WO2020090424A1 - Relay optical system and telescope having relay optical system - Google Patents

Relay optical system and telescope having relay optical system Download PDF

Info

Publication number
WO2020090424A1
WO2020090424A1 PCT/JP2019/040255 JP2019040255W WO2020090424A1 WO 2020090424 A1 WO2020090424 A1 WO 2020090424A1 JP 2019040255 W JP2019040255 W JP 2019040255W WO 2020090424 A1 WO2020090424 A1 WO 2020090424A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens group
magnification
relay optical
lens
Prior art date
Application number
PCT/JP2019/040255
Other languages
French (fr)
Japanese (ja)
Inventor
京也 徳永
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2020090424A1 publication Critical patent/WO2020090424A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses

Definitions

  • the present invention relates to a relay optical system and a telescope having a relay optical system.
  • Some relay optical systems have a variable magnification function. Such a relay optical system is used for a variable magnification telescope or the like (see, for example, Patent Document 1).
  • a relay optical system is used for a variable magnification telescope or the like (see, for example, Patent Document 1).
  • Patent Document 1 In order to increase the image magnification of the relay optical system, it is necessary to increase the power of the lens unit that moves when changing the image magnification or increase the amount of movement of the lens unit. In this case, it is difficult to correct the aberration while keeping the total length of the relay optical system short.
  • a relay optical system is a relay optical system that re-images an image formed on a first image surface on a second image surface, and has positive refraction arranged in order from the first image surface side.
  • a fifth lens group having a force, and by moving the second lens group and the fourth lens group in directions opposite to each other along the optical axis, the imaging magnification of the relay optical system is changed.
  • the position of the third lens group on the optical axis is fixed, and the second lens group And the fourth lens group may move in directions opposite to each other along the optical axis and may be separated from the third lens group.
  • the telescope according to the second aspect includes an objective optical system, a relay optical system, and an eyepiece optical system, which are arranged in order from the object side, and the relay optical system includes the objective optical system and the objective optical system by the objective optical system.
  • the relay optical system according to the first aspect the image formed on the first image plane between the relay optical system and the relay optical system is re-imaged on the second image plane between the relay optical system and the eyepiece optical system. is there.
  • a telescope includes an objective optical system, a relay optical system, and an eyepiece optical system, which are arranged in order from the object side, and the objective optical system includes the relay optical system and the objective optical system.
  • An object image is formed on a first image plane between them, and the relay optical system re-images the object image of the first image plane on a second image plane between the eyepiece optical system and the relay optical system.
  • the relay optical system includes a first lens group having a positive refracting power, a second lens group having a positive refracting power, and a positive or negative refraction lens arranged in order from the first image plane side.
  • FIG. 4A, FIG. 4B, and FIG. 4C are graphs showing various aberrations when the image forming magnification of the relay optical system according to Example 1 is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. FIG. 5A, FIG. 5B, and FIG.
  • FIG. 5C are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the first example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. It is a figure which shows the movement of the lens when the imaging magnification of the relay optical system which concerns on 2nd Example changes from the minimum magnification to the maximum magnification.
  • FIG. 7A, FIG. 7B, and FIG. 7C are graphs showing various aberrations when the image forming magnification of the relay optical system according to the second example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is.
  • 8 (A), 8 (B), and 8 (C) are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the second example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. It is a figure which shows the movement of the lens when the imaging magnification of the relay optical system which concerns on 3rd Example changes from the minimum magnification to the maximum magnification. 10 (A), 10 (B), and 10 (C) are graphs showing various aberrations when the image forming magnification of the relay optical system according to the third example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is.
  • 11 (A), 11 (B), and 11 (C) are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the third example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is.
  • relay optical system according to the present embodiment and a telescope including the relay optical system will be described with reference to the drawings.
  • a relay optical system in which the overall length can be suppressed to be short and the imaging magnification can be changed to a high value and the aberration is favorably corrected will be described.
  • the relay optical system according to this embodiment has a variable power function and is used, for example, in telescopes such as rifle scopes and field scopes.
  • the telescope TLS includes an objective optical system OB, a relay optical system RL, and an eyepiece optical system EP, which are arranged in order from the object side (observation target side).
  • the objective optical system OB, the relay optical system RL, and the eyepiece optical system EP are each composed of a plurality of lenses.
  • the objective optical system OB collects light from an object (observation target) and forms an inverted image of the object on the first image plane IM1.
  • the relay optical system RL re-images the inverted image formed by the objective optical system OB as an erect image on the second image plane IM2.
  • a reticle Rtc provided with a predetermined pattern (for example, a cross pattern) is arranged on the second image plane IM2.
  • the reticle Rtc may be arranged on the first image plane IM1 as well as the second image plane IM2.
  • the relay optical system RL is capable of re-imaging an inverted image of an object by the objective optical system OB toward the eyepiece optical system EP at different magnifications. That is, it is possible to change the magnification as a telescope by changing the imaging magnification of the relay optical system RL. Thereby, the observer can observe the erect image of the object with different magnification through the eyepiece optical system EP.
  • magnification of the entire optical system including the relay optical system RL that is, the magnification of the entire telescope is represented by the following expression (A).
  • MT (fo / fe) ⁇ Mr (A)
  • MT magnification of telescope
  • TLS fo focal length of objective optical system
  • OB fe focal length of eyepiece optical system
  • EP Mr imaging magnification of relay optical system RL
  • the imaging magnification of the relay optical system RL can be set to a high magnification of approximately 1 ⁇ to approximately 8 ⁇ , as illustrated in Examples described later. Therefore, as can be seen from the formula (A), it is possible to achieve a high magnification ratio of 8 times or more for the entire telescope.
  • the relay optical system RL includes a first lens group G1 having a positive refractive power and a second lens having a positive refractive power, which are sequentially arranged from the first image plane IM1 side (object side). It includes a group G2, a third lens group G3 having a positive or negative refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power. It FIG. 2 shows a case where the third lens group G3 has a positive refractive power.
  • the second lens group G2 and the fourth lens group G4 By moving the second lens group G2 and the fourth lens group G4 monotonically in opposite directions along the optical axis AZ, the first optical plane IM1 and the second optical plane IM2 are fixed and the relay optics is fixed.
  • the imaging magnification of the system RL can be changed.
  • the second lens group G2 moves along the optical axis AZ toward the first image plane IM1 side ( To the first lens group G1)
  • the fourth lens group G4 moves to the second image plane IM2 side (toward the fifth lens group G5) along the optical axis AZ, and moves away from the third lens group G3. .
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed on the optical axis AZ.
  • the first lens group G1 is a fixed group having a positive refracting power, and plays a role of a relay lens that relays the light beam from the first image plane IM1 into the effective light flux of the second lens group G2.
  • the second lens group G2 is a compensator having a positive refractive power. When the imaging magnification of the relay optical system RL is changed, the second lens group G2 monotonously moves along the optical axis to perform image plane correction (correction of image plane curvature, etc.).
  • the third lens group G3 is a fixed group having a positive or negative refractive power.
  • the fourth lens group G4 is a variator having a negative refractive power.
  • the fifth lens group G5 is a fixed group having a positive refractive power.
  • the divergent light beam from the fourth lens group G4 can be imaged on the second image plane IM2 by the fifth lens group G5 having a positive refractive power. It is effective that the third lens group G3, which is a fixed group, has a positive refractive power, but as described above, it may have a negative refractive power in power balance with other lens groups. It has an important role for aberration correction in the entire range of high zoom ratios exceeding double.
  • the third lens group G3, which is a fixed group, is disposed between the second lens group G2 and the fourth lens group G4, both of which are movable groups.
  • This facilitates making the power balance between the second lens group G2 and the fourth lens group G4 appropriate. Therefore, it is possible to increase the power of the second lens group G2 and the fourth lens group G4, and even if the moving amount of the second lens group G2 and the fourth lens group G4 is small, the image formation of the relay optical system RL is possible. It becomes possible to make the magnification highly variable. Further, since the negative power of the fourth lens group G4 can be increased, the Petzval sum can be corrected well, and various aberrations such as field curvature can be corrected well.
  • the present embodiment it is possible to obtain a relay optical system RL in which the total length can be suppressed to be short and the imaging magnification can be changed to a high value, and the aberration can be satisfactorily corrected. Further, by disposing the third lens group G3, which is a fixed group, the second lens group G2 and the fourth lens group G4 can be moved monotonically in opposite directions along the optical axis. The drive mechanism for the second lens group G2 and the fourth lens group G4 can be simplified.
  • the two movable groups move in opposite directions along the optical axis, so that even if the magnification is high, the center of gravity of the relay optical system does not fluctuate much, As a result, it becomes possible to suppress the variation of the center of gravity of the telescope during zooming.
  • the relay optical system RL may satisfy the following conditional expressions (1) and (2), respectively.
  • Conditional expression (1) defines the ratio between the focal length of the second lens group G2 and the total length of the relay optical system RL (that is, the distance between the first image plane IM1 and the second image plane IM2). is there. By satisfying the conditional expression (1), it becomes possible to make the imaging magnification of the relay optical system RL highly variable, while keeping the total length of the relay optical system RL short.
  • the upper limit of conditional expression (1) may be set to preferably 0.2.
  • the lower limit of conditional expression (1) may be set to preferably 0.1.
  • Conditional expression (2) defines the ratio of the focal length of the second lens group G2 and the focal length of the fourth lens group G4, both of which move for zooming.
  • the second lens group G2 and the fourth lens group G4 are monotonically moved in mutually opposite directions along the optical axis AZ, whereby the imaging magnification of the relay optical system RL is increased. Can be changed. Therefore, the drive mechanism of the second lens group G2 and the fourth lens group G4 can be simplified.
  • the upper limit of conditional expression (2) may be set to preferably 3.0.
  • the power balance between the second lens group G2 and the fourth lens group G4 is lost, so when changing the imaging magnification of the relay optical system RL, the second lens It becomes difficult to monotonically move the group G2 and the fourth lens group G4 in opposite directions along the optical axis AZ.
  • the relay optical system RL may satisfy the following conditional expressions (3) and (4), respectively.
  • Conditional expression (3) defines the relationship between the maximum outer diameter of the fourth lens group G4 and the maximum outer diameter of the third lens group G3.
  • conditional expression (3) the size of the maximum outer diameter of the fourth lens group G4 is relatively limited with respect to the entire system.
  • a lens having a certain degree of negative power is required for the entire optical system.
  • the edge thickness becomes thicker accordingly, and it becomes difficult to pass light rays of all angles of view without difficulty. Therefore, by suppressing the maximum outer diameter by the conditional expression (3), the power of the negative lens can be effectively given to the optical system, and Petzval sum, that is, various aberrations including field curvature can be corrected well.
  • the maximum outer diameter of the fourth lens group G4 is the outer diameter of the lens having the largest outer diameter among the lenses forming the fourth lens group G4.
  • the maximum outer diameter of the third lens group G3 is the outer diameter of the lens having the largest outer diameter among the lenses forming the third lens group G3.
  • the outer diameter of the lens is the diameter of the outer peripheral portion of the lens.
  • the upper limit of conditional expression (3) may be set to preferably 1.0.
  • the aperture of the fourth lens group G4 becomes too small as compared with the third lens group G3 which is a fixed group, and therefore the zoom relay optical system having a high zoom ratio. It becomes difficult to obtain a practical solution when designing.
  • Conditional expression (4) defines the relationship between the maximum outer diameter of the fourth lens group G4 and the maximum outer diameter of the fifth lens group G5.
  • conditional expression (4) the size of the maximum outer diameter of the fourth lens group G4 is relatively limited with respect to the entire system.
  • a lens having a certain degree of negative power is required for the entire optical system.
  • the edge thickness becomes thicker accordingly, and it becomes difficult to pass light rays of all angles of view without difficulty.
  • the maximum outer diameter of the fifth lens group G5 is the outer diameter of the lens having the largest outer diameter among the lenses forming the fifth lens group G5.
  • the outer diameter of the lens is the diameter of the outer peripheral portion of the lens, as described above.
  • the upper limit of conditional expression (4) may be set to preferably 1.0.
  • the diameter of the fourth lens group G4 becomes too small as compared with the fifth lens group G5 which is a fixed group, and therefore the zoom relay optical system having a high zoom ratio. It becomes difficult to obtain a practical solution when designing.
  • the relay optical system RL according to the present embodiment may satisfy the following conditional expression (5).
  • dG2 the amount of movement of the second lens group G2 when changing the imaging magnification of the relay optical system RL from the minimum magnification to the maximum magnification
  • dG4 changing the imaging magnification of the relay optical system RL from the minimum magnification to the maximum magnification Amount of movement of the fourth lens group G4
  • Conditional expression (5) is the moving amount (absolute value) of the second lens group G2 when changing the image forming magnification of the relay optical system RL, and the fourth lens when changing the image forming magnification of the relay optical system RL. It defines the ratio to the movement amount (absolute value) of the group G4.
  • the upper limit of conditional expression (5) may be set to preferably 1.5.
  • FIGS. 3, 6 and 9 show lenses when the imaging magnification of the relay optical system RL ⁇ RL (1) to RL (3) ⁇ according to the first to third embodiments changes from the minimum magnification to the maximum magnification. It is a figure which shows the movement of. 3, 6, and 9, in the relay optical system RL, each lens group is represented by a combination of reference numeral G and a numeral, and each lens is represented by a combination of reference numeral L and a numeral. In the eyepiece optical system EP, each lens is represented by a combination of a symbol E and a number.
  • the lenses and the like are represented by using a combination of the symbols and numbers independently for each embodiment. Therefore, even if the same combination of reference numerals and numbers is used between the embodiments, it does not mean that they have the same configuration.
  • L represents the distance between the first image plane IM1 and the second image plane IM2 (the total length of the relay optical system RL).
  • f1 represents the focal length of the first lens group G1.
  • f2 represents the focal length of the second lens group G2.
  • f3 represents the focal length of the third lens group G3.
  • f4 represents the focal length of the fourth lens group G4.
  • f5 represents the focal length of the fifth lens group G5.
  • ⁇ 3 represents the maximum outer diameter in the third lens group G3.
  • ⁇ 4 represents the maximum outer diameter of the fourth lens group G4.
  • ⁇ 5 represents the maximum outer diameter in the fifth lens group G5.
  • dG2 represents the amount of movement of the second lens group G2 when changing the imaging magnification of the relay optical system RL from the minimum magnification to the maximum magnification.
  • dG4 represents the amount of movement of the fourth lens group G4 when changing the imaging magnification of the relay optical system RL from the minimum magnification to the maximum magnification.
  • the surface number indicates the order of the lens surface from the object side.
  • R represents a radius of curvature corresponding to each surface number (a lens surface convex on the object side has a positive value).
  • D indicates the lens thickness or the air gap on the optical axis corresponding to each surface number.
  • ⁇ d represents the Abbe number based on the d line of the optical material corresponding to each surface number.
  • the outer diameter indicates the outer diameter of the lens corresponding to each surface number.
  • the radius of curvature " ⁇ " indicates a plane or an opening.
  • the outer diameter of the lens is a value obtained by adding a constant value (about 1 mm) to the position where the marginal ray passes on the lens surface, and is shown as the larger value of the lens surfaces on both sides of each lens.
  • the table of [Variable spacing data] shows the surface spacing at the surface number for which the surface spacing is “variable” in the table showing the [lens specifications] corresponding to the imaging magnification of the relay optical system.
  • H0 represents the object height.
  • the table of [Values corresponding to conditional expressions] shows the values corresponding to each conditional expression.
  • the focal length f, the radius of curvature R, the surface distance D, and other lengths listed are generally “mm” unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, since the same optical performance can be obtained even if the proportion is reduced, the invention is not limited to this.
  • FIG. 3 is a diagram showing the movement of the lens when the imaging magnification of the relay optical system RL (1) according to Example 1 of the present embodiment changes from the minimum magnification to the maximum magnification.
  • the relay optical system RL (1) according to the first example is used, for example, in a telescope or the like, and re-images the image formed on the first image plane IM1 on the second image plane IM2.
  • the reticle Rtc is arranged on the second image plane IM2.
  • the eyepiece optical system EP is arranged on the eyepoint side of the second image plane IM2.
  • the relay optical system RL (1) has a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power, which are arranged in order from the first image plane IM1 side.
  • the second lens group G2 monotonously moves to the first image plane IM1 side along the optical axis AZ, and The lens group G4 monotonously moves to the second image plane I2 side along the optical axis AZ. Further, when changing the imaging magnification of the relay optical system RL (1), the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed on the optical axis AZ.
  • the first lens group G1 is composed of a meniscus-shaped positive lens L11 having a concave surface facing the object side.
  • the second lens group G2 is composed of a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22, and a biconvex positive lens L23.
  • the third lens group G3 is composed of a cemented lens of a biconvex positive lens L31 and a meniscus negative lens L32 having a concave surface facing the object side.
  • the fourth lens group G4 includes a cemented lens of a meniscus positive lens L41 having a concave surface facing the object side and a biconcave negative lens L42, and a biconcave negative lens L43.
  • the fifth lens group G5 is composed of a cemented lens of a biconvex positive lens L51 and a meniscus negative lens L52 having a concave surface facing the object side.
  • the eyepiece optical system EP is composed of a cemented lens of a biconcave negative lens E1 and a biconvex positive lens E2, and a biconvex positive lens E3, which are arranged in order from the object side.
  • Table 1 below lists values of specifications of the relay optical system and the eyepiece optical system according to the first example.
  • FIG. 4A, FIG. 4B, and FIG. 4C are graphs showing various aberrations when the image forming magnification of the relay optical system according to Example 1 is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively.
  • FIG. 5A, FIG. 5B, and FIG. 5C are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the first example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. In each aberration diagram, various aberrations in a state where the relay optical system and the eyepiece optical system are combined are shown.
  • g g line (wavelength).
  • the solid line shows the sagittal image plane
  • the broken line shows the meridional image plane.
  • RFH indicates the image height ratio (Relative Field Height).
  • the same reference numerals as those in the present example are used, and the duplicated description will be omitted.
  • the relay optical system according to Example 1 has excellent imaging performance in which various aberrations are satisfactorily corrected from the low magnification state to the high magnification state.
  • FIG. 6 is a diagram showing the movement of the lens when the imaging magnification of the relay optical system RL (2) according to the second example of the present embodiment changes from the minimum magnification to the maximum magnification.
  • the relay optical system RL (2) according to the second example is used, for example, in a telescope or the like, and reimages the image formed on the first image plane IM1 on the second image plane IM2.
  • the reticle Rtc is arranged on the second image plane IM2.
  • the eyepiece optical system EP is arranged on the eyepoint side of the second image plane IM2.
  • the relay optical system RL (2) is arranged in order from the first image plane IM1 side and has a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power.
  • the second lens group G2 monotonously moves toward the first image plane IM1 along the optical axis AZ, and the The lens group G4 monotonously moves toward the second image plane IM2 side along the optical axis AZ. Further, when changing the imaging magnification of the relay optical system RL (2), the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed on the optical axis AZ.
  • the first lens group G1 is composed of a meniscus-shaped positive lens L11 having a concave surface facing the object side.
  • the second lens group G2 is composed of a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22, and a biconvex positive lens L23.
  • the third lens group G3 is composed of a cemented lens of a biconvex positive lens L31 and a meniscus negative lens L32 having a concave surface facing the object side.
  • the fourth lens group G4 includes a biconcave negative lens L41, a meniscus negative lens L42 having a concave surface facing the object side, and a meniscus positive lens L43 having a concave surface facing the object side.
  • the fifth lens group G5 is composed of a cemented lens made up of a meniscus negative lens L51 having a convex surface directed toward the object side and a biconvex positive lens L52.
  • the eyepiece optical system EP is composed of a cemented lens of a biconcave negative lens E1 and a biconvex positive lens E2, and a biconvex positive lens E3, which are arranged in order from the object side.
  • Table 2 below shows the values of specifications of the relay optical system and the eyepiece optical system according to the second example.
  • FIG. 7A, FIG. 7B, and FIG. 7C are graphs showing various aberrations when the image forming magnification of the relay optical system according to the second example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively.
  • Is. 8 (A), 8 (B), and 8 (C) are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the second example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. From each aberration diagram, it is understood that the relay optical system according to Example 2 has excellent imaging performance in which various aberrations are satisfactorily corrected from the low magnification state to the high magnification state.
  • FIG. 9 is a diagram showing the movement of the lens when the imaging magnification of the relay optical system RL (3) according to the third example of the present embodiment changes from the minimum magnification to the maximum magnification.
  • the relay optical system RL (3) according to the third example is used, for example, in a telescope or the like, and re-images the image formed on the first image plane IM1 on the second image plane IM2.
  • the reticle Rtc is arranged on the second image plane IM2.
  • the eyepiece optical system EP is arranged on the eyepoint side of the second image plane IM2.
  • the relay optical system RL (3) is arranged in order from the first image plane IM1 side and has a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power.
  • the second lens group G2 monotonously moves toward the first image plane IM1 side along the optical axis AZ
  • the lens group G4 monotonously moves toward the second image plane IM2 side along the optical axis AZ.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed on the optical axis AZ.
  • the first lens group G1 is composed of a meniscus-shaped positive lens L11 having a concave surface facing the object side.
  • the second lens group G2 is composed of a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22, and a biconvex positive lens L23.
  • the third lens group G3 is composed of a cemented lens made up of a biconcave negative lens L31 and a biconvex positive lens L32.
  • the fourth lens group G4 includes a biconcave negative lens L41, a meniscus negative lens L42 having a concave surface facing the object side, and a meniscus positive lens L43 having a concave surface facing the object side.
  • the fifth lens group G5 is composed of a cemented lens of a biconvex positive lens L51 and a meniscus negative lens L52 having a concave surface facing the object side.
  • the eyepiece optical system EP is composed of a cemented lens of a biconcave negative lens E1 and a biconvex positive lens E2, and a biconvex positive lens E3, which are arranged in order from the object side.
  • Table 3 lists values of specifications of the relay optical system and the eyepiece optical system according to the third example.
  • 10 (A), 10 (B), and 10 (C) are graphs showing various aberrations when the image forming magnification of the relay optical system according to the third example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively.
  • Is. 11 (A), 11 (B), and 11 (C) are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the third example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. From each aberration diagram, it is understood that the relay optical system according to Example 3 has excellent imaging performance in which various aberrations are satisfactorily corrected from the low magnification state to the high magnification state.
  • the positive lens L11 of the first lens group G1 has a meniscus shape with a concave surface facing the object side, but as a zoom relay optical system or aberration correction of the entire telescope. From the viewpoint of, it is possible to make a meniscus shape with a convex surface facing the object side or a biconvex shape.
  • the specific lens configuration of the other lens groups it is possible to use an appropriate lens configuration for the zoom relay optical system or for the aberration balance of the entire telescope. Further, in the configuration of each lens group, the direction of the cemented surface of the cemented lens (cemented lens) for chromatic aberration correction can be changed as appropriate.
  • the eyepiece optical systems EP have the same configuration, and the cemented lens of the biconcave negative lens E1 and the biconvex positive lens E2 and the biconvex are arranged in order from the object side.
  • the positive lens E3 has a shape, but is not limited to this.
  • the eyepiece optical system may have three separate lens configurations, which are a negative lens, a positive lens, and a positive lens, which are arranged in order from the object side, and may include an objective optical system and a relay optical system. Depending on the combination, it is possible to have an appropriate lens configuration.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Telescopes (AREA)

Abstract

A relay optical system (RL) according to the present invention, which re-forms an image formed on a first image surface (IM1) on a second image surface (IM2), comprises a first lens group (G1) having a positive refractive power, a second lens group (G2) having a positive refractive power, a third lens group (G3) having a positive or negative refractive power, a fourth lens group (G4) having a negative refractive power, and a fifth lens group (G5) having a positive refractive power, said lens groups being sequentially arranged from the first image surface (IM1) side. The imaging magnification of the relay optical system (RL) is changed by moving the second lens group (G2) and the fourth lens group (G4) in directions opposite to each other along the optical axis.

Description

リレー光学系およびリレー光学系を有する望遠鏡Relay optics and telescope with relay optics
 本発明は、リレー光学系およびリレー光学系を有する望遠鏡に関する。 The present invention relates to a relay optical system and a telescope having a relay optical system.
 リレー光学系には、変倍機能を有しているものがある。このようなリレー光学系は、倍率可変の望遠鏡等に用いられる(例えば、特許文献1を参照)。リレー光学系の結像倍率を高変倍化するには、結像倍率を変える際に移動するレンズ群のパワーを強くするか、当該レンズ群の移動量を大きくする必要がある。この場合、リレー光学系の全長を短く抑えつつ、収差を補正することが難しかった。 Some relay optical systems have a variable magnification function. Such a relay optical system is used for a variable magnification telescope or the like (see, for example, Patent Document 1). In order to increase the image magnification of the relay optical system, it is necessary to increase the power of the lens unit that moves when changing the image magnification or increase the amount of movement of the lens unit. In this case, it is difficult to correct the aberration while keeping the total length of the relay optical system short.
米国特許第7944611号明細書U.S. Pat. No. 7,944,611
 第1の態様に係るリレー光学系は、第1像面に形成される像を第2像面に再結像させるリレー光学系であって、第1像面側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正または負の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、前記第2レンズ群と前記第4レンズ群とを光軸に沿って互いに反対の方向へ移動させることにより、前記リレー光学系の結像倍率を変化させる。第1の態様に係るリレー光学系において、前記リレー光学系の結像倍率を最低倍率から最高倍率へ変化させる際、前記第3レンズ群の光軸上の位置が固定され、前記第2レンズ群と前記第4レンズ群とが光軸に沿って互いに反対の方向へ移動して前記第3レンズ群から離れてもよい。 A relay optical system according to a first aspect is a relay optical system that re-images an image formed on a first image surface on a second image surface, and has positive refraction arranged in order from the first image surface side. A first lens group having a power, a second lens group having a positive refractive power, a third lens group having a positive or negative refractive power, a fourth lens group having a negative refractive power, and a positive refraction A fifth lens group having a force, and by moving the second lens group and the fourth lens group in directions opposite to each other along the optical axis, the imaging magnification of the relay optical system is changed. Let In the relay optical system according to the first aspect, when changing the imaging magnification of the relay optical system from the minimum magnification to the maximum magnification, the position of the third lens group on the optical axis is fixed, and the second lens group And the fourth lens group may move in directions opposite to each other along the optical axis and may be separated from the third lens group.
 第2の態様に係る望遠鏡は、物体側から順に並んだ、対物光学系と、リレー光学系と、接眼光学系とを備え、前記リレー光学系は、前記対物光学系により前記対物光学系と前記リレー光学系との間の第1像面に形成される像を、前記リレー光学系と前記接眼光学系との間の第2像面に再結像させる第1の態様に係るリレー光学系である。 The telescope according to the second aspect includes an objective optical system, a relay optical system, and an eyepiece optical system, which are arranged in order from the object side, and the relay optical system includes the objective optical system and the objective optical system by the objective optical system. In the relay optical system according to the first aspect, the image formed on the first image plane between the relay optical system and the relay optical system is re-imaged on the second image plane between the relay optical system and the eyepiece optical system. is there.
 第3の態様に係る望遠鏡は、物体側から順に並んだ、対物光学系と、リレー光学系と、接眼光学系とを備え、前記対物光学系が、前記リレー光学系と前記対物光学系との間の第1像面に物体像を形成し、前記リレー光学系が、前記接眼光学系と前記リレー光学系との間の第2像面に前記第1像面の物体像を再結像させる望遠鏡であって、前記リレー光学系は、第1像面側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正または負の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、前記第2レンズ群を光軸に沿って前記第1レンズ群の方へ移動させ、前記第4レンズ群を光軸に沿って前記第5レンズ群の方へ移動させることにより、前記リレー光学系の結像倍率を最低倍率から最高倍率へ変化させる。第3の態様に係る望遠鏡において、前記リレー光学系の結像倍率を最低倍率から最高倍率へ変化させる際、前記第1レンズ群、前記第3レンズ群、および前記第5レンズ群の光軸上の位置が固定されてもよい。 A telescope according to a third aspect includes an objective optical system, a relay optical system, and an eyepiece optical system, which are arranged in order from the object side, and the objective optical system includes the relay optical system and the objective optical system. An object image is formed on a first image plane between them, and the relay optical system re-images the object image of the first image plane on a second image plane between the eyepiece optical system and the relay optical system. In the telescope, the relay optical system includes a first lens group having a positive refracting power, a second lens group having a positive refracting power, and a positive or negative refraction lens arranged in order from the first image plane side. A third lens group having a power, a fourth lens group having a negative refracting power, and a fifth lens group having a positive refracting power, and the second lens group including the first lens group along the optical axis. By moving the fourth lens group toward the fifth lens group along the optical axis. , To change the imaging magnification of the relay optical system from the lowest magnification to the highest magnification. In the telescope according to the third aspect, when changing the imaging magnification of the relay optical system from the minimum magnification to the maximum magnification, on the optical axes of the first lens group, the third lens group, and the fifth lens group. The position of may be fixed.
本実施形態に係るリレー光学系を備えた望遠鏡の基本構成を示す概略構成図である。It is a schematic block diagram which shows the basic composition of the telescope provided with the relay optical system which concerns on this embodiment. 本実施形態に係るリレー光学系の基本構成を示す概略構成図である。It is a schematic structure figure showing the basic composition of the relay optical system concerning this embodiment. 第1実施例に係るリレー光学系の結像倍率が最低倍率から最高倍率に変化する際のレンズの動きを示す図である。It is a figure which shows the movement of the lens when the imaging magnification of the relay optical system which concerns on 1st Example changes from the minimum magnification to the maximum magnification. 図4(A)、図4(B)、および図4(C)はそれぞれ、第1実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における諸収差図である。FIG. 4A, FIG. 4B, and FIG. 4C are graphs showing various aberrations when the image forming magnification of the relay optical system according to Example 1 is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. 図5(A)、図5(B)、および図5(C)はそれぞれ、第1実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における横収差図である。FIG. 5A, FIG. 5B, and FIG. 5C are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the first example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. 第2実施例に係るリレー光学系の結像倍率が最低倍率から最高倍率に変化する際のレンズの動きを示す図である。It is a figure which shows the movement of the lens when the imaging magnification of the relay optical system which concerns on 2nd Example changes from the minimum magnification to the maximum magnification. 図7(A)、図7(B)、および図7(C)はそれぞれ、第2実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における諸収差図である。FIG. 7A, FIG. 7B, and FIG. 7C are graphs showing various aberrations when the image forming magnification of the relay optical system according to the second example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. 図8(A)、図8(B)、および図8(C)はそれぞれ、第2実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における横収差図である。8 (A), 8 (B), and 8 (C) are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the second example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. 第3実施例に係るリレー光学系の結像倍率が最低倍率から最高倍率に変化する際のレンズの動きを示す図である。It is a figure which shows the movement of the lens when the imaging magnification of the relay optical system which concerns on 3rd Example changes from the minimum magnification to the maximum magnification. 図10(A)、図10(B)、および図10(C)はそれぞれ、第3実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における諸収差図である。10 (A), 10 (B), and 10 (C) are graphs showing various aberrations when the image forming magnification of the relay optical system according to the third example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. 図11(A)、図11(B)、および図11(C)はそれぞれ、第3実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における横収差図である。11 (A), 11 (B), and 11 (C) are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the third example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is.
 以下、本実施形態に係るリレー光学系および、これを備えた望遠鏡について、図を参照して説明する。本実施形態では、全長を短く抑えつつ、高い結像倍率に変化させることが可能で、収差が良好に補正されたリレー光学系について説明する。本実施形態に係るリレー光学系は、変倍機能を有しており、例えば、ライフルスコープやフィールドスコープ等の望遠鏡に使用される。 Hereinafter, a relay optical system according to the present embodiment and a telescope including the relay optical system will be described with reference to the drawings. In the present embodiment, a relay optical system in which the overall length can be suppressed to be short and the imaging magnification can be changed to a high value and the aberration is favorably corrected will be described. The relay optical system according to this embodiment has a variable power function and is used, for example, in telescopes such as rifle scopes and field scopes.
 図1に示すように、望遠鏡TLSは、物体側(観察対象側)から順に並んだ、対物光学系OBと、リレー光学系RLと、接眼光学系EPとを備えて構成される。対物光学系OB、リレー光学系RL、および接眼光学系EPはそれぞれ、複数のレンズから構成される。対物光学系OBは、物体(観察対象)からの光を集光し、第1像面IM1で物体の倒立像を結像させる。リレー光学系RLは、対物光学系OBにより形成される倒立像を、第2像面IM2で正立像として再結像させる。第2像面IM2に、所定のパターン(例えば、十字型のパターン)が設けられたレチクルRtcが配置される。なお、第2像面IM2に限らず、第1像面IM1にレチクルRtcが配置されてもよい。 As shown in FIG. 1, the telescope TLS includes an objective optical system OB, a relay optical system RL, and an eyepiece optical system EP, which are arranged in order from the object side (observation target side). The objective optical system OB, the relay optical system RL, and the eyepiece optical system EP are each composed of a plurality of lenses. The objective optical system OB collects light from an object (observation target) and forms an inverted image of the object on the first image plane IM1. The relay optical system RL re-images the inverted image formed by the objective optical system OB as an erect image on the second image plane IM2. A reticle Rtc provided with a predetermined pattern (for example, a cross pattern) is arranged on the second image plane IM2. The reticle Rtc may be arranged on the first image plane IM1 as well as the second image plane IM2.
 本実施形態において、リレー光学系RLは、対物光学系OBによる物体の倒立像を、接眼光学系EPに向けて異なる倍率で再結像させることが可能である。すなわち、リレー光学系RLの結像倍率を変化させることにより、望遠鏡としての倍率を変化させることが可能である。これにより、観察者は、接眼光学系EPを通して、倍率を異ならせた物体の正立像を観察することができる。 In this embodiment, the relay optical system RL is capable of re-imaging an inverted image of an object by the objective optical system OB toward the eyepiece optical system EP at different magnifications. That is, it is possible to change the magnification as a telescope by changing the imaging magnification of the relay optical system RL. Thereby, the observer can observe the erect image of the object with different magnification through the eyepiece optical system EP.
 具体的には、リレー光学系RLを含む光学系全系、すなわち望遠鏡全体としての倍率は、次式(A)で表される。 Specifically, the magnification of the entire optical system including the relay optical system RL, that is, the magnification of the entire telescope is represented by the following expression (A).
 MT=(fo/fe)×Mr ・・・(A)
 但し、MT:望遠鏡TLSの倍率
    fo:対物光学系OBの焦点距離
    fe:接眼光学系EPの焦点距離
    Mr:リレー光学系RLの結像倍率
MT = (fo / fe) × Mr (A)
However, MT: magnification of telescope TLS fo: focal length of objective optical system OB fe: focal length of eyepiece optical system EP Mr: imaging magnification of relay optical system RL
 本実施形態のリレー光学系RLでは、後述する実施例に例示されるように、リレー光学系RLの結像倍率をほぼ等倍から約8倍の高い倍率にすることができる。そのため、式(A)から分かるように、望遠鏡全体として8倍またはそれ以上の高い変倍率を達成することが可能となる。 In the relay optical system RL of the present embodiment, the imaging magnification of the relay optical system RL can be set to a high magnification of approximately 1 × to approximately 8 ×, as illustrated in Examples described later. Therefore, as can be seen from the formula (A), it is possible to achieve a high magnification ratio of 8 times or more for the entire telescope.
 リレー光学系RLは、図2に示すように、第1像面IM1側(物体側)から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正または負の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とを有して構成される。図2においては、第3レンズ群G3が正の屈折力を有する場合を示す。第2レンズ群G2と第4レンズ群G4とを光軸AZに沿って互いに反対の方向へ単調に移動させることで、第1像面IM1と第2像面IM2とを固定しつつ、リレー光学系RLの結像倍率を変化させることができる。なお、リレー光学系RLの結像倍率を最低倍率(低倍率端)から最高倍率(高倍率端)へ変化させる際、第2レンズ群G2が光軸AZに沿って第1像面IM1側(第1レンズ群G1の方)へ移動し、第4レンズ群G4が光軸AZに沿って第2像面IM2側(第5レンズ群G5の方)へ移動し、第3レンズ群G3から離れる。また、リレー光学系RLの結像倍率を変化させる際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、光軸AZ上に固定される。 As shown in FIG. 2, the relay optical system RL includes a first lens group G1 having a positive refractive power and a second lens having a positive refractive power, which are sequentially arranged from the first image plane IM1 side (object side). It includes a group G2, a third lens group G3 having a positive or negative refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power. It FIG. 2 shows a case where the third lens group G3 has a positive refractive power. By moving the second lens group G2 and the fourth lens group G4 monotonically in opposite directions along the optical axis AZ, the first optical plane IM1 and the second optical plane IM2 are fixed and the relay optics is fixed. The imaging magnification of the system RL can be changed. When changing the imaging magnification of the relay optical system RL from the minimum magnification (low magnification end) to the maximum magnification (high magnification end), the second lens group G2 moves along the optical axis AZ toward the first image plane IM1 side ( To the first lens group G1), the fourth lens group G4 moves to the second image plane IM2 side (toward the fifth lens group G5) along the optical axis AZ, and moves away from the third lens group G3. .. Further, when changing the imaging magnification of the relay optical system RL, the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed on the optical axis AZ.
 第1レンズ群G1は、正の屈折力(パワー)を有する固定群であり、第1像面IM1からの光線を第2レンズ群G2の有効光束内にリレーさせるリレーレンズの役割を担う。第2レンズ群G2は、正の屈折力(パワー)を有するコンペンセータである。リレー光学系RLの結像倍率を変化させる際、第2レンズ群G2が光軸に沿って単調に移動することにより像面補正(像面湾曲等の補正)を行う。第3レンズ群G3は、正または負の屈折力(パワー)を有する固定群である。第4レンズ群G4は、負の屈折力(パワー)を有するバリエータである。第5レンズ群G5は、正の屈折力(パワー)を有する固定群である。正の屈折力を有する第5レンズ群G5によって、第4レンズ群G4からの発散光線を第2像面IM2で結像させることができる。なお、固定群である第3レンズ群G3は、正の屈折力を有することが有効ではあるが、上述の通り、他のレンズ群とのパワーバランスにおいて負の屈折力を有することもでき、8倍を超える高い変倍率の全範囲において収差補正のために重要な役割を有している。 The first lens group G1 is a fixed group having a positive refracting power, and plays a role of a relay lens that relays the light beam from the first image plane IM1 into the effective light flux of the second lens group G2. The second lens group G2 is a compensator having a positive refractive power. When the imaging magnification of the relay optical system RL is changed, the second lens group G2 monotonously moves along the optical axis to perform image plane correction (correction of image plane curvature, etc.). The third lens group G3 is a fixed group having a positive or negative refractive power. The fourth lens group G4 is a variator having a negative refractive power. The fifth lens group G5 is a fixed group having a positive refractive power. The divergent light beam from the fourth lens group G4 can be imaged on the second image plane IM2 by the fifth lens group G5 having a positive refractive power. It is effective that the third lens group G3, which is a fixed group, has a positive refractive power, but as described above, it may have a negative refractive power in power balance with other lens groups. It has an important role for aberration correction in the entire range of high zoom ratios exceeding double.
 本実施形態では、ともに可動群である第2レンズ群G2と第4レンズ群G4との間に、固定群である第3レンズ群G3が配置される。これにより、第2レンズ群G2と第4レンズ群G4とのパワーバランスを適切にすることが容易になる。そのため、第2レンズ群G2および第4レンズ群G4のパワーを強くすることが可能になり、第2レンズ群G2および第4レンズ群G4の移動量が小さくても、リレー光学系RLの結像倍率を高変倍化することが可能になる。また、第4レンズ群G4の負のパワーを強くすることができるため、ペッツバール和を良好に補正することができ、像面湾曲等の諸収差を良好に補正することが可能になる。このように、本実施形態によれば、全長を短く抑えつつ、高い結像倍率に変化させることが可能で、収差が良好に補正されたリレー光学系RLを得ることができる。また、固定群である第3レンズ群G3が配置されることによって、第2レンズ群G2と第4レンズ群G4とを光軸に沿って互いに反対の方向へ単調に移動させることができるため、第2レンズ群G2および第4レンズ群G4の駆動機構を単純にすることができる。 In this embodiment, the third lens group G3, which is a fixed group, is disposed between the second lens group G2 and the fourth lens group G4, both of which are movable groups. This facilitates making the power balance between the second lens group G2 and the fourth lens group G4 appropriate. Therefore, it is possible to increase the power of the second lens group G2 and the fourth lens group G4, and even if the moving amount of the second lens group G2 and the fourth lens group G4 is small, the image formation of the relay optical system RL is possible. It becomes possible to make the magnification highly variable. Further, since the negative power of the fourth lens group G4 can be increased, the Petzval sum can be corrected well, and various aberrations such as field curvature can be corrected well. As described above, according to the present embodiment, it is possible to obtain a relay optical system RL in which the total length can be suppressed to be short and the imaging magnification can be changed to a high value, and the aberration can be satisfactorily corrected. Further, by disposing the third lens group G3, which is a fixed group, the second lens group G2 and the fourth lens group G4 can be moved monotonically in opposite directions along the optical axis. The drive mechanism for the second lens group G2 and the fourth lens group G4 can be simplified.
 なお、リレー光学系の結像倍率を変化させる際、高い変倍率を得るために一般的には必要とされる、可動群がUターンの軌跡で移動する構成では、鏡筒のカム形状が複雑かつ大きくなる傾向になる。これに対し、本実施形態では、リレー光学系の結像倍率を変化させる際、固定群(第3レンズ群G3)を挟んで配置された2つの可動群(第2レンズ群G2および第4レンズ群G4)が光軸に沿って単調に移動するため、鏡筒の構成を簡単で細く小型にすることが可能になる。しかも、リレー光学系の結像倍率を変化させる際、2つの可動群が光軸に沿って互いに反対の方向へ移動するため、高い変倍率であってもリレー光学系の重心の変動が少なく、ひいては望遠鏡の変倍時の重心の変動を抑えることが可能になる。 It should be noted that, when the image forming magnification of the relay optical system is changed, the configuration in which the movable group moves along the locus of U-turn, which is generally required to obtain a high magnification change, makes the cam shape of the lens barrel complicated. And tends to grow. On the other hand, in the present embodiment, when the image forming magnification of the relay optical system is changed, two movable groups (second lens group G2 and fourth lens) arranged with the fixed group (third lens group G3) sandwiched therebetween. Since the group G4) moves monotonously along the optical axis, it becomes possible to make the configuration of the lens barrel simple, thin, and compact. Moreover, when changing the imaging magnification of the relay optical system, the two movable groups move in opposite directions along the optical axis, so that even if the magnification is high, the center of gravity of the relay optical system does not fluctuate much, As a result, it becomes possible to suppress the variation of the center of gravity of the telescope during zooming.
 本実施形態に係るリレー光学系RLは、次の条件式(1)および条件式(2)をそれぞれ満足してもよい。 The relay optical system RL according to this embodiment may satisfy the following conditional expressions (1) and (2), respectively.
 0.05<f2/L<0.3 ・・・(1)
 0.5<f2/(-f4)<4.0 ・・・(2)
 但し、L:第1像面IM1と第2像面IM2との間の距離
    f2:第2レンズ群G2の焦点距離
    f4:第4レンズ群G4の焦点距離
0.05 <f2 / L <0.3 (1)
0.5 <f2 / (-f4) <4.0 (2)
However, L: distance between the first image plane IM1 and the second image plane IM2 f2: focal length of the second lens group G2 f4: focal length of the fourth lens group G4
 条件式(1)は、第2レンズ群G2の焦点距離とリレー光学系RLの全長(すなわち、第1像面IM1と第2像面IM2との間の距離)との比を規定するものである。条件式(1)を満足することで、リレー光学系RLの全長を短く抑えつつ、リレー光学系RLの結像倍率を高変倍化することが可能になる。 Conditional expression (1) defines the ratio between the focal length of the second lens group G2 and the total length of the relay optical system RL (that is, the distance between the first image plane IM1 and the second image plane IM2). is there. By satisfying the conditional expression (1), it becomes possible to make the imaging magnification of the relay optical system RL highly variable, while keeping the total length of the relay optical system RL short.
 条件式(1)の対応値が上限値を上回ると、第2レンズ群G2のパワーが弱くなるため、リレー光学系RLの結像倍率を変化させる際、第2レンズ群G2の移動量が大きくなる。そのため、リレー光学系RLの全長を短く抑えつつ、リレー光学系RLの結像倍率を高変倍化することが困難になる。本実施形態の効果を確実にするために、条件式(1)の上限値を好ましくは0.2としてもよい。 When the corresponding value of the conditional expression (1) exceeds the upper limit value, the power of the second lens group G2 becomes weak. Therefore, when the imaging magnification of the relay optical system RL is changed, the movement amount of the second lens group G2 is large. Become. Therefore, it is difficult to increase the image magnification of the relay optical system RL while keeping the total length of the relay optical system RL short. In order to ensure the effect of this embodiment, the upper limit of conditional expression (1) may be set to preferably 0.2.
 条件式(1)の対応値が下限値を下回ると、第2レンズ群G2のパワーが強くなりすぎるため、収差を補正することが困難になる。本実施形態の効果を確実にするために、条件式(1)の下限値を好ましくは0.1としてもよい。 If the corresponding value of the conditional expression (1) is below the lower limit value, the power of the second lens group G2 becomes too strong, and it becomes difficult to correct the aberration. In order to ensure the effect of this embodiment, the lower limit of conditional expression (1) may be set to preferably 0.1.
 条件式(2)は、ともに変倍のために移動する第2レンズ群G2の焦点距離と第4レンズ群G4の焦点距離との比を規定するものである。条件式(2)を満足することで、第2レンズ群G2と第4レンズ群G4とを光軸AZに沿って互いに反対の方向へ単調に移動させることにより、リレー光学系RLの結像倍率を変化させることができる。そのため、第2レンズ群G2および第4レンズ群G4の駆動機構を単純にすることができる。 Conditional expression (2) defines the ratio of the focal length of the second lens group G2 and the focal length of the fourth lens group G4, both of which move for zooming. By satisfying the conditional expression (2), the second lens group G2 and the fourth lens group G4 are monotonically moved in mutually opposite directions along the optical axis AZ, whereby the imaging magnification of the relay optical system RL is increased. Can be changed. Therefore, the drive mechanism of the second lens group G2 and the fourth lens group G4 can be simplified.
 条件式(2)の対応値が上限値を上回ると、第2レンズ群G2と第4レンズ群G4とのパワーバランスが崩れるため、リレー光学系RLの結像倍率を変化させる際、第2レンズ群G2と第4レンズ群G4とを光軸AZに沿って互いに反対の方向へ単調に移動させることが困難になる。本実施形態の効果を確実にするために、条件式(2)の上限値を好ましくは3.0としてもよい。 When the corresponding value of the conditional expression (2) exceeds the upper limit value, the power balance between the second lens group G2 and the fourth lens group G4 is lost, so when changing the imaging magnification of the relay optical system RL, the second lens It becomes difficult to monotonically move the group G2 and the fourth lens group G4 in opposite directions along the optical axis AZ. In order to ensure the effect of this embodiment, the upper limit of conditional expression (2) may be set to preferably 3.0.
 条件式(2)の対応値が下限値を下回ると、第2レンズ群G2と第4レンズ群G4とのパワーバランスが崩れるため、リレー光学系RLの結像倍率を変化させる際、第2レンズ群G2と第4レンズ群G4とを光軸AZに沿って互いに反対の方向へ単調に移動させることが困難になる。 If the corresponding value of the conditional expression (2) is less than the lower limit value, the power balance between the second lens group G2 and the fourth lens group G4 is lost, so when changing the imaging magnification of the relay optical system RL, the second lens It becomes difficult to monotonically move the group G2 and the fourth lens group G4 in opposite directions along the optical axis AZ.
 本実施形態に係るリレー光学系RLは、次の条件式(3)および条件式(4)をそれぞれ満足してもよい。 The relay optical system RL according to this embodiment may satisfy the following conditional expressions (3) and (4), respectively.
 0.5<Φ4/Φ3<2.0 ・・・(3)
 0.5<Φ4/Φ5<2.0 ・・・(4)
 但し、Φ3:第3レンズ群G3における最大外径
    Φ4:第4レンズ群G4における最大外径
    Φ5:第5レンズ群G5における最大外径
0.5 <Φ4 / Φ3 <2.0 (3)
0.5 <Φ4 / Φ5 <2.0 (4)
However, Φ3: maximum outer diameter of the third lens group G3 Φ4: maximum outer diameter of the fourth lens group G4 Φ5: maximum outer diameter of the fifth lens group G5
 条件式(3)は、第4レンズ群G4における最大外径と、第3レンズ群G3における最大外径との関係を規定するものである。条件式(3)を満足することで、第4レンズ群G4の最大外径の大きさが系全体に対して相対的に制限される。ペッツバール条件を満足するためには光学系全体としてある程度負のパワーを持ったレンズが要求される。外径の大きい箇所で強い負のパワーを持たせた場合、それに伴って縁厚が厚くなっていく上に、全画角の光線を無理なく通すことが困難になる。したがって、条件式(3)により最大外径を抑えることで効果的に負レンズのパワーを光学系に与えることができ、ペッツバール和、すなわち像面湾曲を含めた諸収差を良好に補正することが可能になる。なお、第4レンズ群G4における最大外径とは、第4レンズ群G4を構成するレンズのうち、最も外径が大きいレンズの外径である。第3レンズ群G3における最大外径とは、第3レンズ群G3を構成するレンズのうち、最も外径が大きいレンズの外径である。レンズの外径とは、レンズの外周部の直径である。 Conditional expression (3) defines the relationship between the maximum outer diameter of the fourth lens group G4 and the maximum outer diameter of the third lens group G3. By satisfying conditional expression (3), the size of the maximum outer diameter of the fourth lens group G4 is relatively limited with respect to the entire system. In order to satisfy the Petzval condition, a lens having a certain degree of negative power is required for the entire optical system. When a strong negative power is given to a portion having a large outer diameter, the edge thickness becomes thicker accordingly, and it becomes difficult to pass light rays of all angles of view without difficulty. Therefore, by suppressing the maximum outer diameter by the conditional expression (3), the power of the negative lens can be effectively given to the optical system, and Petzval sum, that is, various aberrations including field curvature can be corrected well. It will be possible. The maximum outer diameter of the fourth lens group G4 is the outer diameter of the lens having the largest outer diameter among the lenses forming the fourth lens group G4. The maximum outer diameter of the third lens group G3 is the outer diameter of the lens having the largest outer diameter among the lenses forming the third lens group G3. The outer diameter of the lens is the diameter of the outer peripheral portion of the lens.
 条件式(3)の対応値が上限値を上回ると、第4レンズ群G4における最大外径が、第3レンズ群G3における最大外径よりも大きくなるため、ペッツバール和の補正が困難になり、像面湾曲等の諸収差を補正することが困難になる。本実施形態の効果を確実にするために、条件式(3)の上限値を好ましくは1.0としてもよい。 When the corresponding value of the conditional expression (3) exceeds the upper limit value, the maximum outer diameter of the fourth lens group G4 becomes larger than the maximum outer diameter of the third lens group G3, and it becomes difficult to correct the Petzval sum. It becomes difficult to correct various aberrations such as field curvature. In order to ensure the effect of this embodiment, the upper limit of conditional expression (3) may be set to preferably 1.0.
 条件式(3)の対応値が下限値を下回ると、固定群である第3レンズ群G3に比べて第4レンズ群G4の口径が小さくなりすぎるため、高い変倍率を有するズーム式リレー光学系を設計する際に実用的な解を得ることが困難になる。 When the corresponding value of the conditional expression (3) is less than the lower limit value, the aperture of the fourth lens group G4 becomes too small as compared with the third lens group G3 which is a fixed group, and therefore the zoom relay optical system having a high zoom ratio. It becomes difficult to obtain a practical solution when designing.
 条件式(4)は、第4レンズ群G4における最大外径と、第5レンズ群G5における最大外径との関係を規定するものである。条件式(4)を満足することで、第4レンズ群G4の最大外径の大きさが系全体に対して相対的に制限される。ペッツバール条件を満足するためには光学系全体としてある程度負のパワーを持ったレンズが要求される。外径の大きい箇所で強い負のパワーを持たせた場合、それに伴って縁厚が厚くなっていく上に、全画角の光線を無理なく通すことが困難になる。したがって、条件式(4)により最大外径を抑えることで効果的に負レンズのパワーを光学系に与えることができ、ペッツバール和、すなわち像面湾曲を含めた諸収差を良好に補正することが可能になる。なお、第5レンズ群G5における最大外径とは、第5レンズ群G5を構成するレンズのうち、最も外径が大きいレンズの外径である。レンズの外径とは、前述したように、レンズの外周部の直径である。 Conditional expression (4) defines the relationship between the maximum outer diameter of the fourth lens group G4 and the maximum outer diameter of the fifth lens group G5. By satisfying conditional expression (4), the size of the maximum outer diameter of the fourth lens group G4 is relatively limited with respect to the entire system. In order to satisfy the Petzval condition, a lens having a certain degree of negative power is required for the entire optical system. When a strong negative power is given to a portion having a large outer diameter, the edge thickness becomes thicker accordingly, and it becomes difficult to pass light rays of all angles of view without difficulty. Therefore, by suppressing the maximum outer diameter by the conditional expression (4), the power of the negative lens can be effectively given to the optical system, and Petzval sum, that is, various aberrations including the field curvature can be satisfactorily corrected. It will be possible. The maximum outer diameter of the fifth lens group G5 is the outer diameter of the lens having the largest outer diameter among the lenses forming the fifth lens group G5. The outer diameter of the lens is the diameter of the outer peripheral portion of the lens, as described above.
 条件式(4)の対応値が上限値を上回ると、第4レンズ群G4における最大外径が、第5レンズ群G5における最大外径よりも大きくなるため、ペッツバール和の補正が困難になり、像面湾曲等の諸収差を補正することが困難になる。本実施形態の効果を確実にするために、条件式(4)の上限値を好ましくは1.0としてもよい。 When the corresponding value of the conditional expression (4) exceeds the upper limit value, the maximum outer diameter of the fourth lens group G4 becomes larger than the maximum outer diameter of the fifth lens group G5, which makes it difficult to correct the Petzval sum. It becomes difficult to correct various aberrations such as field curvature. In order to ensure the effect of this embodiment, the upper limit of conditional expression (4) may be set to preferably 1.0.
 条件式(4)の対応値が下限値を下回ると、固定群である第5レンズ群G5に比べて第4レンズ群G4の口径が小さくなりすぎるため、高い変倍率を有するズーム式リレー光学系を設計する際に実用的な解を得ることが困難になる。 When the corresponding value of the conditional expression (4) is less than the lower limit value, the diameter of the fourth lens group G4 becomes too small as compared with the fifth lens group G5 which is a fixed group, and therefore the zoom relay optical system having a high zoom ratio. It becomes difficult to obtain a practical solution when designing.
 本実施形態に係るリレー光学系RLは、次の条件式(5)を満足してもよい。 The relay optical system RL according to the present embodiment may satisfy the following conditional expression (5).
 0.2<dG2/dG4<2.0 ・・・(5)
 但し、dG2:リレー光学系RLの結像倍率を最低倍率から最高倍率へ変化させる際の第2レンズ群G2の移動量
    dG4:リレー光学系RLの結像倍率を最低倍率から最高倍率へ変化させる際の第4レンズ群G4の移動量
0.2 <dG2 / dG4 <2.0 (5)
However, dG2: the amount of movement of the second lens group G2 when changing the imaging magnification of the relay optical system RL from the minimum magnification to the maximum magnification dG4: changing the imaging magnification of the relay optical system RL from the minimum magnification to the maximum magnification Amount of movement of the fourth lens group G4
 条件式(5)は、リレー光学系RLの結像倍率を変化させる際の第2レンズ群G2の移動量(絶対値)と、リレー光学系RLの結像倍率を変化させる際の第4レンズ群G4の移動量(絶対値)との比を規定するものである。条件式(5)を満足することで、像面補正(像面湾曲等の補正)を良好に行うことができる。 Conditional expression (5) is the moving amount (absolute value) of the second lens group G2 when changing the image forming magnification of the relay optical system RL, and the fourth lens when changing the image forming magnification of the relay optical system RL. It defines the ratio to the movement amount (absolute value) of the group G4. By satisfying conditional expression (5), image plane correction (correction of image plane curvature, etc.) can be favorably performed.
 条件式(5)の対応値が上限値を上回ると、第4レンズ群G4のパワーをより強くする必要があるため、リレー光学系RLにおけるパワーバランスが崩れて、像面補正(像面湾曲等の補正)を行うことが困難になる。本実施形態の効果を確実にするために、条件式(5)の上限値を好ましくは1.5としてもよい。 When the corresponding value of the conditional expression (5) exceeds the upper limit value, it is necessary to make the power of the fourth lens group G4 stronger, so that the power balance in the relay optical system RL is disturbed and the image plane correction (field curvature etc.) occurs. Correction) becomes difficult. In order to ensure the effect of this embodiment, the upper limit of conditional expression (5) may be set to preferably 1.5.
 条件式(5)の対応値が下限値を下回ると、第2レンズ群G2のパワーをより強くする必要があるため、リレー光学系RLにおけるパワーバランスが崩れて、像面補正(像面湾曲等の補正)を行うことが困難になる。 When the corresponding value of the conditional expression (5) is lower than the lower limit value, it is necessary to make the power of the second lens group G2 stronger. Therefore, the power balance in the relay optical system RL is lost, and image plane correction (field curvature, etc.) occurs. Correction) becomes difficult.
 以下、本実施形態の実施例に係るリレー光学系RLを図面に基づいて説明する。図3、図6、図9は、第1~第3実施例に係るリレー光学系RL{RL(1)~RL(3)}の結像倍率が最低倍率から最高倍率に変化する際のレンズの動きを示す図である。これら図3、図6、図9において、リレー光学系RLについては、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。接眼光学系EPについては、各レンズを符号Eと数字の組み合わせにより表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。 A relay optical system RL according to an example of this embodiment will be described below with reference to the drawings. FIGS. 3, 6 and 9 show lenses when the imaging magnification of the relay optical system RL {RL (1) to RL (3)} according to the first to third embodiments changes from the minimum magnification to the maximum magnification. It is a figure which shows the movement of. 3, 6, and 9, in the relay optical system RL, each lens group is represented by a combination of reference numeral G and a numeral, and each lens is represented by a combination of reference numeral L and a numeral. In the eyepiece optical system EP, each lens is represented by a combination of a symbol E and a number. In this case, in order to prevent the types and numbers of the symbols and numbers from becoming large and complicated, the lenses and the like are represented by using a combination of the symbols and numbers independently for each embodiment. Therefore, even if the same combination of reference numerals and numbers is used between the embodiments, it does not mean that they have the same configuration.
 以下に表1~表3を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、C線(波長λ=656.3nm)、d線(波長λ=587.6nm)、F線(波長λ=486.1nm)、g線(波長λ=435.8nm)を選んでいる。 Tables 1 to 3 are shown below. Of these, Table 1 is a table showing various data in the first embodiment, Table 2 in the second embodiment, and Table 3 in the third embodiment. In each example, as the calculation target of the aberration characteristic, C line (wavelength λ = 656.3 nm), d line (wavelength λ = 587.6 nm), F line (wavelength λ = 486.1 nm), g line (wavelength λ = 435.8 nm) is selected.
 [全体諸元]の表において、Lは第1像面IM1と第2像面IM2との間の距離(リレー光学系RLの全長)を示す。f1は第1レンズ群G1の焦点距離を示す。f2は第2レンズ群G2の焦点距離を示す。f3は第3レンズ群G3の焦点距離を示す。f4は第4レンズ群G4の焦点距離を示す。f5は第5レンズ群G5の焦点距離を示す。Φ3は第3レンズ群G3における最大外径を示す。Φ4は第4レンズ群G4における最大外径を示す。Φ5は第5レンズ群G5における最大外径を示す。dG2はリレー光学系RLの結像倍率を最低倍率から最高倍率へ変化させる際の第2レンズ群G2の移動量を示す。dG4はリレー光学系RLの結像倍率を最低倍率から最高倍率へ変化させる際の第4レンズ群G4の移動量を示す。 In the table of [Overall Specifications], L represents the distance between the first image plane IM1 and the second image plane IM2 (the total length of the relay optical system RL). f1 represents the focal length of the first lens group G1. f2 represents the focal length of the second lens group G2. f3 represents the focal length of the third lens group G3. f4 represents the focal length of the fourth lens group G4. f5 represents the focal length of the fifth lens group G5. Φ3 represents the maximum outer diameter in the third lens group G3. Φ4 represents the maximum outer diameter of the fourth lens group G4. Φ5 represents the maximum outer diameter in the fifth lens group G5. dG2 represents the amount of movement of the second lens group G2 when changing the imaging magnification of the relay optical system RL from the minimum magnification to the maximum magnification. dG4 represents the amount of movement of the fourth lens group G4 when changing the imaging magnification of the relay optical system RL from the minimum magnification to the maximum magnification.
 [レンズデータ]の表において、面番号は物体側からのレンズ面の順序を示す。Rは各面番号に対応する曲率半径(物体側に凸のレンズ面の場合を正の値としている)を示す。Dは各面番号に対応する光軸上のレンズ厚もしくは空気間隔を示す。ndは各面番号に対応する光学材料のd線(波長λ=587.6nm)に対する屈折率を示す。νdは各面番号に対応する光学材料のd線を基準とするアッベ数を示す。外径は各面番号に対応するレンズの外径を示す。なお、曲率半径の「∞」は平面又は開口を示す。また、空気の屈折率nd=1.00000の記載は省略している。レンズの外径は、レンズ面における周縁光線が通る位置に一定値(1mm程度)を加えた値であり、個々のレンズの両側のレンズ面のうち大きい方の値として示されている。 In the [Lens Data] table, the surface number indicates the order of the lens surface from the object side. R represents a radius of curvature corresponding to each surface number (a lens surface convex on the object side has a positive value). D indicates the lens thickness or the air gap on the optical axis corresponding to each surface number. nd represents the refractive index of the optical material corresponding to each surface number with respect to the d-line (wavelength λ = 587.6 nm). νd represents the Abbe number based on the d line of the optical material corresponding to each surface number. The outer diameter indicates the outer diameter of the lens corresponding to each surface number. The radius of curvature "∞" indicates a plane or an opening. Further, the description of the refractive index nd = 1.0000 of air is omitted. The outer diameter of the lens is a value obtained by adding a constant value (about 1 mm) to the position where the marginal ray passes on the lens surface, and is shown as the larger value of the lens surfaces on both sides of each lens.
 [可変間隔データ]の表には、リレー光学系の結像倍率に対応した、[レンズ諸元]を示す表において面間隔が「可変」となっている面番号での面間隔を示す。[可変間隔データ]の表において、H0は物体高を示す。 The table of [Variable spacing data] shows the surface spacing at the surface number for which the surface spacing is “variable” in the table showing the [lens specifications] corresponding to the imaging magnification of the relay optical system. In the table of [Variable interval data], H0 represents the object height.
 [条件式対応値]の表には、各条件式に対応する値を示す。 The table of [Values corresponding to conditional expressions] shows the values corresponding to each conditional expression.
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。 In all the following specification values, the focal length f, the radius of curvature R, the surface distance D, and other lengths listed are generally “mm” unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, since the same optical performance can be obtained even if the proportion is reduced, the invention is not limited to this.
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。 The description of the table up to this point is common to all the examples, and the duplicated description below is omitted.
 (第1実施例)
 第1実施例について、図3~図5および表1を用いて説明する。第1実施例に係るリレー光学系は、その結像倍率が最小0.95から最大6.99まで変化し、適宜の対物光学系と組み合わせることによって、変倍率が約8倍の望遠鏡が構成される。図3は、本実施形態の第1実施例に係るリレー光学系RL(1)の結像倍率が最低倍率から最高倍率に変化する際のレンズの動きを示す図である。第1実施例に係るリレー光学系RL(1)は、例えば望遠鏡等に用いられ、第1像面IM1に形成される像を第2像面IM2に再結像させる。なお、第2像面IM2にレチクルRtcが配置される。第2像面IM2よりもアイポイント側に、接眼光学系EPが配置される。
(First embodiment)
The first embodiment will be described with reference to FIGS. 3 to 5 and Table 1. The relay optical system according to the first example changes its imaging magnification from a minimum of 0.95 to a maximum of 6.99, and by combining it with an appropriate objective optical system, a telescope having a magnification of about 8 is constructed. It FIG. 3 is a diagram showing the movement of the lens when the imaging magnification of the relay optical system RL (1) according to Example 1 of the present embodiment changes from the minimum magnification to the maximum magnification. The relay optical system RL (1) according to the first example is used, for example, in a telescope or the like, and re-images the image formed on the first image plane IM1 on the second image plane IM2. The reticle Rtc is arranged on the second image plane IM2. The eyepiece optical system EP is arranged on the eyepoint side of the second image plane IM2.
 第1実施例に係るリレー光学系RL(1)は、第1像面IM1側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成される。第2レンズ群G2と第4レンズ群G4とを光軸AZに沿って互いに反対の方向へ単調に移動させることで、第1像面IM1と第2像面IM2とを固定しつつ、リレー光学系RL(1)の結像倍率を変化させることができる。なお、リレー光学系RL(1)の結像倍率を低倍率から高倍率へ変化させる際、第2レンズ群G2が光軸AZに沿って第1像面IM1側へ単調に移動し、第4レンズ群G4が光軸AZに沿って第2像面I2側へ単調に移動する。また、リレー光学系RL(1)の結像倍率を変化させる際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、光軸AZ上に固定される。 The relay optical system RL (1) according to the first example has a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power, which are arranged in order from the first image plane IM1 side. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power. By moving the second lens group G2 and the fourth lens group G4 monotonically in opposite directions along the optical axis AZ, the first optical plane IM1 and the second optical plane IM2 are fixed and the relay optics is fixed. The imaging magnification of the system RL (1) can be changed. When changing the imaging magnification of the relay optical system RL (1) from low magnification to high magnification, the second lens group G2 monotonously moves to the first image plane IM1 side along the optical axis AZ, and The lens group G4 monotonously moves to the second image plane I2 side along the optical axis AZ. Further, when changing the imaging magnification of the relay optical system RL (1), the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed on the optical axis AZ.
 第1レンズ群G1は、物体側に凹面を向けたメニスカス形状の正レンズL11から構成される。第2レンズ群G2は、両凹形状の負レンズL21と両凸形状の正レンズL22との接合レンズと、両凸形状の正レンズL23とから構成される。第3レンズ群G3は、両凸形状の正レンズL31と物体側に凹面を向けたメニスカス形状の負レンズL32との接合レンズから構成される。第4レンズ群G4は、物体側に凹面を向けたメニスカス形状の正レンズL41と両凹形状の負レンズL42との接合レンズと、両凹形状の負レンズL43とから構成される。第5レンズ群G5は、両凸形状の正レンズL51と物体側に凹面を向けたメニスカス形状の負レンズL52との接合レンズから構成される。 The first lens group G1 is composed of a meniscus-shaped positive lens L11 having a concave surface facing the object side. The second lens group G2 is composed of a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22, and a biconvex positive lens L23. The third lens group G3 is composed of a cemented lens of a biconvex positive lens L31 and a meniscus negative lens L32 having a concave surface facing the object side. The fourth lens group G4 includes a cemented lens of a meniscus positive lens L41 having a concave surface facing the object side and a biconcave negative lens L42, and a biconcave negative lens L43. The fifth lens group G5 is composed of a cemented lens of a biconvex positive lens L51 and a meniscus negative lens L52 having a concave surface facing the object side.
 接眼光学系EPは、物体側から順に並んだ、両凹形状の負レンズE1と両凸形状の正レンズE2との接合レンズと、両凸形状の正レンズE3とから構成される。 The eyepiece optical system EP is composed of a cemented lens of a biconcave negative lens E1 and a biconvex positive lens E2, and a biconvex positive lens E3, which are arranged in order from the object side.
 以下の表1に、第1実施例に係るリレー光学系と接眼光学系の諸元の値を掲げる。 Table 1 below lists values of specifications of the relay optical system and the eyepiece optical system according to the first example.
(表1)
[全体諸元]
 L=133.29
 f1=146.33
 f2=21.04
 f3=51.81
 f4=-11.27
 f5=26.52
 Φ3=13.60
 Φ4=10.63
 Φ5=14.50
 dG2=19.12
 dG4=20.67
[レンズデータ]
 面番号   R     D     nd   νd   外径
  1     ∞   5.00             20.00(第1像面)
  2   -15.974  2.73   1.80400   46.60  21.15
  3   -15.136  D1(可変)          21.15
  4   -20.669  2.00   1.90200   25.53  14.50
  5    19.479  4.41   1.59319   67.90  14.50
  6   -18.083  0.10             14.50
  7    36.101  3.56   1.83400   37.18  14.50
  8   -25.062  D2(可変)          14.50
  9    26.871  4.47   1.59319   67.90  13.60
  10   -12.729  1.00   1.90265  35.73  13.60
  11   -42.288  D3(可変)          13.60
  12   -40.829  2.89   1.84666  23.80  10.63
  13   -9.458  1.03   1.60300  65.44  10.63
  14   26.092  0.67             10.63
  15   -18.231  0.68   1.51680  64.13   8.86
  16   13.280  D4(可変)           8.86
  17   67.217  3.76    1.67790  50.67  14.50
  18   -10.157  1.00   1.84666  23.80  14.50
  19   -18.934  48.00             14.50
  20    ∞   2.00   1.51680  64.13  19.15(第2像面)
  21    ∞   2.00   1.51680  64.13  19.15
  22    ∞   22.89             19.15
  23   -23.193  2.00   1.90366  31.27  30.04
  24   53.746  9.86   1.49782  82.57  30.04
  25   -20.291  4.42             30.04
  26   105.709  8.30   1.69700  48.45  39.00
  27   -40.586                 39.00
[可変間隔データ]
 結像倍率    0.95    2.72    6.99
  D1     26.33   13.21    7.29
  D2      0.85   13.99   19.97
  D3      0.85    7.33   21.65
  D4     21.96   15.47    1.29
  H0      9.50    3.167   1.19
[条件式対応値]
 条件式(1) f2/L=0.16
 条件式(2) f2/(-f4)=1.87
 条件式(3) Φ4/Φ3=0.78
 条件式(4) Φ4/Φ5=0.73
 条件式(5) dG2/dG4=0.93
(Table 1)
[Overall specifications]
L = 133.29
f1 = 146.33
f2 = 21.04
f3 = 51.81
f4 = -11.27
f5 = 26.52
Φ3 = 13.60
Φ4 = 10.63
Φ5 = 14.50
dG2 = 19.12
dG4 = 20.67
[Lens data]
Surface number RD nd νd outer diameter 1 ∞ 5.00 20.00 (first image surface)
2 -15.974 2.73 1.80400 46.60 21.15
3 -15.136 D1 (variable) 21.15
4 -20.669 2.00 1.90200 25.53 14.50
5 19.479 4.41 1.59319 67.90 14.50
6 -18.083 0.10 14.50
7 36.101 3.56 1.83400 37.18 14.50
8 -25.062 D2 (variable) 14.50
9 26.871 4.47 1.59319 67.90 13.60
10 -12.729 1.00 1.90265 35.73 13.60
11 -42.288 D3 (variable) 13.60
12 -40.829 2.89 1.84666 23.80 10.63
13 -9.458 1.03 1.60 300 65.44 10.63
14 26.092 0.67 10.63
15 -18.231 0.68 1.51680 64.13 8.86
16 13.280 D4 (variable) 8.86
17 67.217 3.76 1.67790 50.67 14.50
18 -10.157 1.00 1.84666 23.80 14.50
19 -18.934 48.00 14.50
20 ∞ 2.00 1.51680 64.13 19.15 (second image plane)
21 ∞ 2.00 1.51680 64.13 19.15
22 ∞ 22.89 19.15
23 -23.193 2.00 1.90366 31.27 30.04
24 53.746 9.86 1.49782 82.57 30.04
25 -20.291 4.42 30.04
26 105.709 8.30 1.69700 48.45 39.00
27 -40.586 39.00
[Variable interval data]
Imaging magnification 0.95 2.72 6.99
D1 26.33 13.21 7.29
D2 0.85 13.99 19.97
D3 0.85 7.33 21.65
D4 21.96 15.47 1.29
H0 9.50 3.167 1.19
[Value corresponding to conditional expression]
Conditional expression (1) f2 / L = 0.16
Conditional expression (2) f2 / (-f4) = 1.87
Conditional expression (3) Φ4 / Φ3 = 0.78
Conditional expression (4) Φ4 / Φ5 = 0.73
Conditional expression (5) dG2 / dG4 = 0.93
 図4(A)、図4(B)、および図4(C)はそれぞれ、第1実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における諸収差図である。図5(A)、図5(B)、および図5(C)はそれぞれ、第1実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における横収差図である。各収差図において、リレー光学系に接眼光学系を組み合わせた状態での諸収差を示す。各収差図において、CはC線(波長λ=656.3nm)、dはd線(波長λ=587.6nm)、FはF線(波長λ=486.1nm)、gはg線(波長λ=435.8nm)に対する諸収差をそれぞれ示す。非点収差を示す収差図において、実線はサジタル像面を示し、破線はメリジオナル像面を示す。横収差図において、RFHは像高比(Relative Field Height)を示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。 FIG. 4A, FIG. 4B, and FIG. 4C are graphs showing various aberrations when the image forming magnification of the relay optical system according to Example 1 is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. FIG. 5A, FIG. 5B, and FIG. 5C are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the first example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. In each aberration diagram, various aberrations in a state where the relay optical system and the eyepiece optical system are combined are shown. In each aberration diagram, C is C line (wavelength λ = 656.3 nm), d is d line (wavelength λ = 587.6 nm), F is F line (wavelength λ = 486.1 nm), and g is g line (wavelength). Aberrations for λ = 435.8 nm) are shown. In the aberration diagram showing astigmatism, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane. In the lateral aberration diagram, RFH indicates the image height ratio (Relative Field Height). In the aberration diagrams of the respective examples shown below, the same reference numerals as those in the present example are used, and the duplicated description will be omitted.
 各収差図より、第1実施例に係るリレー光学系は、低倍率の状態から高倍率の状態に亘り、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 From each aberration diagram, it is understood that the relay optical system according to Example 1 has excellent imaging performance in which various aberrations are satisfactorily corrected from the low magnification state to the high magnification state.
 (第2実施例)
 第2実施例について、図6~図8および表2を用いて説明する。第2実施例に係るリレー光学系は、その結像倍率が最小1.26から最大9.46まで変化し、適宜の対物光学系と組み合わせることによって、変倍率が約8倍の望遠鏡が構成される。図6は、本実施形態の第2実施例に係るリレー光学系RL(2)の結像倍率が最低倍率から最高倍率に変化する際のレンズの動きを示す図である。第2実施例に係るリレー光学系RL(2)は、例えば望遠鏡等に用いられ、第1像面IM1に形成される像を第2像面IM2に再結像させる。なお、第2像面IM2にレチクルRtcが配置される。第2像面IM2よりもアイポイント側に、接眼光学系EPが配置される。
(Second embodiment)
The second embodiment will be described with reference to FIGS. 6 to 8 and Table 2. The image forming magnification of the relay optical system according to the second embodiment changes from a minimum of 1.26 to a maximum of 9.46, and by combining it with an appropriate objective optical system, a telescope having a magnification of about 8 is constructed. It FIG. 6 is a diagram showing the movement of the lens when the imaging magnification of the relay optical system RL (2) according to the second example of the present embodiment changes from the minimum magnification to the maximum magnification. The relay optical system RL (2) according to the second example is used, for example, in a telescope or the like, and reimages the image formed on the first image plane IM1 on the second image plane IM2. The reticle Rtc is arranged on the second image plane IM2. The eyepiece optical system EP is arranged on the eyepoint side of the second image plane IM2.
 第2実施例に係るリレー光学系RL(2)は、第1像面IM1側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成される。第2レンズ群G2と第4レンズ群G4とを光軸AZに沿って互いに反対の方向へ単調に移動させることで、第1像面IM1と第2像面IM2とを固定しつつ、リレー光学系RL(2)の結像倍率を変化させることができる。なお、リレー光学系RL(2)の結像倍率を低倍率から高倍率へ変化させる際、第2レンズ群G2が光軸AZに沿って第1像面IM1側へ単調に移動し、第4レンズ群G4が光軸AZに沿って第2像面IM2側へ単調に移動する。また、リレー光学系RL(2)の結像倍率を変化させる際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、光軸AZ上に固定される。 The relay optical system RL (2) according to the second example is arranged in order from the first image plane IM1 side and has a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power. By moving the second lens group G2 and the fourth lens group G4 monotonically in opposite directions along the optical axis AZ, the first optical plane IM1 and the second optical plane IM2 are fixed and the relay optics is fixed. The imaging magnification of the system RL (2) can be changed. When changing the imaging magnification of the relay optical system RL (2) from low magnification to high magnification, the second lens group G2 monotonously moves toward the first image plane IM1 along the optical axis AZ, and the The lens group G4 monotonously moves toward the second image plane IM2 side along the optical axis AZ. Further, when changing the imaging magnification of the relay optical system RL (2), the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed on the optical axis AZ.
 第1レンズ群G1は、物体側に凹面を向けたメニスカス形状の正レンズL11から構成される。第2レンズ群G2は、両凹形状の負レンズL21と両凸形状の正レンズL22との接合レンズと、両凸形状の正レンズL23とから構成される。第3レンズ群G3は、両凸形状の正レンズL31と物体側に凹面を向けたメニスカス形状の負レンズL32との接合レンズから構成される。第4レンズ群G4は、両凹形状の負レンズL41と、物体側に凹面を向けたメニスカス形状の負レンズL42と、物体側に凹面を向けたメニスカス形状の正レンズL43とから構成される。第5レンズ群G5は、物体側に凸面を向けたメニスカス形状の負レンズL51と両凸形状の正レンズL52との接合レンズから構成される。 The first lens group G1 is composed of a meniscus-shaped positive lens L11 having a concave surface facing the object side. The second lens group G2 is composed of a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22, and a biconvex positive lens L23. The third lens group G3 is composed of a cemented lens of a biconvex positive lens L31 and a meniscus negative lens L32 having a concave surface facing the object side. The fourth lens group G4 includes a biconcave negative lens L41, a meniscus negative lens L42 having a concave surface facing the object side, and a meniscus positive lens L43 having a concave surface facing the object side. The fifth lens group G5 is composed of a cemented lens made up of a meniscus negative lens L51 having a convex surface directed toward the object side and a biconvex positive lens L52.
 接眼光学系EPは、物体側から順に並んだ、両凹形状の負レンズE1と両凸形状の正レンズE2との接合レンズと、両凸形状の正レンズE3とから構成される。 The eyepiece optical system EP is composed of a cemented lens of a biconcave negative lens E1 and a biconvex positive lens E2, and a biconvex positive lens E3, which are arranged in order from the object side.
 以下の表2に、第2実施例に係るリレー光学系と接眼光学系の諸元の値を掲げる。 Table 2 below shows the values of specifications of the relay optical system and the eyepiece optical system according to the second example.
(表2)
[全体諸元]
 L=163.36
 f1=37.32
 f2=20.40
 f3=76.28
 f4=-17.43
 f5=26.52
 Φ3=12.14
 Φ4=10.55
 Φ5=14.50
 dG2=17.93
 dG4=30.88
[レンズデータ]
 面番号   R    D     nd   νd  外径
  1     ∞   5.00             15.60(第1像面)
  2   -28.768  3.38   1.80400  46.60   17.90
  3   -15.456  D1(可変)          17.90
  4   -20.561  1.89   1.80610  33.33  14.47
  5    25.829  4.55   1.59319  67.90  14.47
  6   -14.208  3.30             14.47
  7    27.930  3.63   1.59319  67.90  14.50
  8   -29.053  D2(可変)          14.50
  9    26.579  3.89   1.49782  82.57  12.14
  10   -11.978  1.00   1.80440  39.61  12.14
  11   -40.992  D3(可変)          12.14
  12   -22.483  1.00   1.60300  65.44   8.00
  13   16.864  1.12              8.00
  14   -9.051  1.00   1.60300  65.44   8.57
  15   -24.888  1.07              8.57
  16   -10.094  2.62   1.90200  25.53  10.55
  17   -8.716  D4(可変)          10.55
  18   36.787  1.00   1.84666  23.80  14.50
  19   18.474  3.81   1.63854  55.34  14.50
  20   -48.621  67.76             14.50
  21    ∞   2.00   1.51680  64.13  19.24(第2像面)
  22    ∞   2.00   1.51680  64.13  19.24
  23    ∞   22.89             19.24
  24   -23.193  2.00   1.90366  31.27  29.79
  25   53.746  9.86   1.49782  82.57  29.79
  26   -20.291  4.42             29.79
  27   105.709  8.30   1.69700  48.45  39.00
  28   -40.586                 39.00
[可変間隔データ]
 結像倍率    1.26    3.52    9.46
  D1     21.73    9.28    3.83
  D2      0.85   13.29   18.78
  D3      0.94    9.93   31.82
  D4     31.81   22.81    0.93
  H0      7.30    2.433   0.91
[条件式対応値]
 条件式(1) f2/L=0.12
 条件式(2) f2/(-f4)=1.17
 条件式(3) Φ4/Φ3=0.87
 条件式(4) Φ4/Φ5=0.73
 条件式(5) dG2/dG4=0.58
(Table 2)
[Overall specifications]
L = 163.36
f1 = 37.32
f2 = 20.40
f3 = 76.28
f4 = -17.43
f5 = 26.52
Φ3 = 12.14
Φ4 = 10.55
Φ5 = 14.50
dG2 = 17.93
dG4 = 30.88
[Lens data]
Surface number RD nd νd outer diameter 1 ∞ 5.00 15.60 (first image surface)
2 -28.768 3.38 1.80400 46.60 17.90
3 -15.456 D1 (variable) 17.90
4 -20.561 1.89 1.80610 33.33 14.47
5 25.829 4.55 1.59319 67.90 14.47
6 -14.208 3.30 14.47
7 27.930 3.63 1.59319 67.90 14.50
8 -29.053 D2 (variable) 14.50
9 26.579 3.89 1.49782 82.57 12.14
10 -11.978 1.00 1.80440 39.61 12.14
11 -40.992 D3 (variable) 12.14
12 -22.483 1.00 1.60300 65.44 8.00
13 16.864 1.12 8.00
14 -9.051 1.00 1.60300 65.44 8.57
15 -24.888 1.07 8.57
16 -10.094 2.62 1.90 200 25.53 10.55
17 -8.716 D4 (variable) 10.55
18 36.787 1.00 1.84666 23.80 14.50
19 18.474 3.81 1.63854 55.34 14.50
20 -48.621 67.76 14.50
21 ∞ 2.00 1.51680 64.13 19.24 (2nd image plane)
22 ∞ 2.00 1.51680 64.13 19.24
23 ∞ 22.89 19.24
24 -23.193 2.00 1.90366 31.27 29.79
25 53.746 9.86 1.49782 82.57 29.79
26 -20.291 4.42 29.79
27 105.709 8.30 1.69700 48.45 39.00
28 -40.586 39.00
[Variable interval data]
Imaging magnification 1.26 3.52 9.46
D1 21.73 9.28 3.83
D2 0.85 13.29 18.78
D3 0.94 9.93 31.82
D4 31.81 22.81 0.93
H0 7.30 2.433 0.91
[Value corresponding to conditional expression]
Conditional expression (1) f2 / L = 0.12
Conditional expression (2) f2 / (-f4) = 1.17
Conditional expression (3) Φ4 / Φ3 = 0.87
Conditional expression (4) Φ4 / Φ5 = 0.73
Conditional expression (5) dG2 / dG4 = 0.58
 図7(A)、図7(B)、および図7(C)はそれぞれ、第2実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における諸収差図である。図8(A)、図8(B)、および図8(C)はそれぞれ、第2実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における横収差図である。各収差図より、第2実施例に係るリレー光学系は、低倍率の状態から高倍率の状態に亘り、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 7A, FIG. 7B, and FIG. 7C are graphs showing various aberrations when the image forming magnification of the relay optical system according to the second example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. 8 (A), 8 (B), and 8 (C) are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the second example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. From each aberration diagram, it is understood that the relay optical system according to Example 2 has excellent imaging performance in which various aberrations are satisfactorily corrected from the low magnification state to the high magnification state.
 (第3実施例)
 第3実施例について、図9~図11および表3を用いて説明する。第3実施例に係るリレー光学系は、その結像倍率が最小1.15から最大8.65まで変化し、適宜の対物光学系と組み合わせることによって、変倍率が約8倍の望遠鏡が構成される。図9は、本実施形態の第3実施例に係るリレー光学系RL(3)の結像倍率が最低倍率から最高倍率に変化する際のレンズの動きを示す図である。第3実施例に係るリレー光学系RL(3)は、例えば望遠鏡等に用いられ、第1像面IM1に形成される像を第2像面IM2に再結像させる。なお、第2像面IM2にレチクルRtcが配置される。第2像面IM2よりもアイポイント側に、接眼光学系EPが配置される。
(Third embodiment)
The third embodiment will be described with reference to FIGS. 9 to 11 and Table 3. In the relay optical system according to the third example, the image forming magnification changes from a minimum of 1.15 to a maximum of 8.65, and a telescope having a variable magnification of about 8 is configured by combining it with an appropriate objective optical system. It FIG. 9 is a diagram showing the movement of the lens when the imaging magnification of the relay optical system RL (3) according to the third example of the present embodiment changes from the minimum magnification to the maximum magnification. The relay optical system RL (3) according to the third example is used, for example, in a telescope or the like, and re-images the image formed on the first image plane IM1 on the second image plane IM2. The reticle Rtc is arranged on the second image plane IM2. The eyepiece optical system EP is arranged on the eyepoint side of the second image plane IM2.
 第3実施例に係るリレー光学系RL(3)は、第1像面IM1側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成される。第2レンズ群G2と第4レンズ群G4とを光軸AZに沿って互いに反対の方向へ単調に移動させることで、第1像面IM1と第2像面IM2とを固定しつつ、リレー光学系RL(3)の結像倍率を変化させることができる。なお、リレー光学系RL(3)の結像倍率を低倍率から高倍率へ変化させる際、第2レンズ群G2が光軸AZに沿って第1像面IM1側へ単調に移動し、第4レンズ群G4が光軸AZに沿って第2像面IM2側へ単調に移動する。また、リレー光学系RL(3)の結像倍率を変化させる際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5は、光軸AZ上に固定される。 The relay optical system RL (3) according to the third example is arranged in order from the first image plane IM1 side and has a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power. A third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power. By moving the second lens group G2 and the fourth lens group G4 monotonically in opposite directions along the optical axis AZ, the first optical plane IM1 and the second optical plane IM2 are fixed and the relay optics is fixed. The imaging magnification of the system RL (3) can be changed. When changing the imaging magnification of the relay optical system RL (3) from low magnification to high magnification, the second lens group G2 monotonously moves toward the first image plane IM1 side along the optical axis AZ, The lens group G4 monotonously moves toward the second image plane IM2 side along the optical axis AZ. Further, when changing the imaging magnification of the relay optical system RL (3), the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed on the optical axis AZ.
 第1レンズ群G1は、物体側に凹面を向けたメニスカス形状の正レンズL11から構成される。第2レンズ群G2は、両凹形状の負レンズL21と両凸形状の正レンズL22との接合レンズと、両凸形状の正レンズL23とから構成される。第3レンズ群G3は、両凹形状の負レンズL31と両凸形状の正レンズL32との接合レンズから構成される。第4レンズ群G4は、両凹形状の負レンズL41と、物体側に凹面を向けたメニスカス形状の負レンズL42と、物体側に凹面を向けたメニスカス形状の正レンズL43とから構成される。第5レンズ群G5は、両凸形状の正レンズL51と物体側に凹面を向けたメニスカス形状の負レンズL52との接合レンズから構成される。 The first lens group G1 is composed of a meniscus-shaped positive lens L11 having a concave surface facing the object side. The second lens group G2 is composed of a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22, and a biconvex positive lens L23. The third lens group G3 is composed of a cemented lens made up of a biconcave negative lens L31 and a biconvex positive lens L32. The fourth lens group G4 includes a biconcave negative lens L41, a meniscus negative lens L42 having a concave surface facing the object side, and a meniscus positive lens L43 having a concave surface facing the object side. The fifth lens group G5 is composed of a cemented lens of a biconvex positive lens L51 and a meniscus negative lens L52 having a concave surface facing the object side.
 接眼光学系EPは、物体側から順に並んだ、両凹形状の負レンズE1と両凸形状の正レンズE2との接合レンズと、両凸形状の正レンズE3とから構成される。 The eyepiece optical system EP is composed of a cemented lens of a biconcave negative lens E1 and a biconvex positive lens E2, and a biconvex positive lens E3, which are arranged in order from the object side.
 以下の表3に、第3実施例に係るリレー光学系と接眼光学系の諸元の値を掲げる。 Table 3 below lists values of specifications of the relay optical system and the eyepiece optical system according to the third example.
(表3)
[全体諸元]
 L=173.79
 f1=31.95
 f2=18.94
 f3=-116.66
 f4=-21.22
 f5=40.47
 Φ3=10.68
 Φ4=10.51
 Φ5=14.50
 dG2=13.31
 dG4=32.52
[レンズデータ]
 面番号   R    D     nd   νd  外径
  1     ∞   5.00             17.00(第1像面)
  2   -29.872  5.59   1.60300  65.44  21.19
  3   -12.537  D1(可変)          21.19
  4   -73.229  1.82   1.90265  35.77  14.31
  5    26.189  3.99   1.59319  67.90  14.31
  6   -20.222  1.17             14.31
  7    37.157  3.12   1.90265  35.77  14.50
  8   -46.144  D2(可変)          14.50
  9   -110.918  1.00   1.80518  25.45  10.68
  10   11.035  3.42   1.62041  60.25  10.68
  11   -42.222  D3(可変)          10.68
  12   -79.607  2.00   1.72000  43.61   7.20
  13   18.153  1.46              7.20
  14   -5.398  1.00   1.60300  65.44   8.65
  15   -14.921  0.35              8.65
  16   -10.463  2.93   1.85000  27.70  10.51
  17   -7.690  D4(可変)          10.51
  18   76.930  3.77   1.70000  48.10  14.50
  19   -15.998  1.00   1.84666  23.80  14.50
  20   -33.730  75.31             14.50
  21    ∞   2.00   1.51680  64.13  18.92(第2像面)
  22    ∞   2.00   1.51680  64.13  18.92
  23    ∞   22.89             18.92
  24   -23.193  2.00   1.90366  31.27  28.57
  25   53.746  9.86   1.49782  82.57  28.57
  26   -20.291  4.42             28.57
  27   105.709  8.30   1.69700  48.45  39.00
  28   -40.586                 39.00
[可変間隔データ]
 結像倍率    1.15    3.20    8.65
  D1     23.80   15.41   10.46
  D2      0.85    9.24   14.16
  D3      0.85   13.36   33.37
  D4     33.37   20.86    0.85
  H0      8.00    2.667   1.00
[条件式対応値]
 条件式(1) f2/L=0.11
 条件式(2) f2/(-f4)=0.89
 条件式(3) Φ4/Φ3=0.98
 条件式(4) Φ4/Φ5=0.73
 条件式(5) dG2/dG4=0.41
(Table 3)
[Overall specifications]
L = 173.79
f1 = 31.95
f2 = 18.94
f3 = -116.66
f4 = -21.22
f5 = 40.47
Φ3 = 10.68
Φ4 = 10.51
Φ5 = 14.50
dG2 = 13.31
dG4 = 32.52
[Lens data]
Surface number RD nd νd outer diameter 1 ∞ 5.00 17.00 (first image surface)
2 -29.872 5.59 1.60300 65.44 21.19
3 -12.537 D1 (variable) 21.19
4 -73.229 1.82 1.90265 35.77 14.31
5 26.189 3.99 1.59319 67.90 14.31
6 -20.222 1.17 14.31
7 37.157 3.12 1.90265 35.77 14.50
8 -46.144 D2 (variable) 14.50
9 -110.918 1.00 1.80518 25.45 10.68
10 11.035 3.42 1.620 41 60.25 10.68
11 -42.222 D3 (variable) 10.68
12 -79.607 2.00 1.72000 43.61 7.20
13 18.153 1.46 7.20
14 -5.398 1.00 1.60 300 65.44 8.65
15 -14.921 0.35 8.65
16 -10.463 2.93 1.85000 27.70 10.51
17 -7.690 D4 (variable) 10.51
18 76.930 3.77 1.70000 48.10 14.50
19 -15.998 1.00 1.84666 23.80 14.50
20 -33.730 75.31 14.50
21 ∞ 2.00 1.51680 64.13 18.92 (second image plane)
22 ∞ 2.00 1.51680 64.13 18.92
23 ∞ 22.89 18.92
24 -23.193 2.00 1.90366 31.27 28.57
25 53.746 9.86 1.49782 82.57 28.57
26 -20.291 4.42 28.57
27 105.709 8.30 1.69700 48.45 39.00
28 -40.586 39.00
[Variable interval data]
Imaging magnification 1.15 3.20 8.65
D1 23.80 15.41 10.46
D2 0.85 9.24 14.16
D3 0.85 13.36 33.37
D4 33.37 20.86 0.85
H0 8.00 2.667 1.00
[Value corresponding to conditional expression]
Conditional expression (1) f2 / L = 0.11
Conditional expression (2) f2 / (-f4) = 0.89
Conditional expression (3) Φ4 / Φ3 = 0.98
Conditional expression (4) Φ4 / Φ5 = 0.73
Conditional expression (5) dG2 / dG4 = 0.41
 図10(A)、図10(B)、および図10(C)はそれぞれ、第3実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における諸収差図である。図11(A)、図11(B)、および図11(C)はそれぞれ、第3実施例に係るリレー光学系の結像倍率が最低倍率、中間倍率、および最高倍率の状態における横収差図である。各収差図より、第3実施例に係るリレー光学系は、低倍率の状態から高倍率の状態に亘り、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 10 (A), 10 (B), and 10 (C) are graphs showing various aberrations when the image forming magnification of the relay optical system according to the third example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. 11 (A), 11 (B), and 11 (C) are lateral aberration diagrams in a state where the imaging magnification of the relay optical system according to the third example is the minimum magnification, the intermediate magnification, and the maximum magnification, respectively. Is. From each aberration diagram, it is understood that the relay optical system according to Example 3 has excellent imaging performance in which various aberrations are satisfactorily corrected from the low magnification state to the high magnification state.
 以上、各実施例によれば、全長を短く抑えつつ、高い結像倍率に変化させることが可能で、収差が良好に補正されたリレー光学系RLを実現することができる。 As described above, according to each of the embodiments, it is possible to realize a relay optical system RL in which the total length can be suppressed to be short and the imaging magnification can be changed to a high value, and the aberration can be favorably corrected.
 ここで、上記各実施例は本実施形態の一具体例を示しているものであり、本実施形態はこれらに限定されるものではない。 Here, each of the above-mentioned examples shows one specific example of the present embodiment, and the present embodiment is not limited to these.
 具体的には、上記各実施例において、第1レンズ群G1の正レンズL11は、いずれも物体側に凹面を向けたメニスカス形状としているが、ズーム式リレー光学系として、あるいは望遠鏡全体の収差補正の観点から、物体側に凸面を向けたメニスカス形状や、両凸形状とすることが可能である。他のレンズ群の具体的なレンズ構成についても、ズーム式リレー光学系として、あるいは望遠鏡全体としての収差バランスのために、適宜のレンズ構成とすることが可能である。また、各レンズ群の構成において、色収差補正のための貼り合せレンズ(接合レンズ)の接合面の向きは適宜変更することが可能である。 Specifically, in each of the above-described examples, the positive lens L11 of the first lens group G1 has a meniscus shape with a concave surface facing the object side, but as a zoom relay optical system or aberration correction of the entire telescope. From the viewpoint of, it is possible to make a meniscus shape with a convex surface facing the object side or a biconvex shape. Regarding the specific lens configuration of the other lens groups, it is possible to use an appropriate lens configuration for the zoom relay optical system or for the aberration balance of the entire telescope. Further, in the configuration of each lens group, the direction of the cemented surface of the cemented lens (cemented lens) for chromatic aberration correction can be changed as appropriate.
 また、上記各実施例において、接眼光学系EPは、全て同じ構成であり、物体側から順に並んだ、両凹形状の負レンズE1と両凸形状の正レンズE2との接合レンズと、両凸形状の正レンズE3とから構成されているが、これに限られるものではない。例えば、接眼光学系は、物体側から順に並んだ、負レンズと、正レンズと、正レンズとからなる3つの分離したレンズ構成とすることも可能であり、対物光学系やリレー光学系との組合せによって、適宜のレンズ構成とすることが可能である。 Further, in each of the above-described embodiments, the eyepiece optical systems EP have the same configuration, and the cemented lens of the biconcave negative lens E1 and the biconvex positive lens E2 and the biconvex are arranged in order from the object side. The positive lens E3 has a shape, but is not limited to this. For example, the eyepiece optical system may have three separate lens configurations, which are a negative lens, a positive lens, and a positive lens, which are arranged in order from the object side, and may include an objective optical system and a relay optical system. Depending on the combination, it is possible to have an appropriate lens configuration.
 RL リレー光学系
 G1 第1レンズ群           G2 第2レンズ群
 G3 第3レンズ群           G4 第4レンズ群
 G5 第5レンズ群
IM1 第1像面            IM2 第2像面
RL Relay optical system G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G5 Fifth lens group IM1 First image plane IM2 Second image plane

Claims (8)

  1.  第1像面に形成される像を第2像面に再結像させるリレー光学系であって、
     第1像面側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正または負の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、
     前記第2レンズ群と前記第4レンズ群とを光軸に沿って互いに反対の方向へ移動させることにより、前記リレー光学系の結像倍率を変化させるリレー光学系。
    A relay optical system for re-imaging the image formed on the first image surface on the second image surface,
    A first lens group having a positive refractive power, a second lens group having a positive refractive power, a third lens group having a positive or negative refractive power, and a negative lens group arranged in order from the first image surface side, A fourth lens group having a refractive power and a fifth lens group having a positive refractive power,
    A relay optical system that changes the imaging magnification of the relay optical system by moving the second lens group and the fourth lens group in opposite directions along the optical axis.
  2.  前記リレー光学系の結像倍率を最低倍率から最高倍率へ変化させる際、前記第3レンズ群の光軸上の位置が固定され、前記第2レンズ群と前記第4レンズ群とが光軸に沿って互いに反対の方向へ移動して前記第3レンズ群から離れる請求項1に記載のリレー光学系。 When changing the imaging magnification of the relay optical system from the minimum magnification to the maximum magnification, the position of the third lens group on the optical axis is fixed, and the second lens group and the fourth lens group are aligned on the optical axis. The relay optical system according to claim 1, wherein the relay optical system moves in directions opposite to each other and separates from the third lens group.
  3.  以下の条件式を満足する請求項1または2に記載のリレー光学系。
     0.05<f2/L<0.3
     0.5<f2/(-f4)<4.0
     但し、L:前記第1像面と前記第2像面との間の距離
        f2:前記第2レンズ群の焦点距離
        f4:前記第4レンズ群の焦点距離
    The relay optical system according to claim 1 or 2, which satisfies the following conditional expression.
    0.05 <f2 / L <0.3
    0.5 <f2 / (-f4) <4.0
    Here, L: distance between the first image surface and the second image surface f2: focal length of the second lens group f4: focal length of the fourth lens group
  4.  以下の条件式を満足する請求項1~3のいずれか一項に記載のリレー光学系。
     0.5<Φ4/Φ3<2.0
     0.5<Φ4/Φ5<2.0
     但し、Φ3:前記第3レンズ群における最大外径
        Φ4:前記第4レンズ群における最大外径
        Φ5:前記第5レンズ群における最大外径
    The relay optical system according to any one of claims 1 to 3, which satisfies the following conditional expression.
    0.5 <Φ4 / Φ3 <2.0
    0.5 <Φ4 / Φ5 <2.0
    However, Φ3: maximum outer diameter in the third lens group Φ4: maximum outer diameter in the fourth lens group Φ5: maximum outer diameter in the fifth lens group
  5.  以下の条件式を満足する請求項1~4のいずれか一項に記載のリレー光学系。
     0.2<dG2/dG4<2.0
     但し、dG2:前記リレー光学系の結像倍率を最低倍率から最高倍率へ変化させる際の前記第2レンズ群の移動量
        dG4:前記リレー光学系の結像倍率を最低倍率から最高倍率へ変化させる際の前記第4レンズ群の移動量
    The relay optical system according to any one of claims 1 to 4, which satisfies the following conditional expression.
    0.2 <dG2 / dG4 <2.0
    However, dG2: amount of movement of the second lens group when changing the image forming magnification of the relay optical system from the minimum magnification to the maximum magnification dG4: changing the image forming magnification of the relay optical system from the minimum magnification to the maximum magnification Amount of movement of the fourth lens group at the time
  6.  物体側から順に並んだ、対物光学系と、リレー光学系と、接眼光学系とを備え、
     前記リレー光学系は、前記対物光学系により前記対物光学系と前記リレー光学系との間の第1像面に形成される像を、前記リレー光学系と前記接眼光学系との間の第2像面に再結像させる請求項1~5のいずれか一項に記載のリレー光学系である望遠鏡。
    An objective optical system, a relay optical system, and an eyepiece optical system arranged in order from the object side,
    The relay optical system provides an image formed on the first image plane between the objective optical system and the relay optical system by the objective optical system to a second image between the relay optical system and the eyepiece optical system. The telescope which is a relay optical system according to any one of claims 1 to 5, which is re-imaged on an image plane.
  7.  物体側から順に並んだ、対物光学系と、リレー光学系と、接眼光学系とを備え、前記対物光学系が、前記リレー光学系と前記対物光学系との間の第1像面に物体像を形成し、前記リレー光学系が、前記接眼光学系と前記リレー光学系との間の第2像面に前記第1像面の物体像を再結像させる望遠鏡であって、
     前記リレー光学系は、第1像面側から順に並んだ、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正または負の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、
     前記第2レンズ群を光軸に沿って前記第1レンズ群の方へ移動させ、前記第4レンズ群を光軸に沿って前記第5レンズ群の方へ移動させることにより、前記リレー光学系の結像倍率を最低倍率から最高倍率へ変化させる望遠鏡。
    An objective optical system, a relay optical system, and an eyepiece optical system, which are arranged in order from the object side, are provided, and the objective optical system has an object image on a first image plane between the relay optical system and the objective optical system. And the relay optical system is a telescope that re-images the object image of the first image plane on a second image plane between the eyepiece optical system and the relay optical system,
    The relay optical system includes, in order from the first image plane side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a positive or negative refractive power. A lens group, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power,
    By moving the second lens group toward the first lens group along the optical axis and moving the fourth lens group toward the fifth lens group along the optical axis, the relay optical system A telescope that changes the image formation magnification from the lowest magnification to the highest magnification.
  8.  前記リレー光学系の結像倍率を最低倍率から最高倍率へ変化させる際、前記第1レンズ群、前記第3レンズ群、および前記第5レンズ群の光軸上の位置が固定される請求項7に記載のリレー光学系。 8. The positions of the first lens group, the third lens group, and the fifth lens group on the optical axis are fixed when changing the imaging magnification of the relay optical system from the minimum magnification to the maximum magnification. Relay optical system described in.
PCT/JP2019/040255 2018-11-01 2019-10-11 Relay optical system and telescope having relay optical system WO2020090424A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018206809A JP2022013958A (en) 2018-11-01 2018-11-01 Relay optical system and telescope having relay optical system
JP2018-206809 2018-11-01

Publications (1)

Publication Number Publication Date
WO2020090424A1 true WO2020090424A1 (en) 2020-05-07

Family

ID=70462458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040255 WO2020090424A1 (en) 2018-11-01 2019-10-11 Relay optical system and telescope having relay optical system

Country Status (2)

Country Link
JP (1) JP2022013958A (en)
WO (1) WO2020090424A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199336A (en) * 2006-01-26 2007-08-09 Deon Kogaku Giken:Kk Variable power optical system for ground telescope
JP2012255898A (en) * 2011-06-08 2012-12-27 Olympus Corp Zoom lens and imaging apparatus using the same
JP2015111185A (en) * 2013-12-06 2015-06-18 コニカミノルタ株式会社 Zoom lens, lens unit, and imaging apparatus
WO2015125480A1 (en) * 2014-02-19 2015-08-27 株式会社ニコンビジョン Variable-power optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199336A (en) * 2006-01-26 2007-08-09 Deon Kogaku Giken:Kk Variable power optical system for ground telescope
JP2012255898A (en) * 2011-06-08 2012-12-27 Olympus Corp Zoom lens and imaging apparatus using the same
JP2015111185A (en) * 2013-12-06 2015-06-18 コニカミノルタ株式会社 Zoom lens, lens unit, and imaging apparatus
WO2015125480A1 (en) * 2014-02-19 2015-08-27 株式会社ニコンビジョン Variable-power optical system

Also Published As

Publication number Publication date
JP2022013958A (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP3990126B2 (en) Microscope zoom objective lens
JP3376171B2 (en) Zoom lens
WO2014203631A1 (en) Fixed-focal-length lens system
JPH041715A (en) Internal focusing type telephoto zoom lens
JP5836157B2 (en) Zoom lens and imaging apparatus having the same
WO2014181749A1 (en) Variable-magnification observation optics
WO2020066224A1 (en) Telescope and telescope series
JP3510809B2 (en) Telephoto zoom lens system
US6919998B2 (en) Observation optical system and observation device
US8482862B2 (en) Variable power optical system for stereomicroscope
JP5605309B2 (en) Observation zoom optical system
JP2864407B2 (en) Kepler-type zoom finder optical system
US7072119B2 (en) Afocal zoom lens for microscopes
US4232942A (en) Optically compensated zoom lens
JP5841675B2 (en) Zoom lens and imaging device
JPH11174345A (en) Wide visual field ocular
WO2020090424A1 (en) Relay optical system and telescope having relay optical system
JPH08190052A (en) Zoom lens capable of focusing at short distance
US5889618A (en) Object lens for microscope
JP3590564B2 (en) Eyepiece zoom optical system
JPH07253561A (en) Optical system for compensating image position
JP4032502B2 (en) Large aperture ratio in-focus super telephoto lens
WO2015125480A1 (en) Variable-power optical system
JPH0990226A (en) Variable power optical system
JPH09251131A (en) Eyepiece zoom lens system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP