to 10-8 from the discharge port 11a of the generating unit 19 are more specific between the electrodes arranged at a predetermined interval.
  • the electrolyte 6 floats between the negative electrode 3a and the diaphragm 4 and between the diaphragm 5 and the negative electrode 3b.
  • the gas floating in the electrolytic solution 6 as bubbles 8 disappears at the liquid surface 6a of the electrolytic solution 6, and forms a gas layer 13 between the upper plate 18 and the liquid surface 6a of the electrolytic solution 6.
  • the top plate 11, the partition wall 30, the housing 17, and the upper plate 18 are made of a resin material having an alkali resistance and an insulating property such as polystyrene, polypropylene, polyethylene terephthalate, polytetrafluoroethylene, and polyvinyl chloride.
  • the top plate 11, the partition wall 30, the housing 17, and the upper plate 18 are preferably made of the same material, but may be made of different materials.
  • the supply unit 14 supplies the gas recovered from each of the cells 10-1 to 10-8 through the pipe 16 to the generation unit 19 through the pipe 15.
  • the supply unit 14 is, for example, a pump (gas pump) capable of transferring gas, a compressor, or a blower. If the airtightness of the supply unit 14 is increased, it is less likely that the power generation performance of the secondary battery 1 will be reduced due to leakage of gas or water vapor derived from the electrolytic solution 6 to the outside.
  • the electrode reaction in the secondary battery 1 will be described by taking a nickel-zinc battery to which nickel hydroxide is applied as a positive electrode active material as an example.
  • the reaction formulas of the positive electrode 2 and the negative electrode 3 at the time of charging are as follows.
  • Positive electrode Ni (OH) 2 + OH ⁇ ⁇ NiOOH + H 2 O + e ⁇
  • Negative electrode [Zn (OH) 4 ] 2 ⁇ + 2e ⁇ ⁇ Zn + 4OH ⁇
  • the powder 7 containing zinc is mixed in the electrolytic solution 6 contained in each of the cells 10-1 to 10-8, and gas is supplied into the electrolytic solution 6 from the discharge port 11a of the generating unit 19. Then, the bubbles 8 are generated.
  • the bubbles 8 float in the electrolytic solution 6 from below to above the cells 10-1 to 10-8 between the negative electrode 3a and the positive electrode 2 and between the positive electrode 2 and the negative electrode 3b, respectively.
  • an ascending liquid flow was generated in the electrolytic solution 6 due to the floating of the bubble 8 described above between the electrodes, and the cells were housed in each of the cells 10-1 to 10-8.
  • the electrolytic solution 6 flows upward from the inner bottom 10e side between the electrode portion 20, specifically between the negative electrode 3a and the positive electrode 2, and between the positive electrode 2 and the negative electrode 3b.
  • the rising liquid flow of the electrolytic solution 6 mainly outside the Y-axis direction of the electrode portion 20, specifically between the negative electrode 3a and the inner wall 17a or the partition wall 30 of the housing 17, and between the negative electrode 3b and the partition wall 30 or.
  • a descending liquid flow is generated between the inner wall 17b and the electrolytic solution 6, and the electrolytic solution 6 flows inside the cells 10-1 to 10-8 from the upper side to the lower side.
  • the discharge port 11a may be arranged so that the bubbles 8 float between the negative electrode 3a and the inner wall 17a or the partition wall 30 and between the negative electrode 3b and the partition wall 30 or the inner wall 17b.
  • the electrolytic solution 6 flows upward between the negative electrode 3a and the inner wall 17a or the partition wall 30, and between the negative electrode 3b and the partition wall 30 or the inner wall 17b, and between the negative electrode 3a and the positive electrode 2 and the positive electrode 2.
  • the electrolytic solution 6 flows downward between the negative electrode 3b and the negative electrode 3b.
  • examples of the powder 7 include metallic zinc, calcium zincate, zinc carbonate, zinc sulfate, zinc chloride and the like, and zinc oxide and zinc hydroxide are preferable.
  • FIG. 3 is a diagram illustrating an example of a connection between electrodes in an electrode unit included in each cell of the secondary battery according to the first embodiment.
  • the negative electrode 3a and the negative electrode 3b are connected in parallel.
  • the respective electrodes of the secondary battery 1 can be appropriately connected and used even when the total number of the positive electrodes 2 and the negative electrodes 3 is different.
  • the electrode parts 20 of the cells 10-1 to 10-8 can be connected in series.
  • the electrode portion 20 includes the negative electrodes 3a and 3b arranged so as to face each other with the positive electrode 2 interposed therebetween.
  • the positive electrode 2 and the negative electrode 3 correspond to each other 1: 1.
  • the current density per negative electrode is lower than that of. Therefore, according to the secondary battery 1 of the first embodiment, the generation of dendrites in the negative electrodes 3a and 3b is further reduced, so that the negative electrodes 3a and 3b and the positive electrodes in each of the cells 10-1 to 10-8 are reduced. It is possible to further reduce the conduction with 2.
  • a total of three electrodes are configured such that the negative electrode 3 and the positive electrode 2 are alternately arranged.
  • the present invention is not limited to this, and five or more electrodes may be alternately arranged.
  • the positive electrode 2 and the negative electrode 3 may be arranged one by one.
  • both ends are configured to be the negative electrode 3, but the present invention is not limited to this, and both ends may be configured to be the positive electrode 2.
  • the same number of negative electrodes 3 and positive electrodes 2 may be alternately arranged so that one end is the positive electrode 2 and the other end is the negative electrode 3.
  • part of the water in the electrolytic solution 6 contained in each of the cells 10-1 to 10-8 may evaporate. Further, in the positive electrode 2, oxygen may be generated as a side reaction during charging. Even if the fluctuation of the liquid level 6a of the electrolytic solution 6 caused by these phenomena is slight, by repeating the charge / discharge reaction for a long period of time, the liquid level height of the electrolytic solution 6 between the cells 10-1 to 10-8 is increased. There may be an imbalance in. If the liquid level of the electrolytic solution 6 becomes imbalanced, there is a concern that the designed charge capacity and output voltage may not be obtained.
  • the inner height h1 of each of the cells 10-1 to 10-8 and the inner height of the generating portion 19, that is, the height h3 of the hollow portion 9 are set.
  • the imbalance of the liquid surface height of the electrolytic solution is reduced.
  • 4A to 4C are views for explaining the liquid surface height of the electrolytic solution in the flow battery according to the first embodiment. 4A to 4C, the electrode portion 20, the supply portion 14, and the pipes 15 and 16 in the secondary battery 1 shown in FIG. 1 are not shown.
  • the electrolytic solution 6 and the powder 7 contained in each of the cells 10-1 to 10-8 are discharged by their own weight through the discharge port 11a and the hollow portion 9 of the generation unit 19. Enter.
  • the liquid surface 6a of the electrolytic solution 6 has a constant liquid surface height h4 in each of the cells 10-1 to 10-8 (see FIG. 4A).
  • the electrolytic solution 6 and the powder 7 in the hollow portion 9 are pushed out from the discharge port 11a by the gas 23 supplied to the generation unit 19 via the supply unit 14.
  • the amounts of the electrolytic solution 6 and the powder 7 pushed out by the supply of the gas 23 correspond to the volume of the gas 23 supplied to the hollow portion 9.
  • FIG. 4B when the gas 23 is supplied by the volume of the hollow portion 9 arranged immediately below the cell 10-1, the liquid of the electrolytic solution 6 contained in each of the cells 10-1 to 10-8 is supplied.
  • the surface 6a rises to a liquid level height h5 which is higher than the height h4 by 1/8 of the height h3 of the hollow portion 9.
  • the liquid surface 6a of the electrolytic solution 6 contained in each of the cells 10-2 to 10-8 becomes hollow from the height h5.
  • the height rises so that the liquid surface height is 1/7 higher than the height h3 of the portion 9.
  • the liquid level 6a of the electrolytic solution 6 contained in the cell 10-8 is equal to the height h5 of the liquid level 6a of the electrolytic solution 6 contained in the cell 10-1.
  • the height h6, specifically, the height h3 of the hollow portion 9 is increased by (1/7 + 1/6 + 1/5 + 1/4 + 1/3 + 1/2 + 1) times (see FIG. 4C).
  • the liquid level height of the electrolytic solution 6 between the cells 10-1 to 10-8 may become unbalanced again due to the restart of the supply unit 14. There is. Therefore, an upper limit is set for the height h3 of the hollow portion 9 and the height h6, which is the maximum difference between the liquid surfaces 6a, is reduced to an acceptable level.
  • the ratio (h1 / h3) of the inner height h1 of each of the cells 10-1 to 10-8 to the height h3 of the hollow portion 9 is equal to or more than the following formula, where k is the number of cells. is there.
  • h1 / h3 can be 5 ⁇ f (n) or more, and further 10 ⁇ f (n) or more.
  • FIG. 5A is a diagram showing an outline of a generating unit included in the secondary battery according to the first modified example of the first embodiment.
  • the generating unit 19 shown in FIG. 5A intersects with the width direction which is the stacking direction of the cells 10-1 to 10-8 in plan view so that the pipe 15 is connected along the Y-axis direction in which the partition wall 30 extends.
  • the intake port 19a as a through hole (second through hole) is arranged at one end side in the length direction.
  • the second through holes intersect with the first direction in which the plurality of first containers are arranged when viewed from the direction perpendicular to the bottoms of the plurality of first containers having the discharge ports 11a as the plurality of first through holes. It is located on the side surface of the second container that intersects the second direction. Therefore, according to the secondary battery 1 including the generating unit 19 shown in FIG. 5A, the liquid level of the electrolytic solution 6 between the cells 10-1 to 10-8 is higher than that of the secondary battery 1 shown in FIG. The size imbalance can be further reduced. Since the gas 23 (see FIGS. 4B and 4C) supplied from the intake port 19a into the hollow portion 9 advances radially, the replacement of the electrolytic solution 6 with the gas 23 proceeds in a substantially circular shape.
  • 5B to 5D are schematic diagrams of a generator included in the secondary batteries according to second to fourth modifications of the first embodiment.
  • 5B to 5D in addition to the intake port 19a1 to which the pipe 15 is connected, an intake port 19a2 for further attaching a pipe 25 whose one end is connected to the supply unit 14 is arranged. It makes a difference.
  • the intake port 19a2 is arranged so as to face the intake port 19a1 with the hollow portion 9 in between.
  • the intake port 19a2 is arranged at the end in the Y-axis direction so as to be aligned with the intake port 19a1.
  • FIG. 5C the example shown in FIG.
  • the intake port 19a2 is arranged at the corner of the generating portion 19 extending in the X-axis direction and the Y-axis direction in plan view.
  • the angle ⁇ between the intake port 19a1 and the intake port 19a2 can be, for example, 90 ° or more.
  • the intake port 19a2 may be arranged, for example, in a central portion in the X-axis direction or the Y-axis direction in a plan view.
  • FIG. 6 and FIG. 7 are diagrams showing an outline of a generator included in the secondary battery according to the fifth modified example of the first embodiment.
  • FIG. 6 is a cross-sectional view of the hollow portion 9 of the generating portion 19 in the XY plane
  • FIG. 7 is a perspective view of the generating portion 19.
  • the generating unit 19 according to the fifth modification has a configuration in which a plurality of hollow chambers 9-1 to 9-8 in which the hollow portion 9 is partitioned by a partition plate 40 are stacked.
  • the partition plate 40 is arranged so as to overlap the partition wall 30 in a plan view, and the hollow chambers 9-1 to 9-8 are arranged so as to overlap the cells 10-1 to 10-8 in a plan view.
  • the plurality of hollow chambers 9-1 to 9-8 are an example of a plurality of second containers.
  • the partition plate 40 has a cutout portion 41 in the central portion, and a communication portion 42 is formed between the cutout portion 41 and the top plate 11.
  • the partition plate 40 may be in contact with the top plate 11 or may be separated therefrom.
  • the number of partition plates 40 does not necessarily have to be the same as the number of partition walls 30.
  • the partition plate 40 is provided between the cells 10-2 and 10-3, between the cells 10-4 and 10-5, and between the cells 10-6 and 10-7 in plan view. It is arranged in three places, and each hollow chamber is connected to two cells 10-1, 10-2, cells 10-3, 10-4, cells 10-5, 10-6, cells 10-7, 10-8, respectively. You may do it.
  • the communication part 42 may have a communication hole for communicating the plurality of hollow chambers 9-1 to 9-8 so as to be connected to each other, and the partition plate 40 does not necessarily have the cutout part 41. Good.
  • FIG. 8 is a figure which shows the outline of the production
  • the generating unit 19 shown in FIG. 8 has a partition plate 40a, which is not completely partitioned on the X-axis positive direction side, in place of the partition plate 40, so that the communication section 42 is formed on the X-axis positive direction side. However, it differs from the generation unit 19 according to the fifth modification of the first embodiment. By arranging such a partition plate 40a, the mechanical strength of the generating portion 19 is improved and the gas 23 is smoothly circulated in the hollow portion 9.
  • FIG. 9A and FIG. 9B are diagrams showing an outline of a generator included in the secondary battery according to the seventh modified example of the first embodiment.
  • 9A is a view of the inside of the generation unit 19 as seen from the intake port 19a side
  • FIG. 9B is a cross-sectional view taken along the line AA of FIG. 9A.
  • the generating unit 19 has a projecting wall 21 projecting from the top plate 11 in the negative Z-axis direction so as to face the intake port 19a.
  • the protruding wall 21 is arranged so as to extend inside the generating portion 19 along the X-axis direction, that is, the direction intersecting the width direction which is the stacking direction of the cells 10-1 to 10-8 in plan view.
  • An inlet 26 is formed below the protruding wall 21.
  • the projecting wall 21 faces the intake port 19a serving as the opening of the second through hole, and projects downward from the upper surface of the second container (generation unit 19).
  • the gas 23 supplied from the intake port 19 a to the inside of the generating unit 19 first diffuses along the X-axis direction in which the protruding wall 21 extends, and further from the introducing port 26 to the generating unit. It is introduced inside 19. With the introduction of the gas 23, the electrolytic solution 6 and the powder 7 that have entered the generating section 19 are pushed out to the reaction section 10 side, and the liquid level height of the electrolytic solution 6 between the cells 10-1 to 10-8 is reduced. The imbalance is reduced.
  • 9A and 9B have been described as including the protruding wall 21 extending along the X-axis direction that intersects the stacking direction of the cells 10-1 to 10-8, the present invention is not limited to this. Alternatively, the protruding wall 21 may extend along the Y-axis direction which is the stacking direction of the cells 10-1 to 10-8.
  • FIG. 10 is a diagram showing an outline of the secondary battery according to the second embodiment.
  • the secondary battery 100 shown in FIG. 10 includes a plurality of cell modules 1-1 to 1-3.
  • Each of the cell modules 1-1 to 1-3 is the secondary battery 1 shown in FIG.
  • the number of cell modules 1-1 to 1-3 is merely an example, and may be 2 or 4 or more.
  • the pipe 15 has one end connected to the supply unit 14 and the other end connected to the connection unit 61. Further, the connecting portion 61 is also connected to a pipe 64 whose one end is connected to the generating portion 19 of the cell module 1-1.
  • the pipe 66 has one end connected to the generation unit 19 of the cell module 1-2 and the other end connected to the connection unit 62.
  • One end of the pipe 68 is connected to the generating unit 19 of the cell module 1-3, and the other end is connected to the connecting unit 63.
  • the connecting portion 61 and the connecting portion 62 are connected by a pipe 65, and the connecting portion 62 and the connecting portion 63 are connected by a pipe 67.
  • the pipes 15 and 65 to 68 are an example of a supply flow path for supplying gas to the generating units 19 included in the plurality of cell modules 1-1 to 1-3, respectively.
  • the pipes 64, 66, 68 are examples of branch flow paths.
  • the liquid level height corresponding to is increased. Further, in the cell module 1-2, the liquid level height corresponding to (volume of the pipe 65) ⁇ 1/2 is higher than that in the cell module 1-1. Therefore, the occupying volume of each of the cell modules 1-1 to 1-3 of the pipes 64, 66, 68 connecting the connecting portion 61, which is the starting point of the branch flow path, and the generating portion 19 is set to be twice the minimum value or less. Can be designed to be. As a result, it is possible to reduce the imbalance of the liquid level of the electrolytic solution 6 between the cell modules 1-1 to 1-3.
  • the pipes 64, 66, 68 may include a valve 60 capable of blocking communication with the connecting portions 61 to 63. For example, if one or a plurality of valves 60 are operated to cut off communication with the connecting portions 61 to 63, the electrolytic solution 6 and the powder 7 do not enter the hollow portion 9 even if the operation of the supply portion 14 is stopped. Therefore, it is possible to selectively reduce the imbalance of the liquid surface height of the electrolytic solution 6 in the desired cell module.
  • FIG. 11 is a diagram showing an outline of the secondary battery according to the third embodiment.
  • the secondary battery 100A shown in FIG. 11 includes a plurality of cell modules 1-1 to 1-4.
  • the pipe 15 has one end connected to the supply unit 14 and the other end connected to the connection unit 70.
  • the connecting portion 70 is also connected to a pipe 72 and a pipe 73, one ends of which are connected to the generating portions 19 of the cell modules 1-1 and 1-2, respectively.
  • the pipe 75 has one end connected to the generation unit 19 of the cell module 1-3 and the other end connected to the connection unit 71.
  • the connecting portion 71 is also connected to a pipe 76 whose one end is connected to the generating portion 19 of the cell module 1-4.
  • the connecting portion 70 and the connecting portion 71 are connected by a pipe 74.
  • the pipes 15, 72 to 76 are an example of a supply flow path for supplying a gas to the generating unit 19 included in each of the plurality of cell modules 1-1 to 1-4.
  • the pipe 15 is an example of a common flow path, and the pipes 72, 73, 75, 76 are an example of individual flow paths.
  • the pipes 72 to 76 connecting the connecting portion 70, which is the starting point of the branch flow path, and the generating portion 19 are connected to each other with the occupied volumes of the cell modules 1-1 to 1-4. It can be designed to be no more than twice the minimum value.
  • the occupied volume of the supply channel in the cell module 1-1 is (volume of the pipe 72).
  • the occupied volume of the supply channel in the cell module 1-2 is (volume of the pipe 73).
  • the occupied volume of the supply channel in the cell module 1-3 is (volume of the pipe 75) + (volume of the pipe 74) ⁇ 1/2.
  • the occupied volume of the supply channel in the cell module 1-4 is (volume of the pipe 76) + (volume of the pipe 74) ⁇ 1/2.
  • the pipes 72 to 76 so that the maximum value is not more than twice the minimum value, the liquid level height of the electrolytic solution 6 between the cell modules 1-1 to 1-4 is not increased. The balance can be reduced.
  • FIG. 12 is a diagram showing an outline of the secondary battery according to the fourth embodiment.
  • the secondary battery 100B shown in FIG. 12 includes a plurality of cell modules 1-1 to 1-8.
  • the supply passages are sequentially branched at each of the connecting portions 77 to 83.
  • the pipe 15 has one end connected to the supply unit 14 and the other end connected to the connection unit 77.
  • the connecting portion 77 is also connected to a pipe 84 and a pipe 85, one ends of which are connected to the connecting portions 78 and 79, respectively.
  • the connecting portion 78 is also connected to a pipe 86 and a pipe 87, one ends of which are connected to the connecting portions 80 and 81, respectively, and the connecting portion 79 is a pipe 88 whose one end is connected to the connecting portions 82 and 83, respectively. It is also connected to the pipe 89.
  • the connecting portion 80 is connected to a pipe 90 and a pipe 91, one ends of which are connected to the generating units 19 of the cell modules 1-1 and 1-2, respectively.
  • One end of the connecting portion 81 is connected to the pipe 92 and the pipe 93, which are connected to the generating portions 19 of the cell modules 1-3 and 1-4, respectively.
  • One end of the connecting portion 82 is connected to the pipe 94 and the pipe 95, which are connected to the generating portions 19 of the cell modules 1-5 and 1-6, respectively.
  • the connecting portion 83 is connected to a pipe 96 and a pipe 97, one ends of which are connected to the generating portions 19 of the cell modules 1-7 and 1-8, respectively.
  • the supply flow path from the supply unit 14 is sequentially branched from the pipe 15 that is an example of the common flow path, so that the occupied volume of the supply flow path for each of the cell modules 1-1 to 1-8 can be made approximately the same. Therefore, it is possible to reduce the imbalance of the liquid level of the electrolytic solution 6 between the cell modules 1-1 to 1-8.
  • FIG. 13 is a diagram showing an outline of the secondary battery according to the fifth embodiment.
  • the secondary battery 100C shown in FIG. 13 includes a plurality of cell modules 1-1 to 1-8.
  • the pipe 15 has one end connected to the supply unit 14 and the other end connected to the connection unit 101.
  • the connecting portion 101 is also connected to the pipe 110 and the pipe 114, one ends of which are connected to the connecting portions 102 and 106, respectively.
  • the connecting portion 102 is also connected to the pipe 111 whose one end is connected to the connecting portion 103, and the connecting portion 106 is also connected to the pipe 115 whose one end is connected to the connecting portion 107.
  • the connecting portion 103 is also connected to a pipe 112 whose one end is connected to the connecting portion 104, and the connecting portion 107 is also connected to a pipe 116 whose one end is connected to the connecting portion 108.
  • the connecting portion 104 is also connected to the pipe 113 whose one end is connected to the connecting portion 105, and the connecting portion 108 is also connected to the pipe 128 whose one end is connected to the connecting portion 109.
  • connection parts 105, 104, 103, 102, 106, 107, 108, 109 are respectively connected to the pipes 121 to 128, one ends of which are connected to the generation parts 19 of the cell modules 1-1 to 1-8, respectively.
  • the volumes of the pipes 121 to 128, which are an example of the individual flow paths, are set according to the occupied volumes of the pipes 110 to 117 of the cell modules 1-1 to 1-8.
  • the pipe 124 connected to the cell module 1-4 has a larger volume than the pipe 121 connected to the cell module 1-1.
  • the volume of the pipe 126 connected to the cell module 1-6 is larger than that of the pipe 128 connected to the cell module 1-8.
  • the electrolysis between the cell modules 1-1 to 1-8 is performed.
  • the imbalance of the liquid level of the liquid 6 can be reduced. That is, (volume of the pipe 124) + (volume of the pipe 110 ⁇ 1/4) connected to the cell module 1-4 and (volume of the pipe 121) + (pipe) connected to the cell module 1-1. 110 volume ⁇ 1/4) + (pipe 111 volume ⁇ 1/3) + (pipe 112 volume ⁇ 1/2) + (pipe 113 volume)
  • the volume and the volume of the pipe 121 may be set.
  • the volumes of the pipes 121 to 128 are changed according to the occupied volumes of the cell modules 1-1 to 1-8 by the pipes 110 to 117, but the present invention is not limited to this. You may change the volume of the hollow part 9 which 19 has. Even in such a case, it is possible to reduce the imbalance of the liquid level of the electrolytic solution 6 between the cell modules 1-1 to 1-8.
  • volume of hollow portion 9 of generating portion 19 of cell module 1-4 + (volume of piping 110 ⁇ 1/4) and (volume of hollow portion 9 of generating portion 19 of cell module 1-1) +
  • the cell is set so that (volume of the pipe 110 ⁇ 1/4) + (volume of the pipe 111 ⁇ 1/3) + (volume of the pipe 112 ⁇ 1/2) + (volume of the pipe 113) is substantially the same.
  • the volume of the hollow portion 9 of the generating portion 19 of the module 1-4 and the volume of the hollow portion 9 of the generating portion 19 of the cell module 1-1 may be set.
  • FIG. 14 is a figure which shows the outline of the secondary battery which concerns on 6th Embodiment.
  • the secondary battery 100D shown in FIG. 14 is similar to the secondary battery 100D shown in FIG. 10 except that pipes 65a and 67a arranged above the cell modules 1-1 to 1-3 are arranged instead of the pipes 65 and 67, respectively. It has the same configuration as the secondary battery 100.
  • the pipes 65a and 67a above the cell modules 1-1 to 1-3, the other ends of the pipes 64a, 66a and 68a whose one ends are connected to the generating portion are above the liquid surface 6a of the electrolytic solution 6. Is located in.
  • the electrolytic solution 6 and the powder 7 contained in the cell modules 1-1 to 1-3 are not mixed even if the supply unit 14 is stopped. , The imbalance of the liquid level of the electrolytic solution 6 between the cells is reduced individually.
  • FIG. 15 is a diagram showing an outline of the secondary battery according to the seventh embodiment.
  • the secondary battery 1A shown in FIG. 15 has communication holes 31 arranged on the sides of the cells 10-1 to 10-8 as the first containers, and the cells are connected to each other through the communication holes 31. Except for the above, the secondary battery 1 has the same configuration as that of the secondary battery 1 shown in FIG. In FIG. 15, the supply unit 14 and the pipes 15 and 16 of the secondary battery 1 shown in FIG. 1 are omitted. 16 and 17, which will be described later, the supply unit 14 and the pipes 15 and 16 are not shown.
  • the communication hole 31 shown in FIG. 15 penetrates the partition wall 30 at a position lower than the liquid surface 6a of the electrolytic solution 6. Therefore, as in the secondary battery 1 according to the first embodiment, it is necessary to allow the electrolytic solution 6 and the powder 7 arranged in each of the cells 10-1 to 10-8 to enter the hollow portion 9 of the generating portion 19. Without doing so, the imbalance of the liquid level of the electrolytic solution 6 between the cells 10-1 to 10-8 is promptly reduced.
  • the communication hole 31 is located below the lower end 2a of the positive electrode 2. For this reason, the dendrite generated in the negative electrode 3 grows and the short circuit between cells caused by entering the adjacent cell through the communication hole 31 is reduced.
  • the communication hole 31 can be, for example, a circular, elliptical, or polygonal column when viewed from the first direction (Y-axis direction).
  • the communication hole 31 may be always open or may be configured to be openable and closable. For example, if one or a plurality of communication holes 31 included in the secondary battery 1A are operated to block communication between adjacent cells, movement of the electrolytic solution 6 and the powder 7 through the communication holes 31 is restricted. Therefore, a decrease in charge capacity and a deterioration in charge / discharge performance due to a leakage current caused by the movement of the electrolytic solution 6 are reduced.
  • FIGS. 16 and 17 are diagrams showing the outline of the secondary batteries according to the first and second modifications of the seventh embodiment.
  • the secondary battery 1B shown in FIGS. 16 and 17 has a communication hole 31 at a position different from that of the secondary battery 1A shown in FIG.
  • the communication hole 31 is located above the upper end 2b of the positive electrode 2. Therefore, similar to the secondary battery 1A, the dendrite generated in the negative electrode 3 grows and the short circuit between cells caused by entering the adjacent cell through the communication hole 31 is reduced.
  • the secondary battery 1B shown in FIG. 16 has a communication hole 31 penetrating the partition wall 30 at a position lower than the liquid surface 6a of the electrolytic solution 6. Therefore, it is not necessary to allow the electrolytic solution 6 and the powder 7 disposed in each cell 10-1 to 10-8 to enter the hollow portion 9 of the generating portion 19, and the liquid of the electrolytic solution 6 between each cell can be promptly added. The surface height imbalance is reduced.
  • the secondary battery 1B shown in FIG. 17 has a communication hole 31 penetrating the partition wall 30 at a position higher than the liquid surface 6a of the electrolytic solution 6, and among the plurality of cells 10-1 to 10-8.
  • the unevenness of the liquid surface height of the electrolytic solution 6 is reduced only in the cell in which the amount of the electrolytic solution 6 is excessive. For this reason, the reduction of the charge capacity and the deterioration of the charge / discharge performance due to the leakage current generated by the movement of the electrolytic solution 6 through the communication hole 31 are reduced.
  • the liquid surface height of the electrolytic solution 6 disposed in the cell 10-3 rises, and the cell 10-3 passes through the communication hole 31 disposed in the partition wall 30 located on the side of the cell 10-3. This shows an example in which the imbalance of the liquid level is reduced by flowing the electrolytic solution 6 into the cells 10-2 and 10-4 adjacent to.
  • FIG. 18 is a diagram showing an outline of a secondary battery according to a third modified example of the seventh embodiment.
  • the communication holes 31 of the partition wall 30 located between the cells 10-1 and 10-2 connect the electrode portions 20 of the cells 10-1 and 10-2 to each other. Also serves as a through hole.
  • the communication hole 31 arranged between the cells 10-1 and 10-2 is illustrated as an example, but the same communication hole 31 can be arranged between other cells.
  • a positive electrode tab 2t extending from the upper portion of the positive electrode 2 arranged in the cell 10-1 toward the liquid surface 6a of the electrolytic solution 6 (not shown here) and the cell 10 are provided.
  • the negative electrode tab 3t to which the tabs 3at and 3bt extending toward the liquid surface 6a of the electrolytic solution 6 are connected from the upper portions of the negative electrodes 3a and 3b arranged in -2, and the connection member 33 inserted into the communication hole 31. Are electrically connected via.
  • the excess electrolyte solution 6 moves in the cells through the gap between the communication hole 31 and the connection member 33, so that the imbalance in the liquid level of the electrolyte solution 6 between the cells is reduced. ..
  • connection between the electrode portions 20 is not limited to the illustrated one.
  • the positive electrode tab 2t and the negative electrode tab 3t may be directly connected without the connection member 33.
  • the tabs 3at and 3bt may be connected to the positive electrode tab 2t, respectively.
  • FIG. 19 is a diagram showing an arrangement example of communication holes.
  • dendrite may grow between the positive electrode 2 and the negative electrode 3 facing each other in the Y-axis direction as the first direction.
  • the current density is higher than that in the positive electrode 2 far from the positive electrode tab 2t, and the possibility of dendrite growth increases. Therefore, as shown in FIG. 19, when viewed in a plan view from the Y-axis direction, the communication hole 31 (where the position in the width direction of the positive electrode 2, that is, the position in the X-axis direction does not overlap with the region R so as to be different from the positive electrode tab 2t.
  • the dendrite generated in the negative electrode 3 grows and the short circuit between cells caused by entering the adjacent cell through the communication hole 31 is reduced.
  • the communication hole 31 is located in a portion that does not overlap the positive electrode 2 and the region R when viewed in a plan view from the Y-axis direction, the problem of short circuit between cells is further reduced.
  • the communication hole 31 is not limited to a columnar shape along the Y-axis direction, and may have various shapes.
  • 20A to 20E are diagrams showing an example of the communication hole.
  • the communication holes 31 may be communicated obliquely with respect to the Z-axis so that the heights in the Y-axis direction at both ends are different. Further, as shown in FIG. 20B, the central portion may be narrowed to communicate with both ends of the communication hole 31. Further, as shown in FIG. 20C, the communication hole 31 may be curved.
  • the cross-sectional areas may be different at both ends of the communication hole 31.
  • the communication holes 31 may be communicated obliquely with respect to the Y axis so that the positions at both ends in the X axis direction are different.
  • the communication hole 31 having a shape in consideration of the cross-sectional area and the path length can be positioned so that the leakage current between cells becomes small.
  • the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention.
  • the powder 7 is described as being mixed in the electrolytic solution 6, but the present invention is not limited to this, and the powder 7 may not be included.
  • the zinc component dissolved in the electrolytic solution 6 may be in a saturated state or a concentration lower than that in the saturated state.
  • the electrolytic solution 6 may be one in which a zinc component is dissolved so as to be in a supersaturated state.
  • connection part that is separate from the pipe.
  • the present invention is not limited to this, and one or both pipes may have a connection part.
  • one or more branch pipes may be used.
  • the pipes forming the supply flow path may have the same cross-sectional area or may have different cross-sectional areas. For example, if the cross-sectional area of the individual flow path connected to at least the generation unit 19 is made constant, the flow velocity of the gas 23 supplied to the inside of the generation unit 19 can be made constant.
  • the configurations of the secondary batteries according to the above-described embodiments may be combined.
  • the communication holes 31 may be provided on the sides of the cells 10-1 to 10-8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

A secondary battery according to one embodiment of the present invention is provided with: a plurality of first containers; a second container; a supply unit; an electrolyte solution; and a positive electrode and a negative electrode. The plurality of first containers have a plurality of through holes in the respective bottoms. The second container is positioned on the lower surfaces of the plurality of first containers, and is connected to the plurality of first containers by the intermediary of the through holes. The supply unit supplies a gas into the second container. The electrolyte solution is disposed within each one of the plurality of first containers. The positive electrode and the negative electrode are arranged in the electrolyte solution. The ratio of the respective internal heights of the plurality of first containers to the internal height of the second container is not less than the value of a formula if k is the number of the first containers.

Description

二次電池Secondary battery
 開示の実施形態は、二次電池に関する。 The disclosed embodiment relates to a secondary battery.
 従来、正極と負極との間に、テトラヒドロキシ亜鉛酸イオン([Zn(OH)2-)を含有する電解液を循環させる二次電池が知られている。 BACKGROUND ART Conventionally, there is known a secondary battery in which an electrolytic solution containing tetrahydroxyzincate ion ([Zn (OH) 4 ] 2− ) is circulated between a positive electrode and a negative electrode.
 実施形態の一態様に係る二次電池は、複数の第1容器と、第2容器と、供給部と、電解液と、正極および負極とを備える。複数の第1容器は、底部に複数の貫通孔を有している。第2容器は、前記複数の第1容器の下面に位置し、前記複数の貫通孔を介して前記複数の第1容器と接続している。供給部は、前記第2容器に気体を供給する。電解液は、前記複数の第1容器のそれぞれの第1容器内に配されている。正極および負極は、前記電解液中に配されている。前記第2容器の内寸高さに対する前記複数の第1容器のそれぞれの内寸高さの比は、前記第1容器の数をkとしたとき、下記の数式以上である。 The secondary battery according to one aspect of the embodiment includes a plurality of first containers, a second container, a supply unit, an electrolytic solution, and a positive electrode and a negative electrode. The plurality of first containers have a plurality of through holes at the bottom. The second container is located on the lower surface of the plurality of first containers and is connected to the plurality of first containers through the plurality of through holes. The supply unit supplies gas to the second container. The electrolytic solution is arranged in each first container of the plurality of first containers. The positive electrode and the negative electrode are arranged in the electrolytic solution. The ratio of the inner height of each of the plurality of first containers to the inner height of the second container is equal to or more than the following mathematical expression when the number of the first containers is k.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
図1は、第1の実施形態に係る二次電池の概略を示す図である。FIG. 1 is a diagram showing an outline of the secondary battery according to the first embodiment. 図2は、第1の実施形態に係る二次電池の各セルが備える電極部の概略を示す図である。FIG. 2 is a diagram schematically showing an electrode unit included in each cell of the secondary battery according to the first embodiment. 図3は、第1の実施形態に係る二次電池の各セルが備える電極部における電極間の接続の一例について説明する図である。FIG. 3 is a diagram illustrating an example of a connection between electrodes in an electrode unit included in each cell of the secondary battery according to the first embodiment. 図4Aは、第1の実施形態に係る二次電池における電解液の液面高さについて説明する図である。FIG. 4A is a diagram illustrating the liquid level of the electrolytic solution in the secondary battery according to the first embodiment. 図4Bは、第1の実施形態に係る二次電池における電解液の液面高さについて説明する図である。FIG. 4B is a diagram illustrating the liquid surface height of the electrolytic solution in the secondary battery according to the first embodiment. 図4Cは、第1の実施形態に係る二次電池における電解液の液面高さについて説明する図である。FIG. 4C is a diagram illustrating the liquid surface height of the electrolytic solution in the secondary battery according to the first embodiment. 図5Aは、第1の実施形態の第1変形例に係る二次電池が備える発生部の概略を示す図である。FIG. 5A is a diagram showing an outline of a generating unit included in the secondary battery according to the first modified example of the first embodiment. 図5Bは、第1の実施形態の第2変形例に係る二次電池が備える発生部の概略を示す図である。FIG. 5B is a diagram schematically showing a generator included in the secondary battery according to the second modified example of the first embodiment. 図5Cは、第1の実施形態の第3変形例に係る二次電池が備える発生部の概略を示す図である。FIG. 5C is a diagram showing an outline of a generation unit included in the secondary battery according to the third modified example of the first embodiment. 図5Dは、第1の実施形態の第4変形例に係る二次電池が備える発生部の概略を示す図である。FIG. 5D is a diagram illustrating an outline of a generation unit included in the secondary battery according to the fourth modified example of the first embodiment. 図6は、第1の実施形態の第5変形例に係る二次電池が備える発生部の概略を示す図である。FIG. 6 is a diagram showing an outline of a generating unit included in the secondary battery according to the fifth modified example of the first embodiment. 図7は、第1の実施形態の第5変形例に係る二次電池が備える発生部の概略を示す斜視図である。FIG. 7 is a perspective view showing an outline of a generator included in the secondary battery according to the fifth modified example of the first embodiment. 図8は、第1の実施形態の第6変形例に係る二次電池が備える発生部の概略を示す図である。FIG. 8: is a figure which shows the outline of the production | generation part with which the secondary battery which concerns on the 6th modification of 1st Embodiment is equipped. 図9Aは、第1の実施形態の第7変形例に係る二次電池が備える発生部の概略を示す図である。FIG. 9A is a diagram showing an outline of a generator included in a secondary battery according to a seventh modified example of the first embodiment. 図9Bは、図9AのA-A断面図である。9B is a cross-sectional view taken along the line AA of FIG. 9A. 図10は、第2の実施形態に係る二次電池の概略を示す図である。FIG. 10 is a diagram showing an outline of the secondary battery according to the second embodiment. 図11は、第3の実施形態に係る二次電池の概略を示す図である。FIG. 11 is a diagram showing an outline of the secondary battery according to the third embodiment. 図12は、第4の実施形態に係る二次電池の概略を示す図である。FIG. 12 is a diagram showing an outline of the secondary battery according to the fourth embodiment. 図13は、第5の実施形態に係る二次電池の概略を示す図である。FIG. 13 is a diagram showing an outline of the secondary battery according to the fifth embodiment. 図14は、第6の実施形態に係る二次電池の概略を示す図である。FIG. 14: is a figure which shows the outline of the secondary battery which concerns on 6th Embodiment. 図15は、第7の実施形態に係る二次電池の概略を示す図である。FIG. 15 is a diagram showing an outline of the secondary battery according to the seventh embodiment. 図16は、第7の実施形態の第1変形例に係る二次電池の概略を示す図である。FIG. 16: is a figure which shows the outline of the secondary battery which concerns on the 1st modification of 7th Embodiment. 図17は、第7の実施形態の第2変形例に係る二次電池の概略を示す図である。FIG. 17 is a diagram showing an outline of a secondary battery according to a second modification of the seventh embodiment. 図18は、第7の実施形態の第3変形例に係る二次電池の概略を示す図である。FIG. 18 is a diagram showing an outline of a secondary battery according to a third modified example of the seventh embodiment. 図19は、連通孔の配置例を示す図である。FIG. 19 is a diagram showing an arrangement example of communication holes. 図20Aは、連通孔の一例を示す図である。FIG. 20A is a diagram showing an example of a communication hole. 図20Bは、連通孔の一例を示す図である。FIG. 20B is a diagram showing an example of the communication hole. 図20Cは、連通孔の一例を示す図である。FIG. 20C is a diagram showing an example of the communication hole. 図20Dは、連通孔の一例を示す図である。FIG. 20D is a diagram showing an example of the communication hole. 図20Eは、連通孔の一例を示す図である。FIG. 20E is a diagram showing an example of the communication hole.
 以下、添付図面を参照して、本願の開示する二次電池の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the secondary battery disclosed in the present application will be described in detail with reference to the accompanying drawings. The present invention is not limited to the embodiments described below.
<第1の実施形態>
 図1は、第1の実施形態に係る二次電池の概略を示す図である。図1に示す二次電池1は、反応部10および発生部19と、供給部14とを備える。反応部10は、第1方向としてのY軸方向に沿って積層された複数のセル10-1~10-8を含む。また、複数のセル10-1~10-8の底部には、複数の吐出口11aを有する。セル10-1~10-8は、複数の第1容器の一例である。複数の吐出口11aは、複数の第1貫通孔の一例である。なお、反応部10が有するセル10-1~10-8の数は一例にすぎず、7以下または9以上であってもよい。また、複数の第1貫通孔を、単に「複数の貫通孔」と称する場合もある。
<First Embodiment>
FIG. 1 is a diagram showing an outline of the secondary battery according to the first embodiment. The secondary battery 1 shown in FIG. 1 includes a reaction unit 10, a generation unit 19, and a supply unit 14. The reaction part 10 includes a plurality of cells 10-1 to 10-8 stacked along the Y-axis direction as the first direction. Further, the plurality of cells 10-1 to 10-8 have a plurality of ejection ports 11a at the bottoms thereof. The cells 10-1 to 10-8 are an example of a plurality of first containers. The plurality of ejection ports 11a are an example of a plurality of first through holes. The number of cells 10-1 to 10-8 included in the reaction part 10 is merely an example, and may be 7 or less or 9 or more. Further, the plurality of first through holes may be simply referred to as “a plurality of through holes”.
 なお、説明を分かりやすくするために、図1には、鉛直上向きを正方向とし、鉛直下向きを負方向とするZ軸を含む3次元の直交座標系を図示している。かかる直交座標系は、後述の説明に用いる他の図面でも示す場合がある。また、図1に示す二次電池1と同様の構成については同じ符号を付し、その説明を省略または簡略化する。 Note that in order to make the explanation easy to understand, FIG. 1 illustrates a three-dimensional Cartesian coordinate system that includes the Z-axis with the vertical upward direction as the positive direction and the vertical downward direction as the negative direction. Such an orthogonal coordinate system may also be shown in other drawings used in the description below. The same components as those of the secondary battery 1 shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted or simplified.
 セル10-1~10-8は、ZX平面に沿うように配置された隔壁30で区画されている。セル10-1~10-8にはそれぞれ、電極部20と、電解液6と、粉末7とが収容される。二次電池1は、発生部19で発生した気泡8を電解液6中で浮上させることによりセル10-1~10-8内に収容された電解液6をそれぞれ流動させる装置である。 The cells 10-1 to 10-8 are partitioned by partition walls 30 arranged along the ZX plane. Each of the cells 10-1 to 10-8 contains an electrode portion 20, an electrolytic solution 6, and a powder 7. The secondary battery 1 is a device that floats the bubbles 8 generated in the generating unit 19 in the electrolytic solution 6 to cause the electrolytic solution 6 contained in the cells 10-1 to 10-8 to flow.
 ここで、電極部20の構成について図2を用いて説明する。図2は、第1の実施形態に係る二次電池の各セルが備える電極部の概略を示す図である。電極部20は、正極2と、負極3と、隔膜4,5とを備える。 Here, the configuration of the electrode unit 20 will be described with reference to FIG. FIG. 2 is a diagram schematically showing an electrode unit included in each cell of the secondary battery according to the first embodiment. The electrode unit 20 includes a positive electrode 2, a negative electrode 3, and diaphragms 4 and 5.
 正極2は、例えば、ニッケル化合物、マンガン化合物またはコバルト化合物を正極活物質として含有する導電性の部材である。ニッケル化合物は、例えば、オキシ水酸化ニッケル、水酸化ニッケル、コバルト化合物含有水酸化ニッケル等が使用できる。マンガン化合物は、例えば、二酸化マンガン等が使用できる。コバルト化合物は、例えば、水酸化コバルト、オキシ水酸化コバルト等が使用できる。また、正極2は、黒鉛、カーボンブラック、導電性樹脂等を含んでもよい。また、正極2は、ニッケル金属、コバルト金属またはマンガン金属、あるいはそれらの合金であってもよい。 The positive electrode 2 is a conductive member containing, for example, a nickel compound, a manganese compound or a cobalt compound as a positive electrode active material. As the nickel compound, for example, nickel oxyhydroxide, nickel hydroxide, cobalt compound-containing nickel hydroxide or the like can be used. As the manganese compound, for example, manganese dioxide or the like can be used. As the cobalt compound, for example, cobalt hydroxide, cobalt oxyhydroxide or the like can be used. In addition, the positive electrode 2 may include graphite, carbon black, a conductive resin, or the like. The positive electrode 2 may be nickel metal, cobalt metal, manganese metal, or an alloy thereof.
 また、正極2は、例えば、上記した正極活物質や導電体その他の添加剤を複数の粒状体として含む。具体的には、正極2は、例えば、予め定められた割合で配合された粒状の活物質および導電体を、保形性に寄与するバインダとともに含有するペースト状の正極材料を発泡ニッケルなどの導電性を有する発泡金属へ圧入し、所望の形状に成形し、乾燥させたものである。 Further, the positive electrode 2 contains, for example, the above-described positive electrode active material, a conductor, and other additives as a plurality of particles. Specifically, the positive electrode 2 includes, for example, a paste-like positive electrode material containing a granular active material and a conductor mixed in a predetermined ratio together with a binder that contributes to shape retention. It is obtained by press-fitting into a foam metal having properties, forming it into a desired shape, and drying.
 負極3は、負極活物質を金属として含む。負極3は、例えば、ステンレスや銅などの金属板や、ステンレスや銅板の表面をニッケルやスズ、亜鉛でメッキ処理したものを使用することができる。また、メッキ処理された表面が一部酸化されたものを負極3として使用してもよい。 The negative electrode 3 contains a negative electrode active material as a metal. For the negative electrode 3, for example, a metal plate such as stainless steel or copper, or a stainless steel or copper plate whose surface is plated with nickel, tin, or zinc can be used. Alternatively, the negative electrode 3 may be formed by partially oxidizing the plated surface.
 負極3は、正極2を挟んで互いに向かい合うように配置された負極3aおよび負極3bを含む。正極2および負極3は、負極3aと、正極2と、負極3bとが予め定められた間隔でY軸方向に沿って順に並ぶように配置されている。このように隣り合う正極2と負極3との間隔をそれぞれ設けることにより、正極2と負極3との間における電解液6および気泡8の流通経路が確保される。 The negative electrode 3 includes a negative electrode 3a and a negative electrode 3b which are arranged to face each other with the positive electrode 2 interposed therebetween. The positive electrode 2 and the negative electrode 3 are arranged so that the negative electrode 3a, the positive electrode 2, and the negative electrode 3b are sequentially arranged at predetermined intervals along the Y-axis direction. By thus providing the space between the positive electrode 2 and the negative electrode 3 that are adjacent to each other, the flow paths of the electrolytic solution 6 and the bubbles 8 between the positive electrode 2 and the negative electrode 3 are secured.
 隔膜4,5は、正極2の厚み方向、すなわちY軸方向の両側を挟むように配置される。隔膜4,5は、電解液6に含まれるイオンの移動を許容する材料で構成される。具体的には、隔膜4,5の材料として、例えば、隔膜4,5が水酸化物イオン伝導性を有するように、陰イオン伝導性材料が挙げられる。陰イオン伝導性材料としては、例えば、有機ヒドロゲルのような三次元構造を有するゲル状の陰イオン伝導性材料、または固体高分子型陰イオン伝導性材料などが挙げられる。固体高分子型陰イオン伝導性材料は、例えば、ポリマーと、周期表の第1族~第17族より選択された少なくとも一種類の元素を含有する、酸化物、水酸化物、層状複水酸化物、硫酸化合物およびリン酸化合物からなる群より選択された少なくとも一つの化合物とを含む。 The diaphragms 4 and 5 are arranged so as to sandwich both sides in the thickness direction of the positive electrode 2, that is, the Y-axis direction. The diaphragms 4 and 5 are made of a material that allows movement of ions contained in the electrolytic solution 6. Specifically, examples of the material of the diaphragms 4 and 5 include anion conductive materials so that the diaphragms 4 and 5 have hydroxide ion conductivity. Examples of the anion conductive material include gel-like anion conductive material having a three-dimensional structure such as organic hydrogel, and solid polymer type anion conductive material. The solid polymer type anion conductive material is, for example, an oxide, a hydroxide or a layered double hydroxide containing a polymer and at least one element selected from the groups 1 to 17 of the periodic table. Compound, at least one compound selected from the group consisting of sulfuric acid compounds and phosphoric acid compounds.
 隔膜4,5は、好ましくは、水酸化物イオンよりも大きいイオン半径を備えた[Zn(OH)2-等の金属イオン錯体の透過を抑制するように緻密な材料で構成されると共に所定の厚さを有する。緻密な材料としては、例えば、アルキメデス法で算出された90%以上、より好ましくは92%以上、さらに好ましくは95%以上の相対密度を有する材料が挙げられる。所定の厚さは、例えば、10μm~1000μm、より好ましくは50μm~500μmである。 The diaphragms 4 and 5 are preferably composed of a dense material so as to suppress the permeation of a metal ion complex such as [Zn (OH) 4 ] 2− having an ionic radius larger than that of hydroxide ions. It has a predetermined thickness. As the dense material, for example, a material having a relative density of 90% or more, more preferably 92% or more, still more preferably 95% or more calculated by the Archimedes method can be mentioned. The predetermined thickness is, for example, 10 μm to 1000 μm, more preferably 50 μm to 500 μm.
 この場合には、充電の際に、負極3a,3bにおいて析出する亜鉛がデンドライト(針状結晶)として成長し、隔膜4,5を貫通することを低減することができる。その結果、互いに向かい合う負極3と正極2との間の導通を低減することができる。 In this case, it is possible to reduce zinc that deposits on the negative electrodes 3a and 3b during charging, grows as dendrites (acicular crystals) and penetrates the diaphragms 4 and 5. As a result, conduction between the negative electrode 3 and the positive electrode 2 facing each other can be reduced.
 図1に戻り、二次電池1についてさらに説明する。電解液6は、6mol・dm-3以上のアルカリ金属を含有するアルカリ水溶液である。アルカリ金属は、例えばカリウムである。具体的には、例えば、6~13moldm-3、特に6~6.7moldm-3の水酸化カリウム水溶液を電解液6として使用することができる。また、酸素発生抑制を目的に、リチウムやナトリウムなどのアルカリ金属を水酸化物(水酸化リチウム、水酸化ナトリウム)として添加してもよい。 Returning to FIG. 1, the secondary battery 1 will be further described. The electrolytic solution 6 is an alkaline aqueous solution containing 6 mol · dm −3 or more of alkali metal. The alkali metal is, for example, potassium. Specifically, for example, an aqueous solution of potassium hydroxide having a concentration of 6 to 13 moldm −3 , particularly 6 to 6.7 moldm −3 can be used as the electrolytic solution 6. Further, an alkali metal such as lithium or sodium may be added as a hydroxide (lithium hydroxide, sodium hydroxide) for the purpose of suppressing oxygen generation.
 また、電解液6は、亜鉛成分を含有する。亜鉛成分は、[Zn(OH)2-として電解液6中に溶存している。亜鉛成分としては、例えば酸化亜鉛または水酸化亜鉛を使用することができる。また、1dmの水酸化カリウム水溶液に対し、0.5molの割合でZnOを添加し、必要に応じて後述する粉末7を追加することにより電解液6を調製することができる。未使用、あるいは放電終了後の電解液6は、例えば1×10-4mol・dm-3以上5mol・dm-3以下、好ましくは1×10-3mol・dm-3以上2.5mol・dm-3以下の亜鉛成分を含有することができる。 Further, the electrolytic solution 6 contains a zinc component. The zinc component is dissolved in the electrolytic solution 6 as [Zn (OH) 4 ] 2− . As the zinc component, for example, zinc oxide or zinc hydroxide can be used. Further, the electrolytic solution 6 can be prepared by adding ZnO at a ratio of 0.5 mol to an aqueous solution of 1 dm 3 of potassium hydroxide and adding powder 7 described later as needed. The electrolyte solution 6 which has not been used or has finished discharging is, for example, 1 × 10 −4 mol · dm −3 or more and 5 mol · dm −3 or less, preferably 1 × 10 −3 mol · dm −3 or more and 2.5 mol · dm. A zinc component of -3 or less can be contained.
 粉末7は、亜鉛を含む。具体的には、粉末7は、例えば粉末状に加工または生成された酸化亜鉛、水酸化亜鉛等である。粉末7は、アルカリ水溶液中には容易に溶解するが、亜鉛種の飽和した電解液6中には溶解せずに分散または浮遊し、一部が沈降した状態で電解液6中に混在する。電解液6が長時間静置されていた場合、ほとんどの粉末7が、電解液6の中で沈降した状態になることもあるが、電解液6に対流等を生じさせれば、沈降していた粉末7の一部は、電解液6に分散または浮遊した状態になる。つまり、粉末7は、電解液6中に移動可能に存在している。なお、ここで移動可能とは、粉末7が、周囲の他の粉末7の間にできた局所的な空間の中のみを移動できることではなく、電解液6の中を別の位置に粉末7が移動することにより、当初の位置以外の電解液6に粉末7が晒されるようになっていることを表す。さらに、移動可能の範疇には、正極2および負極3の両方の近傍まで粉末7が移動できるようになっていることや、筐体17内に存在する電解液6中の、ほぼどこにでも粉末7が移動できるようになっていることが含まれる。電解液6中に溶存する[Zn(OH)2-が消費されると、電解液6中に混在する粉末7は、粉末7および電解液6が互いに平衡状態を維持するよう電解液6中に溶存する[Zn(OH)2-が飽和濃度に近づくように溶解する。粉末7は、電解液6中の亜鉛濃度を調整するとともに、電解液6のイオン伝導度を高く維持することができる。 The powder 7 contains zinc. Specifically, the powder 7 is, for example, zinc oxide, zinc hydroxide, or the like processed or produced into a powder form. The powder 7 is easily dissolved in an alkaline aqueous solution, but is not dissolved in the zinc-saturated electrolytic solution 6 but is dispersed or floated, and a part of the powder 7 is mixed in the electrolytic solution 6 in a precipitated state. When the electrolytic solution 6 is allowed to stand for a long time, most of the powder 7 may be settled in the electrolytic solution 6, but if the electrolytic solution 6 causes convection or the like, it is settled. Part of the powder 7 is dispersed or suspended in the electrolytic solution 6. That is, the powder 7 is movably present in the electrolytic solution 6. It should be noted that "movable" here does not mean that the powder 7 can move only in a local space formed between other powders 7 in the surroundings, but the powder 7 can be moved to another position in the electrolytic solution 6. By moving, the powder 7 is exposed to the electrolytic solution 6 other than the initial position. Further, in the movable category, the powder 7 can be moved to the vicinity of both the positive electrode 2 and the negative electrode 3, and the powder 7 can be almost anywhere in the electrolytic solution 6 existing in the housing 17. Includes being able to move. When [Zn (OH) 4 ] 2− dissolved in the electrolytic solution 6 is consumed, the powder 7 mixed in the electrolytic solution 6 is mixed in the electrolytic solution 6 so that the powder 7 and the electrolytic solution 6 maintain an equilibrium state with each other. [Zn (OH) 4 ] 2− dissolved therein dissolves so as to approach the saturation concentration. The powder 7 can adjust the zinc concentration in the electrolytic solution 6 and can maintain high ionic conductivity of the electrolytic solution 6.
 気泡8は、例えば正極2、負極3および電解液6に対して不活性な気体で構成される。このような気体としては、例えば、窒素ガス、ヘリウムガス、ネオンガス、またはアルゴンガスなどが挙げられる。電解液6に不活性な気体の気泡8を発生させることにより、電解液6の変性を低減することができる。また、例えば、亜鉛種を含有するアルカリ水溶液である電解液6の劣化を低減し、電解液6のイオン伝導度を高く維持することができる。なお、気体は空気を含有してもよい。 The bubbles 8 are composed of, for example, a gas inert to the positive electrode 2, the negative electrode 3, and the electrolytic solution 6. Examples of such a gas include nitrogen gas, helium gas, neon gas, and argon gas. By generating the inert gas bubbles 8 in the electrolytic solution 6, the denaturation of the electrolytic solution 6 can be reduced. Further, for example, deterioration of the electrolytic solution 6 which is an alkaline aqueous solution containing zinc species can be reduced and the ionic conductivity of the electrolytic solution 6 can be maintained high. The gas may contain air.
 発生部19は、反応部10の下方に配置されている。発生部19は、供給部14から供給された気体を一時的に貯留する中空部9を備える。また、中空部9を覆うように配置された発生部19の天板11は、反応部10の内底10eを兼ねている。すなわち、発生部19は、複数の第1容器としてのセル10-1~10-8の下面に位置している。発生部19は、第2容器の一例である。 The generating unit 19 is arranged below the reaction unit 10. The generation unit 19 includes a hollow portion 9 that temporarily stores the gas supplied from the supply unit 14. The top plate 11 of the generating unit 19 arranged so as to cover the hollow portion 9 also serves as the inner bottom 10 e of the reaction unit 10. That is, the generating unit 19 is located on the lower surface of the cells 10-1 to 10-8 as the plurality of first containers. The generation unit 19 is an example of a second container.
 また、天板11は、X軸方向およびY軸方向に沿って並ぶ複数の吐出口11aを有している。発生部19は、複数の吐出口11aを介して複数の第1容器としてのセル10-1~10-8と接続している。発生部19は、供給部14から供給された気体を吐出口11aから吐出することにより、セル10-1~10-8のそれぞれの内部に配された電解液6中に気泡8を発生させる。吐出口11aは、例えば0.05mm以上0.5mm以下の直径を有する。吐出口11aの直径をこのように規定することにより、供給部14の稼働中に吐出口11aから発生部19の中空部9に電解液6や粉末7が進入する不具合を低減することができる。また、吐出口11aから吐出される気体に対し、気泡8を発生させるのに適した圧力損失を与えることができる。 Further, the top plate 11 has a plurality of discharge ports 11a arranged along the X-axis direction and the Y-axis direction. The generating unit 19 is connected to the cells 10-1 to 10-8 as the plurality of first containers via the plurality of discharge ports 11a. The generator 19 discharges the gas supplied from the supply unit 14 from the discharge port 11a to generate bubbles 8 in the electrolytic solution 6 arranged inside each of the cells 10-1 to 10-8. The ejection port 11a has a diameter of, for example, 0.05 mm or more and 0.5 mm or less. By defining the diameter of the discharge port 11a in this way, it is possible to reduce the problem that the electrolytic solution 6 and the powder 7 enter from the discharge port 11a into the hollow portion 9 of the generation unit 19 during operation of the supply unit 14. Further, it is possible to give a pressure loss suitable for generating the bubbles 8 to the gas discharged from the discharge port 11a.
 また、吐出口11aのX軸方向に沿った間隔(ピッチ)は、例えば、2.5mm以上50mm以下であり、さらに10mm以下にしてもよい。ただし、吐出口11aは、発生した気泡8を互いに向かい合う正極2と負極3との間にそれぞれ適切に流動させることができるように配置されるものであれば、大きさや間隔に制限はない。 The interval (pitch) along the X-axis direction of the discharge ports 11a is, for example, 2.5 mm or more and 50 mm or less, and may be 10 mm or less. However, the discharge port 11a is not limited in size or interval as long as it is arranged so that the generated bubbles 8 can be appropriately flowed between the positive electrode 2 and the negative electrode 3 facing each other.
 発生部19の吐出口11aからセル10-1~10-8にそれぞれ収容された電解液6中に供給された気体により発生した気泡8は、所定の間隔で配置された電極間、より具体的には、負極3aと隔膜4との間、隔膜5と負極3bとの間において、それぞれ電解液6中を浮上する。電解液6中を気泡8として浮上した気体は、電解液6の液面6aで消滅し、上板18と電解液6の液面6aとの間に気体層13を構成する。 The bubbles 8 generated by the gas supplied into the electrolytic solution 6 housed in the cells 10-1 to 10-8 from the discharge port 11a of the generating unit 19 are more specific between the electrodes arranged at a predetermined interval. First, the electrolyte 6 floats between the negative electrode 3a and the diaphragm 4 and between the diaphragm 5 and the negative electrode 3b. The gas floating in the electrolytic solution 6 as bubbles 8 disappears at the liquid surface 6a of the electrolytic solution 6, and forms a gas layer 13 between the upper plate 18 and the liquid surface 6a of the electrolytic solution 6.
 天板11、隔壁30、筐体17および上板18は、例えば、ポリスチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリ塩化ビニルなど、耐アルカリ性および絶縁性を有する樹脂材料で構成される。天板11、隔壁30、筐体17および上板18は、好ましくは互いに同じ材料で構成されるが、異なる材料で構成されてもよい。 The top plate 11, the partition wall 30, the housing 17, and the upper plate 18 are made of a resin material having an alkali resistance and an insulating property such as polystyrene, polypropylene, polyethylene terephthalate, polytetrafluoroethylene, and polyvinyl chloride. The top plate 11, the partition wall 30, the housing 17, and the upper plate 18 are preferably made of the same material, but may be made of different materials.
 供給部14は、配管16を介してセル10-1~10-8からそれぞれ回収された気体を、配管15を介して発生部19に供給する。供給部14は、例えば気体を移送可能なポンプ(気体ポンプ)、コンプレッサまたはブロワである。供給部14の気密性を高くすれば、気体や電解液6に由来する水蒸気を外部に漏出させることによる二次電池1の発電性能の低下が起きにくい。 The supply unit 14 supplies the gas recovered from each of the cells 10-1 to 10-8 through the pipe 16 to the generation unit 19 through the pipe 15. The supply unit 14 is, for example, a pump (gas pump) capable of transferring gas, a compressor, or a blower. If the airtightness of the supply unit 14 is increased, it is less likely that the power generation performance of the secondary battery 1 will be reduced due to leakage of gas or water vapor derived from the electrolytic solution 6 to the outside.
 ここで、二次電池1における電極反応について、正極活物質として水酸化ニッケルを適用したニッケル亜鉛電池を例に挙げて説明する。充電時における正極2および負極3での反応式はそれぞれ、以下のとおりである。 Here, the electrode reaction in the secondary battery 1 will be described by taking a nickel-zinc battery to which nickel hydroxide is applied as a positive electrode active material as an example. The reaction formulas of the positive electrode 2 and the negative electrode 3 at the time of charging are as follows.
 正極:Ni(OH) + OH → NiOOH + HO + e
 負極:[Zn(OH)2- + 2e → Zn +4OH
Positive electrode: Ni (OH) 2 + OH → NiOOH + H 2 O + e
Negative electrode: [Zn (OH) 4 ] 2− + 2e → Zn + 4OH
 一般的には、この反応に伴って負極3で生成したデンドライトが正極2側へ成長し、正極2と負極3とが導通する懸念がある。反応式から明らかなように、負極3では、充電により亜鉛が析出するのに伴い、負極3の近傍における[Zn(OH)2-の濃度が低下する。そして、析出した亜鉛の近傍で[Zn(OH)2-の濃度が低下する現象が、デンドライトとして成長する一因である。すなわち、充電時に消費される電解液6中の[Zn(OH)2-を補給することにより、電解液6中の亜鉛種である[Zn(OH)2-の濃度が高い状態に保持される。これにより、デンドライトの成長が低減され、正極2と負極3とが導通する可能性が低減される。 In general, there is a concern that the dendrite generated in the negative electrode 3 grows toward the positive electrode 2 side due to this reaction, and the positive electrode 2 and the negative electrode 3 are electrically connected. As is clear from the reaction formula, in the negative electrode 3, the concentration of [Zn (OH) 4 ] 2− in the vicinity of the negative electrode 3 decreases as zinc is deposited by charging. Then, the phenomenon that the concentration of [Zn (OH) 4 ] 2− decreases in the vicinity of the deposited zinc is one of the reasons for the growth as dendrite. That is, by supplementing [Zn (OH) 4 ] 2− in the electrolytic solution 6 consumed during charging, the concentration of [Zn (OH) 4 ] 2− , which is a zinc species in the electrolytic solution 6, is high. Held in. As a result, the growth of dendrite is reduced, and the possibility that the positive electrode 2 and the negative electrode 3 are electrically connected is reduced.
 二次電池1では、各セル10-1~10-8に収容された電解液6中に亜鉛を含む粉末7を混在させるとともに、発生部19の吐出口11aから電解液6中に気体を供給して気泡8を発生させる。気泡8は、負極3aと正極2との間、正極2と負極3bとの間のそれぞれにおいて各セル10-1~10-8の下方から上方に向かって電解液6中を浮上する。 In the secondary battery 1, the powder 7 containing zinc is mixed in the electrolytic solution 6 contained in each of the cells 10-1 to 10-8, and gas is supplied into the electrolytic solution 6 from the discharge port 11a of the generating unit 19. Then, the bubbles 8 are generated. The bubbles 8 float in the electrolytic solution 6 from below to above the cells 10-1 to 10-8 between the negative electrode 3a and the positive electrode 2 and between the positive electrode 2 and the negative electrode 3b, respectively.
 また、各セル10-1~10-8では、電極間における上記した気泡8の浮上に伴い、電解液6には上昇液流が発生し、各セル10-1~10-8に収容された電極部20、具体的には負極3aと正極2との間、正極2と負極3bとの間では内底10e側から上方に向かって電解液6がそれぞれ流動する。そして、電解液6の上昇液流に伴い、主に電極部20のY軸方向外側、具体的には負極3aと筐体17の内壁17aまたは隔壁30との間、および負極3bと隔壁30または内壁17bとの間で下降液流が発生し、電解液6が各セル10-1~10-8の内部を上方から下方に向かってそれぞれ流動する。 Further, in each of the cells 10-1 to 10-8, an ascending liquid flow was generated in the electrolytic solution 6 due to the floating of the bubble 8 described above between the electrodes, and the cells were housed in each of the cells 10-1 to 10-8. The electrolytic solution 6 flows upward from the inner bottom 10e side between the electrode portion 20, specifically between the negative electrode 3a and the positive electrode 2, and between the positive electrode 2 and the negative electrode 3b. Then, along with the rising liquid flow of the electrolytic solution 6, mainly outside the Y-axis direction of the electrode portion 20, specifically between the negative electrode 3a and the inner wall 17a or the partition wall 30 of the housing 17, and between the negative electrode 3b and the partition wall 30 or. A descending liquid flow is generated between the inner wall 17b and the electrolytic solution 6, and the electrolytic solution 6 flows inside the cells 10-1 to 10-8 from the upper side to the lower side.
 なお、吐出口11aは、負極3aと内壁17aまたは隔壁30との間、負極3bと隔壁30または内壁17bとの間に気泡8が浮上するように配置されてもよい。かかる場合、負極3aと内壁17aまたは隔壁30との間、負極3bと隔壁30または内壁17bとの間では電解液6は上方に向かって流動し、負極3aと正極2との間、正極2と負極3bとの間では電解液6は下方に向かって流動する。 The discharge port 11a may be arranged so that the bubbles 8 float between the negative electrode 3a and the inner wall 17a or the partition wall 30 and between the negative electrode 3b and the partition wall 30 or the inner wall 17b. In such a case, the electrolytic solution 6 flows upward between the negative electrode 3a and the inner wall 17a or the partition wall 30, and between the negative electrode 3b and the partition wall 30 or the inner wall 17b, and between the negative electrode 3a and the positive electrode 2 and the positive electrode 2. The electrolytic solution 6 flows downward between the negative electrode 3b and the negative electrode 3b.
 これにより、充電によって電解液6中の[Zn(OH)2-が消費されると、これに追従するように粉末7中の亜鉛が溶解することで高濃度の[Zn(OH)2-を含有する電解液6が負極3の近傍に補給される。このため、電解液6中の[Zn(OH)2-を濃度が高い状態に保つことができ、デンドライトの成長に伴う正極2と負極3との導通の可能性を低減することができる。 As a result, when [Zn (OH) 4 ] 2− in the electrolytic solution 6 is consumed by charging, the zinc in the powder 7 is dissolved so as to follow the consumption, resulting in a high concentration of [Zn (OH) 4]. The electrolytic solution 6 containing 2- is replenished in the vicinity of the negative electrode 3. Therefore, the concentration of [Zn (OH) 4 ] 2− in the electrolytic solution 6 can be kept high, and the possibility of conduction between the positive electrode 2 and the negative electrode 3 due to the growth of dendrites can be reduced. ..
 なお、粉末7としては、酸化亜鉛および水酸化亜鉛以外に、金属亜鉛、亜鉛酸カルシウム、炭酸亜鉛、硫酸亜鉛、塩化亜鉛などが挙げられ、酸化亜鉛および水酸化亜鉛が好ましい。 In addition to zinc oxide and zinc hydroxide, examples of the powder 7 include metallic zinc, calcium zincate, zinc carbonate, zinc sulfate, zinc chloride and the like, and zinc oxide and zinc hydroxide are preferable.
 また、負極3では、放電によりZnが消費され、[Zn(OH)2-を生成するが、電解液6はすでに飽和状態であるため、電解液6中では、過剰となった[Zn(OH)2-からZnOが析出する。このとき負極3で消費される亜鉛は、充電時に負極3の表面に析出した亜鉛である。このため、元来亜鉛種を含有する負極を用いて充放電を繰り返す場合とは異なり、負極3の表面形状が変化するいわゆるシェイプチェンジが生じない。これにより、第1の実施形態に係る二次電池1によれば、負極3の経時劣化を低減することができる。なお、電解液6の状態によっては、過剰となった[Zn(OH)2-から析出するのは、Zn(OH)や、ZnOとZn(OH)とが混合したものになる。 Further, in the negative electrode 3, Zn is consumed by discharge to generate [Zn (OH) 4 ] 2− , but since the electrolytic solution 6 is already in a saturated state, the excess [Zn (OH) 4 ] 2 ZnO is precipitated from (OH) 4 ] 2- . At this time, the zinc consumed by the negative electrode 3 is zinc deposited on the surface of the negative electrode 3 during charging. Therefore, unlike the case where charge and discharge are repeated using a negative electrode that originally contains a zinc species, so-called shape change that changes the surface shape of the negative electrode 3 does not occur. Thereby, according to the secondary battery 1 according to the first embodiment, deterioration of the negative electrode 3 with time can be reduced. Depending on the state of the electrolytic solution 6, excess [Zn (OH) 4 ] 2− precipitates from Zn (OH) 2 or a mixture of ZnO and Zn (OH) 2. ..
 次に、二次電池1の各セル10-1~10-8における電極間の接続について説明する。図3は、第1の実施形態に係る二次電池の各セルが備える電極部における電極間の接続の一例について説明する図である。 Next, the connection between the electrodes of the cells 10-1 to 10-8 of the secondary battery 1 will be described. FIG. 3 is a diagram illustrating an example of a connection between electrodes in an electrode unit included in each cell of the secondary battery according to the first embodiment.
 図3に示すように、負極3aおよび負極3bは並列接続されている。このように負極3を並列に接続することにより、正極2および負極3の総数が異なる場合であっても二次電池1の各電極間を適切に接続し、使用することができる。なお、各セル10-1~10-8の電極部20同士は、直列に接続することができる。 As shown in FIG. 3, the negative electrode 3a and the negative electrode 3b are connected in parallel. By connecting the negative electrodes 3 in parallel in this manner, the respective electrodes of the secondary battery 1 can be appropriately connected and used even when the total number of the positive electrodes 2 and the negative electrodes 3 is different. The electrode parts 20 of the cells 10-1 to 10-8 can be connected in series.
 また、上記したように、電極部20は正極2を挟んで互いに向かい合うように配置された負極3a,3bを備える。このように1つの正極2に対して2つの負極3a,3bが対応した電極部20を収容した各セル10-1~10-8では、正極2と負極3とが1:1で対応するセルと比較して負極1つ当たりの電流密度が低下する。このため、第1の実施形態に係る二次電池1によれば、負極3a,3bでのデンドライトの生成がさらに低減されるため、各セル10-1~10-8における負極3a,3bと正極2との導通をさらに低減することができる。 Further, as described above, the electrode portion 20 includes the negative electrodes 3a and 3b arranged so as to face each other with the positive electrode 2 interposed therebetween. As described above, in each of the cells 10-1 to 10-8 in which the electrode portion 20 in which the two negative electrodes 3a and 3b correspond to one positive electrode 2 is housed, the positive electrode 2 and the negative electrode 3 correspond to each other 1: 1. The current density per negative electrode is lower than that of. Therefore, according to the secondary battery 1 of the first embodiment, the generation of dendrites in the negative electrodes 3a and 3b is further reduced, so that the negative electrodes 3a and 3b and the positive electrodes in each of the cells 10-1 to 10-8 are reduced. It is possible to further reduce the conduction with 2.
 なお、電極部20では、合計3枚の電極が、負極3および正極2が交互に配置されるように構成されたが、これに限らず、5枚以上の電極を交互に配置するようにしてもよく、正極2および負極3をそれぞれ1枚ずつ配置させてもよい。また、図2に示す電極部20では、両端がともに負極3となるように構成されたが、これに限らず、両端がともに正極2となるように構成してもよい。さらに、一方の端部が正極2、他方の端部が負極3となるように同枚数の負極3および正極2をそれぞれ交互に配置してもよい。 In addition, in the electrode portion 20, a total of three electrodes are configured such that the negative electrode 3 and the positive electrode 2 are alternately arranged. However, the present invention is not limited to this, and five or more electrodes may be alternately arranged. Alternatively, the positive electrode 2 and the negative electrode 3 may be arranged one by one. Further, in the electrode portion 20 shown in FIG. 2, both ends are configured to be the negative electrode 3, but the present invention is not limited to this, and both ends may be configured to be the positive electrode 2. Further, the same number of negative electrodes 3 and positive electrodes 2 may be alternately arranged so that one end is the positive electrode 2 and the other end is the negative electrode 3.
 ところで、各セル10-1~10-8に収容された電解液6中の水分の一部が蒸発する場合がある。また、正極2では、充電時の副反応として酸素が発生する場合もある。これらの現象により生じる電解液6の液面6aの変動はわずかであっても、長期にわたり充放電反応を繰り返すことにより、各セル10-1~10-8間で電解液6の液面高さに不均衡が生じる場合がある。そして、電解液6の液面高さが不均衡になると、設計上の充電容量や出力電圧が得られない場合が懸念される。 By the way, part of the water in the electrolytic solution 6 contained in each of the cells 10-1 to 10-8 may evaporate. Further, in the positive electrode 2, oxygen may be generated as a side reaction during charging. Even if the fluctuation of the liquid level 6a of the electrolytic solution 6 caused by these phenomena is slight, by repeating the charge / discharge reaction for a long period of time, the liquid level height of the electrolytic solution 6 between the cells 10-1 to 10-8 is increased. There may be an imbalance in. If the liquid level of the electrolytic solution 6 becomes imbalanced, there is a concern that the designed charge capacity and output voltage may not be obtained.
 そこで、第1の実施形態に係る二次電池1では、各セル10-1~10-8の内寸高さh1と発生部19の内寸高さ、すなわち中空部9の高さh3とを規定することにより、電解液の液面高さの不均衡を低減する。以下では、図4を用いてこの点について説明する。 Therefore, in the secondary battery 1 according to the first embodiment, the inner height h1 of each of the cells 10-1 to 10-8 and the inner height of the generating portion 19, that is, the height h3 of the hollow portion 9 are set. By prescribing, the imbalance of the liquid surface height of the electrolytic solution is reduced. Hereinafter, this point will be described with reference to FIG.
 図4A~図4Cは、第1の実施形態に係るフロー電池における電解液の液面高さについて説明する図である。なお、図4A~図4Cでは、図1に示す二次電池1における電極部20、供給部14および配管15,16の図示は省略している。 4A to 4C are views for explaining the liquid surface height of the electrolytic solution in the flow battery according to the first embodiment. 4A to 4C, the electrode portion 20, the supply portion 14, and the pipes 15 and 16 in the secondary battery 1 shown in FIG. 1 are not shown.
 二次電池1では、供給部14を停止することにより、各セル10-1~10-8に収容された電解液6および粉末7が自重により吐出口11aを介して発生部19の中空部9に進入する。これにより、電解液6の液面6aは、各セル10-1~10-8において一定の液面高さh4となる(図4A参照)。 In the secondary battery 1, by stopping the supply unit 14, the electrolytic solution 6 and the powder 7 contained in each of the cells 10-1 to 10-8 are discharged by their own weight through the discharge port 11a and the hollow portion 9 of the generation unit 19. Enter. As a result, the liquid surface 6a of the electrolytic solution 6 has a constant liquid surface height h4 in each of the cells 10-1 to 10-8 (see FIG. 4A).
 次に、供給部14の運転を開始すると、供給部14を介して発生部19に供給された気体23により、中空部9内の電解液6および粉末7が吐出口11aから押し出される。ここで、気体23の供給により押し出される電解液6および粉末7の量は、中空部9に供給された気体23の体積に対応する。例えば、図4Bに示すようにセル10-1の直下に配置された中空部9の容積分だけ気体23を供給させると、各セル10-1~10-8に収容された電解液6の液面6aは、高さh4より中空部9の高さh3の1/8だけ高い液面高さh5となるように上昇する。そして、セル10-2の直下に配置された中空部9まで気体23を供給させると、各セル10-2~10-8に収容された電解液6の液面6aは、高さh5より中空部9の高さh3の1/7だけ高い液面高さとなるように上昇する。そして、気体23が中空部9をすべて満たす段階では、セル10-8に収容された電解液6の液面6aは、セル10-1に収容された電解液6の液面6aの高さh5よりも高さh6、具体的には中空部9の高さh3の(1/7+1/6+1/5+1/4+1/3+1/2+1)倍だけ高くなるように上昇する(図4C参照)。 Next, when the operation of the supply unit 14 is started, the electrolytic solution 6 and the powder 7 in the hollow portion 9 are pushed out from the discharge port 11a by the gas 23 supplied to the generation unit 19 via the supply unit 14. Here, the amounts of the electrolytic solution 6 and the powder 7 pushed out by the supply of the gas 23 correspond to the volume of the gas 23 supplied to the hollow portion 9. For example, as shown in FIG. 4B, when the gas 23 is supplied by the volume of the hollow portion 9 arranged immediately below the cell 10-1, the liquid of the electrolytic solution 6 contained in each of the cells 10-1 to 10-8 is supplied. The surface 6a rises to a liquid level height h5 which is higher than the height h4 by 1/8 of the height h3 of the hollow portion 9. Then, when the gas 23 is supplied to the hollow portion 9 arranged immediately below the cell 10-2, the liquid surface 6a of the electrolytic solution 6 contained in each of the cells 10-2 to 10-8 becomes hollow from the height h5. The height rises so that the liquid surface height is 1/7 higher than the height h3 of the portion 9. Then, at the stage where the gas 23 fills all the hollow portions 9, the liquid level 6a of the electrolytic solution 6 contained in the cell 10-8 is equal to the height h5 of the liquid level 6a of the electrolytic solution 6 contained in the cell 10-1. The height h6, specifically, the height h3 of the hollow portion 9 is increased by (1/7 + 1/6 + 1/5 + 1/4 + 1/3 + 1/2 + 1) times (see FIG. 4C).
 すなわち、第1の実施形態に係る二次電池1においては、供給部14の再稼働によって各セル10-1~10-8間の電解液6の液面高さが再度不均衡となる可能性がある。そこで、中空部9の高さh3に上限を設け、液面6aの最大差である高さh6を許容できる程度にまで低減する。具体的には、中空部9の高さh3に対する各セル10-1~10-8の内寸高さh1の比(h1/h3)は、セル数をkとしたとき、下記の数式以上である。 That is, in the secondary battery 1 according to the first embodiment, the liquid level height of the electrolytic solution 6 between the cells 10-1 to 10-8 may become unbalanced again due to the restart of the supply unit 14. There is. Therefore, an upper limit is set for the height h3 of the hollow portion 9 and the height h6, which is the maximum difference between the liquid surfaces 6a, is reduced to an acceptable level. Specifically, the ratio (h1 / h3) of the inner height h1 of each of the cells 10-1 to 10-8 to the height h3 of the hollow portion 9 is equal to or more than the following formula, where k is the number of cells. is there.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 例えば、h3=5[mm]、k=8のとき、f(8)=1+1/2+1/3+1/4+1/5+1/6+1/7≒2.6であり、h1≧38.9[mm]となる。また、h1/h3は、5×f(n)以上、さらに10×f(n)以上とすることができる。このように中空部9の高さh3に応じて各セル10-1~10-8の内寸高さh1を規定することにより、各セル10-1~10-8間における電解液6の液面高さの不均衡を低減することができる。 For example, when h3 = 5 [mm] and k = 8, f (8) = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1 / 7≈2.6, and h1 ≧ 38.9 [mm]. .. Further, h1 / h3 can be 5 × f (n) or more, and further 10 × f (n) or more. By thus defining the inner height h1 of each of the cells 10-1 to 10-8 according to the height h3 of the hollow portion 9, the liquid of the electrolytic solution 6 between the cells 10-1 to 10-8 is defined. The surface height imbalance can be reduced.
 また、図1に示す内底10eから電極部20の上端までの高さh2は、2/3×h1以上とすることができる。このように高さh2を規定することにより、所望の電池容量を確保することができる。また、h1/h3を上記した範囲に規定すると、電極部20が電解液6から露出しない。また、h1/h3は、例えば、h1=220[mm]、h3=20[mm]とすることで、11であってもよい。 Further, the height h2 from the inner bottom 10e shown in FIG. 1 to the upper end of the electrode portion 20 can be set to 2/3 × h1 or more. By defining the height h2 in this way, a desired battery capacity can be secured. Further, when h1 / h3 is defined in the above range, the electrode portion 20 is not exposed from the electrolytic solution 6. Further, h1 / h3 may be 11, for example, by setting h1 = 220 [mm] and h3 = 20 [mm].
<第1変形例>
 図5Aは、第1の実施形態の第1変形例に係る二次電池が備える発生部の概略を示す図である。図1に示す二次電池1では、供給部14と発生部19の中空部9とを接続する配管15がX軸方向に延在する隔壁30と交差する方向に配置されているのに対し、図5Aに示す発生部19は、隔壁30が延在するY軸方向に沿うように配管15が接続されるよう、平面視でセル10-1~10-8の積層方向である幅方向と交差する長さ方向の一端側に貫通孔(第2貫通孔)としての吸気口19aが配置されている。すなわち、第2貫通孔は、複数の第1貫通孔としての吐出口11aを有する複数の第1容器の底部に垂直な方向からみたときに、複数の第1容器が並ぶ第1方向に交差する第2方向と交わる第2容器の側面に位置している。このため、図5Aに示す発生部19を備える二次電池1によれば、図1に示す二次電池1と比較して各セル10-1~10-8間における電解液6の液面高さの不均衡をさらに低減することができる。なお、吸気口19aから中空部9内に供給された気体23(図4B、図4C参照)は、放射状に進行するため、電解液6と気体23との置換は、概略円形に進んでいくと考えられる。このため、吸気口19aは、図示したように積層方向、すなわち第2方向と交わる第2容器の側面の中央部分に位置していると、各セル10-1~10-8間における電解液6の液面高さの不均衡がさらに低減する。
<First Modification>
FIG. 5A is a diagram showing an outline of a generating unit included in the secondary battery according to the first modified example of the first embodiment. In the secondary battery 1 shown in FIG. 1, while the pipe 15 that connects the supply unit 14 and the hollow portion 9 of the generation unit 19 is arranged in a direction intersecting with the partition wall 30 extending in the X-axis direction, The generating unit 19 shown in FIG. 5A intersects with the width direction which is the stacking direction of the cells 10-1 to 10-8 in plan view so that the pipe 15 is connected along the Y-axis direction in which the partition wall 30 extends. The intake port 19a as a through hole (second through hole) is arranged at one end side in the length direction. That is, the second through holes intersect with the first direction in which the plurality of first containers are arranged when viewed from the direction perpendicular to the bottoms of the plurality of first containers having the discharge ports 11a as the plurality of first through holes. It is located on the side surface of the second container that intersects the second direction. Therefore, according to the secondary battery 1 including the generating unit 19 shown in FIG. 5A, the liquid level of the electrolytic solution 6 between the cells 10-1 to 10-8 is higher than that of the secondary battery 1 shown in FIG. The size imbalance can be further reduced. Since the gas 23 (see FIGS. 4B and 4C) supplied from the intake port 19a into the hollow portion 9 advances radially, the replacement of the electrolytic solution 6 with the gas 23 proceeds in a substantially circular shape. Conceivable. Therefore, when the intake port 19a is located in the stacking direction, that is, in the central portion of the side surface of the second container that intersects the second direction as shown in the drawing, the electrolyte solution 6 between the cells 10-1 to 10-8 is The liquid level height imbalance is further reduced.
<第2~第4変形例>
 図5B~図5Dは、第1の実施形態の第2~第4変形例に係る二次電池が備える発生部の概略を示す図である。図5B~図5Dに示す発生部19は、配管15が接続される吸気口19a1とは別に、一端が供給部14に接続される配管25をさらに取り付けるための吸気口19a2が配置されている点で相違する。図5Bに示す例では、吸気口19a2は、中空部9を挟んで吸気口19a1と向かい合うように配置されている。また、図5Cに示す例では、吸気口19a2は、吸気口19a1と並ぶようにY軸方向の端部に配置されている。さらに、図5Dに示す例では、吸気口19a2は、平面視でX軸方向およびY軸方向に延在する発生部19の角に配置されている。このように第2容器としての発生部19が、複数の第2貫通孔を有するよう、複数の吸気口19a1,19a2を配置することにより、中空部9における電解液6および粉末7と気体23との置換がより円滑になる。
<Second to fourth modifications>
5B to 5D are schematic diagrams of a generator included in the secondary batteries according to second to fourth modifications of the first embodiment. 5B to 5D, in addition to the intake port 19a1 to which the pipe 15 is connected, an intake port 19a2 for further attaching a pipe 25 whose one end is connected to the supply unit 14 is arranged. It makes a difference. In the example shown in FIG. 5B, the intake port 19a2 is arranged so as to face the intake port 19a1 with the hollow portion 9 in between. Further, in the example shown in FIG. 5C, the intake port 19a2 is arranged at the end in the Y-axis direction so as to be aligned with the intake port 19a1. Further, in the example shown in FIG. 5D, the intake port 19a2 is arranged at the corner of the generating portion 19 extending in the X-axis direction and the Y-axis direction in plan view. By thus disposing the plurality of intake ports 19a1 and 19a2 so that the generating portion 19 as the second container has the plurality of second through holes, the electrolytic solution 6 and the powder 7 and the gas 23 in the hollow portion 9 are formed. Will be replaced more smoothly.
 なお、図5Dにおいて、吸気口19a1と吸気口19a2とのなす角θは、例えば90°以上とすることができる。また、吸気口19a2は、例えば平面視でX軸方向またはY軸方向の中央部分に配置されてもよい。 Note that, in FIG. 5D, the angle θ between the intake port 19a1 and the intake port 19a2 can be, for example, 90 ° or more. Further, the intake port 19a2 may be arranged, for example, in a central portion in the X-axis direction or the Y-axis direction in a plan view.
<第5変形例>
 図6、図7は、第1の実施形態の第5変形例に係る二次電池が備える発生部の概略を示す図である。図6は、発生部19の中空部9をXY平面で断面視した図であり、図7は、発生部19の斜視図である。
<Fifth Modification>
FIG. 6 and FIG. 7 are diagrams showing an outline of a generator included in the secondary battery according to the fifth modified example of the first embodiment. FIG. 6 is a cross-sectional view of the hollow portion 9 of the generating portion 19 in the XY plane, and FIG. 7 is a perspective view of the generating portion 19.
 第5変形例に係る発生部19は、中空部9が仕切板40で区画された複数の中空室9-1~9-8を積層した構成を有している。仕切板40は、平面視で隔壁30と重なるように配置されており、中空室9-1~9-8は、平面視でセル10-1~10-8と重なるように配置されている。複数の中空室9-1~9-8は、複数の第2容器の一例である。 The generating unit 19 according to the fifth modification has a configuration in which a plurality of hollow chambers 9-1 to 9-8 in which the hollow portion 9 is partitioned by a partition plate 40 are stacked. The partition plate 40 is arranged so as to overlap the partition wall 30 in a plan view, and the hollow chambers 9-1 to 9-8 are arranged so as to overlap the cells 10-1 to 10-8 in a plan view. The plurality of hollow chambers 9-1 to 9-8 are an example of a plurality of second containers.
 また、仕切板40は、中央部分に切欠部41を有しており、切欠部41と天板11との間に連通部42が形成される。これにより、発生部19の機械的強度を向上させつつ、仕切板40を挟んだ中空室9-1~9-8間での気体23の流通が円滑に行われる。なお、仕切板40は、天板11と接していてもよく、離れていてもよい。また、仕切板40は、必ずしも隔壁30と同数でなくてもよい。 Further, the partition plate 40 has a cutout portion 41 in the central portion, and a communication portion 42 is formed between the cutout portion 41 and the top plate 11. As a result, the gas 23 is smoothly flown between the hollow chambers 9-1 to 9-8 sandwiching the partition plate 40 while improving the mechanical strength of the generating portion 19. The partition plate 40 may be in contact with the top plate 11 or may be separated therefrom. The number of partition plates 40 does not necessarily have to be the same as the number of partition walls 30.
 隔壁30よりも仕切板40を少なくする場合、仕切板40で仕切られた各中空室と繋がっているセル10-1~10-8の数を同じにすれば、セル10-1~10-8に入る電解液6の量を平均化できる。例えば、仕切板40を、平面視でセル10-2とセル10-3との間、セル10-4とセル10-5との間、およびセル10-6とセル10-7との間の3ヶ所に配置し、各中空室が2つのセル10-1,10-2、セル10-3,10-4、セル10-5,10-6、セル10-7,10-8にそれぞれ繋がるようにしてもよい。さらに、連通部42は、複数の中空室9-1~9-8を互いに接続するように連通させる連通孔を有していればよく、仕切板40は、必ずしも切欠部41を有さなくてもよい。 When the number of partition plates 40 is smaller than that of the partition walls 30, if the number of cells 10-1 to 10-8 connected to each of the hollow chambers partitioned by the partition plates 40 is the same, the cells 10-1 to 10-8 are formed. The amount of electrolyte 6 entering can be averaged. For example, the partition plate 40 is provided between the cells 10-2 and 10-3, between the cells 10-4 and 10-5, and between the cells 10-6 and 10-7 in plan view. It is arranged in three places, and each hollow chamber is connected to two cells 10-1, 10-2, cells 10-3, 10-4, cells 10-5, 10-6, cells 10-7, 10-8, respectively. You may do it. Further, the communication part 42 may have a communication hole for communicating the plurality of hollow chambers 9-1 to 9-8 so as to be connected to each other, and the partition plate 40 does not necessarily have the cutout part 41. Good.
<第6変形例>
 図8は、第1の実施形態の第6変形例に係る二次電池が備える発生部の概略を示す図である。図8に示す発生部19は、仕切板40に代えて、X軸正方向側が完全に仕切られていない仕切板40aを有することにより、X軸正方向側に連通部42が形成されている点で第1の実施形態の第5変形例に係る発生部19と相違する。このような仕切板40aを配置することにより、発生部19の機械的強度を向上させつつ、中空部9内での気体23の流通が円滑に行われる。
<Sixth Modification>
FIG. 8: is a figure which shows the outline of the production | generation part with which the secondary battery which concerns on the 6th modification of 1st Embodiment is equipped. The generating unit 19 shown in FIG. 8 has a partition plate 40a, which is not completely partitioned on the X-axis positive direction side, in place of the partition plate 40, so that the communication section 42 is formed on the X-axis positive direction side. However, it differs from the generation unit 19 according to the fifth modification of the first embodiment. By arranging such a partition plate 40a, the mechanical strength of the generating portion 19 is improved and the gas 23 is smoothly circulated in the hollow portion 9.
<第7変形例>
 図9A、図9Bは、第1の実施形態の第7変形例に係る二次電池が備える発生部の概略を示す図である。図9Aは、発生部19の内部を吸気口19a側から見た図であり、図9Bは、図9AのA-A断面図である。
<Seventh Modification>
FIG. 9A and FIG. 9B are diagrams showing an outline of a generator included in the secondary battery according to the seventh modified example of the first embodiment. 9A is a view of the inside of the generation unit 19 as seen from the intake port 19a side, and FIG. 9B is a cross-sectional view taken along the line AA of FIG. 9A.
 図9A、図9Bに示すように、発生部19は、吸気口19aと向かい合うように天板11からZ軸負方向側に突出する突出壁21を有する。突出壁21は、X軸方向、すなわち平面視でセル10-1~10-8の積層方向である幅方向に交差する方向に沿って発生部19の内部に延在するように配置されており、突出壁21の下方には導入口26が形成されている。突出壁21は、第2貫通孔の開口としての吸気口19aに対向するとともに、第2容器(発生部19)の上面から下方に突出している。 As shown in FIGS. 9A and 9B, the generating unit 19 has a projecting wall 21 projecting from the top plate 11 in the negative Z-axis direction so as to face the intake port 19a. The protruding wall 21 is arranged so as to extend inside the generating portion 19 along the X-axis direction, that is, the direction intersecting the width direction which is the stacking direction of the cells 10-1 to 10-8 in plan view. An inlet 26 is formed below the protruding wall 21. The projecting wall 21 faces the intake port 19a serving as the opening of the second through hole, and projects downward from the upper surface of the second container (generation unit 19).
 図9Bに示すように、吸気口19aから発生部19の内部に供給された気体23は、まず、突出壁21が延在するX軸方向に沿うように拡散し、さらに導入口26から発生部19の内部に導入される。気体23の導入に伴い、発生部19に進入していた電解液6および粉末7は反応部10側に押し出され、各セル10-1~10-8間における電解液6の液面高さの不均衡が低減する。なお、図9A、図9Bに示す発生部19は、セル10-1~10-8の積層方向に交差するX軸方向に沿って延在する突出壁21を備えるとして説明したが、これに限らず、突出壁21はセル10-1~10-8の積層方向であるY軸方向に沿うように延在してもよい。 As shown in FIG. 9B, the gas 23 supplied from the intake port 19 a to the inside of the generating unit 19 first diffuses along the X-axis direction in which the protruding wall 21 extends, and further from the introducing port 26 to the generating unit. It is introduced inside 19. With the introduction of the gas 23, the electrolytic solution 6 and the powder 7 that have entered the generating section 19 are pushed out to the reaction section 10 side, and the liquid level height of the electrolytic solution 6 between the cells 10-1 to 10-8 is reduced. The imbalance is reduced. 9A and 9B have been described as including the protruding wall 21 extending along the X-axis direction that intersects the stacking direction of the cells 10-1 to 10-8, the present invention is not limited to this. Alternatively, the protruding wall 21 may extend along the Y-axis direction which is the stacking direction of the cells 10-1 to 10-8.
<第2の実施形態>
 図10は、第2の実施形態に係る二次電池の概略を示す図である。図10に示す二次電池100は、複数のセルモジュール1-1~1-3を備える。セルモジュール1-1~1-3はそれぞれ、図1に示す二次電池1である。なお、セルモジュール1-1~1-3の数は一例にすぎず、2または4以上であってもよい。
<Second Embodiment>
FIG. 10 is a diagram showing an outline of the secondary battery according to the second embodiment. The secondary battery 100 shown in FIG. 10 includes a plurality of cell modules 1-1 to 1-3. Each of the cell modules 1-1 to 1-3 is the secondary battery 1 shown in FIG. The number of cell modules 1-1 to 1-3 is merely an example, and may be 2 or 4 or more.
 配管15は、一端が供給部14に接続され、他端が接続部61に接続されている。また、接続部61は、一端がセルモジュール1-1の発生部19に接続された配管64にも接続されている。 The pipe 15 has one end connected to the supply unit 14 and the other end connected to the connection unit 61. Further, the connecting portion 61 is also connected to a pipe 64 whose one end is connected to the generating portion 19 of the cell module 1-1.
 また、配管66は、一端がセルモジュール1-2の発生部19に接続され、他端が接続部62に接続されている。配管68は、一端がセルモジュール1-3の発生部19に接続され、他端が接続部63に接続されている。そして、接続部61と接続部62は、配管65によって接続され、接続部62と接続部63は、配管67によって接続されている。配管15,65~68は、複数のセルモジュール1-1~1-3がそれぞれ有する発生部19に気体を供給する供給流路の一例である。また、配管64,66,68は、分岐流路の一例である。 Further, the pipe 66 has one end connected to the generation unit 19 of the cell module 1-2 and the other end connected to the connection unit 62. One end of the pipe 68 is connected to the generating unit 19 of the cell module 1-3, and the other end is connected to the connecting unit 63. The connecting portion 61 and the connecting portion 62 are connected by a pipe 65, and the connecting portion 62 and the connecting portion 63 are connected by a pipe 67. The pipes 15 and 65 to 68 are an example of a supply flow path for supplying gas to the generating units 19 included in the plurality of cell modules 1-1 to 1-3, respectively. The pipes 64, 66, 68 are examples of branch flow paths.
 図10に示したように、セルモジュール1-1~1-3の各発生部19に電解液6および粉末7を進入させた後、供給部14の運転を再開させると、各セルモジュール1-1~1-3において各セルに収容される電解液6の液面高さの不均衡は是正することができる。一方、セルモジュール1-1~1-3ごとの占有容積に起因してセルモジュール1-1~1-3間における電解液6の液面高さの不均衡が懸念される。すなわち、配管64,66,68の容積が同じと仮定した場合、セルモジュール1-3では、セルモジュール1-1と比較して(配管67の容積)+(配管65の容積)×1/2に相当する液面高さが高くなる。また、セルモジュール1-2では、セルモジュール1-1と比較して(配管65の容積)×1/2に相当する液面高さが高くなる。そこで、分岐流路の始点である接続部61と発生部19とを接続する配管64,66,68を、セルモジュール1-1~1-3ごとの占有容積が、最小値の2倍以下となるように設計することができる。これにより、セルモジュール1-1~1-3間における電解液6の液面高さの不均衡を低減することができる。 As shown in FIG. 10, after the electrolytic solution 6 and the powder 7 have been introduced into the respective generators 19 of the cell modules 1-1 to 1-3 and the operation of the supply unit 14 is restarted, the respective cell modules 1- In 1 to 1-3, the imbalance of the liquid level of the electrolytic solution 6 contained in each cell can be corrected. On the other hand, due to the occupied volume of each of the cell modules 1-1 to 1-3, there is a concern that the liquid level height of the electrolytic solution 6 between the cell modules 1-1 to 1-3 is unbalanced. That is, assuming that the volumes of the pipes 64, 66, and 68 are the same, in the cell module 1-3, (volume of the pipe 67) + (volume of the pipe 65) × 1/2 in comparison with the cell module 1-1. The liquid level height corresponding to is increased. Further, in the cell module 1-2, the liquid level height corresponding to (volume of the pipe 65) × 1/2 is higher than that in the cell module 1-1. Therefore, the occupying volume of each of the cell modules 1-1 to 1-3 of the pipes 64, 66, 68 connecting the connecting portion 61, which is the starting point of the branch flow path, and the generating portion 19 is set to be twice the minimum value or less. Can be designed to be. As a result, it is possible to reduce the imbalance of the liquid level of the electrolytic solution 6 between the cell modules 1-1 to 1-3.
 なお、配管64,66,68は、接続部61~63との連通を遮断可能なバルブ60を備えていてもよい。例えば、1または複数のバルブ60を操作して接続部61~63との連通を遮断すると、供給部14の運転を停止しても電解液6および粉末7は中空部9の内部に進入しない。このため、所望するセルモジュールにおける電解液6の液面高さの不均衡を選択的に低減させることができる。 The pipes 64, 66, 68 may include a valve 60 capable of blocking communication with the connecting portions 61 to 63. For example, if one or a plurality of valves 60 are operated to cut off communication with the connecting portions 61 to 63, the electrolytic solution 6 and the powder 7 do not enter the hollow portion 9 even if the operation of the supply portion 14 is stopped. Therefore, it is possible to selectively reduce the imbalance of the liquid surface height of the electrolytic solution 6 in the desired cell module.
<第3の実施形態>
 図11は、第3の実施形態に係る二次電池の概略を示す図である。図11に示す二次電池100Aは、複数のセルモジュール1-1~1-4を備える。
<Third Embodiment>
FIG. 11 is a diagram showing an outline of the secondary battery according to the third embodiment. The secondary battery 100A shown in FIG. 11 includes a plurality of cell modules 1-1 to 1-4.
 配管15は、一端が供給部14に接続され、他端が接続部70に接続されている。また、接続部70は、一端がセルモジュール1-1、1-2の発生部19にそれぞれ接続された配管72および配管73にも接続されている。 The pipe 15 has one end connected to the supply unit 14 and the other end connected to the connection unit 70. The connecting portion 70 is also connected to a pipe 72 and a pipe 73, one ends of which are connected to the generating portions 19 of the cell modules 1-1 and 1-2, respectively.
 また、配管75は、一端がセルモジュール1-3の発生部19に接続され、他端が接続部71に接続されている。接続部71は、一端がセルモジュール1-4の発生部19に接続された配管76にも接続されている。そして、接続部70と接続部71は、配管74によって接続されている。配管15,72~76は、複数のセルモジュール1-1~1-4がそれぞれ有する発生部19に気体を供給する供給流路の一例である。また、配管15は、共通流路の一例であり、配管72,73,75,76は、個別流路の一例である。 Further, the pipe 75 has one end connected to the generation unit 19 of the cell module 1-3 and the other end connected to the connection unit 71. The connecting portion 71 is also connected to a pipe 76 whose one end is connected to the generating portion 19 of the cell module 1-4. The connecting portion 70 and the connecting portion 71 are connected by a pipe 74. The pipes 15, 72 to 76 are an example of a supply flow path for supplying a gas to the generating unit 19 included in each of the plurality of cell modules 1-1 to 1-4. The pipe 15 is an example of a common flow path, and the pipes 72, 73, 75, 76 are an example of individual flow paths.
 図11に示す二次電池100Aにおいては、分岐流路の始点である接続部70と発生部19とを接続する配管72~76を、セルモジュール1-1~1-4ごとの占有容積が、最小値の2倍以下となるように設計することができる。ここで、セルモジュール1-1における供給流路の占有容積は、(配管72の容積)である。セルモジュール1-2における供給流路の占有容積は、(配管73の容積)である。また、セルモジュール1-3における供給流路の占有容積は、(配管75の容積)+(配管74の容積)×1/2である。さらに、セルモジュール1-4における供給流路の占有容積は、(配管76の容積)+(配管74の容積)×1/2である。これらのうち、最大値が最小値の2倍以下となるように配管72~76をそれぞれ配設することにより、セルモジュール1-1~1-4間における電解液6の液面高さの不均衡を低減することができる。 In the secondary battery 100A shown in FIG. 11, the pipes 72 to 76 connecting the connecting portion 70, which is the starting point of the branch flow path, and the generating portion 19 are connected to each other with the occupied volumes of the cell modules 1-1 to 1-4. It can be designed to be no more than twice the minimum value. Here, the occupied volume of the supply channel in the cell module 1-1 is (volume of the pipe 72). The occupied volume of the supply channel in the cell module 1-2 is (volume of the pipe 73). Further, the occupied volume of the supply channel in the cell module 1-3 is (volume of the pipe 75) + (volume of the pipe 74) × 1/2. Furthermore, the occupied volume of the supply channel in the cell module 1-4 is (volume of the pipe 76) + (volume of the pipe 74) × 1/2. Among these, by arranging the pipes 72 to 76 so that the maximum value is not more than twice the minimum value, the liquid level height of the electrolytic solution 6 between the cell modules 1-1 to 1-4 is not increased. The balance can be reduced.
<第3の実施形態の変形例>
 図11に示す二次電池100Aでは、接続部70,71のそれぞれに個別流路を接続させた例について示したが、これに限らず、接続部70に配管72,73,75,76をすべて接続させてもよい。かかる場合、配管72,73,75,76の容積のうち、最大値が最小値の2倍以下となるように配管72,73,75,76をそれぞれ配設することにより、セルモジュール1-1~1-4間における電解液6の液面高さの不均衡を低減することができる。また、かかる場合、図11に示す配管74および接続部71は不要となるため、部品点数を削減することができる。
<Modification of Third Embodiment>
In the secondary battery 100A shown in FIG. 11, the example in which the individual flow paths are connected to the connection parts 70 and 71 is shown, but not limited to this, all the pipes 72, 73, 75, and 76 are connected to the connection part 70. You may connect. In such a case, among the volumes of the pipes 72, 73, 75, 76, the pipes 72, 73, 75, 76 are arranged so that the maximum value is equal to or less than twice the minimum value. It is possible to reduce the imbalance of the liquid surface height of the electrolytic solution 6 between 1 to 4. Further, in such a case, since the pipe 74 and the connecting portion 71 shown in FIG. 11 are unnecessary, the number of parts can be reduced.
<第4の実施形態>
 図12は、第4の実施形態に係る二次電池の概略を示す図である。図12に示す二次電池100Bは、複数のセルモジュール1-1~1-8を備える。二次電池100Bは、接続部77~83のそれぞれにおいて供給流路が順次分岐している。
<Fourth Embodiment>
FIG. 12 is a diagram showing an outline of the secondary battery according to the fourth embodiment. The secondary battery 100B shown in FIG. 12 includes a plurality of cell modules 1-1 to 1-8. In the secondary battery 100B, the supply passages are sequentially branched at each of the connecting portions 77 to 83.
 配管15は、一端が供給部14に接続され、他端が接続部77に接続されている。また、接続部77は、一端が接続部78,79にそれぞれ接続された配管84および配管85にも接続されている。さらに、接続部78は、一端が接続部80,81にそれぞれ接続された配管86および配管87にも接続されており、接続部79は、一端が接続部82,83にそれぞれ接続された配管88および配管89にも接続されている。 The pipe 15 has one end connected to the supply unit 14 and the other end connected to the connection unit 77. The connecting portion 77 is also connected to a pipe 84 and a pipe 85, one ends of which are connected to the connecting portions 78 and 79, respectively. Further, the connecting portion 78 is also connected to a pipe 86 and a pipe 87, one ends of which are connected to the connecting portions 80 and 81, respectively, and the connecting portion 79 is a pipe 88 whose one end is connected to the connecting portions 82 and 83, respectively. It is also connected to the pipe 89.
 そして、接続部80は、一端がセルモジュール1-1、1-2の発生部19にそれぞれ接続された配管90および配管91に接続されている。接続部81は、一端がセルモジュール1-3、1-4の発生部19にそれぞれ接続された配管92および配管93に接続されている。接続部82は、一端がセルモジュール1-5、1-6の発生部19にそれぞれ接続された配管94および配管95に接続されている。さらに、接続部83は、一端がセルモジュール1-7、1-8の発生部19にそれぞれ接続された配管96および配管97に接続されている。 The connecting portion 80 is connected to a pipe 90 and a pipe 91, one ends of which are connected to the generating units 19 of the cell modules 1-1 and 1-2, respectively. One end of the connecting portion 81 is connected to the pipe 92 and the pipe 93, which are connected to the generating portions 19 of the cell modules 1-3 and 1-4, respectively. One end of the connecting portion 82 is connected to the pipe 94 and the pipe 95, which are connected to the generating portions 19 of the cell modules 1-5 and 1-6, respectively. Further, the connecting portion 83 is connected to a pipe 96 and a pipe 97, one ends of which are connected to the generating portions 19 of the cell modules 1-7 and 1-8, respectively.
 このように供給部14からの供給流路が共通流路の一例である配管15から順次分岐されることにより、セルモジュール1-1~1-8ごとの供給流路の占有容積を同程度とすることができ、セルモジュール1-1~1-8間における電解液6の液面高さの不均衡を低減することができる。 In this way, the supply flow path from the supply unit 14 is sequentially branched from the pipe 15 that is an example of the common flow path, so that the occupied volume of the supply flow path for each of the cell modules 1-1 to 1-8 can be made approximately the same. Therefore, it is possible to reduce the imbalance of the liquid level of the electrolytic solution 6 between the cell modules 1-1 to 1-8.
<第5の実施形態>
 図13は、第5の実施形態に係る二次電池の概略を示す図である。図13に示す二次電池100Cは、複数のセルモジュール1-1~1-8を備える。
<Fifth Embodiment>
FIG. 13 is a diagram showing an outline of the secondary battery according to the fifth embodiment. The secondary battery 100C shown in FIG. 13 includes a plurality of cell modules 1-1 to 1-8.
 配管15は、一端が供給部14に接続され、他端が接続部101に接続されている。また、接続部101は、一端が接続部102,106にそれぞれ接続された配管110および配管114にも接続されている。接続部102は、一端が接続部103に接続された配管111にも接続されており、接続部106は、一端が接続部107に接続された配管115にも接続されている。接続部103は、一端が接続部104に接続された配管112にも接続されており、接続部107は、一端が接続部108に接続された配管116にも接続されている。さらに、接続部104は、一端が接続部105に接続された配管113にも接続されており、接続部108は、一端が接続部109に接続された配管128にも接続されている。 The pipe 15 has one end connected to the supply unit 14 and the other end connected to the connection unit 101. The connecting portion 101 is also connected to the pipe 110 and the pipe 114, one ends of which are connected to the connecting portions 102 and 106, respectively. The connecting portion 102 is also connected to the pipe 111 whose one end is connected to the connecting portion 103, and the connecting portion 106 is also connected to the pipe 115 whose one end is connected to the connecting portion 107. The connecting portion 103 is also connected to a pipe 112 whose one end is connected to the connecting portion 104, and the connecting portion 107 is also connected to a pipe 116 whose one end is connected to the connecting portion 108. Further, the connecting portion 104 is also connected to the pipe 113 whose one end is connected to the connecting portion 105, and the connecting portion 108 is also connected to the pipe 128 whose one end is connected to the connecting portion 109.
 そして、接続部105,104,103,102,106,107,108,109は、一端がセルモジュール1-1~1-8の発生部19にそれぞれ接続された配管121~128にそれぞれ接続されている。ここで、個別流路の一例である配管121~128の容積は、セルモジュール1-1~1-8ごとの配管110~117の占有容積に応じて設定される。例えば、セルモジュール1-4に接続された配管124は、セルモジュール1-1に接続された配管121と比較して容積が大きい。また、セルモジュール1-6に接続された配管126は、セルモジュール1-8に接続された配管128と比較して容積が大きい。このように配管110~117によるセルモジュール1-1~1-8ごとの占有容積に応じた容積の配管121~128をそれぞれ配設することにより、セルモジュール1-1~1-8間における電解液6の液面高さの不均衡を低減することができる。すなわち、セルモジュール1-4に接続される、(配管124の容積)+(配管110の容積×1/4)と、セルモジュール1-1に接続される、(配管121の容積)+(配管110の容積×1/4)+(配管111の容積×1/3)+(配管112の容積×1/2)+(配管113の容積)と、が略同じになるように、配管124の容積および配管121の容積を設定してもよい。 The connection parts 105, 104, 103, 102, 106, 107, 108, 109 are respectively connected to the pipes 121 to 128, one ends of which are connected to the generation parts 19 of the cell modules 1-1 to 1-8, respectively. There is. Here, the volumes of the pipes 121 to 128, which are an example of the individual flow paths, are set according to the occupied volumes of the pipes 110 to 117 of the cell modules 1-1 to 1-8. For example, the pipe 124 connected to the cell module 1-4 has a larger volume than the pipe 121 connected to the cell module 1-1. The volume of the pipe 126 connected to the cell module 1-6 is larger than that of the pipe 128 connected to the cell module 1-8. By arranging the pipes 121 to 128 having the volumes corresponding to the occupied volumes of the cell modules 1-1 to 1-8 by the pipes 110 to 117, respectively, the electrolysis between the cell modules 1-1 to 1-8 is performed. The imbalance of the liquid level of the liquid 6 can be reduced. That is, (volume of the pipe 124) + (volume of the pipe 110 × 1/4) connected to the cell module 1-4 and (volume of the pipe 121) + (pipe) connected to the cell module 1-1. 110 volume × 1/4) + (pipe 111 volume × 1/3) + (pipe 112 volume × 1/2) + (pipe 113 volume) The volume and the volume of the pipe 121 may be set.
<第5の実施形態の変形例>
 図13に示す二次電池100Cでは、配管110~117によるセルモジュール1-1~1-8ごとの占有容積に応じて配管121~128の容積を変更させたが、これに限らず、発生部19が有する中空部9の容積を変更させてもよい。かかる場合であっても、セルモジュール1-1~1-8間における電解液6の液面高さの不均衡を低減することができる。すなわち、(セルモジュール1-4の発生部19の中空部9の容積)+(配管110の容積×1/4)と、(セルモジュール1-1の発生部19の中空部9の容積)+(配管110の容積×1/4)+(配管111の容積×1/3)+(配管112の容積×1/2)+(配管113の容積)と、が略同じとなるように、セルモジュール1-4の発生部19の中空部9の容積およびセルモジュール1-1の発生部19の中空部9の容積を設定してもよい。
<Modification of Fifth Embodiment>
In the secondary battery 100C shown in FIG. 13, the volumes of the pipes 121 to 128 are changed according to the occupied volumes of the cell modules 1-1 to 1-8 by the pipes 110 to 117, but the present invention is not limited to this. You may change the volume of the hollow part 9 which 19 has. Even in such a case, it is possible to reduce the imbalance of the liquid level of the electrolytic solution 6 between the cell modules 1-1 to 1-8. That is, (volume of hollow portion 9 of generating portion 19 of cell module 1-4) + (volume of piping 110 × 1/4) and (volume of hollow portion 9 of generating portion 19 of cell module 1-1) + The cell is set so that (volume of the pipe 110 × 1/4) + (volume of the pipe 111 × 1/3) + (volume of the pipe 112 × 1/2) + (volume of the pipe 113) is substantially the same. The volume of the hollow portion 9 of the generating portion 19 of the module 1-4 and the volume of the hollow portion 9 of the generating portion 19 of the cell module 1-1 may be set.
<第6の実施形態>
 図14は、第6の実施形態に係る二次電池の概略を示す図である。図14に示す二次電池100Dは、配管65,67に代えて、セルモジュール1-1~1-3の上方に配置された配管65a,67aをそれぞれ配置したことを除き、図10に示す二次電池100と同様の構成を有している。配管65a,67aをセルモジュール1-1~1-3の上方に配置したことにより、一端が発生部に接続された配管64a,66a,68aの他端は電解液6の液面6aよりも上方に配置される。
<Sixth Embodiment>
FIG. 14: is a figure which shows the outline of the secondary battery which concerns on 6th Embodiment. The secondary battery 100D shown in FIG. 14 is similar to the secondary battery 100D shown in FIG. 10 except that pipes 65a and 67a arranged above the cell modules 1-1 to 1-3 are arranged instead of the pipes 65 and 67, respectively. It has the same configuration as the secondary battery 100. By arranging the pipes 65a and 67a above the cell modules 1-1 to 1-3, the other ends of the pipes 64a, 66a and 68a whose one ends are connected to the generating portion are above the liquid surface 6a of the electrolytic solution 6. Is located in.
 このように配置されたセルモジュール1-1~1-3では、供給部14を停止させてもセルモジュール1-1~1-3にそれぞれ収容されている電解液6および粉末7は混ざり合わず、個別に各セル間における電解液6の液面高さの不均衡が低減される。 In the cell modules 1-1 to 1-3 arranged as described above, the electrolytic solution 6 and the powder 7 contained in the cell modules 1-1 to 1-3 are not mixed even if the supply unit 14 is stopped. , The imbalance of the liquid level of the electrolytic solution 6 between the cells is reduced individually.
<第7の実施形態>
 図15は、第7の実施形態に係る二次電池の概略を示す図である。図15に示す二次電池1Aは、複数の第1容器としてのセル10-1~10-8の側部にそれぞれ配された連通孔31を有し、連通孔31を介して互いに接続されたことを除き、図1に示す二次電池1と同様の構成を有している。なお、図15では、図1に示す二次電池1における供給部14および配管15,16の図示は省略している。また、後述する図16、図17についても、供給部14および配管15,16の図示を省略している。
<Seventh Embodiment>
FIG. 15 is a diagram showing an outline of the secondary battery according to the seventh embodiment. The secondary battery 1A shown in FIG. 15 has communication holes 31 arranged on the sides of the cells 10-1 to 10-8 as the first containers, and the cells are connected to each other through the communication holes 31. Except for the above, the secondary battery 1 has the same configuration as that of the secondary battery 1 shown in FIG. In FIG. 15, the supply unit 14 and the pipes 15 and 16 of the secondary battery 1 shown in FIG. 1 are omitted. 16 and 17, which will be described later, the supply unit 14 and the pipes 15 and 16 are not shown.
 図15に示す連通孔31は、電解液6の液面6aよりも低い位置で隔壁30を貫通している。このため、第1の実施形態に係る二次電池1のように各セル10-1~10-8に配された電解液6および粉末7を発生部19の中空部9に進入させることを要せず、速やかに各セル10-1~10-8間における電解液6の液面高さの不均衡が低減される。 The communication hole 31 shown in FIG. 15 penetrates the partition wall 30 at a position lower than the liquid surface 6a of the electrolytic solution 6. Therefore, as in the secondary battery 1 according to the first embodiment, it is necessary to allow the electrolytic solution 6 and the powder 7 arranged in each of the cells 10-1 to 10-8 to enter the hollow portion 9 of the generating portion 19. Without doing so, the imbalance of the liquid level of the electrolytic solution 6 between the cells 10-1 to 10-8 is promptly reduced.
 また、連通孔31は、正極2の下端2aよりも下方に位置している。このため、負極3で生成したデンドライトが成長し、連通孔31を介して隣のセルに進入することで生じるセル間の短絡の不具合が低減される。 The communication hole 31 is located below the lower end 2a of the positive electrode 2. For this reason, the dendrite generated in the negative electrode 3 grows and the short circuit between cells caused by entering the adjacent cell through the communication hole 31 is reduced.
 連通孔31は、例えば、第1方向(Y軸方向)から見て円形、楕円形または多角形の柱状とすることができる。 The communication hole 31 can be, for example, a circular, elliptical, or polygonal column when viewed from the first direction (Y-axis direction).
 また、連通孔31は、常時開放していてもよく、開閉可能に構成されてもよい。例えば、二次電池1Aが有する1または複数の連通孔31を操作して隣り合うセル間の連通を遮断すると、連通孔31を介した電解液6および粉末7の移動が制限される。このため、電解液6の移動によって生じる漏れ電流による充電容量の低下や充放電性能の劣化が低減される。 The communication hole 31 may be always open or may be configured to be openable and closable. For example, if one or a plurality of communication holes 31 included in the secondary battery 1A are operated to block communication between adjacent cells, movement of the electrolytic solution 6 and the powder 7 through the communication holes 31 is restricted. Therefore, a decrease in charge capacity and a deterioration in charge / discharge performance due to a leakage current caused by the movement of the electrolytic solution 6 are reduced.
<第7の実施形態の第1、第2変形例>
 図16、図17は、第7の実施形態の第1、第2変形例に係る二次電池の概略を示す図である。図16、図17に示す二次電池1Bは、図15に示す二次電池1Aとは異なる位置に連通孔31を有している。
<First and Second Modifications of Seventh Embodiment>
16 and 17 are diagrams showing the outline of the secondary batteries according to the first and second modifications of the seventh embodiment. The secondary battery 1B shown in FIGS. 16 and 17 has a communication hole 31 at a position different from that of the secondary battery 1A shown in FIG.
 すなわち、図16、図17に示す二次電池1Bは、正極2の上端2bよりも上方に連通孔31が位置している。このため、二次電池1Aと同様に負極3で生成したデンドライトが成長し、連通孔31を介して隣のセルに進入することで生じるセル間の短絡の不具合が低減される。 That is, in the secondary battery 1B shown in FIGS. 16 and 17, the communication hole 31 is located above the upper end 2b of the positive electrode 2. Therefore, similar to the secondary battery 1A, the dendrite generated in the negative electrode 3 grows and the short circuit between cells caused by entering the adjacent cell through the communication hole 31 is reduced.
 また、図16に示す二次電池1Bは、電解液6の液面6aよりも低い位置で隔壁30を貫通する連通孔31を有している。このため、各セル10-1~10-8に配された電解液6および粉末7を発生部19の中空部9に進入させることを要せず、速やかに各セル間における電解液6の液面高さの不均衡が低減される。 Further, the secondary battery 1B shown in FIG. 16 has a communication hole 31 penetrating the partition wall 30 at a position lower than the liquid surface 6a of the electrolytic solution 6. Therefore, it is not necessary to allow the electrolytic solution 6 and the powder 7 disposed in each cell 10-1 to 10-8 to enter the hollow portion 9 of the generating portion 19, and the liquid of the electrolytic solution 6 between each cell can be promptly added. The surface height imbalance is reduced.
 一方、図17に示す二次電池1Bは、電解液6の液面6aよりも高い位置で隔壁30を貫通する連通孔31を有しており、複数のセル10-1~10-8のうち、電解液6の量が過剰となったセルにおいてのみ電解液6の液面高さの不均衡が低減される。このため、連通孔31を介した電解液6の移動によって生じる漏れ電流による充電容量の低下や充放電性能の劣化が低減される。なお、図17では、セル10-3に配された電解液6の液面高さが上昇し、セル10-3の側部に位置する隔壁30に配された連通孔31からセル10-3に隣接するセル10-2および10-4に電解液6が流入することで、液面高さの不均衡が低減された例を示している。 On the other hand, the secondary battery 1B shown in FIG. 17 has a communication hole 31 penetrating the partition wall 30 at a position higher than the liquid surface 6a of the electrolytic solution 6, and among the plurality of cells 10-1 to 10-8. The unevenness of the liquid surface height of the electrolytic solution 6 is reduced only in the cell in which the amount of the electrolytic solution 6 is excessive. For this reason, the reduction of the charge capacity and the deterioration of the charge / discharge performance due to the leakage current generated by the movement of the electrolytic solution 6 through the communication hole 31 are reduced. In FIG. 17, the liquid surface height of the electrolytic solution 6 disposed in the cell 10-3 rises, and the cell 10-3 passes through the communication hole 31 disposed in the partition wall 30 located on the side of the cell 10-3. This shows an example in which the imbalance of the liquid level is reduced by flowing the electrolytic solution 6 into the cells 10-2 and 10-4 adjacent to.
<第7の実施形態の第3変形例>
 図18は、第7の実施形態の第3変形例に係る二次電池の概略を示す図である。図18に示す二次電池1Cでは、セル10-1,10-2の間に位置する隔壁30が有する連通孔31が、セル10-1,10-2がそれぞれ有する電極部20同士を接続させるための貫通孔を兼ねている。図18では、一例としてセル10-1,10-2の間に配された連通孔31について図示したが、その他のセル間についても同様の連通孔31を配することができる。
<Third Modification of Seventh Embodiment>
FIG. 18 is a diagram showing an outline of a secondary battery according to a third modified example of the seventh embodiment. In the secondary battery 1C shown in FIG. 18, the communication holes 31 of the partition wall 30 located between the cells 10-1 and 10-2 connect the electrode portions 20 of the cells 10-1 and 10-2 to each other. Also serves as a through hole. In FIG. 18, the communication hole 31 arranged between the cells 10-1 and 10-2 is illustrated as an example, but the same communication hole 31 can be arranged between other cells.
 図18に示すように、連通孔31には、セル10-1に配された正極2の上部から、ここでは図示しない電解液6の液面6a上に向けて延びる正極タブ2tと、セル10-2に配された負極3a,3bの上部から、電解液6の液面6a上に向けて延びるタブ3at,3btを接続させた負極タブ3tとが、連通孔31に挿通された接続部材33を介して電気的に接続されている。連通孔31と接続部材33との間の隙間を介してセル内で過剰となった電解液6が移動することにより、各セル間における電解液6の液面高さの不均衡が低減される。なお、電極部20同士の接続は、図示したものに限られない。例えば、正極タブ2tおよび負極タブ3tを、接続部材33を介さずに直接接続させてもよい。また、タブ3at,3btをそれぞれ、正極タブ2tに接続させてもよい。 As shown in FIG. 18, in the communication hole 31, a positive electrode tab 2t extending from the upper portion of the positive electrode 2 arranged in the cell 10-1 toward the liquid surface 6a of the electrolytic solution 6 (not shown here) and the cell 10 are provided. -2, the negative electrode tab 3t to which the tabs 3at and 3bt extending toward the liquid surface 6a of the electrolytic solution 6 are connected from the upper portions of the negative electrodes 3a and 3b arranged in -2, and the connection member 33 inserted into the communication hole 31. Are electrically connected via. The excess electrolyte solution 6 moves in the cells through the gap between the communication hole 31 and the connection member 33, so that the imbalance in the liquid level of the electrolyte solution 6 between the cells is reduced. .. The connection between the electrode portions 20 is not limited to the illustrated one. For example, the positive electrode tab 2t and the negative electrode tab 3t may be directly connected without the connection member 33. Alternatively, the tabs 3at and 3bt may be connected to the positive electrode tab 2t, respectively.
 次に、隔壁30が有する連通孔31の配置例について説明する。図19は、連通孔の配置例を示す図である。 Next, an arrangement example of the communication holes 31 included in the partition wall 30 will be described. FIG. 19 is a diagram showing an arrangement example of communication holes.
 上述したように、第1方向としてのY軸方向に向かい合う正極2と負極3との間では、デンドライトが成長する可能性がある。特に正極タブ2tに近い正極2においては、正極タブ2tから遠い正極2と比較して電流密度が高まり、デンドライトが成長する可能性が高くなる。そこで、図19に示すように、Y軸方向から平面視したとき、正極2の幅方向、すなわちX軸方向の位置が、正極タブ2tと相違するよう領域Rと重ならない部分に連通孔31(不図示)を位置させると、負極3で生成したデンドライトが成長し、連通孔31を介して隣のセルに進入することで生じるセル間の短絡の不具合が低減される。特に、Y軸方向から平面視したとき、正極2および領域Rと重ならない部分に連通孔31を位置させると、セル間の短絡の不具合がさらに低減される。 As described above, dendrite may grow between the positive electrode 2 and the negative electrode 3 facing each other in the Y-axis direction as the first direction. Particularly, in the positive electrode 2 close to the positive electrode tab 2t, the current density is higher than that in the positive electrode 2 far from the positive electrode tab 2t, and the possibility of dendrite growth increases. Therefore, as shown in FIG. 19, when viewed in a plan view from the Y-axis direction, the communication hole 31 (where the position in the width direction of the positive electrode 2, that is, the position in the X-axis direction does not overlap with the region R so as to be different from the positive electrode tab 2t. When (not shown) is positioned, the dendrite generated in the negative electrode 3 grows and the short circuit between cells caused by entering the adjacent cell through the communication hole 31 is reduced. In particular, when the communication hole 31 is located in a portion that does not overlap the positive electrode 2 and the region R when viewed in a plan view from the Y-axis direction, the problem of short circuit between cells is further reduced.
<連通孔の変形例>
 連通孔31は、Y軸方向に沿った柱状に限らず、様々な形状を取りうる。図20A~図20Eは、連通孔の一例を示す図である。
<Modification of communication hole>
The communication hole 31 is not limited to a columnar shape along the Y-axis direction, and may have various shapes. 20A to 20E are diagrams showing an example of the communication hole.
 図20Aに示すように、連通孔31の両端におけるY軸方向の高さが異なるようにZ軸に対して斜めに連通させてもよい。また、図20Bに示すように、連通孔31の両端に対し、中央部分を狭めて連通させてもよい。また、図20Cに示すように、連通孔31を湾曲させてもよい。 As shown in FIG. 20A, the communication holes 31 may be communicated obliquely with respect to the Z-axis so that the heights in the Y-axis direction at both ends are different. Further, as shown in FIG. 20B, the central portion may be narrowed to communicate with both ends of the communication hole 31. Further, as shown in FIG. 20C, the communication hole 31 may be curved.
 また、図20Dに示すように、連通孔31の両端において、断面積を異ならせてもよい。さらに、図20Eに示すように、連通孔31の両端におけるX軸方向の位置が異なるようにY軸に対して斜めに連通させてもよい。その他、セル間の漏れ電流が小さくなるように例えば断面積や経路長に配慮した形状の連通孔31を位置させることができる。 Further, as shown in FIG. 20D, the cross-sectional areas may be different at both ends of the communication hole 31. Furthermore, as shown in FIG. 20E, the communication holes 31 may be communicated obliquely with respect to the Y axis so that the positions at both ends in the X axis direction are different. In addition, for example, the communication hole 31 having a shape in consideration of the cross-sectional area and the path length can be positioned so that the leakage current between cells becomes small.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、上記した各実施形態では、電解液6中に粉末7が混在されているとして説明したが、これに限らず、粉末7を有しなくてもよい。このとき、電解液6中に溶存する亜鉛成分は、飽和状態であってもよく、飽和状態よりも低い濃度であってもよい。さらに、電解液6は、過飽和状態となるように亜鉛成分を溶存させたものであってもよい。 The embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention. For example, in each of the above-described embodiments, the powder 7 is described as being mixed in the electrolytic solution 6, but the present invention is not limited to this, and the powder 7 may not be included. At this time, the zinc component dissolved in the electrolytic solution 6 may be in a saturated state or a concentration lower than that in the saturated state. Further, the electrolytic solution 6 may be one in which a zinc component is dissolved so as to be in a supersaturated state.
 また、上記した各実施形態では、配管同士を、配管とは別体の接続部を介して接続する例について図示したが、これに限らず、一方または両方の配管が接続部を有してもよく、1または複数の分岐管を用いてもよい。 Further, in each of the above-described embodiments, an example is illustrated in which the pipes are connected to each other via a connection part that is separate from the pipe. However, the present invention is not limited to this, and one or both pipes may have a connection part. Of course, one or more branch pipes may be used.
 また、上記した各実施形態では、隔膜4,5は正極2の厚み方向の両側を挟むように配置されるとして説明したが、これに限らず、正極2を被覆していてもよい。また、隔膜4,5は、必ずしも配置されなくともよい。 Further, in each of the above-described embodiments, the description has been made assuming that the diaphragms 4 and 5 are arranged so as to sandwich both sides of the positive electrode 2 in the thickness direction, but the present invention is not limited to this, and the positive electrode 2 may be covered. Further, the diaphragms 4 and 5 do not necessarily have to be arranged.
 また、上記した各実施形態において、供給流路を構成する配管は、断面積が同じであってもよく、異なってもよい。例えば、少なくとも発生部19に接続された個別流路の断面積を一定にすると、発生部19の内部に供給される気体23の流速を一定にすることができる。 Further, in each of the above-described embodiments, the pipes forming the supply flow path may have the same cross-sectional area or may have different cross-sectional areas. For example, if the cross-sectional area of the individual flow path connected to at least the generation unit 19 is made constant, the flow velocity of the gas 23 supplied to the inside of the generation unit 19 can be made constant.
 また、上記した各実施形態に係る二次電池の構成を組み合わせてもよい。例えば、二次電池100A~100Dがそれぞれ有するセルスタックにおいて、各セル10-1~10-8の側部に連通孔31を有してもよい。 Also, the configurations of the secondary batteries according to the above-described embodiments may be combined. For example, in the cell stacks of the secondary batteries 100A to 100D, the communication holes 31 may be provided on the sides of the cells 10-1 to 10-8.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspects of the present invention are not limited to the particular details and representative embodiments shown and described above. Therefore, various modifications may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and their equivalents.
  1,1A~1C,100,100A~100D 二次電池
  2 正極
  3,3a,3b 負極
  4,5 隔膜
  6 電解液
  7 粉末
  8 気泡
  9 中空部
 10 反応部
 11a 吐出口
 14 供給部
 17 筐体
 18 上板
 19 発生部
 20 電極部
 30 隔壁
 31 連通孔
1, 1A to 1C, 100, 100A to 100D Secondary battery 2 Positive electrode 3,3a, 3b Negative electrode 4,5 Separator 6 Electrolyte 7 Powder 8 Bubble 9 Hollow part 10 Reaction part 11a Discharge port 14 Supply part 17 Housing 18 top Plate 19 Generation part 20 Electrode part 30 Partition wall 31 Communication hole

Claims (20)

  1.  底部に複数の貫通孔を有した複数の第1容器と、
     前記複数の第1容器の下面に位置し、前記複数の貫通孔を介して前記複数の第1容器と接続した第2容器と、
     前記第2容器に気体を供給する供給部と、
     前記複数の第1容器のそれぞれの第1容器内に配された電解液と、
     前記電解液中に配された正極および負極と、を備え、
     前記第2容器の内寸高さに対する前記複数の第1容器のそれぞれの内寸高さの比は、前記第1容器の数をkとしたとき、
    Figure JPOXMLDOC01-appb-M000001
    以上であることを特徴とする二次電池。
    A plurality of first containers having a plurality of through holes in the bottom,
    A second container located on the lower surface of the plurality of first containers and connected to the plurality of first containers through the plurality of through holes;
    A supply unit for supplying gas to the second container,
    An electrolytic solution disposed in each first container of the plurality of first containers;
    A positive electrode and a negative electrode arranged in the electrolytic solution,
    The ratio of the inner height of each of the plurality of first containers to the inner height of the second container is k when the number of the first containers is k,
    Figure JPOXMLDOC01-appb-M000001
    The secondary battery characterized by the above.
  2.  底部に複数の第1貫通孔を有し、第1方向に並んだ複数の第1容器と、
     前記複数の第1容器の下面に位置し、前記複数の第1貫通孔を介して前記複数の第1容器と接続するとともに、第2貫通孔を有した第2容器と、
     前記第2容器に前記第2貫通孔を介して気体を供給する供給部と、
     前記複数の第1容器のそれぞれの第1容器内に配された電解液と、
     前記電解液中に配された正極および負極と、を備え、
     前記第2貫通孔は、前記底部に垂直な方向からみたときに、前記第1方向に交差する第2方向と交わる第2容器の側面に位置していることを特徴とする二次電池。
    A plurality of first containers having a plurality of first through holes in the bottom and arranged in the first direction,
    Located on the lower surface of the plurality of first containers, connected to the plurality of first containers through the plurality of first through holes, a second container having a second through hole,
    A supply unit that supplies gas to the second container through the second through hole;
    An electrolytic solution disposed in each first container of the plurality of first containers;
    A positive electrode and a negative electrode arranged in the electrolytic solution,
    The secondary battery according to claim 2, wherein the second through hole is located on a side surface of the second container that intersects a second direction that intersects the first direction when viewed from a direction perpendicular to the bottom.
  3.  前記第2容器は、前記第1方向に延在しており、
     前記第2貫通孔は、前記第2容器の前記側面の中央部分に位置していることを特徴とする請求項2に記載の二次電池。
    The second container extends in the first direction,
    The secondary battery according to claim 2, wherein the second through hole is located in a central portion of the side surface of the second container.
  4.  底部に複数の第1貫通孔を有した複数の第1容器と、
     前記複数の第1容器の下面に位置し、前記複数の第1貫通孔を介して前記複数の第1容器と接続するとともに、複数の第2貫通孔を有した第2容器と、
     前記第2容器に前記複数の第2貫通孔を介して気体を供給する供給部と、
     前記複数の第1容器のそれぞれの第1容器内に配された電解液と、
     前記電解液中に配された正極および負極と、を備えることを特徴とする二次電池。
    A plurality of first containers having a plurality of first through holes in the bottom,
    Positioned on the lower surface of the plurality of first containers, connected to the plurality of first containers through the plurality of first through holes, and a second container having a plurality of second through holes,
    A supply unit that supplies gas to the second container via the plurality of second through holes;
    An electrolytic solution disposed in each first container of the plurality of first containers;
    A secondary battery comprising a positive electrode and a negative electrode arranged in the electrolytic solution.
  5.  底部に複数の貫通孔を有した複数の第1容器と、
     前記複数の第1容器の下面に位置し、前記複数の貫通孔を介して前記複数の第1容器にそれぞれ接続されているとともに、互いに接続された複数の連通孔を有した複数の第2容器と、
     前記第2容器に気体を供給する供給部と、
     前記複数の第1容器のそれぞれの第1容器内に配された電解液と、
     前記電解液中に配された正極および負極と、を備えることを特徴とする二次電池。
    A plurality of first containers having a plurality of through holes in the bottom,
    A plurality of second containers that are located on the lower surface of the plurality of first containers and that are respectively connected to the plurality of first containers through the plurality of through holes and that have a plurality of communication holes connected to each other. When,
    A supply unit for supplying gas to the second container,
    An electrolytic solution disposed in each first container of the plurality of first containers;
    A secondary battery comprising a positive electrode and a negative electrode arranged in the electrolytic solution.
  6.  底部に複数の第1貫通孔を有した複数の第1容器と、
     前記複数の第1容器の下面に位置し、前記複数の第1貫通孔を介して前記複数の第1容器と接続しているとともに、第2貫通孔を有した第2容器と、
     前記第2容器に前記第2貫通孔を介して気体を供給する供給部と、
     前記複数の第1容器のそれぞれの第1容器内に配された電解液と、
     前記電解液中に配された正極および負極と、を備え、
     前記第2容器は、前記第2貫通孔の開口に対向するとともに、前記第2容器の上面から下方に突出した突出壁を有することを特徴とする二次電池。
    A plurality of first containers having a plurality of first through holes in the bottom,
    Located on the lower surface of the plurality of first containers, connected to the plurality of first containers through the plurality of first through holes, and a second container having a second through hole,
    A supply unit that supplies gas to the second container through the second through hole;
    An electrolytic solution disposed in each first container of the plurality of first containers;
    A positive electrode and a negative electrode arranged in the electrolytic solution,
    The secondary battery, wherein the second container has a projecting wall facing the opening of the second through hole and projecting downward from the upper surface of the second container.
  7.  複数の前記第1容器は、隣り合う前記第1容器を連通させる連通孔を有する隔壁で区画されていることを特徴とする請求項1~6のいずれか1つに記載の二次電池。 The secondary battery according to any one of claims 1 to 6, wherein the plurality of first containers are partitioned by a partition having a communication hole that communicates the adjacent first containers.
  8.  底部に配された複数の貫通孔と、側部に配された連通孔とを有し、前記連通孔を介して互いに接続した複数の第1容器と、
     前記複数の第1容器の下面に位置し、前記複数の貫通孔を介して前記複数の第1容器と接続した第2容器と、
     前記第2容器に気体を供給する供給部と、
     前記複数の第1容器のそれぞれの第1容器内に配された電解液と、
     前記電解液中に配された正極および負極と、を備えることを特徴とする二次電池。
    A plurality of first containers having a plurality of through holes arranged on the bottom and a communication hole arranged on the side, and connected to each other through the communication holes,
    A second container located on the lower surface of the plurality of first containers and connected to the plurality of first containers through the plurality of through holes;
    A supply unit for supplying gas to the second container,
    An electrolytic solution disposed in each first container of the plurality of first containers;
    A secondary battery comprising a positive electrode and a negative electrode arranged in the electrolytic solution.
  9.  前記第1容器が有する前記連通孔は、前記正極の上端よりも上方に位置していることを特徴とする請求項7または8に記載の二次電池。 The secondary battery according to claim 7 or 8, wherein the communication hole of the first container is located above an upper end of the positive electrode.
  10.  前記第1容器が有する前記連通孔は、前記正極の下端よりも下方に位置していることを特徴とする請求項7または8に記載の二次電池。 The secondary battery according to claim 7 or 8, wherein the communication hole of the first container is located below a lower end of the positive electrode.
  11.  前記複数の第1容器が第1方向に並んでおり、
     前記連通孔は、前記第1方向から平面視したとき、前記正極の幅方向の位置が、前記正極につながる正極タブと相違することを特徴とする請求項7~10のいずれか1つに記載の二次電池。
    The plurality of first containers are arranged in a first direction,
    11. The communication hole according to claim 7, wherein a position in the width direction of the positive electrode is different from a positive electrode tab connected to the positive electrode when viewed in a plan view from the first direction. Secondary battery.
  12.  底部に複数の貫通孔を有した複数の第1容器と、前記複数の第1容器の下面に位置し、前記複数の貫通孔を介して前記複数の第1容器と接続した第2容器と、前記第2容器に気体を供給する供給部と、前記複数の第1容器のそれぞれの第1容器内に配された電解液と、前記電解液中に配された正極および負極と、をそれぞれ有する複数のセルモジュールと、
     複数の前記セルモジュールがそれぞれ有する前記第2容器と前記供給部とを接続する供給流路と、を備え、
     前記供給流路は、少なくとも1つの分岐流路を含み、
     前記分岐流路の始点と複数の前記セルモジュールがそれぞれ有する前記第2容器とを接続するそれぞれの前記供給流路の容積の最大値は、複数の前記供給流路の容積の最小値の2倍以下であることを特徴とする二次電池。
    A plurality of first containers having a plurality of through holes in the bottom portion, a second container located on the lower surface of the plurality of first containers, connected to the plurality of first containers through the plurality of through holes, It has a supply part which supplies gas to the 2nd container, an electrolytic solution arranged in each 1st container of a plurality of the 1st containers, and a positive electrode and a negative electrode arranged in the electrolytic solution, respectively. Multiple cell modules,
    A supply channel that connects the second container and the supply unit that each of the plurality of cell modules has,
    The supply channel includes at least one branch channel,
    The maximum value of the volume of each of the supply channels connecting the start point of the branch channel and the second container of each of the plurality of cell modules is twice the minimum value of the volumes of the plurality of supply channels. A secondary battery characterized in that:
  13.  底部に複数の貫通孔を有した複数の第1容器と、前記複数の第1容器の下面に位置し、前記複数の貫通孔を介して前記複数の第1容器と接続した第2容器と、前記第2容器に気体を供給する供給部と、前記複数の第1容器のそれぞれの第1容器内に配された電解液と、前記電解液中に配された正極および負極と、をそれぞれ有する複数のセルモジュールと、
     複数の前記セルモジュールがそれぞれ有する前記第2容器と前記供給部とを接続する供給流路と、を備え、
     前記供給流路は、前記供給部に接続された共通流路と、一端が前記共通流路の端部に接続され、他端が前記セルモジュールに対応する前記第2容器に接続された個別流路とを含み、
     複数の前記セルモジュールにそれぞれ対応する前記個別流路の容積の最大値は、前記個別流路の容積の最小値の2倍以下であることを特徴とする二次電池。
    A plurality of first containers having a plurality of through holes in the bottom portion, a second container located on the lower surface of the plurality of first containers, connected to the plurality of first containers through the plurality of through holes, It has a supply part which supplies gas to the 2nd container, an electrolytic solution arranged in each 1st container of a plurality of the 1st containers, and a positive electrode and a negative electrode arranged in the electrolytic solution, respectively. Multiple cell modules,
    A supply channel that connects the second container and the supply unit that each of the plurality of cell modules has,
    The supply channel includes a common channel connected to the supply unit, and an individual flow channel having one end connected to an end of the common channel and the other end connected to the second container corresponding to the cell module. Including the road,
    The secondary battery, wherein the maximum value of the volume of the individual flow channel corresponding to each of the plurality of cell modules is not more than twice the minimum value of the volume of the individual flow channel.
  14.  底部に複数の貫通孔を有した複数の第1容器と、前記複数の第1容器の下面に位置し、前記複数の貫通孔を介して前記複数の第1容器と接続した第2容器と、前記第2容器に気体を供給する供給部と、前記複数の第1容器のそれぞれの第1容器内に配された電解液と、前記電解液中に配された正極および負極と、をそれぞれ有する複数のセルモジュールと、
     複数の前記セルモジュールがそれぞれ有する前記第2容器と前記供給部とを接続する供給流路と、を備え、
     前記供給流路は、前記第2容器に接続される共通流路と、前記共通流路から順次分岐する複数の分岐流路とを含むことを特徴とする二次電池。
    A plurality of first containers having a plurality of through holes in the bottom portion, a second container located on the lower surface of the plurality of first containers, connected to the plurality of first containers through the plurality of through holes, It has a supply part which supplies gas to the 2nd container, an electrolytic solution arranged in each 1st container of a plurality of the 1st containers, and a positive electrode and a negative electrode arranged in the electrolytic solution, respectively. Multiple cell modules,
    A supply channel that connects the second container and the supply unit that each of the plurality of cell modules has,
    The secondary battery, wherein the supply flow path includes a common flow path connected to the second container and a plurality of branch flow paths sequentially branched from the common flow path.
  15.  底部に複数の貫通孔を有した複数の第1容器と、前記複数の第1容器の下面に位置し、前記複数の貫通孔を介して前記複数の第1容器と接続した第2容器と、前記第2容器に気体を供給する供給部と、前記複数の第1容器のそれぞれの第1容器内に配された電解液と、前記電解液中に配された正極および負極と、をそれぞれ有する複数のセルモジュールと、
     複数の前記セルモジュールがそれぞれ有する前記第2容器と前記供給部とを接続する供給流路と、を備え、
     前記供給流路は、前記供給部に接続された共通流路と、一端が前記共通流路に接続され、他端が前記セルモジュールに対応する前記第2容器に接続された個別流路とを含み、
     前記個別流路は、前記共通流路に接続される前記個別流路の接続部と前記供給部との間の各共通流路の占有容積に応じた容積を有することを特徴とする二次電池。
    A plurality of first containers having a plurality of through holes in the bottom portion, a second container located on the lower surface of the plurality of first containers, connected to the plurality of first containers through the plurality of through holes, It has a supply part which supplies gas to the 2nd container, an electrolytic solution arranged in each 1st container of a plurality of the 1st containers, and a positive electrode and a negative electrode arranged in the electrolytic solution, respectively. Multiple cell modules,
    A supply channel that connects the second container and the supply unit that each of the plurality of cell modules has,
    The supply channel includes a common channel connected to the supply unit and an individual channel having one end connected to the common channel and the other end connected to the second container corresponding to the cell module. Including,
    The individual channel has a volume according to an occupied volume of each common channel between the connection section of the individual channel connected to the common channel and the supply unit. ..
  16.  底部に複数の貫通孔を有した複数の第1容器と、前記複数の第1容器の下面に位置し、前記複数の貫通孔を介して前記複数の第1容器と接続した第2容器と、前記第2容器に気体を供給する供給部と、前記複数の第1容器のそれぞれの第1容器内に配された電解液と、前記電解液中に配された正極および負極と、をそれぞれ有する複数のセルモジュールと、
     複数の前記セルモジュールがそれぞれ有する前記第2容器と前記供給部とを接続する供給流路と、を備え、
     前記供給流路は、少なくとも1つの分岐流路を含み、
     前記第2容器は、前記供給部と複数の前記セルモジュールがそれぞれ有する前記第2容器とを接続する供給流路の、前記セルモジュールごとの占有容積に応じた容積を有することを特徴とする二次電池。
    A plurality of first containers having a plurality of through holes in the bottom portion, a second container located on the lower surface of the plurality of first containers, connected to the plurality of first containers through the plurality of through holes, It has a supply part which supplies gas to the 2nd container, an electrolytic solution arranged in each 1st container of a plurality of the 1st containers, and a positive electrode and a negative electrode arranged in the electrolytic solution, respectively. Multiple cell modules,
    A supply channel that connects the second container and the supply unit that each of the plurality of cell modules has,
    The supply channel includes at least one branch channel,
    The second container has a volume corresponding to an occupied volume of each of the cell modules of a supply flow path connecting the supply unit and the second containers respectively included in the plurality of cell modules. Next battery.
  17.  前記供給流路は、少なくとも前記第2容器に接続された個別流路の断面積が一定であることを特徴とする請求項12~16のいずれか1つに記載の二次電池。 The secondary battery according to any one of claims 12 to 16, characterized in that, in the supply channel, at least an individual channel connected to the second container has a constant cross-sectional area.
  18.  底部に複数の貫通孔を有した複数の第1容器と、前記複数の第1容器の下面に位置し、前記複数の貫通孔を介して前記複数の第1容器と接続した第2容器と、前記第2容器に気体を供給する供給部と、前記複数の第1容器のそれぞれの第1容器内に配された電解液と、前記電解液中に配された正極および負極と、をそれぞれ有する複数のセルモジュールと、
     複数の前記セルモジュールがそれぞれ有する前記第2容器と前記供給部とを接続する供給流路と、を備え、
     前記供給流路は、前記第1容器に収容された電解液よりも上方に位置する部分を有することを特徴とする二次電池。
    A plurality of first containers having a plurality of through holes in the bottom portion, a second container located on the lower surface of the plurality of first containers, connected to the plurality of first containers through the plurality of through holes, It has a supply part which supplies gas to the 2nd container, an electrolytic solution arranged in each 1st container of a plurality of the 1st containers, and a positive electrode and a negative electrode arranged in the electrolytic solution, respectively. Multiple cell modules,
    A supply channel that connects the second container and the supply unit that each of the plurality of cell modules has,
    The secondary battery, wherein the supply flow path has a portion located above the electrolytic solution contained in the first container.
  19.  前記電解液に亜鉛成分を含むことを特徴とする請求項1~18のいずれか1つに記載の二次電池。 The secondary battery according to any one of claims 1 to 18, wherein the electrolytic solution contains a zinc component.
  20.  前記電解液中を移動可能に混在する粉末をさらに備えることを特徴とする請求項19に記載の二次電池。 The secondary battery according to claim 19, further comprising a powder that is movably mixed in the electrolytic solution.
PCT/JP2019/042923 2018-10-31 2019-10-31 Secondary battery WO2020091013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018204887 2018-10-31
JP2018-204887 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020091013A1 true WO2020091013A1 (en) 2020-05-07

Family

ID=70462627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042923 WO2020091013A1 (en) 2018-10-31 2019-10-31 Secondary battery

Country Status (1)

Country Link
WO (1) WO2020091013A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234328A (en) * 1975-06-18 1977-03-16 Lindstroem Ab Olle Battery using gas electrode
JPS59219873A (en) * 1983-05-28 1984-12-11 Furukawa Electric Co Ltd:The Zinc-halogen battery
JP2012238525A (en) * 2011-05-13 2012-12-06 Panasonic Corp Photoelectrochemical cell and energy system using the same
JP2015072744A (en) * 2013-10-01 2015-04-16 日産自動車株式会社 Metal air battery
JP2016004681A (en) * 2014-06-17 2016-01-12 株式会社Gsユアサ Lead power storage battery system
WO2017142042A1 (en) * 2016-02-16 2017-08-24 京セラ株式会社 Flow battery
JP2018166050A (en) * 2017-03-28 2018-10-25 京セラ株式会社 Secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234328A (en) * 1975-06-18 1977-03-16 Lindstroem Ab Olle Battery using gas electrode
JPS59219873A (en) * 1983-05-28 1984-12-11 Furukawa Electric Co Ltd:The Zinc-halogen battery
JP2012238525A (en) * 2011-05-13 2012-12-06 Panasonic Corp Photoelectrochemical cell and energy system using the same
JP2015072744A (en) * 2013-10-01 2015-04-16 日産自動車株式会社 Metal air battery
JP2016004681A (en) * 2014-06-17 2016-01-12 株式会社Gsユアサ Lead power storage battery system
WO2017142042A1 (en) * 2016-02-16 2017-08-24 京セラ株式会社 Flow battery
JP2018166050A (en) * 2017-03-28 2018-10-25 京セラ株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
JP6789279B2 (en) Flow battery
US20200176790A1 (en) Flow battery
JP7248776B2 (en) secondary battery
WO2020091013A1 (en) Secondary battery
JP2019067637A (en) Flow battery
JP7025243B2 (en) Flow battery
JP2018170231A (en) Flow battery
WO2019151454A1 (en) Flow battery
WO2021039998A1 (en) Secondary battery
JP7000591B2 (en) Secondary battery
WO2021107151A1 (en) Secondary battery
JP2019102181A (en) Flow battery
JP2020057475A (en) Positive electrode structure and flow battery
JP6925937B2 (en) Flow battery
WO2021153790A1 (en) Electrode for secondary batteries, and secondary battery
JP2019212401A (en) Flow battery
JP2020140913A (en) Positive electrode structure body and flow battery
US20220352557A1 (en) Secondary battery and secondary battery system
JP2021125305A (en) Secondary battery
JP2020021565A (en) Flow battery
CN110998948B (en) Flow battery
JP2019067632A (en) Flow battery
JP2019117767A (en) Flow battery
JP2019067636A (en) Flow battery
JP2020038754A (en) Flow battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP