WO2020090999A1 - Nitrided steel member, and method and apparatus for producing nitrided steel member - Google Patents

Nitrided steel member, and method and apparatus for producing nitrided steel member Download PDF

Info

Publication number
WO2020090999A1
WO2020090999A1 PCT/JP2019/042887 JP2019042887W WO2020090999A1 WO 2020090999 A1 WO2020090999 A1 WO 2020090999A1 JP 2019042887 W JP2019042887 W JP 2019042887W WO 2020090999 A1 WO2020090999 A1 WO 2020090999A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel member
nitrided steel
depth
layer
furnace
Prior art date
Application number
PCT/JP2019/042887
Other languages
French (fr)
Japanese (ja)
Inventor
泰 平岡
Original Assignee
パーカー熱処理工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーカー熱処理工業株式会社 filed Critical パーカー熱処理工業株式会社
Priority to JP2020554049A priority Critical patent/JPWO2020090999A1/en
Publication of WO2020090999A1 publication Critical patent/WO2020090999A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like

Definitions

  • the present invention relates to a nitrided steel member and a method and an apparatus for manufacturing the nitrided steel member. More specifically, the present invention relates to a nitrided steel member having excellent fatigue resistance, which is useful for gears for automobile transmissions, crankshafts, and the like, and a manufacturing method and manufacturing apparatus for the nitrided steel member.
  • a compound layer that is an iron nitride is formed on the surface, and a hardened layer called a diffusion layer is formed inside.
  • the hardened layer is usually made of an alloy nitride such as Si or Cr as a base material component.
  • the atmosphere in the gas nitriding furnace is also controlled in order to control the thickness (depth) of each of these two layers and / or the type of iron nitride on the surface. It is controlled appropriately. Specifically, the nitriding potential (K N ) in the gas nitriding furnace is appropriately controlled.
  • the volume fraction (type of iron nitride) of ⁇ 'phase (Fe 4 N) and ⁇ phase (Fe 2-3 N) in the compound layer formed on the surface of the steel material is controlled through the control.
  • the fatigue resistance is improved by forming the ⁇ ′ phase rather than the ⁇ phase (Yasu Hiraoka, Yoichi Watanabe, Akitake Ishida: heat treatment, 55, No. 1, Page 1-2: Non-Patent Document 1).
  • a nitrided steel member having improved bending fatigue strength and surface fatigue by forming a ⁇ 'phase is also provided (Japanese Patent Laid-Open No. 2013-221203: Patent Document 1).
  • the nitriding treatment when the nitriding treatment is performed at a temperature higher than the eutectoid transformation point (about 590 ° C) of the Fe-N binary alloy, a compound layer is formed on the surface, and if it is then rapidly cooled, a nitrogen-containing martensite structure is formed under the A cured layer containing is formed.
  • the nitriding treatment in the temperature range is called an nitriding treatment in distinction from the conventional nitriding treatment.
  • the austenite in the structure near the surface is stabilized, and most of the austenite remains even after the rapid cooling. Therefore, the strain after the heat treatment is about the same as the nitriding treatment.
  • the stabilized austenite is reheated to a temperature of 250 to 300 ° C. to be transformed into a hard martensite structure.
  • STKM-13C mechanical carbon steel pipe defined by JIS G 3445
  • JIS G 3445 is nitrified at 640 ° C for 90 minutes, then rapidly cooled, and then reheated at 280 ° C for 90 minutes to obtain 800 austenite near the surface. It is cured up to 900 HV (Patent No. 6228403: Patent Document 3).
  • the structure of the compound layer on the surface after the nitriding treatment is a structure in which ⁇ 'is a solid solution in ⁇ , but when reheated at 280 ° C for 90 min, the compound layer mainly composed of the ⁇ '' phase is present on the surface. Is formed.
  • JIS-SPCC a kind of cold rolled steel sheet
  • a compound layer is formed on the surface, and a quenching layer thereafter forms a hardened layer having a nitrogen martensite structure underneath.
  • Fatigue failure of mechanical parts occurs from notches where high load stress is applied, such as at the root of gears.
  • a stress distribution corresponding to the shape and the load environment occurs only in the surface layer region (from the surface to the inside of the predetermined depth). Therefore, it is desired to harden only the surface layer region so as not to impair the toughness and machinability of the steel material.
  • the diffusion layer is not sufficiently hardened, and sufficient improvement in fatigue strength has not been realized (this is considered to be because it is higher than the temperature range of the present invention described below. ). Furthermore, in the technique disclosed in Non-Patent Document 3, the hardened layer is too thick and the thermal strain / transformation strain is large, and it is not suitable for hardening the surface layer region.
  • the inventor of the present invention repeatedly conducted diligent studies and various experiments, and controlled the nitriding temperature and the nitriding potential with high accuracy after limiting the configuration of the processing furnace, whereby the fatigue strength in which the surface layer region was desirably hardened. It has been found that a nitrided steel member having excellent heat resistance can be manufactured.
  • An object of the present invention is to provide a nitrided steel member whose surface layer region is desirably hardened, and a manufacturing method and a manufacturing apparatus for manufacturing such a nitrided steel member.
  • the present invention is a nitrided steel member having a carbon steel or a low alloy steel as a parent phase, the surface of which is provided with a hardened layer having an austenite structure containing 1.0% or more of nitrogen by mass%, and a lower part of the hardened layer. And a diffusion layer in which nitrogen is diffused in the matrix, the hardened layer has a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, and the diffusion layer is the nitrided steel.
  • the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is more than the hardness at a depth of 2 mm from the surface of the nitrided steel member. It is a nitrided steel member characterized by being larger than 100 HV.
  • the hardened layer having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, heat treatment strain / transformation strain is small. Further, since the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitrided steel member, the hardened layer is thin, Sufficient strength can be guaranteed.
  • the present invention is a nitrided steel member having a carbon steel or a low alloy steel as a mother phase, comprising a compound layer having an ⁇ phase on the surface side, and the compressive residual stress on the surface of the compound layer is ⁇ 200 MPa.
  • the hardened layer having an austenite structure containing 1.0% or more of nitrogen in mass% is provided below the compound layer, and nitrogen is diffused into the matrix below the hardened layer.
  • a diffusion layer wherein the hardened layer has a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, and the diffusion layer extends from the surface of the nitrided steel member to a depth of more than 100 ⁇ m.
  • the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitrided steel member. It is a member.
  • the hardened layer having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, heat treatment strain / transformation strain is small. Further, since the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitrided steel member, the hardened layer is thin, Sufficient strength can be guaranteed.
  • a compressive residual stress of ⁇ 200 MPa or more (200 MPa or less in absolute value) is present on the surface of the compound layer (such a structure was first realized by the nitriding method described later).
  • the occurrence of fatigue cracks is suppressed, and high fatigue strength can be exhibited.
  • the “compound layer having the ⁇ phase” means a state in which the volume of the ⁇ phase contained in the compound layer is 60% or more.
  • the lower limit (upper limit in terms of absolute value) of the compressive residual stress was set to ⁇ 200 MPa, which is the minimum value at which the effect of improving fatigue strength confirmed by the inventors of the present application was confirmed by the time of filing of the present application ( This is because it is the maximum value in terms of absolute value (using a circulation type processing furnace described later, using S45C steel as a mother phase, processing temperature: 640 ° C., nitriding potential: 0.17, processing time: 2 hours, It has been confirmed that it can be obtained under the processing conditions).
  • the present invention is a nitrided steel member having a carbon steel or a low alloy steel as a mother phase, the surface side of which is provided with a hardened layer having an austenite structure containing 1.0% or more of nitrogen by mass%, and the hardening
  • a compound layer having a ⁇ 'phase having a thickness of 10 ⁇ m or less is provided on the surface of the layer as a whole or locally, and a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer.
  • the hardened layer has a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, and the diffusion layer extends from the surface of the nitrided steel member to a depth of more than 100 ⁇ m.
  • the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is 100 HV or more greater than the hardness at a depth of 2 mm from the surface of the steel member.
  • the hardened layer having an austenite structure containing 1.0% or more of nitrogen is limited to the surface of the nitrided steel member or the thickness of 2 ⁇ m to 50 ⁇ m, heat treatment strain / transformation strain is small. Further, since the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitrided steel member, the hardened layer is thin, Sufficient strength can be guaranteed.
  • a compound layer having a ⁇ ′ phase of 10 ⁇ m or less is formed on the surface of the hardened layer (such a compound layer was first realized by a nitriding method described later). ), The gradient of hardness and residual stress is continuously formed, and the fatigue strength can be improved. It is considered that this is because the ⁇ ′ phase and the ⁇ phase have the same face-centered cubic lattice structure (fcc structure), and therefore the interface between the ⁇ ′ phase and the ⁇ phase has high compatibility.
  • the upper limit of 10 ⁇ m is because that value is the maximum thickness confirmed by the inventors of the present invention by the time of filing of the present application (using a circulating treatment furnace described later, the low carbon steel S25C It has been confirmed that the mother phase can be obtained under the treatment conditions of treatment temperature: 660 ° C., nitriding potential: 0.13, treatment time: 2 hours).
  • ⁇ ′ phase and the ⁇ phase have a face-centered cubic lattice structure (fcc structure), they are superior in toughness to the ⁇ phase, which is a dense hexagonal lattice structure (hcp structure), and can be applied to a member to which an impact load is applied. It is even more suitable for application.
  • fcc structure face-centered cubic lattice structure
  • hcp structure dense hexagonal lattice structure
  • carbon steel having a carbon content of 0.25% by mass or more can be used as the matrix phase.
  • a low alloy steel having a carbon content of 0.1% or more by mass% and a chromium content of 0.4% or more by mass% can be used as the parent phase.
  • SCr420 or SCM415 can be used.
  • the present invention includes a circulation type processing furnace having a guide tube and a stirring fan, and during the nitriding treatment, the temperature range in the circulation type treatment furnace is controlled to 610 ° C. to 660 ° C.
  • the nitriding potential in the circulation type processing furnace is controlled in the range of 0.06 to 0.3.
  • a hardened layer having an austenite structure containing 1.0% or more of nitrogen is provided on the surface, and a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer. It has a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the steel member, the diffusion layer extends from the surface of the nitrided steel member to a depth of more than 100 ⁇ m, and the depth of 2 ⁇ m from the surface of the nitrided steel member. It is possible to manufacture a nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is 100 HV or more than the hardness in the above.
  • a hardened layer having an austenite structure containing 1.0% or more of nitrogen in mass% is provided below the layer, and a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer.
  • the hardened layer has a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, and the diffusion layer extends to a depth of more than 100 ⁇ m from the surface of the nitrided steel member. It is also possible to manufacture a nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is 100 HV or more greater than the hardness at a depth of 2 mm from the surface of the. it can.
  • a hardened layer having an austenite structure containing 0.0% or more is provided, and a diffusion layer in which nitrogen is diffused in the matrix is provided further below the hardened layer, and the hardened layer is formed from the surface of the nitrided steel member.
  • the diffusion layer has a thickness of 2 ⁇ m to 50 ⁇ m, extends to a depth of more than 100 ⁇ m from the surface of the nitrided steel member, and has a hardness at a depth of 2 mm from the surface of the nitrided steel member. It is also possible to manufacture a nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is 100 HV or more.
  • the apparatus for producing a nitrided steel member according to the present invention is configured so that, for example, ammonia gas and ammonia decomposition gas are introduced into the circulation type processing furnace.
  • the manufacturing apparatus in order to control the nitriding potential, can perform control such that the amount of ammonia decomposition gas introduced into the furnace is constant and the amount of ammonia gas introduced is changed. preferable.
  • the hardened layer having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member, heat treatment strain / transformation strain is small. Further, since the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitrided steel member, the hardened layer is thin, Sufficient strength can be guaranteed.
  • FIG. 3 is a cross-sectional micrograph of a nitrided steel member according to the first embodiment of the present invention. It is a figure which shows the analysis result by the EBSD method of the nitrided steel member of FIG. 7 is a cross-sectional micrograph of a nitrided steel member according to the second embodiment of the present invention. It is a figure which shows the analysis result by the EBSD method of the nitrided steel member of FIG. 7 is a sectional micrograph of a nitrided steel member according to a third embodiment of the present invention. It is a table which shows the example of an experiment about hardness distribution. It is a graph which shows the example of an experiment about hardness distribution.
  • FIG. 1 is a schematic view of an apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention. It is a schematic sectional drawing of a circulation type processing furnace (horizontal type gas nitriding furnace). It is a graph which shows an example of gas introduction control. It is a graph which shows an example of gas introduction control. It is a figure which shows the form of an Ono-type rotary bending fatigue test piece.
  • FIG. 1 is a cross-sectional micrograph of a nitrided steel member 110 according to the first embodiment of the present invention.
  • the nitrided steel member 110 of the present embodiment is provided with a hardened layer 111 having an austenite structure containing 1.0% or more of nitrogen on the surface, and is provided below the hardened layer 101 in the matrix.
  • the diffusion layer 112 in which nitrogen is diffused is provided.
  • the base phase (base material) of the present embodiment is carbon steel having a carbon content of 0.45% by mass. (What is visible above the surface is the polishing plate, not the constituent elements of the nitrided steel member. The same applies to FIGS. 3 and 5.)
  • the phase distribution of the nitrided steel member 110 can be analyzed by using the EBSD method and X-ray diffraction together. Specifically, as shown in FIG. 2, it can be seen by the EBSD method that the first layer on the surface has the fcc crystal phase. Then, by using X-ray diffraction together, it can be confirmed that the fcc crystal phase of the first layer on the surface is an austenite phase ( ⁇ phase).
  • the hardened layer 111 has a thickness of about 20 ⁇ m from the surface of the nitrided steel member 100, which is in the range of 2 ⁇ m to 50 ⁇ m.
  • the diffusion layer 112 extends from the surface of the nitrided steel member 110 to a depth exceeding 100 ⁇ m.
  • the hardness of the diffusion layer 112 at a depth of 100 ⁇ m from the surface of the nitrided steel member 110 (for example, about 290 HV) is more than the hardness at a depth of 2 mm from the surface of the nitrided steel member 110 (for example, about 190 HV). It is larger than 100 HV.
  • the nitrided steel member 110 of the present embodiment is subjected to a nitriding treatment under the treatment conditions of a treatment temperature: 640 ° C., a nitriding potential: 0.12, and a treatment time: 2 hours using a circulation type treatment furnace described later, It can be manufactured by being rapidly cooled.
  • a treatment temperature 640 ° C.
  • a nitriding potential 0.12
  • a treatment time 2 hours using a circulation type treatment furnace described later
  • the hardened layer 111 having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member 110.
  • Small heat treatment strain / transformation strain since the hardness of the diffusion layer 112 at a depth of 100 ⁇ m from the surface of the nitrided steel member 110 is 100 HV or more higher than the hardness at a depth of 2 ⁇ m from the surface of the nitrided steel member 110, the hardened layer 111 becomes thin. Nevertheless, sufficient strength can be guaranteed.
  • FIG. 3 is a cross-sectional photomicrograph of the nitrided steel member 120 of the second embodiment of the present invention.
  • the nitrided steel member 120 of the present embodiment is provided with a compound layer 123 having an ⁇ phase on the surface thereof, and austenite containing 1.0% or more of nitrogen in mass% is provided below the compound layer 123.
  • a hardened layer 121 having a texture is provided, and further below the hardened layer 121, a diffusion layer 122 in which nitrogen is diffused in a matrix is provided.
  • the base phase (base material) of the present embodiment is carbon steel having a carbon content of 0.45% by mass.
  • the phase distribution of the nitrided steel member 120 can also be analyzed by using the EBSD method and X-ray diffraction together. Specifically, as shown in FIG. 4, the hcp crystal phase, the fcc crystal phase, and the bcc crystal phase can be identified by the EBSD method. By using X-ray diffraction together, it can be confirmed that the hcp crystal phase is the ⁇ phase and the fcc crystal phase is the austenite phase ( ⁇ phase).
  • the compound layer 123 has a thickness of about 12 ⁇ m from the surface of the nitrided steel member 120, and the compressive residual stress (residual stress value) on the surface of the compound layer 123 is ⁇ 200 MPa.
  • the compressive residual stress (residual stress value) can be measured by X-ray diffraction as described later.
  • the hardened layer 121 has a thickness below the compound layer 123 of about 20 ⁇ m, which is in the range of 2 ⁇ m to 50 ⁇ m.
  • the diffusion layer 122 extends from the surface of the nitrided steel member 120 to a depth exceeding 100 ⁇ m.
  • the hardness of the diffusion layer 122 at a depth of 100 ⁇ m from the surface of the nitrided steel member 120 is more than the hardness at a depth of 2 mm from the surface of the nitrided steel member 120 (for example, about 190 HV). It is larger than 100 HV.
  • the nitrided steel member 120 of the present embodiment is subjected to a nitriding treatment under the treatment conditions of a treatment temperature: 640 ° C., a nitriding potential: 0.17, and a treatment time: 2 hours using a circulation type treatment furnace described later, It can be manufactured by being rapidly cooled.
  • a treatment temperature 640 ° C.
  • a nitriding potential 0.17
  • a treatment time 2 hours using a circulation type treatment furnace described later
  • the hardened layer 121 having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member 120, and therefore heat treatment is performed. Strain / transformation strain is small. Further, since the hardness of the diffusion layer 122 at a depth of 100 ⁇ m from the surface of the nitrided steel member 120 is 100 HV or more higher than the hardness at a depth of 2 ⁇ m from the surface of the nitrided steel member 120, the hardened layer 121 becomes thin. Nevertheless, sufficient strength can be guaranteed.
  • FIG. 5 is a cross-sectional photomicrograph of the nitrided steel member 130 according to the third embodiment of the present invention.
  • the nitrided steel member 130 of the present embodiment is provided with a hardened layer 131 having an austenite structure containing 1.0% or more of nitrogen in mass% on the surface side, and locally on the surface of the hardened layer 131.
  • the compound layer 133 having a ⁇ ′ phase having a thickness of about 0 to 3 ⁇ m is provided.
  • a diffusion layer 132 in which nitrogen is diffused in the matrix is provided below the hardened layer 131.
  • the base phase (base material) of the present embodiment is carbon steel having a carbon content of 0.45% by mass.
  • the phase distribution of the nitrided steel member 130 can also be analyzed by using the EBSD method and X-ray diffraction together. Specifically, the hardened layer 131 and the diffusion layer 132 are distinguished by the EBSD method, and it can be confirmed by X-ray diffraction that the compound layer 133 is in the ⁇ 'phase.
  • the thickness of the compound layer 133 is 10 ⁇ m or less.
  • the hardened layer 131 has a thickness of about 20 ⁇ m from the surface of the nitrided steel member 130, which is in the range of 2 ⁇ m to 50 ⁇ m.
  • the diffusion layer 132 extends from the surface of the nitrided steel member 130 to a depth exceeding 100 ⁇ m. Then, the hardness of the diffusion layer 132 at a depth of 100 ⁇ m from the surface of the nitrided steel member 130 (for example, about 290 HV) is more than the hardness at a depth of 2 mm from the surface of the nitrided steel member 130 (for example, about 190 HV). It is larger than 100 HV.
  • the nitrided steel member 130 of the present embodiment is subjected to a nitriding treatment under the treatment conditions of a treatment temperature of 640 ° C., a nitriding potential of 0.13, and a treatment time of 2 hours using a circulation type treatment furnace described later, It can be manufactured by being rapidly cooled.
  • a nitriding treatment under the treatment conditions of a treatment temperature of 640 ° C., a nitriding potential of 0.13, and a treatment time of 2 hours using a circulation type treatment furnace described later, It can be manufactured by being rapidly cooled.
  • the compound layer 133, the cured layer 131, and the diffusion layer 132 can be clearly distinguished from each other.
  • the hardened layer 131 having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 ⁇ m to 50 ⁇ m from the surface of the nitrided steel member 130, heat treatment is performed. Strain / transformation strain is small. Further, since the hardness of the diffusion layer 132 at a depth of 100 ⁇ m from the surface of the nitrided steel member 200 is 100 HV or more than the hardness at a depth of 2 ⁇ m from the surface of the nitrided steel member 130, the hardened layer 131 becomes thin. Nevertheless, sufficient strength can be guaranteed. (Range of nitrogen concentration of hardened layer)
  • the nitrogen concentration of the hardened layers 111, 121, 131 is the result of considering the stability of the austenite structure at room temperature. That is, by containing 1.0% or more of nitrogen, most of the austenite phase is stabilized at room temperature when quenched, that is, martensite transformation does not occur during quenching. As a result, the strain is extremely small as compared with the case where martensitic transformation occurs during rapid cooling. (Cured layer thickness range)
  • the thickness of the hardened layers 111, 121 and 131 basically, the thicker the fatigue strength, the better. However, depending on the load environment of the nitrided steel members 110, 120, and 130, even if the thickness is further increased, there is a case where there is no further effect of improving the fatigue strength (the effect is saturated). Specifically, the stress distribution in the notch may differ depending on the shape of the nitrided steel members 110, 120, 130 and the load environment. Therefore, the thickness of the hardened layers 111, 121, 131 can be appropriately selected depending on the shapes of the nitrided steel members 110, 120, 130 and the load environment.
  • the manufacturing conditions satisfying the condition that "the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface of the nitrided steel member is 100 HV or more greater than the hardness at a depth of 2 mm from the surface of the nitrided steel member". : 610 ° C. to 660 ° C., nitriding potential: 0.06 to 0.3), the thickness of the hardened layers 111, 121 and 131 is 2 to 50 ⁇ m.
  • the lower limit is 2 ⁇ m. It has a value. (Condition of hardness of diffusion layer)
  • the nitrided steel members 110, 120, 130 of this embodiment are characterized in that not only the hardened layers 111, 121, 131 but also the diffusion layers 112, 122, 132 have sufficient hardness.
  • FIGS. 6A and 6B show hardness distributions of JIS-S45C steels (carbon steels) subjected to nitriding treatment for 1.5 hours at various temperatures shown in the drawings and then rapidly cooled. There is.
  • FIGS. 6C and 6D show the hardness distribution of each test piece of JIS-SCM415 steel (Cr-Mo steel) which was subjected to nitrification treatment for 1.5 hours at various temperatures shown in the figure and then rapidly cooled. Shows.
  • the surface hardness after nitriding is generally acquired at a depth of 50 ⁇ m from the surface.
  • the hardness at the depth position of 100 ⁇ m from the surface is the evaluation target in order to avoid the influence of the hardened layers 111, 121, 131 having the austenite structure.
  • the hardness at a depth of 2 mm from the surface is defined as an evaluation target for the internal structure that is not affected by nitriding.
  • the nitriding potential K N is defined by the following equation (2).
  • K N P NH3 / P H2 3/2 ⁇ ⁇ ⁇ (2)
  • P NH3 is the partial pressure of ammonia in the furnace
  • P H2 is the partial pressure of hydrogen in the furnace.
  • the nitriding potential K N is well known as an index showing the nitriding ability of the atmosphere in the gas nitriding furnace.
  • the reaction of formula (3) mainly occurs in the furnace, and the nitriding reaction of formula (1) can be almost ignored in terms of quantity. Therefore, the nitriding potential can be calculated if the concentration of ammonia in the furnace consumed in the reaction of the equation (3) or the concentration of hydrogen gas generated in the reaction of the equation (3) is known. That is, hydrogen and nitrogen generated are 1.5 mol and 0.5 mol, respectively, from 1 mol of ammonia. Therefore, if the ammonia concentration in the furnace is measured, the hydrogen concentration in the furnace can be known, and the nitriding potential can be calculated. You can Alternatively, if the hydrogen concentration in the furnace is measured, the ammonia concentration in the furnace can be known, and the nitriding potential can be calculated.
  • the ammonia gas flown into the gas nitriding furnace is circulated in the furnace and then discharged to the outside of the furnace. That is, in the gas nitriding treatment, the fresh (new) ammonia gas is constantly introduced into the furnace with respect to the existing gas in the furnace, so that the existing gas is continuously discharged to the outside of the furnace (pushed out by the supply pressure). ..
  • the flow rate of the ammonia gas introduced into the furnace is small, the gas residence time in the furnace becomes long, so that the amount of the decomposed ammonia gas increases and the nitrogen gas generated by the decomposition reaction is increased. + The amount of hydrogen gas increases.
  • the flow rate of ammonia gas introduced into the furnace is large, the amount of ammonia gas that is not decomposed and discharged outside the furnace will increase, and the amount of nitrogen gas + hydrogen gas generated in the furnace will decrease. To do.
  • FIG. 7 is a schematic view showing a manufacturing apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention.
  • the manufacturing apparatus 1 of the present embodiment includes a circulation type processing furnace 2, and uses only two types of gas, ammonia and ammonia decomposition gas, as the gas to be introduced into the circulation type processing furnace 2. ing.
  • the ammonia decomposition gas is also called AX gas, and is a mixed gas of nitrogen and hydrogen in a ratio of 1: 3.
  • ammonia and ammonia decomposition gas Only three types of nitrogen gas can be selected.
  • Fig. 8 shows an example of a cross-sectional structure of the circulation type processing furnace 2.
  • a cylinder 202 called a retort is arranged in a furnace wall (also called a bell) 201, and a cylinder 204 called an inner retort is arranged inside the cylinder 202.
  • the introduction gas supplied from the gas introduction pipe 205 passes around the object to be treated and then passes through the space between the two cylinders 202 and 204 by the action of the stirring fan 203, as shown by the arrow in the figure.
  • Circulate. 206 is a gas hood with a flare
  • 207 is a thermocouple
  • 208 is a lid for cooling work
  • 209 is a fan for cooling work.
  • the circulation type processing furnace 2 is also called a horizontal gas nitriding furnace, and its structure itself is known.
  • the processed product S is carbon steel or low alloy steel, and is, for example, a crankshaft or a gear which is an automobile part.
  • a furnace opening / closing lid 7 a stirring fan 8, a stirring fan drive motor 9, and an atmospheric gas concentration detecting device 3 are provided.
  • a nitriding potential controller 4, a programmable logic controller 30, and a furnace introduction gas supply unit 20 are provided.
  • the stirring fan 8 is arranged in the processing furnace 2 and rotates in the processing furnace 2 to stir the atmosphere in the processing furnace 2.
  • the stirring fan drive motor 9 is connected to the stirring fan 8 and rotates the stirring fan 8 at an arbitrary rotation speed.
  • the atmosphere gas concentration detection device 3 is composed of a sensor capable of detecting the hydrogen concentration or the ammonia concentration in the processing furnace 2 as the furnace atmosphere gas concentration.
  • the detection body of the sensor communicates with the inside of the processing furnace 2 via the atmosphere gas pipe 12.
  • the atmospheric gas pipe 12 is formed in a path that directly connects the sensor main body of the atmospheric gas concentration detection device 3 and the processing furnace 2, and the in-furnace gas waste pipe connected to the exhaust gas combustion decomposition device 41 on the way. 40 is connected.
  • the atmospheric gas is distributed between the discarded gas and the gas supplied to the atmospheric gas concentration detection device 3.
  • the atmospheric gas concentration detection device 3 is adapted to output an information signal including the detected concentration to the nitriding potential controller 4 after detecting the atmospheric gas concentration in the furnace.
  • the nitriding potential controller 4 has an in-furnace nitriding potential calculating device 13 and a gas flow rate output adjusting device 30.
  • the programmable logic controller 31 also includes a gas introduction amount control device 14 and a parameter setting device 15.
  • the in-furnace nitriding potential calculation device 13 is configured to calculate the nitriding potential in the processing furnace 2 based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmosphere gas concentration detection device 3. Specifically, a calculation formula of the nitriding potential programmed according to the actual gas introduced into the furnace is incorporated, and the nitriding potential is calculated from the value of the atmospheric gas concentration in the furnace.
  • the parameter setting device 15 is composed of, for example, a touch panel, and can set and input the total flow rate of the gas introduced into the furnace, the gas type, the processing temperature, the target nitriding potential, and the like. Each setting parameter value that has been set and input is transmitted to the gas flow rate output adjusting means 30.
  • the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculating device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and outputs the ammonia gas and the ammonia decomposition gas.
  • the control is carried out with each introduced amount as an input value. More specifically, it is possible to perform control such that the amount of ammonia decomposition gas introduced into the furnace is constant and the amount of ammonia gas introduced into the furnace is changed.
  • the output value of the gas flow rate output adjusting means 30 is transmitted to the gas introduction amount control means 14.
  • the gas introduction amount control means 14 sends a control signal to each of the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas. It has become.
  • the in-reactor introduction gas supply unit 20 of the present embodiment includes a first in-reactor introduction gas supply unit 21 for ammonia gas, a first supply amount control device 22, a first supply valve 23, and a first flow meter 24. ,have. Further, the in-reactor introduction gas supply unit 20 of the present embodiment includes a second in-reactor introduction gas supply unit 25 for ammonia decomposition gas (AX gas), a second supply amount control device 26, and a second supply valve 27. , And a second flow meter 28.
  • AX gas ammonia decomposition gas
  • the ammonia gas and the ammonia decomposition gas are mixed in the furnace introduction gas introduction pipe 29 before entering the processing furnace 2.
  • the first furnace introduction gas supply unit 21 is formed of, for example, a tank filled with the first furnace introduction gas (ammonia gas in this example).
  • the first supply amount control device 22 is formed by a mass flow controller and is interposed between the first in-furnace introduced gas supply unit 21 and the first supply valve 23.
  • the opening degree of the first supply amount control device 22 changes according to the control signal output from the gas introduction amount control means 14. Further, the first supply amount control device 22 detects the supply amount from the first in-furnace introduction gas supply part 21 to the first supply valve 23, and sends an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output.
  • the control signal can be used for correction of the control by the gas introduction amount control means 14 or the like.
  • the first supply valve 23 is formed by an electromagnetic valve that switches between open and closed states according to a control signal output by the gas introduction amount control means 14, and is provided between the first supply amount control device 22 and the first flow meter 24. It is installed.
  • the second-furnace-introduced-gas supply unit 25 is formed of, for example, a tank filled with the second-furnace-introduced gas (in this example, an ammonia decomposition gas).
  • the second supply amount control device 26 is formed by a mass flow controller and is interposed between the second in-furnace introduced gas supply unit 25 and the first supply valve 27.
  • the opening degree of the first supply amount control device 26 changes according to the control signal output from the gas introduction amount control means 14.
  • the third supply amount control device 26 detects the supply amount from the second in-furnace introduction gas supply unit 25 to the second supply valve 27, and sends an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output.
  • the control signal can be used for correction of the control by the gas introduction amount control means 14 or the like.
  • the second supply valve 27 is formed by an electromagnetic valve that switches between open and closed states in accordance with a control signal output by the gas introduction amount control means 14, and is provided between the second supply amount control device 26 and the second flow meter 28. It is installed.
  • the object S to be processed is put into the circulation type processing furnace 2 and the circulation type processing furnace 2 is heated to a desired processing temperature. Then, a mixed gas of ammonia gas and ammonia decomposition gas, or only ammonia gas is introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at a set initial flow rate.
  • This set initial flow rate can also be set and input in the parameter setting device 15, and is controlled by the first supply amount control device 22 and the second supply amount control device 26 (both mass flow controllers).
  • the stirring fan drive motor 9 is driven to rotate the stirring fan 8 to stir the atmosphere in the processing furnace 2.
  • the in-reactor nitriding potential calculation device 13 of the nitriding potential controller 4 calculates the in-reactor nitriding potential (initially, the value is extremely high (because hydrogen does not exist in the furnace), but decomposition of ammonia gas (hydrogen generation)). Becomes lower as the value of the target nitriding potential advances), it is determined whether or not it is below the sum of the target nitriding potential and the reference deviation value. This reference deviation value can also be set and input in the parameter setting device 15.
  • the nitriding potential controller 4 causes the gas introduction amount control means 14 to introduce the introduced gas amount in the furnace. Control of.
  • the in-reactor nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-reactor nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-reactor nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and introduces the amount of introduced gas in the furnace.
  • PID control is performed with the input value of. Specifically, in the PID control, control is performed so that the amount of ammonia decomposition gas introduced into the furnace is constant and the amount of ammonia gas introduced into the furnace is changed. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. For this setting parameter value, for example, different values are prepared depending on the value of the target nitriding potential.
  • the gas flow rate output adjusting means 30 controls the amount of each introduced gas in the furnace as a result of the PID control. Specifically, the gas flow rate output adjusting means 30 determines the flow rate of each gas, and the output value is transmitted to the gas introduction amount control means 14.
  • the gas introduction amount control means 14 sends control signals to the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas.
  • the in-furnace nitriding potential can be controlled stably near the target nitriding potential.
  • the nitrification process of the object S can be performed with extremely high quality.
  • FIGS. 9A and 9B An example of the above control is shown in FIGS. 9A and 9B.
  • the amount of ammonia decomposed gas introduced into the furnace is constant, and the amount of ammonia gas introduced into the furnace is feedback-controlled little by little in the vicinity of 40 (l / min).
  • the nitriding potential is controlled to 0.17 with high accuracy.
  • the cooling process after the nitrification process in the manufacturing apparatus 1.
  • the workpiece S is removed from the furnace while the heating temperature is maintained after the nitrification processing in the manufacturing apparatus 1. It is necessary to transport it to a quenching device (for example, an oil tank) and then quench it.
  • a quenching device for example, an oil tank
  • the austenite structure stabilized by 1.0% or more nitrogen becomes brownite (a lamellar structure of ferrite phase and ⁇ 'phase) when the cooling rate is slow, and the hardness and the fatigue strength decrease.
  • brownite a lamellar structure of ferrite phase and ⁇ 'phase
  • the oil cooling it is possible to sufficiently maintain the austenite structure in the case of general parts.
  • the residual stress on the surface is measured by an X-ray residual stress measuring method by the sin 2 ⁇ method with respect to the parallel part (RD direction) of the test piece, using a minute part X-ray residual stress measuring device (AutoMATE manufactured by Rigaku Co., Ltd.). Was done. More specifically, it was performed under the conditions shown in Table 1.
  • the stress constant of the ⁇ phase was ⁇ 611 MPa / deg.
  • Example 1 the treatment temperature was 640 ° C., the nitriding potential was 0.12, and the treatment time was 2 hours. As a result, a hardened layer having an austenite structure was obtained on the surface with a thickness of 22 ⁇ m.
  • the difference ( ⁇ HV) between the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface and the hardness at a depth of 2 mm from the surface was 116 HV (> 100 HV). Also, the fatigue strength performance was sufficient.
  • Example 2 the treatment temperature was 640 ° C., the nitriding potential was 0.13, and the treatment time was 2 hours.
  • a compound layer having a ⁇ ′ phase (60% or more in volume ratio) on the surface was 2 ⁇ m, and a hardened layer having an austenite structure was 22 ⁇ m below the compound layer.
  • the difference ( ⁇ HV) between the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface and the hardness at a depth of 2 mm from the surface was 112 HV (> 100 HV). Also, the fatigue strength performance was sufficient.
  • Example 3 after the nitrification treatment at the treatment temperature of 640 ° C., the nitriding potential of 0.17, and the treatment time of 2 hours, the oil cooling was performed. As a result, a compound layer having an ⁇ -phase (60% or more by volume ratio) on the surface was obtained in a thickness of 12 ⁇ m, and a hardened layer having an austenite structure was obtained in a thickness of 20 ⁇ mm below the compound layer.
  • the difference ( ⁇ HV) between the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface and the hardness at a depth of 2 mm from the surface was 116 HV (> 100 HV). Further, the residual stress value on the surface was -200 MPa, and the fatigue strength was sufficient.
  • Example 4 after the nitrification treatment at the treatment temperature of 640 ° C., the nitriding potential of 0.22, and the treatment time of 2 hours, the oil cooling was performed. As a result, a compound layer having an ⁇ -phase (60% or more by volume ratio) on the surface was obtained in a thickness of 21 ⁇ m, and a hardened layer having an austenite structure was formed thereunder with a thickness of 13 ⁇ m.
  • the difference ( ⁇ HV) between the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface and the hardness at a depth of 2 mm from the surface was 112 HV (> 100 HV). Further, the surface residual stress value was ⁇ 311 MPa, and the fatigue strength performance was also sufficient.
  • Example 5 the treatment temperature was 640 ° C., the nitriding potential was 0.3, and the treatment time was 2 hours. As a result, a compound layer having an ⁇ -phase (60% or more by volume) on the surface was obtained in a thickness of 30 ⁇ m, and a hardened layer having an austenite structure in a thickness of 10 ⁇ mm was obtained under the compound layer.
  • the difference ( ⁇ HV) between the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface and the hardness at a depth of 2 mm from the surface was 115 HV (> 100 HV). Further, the surface residual stress value was -438 MPa, and the fatigue strength performance was also sufficient.
  • the treatment temperature was 640 ° C.
  • the nitriding potential was 0.17
  • the treatment time was 2 hours.
  • oil cooling was performed, and further, reheating treatment was performed at 250 ° C. for 2 hours.
  • a compound layer having an ⁇ phase on the surface side (a mixture of ⁇ ′ phases was also observed) was 11 ⁇ m, and a hardened layer having an austenite structure was formed in a thickness of 18 ⁇ m below the compound layer.
  • the difference ( ⁇ HV) between the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface and the hardness at a depth of 2 mm from the surface is 94 HV ( ⁇ 100 HV), and the residual stress value on the surface is 4 MPa (> -200 MPa). Yes (there was a tensile residual stress), and the fatigue strength performance was insufficient as compared with each example.
  • the treatment temperature was 640 ° C.
  • the nitriding potential was 0.17
  • the treatment time was 2 hours
  • the oil cooling was performed
  • the reheating treatment was further performed at 200 ° C. for 1 hour.
  • a compound layer having an ⁇ phase on the surface side (a mixture of ⁇ ′ phases was also observed) was 12 ⁇ m
  • a hardened layer having an austenite structure was formed in a thickness of 19 ⁇ m below the compound layer.
  • the difference ( ⁇ HV) between the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface and the hardness at a depth of 2 mm from the surface was 102 HV (> 100 HV), but the residual stress value on the surface was ⁇ 59 MPa (> ⁇ 200 MPa), and the fatigue strength performance was insufficient as compared with each example.
  • the treatment temperature was 700 ° C. (> 660 ° C.)
  • the nitriding potential was 0.1
  • the treatment time was 1.5 hours
  • the oil cooling was performed, followed by the reheating treatment at 280 ° C. for 2 hours. Carried out.
  • a hardened layer having a nitrogen martensite structure (not an austenite structure) was obtained on the surface in a thickness of 40 ⁇ m.
  • the difference ( ⁇ HV) between the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface and the hardness at a depth of 2 mm from the surface was 20 HV ( ⁇ 100 HV).
  • the fatigue strength performance was insufficient.
  • the treatment temperature was 570 ° C. ( ⁇ 610 ° C.)
  • the nitriding potential was 0.25
  • the treatment time was 3.5 hours.
  • a 10 ⁇ m ⁇ ′ phase-rich compound layer was obtained on the surface, but a layer corresponding to the cured layer was not obtained.
  • the difference ( ⁇ HV) between the hardness of the diffusion layer at a depth of 100 ⁇ m from the surface and the hardness at a depth of 2 mm from the surface was 129 HV (> 100 HV), but the fatigue strength performance was compared with each example. Was insufficient.

Abstract

A nitrided steel member which has a matrix that is formed of a carbon steel or a low alloy steel, and which is characterized by having a hardened layer in the surface, said hardened layer having an austenite structure that contains 1.0% by mass or more of nitrogen, and by having a diffusion layer below the hardened layer, said diffusion layer being obtained by diffusing nitrogen into the matrix. This nitrided steel member is also characterized in that: the hardened layer has a thickness of 2-50 µm from the surface of the nitrided steel member; the diffusion layer extends to a depth of more than 100 µm from the surface of the nitrided steel member; and the hardness of the diffusion layer at a depth of 100 µm from the surface of the nitrided steel member is higher than the hardness at a depth of 2 mm from the surface of the nitrided steel member by 100 HV or more.

Description

窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置Nitride steel member and method and device for manufacturing nitrided steel member
 本発明は、窒化鋼部材並びに窒化鋼部材の製造方法及び製造装置に関する。さらに詳しくは、自動車用の変速機用の歯車やクランクシャフト等に有用な耐疲労性に優れる窒化鋼部材並びに当該窒化鋼部材の製造方法及び製造装置に関する。 The present invention relates to a nitrided steel member and a method and an apparatus for manufacturing the nitrided steel member. More specifically, the present invention relates to a nitrided steel member having excellent fatigue resistance, which is useful for gears for automobile transmissions, crankshafts, and the like, and a manufacturing method and manufacturing apparatus for the nitrided steel member.
 鋼材の表面硬化処理の中でも、低熱処理ひずみ処理である窒化処理のニーズは高く、最近では特に、ガス窒化処理の雰囲気制御技術への関心が高まっている。 Among the surface hardening treatments for steel materials, there is a strong need for nitriding treatment, which is a low heat treatment strain treatment, and recently there has been a growing interest in atmosphere control technology for gas nitriding treatment.
 ガス窒化処理により得られる基本的な組織構成では、表面において鉄窒化物である化合物層が形成され、内部において拡散層と呼ばれる硬化層が形成される。当該硬化層は、通常、母材成分のSiやCrなどの合金窒化物からなる。 In the basic microstructure obtained by gas nitriding, a compound layer that is an iron nitride is formed on the surface, and a hardened layer called a diffusion layer is formed inside. The hardened layer is usually made of an alloy nitride such as Si or Cr as a base material component.
 これらの2層の各々の厚さ(深さ)及び/または表面の鉄窒化物のタイプ等を制御するために、ガス窒化処理の温度と時間とに加えて、ガス窒化処理炉内の雰囲気も適宜に制御されている。具体的には、ガス窒化炉内の窒化ポテンシャル(KN)が適宜に制御されている。 In addition to the temperature and time of the gas nitriding process, the atmosphere in the gas nitriding furnace is also controlled in order to control the thickness (depth) of each of these two layers and / or the type of iron nitride on the surface. It is controlled appropriately. Specifically, the nitriding potential (K N ) in the gas nitriding furnace is appropriately controlled.
 例えば、当該制御を介して、鋼材の表面に生成される化合物層中のγ’相(Fe4N)とε相(Fe2-3N)の体積分率(鉄窒化物のタイプ)が制御されている。具体的には、ε相よりもγ’相を形成することにより、耐疲労性が改善されることが知られている(平岡泰、渡邊陽一、石田暁丈:熱処理、55巻、1号、1-2ページ:非特許文献1)。更に、γ’相の形成により曲げ疲労強度や面疲労を改善した窒化鋼部材も提供されている(特開2013-221203号公報:特許文献1)。 For example, the volume fraction (type of iron nitride) of γ'phase (Fe 4 N) and ε phase (Fe 2-3 N) in the compound layer formed on the surface of the steel material is controlled through the control. Has been done. Specifically, it is known that the fatigue resistance is improved by forming the γ ′ phase rather than the ε phase (Yasu Hiraoka, Yoichi Watanabe, Akitake Ishida: heat treatment, 55, No. 1, Page 1-2: Non-Patent Document 1). Further, a nitrided steel member having improved bending fatigue strength and surface fatigue by forming a γ'phase is also provided (Japanese Patent Laid-Open No. 2013-221203: Patent Document 1).
 鋼材の表面の化合物層中にγ’相を形成して耐疲労性を向上することは、前述のとおり既に知られている。但し、γ’相を多く形成するべくガス窒化処理を行っても、化合物層中には少なからずε相が含まれており、実際にはγ’相とε相との2相状態となっており(特開2016-211069号公報:特許文献2)、疲労強度を向上させるためにγ’単相の化合物層を形成する方法はこれまで実現されていなかった。 As mentioned above, it is already known that the γ'phase is formed in the compound layer on the surface of the steel material to improve the fatigue resistance. However, even if the gas nitriding treatment is performed to form a large amount of γ'phase, the compound layer contains a considerable amount of ε phase, and in reality, it becomes a two-phase state of γ'phase and ε phase. However, a method of forming a γ'single-phase compound layer in order to improve fatigue strength has not been realized so far (Japanese Patent Laid-Open No. 2016-211069: Patent Document 2).
 一方、Fe-N二元合金の共析変態点(約590℃)以上の温度で窒化処理を行うと、表面には化合物層が形成され、その後急冷すればその下部には窒素含有マルテンサイト組織を含む硬化層が形成される。当該温度域での窒化処理は、従来の窒化処理と区別して、浸窒処理と呼ばれている。 On the other hand, when the nitriding treatment is performed at a temperature higher than the eutectoid transformation point (about 590 ° C) of the Fe-N binary alloy, a compound layer is formed on the surface, and if it is then rapidly cooled, a nitrogen-containing martensite structure is formed under the A cured layer containing is formed. The nitriding treatment in the temperature range is called an nitriding treatment in distinction from the conventional nitriding treatment.
 しかし、当該浸窒処理では、表面近傍の組織(表面の化合物層は除く)のオーステナイトが安定化され、その後に急冷されても大部分のオーステナイトが残留する。このため、熱処理後のひずみは、窒化処理と同程度である。加えて、この安定化されたオーステナイトは、250~300℃の温度にまで再加熱されることで、硬質なマルテンサイト組織へと変態される。 However, in the nitriding treatment, the austenite in the structure near the surface (excluding the compound layer on the surface) is stabilized, and most of the austenite remains even after the rapid cooling. Therefore, the strain after the heat treatment is about the same as the nitriding treatment. In addition, the stabilized austenite is reheated to a temperature of 250 to 300 ° C. to be transformed into a hard martensite structure.
 例えば、STKM-13C(JIS G 3445に規程される機械構造炭素鋼鋼管)を640℃で90min浸窒処理した後急冷し、その後280℃で90min再加熱処理することにより、表面近傍のオーステナイトは800~900HVまで硬化される(特許第6228403号:特許文献3)。もっとも、浸窒処理後の表面の化合物層の構造はγにγ’が固溶した組織であるが、280℃で90min再加熱処理されると、表面にはα’’相が主体の化合物層が形成される。 For example, STKM-13C (mechanical carbon steel pipe defined by JIS G 3445) is nitrified at 640 ° C for 90 minutes, then rapidly cooled, and then reheated at 280 ° C for 90 minutes to obtain 800 austenite near the surface. It is cured up to 900 HV (Patent No. 6228403: Patent Document 3). However, the structure of the compound layer on the surface after the nitriding treatment is a structure in which γ'is a solid solution in γ, but when reheated at 280 ° C for 90 min, the compound layer mainly composed of the α '' phase is present on the surface. Is formed.
 更に、700℃でJIS-SPCC(冷間圧延鋼板の一種)を浸窒処理しても、表面に化合物層が形成され、その後の急冷でその下部に窒素マルテンサイト組織の硬化層が形成される(Y.Kawata and T.Kidachi: European Conference on Heat Treatment and Surface Engineering A3TS Congress, (Nice, France, 2017) pp.26-29:非特許文献2)。 Further, even if JIS-SPCC (a kind of cold rolled steel sheet) is subjected to a nitriding treatment at 700 ° C., a compound layer is formed on the surface, and a quenching layer thereafter forms a hardened layer having a nitrogen martensite structure underneath. (Y. Kawata and T. Kidachi: European Conference on Heat Heat Treatment and Surface Engineering A3TS Congress, (Nice, France, 2017) pp.26-29: Non-Patent Document 2).
 一方、800℃で浸窒処理を実施し、その後急冷することによって、化合物層を形成することなく0.35mm以上の厚さのマルテンサイト組織による硬化層が得られて、耐疲労性を改善できることが報告されている(奥宮正洋:日本熱処理技術協会、第5回熱処理技術セミナーテキスト、2012年、(5)1-8ページ:非特許文献3)。 On the other hand, by carrying out a nitriding treatment at 800 ° C. and then rapidly cooling, a hardened layer having a martensite structure with a thickness of 0.35 mm or more can be obtained without forming a compound layer, and fatigue resistance can be improved. Is reported (Masahiro Okumiya: Japan Heat Treatment Technology Association, 5th Heat Treatment Technology Seminar Text, 2012, (5) pages 1-8: Non-Patent Document 3).
特開2013-221203号公報JP, 2013-221203, A 特開2016-211069号公報JP, 2016-211069, A 特許第6228403号Patent No. 6228403
 機械部品の疲労破壊は、例えばギアの歯元など、高い負荷応力がかかる切欠き部から生じる。当該切欠き部では、その形状と負荷環境に応じた応力分布が表層領域(表面から所定深さの内部まで)においてのみ生じる。このため、鋼材の靭性や被削性を損なわないよう、当該表層領域のみを硬化することが望まれている。 Fatigue failure of mechanical parts occurs from notches where high load stress is applied, such as at the root of gears. In the cutout portion, a stress distribution corresponding to the shape and the load environment occurs only in the surface layer region (from the surface to the inside of the predetermined depth). Therefore, it is desired to harden only the surface layer region so as not to impair the toughness and machinability of the steel material.
 しかしながら、従来から実施されている窒化処理や浸窒処理では、そのような要望に十分に応えられていない。例えば、前述のように、疲労強度を向上させるためにγ’単相の化合物層を硬化層の表面に形成する方法は、これまで実現されていなかった。また、特許文献3に開示された技術でも、十分な疲労強度の向上は実現されていない(浸窒処理後の再加熱によって、拡散層硬さの低下や、化合物層と拡散層の残留応力の低下などを招いていると考えられる)。また、非特許文献2に開示された技術でも、拡散層が十分硬化されず、十分な疲労強度の向上は実現されていない(以下に述べる本発明の温度領域よりも高いためであると考えられる)。更に、非特許文献3に開示された技術では、硬化層が厚すぎて熱ひずみ/変態ひずみが大きく、やはり表層領域の硬化には適さない。 However, the conventional nitriding and nitrifying treatments have not been able to sufficiently meet such demands. For example, as described above, a method of forming a γ'single-phase compound layer on the surface of a hardened layer in order to improve fatigue strength has not been realized so far. Further, even with the technique disclosed in Patent Document 3, sufficient improvement in fatigue strength has not been realized (reheating after the nitriding treatment reduces the hardness of the diffusion layer and reduces the residual stress of the compound layer and the diffusion layer. It is thought that this is causing a decline). Further, even with the technique disclosed in Non-Patent Document 2, the diffusion layer is not sufficiently hardened, and sufficient improvement in fatigue strength has not been realized (this is considered to be because it is higher than the temperature range of the present invention described below. ). Furthermore, in the technique disclosed in Non-Patent Document 3, the hardened layer is too thick and the thermal strain / transformation strain is large, and it is not suitable for hardening the surface layer region.
 本件発明者は、鋭意の検討及び種々の実験を繰り返し、処理炉の構成を限定した上で窒化処理の温度及び窒化ポテンシャルを高精度に制御することによって、表層領域が所望に硬化された疲労強度に優れる窒化鋼部材を製造できることを知見した。 The inventor of the present invention repeatedly conducted diligent studies and various experiments, and controlled the nitriding temperature and the nitriding potential with high accuracy after limiting the configuration of the processing furnace, whereby the fatigue strength in which the surface layer region was desirably hardened. It has been found that a nitrided steel member having excellent heat resistance can be manufactured.
 本発明は、以上の知見に基づいて創案されたものである。本発明の目的は、表層領域が所望に硬化された窒化鋼部材、及び、そのような窒化鋼部材を製造するための製造方法及び製造装置を提供することである。 The present invention was created based on the above findings. An object of the present invention is to provide a nitrided steel member whose surface layer region is desirably hardened, and a manufacturing method and a manufacturing apparatus for manufacturing such a nitrided steel member.
 本発明は、炭素鋼または低合金鋼を母相とする窒化鋼部材であって、表面に、質量%で窒素を1.0%以上含むオーステナイト組織を有する硬化層を備え、前記硬化層の下部に、前記母相内に窒素が拡散されている拡散層を備え、前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、当該窒化鋼部材の表面から2mmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きいことを特徴とする窒化鋼部材である。 The present invention is a nitrided steel member having a carbon steel or a low alloy steel as a parent phase, the surface of which is provided with a hardened layer having an austenite structure containing 1.0% or more of nitrogen by mass%, and a lower part of the hardened layer. And a diffusion layer in which nitrogen is diffused in the matrix, the hardened layer has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, and the diffusion layer is the nitrided steel. It extends to a depth of more than 100 μm from the surface of the member, and the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is more than the hardness at a depth of 2 mm from the surface of the nitrided steel member. It is a nitrided steel member characterized by being larger than 100 HV.
 本発明によれば、窒素を1.0%以上含むオーステナイト組織を有する硬化層が、当該窒化鋼部材の表面から2μm~50μmの厚さに限定されているため、熱処理ひずみ/変態ひずみが小さい。また、窒化鋼部材の表面から2mmの深さにおける硬さよりも窒化鋼部材の表面から100μmの深さにおける拡散層の硬さの方が100HV以上大きいことにより、硬化層が薄いにも拘わらず、十分な強度を保証することができる。 According to the present invention, since the hardened layer having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, heat treatment strain / transformation strain is small. Further, since the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitrided steel member, the hardened layer is thin, Sufficient strength can be guaranteed.
 また、本発明は、炭素鋼または低合金鋼を母相とする窒化鋼部材であって、表面側に、ε相を有する化合物層を備え、前記化合物層の表面の圧縮残留応力は、-200MPa以上であり、前期化合物層の下部に、質量%で窒素を1.0%以上含むオーステナイト組織を有する硬化層を備え、前記硬化層の更に下部に、前記母相内に窒素が拡散されている拡散層を備え、前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、当該窒化鋼部材の表面から2mmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きいことを特徴とする窒化鋼部材である。 Further, the present invention is a nitrided steel member having a carbon steel or a low alloy steel as a mother phase, comprising a compound layer having an ε phase on the surface side, and the compressive residual stress on the surface of the compound layer is −200 MPa. As described above, the hardened layer having an austenite structure containing 1.0% or more of nitrogen in mass% is provided below the compound layer, and nitrogen is diffused into the matrix below the hardened layer. A diffusion layer, wherein the hardened layer has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, and the diffusion layer extends from the surface of the nitrided steel member to a depth of more than 100 μm. And the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitrided steel member. It is a member.
 本発明によっても、窒素を1.0%以上含むオーステナイト組織を有する硬化層が、当該窒化鋼部材の表面から2μm~50μmの厚さに限定されているため、熱処理ひずみ/変態ひずみが小さい。また、窒化鋼部材の表面から2mmの深さにおける硬さよりも窒化鋼部材の表面から100μmの深さにおける拡散層の硬さの方が100HV以上大きいことにより、硬化層が薄いにも拘わらず、十分な強度を保証することができる。更に本発明によれば、化合物層の表面に-200MPa以上(絶対値で見れば200MPa以下)の圧縮残留応力が存在することにより(このような構成は、後述される窒化方法によって初めて実現されたものである)、疲労亀裂の発生が抑制され、高い疲労強度を示すことができる。なお、本明細書において「ε相を有する化合物層」とは、化合物層中に含まれるε相の体積が60%以上である状態を意味する。なお、-200MPaを圧縮残留応力の下限(絶対値で見れば上限)としたのは、その値が、本願出願時までに本件発明者によって確認された疲労強度向上の効果が認められる最小値(絶対値で見れば最大値)であるからである(後述の循環型処理炉を用いて、S45C鋼を母相として、処理温度:640℃、窒化ポテンシャル:0.17、処理時間:2時間、という処理条件にて得られることが確認されている)。 Also according to the present invention, since the hardened layer having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, heat treatment strain / transformation strain is small. Further, since the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitrided steel member, the hardened layer is thin, Sufficient strength can be guaranteed. Further, according to the present invention, a compressive residual stress of −200 MPa or more (200 MPa or less in absolute value) is present on the surface of the compound layer (such a structure was first realized by the nitriding method described later). The occurrence of fatigue cracks is suppressed, and high fatigue strength can be exhibited. In the present specification, the “compound layer having the ε phase” means a state in which the volume of the ε phase contained in the compound layer is 60% or more. The lower limit (upper limit in terms of absolute value) of the compressive residual stress was set to −200 MPa, which is the minimum value at which the effect of improving fatigue strength confirmed by the inventors of the present application was confirmed by the time of filing of the present application ( This is because it is the maximum value in terms of absolute value (using a circulation type processing furnace described later, using S45C steel as a mother phase, processing temperature: 640 ° C., nitriding potential: 0.17, processing time: 2 hours, It has been confirmed that it can be obtained under the processing conditions).
 また、本発明は、炭素鋼または低合金鋼を母相とする窒化鋼部材であって、表面側に、質量%で窒素を1.0%以上含むオーステナイト組織を有する硬化層を備え、前記硬化層の表面に、全体的または局所的に、10μm以下の厚さのγ’相を有する化合物層を備え、前記硬化層の下部に、前記母相内に窒素が拡散されている拡散層を備え、前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、当該窒化鋼部材の表面から2mmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きいことを特徴とする窒化鋼部材である。 Further, the present invention is a nitrided steel member having a carbon steel or a low alloy steel as a mother phase, the surface side of which is provided with a hardened layer having an austenite structure containing 1.0% or more of nitrogen by mass%, and the hardening A compound layer having a γ'phase having a thickness of 10 μm or less is provided on the surface of the layer as a whole or locally, and a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer. The hardened layer has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, and the diffusion layer extends from the surface of the nitrided steel member to a depth of more than 100 μm. The hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more greater than the hardness at a depth of 2 mm from the surface of the steel member.
 本発明によっても、窒素を1.0%以上含むオーステナイト組織を有する硬化層が、当該窒化鋼部材の表面か2μm~50μmの厚さに限定されているため、熱処理ひずみ/変態ひずみが小さい。また、窒化鋼部材の表面から2mmの深さにおける硬さよりも窒化鋼部材の表面から100μmの深さにおける拡散層の硬さの方が100HV以上大きいことにより、硬化層が薄いにも拘わらず、十分な強度を保証することができる。更に本発明によれば、硬化層の表面に10μm以下のγ’相を有する化合物層が形成されていることにより(このような化合物層は、後述される窒化方法によって初めて実現されたものである)、硬さや残留応力の勾配が連続的に形成され、疲労強度を向上させることができる。これは、γ’相とγ相とが同じ面心立法格子構造(fcc構造)を取るため、γ’相とγ相の界面の整合性が高いためであると考えられる。なお、10μmを上限値としたのは、その値が本願出願時までに本件発明者によって確認された最大厚さであるからである(後述の循環型処理炉を用いて、低炭素鋼S25Cを母相として、処理温度:660℃、窒化ポテンシャル:0.13、処理時間:2時間、という処理条件にて得られることが確認されている)。 Also according to the present invention, since the hardened layer having an austenite structure containing 1.0% or more of nitrogen is limited to the surface of the nitrided steel member or the thickness of 2 μm to 50 μm, heat treatment strain / transformation strain is small. Further, since the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitrided steel member, the hardened layer is thin, Sufficient strength can be guaranteed. Further, according to the present invention, a compound layer having a γ ′ phase of 10 μm or less is formed on the surface of the hardened layer (such a compound layer was first realized by a nitriding method described later). ), The gradient of hardness and residual stress is continuously formed, and the fatigue strength can be improved. It is considered that this is because the γ ′ phase and the γ phase have the same face-centered cubic lattice structure (fcc structure), and therefore the interface between the γ ′ phase and the γ phase has high compatibility. The upper limit of 10 μm is because that value is the maximum thickness confirmed by the inventors of the present invention by the time of filing of the present application (using a circulating treatment furnace described later, the low carbon steel S25C It has been confirmed that the mother phase can be obtained under the treatment conditions of treatment temperature: 660 ° C., nitriding potential: 0.13, treatment time: 2 hours).
 なお、γ’相とγ相は面心立法格子構造(fcc構造)であるため、稠密六方格子構造(hcp構造)であるε相よりも靭性面において優れ、衝撃的な負荷がかかる部材への適用に、より一層好適である。 Since the γ ′ phase and the γ phase have a face-centered cubic lattice structure (fcc structure), they are superior in toughness to the ε phase, which is a dense hexagonal lattice structure (hcp structure), and can be applied to a member to which an impact load is applied. It is even more suitable for application.
 以上の各発明において、例えば、炭素含有量が質量%で0.25%以上である炭素鋼を母相とすることができる。あるいは、炭素含有量が質量%で0.1%以上、及び、クロム含有量が質量%で0.4%以上、である低合金鋼を母相とすることができる。例えばSCr420やSCM415などが利用可能である。 In each of the above inventions, for example, carbon steel having a carbon content of 0.25% by mass or more can be used as the matrix phase. Alternatively, a low alloy steel having a carbon content of 0.1% or more by mass% and a chromium content of 0.4% or more by mass% can be used as the parent phase. For example, SCr420 or SCM415 can be used.
 また、本発明は、案内筒と撹拌ファンとを有する循環型処理炉を備え、窒化処理時において、前記循環型処理炉内の温度範囲が、610℃~660℃に制御され、前記窒化処理時において、前記循環型処理炉内の窒化ポテンシャルが、0.06~0.3の範囲に制御されることを特徴とする窒化鋼部材の製造装置である。 Further, the present invention includes a circulation type processing furnace having a guide tube and a stirring fan, and during the nitriding treatment, the temperature range in the circulation type treatment furnace is controlled to 610 ° C. to 660 ° C. In the above, in the apparatus for producing a nitrided steel member, the nitriding potential in the circulation type processing furnace is controlled in the range of 0.06 to 0.3.
 本発明の窒化鋼部材の製造装置によれば、
 表面に、窒素を1.0%以上含むオーステナイト組織を有する硬化層を備え、前記硬化層の下部に、前記母相内に窒素が拡散されている拡散層を備え、前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、当該窒化鋼部材の表面から2μmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きいことを特徴とする窒化鋼部材
を製造することができる。
According to the manufacturing apparatus for a nitrided steel member of the present invention,
A hardened layer having an austenite structure containing 1.0% or more of nitrogen is provided on the surface, and a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer. It has a thickness of 2 μm to 50 μm from the surface of the steel member, the diffusion layer extends from the surface of the nitrided steel member to a depth of more than 100 μm, and the depth of 2 μm from the surface of the nitrided steel member. It is possible to manufacture a nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more than the hardness in the above.
 また、本発明の窒化鋼部材の製造装置によれば、
 炭素鋼または低合金鋼を母相とする窒化鋼部材であって、表面側に、ε相を有する化合物層を備え、前記化合物層の表面の圧縮残留応力は、-200MPa以上であり、前期化合物層の下部に、質量%で窒素を1.0%以上含むオーステナイト組織を有する硬化層を備え、前記硬化層の更に下部に、前記母相内に窒素が拡散されている拡散層を備え、前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、当該窒化鋼部材の表面から2mmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きいことを特徴とする窒化鋼部材を製造することもできる。
Further, according to the apparatus for manufacturing a nitrided steel member of the present invention,
A nitrided steel member having a carbon steel or a low alloy steel as a matrix phase, wherein a compound layer having an ε phase is provided on the surface side, and the compressive residual stress on the surface of the compound layer is −200 MPa or more. A hardened layer having an austenite structure containing 1.0% or more of nitrogen in mass% is provided below the layer, and a diffusion layer in which nitrogen is diffused in the matrix is provided below the hardened layer. The hardened layer has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, and the diffusion layer extends to a depth of more than 100 μm from the surface of the nitrided steel member. It is also possible to manufacture a nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more greater than the hardness at a depth of 2 mm from the surface of the. it can.
 また、本発明の窒化鋼部材の製造装置によれば、
 炭素鋼または低合金鋼を母相とする窒化鋼部材であって、表面に、10μm以下の厚さのγ’相を有する化合物層を備え、前期化合物層の下部に、質量%で窒素を1.0%以上含むオーステナイト組織を有する硬化層を備え、前記硬化層の更に下部に、前記母相内に窒素が拡散されている拡散層を備え、前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、当該窒化鋼部材の表面から2mmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きいことを特徴とする窒化鋼部材
を製造することもできる。
Further, according to the apparatus for manufacturing a nitrided steel member of the present invention,
A nitrided steel member having a carbon steel or a low alloy steel as a mother phase, the surface of which is provided with a compound layer having a γ'phase with a thickness of 10 μm or less, and a nitrogen content of 1% by mass at the bottom of the compound layer. A hardened layer having an austenite structure containing 0.0% or more is provided, and a diffusion layer in which nitrogen is diffused in the matrix is provided further below the hardened layer, and the hardened layer is formed from the surface of the nitrided steel member. The diffusion layer has a thickness of 2 μm to 50 μm, extends to a depth of more than 100 μm from the surface of the nitrided steel member, and has a hardness at a depth of 2 mm from the surface of the nitrided steel member. It is also possible to manufacture a nitrided steel member characterized in that the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more.
 本発明の窒化鋼部材の製造装置は、例えば、アンモニアガスとアンモニア分解ガスとが前記循環型処理炉内に導入されるようになっている。この場合、当該製造装置は、前記窒化ポテンシャルを制御するために、前記アンモニア分解ガスの炉内導入量を一定とし且つ前記アンモニアガスの導入量を変更する制御が実施できるようになっていることが好ましい。 The apparatus for producing a nitrided steel member according to the present invention is configured so that, for example, ammonia gas and ammonia decomposition gas are introduced into the circulation type processing furnace. In this case, in order to control the nitriding potential, the manufacturing apparatus can perform control such that the amount of ammonia decomposition gas introduced into the furnace is constant and the amount of ammonia gas introduced is changed. preferable.
 本発明によれば、窒素を1.0%以上含むオーステナイト組織を有する硬化層が、当該窒化鋼部材の表面から2μm~50μmの厚さに限定されているため、熱処理ひずみ/変態ひずみが小さい。また、窒化鋼部材の表面から2mmの深さにおける硬さよりも窒化鋼部材の表面から100μmの深さにおける拡散層の硬さの方が100HV以上大きいことにより、硬化層が薄いにも拘わらず、十分な強度を保証することができる。 According to the present invention, since the hardened layer having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 μm to 50 μm from the surface of the nitrided steel member, heat treatment strain / transformation strain is small. Further, since the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more than the hardness at a depth of 2 mm from the surface of the nitrided steel member, the hardened layer is thin, Sufficient strength can be guaranteed.
本発明の第1実施形態による窒化鋼部材の断面顕微鏡写真である。3 is a cross-sectional micrograph of a nitrided steel member according to the first embodiment of the present invention. 図1の窒化鋼部材のEBSD法による解析結果を示す図である。It is a figure which shows the analysis result by the EBSD method of the nitrided steel member of FIG. 本発明の第2実施形態による窒化鋼部材の断面顕微鏡写真である。7 is a cross-sectional micrograph of a nitrided steel member according to the second embodiment of the present invention. 図3の窒化鋼部材のEBSD法による解析結果を示す図である。It is a figure which shows the analysis result by the EBSD method of the nitrided steel member of FIG. 本発明の第3実施形態による窒化鋼部材の断面顕微鏡写真である。7 is a sectional micrograph of a nitrided steel member according to a third embodiment of the present invention. 硬さ分布についての実験例を示す表である。It is a table which shows the example of an experiment about hardness distribution. 硬さ分布についての実験例を示すグラフである。It is a graph which shows the example of an experiment about hardness distribution. 硬さ分布についての実験例を示す表である。It is a table which shows the example of an experiment about hardness distribution. 硬さ分布についての実験例を示すグラフである。It is a graph which shows the example of an experiment about hardness distribution. 本発明の一実施形態による窒化鋼部材の製造装置の概略図である。1 is a schematic view of an apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention. 循環型処理炉(横型ガス窒化炉)の概略断面図である。It is a schematic sectional drawing of a circulation type processing furnace (horizontal type gas nitriding furnace). ガス導入制御の一例を示すグラフである。It is a graph which shows an example of gas introduction control. ガス導入制御の一例を示すグラフである。It is a graph which shows an example of gas introduction control. 小野式回転曲げ疲労試験片の形態を示す図である。It is a figure which shows the form of an Ono-type rotary bending fatigue test piece.
 以下、本発明の好ましい実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
(窒化鋼部材の第1実施形態の構成、製法及び効果)
 図1は、本発明の第1実施形態の窒化鋼部材110の断面顕微鏡写真である。図1に示すように、本実施形態の窒化鋼部材110は、表面に、窒素を1.0%以上含むオーステナイト組織を有する硬化層111を備え、当該硬化層101の下部に、母相内に窒素が拡散されている拡散層112を備えている。本実施形態の母相(母材)は、炭素含有量が質量%で0.45%である炭素鋼である。(表面の更に上方に見えているのは、研磨用の板であり、窒化鋼部材の構成要素ではない。図3及び図5においても同様。)
(Structure, manufacturing method, and effect of the first embodiment of the nitrided steel member)
FIG. 1 is a cross-sectional micrograph of a nitrided steel member 110 according to the first embodiment of the present invention. As shown in FIG. 1, the nitrided steel member 110 of the present embodiment is provided with a hardened layer 111 having an austenite structure containing 1.0% or more of nitrogen on the surface, and is provided below the hardened layer 101 in the matrix. The diffusion layer 112 in which nitrogen is diffused is provided. The base phase (base material) of the present embodiment is carbon steel having a carbon content of 0.45% by mass. (What is visible above the surface is the polishing plate, not the constituent elements of the nitrided steel member. The same applies to FIGS. 3 and 5.)
 窒化鋼部材110の相分布は、EBSD法とX線回折とを併用することによって解析され得る。具体的には、図2に示すように、EBSD法によって表面の第1層がfcc結晶相であることが分かる。そして、X線回折が併用されることで、表面の第1層のfcc結晶相がオーステナイト相(γ相)であることが確認され得る。 The phase distribution of the nitrided steel member 110 can be analyzed by using the EBSD method and X-ray diffraction together. Specifically, as shown in FIG. 2, it can be seen by the EBSD method that the first layer on the surface has the fcc crystal phase. Then, by using X-ray diffraction together, it can be confirmed that the fcc crystal phase of the first layer on the surface is an austenite phase (γ phase).
 硬化層111は、窒化鋼部材100の表面から約20μmの厚さを有しており、これは2μm~50μmの範囲内の厚さである。拡散層112は、窒化鋼部材110の表面から100μmを超える深さまで延在している。そして、窒化鋼部材110の表面から2mmの深さにおける硬さ(例えば約190HV)より、窒化鋼部材110の表面から100μmの深さにおける拡散層112の硬さ(例えば約290HV)の方が、100HV以上大きくなっている。 The hardened layer 111 has a thickness of about 20 μm from the surface of the nitrided steel member 100, which is in the range of 2 μm to 50 μm. The diffusion layer 112 extends from the surface of the nitrided steel member 110 to a depth exceeding 100 μm. The hardness of the diffusion layer 112 at a depth of 100 μm from the surface of the nitrided steel member 110 (for example, about 290 HV) is more than the hardness at a depth of 2 mm from the surface of the nitrided steel member 110 (for example, about 190 HV). It is larger than 100 HV.
 本実施形態の窒化鋼部材110は、後述の循環型処理炉を用いて、処理温度:640℃、窒化ポテンシャル:0.12、処理時間:2時間、という処理条件で浸窒処理された後、急冷されることで、製造され得る。図1の写真においては、硬化層111と拡散層112とが明瞭に区別可能である。 The nitrided steel member 110 of the present embodiment is subjected to a nitriding treatment under the treatment conditions of a treatment temperature: 640 ° C., a nitriding potential: 0.12, and a treatment time: 2 hours using a circulation type treatment furnace described later, It can be manufactured by being rapidly cooled. In the photograph of FIG. 1, the hardened layer 111 and the diffusion layer 112 can be clearly distinguished.
 本実施形態の窒化鋼部材110によれば、窒素を1.0%以上含むオーステナイト組織を有する硬化層111が、当該窒化鋼部材110の表面から2μm~50μmの厚さに限定されているため、熱処理ひずみ/変態ひずみが小さい。また、窒化鋼部材110の表面から2μmの深さにおける硬さよりも窒化鋼部材110の表面から100μmの深さにおける拡散層112の硬さの方が100HV以上大きいことにより、硬化層111が薄いにも拘わらず、十分な強度を保証することができる。 According to the nitrided steel member 110 of the present embodiment, the hardened layer 111 having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 μm to 50 μm from the surface of the nitrided steel member 110. Small heat treatment strain / transformation strain. Further, since the hardness of the diffusion layer 112 at a depth of 100 μm from the surface of the nitrided steel member 110 is 100 HV or more higher than the hardness at a depth of 2 μm from the surface of the nitrided steel member 110, the hardened layer 111 becomes thin. Nevertheless, sufficient strength can be guaranteed.
(窒化鋼部材の第2実施形態の構成、製法及び効果)
 次に、図3は、本発明の第2実施形態の窒化鋼部材120の断面顕微鏡写真である。図3に示すように、本実施形態の窒化鋼部材120は、表面に、ε相を有する化合物層123を備え、当該化合物層123の下部に、質量%で窒素を1.0%以上含むオーステナイト組織を有する硬化層121を備え、当該硬化層121の更に下部に、母相内に窒素が拡散されている拡散層122を備えている。本実施形態の母相(母材)は、炭素含有量が質量%で0.45%である炭素鋼である。
(Structure, Manufacturing Method, and Effect of Second Embodiment of Nitride Steel Member)
Next, FIG. 3 is a cross-sectional photomicrograph of the nitrided steel member 120 of the second embodiment of the present invention. As shown in FIG. 3, the nitrided steel member 120 of the present embodiment is provided with a compound layer 123 having an ε phase on the surface thereof, and austenite containing 1.0% or more of nitrogen in mass% is provided below the compound layer 123. A hardened layer 121 having a texture is provided, and further below the hardened layer 121, a diffusion layer 122 in which nitrogen is diffused in a matrix is provided. The base phase (base material) of the present embodiment is carbon steel having a carbon content of 0.45% by mass.
 窒化鋼部材120の相分布も、EBSD法とX線回折とを併用することによって解析され得る。具体的には、図4に示すように、EBSD法によってhcp結晶相、fcc結晶相、bcc結晶相が識別できる。そして、X線回折が併用されることで、hcp結晶相がε相であり、fcc結晶相がオーステナイト相(γ相)であることが確認され得る。 The phase distribution of the nitrided steel member 120 can also be analyzed by using the EBSD method and X-ray diffraction together. Specifically, as shown in FIG. 4, the hcp crystal phase, the fcc crystal phase, and the bcc crystal phase can be identified by the EBSD method. By using X-ray diffraction together, it can be confirmed that the hcp crystal phase is the ε phase and the fcc crystal phase is the austenite phase (γ phase).
 化合物層123は、窒化鋼部材120の表面から約12μmの厚さを有しており、当該化合物層123の表面の圧縮残留応力(残留応力値)は、-200MPaとなっている。圧縮残留応力(残留応力値)は、後述するように、X線回折によって測定可能である。硬化層121は、化合物層123の下部に約20μmの厚さを有しており、これは2μm~50μmの範囲内の厚さである。拡散層122は、窒化鋼部材120の表面から100μmを超える深さまで延在している。そして、窒化鋼部材120の表面から2mmの深さにおける硬さ(例えば約190HV)より、窒化鋼部材120の表面から100μmの深さにおける拡散層122の硬さ(例えば約295HV)の方が、100HV以上大きくなっている。 The compound layer 123 has a thickness of about 12 μm from the surface of the nitrided steel member 120, and the compressive residual stress (residual stress value) on the surface of the compound layer 123 is −200 MPa. The compressive residual stress (residual stress value) can be measured by X-ray diffraction as described later. The hardened layer 121 has a thickness below the compound layer 123 of about 20 μm, which is in the range of 2 μm to 50 μm. The diffusion layer 122 extends from the surface of the nitrided steel member 120 to a depth exceeding 100 μm. The hardness of the diffusion layer 122 at a depth of 100 μm from the surface of the nitrided steel member 120 (for example, about 295 HV) is more than the hardness at a depth of 2 mm from the surface of the nitrided steel member 120 (for example, about 190 HV). It is larger than 100 HV.
 本実施形態の窒化鋼部材120は、後述の循環型処理炉を用いて、処理温度:640℃、窒化ポテンシャル:0.17、処理時間:2時間、という処理条件で浸窒処理された後、急冷されることで、製造され得る。図3の写真においては、化合物層123、硬化層121及び拡散層122が、それぞれ明瞭に区別可能である。 The nitrided steel member 120 of the present embodiment is subjected to a nitriding treatment under the treatment conditions of a treatment temperature: 640 ° C., a nitriding potential: 0.17, and a treatment time: 2 hours using a circulation type treatment furnace described later, It can be manufactured by being rapidly cooled. In the photograph of FIG. 3, the compound layer 123, the cured layer 121, and the diffusion layer 122 can be clearly distinguished from each other.
 本実施形態の窒化鋼部材120によっても、窒素を1.0%以上含むオーステナイト組織を有する硬化層121が、当該窒化鋼部材120の表面から2μm~50μmの厚さに限定されているため、熱処理ひずみ/変態ひずみが小さい。また、窒化鋼部材120の表面から2μmの深さにおける硬さよりも窒化鋼部材120の表面から100μmの深さにおける拡散層122の硬さの方が100HV以上大きいことにより、硬化層121が薄いにも拘わらず、十分な強度を保証することができる。 Also according to the nitrided steel member 120 of the present embodiment, the hardened layer 121 having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 μm to 50 μm from the surface of the nitrided steel member 120, and therefore heat treatment is performed. Strain / transformation strain is small. Further, since the hardness of the diffusion layer 122 at a depth of 100 μm from the surface of the nitrided steel member 120 is 100 HV or more higher than the hardness at a depth of 2 μm from the surface of the nitrided steel member 120, the hardened layer 121 becomes thin. Nevertheless, sufficient strength can be guaranteed.
(窒化鋼部材の第3実施形態の構成、製法及び効果)
 次に、図5は、本発明の第3実施形態の窒化鋼部材130の断面顕微鏡写真である。図5に示すように、本実施形態の窒化鋼部材130は、表面側に、質量%で窒素を1.0%以上含むオーステナイト組織を有する硬化層131を備え、当該硬化層131の表面において局所的に、0~3μm程度の厚さのγ’相を有する化合物層133を備えている。また、硬化層131の下部に、母相内に窒素が拡散されている拡散層132を備えている。本実施形態の母相(母材)は、炭素含有量が質量%で0.45%である炭素鋼である。
(Structure, Manufacturing Method and Effect of Third Embodiment of Nitride Steel Member)
Next, FIG. 5 is a cross-sectional photomicrograph of the nitrided steel member 130 according to the third embodiment of the present invention. As shown in FIG. 5, the nitrided steel member 130 of the present embodiment is provided with a hardened layer 131 having an austenite structure containing 1.0% or more of nitrogen in mass% on the surface side, and locally on the surface of the hardened layer 131. Specifically, the compound layer 133 having a γ ′ phase having a thickness of about 0 to 3 μm is provided. A diffusion layer 132 in which nitrogen is diffused in the matrix is provided below the hardened layer 131. The base phase (base material) of the present embodiment is carbon steel having a carbon content of 0.45% by mass.
 窒化鋼部材130の相分布も、EBSD法とX線回折とを併用することによって解析され得る。具体的には、EBSD法によって硬化層131と拡散層132とが区別され、X線回折によって化合物層133がγ’相であることが確認され得る。 The phase distribution of the nitrided steel member 130 can also be analyzed by using the EBSD method and X-ray diffraction together. Specifically, the hardened layer 131 and the diffusion layer 132 are distinguished by the EBSD method, and it can be confirmed by X-ray diffraction that the compound layer 133 is in the γ'phase.
 化合物層133の厚さは、10μm以下の厚さである。硬化層131は、窒化鋼部材130の表面から約20μmの厚さを有しており、これは2μm~50μmの範囲内の厚さである。拡散層132は、窒化鋼部材130の表面から100μmを超える深さまで延在している。そして、窒化鋼部材130の表面から2mmの深さにおける硬さ(例えば約190HV)より、窒化鋼部材130の表面から100μmの深さにおける拡散層132の硬さ(例えば約290HV)の方が、100HV以上大きくなっている。 The thickness of the compound layer 133 is 10 μm or less. The hardened layer 131 has a thickness of about 20 μm from the surface of the nitrided steel member 130, which is in the range of 2 μm to 50 μm. The diffusion layer 132 extends from the surface of the nitrided steel member 130 to a depth exceeding 100 μm. Then, the hardness of the diffusion layer 132 at a depth of 100 μm from the surface of the nitrided steel member 130 (for example, about 290 HV) is more than the hardness at a depth of 2 mm from the surface of the nitrided steel member 130 (for example, about 190 HV). It is larger than 100 HV.
 本実施形態の窒化鋼部材130は、後述の循環型処理炉を用いて、処理温度:640℃、窒化ポテンシャル:0.13、処理時間:2時間、という処理条件で浸窒処理された後、急冷されることで、製造され得る。図5の写真においては、化合物層133、硬化層131及び拡散層132が、それぞれ明瞭に区別可能である。 The nitrided steel member 130 of the present embodiment is subjected to a nitriding treatment under the treatment conditions of a treatment temperature of 640 ° C., a nitriding potential of 0.13, and a treatment time of 2 hours using a circulation type treatment furnace described later, It can be manufactured by being rapidly cooled. In the photograph of FIG. 5, the compound layer 133, the cured layer 131, and the diffusion layer 132 can be clearly distinguished from each other.
 本実施形態の窒化鋼部材130によっても、窒素を1.0%以上含むオーステナイト組織を有する硬化層131が、当該窒化鋼部材130の表面から2μm~50μmの厚さに限定されているため、熱処理ひずみ/変態ひずみが小さい。また、窒化鋼部材130の表面から2μmの深さにおける硬さよりも窒化鋼部材200の表面から100μmの深さにおける拡散層132の硬さの方が100HV以上大きいことにより、硬化層131が薄いにも拘わらず、十分な強度を保証することができる。
(硬化層の窒素濃度の範囲)
Also according to the nitrided steel member 130 of the present embodiment, since the hardened layer 131 having an austenite structure containing 1.0% or more of nitrogen is limited to a thickness of 2 μm to 50 μm from the surface of the nitrided steel member 130, heat treatment is performed. Strain / transformation strain is small. Further, since the hardness of the diffusion layer 132 at a depth of 100 μm from the surface of the nitrided steel member 200 is 100 HV or more than the hardness at a depth of 2 μm from the surface of the nitrided steel member 130, the hardened layer 131 becomes thin. Nevertheless, sufficient strength can be guaranteed.
(Range of nitrogen concentration of hardened layer)
 硬化層111、121、131の窒素濃度は、室温でのオーステナイト組織の安定度を考慮した結果である。すなわち、1.0%以上の窒素を含むことにより、急冷された際に大部分のオーステナイト相が室温で安定化され、すなわち、急冷中にマルテンサイト変態が起こらない。これにより、急冷中にマルテンサイト変態が生ずる場合と比較して、ひずみが極めて小さい。
(硬化層の厚さの範囲)
The nitrogen concentration of the hardened layers 111, 121, 131 is the result of considering the stability of the austenite structure at room temperature. That is, by containing 1.0% or more of nitrogen, most of the austenite phase is stabilized at room temperature when quenched, that is, martensite transformation does not occur during quenching. As a result, the strain is extremely small as compared with the case where martensitic transformation occurs during rapid cooling.
(Cured layer thickness range)
 硬化層111、121、131の厚さについては、基本的には厚い方が疲労強度は向上する。但し、窒化鋼部材110、120、130の負荷環境によって、それ以上厚さを向上させても、疲労強度向上の更なる効果がない(効果が飽和している)という場合がある。具体的には、窒化鋼部材110、120、130の形状や負荷環境によって、例えば切欠き部の応力分布が異なる場合がある。従って、窒化鋼部材110、120、130の形状や負荷環境によって、硬化層111、121、131の厚さは適宜に選択され得る。 Regarding the thickness of the hardened layers 111, 121 and 131, basically, the thicker the fatigue strength, the better. However, depending on the load environment of the nitrided steel members 110, 120, and 130, even if the thickness is further increased, there is a case where there is no further effect of improving the fatigue strength (the effect is saturated). Specifically, the stress distribution in the notch may differ depending on the shape of the nitrided steel members 110, 120, 130 and the load environment. Therefore, the thickness of the hardened layers 111, 121, 131 can be appropriately selected depending on the shapes of the nitrided steel members 110, 120, 130 and the load environment.
 但し「窒化鋼部材の表面から2mmの深さにおける硬さよりも窒化鋼部材の表面から100μmの深さにおける拡散層の硬さの方が100HV以上大きい」という条件を満たすような製造条件(処理温度:610℃~660℃、窒化ポテンシャル:0.06~0.3)では、硬化層111、121、131の厚さは、2~50μmとなる。 However, the manufacturing conditions (processing temperature) satisfying the condition that "the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more greater than the hardness at a depth of 2 mm from the surface of the nitrided steel member". : 610 ° C. to 660 ° C., nitriding potential: 0.06 to 0.3), the thickness of the hardened layers 111, 121 and 131 is 2 to 50 μm.
 具体的には、硬化層111、131、131が厚くなり易い合金成分系の炭素鋼(具体的にはS50C鋼)を、処理温度:660℃、窒化ポテンシャル:0.17で浸窒処理した時の結果である50μmを上限値としている。 Specifically, when a carbon steel (specifically, S50C steel) of an alloy component type in which the hardened layers 111, 131, 131 tend to be thick is subjected to a nitriding treatment at a treatment temperature of 660 ° C. and a nitriding potential of 0.17. As a result, the upper limit value is 50 μm.
 一方、硬化層111、121、131が窒化鋼部材110、120、130の全面に形成される(硬化層111、121、131が局所的に形成されない場合がない)ための条件として、2μmを下限値としている。
(拡散層の硬さの条件)
On the other hand, as a condition for forming the hardened layers 111, 121, 131 on the entire surface of the nitrided steel members 110, 120, 130 (the hardened layers 111, 121, 131 may not be locally formed), the lower limit is 2 μm. It has a value.
(Condition of hardness of diffusion layer)
 本実施形態の窒化鋼部材110、120、130は、硬化層111、121、131のみならず、拡散層112、122、132が十分な硬度を有することが特徴である。図6A及び図6Bは、JIS-S45C鋼(炭素鋼)について、図中に示す種々の温度で1.5時間の浸窒処理を実施し、その後急冷した各試験片の硬さ分布を示している。図6C及び図6Dは、JIS-SCM415鋼(Cr-Mo鋼)について、図中に示す種々の温度で1.5時間の浸窒処理を実施し、その後急冷した各試験片の硬さ分布を示している。図6A乃至図6Dに示すように、浸窒温度と鋼種とを選択することによって、100μm(=0.1mm)の深さ位置での表面硬さを、約300~500HVの範囲とすることが可能であった。 The nitrided steel members 110, 120, 130 of this embodiment are characterized in that not only the hardened layers 111, 121, 131 but also the diffusion layers 112, 122, 132 have sufficient hardness. FIGS. 6A and 6B show hardness distributions of JIS-S45C steels (carbon steels) subjected to nitriding treatment for 1.5 hours at various temperatures shown in the drawings and then rapidly cooled. There is. FIGS. 6C and 6D show the hardness distribution of each test piece of JIS-SCM415 steel (Cr-Mo steel) which was subjected to nitrification treatment for 1.5 hours at various temperatures shown in the figure and then rapidly cooled. Shows. As shown in FIGS. 6A to 6D, the surface hardness at a depth position of 100 μm (= 0.1 mm) can be set in the range of about 300 to 500 HV by selecting the nitriding temperature and the steel type. It was possible.
 窒化処理後の表面硬さは、一般的には、表面から50μmの深さ位置で取得されることが多い。しかしながら、本実施形態の窒化鋼部材110、120、130では、オーステナイト組織を有する硬化層111、121、131の影響を避けるため、表面から100μmの深さ位置での硬さを評価対象としている。 The surface hardness after nitriding is generally acquired at a depth of 50 μm from the surface. However, in the nitrided steel members 110, 120, 130 of the present embodiment, the hardness at the depth position of 100 μm from the surface is the evaluation target in order to avoid the influence of the hardened layers 111, 121, 131 having the austenite structure.
 図6A及び図6Bに示すように、S45C鋼(炭素鋼)を580℃で窒化処理したものと同等以上の硬さ分布を得るためには、660℃以下の温度で浸窒処理することが必要である。 As shown in FIGS. 6A and 6B, in order to obtain a hardness distribution equal to or higher than that obtained by nitriding S45C steel (carbon steel) at 580 ° C., it is necessary to perform nitriding treatment at a temperature of 660 ° C. or less. Is.
 一方、表面から2mmの深さ位置での硬さというのは、窒化の影響を受けていない内部組織について評価対象として規定したものである。 On the other hand, the hardness at a depth of 2 mm from the surface is defined as an evaluation target for the internal structure that is not affected by nitriding.
(窒化鋼部材の製造装置の構成)
 続いて、窒化鋼部材の製造装置について説明する。まず、ガス窒化処理の基本的事項について化学的に説明すれば、ガス窒化処理では、被処理品が配置される処理炉(ガス窒化炉)内において、以下の式(1)で表される窒化反応が発生する。
         NH3→[N]+3/2H2   ・・・(1)
(Structure of manufacturing equipment for nitrided steel members)
Next, the manufacturing apparatus for the nitrided steel member will be described. First, the basic items of the gas nitriding treatment will be chemically described. In the gas nitriding treatment, nitriding represented by the following formula (1) is performed in a processing furnace (gas nitriding furnace) in which an article to be treated is placed. A reaction occurs.
NH 3 → [N] + 3 / 2H 2・ ・ ・ (1)
 このとき、窒化ポテンシャルKNは、以下の式(2)で定義される。
         KN=PNH3/PH2 3/2    ・・・(2)
ここで、PNH3は炉内アンモニア分圧であり、PH2は炉内水素分圧である。窒化ポテンシャルKNは、ガス窒化炉内の雰囲気が有する窒化能力を表す指標として周知である。
At this time, the nitriding potential K N is defined by the following equation (2).
K N = P NH3 / P H2 3/2・ ・ ・ (2)
Here, P NH3 is the partial pressure of ammonia in the furnace, and P H2 is the partial pressure of hydrogen in the furnace. The nitriding potential K N is well known as an index showing the nitriding ability of the atmosphere in the gas nitriding furnace.
 一方、ガス窒化処理中の炉内では、当該炉内へ導入されたアンモニアガスの一部が、式(3)の反応にしたがって水素ガスと窒素ガスとに熱分解する。
         NH3→1/2N2+3/2H2   ・・・(3)
On the other hand, in the furnace during the gas nitriding treatment, a part of the ammonia gas introduced into the furnace is thermally decomposed into hydrogen gas and nitrogen gas according to the reaction of the formula (3).
NH 3 → 1 / 2N 2 + 3 / 2H 2・ ・ ・ (3)
 炉内では、主に式(3)の反応が生じており、式(1)の窒化反応は量的にはほとんど無視できる。したがって、式(3)の反応で消費された炉内アンモニア濃度または式(3)の反応で発生された水素ガス濃度が分かれば、窒化ポテンシャルを演算することができる。すなわち、発生される水素及び窒素は、アンモニア1モルから、それぞれ1.5モルと0.5モルであるから、炉内アンモニア濃度を測定すれば炉内水素濃度も分かり、窒化ポテンシャルを演算することができる。あるいは、炉内水素濃度を測定すれば、炉内アンモニア濃度が分かり、やはり窒化ポテンシャルを演算することができる。 The reaction of formula (3) mainly occurs in the furnace, and the nitriding reaction of formula (1) can be almost ignored in terms of quantity. Therefore, the nitriding potential can be calculated if the concentration of ammonia in the furnace consumed in the reaction of the equation (3) or the concentration of hydrogen gas generated in the reaction of the equation (3) is known. That is, hydrogen and nitrogen generated are 1.5 mol and 0.5 mol, respectively, from 1 mol of ammonia. Therefore, if the ammonia concentration in the furnace is measured, the hydrogen concentration in the furnace can be known, and the nitriding potential can be calculated. You can Alternatively, if the hydrogen concentration in the furnace is measured, the ammonia concentration in the furnace can be known, and the nitriding potential can be calculated.
 なお、ガス窒化炉内に流されたアンモニアガスは、炉内を循環した後、炉外へ排出される。すなわち、ガス窒化処理では、炉内の既存ガスに対して、フレッシュ(新た)なアンモニアガスを炉内へ絶えず流入させることにより、当該既存ガスが炉外へ排出され続ける(供給圧で押し出される)。 The ammonia gas flown into the gas nitriding furnace is circulated in the furnace and then discharged to the outside of the furnace. That is, in the gas nitriding treatment, the fresh (new) ammonia gas is constantly introduced into the furnace with respect to the existing gas in the furnace, so that the existing gas is continuously discharged to the outside of the furnace (pushed out by the supply pressure). ..
 ここで、炉内へ導入されるアンモニアガスの流量が少なければ、炉内でのガス滞留時間が長くなるため、分解されるアンモニアガスの量が増加して、当該分解反応によって発生される窒素ガス+水素ガスの量は増加する。一方、炉内へ導入されるアンモニアガスの流量が多ければ、分解されずに炉外へ排出されるアンモニアガスの量が増加して、炉内で発生される窒素ガス+水素ガスの量は減少する。 Here, if the flow rate of the ammonia gas introduced into the furnace is small, the gas residence time in the furnace becomes long, so that the amount of the decomposed ammonia gas increases and the nitrogen gas generated by the decomposition reaction is increased. + The amount of hydrogen gas increases. On the other hand, if the flow rate of ammonia gas introduced into the furnace is large, the amount of ammonia gas that is not decomposed and discharged outside the furnace will increase, and the amount of nitrogen gas + hydrogen gas generated in the furnace will decrease. To do.
 さて、図7は、本発明の一実施形態による窒化鋼部材を製造するための製造装置を示す概略図である。図7に示すように、本実施形態の製造装置1は、循環型処理炉2を備えており、当該循環型処理炉2内へ導入するガスとして、アンモニアとアンモニア分解ガスの2種類のみを用いている。アンモニア分解ガスとは、AXガスとも呼ばれるガスで、1:3の比率の窒素と水素とからなる混合ガスである。もっとも、導入ガスとしては、(1)アンモニアガスのみ、(2)アンモニアとアンモニア分解ガスの2種類のみ、(3)アンモニアと窒素ガスの2種類のみ、または、(4)アンモニアとアンモニア分解ガスと窒素ガスの3種類のみ、から選択され得る。 Now, FIG. 7 is a schematic view showing a manufacturing apparatus for manufacturing a nitrided steel member according to an embodiment of the present invention. As shown in FIG. 7, the manufacturing apparatus 1 of the present embodiment includes a circulation type processing furnace 2, and uses only two types of gas, ammonia and ammonia decomposition gas, as the gas to be introduced into the circulation type processing furnace 2. ing. The ammonia decomposition gas is also called AX gas, and is a mixed gas of nitrogen and hydrogen in a ratio of 1: 3. However, as the introduction gas, (1) only ammonia gas, (2) only two kinds of ammonia and ammonia decomposition gas, (3) only two kinds of ammonia and nitrogen gas, or (4) ammonia and ammonia decomposition gas Only three types of nitrogen gas can be selected.
 循環型処理炉2の断面構造例を、図8に示す。図8において、炉壁(ベルとも呼ばれる)201の中に、レトルトと呼ばれる円筒202が配置され、更にその内側に内部レトルトと呼ばれる円筒204が配置されている。ガス導入管205から供給される導入ガスは、図中の矢印に示されるように、被処理品の周囲を通過した後、攪拌扇203の作用によって2つの円筒202、204間の空間を通過して循環する。206は、フレア付きのガスフードであり、207は、熱電対であり、208は冷却作業用の蓋であり、209は、冷却作業用のファンである。当該循環型処理炉2は、横型ガス窒化炉とも呼ばれており、その構造自体は公知のものである。 Fig. 8 shows an example of a cross-sectional structure of the circulation type processing furnace 2. In FIG. 8, a cylinder 202 called a retort is arranged in a furnace wall (also called a bell) 201, and a cylinder 204 called an inner retort is arranged inside the cylinder 202. The introduction gas supplied from the gas introduction pipe 205 passes around the object to be treated and then passes through the space between the two cylinders 202 and 204 by the action of the stirring fan 203, as shown by the arrow in the figure. Circulate. 206 is a gas hood with a flare, 207 is a thermocouple, 208 is a lid for cooling work, and 209 is a fan for cooling work. The circulation type processing furnace 2 is also called a horizontal gas nitriding furnace, and its structure itself is known.
 被処理品Sは、炭素鋼または低合金鋼であって、例えば自動車部品であるクランクシャフトやギア等である。 The processed product S is carbon steel or low alloy steel, and is, for example, a crankshaft or a gear which is an automobile part.
 また、図7に示すように、本実施形態の表面硬化処理装置1の処理炉2には、炉開閉蓋7と、攪拌ファン8と、攪拌ファン駆動モータ9と、雰囲気ガス濃度検出装置3と、窒化ポテンシャル調節計4と、プログラマブルロジックコントローラ30と、炉内導入ガス供給部20と、が設けられている。 Further, as shown in FIG. 7, in the processing furnace 2 of the surface hardening processing apparatus 1 of the present embodiment, a furnace opening / closing lid 7, a stirring fan 8, a stirring fan drive motor 9, and an atmospheric gas concentration detecting device 3 are provided. A nitriding potential controller 4, a programmable logic controller 30, and a furnace introduction gas supply unit 20 are provided.
 攪拌ファン8は、処理炉2内に配置されており、処理炉2内で回転して、処理炉2内の雰囲気を攪拌するようになっている。攪拌ファン駆動モータ9は、攪拌ファン8に連結されており、攪拌ファン8を任意の回転速度で回転させるようになっている。 The stirring fan 8 is arranged in the processing furnace 2 and rotates in the processing furnace 2 to stir the atmosphere in the processing furnace 2. The stirring fan drive motor 9 is connected to the stirring fan 8 and rotates the stirring fan 8 at an arbitrary rotation speed.
 雰囲気ガス濃度検出装置3は、処理炉2内の水素濃度またはアンモニア濃度を炉内雰囲気ガス濃度として検出可能なセンサにより構成されている。当該センサの検出本体部は、雰囲気ガス配管12を介して処理炉2の内部と連通している。雰囲気ガス配管12は、本実施形態においては、雰囲気ガス濃度検出装置3のセンサ本体部と処理炉2とを直接連通させる経路で形成され、途中で排ガス燃焼分解装置41へ繋がる炉内ガス廃棄配管40が接続されている。これにより、雰囲気ガスは、廃棄されるガスと雰囲気ガス濃度検出装置3に供給されるガスとに分配される。 The atmosphere gas concentration detection device 3 is composed of a sensor capable of detecting the hydrogen concentration or the ammonia concentration in the processing furnace 2 as the furnace atmosphere gas concentration. The detection body of the sensor communicates with the inside of the processing furnace 2 via the atmosphere gas pipe 12. In the present embodiment, the atmospheric gas pipe 12 is formed in a path that directly connects the sensor main body of the atmospheric gas concentration detection device 3 and the processing furnace 2, and the in-furnace gas waste pipe connected to the exhaust gas combustion decomposition device 41 on the way. 40 is connected. As a result, the atmospheric gas is distributed between the discarded gas and the gas supplied to the atmospheric gas concentration detection device 3.
 また、雰囲気ガス濃度検出装置3は、炉内雰囲気ガス濃度を検出した後、当該検出濃度を含む情報信号を、窒化ポテンシャル調節計4へ出力するようになっている。 Further, the atmospheric gas concentration detection device 3 is adapted to output an information signal including the detected concentration to the nitriding potential controller 4 after detecting the atmospheric gas concentration in the furnace.
 窒化ポテンシャル調節計4は、炉内窒化ポテンシャル演算装置13と、ガス流量出力調整装置30と、を有している。また、プログラマブルロジックコントローラ31は、ガス導入量制御装置14と、パラメータ設定装置15と、を有している。 The nitriding potential controller 4 has an in-furnace nitriding potential calculating device 13 and a gas flow rate output adjusting device 30. The programmable logic controller 31 also includes a gas introduction amount control device 14 and a parameter setting device 15.
 炉内窒化ポテンシャル演算装置13は、炉内雰囲気ガス濃度検出装置3によって検出される水素濃度またはアンモニア濃度に基づいて、処理炉2内の窒化ポテンシャルを演算するようになっている。具体的には、実際の炉内導入ガスに応じてプログラムされた窒化ポテンシャルの演算式が組み込まれており、炉内雰囲気ガス濃度の値から窒化ポテンシャルを演算するようになっている。 The in-furnace nitriding potential calculation device 13 is configured to calculate the nitriding potential in the processing furnace 2 based on the hydrogen concentration or the ammonia concentration detected by the in-furnace atmosphere gas concentration detection device 3. Specifically, a calculation formula of the nitriding potential programmed according to the actual gas introduced into the furnace is incorporated, and the nitriding potential is calculated from the value of the atmospheric gas concentration in the furnace.
 パラメータ設定装置15は、例えばタッチパネルからなり、炉内導入ガスの総流量、ガス種、処理温度、目標窒化ポテンシャル、等をそれぞれ設定入力できるようになっている。設定入力された各設定パラメータ値は、ガス流量出力調整手段30へ伝送されるようになっている。 The parameter setting device 15 is composed of, for example, a touch panel, and can set and input the total flow rate of the gas introduced into the furnace, the gas type, the processing temperature, the target nitriding potential, and the like. Each setting parameter value that has been set and input is transmitted to the gas flow rate output adjusting means 30.
 そして、ガス流量出力調整手段30が、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、アンモニアガスとアンモニア分解ガスの各々の導入量を入力値とした制御を実施するようになっている。より具体的には、アンモニア分解ガスの炉内導入量を一定とし且つアンモニアガスの炉内導入量を変化させる制御を実施できるようになっている。ガス流量出力調整手段30の出力値は、ガス導入量制御手段14へ伝達されるようになっている。 Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-furnace nitriding potential calculating device 13 as the output value, sets the target nitriding potential (set nitriding potential) as the target value, and outputs the ammonia gas and the ammonia decomposition gas. The control is carried out with each introduced amount as an input value. More specifically, it is possible to perform control such that the amount of ammonia decomposition gas introduced into the furnace is constant and the amount of ammonia gas introduced into the furnace is changed. The output value of the gas flow rate output adjusting means 30 is transmitted to the gas introduction amount control means 14.
 ガス導入量制御手段14は、各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22とアンモニア分解ガス用の第2供給量制御装置26とにそれぞれ制御信号を送るようになっている。 The gas introduction amount control means 14 sends a control signal to each of the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas. It has become.
 本実施形態の炉内導入ガス供給部20は、アンモニアガス用の第1炉内導入ガス供給部21と、第1供給量制御装置22と、第1供給弁23と、第1流量計24と、を有している。また、本実施形態の炉内導入ガス供給部20は、アンモニア分解ガス(AXガス)用の第2炉内導入ガス供給部25と、第2供給量制御装置26と、第2供給弁27と、第2流量計28と、を有している。 The in-reactor introduction gas supply unit 20 of the present embodiment includes a first in-reactor introduction gas supply unit 21 for ammonia gas, a first supply amount control device 22, a first supply valve 23, and a first flow meter 24. ,have. Further, the in-reactor introduction gas supply unit 20 of the present embodiment includes a second in-reactor introduction gas supply unit 25 for ammonia decomposition gas (AX gas), a second supply amount control device 26, and a second supply valve 27. , And a second flow meter 28.
 本実施形態では、アンモニアガスとアンモニア分解ガスとは、処理炉2内に入る前の炉内導入ガス導入配管29内で混合されるようになっている。 In this embodiment, the ammonia gas and the ammonia decomposition gas are mixed in the furnace introduction gas introduction pipe 29 before entering the processing furnace 2.
 第1炉内導入ガス供給部21は、例えば、第1炉内導入ガス(本例ではアンモニアガス)を充填したタンクにより形成されている。 The first furnace introduction gas supply unit 21 is formed of, for example, a tank filled with the first furnace introduction gas (ammonia gas in this example).
 第1供給量制御装置22は、マスフローコントローラにより形成されており、第1炉内導入ガス供給部21と第1供給弁23との間に介装されている。第1供給量制御装置22の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第1供給量制御装置22は、第1炉内導入ガス供給部21から第1供給弁23への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。 The first supply amount control device 22 is formed by a mass flow controller and is interposed between the first in-furnace introduced gas supply unit 21 and the first supply valve 23. The opening degree of the first supply amount control device 22 changes according to the control signal output from the gas introduction amount control means 14. Further, the first supply amount control device 22 detects the supply amount from the first in-furnace introduction gas supply part 21 to the first supply valve 23, and sends an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output. The control signal can be used for correction of the control by the gas introduction amount control means 14 or the like.
 第1供給弁23は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第1供給量制御装置22と第1流量計24との間に介装されている。 The first supply valve 23 is formed by an electromagnetic valve that switches between open and closed states according to a control signal output by the gas introduction amount control means 14, and is provided between the first supply amount control device 22 and the first flow meter 24. It is installed.
 第2炉内導入ガス供給部25は、例えば、第2炉内導入ガス(本例ではアンモニア分解ガス)を充填したタンクにより形成されている。 The second-furnace-introduced-gas supply unit 25 is formed of, for example, a tank filled with the second-furnace-introduced gas (in this example, an ammonia decomposition gas).
 第2供給量制御装置26は、マスフローコントローラにより形成されており、第2炉内導入ガス供給部25と第1供給弁27との間に介装されている。第1供給量制御装置26の開度が、ガス導入量制御手段14から出力される制御信号に応じて変化する。また、第3供給量制御装置26は、第2炉内導入ガス供給部25から第2供給弁27への供給量を検出し、この検出した供給量を含む情報信号をガス導入制御手段14へ出力するようになっている。当該制御信号は、ガス導入量制御手段14による制御の補正等に用いられ得る。 The second supply amount control device 26 is formed by a mass flow controller and is interposed between the second in-furnace introduced gas supply unit 25 and the first supply valve 27. The opening degree of the first supply amount control device 26 changes according to the control signal output from the gas introduction amount control means 14. Further, the third supply amount control device 26 detects the supply amount from the second in-furnace introduction gas supply unit 25 to the second supply valve 27, and sends an information signal including the detected supply amount to the gas introduction control means 14. It is designed to output. The control signal can be used for correction of the control by the gas introduction amount control means 14 or the like.
 第2供給弁27は、ガス導入量制御手段14が出力する制御信号に応じて開閉状態を切り換える電磁弁により形成されており、第2供給量制御装置26と第2流量計28との間に介装されている。 The second supply valve 27 is formed by an electromagnetic valve that switches between open and closed states in accordance with a control signal output by the gas introduction amount control means 14, and is provided between the second supply amount control device 26 and the second flow meter 28. It is installed.
(窒化鋼部材の製造装置の作用(製造方法))
 次に、本実施形態の製造装置1の作用について説明する。まず、循環型処理炉2内に被処理品Sが投入され、循環型処理炉2が所望の処理温度に加熱される。その後、炉内導入ガス供給部20からアンモニアガスとアンモニア分解ガスとの混合ガス、あるいはアンモニアガスのみ、が設定初期流量で処理炉2内へ導入される。この設定初期流量も、パラメータ設定装置15において設定入力可能であり、第1供給量制御装置22及び第2供給量制御装置26(共にマスフローコントローラ)によって制御される。また、攪拌ファン駆動モータ9が駆動されて攪拌ファン8が回転し、処理炉2内の雰囲気を攪拌する。
(Operation of manufacturing apparatus for nitrided steel member (manufacturing method))
Next, the operation of the manufacturing apparatus 1 of this embodiment will be described. First, the object S to be processed is put into the circulation type processing furnace 2 and the circulation type processing furnace 2 is heated to a desired processing temperature. Then, a mixed gas of ammonia gas and ammonia decomposition gas, or only ammonia gas is introduced into the processing furnace 2 from the in-furnace introduction gas supply unit 20 at a set initial flow rate. This set initial flow rate can also be set and input in the parameter setting device 15, and is controlled by the first supply amount control device 22 and the second supply amount control device 26 (both mass flow controllers). Further, the stirring fan drive motor 9 is driven to rotate the stirring fan 8 to stir the atmosphere in the processing furnace 2.
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、炉内の窒化ポテンシャルを演算し(最初は極めて高い値である(炉内に水素が存在しないため)がアンモニアガスの分解(水素発生)が進行するにつれて低下してくる)、目標窒化ポテンシャルと基準偏差値との和を下回ったか否かを判定する。この基準偏差値も、パラメータ設定装置15において設定入力可能である。 The in-reactor nitriding potential calculation device 13 of the nitriding potential controller 4 calculates the in-reactor nitriding potential (initially, the value is extremely high (because hydrogen does not exist in the furnace), but decomposition of ammonia gas (hydrogen generation)). Becomes lower as the value of the target nitriding potential advances), it is determined whether or not it is below the sum of the target nitriding potential and the reference deviation value. This reference deviation value can also be set and input in the parameter setting device 15.
 炉内窒化ポテンシャルの演算値が目標窒化ポテンシャルと基準偏差値との和を下回ったと判定されると、窒化ポテンシャル調節計4は、ガス導入量制御手段14を介して、炉内導入ガスの導入量の制御を開始する。 When it is determined that the calculated value of the in-furnace nitriding potential is less than the sum of the target nitriding potential and the reference deviation value, the nitriding potential controller 4 causes the gas introduction amount control means 14 to introduce the introduced gas amount in the furnace. Control of.
 窒化ポテンシャル調節計4の炉内窒化ポテンシャル演算装置13は、入力される水素濃度信号またはアンモニア濃度信号に基づいて炉内窒化ポテンシャルを演算する。そして、ガス流量出力調整手段30は、炉内窒化ポテンシャル演算装置13によって演算された窒化ポテンシャルを出力値とし、目標窒化ポテンシャル(設定された窒化ポテンシャル)を目標値とし、炉内導入ガスの導入量を入力値としたPID制御を実施する。具体的には、当該PID制御において、アンモニア分解ガスの炉内導入量を一定とし且つアンモニアガスの炉内導入量を変化させる制御を実施するようになっている。当該PID制御においては、パラメータ設定装置15にて設定入力された各設定パラメータ値が用いられる。この設定パラメータ値は、例えば、目標窒化ポテンシャルの値に応じて異なる値が用意されている。 The in-reactor nitriding potential calculator 13 of the nitriding potential controller 4 calculates the in-reactor nitriding potential based on the input hydrogen concentration signal or ammonia concentration signal. Then, the gas flow rate output adjusting means 30 sets the nitriding potential calculated by the in-reactor nitriding potential calculation device 13 as an output value, sets the target nitriding potential (set nitriding potential) as a target value, and introduces the amount of introduced gas in the furnace. PID control is performed with the input value of. Specifically, in the PID control, control is performed so that the amount of ammonia decomposition gas introduced into the furnace is constant and the amount of ammonia gas introduced into the furnace is changed. In the PID control, each setting parameter value set and input by the parameter setting device 15 is used. For this setting parameter value, for example, different values are prepared depending on the value of the target nitriding potential.
 そして、ガス流量出力調整手段30が、PID制御の結果として、炉内導入ガスの各々の導入量を制御する。具体的には、ガス流量出力調整手段30が、各ガスの流量を決定し、当該出力値がガス導入量制御手段14へ伝達される。 Then, the gas flow rate output adjusting means 30 controls the amount of each introduced gas in the furnace as a result of the PID control. Specifically, the gas flow rate output adjusting means 30 determines the flow rate of each gas, and the output value is transmitted to the gas introduction amount control means 14.
 ガス導入量制御手段14は、各ガスの導入量を実現するべく、アンモニアガス用の第1供給量制御装置22とアンモニア分解ガス用の第2供給量制御装置26とにそれぞれ制御信号を送る。 The gas introduction amount control means 14 sends control signals to the first supply amount control device 22 for ammonia gas and the second supply amount control device 26 for ammonia decomposition gas in order to realize the introduction amount of each gas.
 以上のような制御により、炉内窒化ポテンシャルを目標窒化ポテンシャルの近傍に安定的に制御することができる。これにより、被処理品Sの浸窒処理を極めて高品質に行うことができる。 By the above control, the in-furnace nitriding potential can be controlled stably near the target nitriding potential. As a result, the nitrification process of the object S can be performed with extremely high quality.
 以上のような制御の一例を、図9A及び図9Bに示す。アンモニア分解ガスの炉内導入量が一定であり、アンモニアガスの炉内導入量が40(l/min)の近傍で小刻みにフィードバック制御されている。この結果、窒化ポテンシャルが0.17に高精度に制御されている。 An example of the above control is shown in FIGS. 9A and 9B. The amount of ammonia decomposed gas introduced into the furnace is constant, and the amount of ammonia gas introduced into the furnace is feedback-controlled little by little in the vicinity of 40 (l / min). As a result, the nitriding potential is controlled to 0.17 with high accuracy.
 更に、被処理品Sの材料種類や形状によっては、当該製造装置1において浸窒処理後の冷却工程をも実施することが可能である。しかし、当該製造装置1の冷却速度では処理後に十分な硬さが得られない場合は、当該製造装置1での浸窒処理後、加熱温度を保持した状態で、被処理品Sを炉外の急冷装置(例えば油槽)へ搬送し、その後に急冷することが必要である。あるいは、製造装置1において冷却した後の被処理品Sを製造装置1から取り出して、急冷装置を備えた別の加熱炉において加熱温度まで再度昇温し、その後に急冷することが必要である。 Further, depending on the material type and shape of the product S to be processed, it is possible to perform the cooling process after the nitrification process in the manufacturing apparatus 1. However, when sufficient hardness cannot be obtained after the processing at the cooling rate of the manufacturing apparatus 1, the workpiece S is removed from the furnace while the heating temperature is maintained after the nitrification processing in the manufacturing apparatus 1. It is necessary to transport it to a quenching device (for example, an oil tank) and then quench it. Alternatively, it is necessary to take out the workpiece S after cooling in the manufacturing apparatus 1 from the manufacturing apparatus 1, raise the temperature again to the heating temperature in another heating furnace equipped with a quenching apparatus, and then quench the material.
 本件発明者の検討によれば、1.0%以上の窒素で安定化したオーステナイト組織は、冷却速度が遅いとブラウナイト(フェライト相とγ’相の層状組織)となり、硬さや疲労強度の低下を招く懸念がある。従って、ガス冷却や空冷を採用する場合には、部品毎にその冷却速度を最適化することが重要である。一方、油冷を採用する場合には、一般的な部品であればオーステナイト組織を保持することが十分に可能である。 According to the study by the present inventors, the austenite structure stabilized by 1.0% or more nitrogen becomes brownite (a lamellar structure of ferrite phase and γ'phase) when the cooling rate is slow, and the hardness and the fatigue strength decrease. There is a concern that Therefore, when gas cooling or air cooling is adopted, it is important to optimize the cooling rate for each component. On the other hand, when the oil cooling is adopted, it is possible to sufficiently maintain the austenite structure in the case of general parts.
(案内筒(内部レトルト)の重要性について)
 また、本件発明者の実験によれば、製造装置1から案内筒5(内部レトルト)を取り除いて窒化処理を実施した場合(比較例)には、窒化ポテンシャルの炉内均一性が低下して、処理の均一性が低下することが確認された。
(About the importance of the guide tube (internal retort))
Further, according to the experiment by the present inventor, when the guide tube 5 (internal retort) is removed from the manufacturing apparatus 1 to perform the nitriding treatment (comparative example), the uniformity of the nitriding potential in the furnace decreases, It was confirmed that the uniformity of treatment was reduced.
(硬度及び疲労強度の検証)
 図10に示すような形状のS45C鋼を対象にして、後記する表2に示す実施例及び比較例の各条件で処理を行って、小野式回転曲げ疲労試験機(島津製作所、H6型)を用いて回転曲げ疲労強度を評価した。試験荷重を変化(高いところから25MPa刻みで下げていく)させて、107回に達する寿命(107 回疲労強度)を調査した。回転数は3600rpmで共通とした。表面の残留応力は、微小部X線残留応力測定装置(株式会社Rigaku製AutoMATE)を用い、試験片の平行部(RD方向)に対して、sin2ψ法によるX線残留応力測定法によって測定された。より具体的には、表1に示す条件で行った。なお、ε相の応力定数は、-611MPa/degとされた。
Figure JPOXMLDOC01-appb-T000001
(Verification of hardness and fatigue strength)
A S45C steel having a shape as shown in FIG. 10 was subjected to treatment under the conditions of Examples and Comparative Examples shown in Table 2 described later, and an Ono-type rotary bending fatigue tester (H6 type, Shimadzu Corporation) was used. The rotary bending fatigue strength was evaluated by using. Change the test load, dried (high going down in 25MPa increments from the place), was examined life (10 7 times fatigue strength) to reach the 10 7 times. The rotation speed was 3600 rpm and common. The residual stress on the surface is measured by an X-ray residual stress measuring method by the sin 2 ψ method with respect to the parallel part (RD direction) of the test piece, using a minute part X-ray residual stress measuring device (AutoMATE manufactured by Rigaku Co., Ltd.). Was done. More specifically, it was performed under the conditions shown in Table 1. The stress constant of the ε phase was −611 MPa / deg.
Figure JPOXMLDOC01-appb-T000001
 実施例1では、処理温度640℃、窒化ポテンシャル0.12、処理時間2時間、の浸窒処理後、油冷を実施した。その結果、オーステナイト組織による硬化層が、表面に22μmの厚さで得られた。表面から100μmの深さでの拡散層硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、116HV(>100HV)であった。また、疲労強度性能も十分であった。 In Example 1, the treatment temperature was 640 ° C., the nitriding potential was 0.12, and the treatment time was 2 hours. As a result, a hardened layer having an austenite structure was obtained on the surface with a thickness of 22 μm. The difference (ΔHV) between the hardness of the diffusion layer at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 116 HV (> 100 HV). Also, the fatigue strength performance was sufficient.
 実施例2では、処理温度640℃、窒化ポテンシャル0.13、処理時間2時間、の浸窒処理後、油冷を実施した。その結果、表面にγ’相を(体積比で60%以上)有する化合物層が2μm、その下部にオーステナイト組織による硬化層が22μmの厚さで得られた。表面から100μmの深さでの拡散層硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、112HV(>100HV)であった。また、疲労強度性能も十分であった。 In Example 2, the treatment temperature was 640 ° C., the nitriding potential was 0.13, and the treatment time was 2 hours. As a result, a compound layer having a γ ′ phase (60% or more in volume ratio) on the surface was 2 μm, and a hardened layer having an austenite structure was 22 μm below the compound layer. The difference (ΔHV) between the hardness of the diffusion layer at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 112 HV (> 100 HV). Also, the fatigue strength performance was sufficient.
 実施例3では、処理温度640℃、窒化ポテンシャルが0.17、処理時間2時間、の浸窒処理後、油冷を実施した。その結果、表面にε相を(体積比で60%以上)有する化合物層が12μm、その下部にオーステナイト組織による硬化層が20μmmの厚さで得られた。表面から100μmの深さでの拡散層硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、116HV(>100HV)であった。また、表面の残留応力値は-200MPaであって、疲労強度も十分であった。 In Example 3, after the nitrification treatment at the treatment temperature of 640 ° C., the nitriding potential of 0.17, and the treatment time of 2 hours, the oil cooling was performed. As a result, a compound layer having an ε-phase (60% or more by volume ratio) on the surface was obtained in a thickness of 12 μm, and a hardened layer having an austenite structure was obtained in a thickness of 20 μmm below the compound layer. The difference (ΔHV) between the hardness of the diffusion layer at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 116 HV (> 100 HV). Further, the residual stress value on the surface was -200 MPa, and the fatigue strength was sufficient.
 実施例4では、処理温度640℃、窒化ポテンシャルが0.22、処理時間2時間、の浸窒処理後、油冷を実施した。その結果、表面にε相を(体積比で60%以上)有する化合物層が21μm、その下部にオーステナイト組織による硬化層が13μmmの厚さで得られた。表面から100μmの深さでの拡散層硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、112HV(>100HV)であった。また、表面の残留応力値は-311MPaであって、疲労強度性能も十分であった。 In Example 4, after the nitrification treatment at the treatment temperature of 640 ° C., the nitriding potential of 0.22, and the treatment time of 2 hours, the oil cooling was performed. As a result, a compound layer having an ε-phase (60% or more by volume ratio) on the surface was obtained in a thickness of 21 μm, and a hardened layer having an austenite structure was formed thereunder with a thickness of 13 μm. The difference (ΔHV) between the hardness of the diffusion layer at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 112 HV (> 100 HV). Further, the surface residual stress value was −311 MPa, and the fatigue strength performance was also sufficient.
 実施例5では、処理温度640℃、窒化ポテンシャルが0.3、処理時間2時間、の浸窒処理後、油冷を実施した。その結果、表面にε相を(体積比で60%以上)有する化合物層が30μm、その下部にオーステナイト組織による硬化層が10μmmの厚さで得られた。表面から100μmの深さでの拡散層硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、115HV(>100HV)であった。また、表面の残留応力値は-438MPaであって、疲労強度性能も十分であった。 In Example 5, the treatment temperature was 640 ° C., the nitriding potential was 0.3, and the treatment time was 2 hours. As a result, a compound layer having an ε-phase (60% or more by volume) on the surface was obtained in a thickness of 30 μm, and a hardened layer having an austenite structure in a thickness of 10 μmm was obtained under the compound layer. The difference (ΔHV) between the hardness of the diffusion layer at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 115 HV (> 100 HV). Further, the surface residual stress value was -438 MPa, and the fatigue strength performance was also sufficient.
 比較例1では、処理温度640℃、窒化ポテンシャル0.17、処理時間2時間の浸窒処理後、油冷を実施し、更に250℃で2時間の再加熱処理を実施した。その結果、表面側にε相を有する(γ’相の混在も認められる)化合物層が11μm、その下部にオーステナイト組織による硬化層が18μmの厚さで得られた。表面から100μmの深さでの拡散層硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、94HV(<100HV)であり、表面の残留応力値は4MPa(>-200MPa)であり(引張残留応力が存在していた)、疲労強度性能は各実施例と比較して不十分であった。 In Comparative Example 1, the treatment temperature was 640 ° C., the nitriding potential was 0.17, and the treatment time was 2 hours. After the nitrification treatment, oil cooling was performed, and further, reheating treatment was performed at 250 ° C. for 2 hours. As a result, a compound layer having an ε phase on the surface side (a mixture of γ ′ phases was also observed) was 11 μm, and a hardened layer having an austenite structure was formed in a thickness of 18 μm below the compound layer. The difference (ΔHV) between the hardness of the diffusion layer at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface is 94 HV (<100 HV), and the residual stress value on the surface is 4 MPa (> -200 MPa). Yes (there was a tensile residual stress), and the fatigue strength performance was insufficient as compared with each example.
 比較例2では、処理温度640℃、窒化ポテンシャル0.17、処理時間2時間の浸窒処理後、油冷を実施し、更に200℃で1時間の再加熱処理を実施した。その結果、表面側にε相を有する(γ’相の混在も認められる)化合物層が12μm、その下部にオーステナイト組織による硬化層が19μmの厚さで得られた。表面から100μmの深さでの拡散層硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、102HV(>100HV)であったが、表面の残留応力値は-59MPa(>-200MPa)であり、疲労強度性能は各実施例と比較して不十分であった。 In Comparative Example 2, the treatment temperature was 640 ° C., the nitriding potential was 0.17, the treatment time was 2 hours, the oil cooling was performed, and the reheating treatment was further performed at 200 ° C. for 1 hour. As a result, a compound layer having an ε phase on the surface side (a mixture of γ ′ phases was also observed) was 12 μm, and a hardened layer having an austenite structure was formed in a thickness of 19 μm below the compound layer. The difference (ΔHV) between the hardness of the diffusion layer at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 102 HV (> 100 HV), but the residual stress value on the surface was −59 MPa (> − 200 MPa), and the fatigue strength performance was insufficient as compared with each example.
 比較例3では、処理温度700℃(>660℃)、窒化ポテンシャル0.1、処理時間1.5時間の浸窒処理後、油冷を実施し、更に280℃で2時間の再加熱処理を実施した。その結果、表面に窒素マルテンサイト組織(オーステナイト組織でない)からなる硬化層が40μmの厚さで得られた。表面から100μmの深さでの拡散層硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、20HV(<100HV)であった。また、疲労強度性能も不十分であった。(再加熱処理を実施する場合に有効な発明については、本件出願人によって特願2017-251028が出願されている。) In Comparative Example 3, the treatment temperature was 700 ° C. (> 660 ° C.), the nitriding potential was 0.1, the treatment time was 1.5 hours, and the oil cooling was performed, followed by the reheating treatment at 280 ° C. for 2 hours. Carried out. As a result, a hardened layer having a nitrogen martensite structure (not an austenite structure) was obtained on the surface in a thickness of 40 μm. The difference (ΔHV) between the hardness of the diffusion layer at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 20 HV (<100 HV). Also, the fatigue strength performance was insufficient. (For the invention effective when performing the reheating treatment, the applicant of the present application has filed Japanese Patent Application No. 2017-251028.)
 比較例4では、処理温度570℃(<610℃)、窒化ポテンシャル0.25、処理時間3.5時間、の浸窒処理後、油冷した。その結果、表面には10μmのγ’相リッチな化合物層が得られたが、硬化層に相当する層は得られなかった。そして、表面から100μmの深さでの拡散層硬さと表面から2mmの深さでの硬さとの差(ΔHV)は、129HV(>100HV)であったが、疲労強度性能は各実施例と比較して不十分であった。 In Comparative Example 4, the treatment temperature was 570 ° C. (<610 ° C.), the nitriding potential was 0.25, and the treatment time was 3.5 hours. As a result, a 10 μm γ ′ phase-rich compound layer was obtained on the surface, but a layer corresponding to the cured layer was not obtained. And, the difference (ΔHV) between the hardness of the diffusion layer at a depth of 100 μm from the surface and the hardness at a depth of 2 mm from the surface was 129 HV (> 100 HV), but the fatigue strength performance was compared with each example. Was insufficient.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1 窒化鋼部材の製造装置
2 循環型処理炉
3 雰囲気ガス濃度検出装置
4 窒化ポテンシャル調節計
5 内部レトルト
6 レトルト
7 炉開閉蓋
8 攪拌ファン
9 攪拌ファン駆動モータ
12 雰囲気ガス配管
13 炉内窒化ポテンシャル演算装置
14 ガス導入量制御装置
15 パラメータ設定装置(タッチパネル)
20 炉内ガス供給部
21 第1炉内導入ガス供給部
22 第1炉内ガス供給制御装置
23 第1供給弁
25 第2炉内導入ガス供給部
26 第2炉内ガス供給制御装置
27 第2供給弁
29 炉内導入ガス導入配管
30 ガス流量出力調整装置
31 プログラマブルロジックコントローラ
40 炉内ガス廃棄配管
41 排ガス燃焼分解装置
110 第1実施形態の窒化鋼部材
111 硬化層
112 拡散層
120 第2実施形態の窒化鋼部材
121 硬化層
122 拡散層
123 化合物層
130 第3実施形態の窒化鋼部材
131 硬化層
132 拡散層
201 炉壁またはベル
202 レトルト
203 撹拌扇
204 案内筒(内部レトルト)
205 ガス導入管
206 フレア付きのガス排気またはガスフード
207 熱電対
208 冷却作業用の蓋
209 冷却作業用の送風機
1 Nitrogen Steel Member Manufacturing Equipment 2 Circulation Type Processing Furnace 3 Atmosphere Gas Concentration Detector 4 Nitriding Potential Controller 5 Internal Retort 6 Retort 7 Furnace Open / Close Lid 8 Stirring Fan 9 Stirring Fan Drive Motor 12 Atmosphere Gas Piping 13 In-Nitriding Potential Calculation Device 14 Gas introduction amount control device 15 Parameter setting device (touch panel)
20 in-furnace gas supply unit 21 first in-furnace introduced gas supply unit 22 first in-furnace gas supply control device 23 first supply valve 25 second in-furnace introduced gas supply unit 26 second in-furnace gas supply control device 27 second Supply valve 29 Introduced gas introduction piping 30 Gas flow rate output adjustment device 31 Programmable logic controller 40 In-furnace gas waste piping 41 Exhaust gas combustion decomposition apparatus 110 Nitrided steel member 111 of the first embodiment Hardened layer 112 Diffusion layer 120 Second embodiment Nitride steel member 121 Hardened layer 122 Diffusion layer 123 Compound layer 130 Nitride steel member 131 of the third embodiment Hardened layer 132 Diffusion layer 201 Reactor wall or bell 202 Retort 203 Stirring fan 204 Guide tube (internal retort)
205 gas introduction pipe 206 gas exhaust or gas hood with flare 207 thermocouple 208 lid 209 for cooling work blower for cooling work

Claims (6)

  1.  炭素鋼または低合金鋼を母相とする窒化鋼部材であって、
     表面に、質量%で窒素を1.0%以上含むオーステナイト組織を有する硬化層を備え、
     前記硬化層の下部に、前記母相内に窒素が拡散されている拡散層を備え、
     前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、
     前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、
     当該窒化鋼部材の表面から2mmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きい
    ことを特徴とする窒化鋼部材。
    A nitrided steel member having a carbon steel or a low alloy steel as a matrix phase,
    The surface is provided with a hardened layer having an austenite structure containing 1.0% by mass or more of nitrogen,
    In the lower part of the hardened layer, a diffusion layer in which nitrogen is diffused in the mother phase is provided,
    The hardened layer has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member,
    The diffusion layer extends from the surface of the nitrided steel member to a depth of more than 100 μm,
    A nitrided steel member, wherein the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more higher than the hardness at a depth of 2 mm from the surface of the nitrided steel member.
  2.  炭素鋼または低合金鋼を母相とする窒化鋼部材であって、
     表面側に、ε相を有する化合物層を備え、
     前記化合物層の表面の圧縮残留応力は、-200MPa以上であり、
     前期化合物層の下部に、質量%で窒素を1.0%以上含むオーステナイト組織を有する硬化層を備え、
     前記硬化層の更に下部に、前記母相内に窒素が拡散されている拡散層を備え、
     前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、
     前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、
     当該窒化鋼部材の表面から2mmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きい
    ことを特徴とする窒化鋼部材。
    A nitrided steel member having a carbon steel or a low alloy steel as a matrix phase,
    On the surface side, a compound layer having an ε phase is provided,
    The surface of the compound layer has a compressive residual stress of −200 MPa or more,
    A hardened layer having an austenite structure containing 1.0% or more of nitrogen in mass% is provided below the compound layer.
    Further provided below the hardened layer is a diffusion layer in which nitrogen is diffused in the mother phase,
    The hardened layer has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member,
    The diffusion layer extends from the surface of the nitrided steel member to a depth of more than 100 μm,
    A nitrided steel member, wherein the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more higher than the hardness at a depth of 2 mm from the surface of the nitrided steel member.
  3.  炭素鋼または低合金鋼を母相とする窒化鋼部材であって、
     表面側に、質量%で窒素を1.0%以上含むオーステナイト組織を有する硬化層を備え、
     前記硬化層の表面に、全体的または局所的に、10μm以下の厚さのγ’相を有する化合物層を備え、
     前記硬化層の下部に、前記母相内に窒素が拡散されている拡散層を備え、
     前記硬化層は、当該窒化鋼部材の表面から2μm~50μmの厚さを有しており、
     前記拡散層は、当該窒化鋼部材の表面から100μmを超える深さまで延在しており、
     当該窒化鋼部材の表面から2mmの深さにおける硬さよりも、当該窒化鋼部材の表面から100μmの深さにおける前記拡散層の硬さの方が、100HV以上大きい
    ことを特徴とする窒化鋼部材。
    A nitrided steel member having a carbon steel or a low alloy steel as a matrix phase,
    The surface side is provided with a hardened layer having an austenite structure containing 1.0% by mass or more of nitrogen,
    A compound layer having a γ ′ phase with a thickness of 10 μm or less is provided on the surface of the hardened layer as a whole or locally,
    In the lower part of the hardened layer, a diffusion layer in which nitrogen is diffused in the mother phase is provided,
    The hardened layer has a thickness of 2 μm to 50 μm from the surface of the nitrided steel member,
    The diffusion layer extends from the surface of the nitrided steel member to a depth of more than 100 μm,
    A nitrided steel member, wherein the hardness of the diffusion layer at a depth of 100 μm from the surface of the nitrided steel member is 100 HV or more higher than the hardness at a depth of 2 mm from the surface of the nitrided steel member.
  4.  炭素含有量が質量%で0.25%以上である炭素鋼を母相としている
    ことを特徴とする請求項1乃至3のいずれかに記載の窒化鋼部材。
    4. The nitrided steel member according to claim 1, wherein a carbon steel having a carbon content of 0.25% or more by mass is used as a matrix phase.
  5.  炭素含有量が質量%で0.1%以上、及び、クロム含有量が質量%で0.4%以上、である低合金鋼を母相としている
    ことを特徴とする請求項1乃至3のいずれかに記載の窒化鋼部材。
    4. A low alloy steel having a carbon content of 0.1% by mass% or more and a chromium content of 0.4% or more by mass% as a matrix phase. The nitrided steel member as described in 1.
  6.  案内筒と撹拌ファンとを有する循環型処理炉を備え、
     窒化処理時において、前記循環型処理炉内の温度範囲が、610℃~660℃に制御され、
     前記窒化処理時において、前記循環型処理炉内の窒化ポテンシャルを制御するために、アンモニアガスとアンモニア分解ガスとが前記循環型処理炉内に導入されるようになっている窒化鋼部材の製造装置であって、
     前記循環型処理炉内の窒化ポテンシャルは、前記アンモニア分解ガスの炉内導入量を一定とし且つ前記アンモニアガスの炉内導入量を変化させることで、0.06~0.3の範囲の目標の窒化ポテンシャルに制御されるようになっている
    ことを特徴とする窒化鋼部材の製造装置。
    A circulation type processing furnace having a guide cylinder and a stirring fan is provided,
    During the nitriding treatment, the temperature range in the circulation type treatment furnace is controlled to 610 ° C to 660 ° C,
    A device for manufacturing a nitrided steel member, wherein ammonia gas and ammonia decomposition gas are introduced into the circulation-type treatment furnace in order to control the nitriding potential in the circulation-type treatment furnace during the nitriding treatment. And
    The nitriding potential in the circulation type processing furnace is set to a target value in the range of 0.06 to 0.3 by keeping the amount of the ammonia decomposition gas introduced into the furnace constant and changing the amount of the ammonia gas introduced into the furnace. An apparatus for manufacturing a nitrided steel member, which is controlled by a nitriding potential.
PCT/JP2019/042887 2018-11-02 2019-10-31 Nitrided steel member, and method and apparatus for producing nitrided steel member WO2020090999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020554049A JPWO2020090999A1 (en) 2018-11-02 2019-10-31 Nitride steel member and manufacturing method and manufacturing equipment for nitrided steel member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018207525 2018-11-02
JP2018-207525 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020090999A1 true WO2020090999A1 (en) 2020-05-07

Family

ID=70462084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042887 WO2020090999A1 (en) 2018-11-02 2019-10-31 Nitrided steel member, and method and apparatus for producing nitrided steel member

Country Status (3)

Country Link
JP (1) JPWO2020090999A1 (en)
TW (1) TWI758650B (en)
WO (1) WO2020090999A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215526A1 (en) * 2021-04-09 2022-10-13 パーカー熱処理工業株式会社 Surface hardening treatment apparatus and surface hardening treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026627A (en) * 2009-07-21 2011-02-10 Oriental Engineering Co Ltd Apparatus and method for surface hardening treatment
JP2013053342A (en) * 2011-09-05 2013-03-21 Dowa Thermotech Kk Surface treatment method of steel member and treated article of steel member
JP2017036509A (en) * 2011-02-23 2017-02-16 Dowaサーモテック株式会社 Manufacturing method of nitrided steel member
WO2018066667A1 (en) * 2016-10-05 2018-04-12 新日鐵住金株式会社 Nitrided component and method for producing same
JP2019014956A (en) * 2017-07-07 2019-01-31 パーカー熱処理工業株式会社 Surface hardening apparatus and surface hardening method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658963A (en) * 1979-10-20 1981-05-22 Kiyoichi Ogawa Method and device for nitrified-layer stabilizing vapor coating processing
CN1106454C (en) * 1995-05-25 2003-04-23 空气及水株式会社 Nitrizing for steel
JP2775252B2 (en) * 1996-06-12 1998-07-16 ジー・ケー・エヌ・ヴィスコドライヴ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Steel sheet processing method
JP5656908B2 (en) * 2012-04-18 2015-01-21 Dowaサーモテック株式会社 Nitride steel member and manufacturing method thereof
JP6552209B2 (en) * 2015-02-10 2019-07-31 サンコール株式会社 Method and apparatus for manufacturing metal spring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026627A (en) * 2009-07-21 2011-02-10 Oriental Engineering Co Ltd Apparatus and method for surface hardening treatment
JP2017036509A (en) * 2011-02-23 2017-02-16 Dowaサーモテック株式会社 Manufacturing method of nitrided steel member
JP2013053342A (en) * 2011-09-05 2013-03-21 Dowa Thermotech Kk Surface treatment method of steel member and treated article of steel member
WO2018066667A1 (en) * 2016-10-05 2018-04-12 新日鐵住金株式会社 Nitrided component and method for producing same
JP2019014956A (en) * 2017-07-07 2019-01-31 パーカー熱処理工業株式会社 Surface hardening apparatus and surface hardening method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215526A1 (en) * 2021-04-09 2022-10-13 パーカー熱処理工業株式会社 Surface hardening treatment apparatus and surface hardening treatment method

Also Published As

Publication number Publication date
TW202024364A (en) 2020-07-01
JPWO2020090999A1 (en) 2021-12-02
TWI758650B (en) 2022-03-21

Similar Documents

Publication Publication Date Title
JP6636829B2 (en) Nitrided steel member and method of manufacturing nitrided steel
JP4101815B2 (en) Martensitic stainless steel hardened by carburizing and nitriding
EP3118346B1 (en) Nitriding method and nitrided part production method
US20150159259A1 (en) Low Alloy Steel Carburization and Surface Microalloying Process
CN102239273A (en) Carbonitrided member and process for producing carbonitrided member
CN104152916A (en) Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping
WO2019208534A1 (en) Nitrided steel member, and method and device for producing nitrided steel member
JP6287390B2 (en) Gas soft nitriding method of low alloy steel
Hosmani et al. An introduction to surface alloying of metals
WO2019131602A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
Li et al. Effect of pre-existing carbides prepared by different heat treatments on the nitriding behaviour during a carburizing and nitriding duplex treatment of an M50NiL steel
JP2017171951A (en) Steel component and production method thereof
WO2020090999A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
WO2020175453A1 (en) Nitriding steel member, and method and device for manufacturing nitriding steel member
JP7364895B2 (en) Steel parts and their manufacturing method
Widi et al. White layer control on AISI 316L using temperature and gas nitriding diffusion stage process
JP2015117412A (en) Nitriding treatment method, and nitrided article
JP2008121064A (en) Method for producing low strain quenched material
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
Tschiptschin et al. Surface hardening of stainless steel
EP3168314A1 (en) Method for heat treating metallic work pieces
JP2549038B2 (en) Method for carburizing heat treatment of high-strength gear with small strain and its gear
JP6447064B2 (en) Steel parts
EP3158104B1 (en) Ferrous alloy and its method of manufacture
WO2016182013A1 (en) Nitride steel member and method for manufacturing nitride steel member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879291

Country of ref document: EP

Kind code of ref document: A1