WO2020090394A1 - 電動機制御装置及びベルト張力状態検出装置 - Google Patents

電動機制御装置及びベルト張力状態検出装置 Download PDF

Info

Publication number
WO2020090394A1
WO2020090394A1 PCT/JP2019/039832 JP2019039832W WO2020090394A1 WO 2020090394 A1 WO2020090394 A1 WO 2020090394A1 JP 2019039832 W JP2019039832 W JP 2019039832W WO 2020090394 A1 WO2020090394 A1 WO 2020090394A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt tension
electric motor
drive
tension state
belt
Prior art date
Application number
PCT/JP2019/039832
Other languages
English (en)
French (fr)
Inventor
裕幸 関口
高野 直人
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020514646A priority Critical patent/JP6742559B1/ja
Priority to US17/285,099 priority patent/US11828665B2/en
Publication of WO2020090394A1 publication Critical patent/WO2020090394A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/023Power-transmitting endless elements, e.g. belts or chains
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to an electric motor control device and a belt tension state detection device that detect the belt tension of a belt drive unit configured by a pulley and a belt wound around the pulley.
  • slipping and tooth jumping (a phenomenon in which the teeth of the belt and the teeth of the pulley are misaligned) may occur if the attachment tension of the belt (hereinafter referred to as the belt tension) decreases.
  • the belt tension the attachment tension of the belt
  • the electric power booster described in Patent Document 1 attaches a strain sensor to the support portion of the bearing where the belt tension acts as a radial load, and estimates the belt tension based on the measured elastic deformation of the support portion.
  • the belt tension measuring device described in Patent Document 2 detects the amplitude level of the vibration of the belt by the pressure detecting device, calculates the natural frequency from the detected amplitude level, and obtains the belt tension from the calculated natural frequency.
  • the tension measuring device described in Patent Document 3 detects the vibration of the belt by receiving the sound wave generated by the vibration of the belt by the transducer. Then, the natural frequency is obtained based on the waveform signal of the belt vibration, and the belt tension is calculated from the obtained natural frequency.
  • JP, 2013-71536 A Japanese Patent Laid-Open No. 08-327477 JP-A-2000-131163
  • the present invention has been made in view of the above-described circumstances, and detects a belt tension state of a belt that transmits torque of an electric motor included in an electric motor system, using a device having a small size or a simple structure. It is an object of the present invention to provide an electric motor control device capable of
  • the electric motor control device is mechanically connected to a load machine, a driven pulley mechanically connected to the load machine, a belt wound around the driven pulley, a drive pulley around which the belt is wound, and a drive pulley.
  • the drive controller that outputs a drive command signal that is a signal for driving the electric motor of the electric motor system including the electric motor, and the belt tension of the belt based on the drive detection signal that detects the angle of rotation operation, the angular velocity or the angular acceleration of the electric motor system.
  • a belt tension state value calculation unit that outputs a belt tension state value indicating the state.
  • an electric motor control device capable of detecting a belt tension state of a belt that transmits torque of an electric motor included in an electric motor system by using a device having a small size or a simple structure.
  • Embodiment 4 of this invention It is a block diagram which shows the structure of the electric motor control apparatus in Embodiment 4 of this invention. It is a block diagram which shows the structure of the electric motor control apparatus in Embodiment 5 of this invention. It is a block diagram which shows the structure of the electric motor control apparatus in Embodiment 6 of this invention. It is a block diagram which shows the structure of the electric motor control apparatus in Embodiment 7 of this invention. It is a block diagram which shows the structure of the electric motor control apparatus in Embodiment 8 of this invention. It is a block diagram which shows the structure of the electric motor control apparatus in Embodiment 9 of this invention. It is a block diagram which shows the structure of the machine learning apparatus with which the electric motor control apparatus in Embodiment 9 of this invention is equipped.
  • Embodiment 1 is a block diagram showing a configuration of an electric motor control device 100 according to a first embodiment for carrying out the present invention.
  • an electric motor system 1000 includes an electric motor 1, a belt driving unit 2 mechanically connected to the electric motor 1, and a load machine 5 mechanically connected to the belt driving unit 2.
  • FIG. 2 is a diagram showing a configuration of the electric motor system 1000 according to the first embodiment of the present invention.
  • the drive side connecting portion 204 is connected to the electric motor 1, and the drive pulley 201 is connected to the drive side connecting portion 204.
  • a belt 203 is looped around the outer circumferences of the drive pulley 201 and the driven pulley 202.
  • the driven side connecting portion 205 is connected to the driven pulley 202, and the driven side connecting portion 205 is connected to the load machine 5.
  • the belt drive unit 2 includes a drive pulley 201, a belt 203, and a driven pulley 202.
  • the torque generated by the electric motor 1 (the unit is Newton meter [Nm], all the units shown in the embodiments of the present invention are examples) is transmitted to the load machine 5 via the belt driving unit 2.
  • the load machine 5 is a mechanical device driven by this torque.
  • the rotation or torque of the electric motor 1 is transmitted to the drive pulley 201 by the drive side connecting portion 204, and the rotation or torque of the drive pulley 201 is transmitted to the driven pulley 202 by the belt 203. Further, the rotation or torque of the driven pulley 202 is transmitted to the load machine 5 by the driven side connecting portion 205.
  • the belt 203, the drive pulley 201, and the driven pulley 202 may have teeth, and the teeth may mesh with each other to transmit torque. Further, the belt 203, the drive pulley 201, and the driven pulley 202 may have no teeth to transmit torque by frictional force. Further, FIG. 2 may show a portion between the electric motor 1 and the drive detection unit 3, which shows detection by the drive detection unit 3. Further, the drive command signal 51 between the electric motor 1 and the drive control unit 4 may be illustrated.
  • the electric motor 1 and the belt driving unit 2 may be directly connected to each other so that the driving side connecting unit 204 is not provided.
  • the belt driving unit 2 and the load machine 5 may be directly connected to each other so that the driven-side connecting unit 205 is not provided.
  • the driving side connecting portion 204 and the driven side connecting portion 205 may include a belt, a pulley, or the like.
  • the electric motor control device 100 includes a drive detection unit 3, a drive control unit 4, and a belt tension state value calculation unit 6.
  • the drive control unit 4 and the belt tension state value calculation unit 6 may be an electronic computer or a combination of an electronic computer and a circuit.
  • the drive detection unit 3, the drive control unit 4, and the belt tension state value calculation unit 6, which are the constituent elements of the motor control device 100, may be directly connected or may be connected via wiring. Alternatively, the connection may be made via a network such as an intranet or the Internet. Further, for the components such as the drive controller 4 and the belt tension state value calculator 6, for example, one piece of electronic computer may function as a plurality of components by using a plurality of different software.
  • the drive control unit 4 outputs a drive command signal 51 for instructing the torque generated by the electric motor 1 to control and drive the electric motor 1.
  • the drive control unit 4 outputs, as the drive command signal 51, an angle (unit is radian [rad]) or an angular velocity (unit is radian per second [rad / s]) of the rotational operation of the electric motor system 1000 instead of the torque of the electric motor 1. You may.
  • the rotating operation of the electric motor system 1000 is a rotating operation by transmitting the torque of the electric motor 1 and is a rotating operation of the components of the electric motor system 1000.
  • the angle is, for example, for the electric motor 1, an angle in the rotation operation of the rotor of the electric motor 1.
  • the angular velocity can be mentioned.
  • the electric motor 1 generates torque based on the drive command signal 51.
  • the drive detection unit 3 detects the angle of the electric motor 1 and outputs the detection result as a drive detection signal 52.
  • An encoder can be used as the drive detection unit 3, for example.
  • the drive detection unit 3 may also detect an angle, an angular velocity, or an angular acceleration (unit is radian per second per second [rad / s 2 ]) of the rotation operation of the electric motor system 1000, and output the detection result as the drive detection signal 52. it can.
  • any one of the rotation angle of the motor 1, the drive pulley 201, the driven pulley 202, the load machine 5, the pulley included in the drive side connecting portion 204, and the pulley included in the driven side connecting portion 205 can be mentioned.
  • the load machine 5 does not have a component that is rotated by the torque of the electric motor 1, the load machine 5 is not included in the above example.
  • the drive detection unit 3 when detecting the angular velocity, may be a velocity sensor.
  • the drive detection unit 3 When detecting angular acceleration, may be an acceleration sensor.
  • the drive detection unit 3 may be configured by combining an encoder that detects an angle and a time differentiation calculator to detect the angular velocity or the angular acceleration.
  • the belt tension state value calculation unit 6 outputs a belt tension state value 53 based on the drive detection signal 52.
  • the belt tension state value 53 in FIG. 1 is the belt tension (unit is Newton [N]).
  • the belt tension is S.
  • the belt tension state value calculation unit 6 can also output a signal having a correlation with the belt tension S and capable of detecting the change in the belt tension S from the change in the signal as the belt tension state value 53.
  • the belt tension state value calculation unit 6 can also output a signal indicating the state of the belt tension S as the belt tension state value 53.
  • the belt tension state value 53 include a signal indicating whether the value of the belt tension S is within a predetermined normal range, the amplitude of the time variation of the belt tension S, and the maximum value of the belt tension S over the time variation.
  • the minimum value, the amount of change in the belt tension S from the detection result immediately after the belt 203 is attached, and the like can be mentioned.
  • the resonance frequency f r of the torsional vibration As a belt tension value 53, the resonance frequency f r of the torsional vibration, the amplitude of the time variation of the resonance frequency f r of the torsional vibration, torsion from the detection results of the resonance frequency f r of the torsional vibration of the just installed the belt 203 it is also possible to output the variation amount of the resonance frequency f r of the vibration.
  • the change in the value of the resonant frequency f r of the torsional vibration detects a change in belt tension S, it is also possible to monitor the presence or absence of abnormality.
  • the belt tension state value calculation unit 6 has a characteristic (spring characteristic) that functions as a spring connected between the drive pulley 201 and the driven pulley 202.
  • a resonance phenomenon occurs due to the torsional rigidity that appears in this spring characteristic.
  • the frequency at which this resonance phenomenon occurs is called the resonance frequency of torsional vibration (unit is Hertz [Hz]).
  • the resonance frequency of the torsional vibration and f r is called the resonance frequency of the torsional vibration and f r.
  • Belt tension value calculation section 6 in FIG. 1 calculates the resonant frequency f r of the torsional vibration, to calculate the belt tension S from the resonant frequency f r of the torsional vibration. First, the operation of the belt tension value calculation section 6 calculates the resonant frequency f r of the torsional vibration.
  • the belt tension state value calculation unit 6 acquires the angle of the electric motor 1 detected by the drive detection unit 3 as the drive detection signal 52. This angle is A (t). t is time (unit is second [s]).
  • the belt tension state value calculation unit 6 performs frequency analysis (for example, Fourier transform) on the angle (A (t)) to calculate the frequency characteristic of the drive detection signal 52.
  • frequency analysis for example, Fourier transform
  • a (f) the frequency characteristic of the drive detection signal 52 calculated by the Fourier transform
  • Belt tension value calculating section 6 the frequency f which gives the maximum value of the frequency characteristic of the drive detection signal 52 (A (f)), and the resonance frequency f r of the torsional vibration. The operation described above, the belt tension value calculation section 6 calculates the resonant frequency f r of the torsional vibration.
  • Expression (1) shows the frequency characteristic of the drive detection signal 52.
  • the belt tension value calculation unit 6 an operation of calculating the belt tension S from the resonant frequency f r of the torsional vibration.
  • the spring constant of the torsional rigidity of the belt drive unit 2 is K tor (unit is Newton meter per radian [Nm / rad]).
  • the electric motor side inertia (unit is kilogram square meter [kgm 2 ]) is J 1 .
  • the electric motor-side inertia J 1 is an inertia that the drive pulley 201, the drive-side connecting portion 204, and the electric motor 1 have as a whole.
  • the load machine side inertia (unit is kilogram square meter [kgm 2 ]) is J 2 .
  • the load machine-side inertia J 2 is an inertia that the driven pulley 202, the driven-side connecting portion 205, and the load machine 5 have as a whole.
  • the tensile rigidity of the belt 203 generated between the drive pulley 201 and the driven pulley 202 is K ten (unit is Newton per meter [N / m]).
  • the radius of the drive pulley 201 is R 1 (unit is meter [m]), and the radius of the driven pulley 202 is R 2 (unit is meter [m]).
  • the belt tension state value calculation unit 6 uses the following equation (3) to calculate the spring constant K tor of torsional rigidity, the radius R 1 of the driving pulley 201, and the radius of the driven pulley 202, which are obtained by using the equation (2). From R 2 , the tensile stiffness K ten can be determined.
  • FIG. 3 is a diagram showing a relationship between the elongation amount ⁇ L and the tensile rigidity K ten of the belt 203 according to the first embodiment of the present invention.
  • the amount of elongation of the belt 203 in the longitudinal direction is ⁇ L (unit is meter [m]).
  • ⁇ L unit is meter [m]
  • the belt drive unit 2 of FIG. 1 it is assumed that there is a linear relationship between the elongation amount ⁇ L and the tensile rigidity K ten .
  • the relationship in which one is expressed by a linear expression of the other is called a linear relationship.
  • FIG. 4 is a diagram showing the relationship between the elongation amount ⁇ L of the belt 203 and the belt tension S according to the first embodiment of the present invention. The relationship shown in FIG. 4 may be calculated from the material and size of the belt 203.
  • the belt tension state value calculation unit 6 can obtain the belt tension S from the extension amount ⁇ L obtained in FIG. 3 by using the relational expression between the belt tension S and the extension amount ⁇ L shown in FIG.
  • the relationship between the belt tension S and the amount of expansion ⁇ L may be described in a table and interpolated between them. As described above, (2), (3), it can be used to FIGS. 3 and 4, to calculate the belt tension S from the resonant frequency f r of the torsional vibration.
  • the elongation amount ⁇ L is obtained from the relationship between the tensile rigidity K ten and the elongation amount ⁇ L.
  • the belt tension S can be obtained from the relationship between the elongation amount ⁇ L and the belt tension S.
  • a signal component means a frequency component.
  • the signal component of the resonance frequency f r of the torsional vibration means a signal component which is a resonant frequency f r of the frequency torsional vibrations.
  • the drive detection unit 3 When the drive command signal 51 of FIG. 1 includes the signal component of the resonance frequency f r of torsional vibration, the drive detection unit 3 outputs the drive detection signal 52 including the signal component of the resonance frequency f r of torsional vibration more reliably. be able to. Then, the belt tension value calculation section 6 can detect the state of the accurately belt tension S using the signal component of the resonance frequency f r of the torsional vibration included in the drive detection signal 52.
  • the drive control unit 4 causes the signal component of the resonance frequency f r of the torsional vibration as in the embodiment described with reference to FIG. outputs a drive command signal 51 having a wide frequency band to the extent containing, may be obtained resonant frequency f r of the torsional vibration by calculating the frequency characteristic of the drive detection signal 52.
  • the belt tension state value calculation unit 6 does not calculate the frequency characteristic of the drive detection signal 52, and the resonance frequency f of the torsional vibration is generated. It is also possible to obtain r .
  • an example of operation when the drive control unit 4 outputs a plurality of drive command signals 51 having different frequency bands will be shown.
  • the drive control unit 4 sequentially outputs the plurality of drive command signals 51 by changing the frequency band in time series.
  • the drive detection unit 3 sequentially outputs the drive detection signals 52 having different frequency bands in time series.
  • the belt tension state value calculation unit 6 compares the signal intensities of the acquired plurality of drive detection signals 52 and selects the drive detection signal 52 having the highest signal intensity.
  • the belt tension state value calculation unit 6 acquires from the drive control unit 4 data that associates the time at which the drive command signal 51 is output with the frequency band, and refers to this data to detect the drive with the highest signal strength.
  • the frequency band of the signal 52 is obtained.
  • the belt tension S is obtained using the equations (2) and (3) and FIGS. 3 and 4. Further, the frequency band corresponding to the obtained belt tension S can be output as the belt tension state value 53.
  • the drive detection signal 52 is a detection result of the rotation of the electric motor system 1000, based on a state of the torsional vibration of the belt drive 2, the result of detection of the frequency band containing the resonance frequency f r of the torsional vibration
  • the belt tension state value 53 may be output.
  • the state of torsional vibration is a signal or data acquired from the drive detection signal 52 and used when calculating the belt tension state value 53.
  • the upper limit value or the lower limit value of the frequency band in which fr is included can be mentioned.
  • the belt tension state value calculation unit 6 can also obtain the frequency characteristic of the drive detection signal 52 without using the Fourier transform.
  • Examples of the operation of calculating the frequency characteristic without using the Fourier transform include extracting a signal component in a predetermined frequency range and sampling a signal component in a predetermined frequency. An example of the operation of the belt tension state value calculation unit 6 when the above-mentioned predetermined signal component is extracted will be given.
  • the belt tension state value calculation unit 6 may acquire the frequency characteristic of the drive detection signal 52 and output the belt tension state value 53.
  • some of the constituent elements of the electric motor control device 100 may be provided outside the device including the belt tension state value calculation unit 6 separately from the device including the belt tension state value calculation unit 6.
  • the state of the belt tension S can be detected similarly to the electric motor control device 100.
  • Examples of the configuration in which some of the components are provided outside include a motor control device in which the drive detection unit 3 in FIG. 1 is provided outside, a device in which the drive control unit 4 in FIG. 1 is provided outside, and the like. it can.
  • a device provided with the drive control unit 4 outside will be referred to as a belt tension state detection device.
  • the frequency band of the drive command signal 51 may be changed depending on whether the drive detection signal 52 used to calculate the belt tension state value 53 is output by the drive detection unit 3. ..
  • the driving detecting unit 3 outputs a drive detection signal 52
  • the belt tension value calculation section 6 outputs the belt tension value 53
  • torsional vibration drive instruction signal including a signal component of the resonance frequency f r of 51 It is desirable that the drive control unit 4 output
  • the drive detection unit 3 does not output the drive detection signal 52
  • the belt tension state value calculation unit 6 does not need to calculate the belt tension state value 53.
  • the frequency band of the signal 51 can be selected.
  • the drive control unit 4 outputs the drive command signal 51 having a frequency band suitable for the operation of the electric motor 1 when the drive detection signal 52 is not detected.
  • the energy efficiency of the electric motor 1 may be improved.
  • the operating time of the electric motor 1 may be shortened by improving the energy efficiency.
  • the drive controller 4 only when the driving detecting unit 3 outputs a drive detection signal 52, and outputs a drive command signal 51 including a resonant frequency f r of the torsional vibration, the drive detection unit 3 is driven detected when no output signal 52 does not include the resonant frequency f r of the torsional vibration, may output a drive command signal 51 of low frequencies.
  • the belt tension is detected by detecting the resonance phenomenon of the lateral vibration of the belt (vibration in the direction perpendicular to the traveling direction of the belt 203).
  • the electric motor control device 100 of the present embodiment calculates the belt tension state value 53 by using the resonance phenomenon in the longitudinal vibration (vibration in the direction parallel to the traveling direction of the belt 203).
  • the resonance frequency in longitudinal vibration is higher than the resonance frequency in lateral vibration. Therefore, as compared with a device that performs detection using the resonance phenomenon in lateral vibration, it is less susceptible to ambient noise and erroneous detection is less likely to occur.
  • the state of the belt tension S can be detected from the detection result of the rotation operation of the electric motor system 1000. Therefore, in order to detect the state of the belt tension S, it is not necessary to newly provide a detection device such as a strain sensor, a pressure detection device, or a transducer in addition to a device that detects the rotational movement.
  • a detection device such as a strain sensor, a pressure detection device, or a transducer in addition to a device that detects the rotational movement.
  • the electric motor system will be restricted by the wiring of these detection devices and the installation space.
  • the electric motor system to which the electric motor control device 100 is applied does not need to be provided with a detection device such as a transducer, and the above restriction does not occur. Therefore, according to the electric motor control device 100, it is possible to detect the belt tension state by using a device having a small size or a simple structure.
  • the electric motor control device 100 since it is only necessary to detect the rotational movement of the constituent elements of the electric motor system 1000, it is possible to provide the detection device at a position away from the belt 203. Therefore, the state of belt tension can be detected using a device having a small size or a simple structure.
  • the detection device that is provided for control can be used as the drive detection unit 3. Further, it is not necessary to newly provide a detection device for detecting the belt tension state. Therefore, according to the electric motor control device 100, it is possible to detect the belt tension state by using a device having a small size or a simple structure.
  • the electric motor control device 100 of FIG. 1 it is possible to detect the state of the belt tension S without newly providing a vibrating means for generating lateral vibration. Therefore, the state of belt tension can be detected using a device having a small size or a simple structure.
  • the electric motor control device 100 includes the drive control unit 4 that outputs the drive command signal 51 that is a signal for driving the electric motor 1 of the electric motor system 1000.
  • the electric motor system 1000 includes a load machine 5, a driven pulley 202 mechanically connected to the load machine 5, a belt 203 wound around the driven pulley 202, a drive pulley 201 around which the belt 203 is wound, and a drive pulley 201. Includes an electrically connected electric motor 1.
  • the electric motor control device 100 includes a belt tension state value calculation unit 6.
  • the belt tension state value calculation unit 6 outputs a belt tension state value 53 indicating the belt tension state of the belt 203 based on the drive detection signal 52 that detects the angle, angular velocity, or angular acceleration of the rotation operation of the electric motor system 1000.
  • the belt tension state value calculation unit 6 shown in FIG. 1 may output the belt tension state value 53 based on the detection result of detecting the state of the torsional vibration appearing in the drive detection signal 52. Further, the belt tension state value 53 may be output based on the frequency characteristic of the drive detection signal 52. It is also possible to output the belt tension value 53 from the result of detection of the resonant frequency f r of the twist appearing on the drive detection signal 52 oscillating.
  • a frequency band including a signal component of the resonance frequency f r of the torsional vibration determined determine the range of possible values of belt tension S from the frequency bands obtained may output this range as a belt tension value 53 .
  • torsional seek resonant frequency f r of the oscillation calculates the value of the resonant frequency f r from the belt tension S of the obtained torsional vibration, the calculated value of the belt tension S may be output as a belt tension value 53 .
  • the belt tension value calculating section 6 shown in FIG. 1 a change in state of the torsional vibration, a change in the frequency characteristic, a change in state of the torsional vibration of the resonant frequency f r belt tension S from any one of a change in the detection You may.
  • the belt tension can be obtained from the detection result of the sensor that detects the rotating operation of the electric motor or the like. Therefore, it is possible to provide an electric motor control device or a belt tension state detection device capable of detecting the belt tension state of the belt that transmits the torque of the electric motor included in the electric motor system by using a device having a small size or a simple configuration. it can.
  • FIG. 5 is a block diagram showing the configuration of electric motor control device 100a according to the second embodiment for carrying out the present invention.
  • the electric motor control device 100a differs from the electric motor control device 100 shown in FIG. 1 of the first embodiment in that the belt tension state value calculation unit 6 is replaced by a belt tension state value calculation unit 6a.
  • the belt tension state value calculation unit 6 in FIG. 1 outputs a belt tension state value 53 based on the drive detection signal 52.
  • the belt tension state value calculation unit 6a shown in FIG. 5 outputs the belt tension state value 53 based on the drive command signal 51 and the drive detection signal 52.
  • the belt tension state value calculation unit 6a acquires the drive detection signal 52 and calculates A (f) of the equation (1), which is the frequency characteristic of the drive detection signal 52, similarly to the belt tension state value calculation unit 6 of FIG. To do. Further, the belt tension state value calculation unit 6a obtains a drive command signal 51 that instructs the torque generated by the electric motor 1 to control and drive the electric motor 1. This torque is T (t).
  • the belt tension state value calculation unit 6a performs frequency analysis by Fourier transform on the drive command signal 51, and obtains equation (4) from torque T (t).
  • T (f) of the equation (4) is a frequency characteristic of the drive command signal 51 obtained by the Fourier transform.
  • the belt tension state value calculation unit 6a obtains the expression (5) by dividing the frequency characteristic of the drive detection signal 52 by the frequency characteristic of the drive command signal 51.
  • Belt tension value calculating section 6a (5) the frequency f which gives the maximum value of the expression, by the resonance frequency f r of the torsional vibration, determine the resonant frequency f r of the torsional vibration. That is, the ratio of the frequency characteristic of the drive detection signal 52 to the frequency characteristic of the drive command signal 51 is taken. Then, the frequency f which gives the maximum value of the ratio described above and the resonance frequency f r of the torsional vibration.
  • the belt tension state value calculation unit 6a of FIG. 5 is twisted by using the equations (2) and (3) and the relationships shown in FIGS. 3 and 4 as in the belt tension state value calculation unit 6 of FIG. to calculate the belt tension S from the resonant frequency f r of the vibration. Then, the calculated result is output as the belt tension state value 53.
  • the above is the operation of the belt tension state value calculation unit 6a in FIG.
  • the frequency characteristic of the drive detection signal 52 changes depending on the frequency characteristic of the drive command signal 51.
  • the variation of the frequency characteristic of the drive command signal 51 is a torsion it is possible to reduce the influence on the calculation result of the resonance frequency f r of the vibration.
  • the motor control device 100a of FIG. 5 is a marked effect.
  • the belt tension state value calculation unit 6a uses the detected value of the current flowing through the electric motor 1 or the detected value of the torque generated by the electric motor 1 in place of the drive command signal 51 to accurately calculate the belt tension state value 53. It can be calculated.
  • the electric motor control device 100a even if some of the constituent elements of the electric motor control device 100a are provided outside the device including the belt tension state value calculation unit 6a separately from the device including the belt tension state value calculation unit 6a, the electric motor control device is also possible. As with 100a, the state of the belt tension S can be accurately detected.
  • an electric motor control device in which the drive detection unit 3 in FIG. 5 is provided outside the electric motor control device, and FIG. A belt tension state detecting device in which the drive control unit 4 is provided outside the belt tension state detecting device can be cited.
  • the belt tension state value calculation unit 6a in the same manner as the belt tension state value calculation unit 6 of the first embodiment, replaces the value of the belt tension S with a signal indicating the state of the belt tension S as appropriate. It can be output as the state value 53. Further, the belt tension state value calculation unit 6a can also output, as the belt tension state value 53, a signal that has a correlation with the belt tension S and that can detect the change in the belt tension S from the change in the signal.
  • Examples of the belt tension state value 53 include a signal indicating whether the value of the belt tension S is within a predetermined normal range, the amplitude of the time variation of the belt tension S, and the maximum value of the belt tension S over the time variation. Alternatively, the minimum value, the amount of change in the belt tension S from the detection result immediately after the belt 203 is attached, and the like can be mentioned.
  • the resonance frequency f r of the torsional vibration As a belt tension value 53, the resonance frequency f r of the torsional vibration, the amplitude of the time variation of the resonance frequency f r of the torsional vibration, torsion from the detection results of the resonance frequency f r of the torsional vibration of the just installed the belt 203 it is also possible to output the variation amount of the resonance frequency f r of the vibration. Then, it detects a change of the torsional vibration of the resonant frequency f r of the belt tension S from the change value, presence or absence of abnormality can be monitored.
  • a plurality of drive command signals 51 having different frequency bands are output at different output times.
  • the drive control unit 4 of 5 can be operated. Then, the belt tension state value 53 can be accurately output without using the frequency characteristics of the drive command signal 51 and the drive detection signal 52.
  • the belt tension state value calculation unit 6a outputs the belt tension state value 53 based on the drive command signal 51 and the drive detection signal 52.
  • the belt tension state value calculation unit 6a outputs the belt tension state value 53 based on the drive command signal 51 and the detected value of the electric current of the electric motor 1 or the detected value of the torque of the electric motor 1.
  • the belt tension state value calculation unit 6a shown in FIG. 5 has a frequency characteristic of the drive detection signal 52, a drive command signal 51, a detected value of the electric current of the electric motor 1, and a detected value of the torque of the electric motor 1. Take the ratio with the characteristics. Then, the belt tension state value 53 may be output from this ratio. Further, the belt tension state value 53 may be output based on the detection result of detecting the state of torsional vibration that appears in this ratio.
  • the state of torsional vibration is a signal or data acquired from the drive detection signal 52 and the drive command signal 51 and used when calculating the belt tension state value 53.
  • Frequency characteristics can be mentioned. Further, mention may be made of actually measured torsional oscillation of the resonant frequency f r, the upper limit of the frequency band containing the resonance frequency f r of the actually measured torsional vibration or the lower limit value or the like.
  • the frequency giving the maximal value of this ratio determine the resonant frequency f r of the torsional vibration by the resonance frequency f r of the torsional vibration, further, obtains a belt tension S from the resonant frequency f r of the determined torsional vibrations
  • the belt tension state value 53 may be output.
  • this ratio determines the frequency band including the signal component of the resonance frequency f r of the torsional vibration, determined the range of the frequency band of the possible values of belt tension S obtained, it outputs the range as a belt tension value 53 You may. Also, this ratio determines the resonance frequency f r of the torsional vibration, to calculate the value of the resonant frequency f r from the belt tension S of the obtained torsional vibration, outputs the calculated value of the belt tension S as a belt tension value 53 You may.
  • the present embodiment by using a device having a small or simple structure, it is possible to detect the belt tension state of the belt that transmits the torque of the electric motor included in the electric motor system, or the belt tension state detection.
  • a device can be provided. Further, there is an effect that the belt tension state can be accurately detected.
  • FIG. 6 is a block diagram showing a configuration of an electric motor control device 100b according to a third embodiment for carrying out the present invention.
  • the electric motor control device 100b of FIG. 6 differs from the electric motor control device 100a of the second embodiment shown in FIG. 5 in that it includes an operation command generation unit 9. Further, it differs from the electric motor control device 100a in FIG. 5 in that a drive control unit 4a is provided instead of the drive control unit 4.
  • the drive control unit 4a in FIG. 6 outputs the drive command signal 51 based on the drive detection signal 52 and the motion command signal 54 output from the motion command generation unit 9, and causes the motion of the electric motor 1 to follow the motion command signal 54. Perform feedback control.
  • the operation command generator 9 outputs an operation command signal 54 which is a command value for the operation of the electric motor 1 and is a target when the drive command signal 51 is generated.
  • an electronic computer can be used as the operation command generator 9, for example.
  • the operation command signal 54 in FIG. 6 is a command value of the torque for the rotational operation of the electric motor 1.
  • the drive control unit 4a outputs a drive command signal 51 instructing the operation of the electric motor 1 based on the operation command signal 54 and the drive detection signal 52, and causes the torque generated by the electric motor 1 to follow the operation command signal 54. That is, by outputting the drive command signal 51, the electric motor 1 is operated so that the difference between the operation command signal 54 and the torque of the electric motor 1 becomes small.
  • the belt tension state value calculation unit 6a in FIG. 6 outputs the belt tension state value 53 similarly to the belt tension state value calculation unit 6a in the second embodiment shown in FIG.
  • the electric motor control device 100b of FIG. 6 it is possible to perform feedback control on the electric motor system 1000 and detect the state of the belt tension S. Then, when the electric motor system 1000 needs to perform the feedback control, a remarkable effect is obtained. Examples of cases where it is necessary to perform feedback control include cases where the operation of the electric motor system 1000 is strongly affected by disturbance, cases where the operation of the electric motor system 1000 is highly accurate, and the like.
  • the operation command signal 54 is not limited to the command value of the torque generated by the electric motor 1.
  • the operation command signal 54 may be a command value of an angle or angular velocity of the rotational operation of the electric motor system 1000.
  • the command value of the angular velocity can be cited.
  • the drive control unit 4a converts the operation command signal 54 into a command value of rotational operation of the electric motor 1. You may. Then, the rotation operation of the electric motor 1 may be made to follow the operation command signal 54 by causing the electric motor 1 to follow the converted command value.
  • the operation of the electric motor 1 follows the operation command signal 54, but the operation of the electric motor 1 is limited to that in which the operation of the electric motor 1 coincides with the operation command signal 54 at all times. is not. For example, an error may occur between the two during operation, and the error may be eliminated when stopped.
  • the drive control unit 4a of FIG. 6 is operated so that the frequency band of the drive command signal 51 switches depending on time, and the electric motor 1 of the electric motor 1 is driven. The operating efficiency may be improved.
  • the drive control unit 4a in FIG. 6 can output the angle or the angular velocity in the rotation operation of the electric motor system 1000 as the drive command signal 51, similarly to the drive control unit 4 in the first embodiment.
  • the operation command generation unit 9 is added to the configuration of the electric motor control device 100 of the first embodiment to configure a feedback control system and detect the state of the belt tension S, similarly to the electric motor control device 100b of FIG.
  • a motor control device capable of performing the above may be configured.
  • the state of the belt tension S can be detected in the electric motor control device that constitutes the feedback control system.
  • an electric motor control device in which the drive detection unit 3 is provided outside the electric motor control device, the drive control unit 4a, or A belt tension state detection device in which the operation command generator 9 is provided outside the belt tension state detection device can be used.
  • the electric motor control device 100b further includes the operation command generation unit 9 that outputs the operation command signal 54 that is a command for the operation of the electric motor 1 and that is a target when the drive command signal 51 is generated. Then, the drive control unit 4 a outputs a drive command signal 51 that causes the electric motor 1 to follow the motion command signal 54 based on the motion command signal 54 and the drive detection signal 52.
  • the present embodiment by using a device having a small or simple structure, it is possible to detect the belt tension state of the belt that transmits the torque of the electric motor included in the electric motor system, or the belt tension state detection.
  • a device can be provided. Further, even when the electric motor control device constitutes a feedback control system, there is an effect that the state of the belt tension can be detected.
  • FIG. 7 is a block diagram showing the configuration of electric motor control device 100c according to the fourth embodiment for carrying out the present invention.
  • the motor control device 100c is different from the motor control device 100a shown in FIG. 5 of the second embodiment in that the belt tension abnormality determination unit 10 is provided.
  • the belt tension abnormality determination unit 10 compares the belt tension state value 53 with the reference value, and outputs a signal indicating whether the belt tension state is normal or abnormal based on the comparison result.
  • the same or corresponding components as those of the electric motor control device 100a are designated by the same reference numerals.
  • the belt tension abnormality determination unit 10 compares the belt tension state value 53 with a predetermined reference value, and based on the comparison result, the belt tension abnormality determination value indicating whether the state of the belt tension S is normal or abnormal. 55 is output.
  • a lower limit judgment value or an upper limit judgment value may be set. Further, both the lower limit judgment value and the upper limit judgment value may be set.
  • the lower limit judgment value is the lower limit of the normal range of the belt tension state value 53.
  • the upper limit judgment value is the upper limit of the normal range of the belt tension state value 53.
  • the operation of the belt tension abnormality determination unit 10 when the lower limit determination value is set is illustrated.
  • a signal indicating an abnormality is output, and when the belt tension state value 53 is the same as the lower limit judgment value or larger than the lower limit judgment value, it is normal. You may output the signal shown.
  • the operation of the belt tension abnormality determination unit 10 when the upper limit determination value is set is illustrated.
  • a signal indicating an abnormality is output, and when the belt tension state value 53 is the same as the upper limit judgment value or smaller than the upper limit judgment value, it is normal. You may output the signal shown.
  • the belt tension abnormality determination unit 10 may output a signal indicating that the belt tension state value 53 is larger than the upper limit of the normal range when the belt tension state value 53 is larger than the upper limit determination value. Then, when the belt tension state value 53 is smaller than the lower limit judgment value, a signal indicating that it is smaller than the lower limit of the normal range may be output.
  • the belt tension state value 53 is the same as the lower limit determination value or the upper limit determination value or is a value between the lower limit determination value and the upper limit determination value, the belt tension state value 53 is within the normal range. May output a signal indicating that The above is the operation example of the belt tension abnormality determination unit 10 when both the lower limit determination value and the upper limit determination value are set.
  • the belt tension abnormality determination value 55 indicating whether the state of the belt tension S is normal or abnormal is output, so that the abnormality in the belt tension S occurs more reliably or easily. Can be detected.
  • the belt tension abnormality determination unit 10 of FIG. 7 may be added to the electric motor control device 100 or the electric motor control device 100b to detect the occurrence of an abnormality in the state of the belt tension S more reliably or easily. ..
  • the constituent elements of the motor control device 100c are provided outside the device including the belt tension state value calculation unit 6a separately from the device including the belt tension state value calculation unit 6a, it is more reliable. Alternatively, it is possible to easily detect that the belt tension S is abnormal.
  • the belt tension state detection in which the drive control unit 4 of FIG. 7 is provided outside the belt tension state detection apparatus is shown. A device etc. can be mentioned.
  • the electric motor control device 100c further includes the belt tension abnormality determination unit 10.
  • the belt tension abnormality determination unit 10 compares a predetermined reference value with the belt tension state value 53, and based on the comparison result, indicates whether the state of the belt tension S of the belt 203 is normal or abnormal.
  • the tension abnormality determination value 55 is output.
  • the present embodiment by using a device having a small or simple structure, it is possible to detect the belt tension state of the belt that transmits the torque of the electric motor included in the electric motor system, or the belt tension state detection.
  • a device can be provided. Further, there is an effect that it is possible to more reliably or easily detect the occurrence of an abnormality in the belt tension state.
  • FIG. 8 is a block diagram showing a configuration of an electric motor control device 100d according to a fifth embodiment for carrying out the present invention.
  • the electric motor control device 100d shown in FIG. 8 is different from the electric motor control device 100a of the second embodiment shown in FIG. 5 in that the electric motor control device 100d includes a machine specification storage unit 11 (first machine specification storage unit). Further, the electric motor control device 100a differs from the electric motor control device 100a in that a drive control unit 4b is provided instead of the drive control unit 4.
  • the drive control unit 4b outputs the drive command signal 51 based on the machine specifications 56 that are the machine specifications of the electric motor system 1000.
  • the machine specification storage unit 11 may be a storage medium such as a semiconductor memory or a hard disk, for example. Further, it may be a computer having a storage device. The operation of the motor control device 100d will be described with reference to FIG.
  • the machine specification storage unit 11 stores the belt tension S when the belt 203 is attached (initial), the characteristics of the belt 203, the radius of the drive pulley 201, the radius of the driven pulley 202, the inertia J 1 on the electric motor side, and the inertia J on the load machine side. 2 and the like are stored as machine specifications 56 (first machine specifications).
  • the mechanical specifications 56 are mechanical characteristic values of the electric motor system 1000 regarding the state of torsional vibration generated in the belt 203.
  • the drive control unit 4b outputs the drive command signal 51 based on the machine specifications 56 output from the machine specification storage unit 11.
  • Drive control section 4b calculates the predicted resonance frequency 58 is the predicted value of the resonance frequency f r of the twist with the belt drive unit 2 vibrating the (first predicted resonance frequency). Further, the drive control unit 4b, by outputting a drive command signal 51 containing the signal component of the predicted resonance frequency 58, it outputs a drive command signal 51 containing the signal component of the resonance frequency f r of the torsional vibration more reliably You can
  • the drive command signal 51 and the drive detection signal 52 belt tension value calculating section 6a obtains in Figure 8, so that the signal component of the resonance frequency f r of the torsional vibration is included in the more reliably. Therefore, according to the electric motor control device 100d, the state of torsional vibration can be detected more reliably. Then, the state of the belt tension S can be detected more reliably.
  • the drive control unit 4b sets the frequency band of the drive command signal 51 using the predicted resonance frequency 58, a narrower frequency band of the drive command signal 51 containing the signal component of the resonance frequency f r of the torsional vibration that You can Then, the amount of noise included in the drive command signal 51 and the drive detection signal 52 when calculating the belt tension state value 53 can be reduced. Therefore, the motor control device 100d can accurately detect the state of the belt tension S.
  • the electric motor control device 100d is used by using the configuration in which the machine specification storage unit 11 is added to any one of the electric motor control device 100, the electric motor control device 100b, and the electric motor control device 100c,
  • the state of the belt tension S may be detected reliably or accurately.
  • the machine specifications 56 stored in the machine specification storage unit 11 are not limited to the initial values, and may be values after a lapse of time from the time when the belt 203 is attached. In addition, the machine specifications 56 may be updated every time a certain period of time elapses. Further, a plurality of values of the machine specifications 56 at different times may be stored and the average value of the stored values may be used.
  • the drive control unit 4 b may determine the signal specifications such as the width of the frequency band, the data interval, the number of data per unit time, and the signal output period for the drive command signal 51 based on the machine specifications 56. ..
  • the drive control unit 4b may use the mechanical specifications 56 to determine the signal specifications of the drive command signal 51 from the accuracy required for the belt tension state value 53. The specific operation of determining the signal specifications of the drive command signal 51 of the drive control unit 4b will be described below.
  • resonance of the torsional vibration is determined from the allowable range of the belt tension S provided in advance by using the machine specifications 56. calculating the allowable range of the frequency f r. Furthermore, the width of the allowable range of the resonance frequency f r of the torsional vibration, to determine the signal specifications of the drive command signal 51.
  • the drive control unit 4b may output the drive command signal 51 without calculating the predicted resonance frequency 58.
  • Drive control section 4b may narrow the frequency band of the drive command signal 51 containing the signal component of the resonance frequency f r of the torsional vibration. Further, a drive command signal 51 containing the signal component of the resonance frequency f r of the torsional vibration may be output more reliably. Then, similarly to the electric motor control device 100d, the state of the belt tension S may be detected more reliably or accurately.
  • the drive control unit 4b of the present embodiment replaces the torque generated by the electric motor 1 with the drive command signal indicating the angle or angular velocity of the rotational operation of the electric motor system 1000. It can also be output as 51.
  • the electric motor control device 100d Even if some of the components of the electric motor control device 100d are provided outside the device including the belt tension state value calculation unit 6a separately from the device including the belt tension state value calculation unit 6a, the electric motor control device 100d is not provided.
  • the state of the belt tension S can be detected accurately or more reliably as in the case of using the belt tension S.
  • the drive detection unit 3 or the machine specification storage unit 11 in FIG. 8 is provided outside the electric motor control device.
  • the drive control unit 4b outputs the machine specifications output from the machine specification storage unit 11 that stores the machine specifications of the electric motor system 1000 and the machine specifications 56 regarding the state of the torsional vibration generated in the belt 203.
  • the drive command signal 51 is output based on the specifications 56.
  • Drive control section 4b calculates the predicted resonance frequency 58 is the predicted value of the resonance frequency f r of the torsional vibration from the machine specifications 56 may output a drive command signal 51 containing the signal component of the predicted resonance frequency 58 .
  • the signal specifications such as the width of the frequency band, the data interval, the number of data per unit time, and the signal output period are determined based on the machine specifications 56, and the drive command signal 51 is determined according to the determined signal specifications. May be output.
  • the machine specifications 56 may be used to associate the state of the torsional vibration with the belt tension S based on the machine specifications 56.
  • the present embodiment by using a device having a small or simple structure, it is possible to detect the belt tension state of the belt that transmits the torque of the electric motor included in the electric motor system, or the belt tension state detection.
  • a device can be provided. Further, there is an effect that the state of the belt tension can be detected accurately or more reliably.
  • FIG. 9 is a block diagram showing a configuration of an electric motor control device 100e according to a sixth embodiment for carrying out the present invention.
  • the electric motor control device 100e shown in FIG. 9 differs from the electric motor control device 100a of the second embodiment shown in FIG. 5 in that it includes a machine specification storage unit 11a (second machine specification storage unit). Further, it differs from the motor control device 100a in that a belt tension state value calculation unit 6b is provided instead of the belt tension state value calculation unit 6a.
  • the belt tension state value calculation unit 6b shown in FIG. 9 performs signal processing SP on the drive command signal No. 51 and the drive detection signal 52 based on the machine specifications 56a. Then, the belt tension state value calculation unit 6a outputs the belt tension state value 53 using the signal subjected to the signal processing SP.
  • the machine specification storage unit 11a may be a storage medium such as a semiconductor memory or a hard disk, or may be a computer having a storage device.
  • the machine specification storage unit 11a stores the belt tension S when the belt is attached (initial), the characteristics of the belt 203, the radius of the drive pulley 201, the radius of the driven pulley 202, the inertia J 1 on the electric motor side, the inertia J 2 on the loaded machine side, and the like. It is stored as the machine specifications 56a (second machine specifications).
  • the mechanical specifications 56a are mechanical characteristics of the electric motor system 1000, and are numerical values relating to the state of torsional vibration generated in the belt 203. Similar to the machine specifications 56 of the fifth embodiment, the initial values are not limited.
  • the belt tension state value calculation unit 6b performs signal processing SP (first signal processing) on the drive command signal 51 and the drive detection signal 52 based on the machine specifications 56a. Then, the belt tension state value 53 is calculated based on the signal obtained by performing the signal processing SP. The operation of calculating the belt tension state value 53 from the signal obtained by the belt tension state value calculation unit 6b performing the signal processing SP is performed by the belt tension state value calculation unit 6a based on the drive command signal 51 and the drive detection signal 52. It is similar to the operation of calculating the value 53.
  • the signal processing SP will be described below.
  • the machine specifications from the storage unit 11a based on the output machine specifications 56a is the predicted value of the resonance frequency f r of the torsional vibration predicted resonance frequency 58a (second predicted resonance frequency) To calculate. Then, a filter that passes only a signal component in a predetermined frequency range is configured. The predicted resonance frequency 58a is included in the frequency range. Further, the type of filter to be used may be selected from a band pass filter, a low pass filter, a high pass filter, etc. in consideration of the characteristics of the disturbance component included in the signal.
  • the drive command signal 51 and the drive detection signal 52 pass through this filter.
  • the belt tension state value calculation unit 6b uses the signal passed through this filter when calculating the belt tension state value 53.
  • the above is an example of the signal processing SP.
  • the belt tension state value calculation unit 6b can reduce the amount of noise by performing the signal processing SP and can accurately calculate the belt tension state value 53.
  • the signal passed through the filter contains a signal component of the predicted resonance frequency 58a.
  • the belt tension abnormality determination unit 10 described in the fourth embodiment may be added to the motor control device 100e to detect the abnormality in the belt tension S more reliably or easily. Further, instead of the electric motor control device 100a, the machine specification storage unit 11a may be added to any one of the electric motor control device 100, the electric motor control device 100b, the electric motor control device 100c, and the electric motor control device 100d. Then, in each configuration, the state of the belt tension S may be accurately detected.
  • the belt tension state value calculation unit 6b replaces the drive command signal 51 with the detected value of the electric current of the electric motor 1 or the detected value of the torque generated by the electric motor 1. Can also be used.
  • signal detection SP is applied to the detected current value or the detected torque value to determine the state of the belt tension S. It may be detected accurately.
  • the state of the belt tension S can be accurately detected by the signal processing SP that does not calculate the predicted resonance frequency 58a.
  • An example of the signal processing SP that does not calculate the predicted resonance frequency 58a is data sampling when acquiring data from the drive command signal 51 or the drive detection signal 52.
  • the belt tension state value calculation unit 6b may determine conditions such as a data sampling period and a data sampling period based on the machine specifications 56a.
  • the belt tension state value calculation unit 6b applies the signal processing SP to one of the drive command signal 51 and the drive detection signal 52, and based on the signal subjected to the signal processing SP and the signal not subjected to the signal processing SP.
  • the belt tension state value 53 may be accurately output.
  • the state of the belt tension S is determined. Can be accurately detected.
  • an electric motor control in which the drive detection unit 3 or the machine specification storage unit 11a is provided outside the electric motor control device
  • a belt tension state detection device in which the device and the drive control unit 4b are provided outside the belt tension state detection device can be used.
  • Belt tension value calculating section 6b calculates a torsional vibration is a predicted value of the resonance frequency f r predicted resonance frequency 58a based on mechanical specifications 56a. Then, a filter that passes only the frequency range including the signal component of the predicted resonance frequency 58a is configured. Then, the signal processing SP by filtering in the frequency domain may be performed by passing the drive command signal 51 and the drive detection signal 52 through this filter.
  • the data sampling conditions such as the data sampling cycle and the data sampling period may be determined based on the machine specifications 56a. Then, data sampling may be performed on the drive command signal 51 and the drive detection signal 52 according to the determined conditions. Further, when performing data sampling, the machine specifications 56a may be used to determine the data sampling condition from the accuracy required for the belt tension state value 53.
  • twisting is performed from the normal range of the belt tension S using the machine specifications 56a. to calculate the normal range of the resonance frequency f r of the vibration.
  • the belt tension state value calculation unit 6b outputs from the machine specification storage unit 11a that stores the machine specifications 56a relating to the state of the torsional vibration generated in the belt 203, which are the machine specifications of the electric motor system 1000.
  • the signal processing SP is performed on the drive detection signal 52 based on the machine specifications 56a.
  • the signal processing SP is filtering or data sampling in the frequency domain.
  • the belt tension state value calculation unit 6b outputs the belt tension state value 53 based on the signal obtained by performing the signal processing SP on the drive detection signal 52.
  • the present embodiment by using a device having a small or simple structure, it is possible to detect the belt tension state of the belt that transmits the torque of the electric motor included in the electric motor system, or the belt tension state detection.
  • a device can be provided. Further, there is an effect that the state of the belt tension can be accurately detected.
  • FIG. 10 is a block diagram showing a configuration of an electric motor control device 100f in a seventh embodiment for carrying out the present invention.
  • the electric motor control device 100f shown in FIG. 10 is different from the electric motor control device 100a of the second embodiment shown in FIG. 5 in that a belt tension state value storage unit 12 (first belt tension state value storage unit) is provided. Further, it differs from the electric motor control device 100a in that a drive control unit 4c is provided instead of the drive control unit 4.
  • the drive control unit 4c outputs the drive command signal 51 based on the belt tension state value storage 57.
  • the belt tension state value storage unit 12 stores the belt tension state value 53 in advance as a belt tension state value storage 57 (first belt tension state value storage).
  • the belt tension state value storage unit 12 may be a storage medium such as a semiconductor memory or a hard disk. Further, it may be a computer having a storage device.
  • Drive control section 4c based on the belt tension value memory 57 output from the belt tension value storage unit 12, calculates a predicted value of the resonance frequency f r of the torsional vibration. The calculated predicted value is used as the resonance frequency calculation value 59 (first resonance frequency calculation value).
  • the drive control unit 4c outputs the drive command signal 51 including the signal component of the resonance frequency calculation value 59.
  • a drive command signal 51 and the drive detection signal 52 includes a signal component of the resonance frequency f r of the torsional vibration can be obtained more reliably.
  • the belt tension state can be detected more reliably.
  • the drive control unit 4c can set the frequency band of the drive command signal 51 narrower by using the resonance frequency calculation value 59.
  • the belt tension state value calculation unit 6a in FIG. 10 can use a signal in which the amount of noise is reduced and which includes the signal component of the resonance frequency calculation value 59, for calculating the belt tension state value 53.
  • the electric motor control device 100f can accurately detect the state of the belt tension S.
  • the drive control unit 4c can also output the drive command signal 51 without calculating the resonance frequency calculation value 59.
  • the signal specifications such as the width of the frequency band, the data interval, and the number of data per unit time for the drive command signal 51 are determined based on the belt tension state value storage 57. The actions to be taken can be mentioned.
  • the operation illustrated above may output a drive command signal 51 containing the signal component of the resonance frequency f r of the torsional vibration more reliably. Further, the amount of noise included in the drive command signal 51 and the drive detection signal 52 may be reduced.
  • the operation of the drive control unit 4c that determines the signal specifications of the drive command signal 51 will be further illustrated.
  • the belt tension state value storage 57 is used to obtain the range of variation of the belt tension S in the normal state. Further, by referring to the range of variation found, to determine the normal range of belt tension S, the normal range of belt tension S, determine the normal range of the resonance frequency f r of the torsional vibration.
  • the drive control unit 4c may determine the signal specifications of the drive command signal 51 from the width of this normal range.
  • the belt tension state value storage unit 12 When the belt tension state value 53 is not output even once, the belt tension state value storage unit 12 does not store the belt tension state value storage 57, and thus the drive control unit 4c cannot use the belt tension state value storage 57. Can occur. In such a case, a predicted value of the belt tension state value 53 may be calculated and this predicted value may be used instead of the belt tension state value storage 57. Examples of numerical data used when calculating the predicted value include numerical data such as the machine specifications 56 of FIG. 8 of the fifth embodiment, the frequency response characteristic of the electric motor system 1000, and the like.
  • the belt tension state value storage unit 12 is added to any one of the electric motor control device 100, the electric motor control device 100b, the electric motor control device 100c, and the electric motor control device 100e to accurately or more surely determine the state of the belt tension S. It may be detected. Further, like the drive control unit 4, the drive control unit 4c of the present embodiment can output the angle or angular velocity of the rotational operation of the electric motor system 1000 instead of the torque generated by the electric motor 1.
  • the belt tension The state of S can be detected accurately or more reliably.
  • the drive detection unit 3 or the belt tension state value storage unit 12 in FIG. Examples of the device include a motor control device provided in the above, a belt tension state detection device in which the drive control unit 4c of FIG. 10 is provided outside the belt tension state detection device, and the like.
  • the drive control unit 4c issues a drive command based on the belt tension state value storage 57 output from the belt tension state value storage unit 12 that stores the belt tension state value 53 as the belt tension state value storage 57 in advance.
  • the signal 51 is output.
  • the drive control unit 4c calculates the resonance frequency calculated value 59 is the predicted value of the resonance frequency f r of the torsional vibration, may output a drive command signal 51 containing the signal component of the resonance frequency calculated value 59. Further, the drive control unit 4c determines the signal specifications such as the width of the frequency band, the data interval, and the number of data per unit time for the drive command signal 51 based on the belt tension state value storage 57, and the determined signal specifications are set. The drive command signal 51 may be output.
  • the present embodiment by using a device having a small or simple structure, it is possible to detect the belt tension state of the belt that transmits the torque of the electric motor included in the electric motor system, or the belt tension state detection.
  • a device can be provided. Further, there is an effect that the state of the belt tension can be detected accurately or more reliably.
  • FIG. 11 is a block diagram showing the configuration of an electric motor control device 100g in the eighth embodiment for carrying out the present invention.
  • the electric motor control device 100g shown in FIG. 11 is different from the electric motor control device 100a of the second embodiment shown in FIG. 5 in that it includes a belt tension state value storage unit 12a (second belt tension state value storage unit). Further, it differs from the electric motor control device 100a shown in FIG. 5 in that a belt tension state value calculation unit 6c is provided instead of the belt tension state value calculation unit 6a.
  • a belt tension state value storage unit 12a second belt tension state value storage unit
  • the belt tension state value calculation unit 6c in FIG. 11 performs signal processing SP1 on the drive command signal 51 and the drive detection signal 52 based on the belt tension state value storage 57a in which the belt tension state value 53 is stored in advance, and outputs the signal.
  • the belt tension state value 53 is output based on the signal obtained by performing the process SP1.
  • the belt tension state value storage unit 12a stores the belt tension state value 53 as a belt tension state value storage 57a (second belt tension state value storage) in advance.
  • the belt tension state value calculation unit 6c performs signal processing SP1 on the drive command signal 51 and the drive detection signal 52 based on the belt tension state value storage 57a.
  • the belt tension state value calculation unit 6c outputs the belt tension state value 53 based on the signal obtained by performing the signal processing SP1 on the drive command signal 51 and the drive detection signal 52.
  • the operation of calculating the belt tension state value 53 from the signal obtained by the signal processing SP1 performed by the belt tension state value calculation unit 6c is performed by the belt tension state value calculation unit 6a based on the drive command signal 51 and the drive detection signal 52. It is similar to the operation of calculating the value 53.
  • the belt tension state value calculation unit 6c calculates the resonance frequency calculation value 59a (second resonance frequency calculation value) based on the belt tension state value storage 57a.
  • Resonance frequency calculated value 59a is the predicted value of the resonance frequency f r of the torsional vibration belt drive 2.
  • the belt tension state value calculation unit 6c extracts a signal including the signal component of the resonance frequency calculation value 59a from the drive command signal 51 and the drive detection signal 52.
  • the belt tension state value calculation unit 6c calculates the belt tension state value 53 of a signal including the signal component of the resonance frequency calculation value 59a and having a narrow frequency band and a reduced amount of noise by using the resonance frequency calculation value 59a. Can be used for. As a result, the state of the belt tension S can be accurately detected.
  • the predicted value of the belt tension state value 53 obtained by calculation is set as in the belt tension state value storage unit 12 of the seventh embodiment.
  • the belt tension state value storage 57a may be used instead.
  • the signal processing SP1 may be signal processing that does not calculate the resonance frequency calculation value 59a.
  • Data sampling can be cited as an example of the signal processing SP1 in which the resonance frequency calculation value 59a is not calculated.
  • the data sampling conditions such as the data sampling period and the data sampling period may be determined based on the belt tension state value storage 57a.
  • the belt tension state value storage 57a is used to determine the range of variation of the belt tension S at the normal time. Further, to set the normal range of the determined belt tension the belt tension S in the range of variations in the normal S, calculates the normal range of the resonance frequency f r of the torsional oscillation of the normal range of belt tension S. Then, from the width of the normal range of the resonance frequency f r of the torsional vibration is calculated, to determine the data sampling conditions.
  • the belt tension state value storage unit 12a is added to any one of the electric motor control device 100, the electric motor control device 100b, the electric motor control device 100c, the electric motor control device 100d, and the electric motor control device 100f to accurately measure the belt tension S.
  • the state may be detected.
  • the belt tension state value calculation unit 6c in FIG. 11 performs signal processing SP1 on both the drive command signal 51 and the drive detection signal 52, but performs signal processing on either the drive command signal 51 or the drive detection signal 52. You may give SP1.
  • the belt tension state value calculation unit 6c of FIG. 11 is similar to the belt tension state value calculation unit 6a shown in FIG. 5, in place of the drive command signal 51, the detected value of the current flowing through the electric motor 1 or the generation of the electric motor 1. It is also possible to use the detected value of the torque to When the detected current value or detected torque value of the electric motor 1 is used, signal detection SP1 may be applied to the detected current value or detected torque value to accurately detect the state of the belt tension S.
  • some of the components of the electric motor control device 100g shown in FIG. 11 are provided outside the device including the belt tension state value calculation unit 6c separately from the device including the belt tension state value calculation unit 6c, and the electric motor control device is provided.
  • the state of the belt tension S may be accurately detected.
  • an electric motor in which the drive detection unit 3 or the belt tension state value storage unit 12a is provided outside the electric motor control device. Examples thereof include a belt tension state detection device in which the control device and the drive control unit 4 are provided outside the belt tension state detection device.
  • the belt tension state value calculation unit 6c outputs a drive detection signal 52 based on the belt tension state value storage 57a output from the belt tension state value storage unit 12a that stores the belt tension state value 53 as the belt tension state value storage 57a in advance.
  • signal processing SP1 is performed.
  • the belt tension state value 53 is output based on the signal obtained by performing the signal processing SP1 on the drive detection signal 52.
  • the belt tension state value calculating unit 6c calculates a predicted value is resonant frequency calculated value 59a of the resonance frequency f r of the torsional vibration based on the belt tension value memory 57a, the drive command signal 51 and the drive detection signal 52 From, each of the signals including the signal component of the resonance frequency calculation value 59a may be extracted.
  • the belt tension state value calculation unit 6c determines the data sampling conditions such as the data sampling period and the data sampling period based on the belt tension state value storage 57a, and the drive command signal 51 and the drive detection signal according to the determined conditions. Data sampling may be performed on 52.
  • the present embodiment by using a device having a small or simple structure, it is possible to detect the belt tension state of the belt that transmits the torque of the electric motor included in the electric motor system, or the belt tension state detection.
  • a device can be provided. Further, there is an effect that the state of the belt tension can be accurately detected.
  • FIG. 12 is a block diagram showing the configuration of an electric motor control device 100h in the ninth embodiment for carrying out the present invention.
  • the electric motor control device 100h includes a belt tension abnormality determination unit 10a instead of the belt tension abnormality determination unit 10 of the electric motor control device 100c shown in FIG. 7 of the fourth embodiment.
  • a machine learning device 13 is provided in addition to the components of the electric motor control device 100c shown in FIG.
  • the same or corresponding components as those in FIG. 7 of the fourth embodiment are designated by the same reference numerals.
  • the belt tension abnormality determination unit 10a compares the belt tension state value 53 with a reference value and determines whether the state of the belt tension S is normal or abnormal based on the comparison result. Is output as the belt tension abnormality determination value 55.
  • the belt tension abnormality determination unit 10a acquires the reference value used for the determination from the machine learning device 13.
  • the reference value used by the belt tension abnormality determination unit 10a for determination is rv.
  • the machine learning device 13 learns the reference value rv according to the training data set created based on the state variable sv. Then, the above reference value rv is determined based on the learned result.
  • FIG. 13 is a block diagram showing the configuration of the machine learning device 13 included in the electric motor control device 100h according to the ninth embodiment.
  • the machine learning device 13 includes a state observation unit 21, a data storage unit 22, a learning unit 23, and a decision making unit 24.
  • the learning unit 23 also includes a reward calculation unit 231 and a behavior value function updating unit 232.
  • the state observation unit 21 acquires the drive command signal 51, the drive detection signal 52, the belt tension state value 53, the belt tension abnormality determination value 55, and the reference value rv, and determines the state variable sv.
  • the state observation unit 21 may be configured not to acquire the drive command signal 51 and the drive detection signal 52.
  • the data storage unit 22 stores the drive command signal 51, the drive detection signal 52, the belt tension state value 53, the belt tension abnormality determination value 55, the reference value rv, and the determined state variable sv acquired by the state observation unit 21. To do.
  • the state observing unit 21 uses the data storage unit 22 to perform data processing such as dividing the acquired signal information by time, collecting each related data, and the like, and then learning the state variable sv. It may be output to the unit 23. Further, the data storage unit 22 may be provided as necessary and may be omitted. Further, the data storage unit 22 can be provided outside the machine learning device 13, outside the electric motor control device 100h, and the like.
  • the learning unit 23 learns the reference value rv according to the training data set created based on the state variable sv. In other words, the learning unit 23 learns the reference value rv in association with the state variable sv.
  • reinforcement learning Reinforcement Learning
  • the learning unit 23 can perform learning using various learning algorithms. It is also possible to apply learning algorithms such as supervised learning, unsupervised learning, and semi-supervised learning. Further, as the above-mentioned learning algorithm, deep learning for learning the extraction of the feature amount itself may be used. Machine learning may also be performed according to other methods, such as neural networks, genetic programming, functional logic programming, support vector machines, Bayesian optimization, etc.
  • Reinforcement learning is that an agent (action subject) in a certain environment observes the current state and decides the action to be taken. Agents choose actions and get rewards from the environment. Then, the agent learns a strategy that maximizes the reward through a series of actions.
  • Q learning Q learning
  • TD learning TD-Learning
  • a general update formula of the action value function Q (s, a) is represented by formula (6).
  • the update formula may be represented by a behavior value table.
  • s t represents the environment at time t
  • a t represents the behavior in time t.
  • rt + 1 represents the reward received by the change of the environment
  • represents the discount rate
  • represents the learning coefficient.
  • the discount rate ⁇ is in the range of more than 0 and 1 or less (0 ⁇ ⁇ 1)
  • the learning coefficient ⁇ is in the range of more than 0 and 1 or less (0 ⁇ ⁇ 1).
  • the action a t is the determination of the reference value rv.
  • the reward calculation unit 231 generates a plurality of sets including the belt tension state value 53, the reference value rv, the belt tension abnormality determination value 55, and the presence / absence of actual abnormality occurrence.
  • the presence or absence of the actual abnormality is determined from the state variable sv based on the drive command signal 51, the drive detection signal 52, the belt tension state value 53, and the like.
  • the reward calculation unit 231 collates the presence / absence of abnormality indicated by the belt tension abnormality determination value 55 with the presence / absence of actual abnormality occurrence, and obtains by dividing the number of times both match by the total number of times of collation execution.
  • the value may be the reward r.
  • the reference value rv can be learned.
  • the reward calculation unit 231 may compare the type of abnormality indicated by the belt tension abnormality determination value 55 with the type of abnormality that has actually occurred. Then, if the presence or absence and type of abnormality match, the highest reward is given, if the presence or absence of abnormality matches but the type of abnormality does not match, a medium reward is given and the presence or absence of abnormality does not match. In that case, a small reward or a negative reward may be given. By doing so, it is possible to learn the reference value rv that can detect the presence or absence of abnormality and the type of abnormality more accurately.
  • the action value function updating unit 232 updates the action value function Q for calculating the reference value rv based on the reward r calculated by the reward calculating unit 231 and the state variable sv.
  • the decision making unit 24 decides the reference value rv based on the action value function Q. Specifically, the decision making unit 24 determines the action a t at which the updated action value function Q becomes the largest, that is, the reference value rv. In this way, by updating the reference value rv, it is possible to proceed with the learning of the reference value rv that enables more accurate determination of abnormality.
  • a plurality of electric motor systems similar to the electric motor system 1000 may be provided, and judgments by the plural electric motor systems may be executed in parallel to promote efficient learning.
  • the motor control device 100h that has performed learning using the data acquired from the electric motor system 1000 may be connected to another electric motor system, and further learning may be performed using the data acquired from another electric motor system. ..
  • the motor control device may be configured by using the learned learner equipped with the learning result of the present embodiment.
  • the learned learning device described above may be realized by a learned program that determines the reference value rv using the action value function Q updated by the learning of the present embodiment.
  • the learned learning device may be realized by the learned data in which the result of the adjustment of the reference value rv by the learning according to the present embodiment is stored.
  • the present embodiment by using a device having a small or simple structure, it is possible to detect the belt tension state of the belt that transmits the torque of the electric motor included in the electric motor system, or the belt tension state detection.
  • a device can be provided. Furthermore, it is possible to learn the reference value rv used for determining whether or not there is an abnormality in the belt tension. As a result, there is an effect that it is possible to provide an electric motor control device capable of more accurately determining whether or not there is an abnormality.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Control Of Electric Motors In General (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置を提供するために、電動機制御装置(100)は、負荷機械(5)、負荷機械に機械的に接続された従動プーリ(202)、従動プーリに巻きかけられたベルト(203)、ベルトが巻きかけられた駆動プーリ(201)及び駆動プーリに機械的に接続された電動機(1)を含む電動機システム(1000)の電動機を駆動する信号である駆動指令信号(51)を出力する駆動制御部(4)と、電動機システムの回転動作の角度、角速度又は角加速度を検出した駆動検出信号(52)に基づきベルトのベルト張力の状態を示すベルト張力状態値(53)を出力するベルト張力状態値算出部(6)とを備える。

Description

電動機制御装置及びベルト張力状態検出装置
 本発明は、プーリ及びプーリに巻きかけられたベルトで構成されるベルト駆動部のベルト張力を検出する電動機制御装置及びベルト張力状態検出装置に関する。
 ベルトを有する駆動機構では、ベルトの取り付け張力(以下、ベルト張力とよぶ。)が低下すると、滑り、歯飛び(ベルトの歯とプーリの歯がずれる現象)等が発生する場合がある。滑り及び歯飛びの発生を抑制し、駆動機構の動作精度及び動力伝達効率を維持するため、ベルト張力の状態を検出する装置が求められている。
 特許文献1に記載の電力倍力装置は、ベルト張力がラジアル荷重として作用するベアリングの支持部に歪センサを取り付け、計測した支持部の弾性変形に基づいてベルト張力を推定する。特許文献2に記載のベルト張力測定装置は、ベルトの振動の振幅レベルを圧力検出装置によって検出し、検出した振幅レベルから固有振動数を算出し、算出した固有振動数からベルト張力を求める。
 特許文献3に記載の張力測定装置は、ベルトの振動によって発生した音波をトランスデューサによって受信してベルトの振動を検出する。そして、ベルトの振動の波形信号に基づいて固有振動数を求め、求めた固有振動数からベルト張力を算出する。
特開2013-71536号公報 特開平08-327477号公報 特開2000-131163号公報
 従来技術では、ベルトを備える装置においてベルト張力を検出するために、歪センサ、圧力検出装置、トランスデューサ等の検出装置を設ける必要があった。そして、トランスデューサ等の検出装置の設置スペース、配線等によって、ベルト張力を検出する装置が、大型化又は複雑化するという課題があった。
 本発明は、以上述べたような事情を鑑みてなされたものであり、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置を提供することを目的とする。
 本発明に係る電動機制御装置は、負荷機械、負荷機械に機械的に接続された従動プーリ、従動プーリに巻きかけられたベルト、ベルトが巻きかけられた駆動プーリ及び駆動プーリに機械的に接続された電動機を含む電動機システムの電動機を駆動する信号である駆動指令信号を出力する駆動制御部と、電動機システムの回転動作の角度、角速度又は角加速度を検出した駆動検出信号に基づきベルトのベルト張力の状態を示すベルト張力状態値を出力するベルト張力状態値算出部とを備える。
 本発明によれば、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置を提供することができる。
本発明の実施の形態1における電動機制御装置の構成を示すブロック図である。 本発明の実施の形態1における電動機システムの構成を示す図である。 本発明の実施の形態1におけるベルトの伸び量と引張剛性の関係を示す図である。 本発明の実施の形態1におけるベルトの伸び量とベルト張力の関係を示す図である。 本発明の実施の形態2における電動機制御装置の構成を示すブロック図である。 本発明の実施の形態3における電動機制御装置の構成を示すブロック図である。 本発明の実施の形態4における電動機制御装置の構成を示すブロック図である。 本発明の実施の形態5における電動機制御装置の構成を示すブロック図である。 本発明の実施の形態6における電動機制御装置の構成を示すブロック図である。 本発明の実施の形態7における電動機制御装置の構成を示すブロック図である。 本発明の実施の形態8における電動機制御装置の構成を示すブロック図である。 本発明の実施の形態9における電動機制御装置の構成を示すブロック図である。 本発明の実施の形態9における電動機制御装置が備える機械学習装置の構成を示すブロック図である。
 以下に図面を用いて本発明の実施の形態を詳細に説明する。以下に説明する実施の形態は例示であって、以下に説明する実施の形態によってこの発明が限定されるものではない。
実施の形態1.
 図1は、この発明を実施するための実施の形態1における電動機制御装置100の構成を示すブロック図である。図1において、電動機システム1000は、電動機1、電動機1に機械的に接続されたベルト駆動部2及びベルト駆動部2と機械的に接続された負荷機械5を有している。図2は、本発明の実施の形態1の電動機システム1000の構成を示す図である。
 図2に示すように、駆動側連結部204は電動機1に接続され、駆動プーリ201は駆動側連結部204に接続されている。また、駆動プーリ201及び従動プーリ202の外周には、ベルト203が環状に巻きかけられている。従動側連結部205は従動プーリ202に接続され、従動側連結部205は負荷機械5に接続されている。
 ベルト駆動部2は、駆動プーリ201、ベルト203及び従動プーリ202で構成される。電動機1の発生するトルク(単位はニュートンメートル[Nm]、本発明の実施の形態に示す単位はすべて例示である。)は、ベルト駆動部2を介して負荷機械5へと伝達される。負荷機械5はこのトルクによって駆動される機械装置である。
 電動機1の回転又はトルクは、駆動側連結部204によって駆動プーリ201に伝達され、駆動プーリ201の回転又はトルクは、ベルト203によって従動プーリ202に伝達される。さらに、従動プーリ202の回転又はトルクは、従動側連結部205によって負荷機械5に伝達される。
 なお、ベルト203、駆動プーリ201及び従動プーリ202は、歯を有し歯がかみ合うことによってトルクを伝達してもよい。また、ベルト203、駆動プーリ201及び従動プーリ202は、歯を有さず摩擦力によってトルクを伝達してもよい。また、図2には、電動機1と駆動検出部3の間の駆動検出部3による検出を示す部分を図示してもよい。また、電動機1と駆動制御部4の間の駆動指令信号51を図示してもよい。
 また、電動機1とベルト駆動部2を直接接続することによって駆動側連結部204を有しない構造としてもよい。また、ベルト駆動部2と負荷機械5を直接接続することによって従動側連結部205を有しない構造としてもよい。また、駆動側連結部204及び従動側連結部205は、ベルト、プーリ等を含んでもよい。
 電動機制御装置100について説明する。図1に示すように、電動機制御装置100は、駆動検出部3、駆動制御部4及びベルト張力状態値算出部6を有している。なお、駆動制御部4及びベルト張力状態値算出部6として、電子計算機又は電子計算機に回路を組み合わせたものを用いてもよい。
 また、電動機制御装置100の構成要素である駆動検出部3、駆動制御部4及びベルト張力状態値算出部6の間は、直接接続してもよく配線を介して接続してもよい。また、イントラネット、インターネット等のネットワークを介して接続してもよい。また、例えば、駆動制御部4、ベルト張力状態値算出部6等の構成要素については、複数の異なるソフトウエアを用いて、一つの電子計算機を、複数の構成要素として機能させてもよい。
 電動機制御装置100の動作について説明する。駆動制御部4は電動機1が発生するトルクを指示して電動機1を制御し駆動する駆動指令信号51を出力する。駆動制御部4は、駆動指令信号51として、電動機1のトルクに代えて電動機システム1000の回転動作の角度(単位はラジアン[rad])又は角速度(単位はラジアン毎秒[rad/s])を出力してもよい。
 電動機システム1000の回転動作とは、電動機1のトルクが伝達されることによる回転動作であって電動機システム1000の構成要素の回転動作である。角度とは、例えば、電動機1については、電動機1の回転子の回転動作における角度である。駆動指令信号51の例としては、電動機1、駆動プーリ201、従動プーリ202、負荷機械5、駆動側連結部204の有するプーリ、従動側連結部205の有するプーリのいずれか一つの回転動作の角度又は角速度を挙げることができる。
 電動機1は駆動指令信号51に基づいてトルクを発生する。駆動検出部3は、電動機1の角度を検出し、検出結果を駆動検出信号52として出力する。なお、駆動検出部3として、例えばエンコーダを用いることができる。また、駆動検出部3は、電動機システム1000の回転動作の角度、角速度又は角加速度(単位はラジアン毎秒毎秒[rad/s])を検出し、検出結果を駆動検出信号52として出力することもできる。
 駆動検出信号52の例としては、電動機1、駆動プーリ201、従動プーリ202、負荷機械5、駆動側連結部204の有するプーリ、従動側連結部205の有するプーリのいずれか一つの回転動作の角度、角速度又は角加速度の検出値を挙げることができる。ここで、負荷機械5が、電動機1のトルクによって回転する構成要素を有しない場合、上記例示に負荷機械5は含まれない。
 なお、角速度を検出する場合、駆動検出部3を速度センサとしてもよい。また、角加速度を検出する場合、駆動検出部3を加速度センサとしてもよい。また、角度を検出するエンコーダと時間微分演算器を組み合わせて駆動検出部3を構成し、角速度又は角加速度を検出してもよい。
 ベルト張力状態値算出部6は、駆動検出信号52に基づいてベルト張力状態値53を出力する。図1のベルト張力状態値53は、ベルト張力(単位はニュートン[N])である。以下ではベルト張力をSとする。なお、ベルト張力状態値算出部6は、ベルト張力Sと相関関係を有しその信号の変化からベルト張力Sの変化を検出することができる信号をベルト張力状態値53として出力することもできる。
 また、ベルト張力状態値算出部6は、ベルト張力Sの状態を示す信号をベルト張力状態値53として出力することもできる。ベルト張力状態値53の例としては、ベルト張力Sの値があらかじめ定めた正常な範囲の中にあるかどうかを示す信号、ベルト張力Sの時間変動の振幅、ベルト張力Sの時間変動における最大値又は最小値、ベルト203を取り付けた直後の検出結果からのベルト張力Sの変化量等を挙げることができる。
 また、ベルト張力状態値53として、ねじり振動の共振周波数f、ねじり振動の共振周波数fの時間変動の振幅、ベルト203を取り付けた直後のねじり振動の共振周波数fの検出結果からのねじり振動の共振周波数fの変化量等を出力することもできる。なお、ねじり振動の共振周波数fの値の変化からベルト張力Sの変化を検知し、異常発生の有無を監視することもできる。
 以下に、ベルト張力状態値算出部6の動作について説明する。ベルト203は、駆動プーリ201と従動プーリ202の間に接続されたバネとして機能する特性(バネ特性)を有する。このバネ特性にあらわれるねじり剛性によって共振現象が発生する。この共振現象が発生する周波数を、ねじり振動の共振周波数(単位はヘルツ[Hz])とよぶ。以下では、ねじり振動の共振周波数をfとする。
 図1のベルト張力状態値算出部6は、ねじり振動の共振周波数fを算出し、ねじり振動の共振周波数fからベルト張力Sを算出する。まず、ベルト張力状態値算出部6がねじり振動の共振周波数fを算出する動作について説明する。ベルト張力状態値算出部6は、駆動検出部3が検出した電動機1の角度を駆動検出信号52として取得する。この角度をA(t)とする。tは時間(単位は秒[s])である。
 ベルト張力状態値算出部6は、角度(A(t))に対して周波数解析(例えば、フーリエ変換)を行い、駆動検出信号52の周波数特性を算出する。具体的には、フーリエ変換によって算出された駆動検出信号52の周波数特性をA(f)とする。
 fは周波数(単位はヘルツ[Hz])である。ベルト張力状態値算出部6は、駆動検出信号52の周波数特性(A(f))の極大値を与える周波数fを、ねじり振動の共振周波数fとする。以上に説明した動作によって、ベルト張力状態値算出部6は、ねじり振動の共振周波数fを算出する。(1)式は駆動検出信号52の周波数特性を示す。
Figure JPOXMLDOC01-appb-M000001
 次に、ベルト張力状態値算出部6が、ねじり振動の共振周波数fからベルト張力Sを算出する動作について説明する。ベルト駆動部2のねじり剛性のバネ定数を、Ktor(単位はニュートンメートル毎ラジアン[Nm/rad])とする。電動機側イナーシャ(単位はキログラム平方メートル[kgm])をJとする。電動機側イナーシャJは、駆動プーリ201、駆動側連結部204及び電動機1が全体として有するイナーシャである。
 負荷機械側イナーシャ(単位はキログラム平方メートル[kgm])をJとする。負荷機械側イナーシャJは、従動プーリ202、従動側連結部205及び負荷機械5が全体として有するイナーシャである。ベルト張力状態値算出部6は、次の(2)式を用いてねじり振動の共振周波数fから、バネ定数Ktorを算出することができる。
Figure JPOXMLDOC01-appb-M000002
 次に、駆動プーリ201と従動プーリ202の間に生じるベルト203の引張剛性を、Kten(単位はニュートン毎メートル[N/m])とする。駆動プーリ201の半径をR(単位はメートル[m])、従動プーリ202の半径をR(単位はメートル[m])とする。
 ベルト張力状態値算出部6は、次の(3)式を用いることによって、(2)式を用いて求めたねじり剛性のバネ定数Ktor及び駆動プーリ201の半径R、従動プーリ202の半径Rから、引張剛性Ktenを求めることができる。
Figure JPOXMLDOC01-appb-M000003
 図3は、本発明の実施の形態1のベルト203の伸び量ΔLと引張剛性Ktenの関係を示す図である。ここで、ベルト203の長手方向の伸び量をΔL(単位はメートル[m])とする。図1のベルト駆動部2では、伸び量ΔLと引張剛性Ktenの間に、線形関係があるとする。ここで、一方が他方の一次式で表される関係を、線形関係とよんでいる。
 ベルト張力状態値算出部6は、(3)式を用いて求めた引張剛性Ktenから、ベルト203の長手方向の伸び量ΔLと引張剛性Ktenとの関係である線形関係を用いて伸び量ΔLを求めることができる。図4は、本発明の実施の形態1のベルト203の伸び量ΔLとベルト張力Sの関係を示す図である。図4の関係は、ベルト203の材料、サイズから計算によって求めてもよい。
 図4に示すように、図1のベルト駆動部2では、ベルト張力Sと伸び量ΔLの間に、ベルト張力Sが伸び量ΔLの2次式で表される関係があるとする。ベルト張力状態値算出部6は、図4に示す関係であるベルト張力Sと伸び量ΔLとの関係式を用いて、図3によって求めた伸び量ΔLからベルト張力Sを求めることができる。
 ベルト張力Sと伸び量ΔLとの関係は、テーブルで関係を記述しておき、間を補間するようにしても良い。以上のように、(2)式、(3)式、図3及び図4を用いて、ねじり振動の共振周波数fからベルト張力Sを算出することができる。
 以上説明したように、電動機側イナーシャJと負荷機械側イナーシャJとで表現されるベルト203のねじり剛性のバネ定数Ktorとベルト203のねじり振動の共振周波数fとの関係式に、実測したねじり振動の共振周波数fを代入してねじり剛性のバネ定数Ktorを求める。
 そして、ベルト駆動部2の幾何的寸法によって表現されるベルトの引張剛性Ktenとねじり剛性のバネ定数Ktorとの関係から、ベルトの引張剛性Ktenを求める。そして、引張剛性Ktenと伸び量ΔLの関係から伸び量ΔLを求める。そして、伸び量ΔLとベルト張力Sの関係からベルト張力Sを求めることができる。
 以上が図1のベルト張力状態値算出部6の動作の一例である。次に、駆動指令信号51及び駆動検出信号52に含まれる信号成分について述べる。以下で信号成分といった場合、周波数の成分を意味する。例えば、ねじり振動の共振周波数fの信号成分とは、周波数がねじり振動の共振周波数fである信号成分を意味する。
 図1の駆動指令信号51がねじり振動の共振周波数fの信号成分を含む場合、駆動検出部3は、より確実にねじり振動の共振周波数fの信号成分を含む駆動検出信号52を出力することができる。そして、ベルト張力状態値算出部6は、駆動検出信号52に含まれるねじり振動の共振周波数fの信号成分を用いて精度よくベルト張力Sの状態を検出することができる。
 ねじり振動の共振周波数fの予測値等の目安となる値がない場合、図1を用いて説明した実施の形態のように、駆動制御部4が、ねじり振動の共振周波数fの信号成分を含む程度に広い周波数帯域をもつ駆動指令信号51を出力し、駆動検出信号52の周波数特性を算出してねじり振動の共振周波数fを求めてもよい。
 また、駆動制御部4が周波数帯域の異なる複数の駆動指令信号51を出力することによって、ベルト張力状態値算出部6が駆動検出信号52の周波数特性を算出せずに、ねじり振動の共振周波数fを求めることもできる。以下に、駆動制御部4が、周波数帯域の異なる複数の駆動指令信号51を出力する場合の動作例を示す。
 駆動制御部4は、時系列に、順次周波数帯域を変えて複数の駆動指令信号51を出力する。その結果、駆動検出部3から、周波数帯域の異なる駆動検出信号52が時系列に、順次出力される。ベルト張力状態値算出部6は、取得した複数の駆動検出信号52の信号強度を比較し、信号強度が最も高い駆動検出信号52を選択する。
 さらに、ベルト張力状態値算出部6は、駆動制御部4から、駆動指令信号51の出力された時刻と周波数帯域を対応づけるデータを取得し、このデータを参照して信号強度が最も高い駆動検出信号52の周波数帯域を求める。ベルト張力状態値算出部6は、求めた周波数帯域を、ねじり振動の共振周波数fの含まれる周波数帯域とする。
 さらに、(2)式、(3)式、図3及び図4を用いてベルト張力Sを求める。さらに、求めたベルト張力Sに対応する周波数帯域を、ベルト張力状態値53として出力することができる。
 このように、電動機システム1000の回転動作の検出結果である駆動検出信号52から、ベルト駆動部2のねじり振動の状態として、ねじり振動の共振周波数fの含まれる周波数帯域を検出した結果に基づいてベルト張力状態値53を出力してもよい。なお、図1に示す本実施の形態において、ねじり振動の状態は、駆動検出信号52から取得され、ベルト張力状態値53を算出する際に用いられる信号又はデータである。
 本実施の形態のねじり振動の状態の例としては、駆動検出信号52の時間波形、駆動検出信号52のフーリエ変換による周波数特性、実測したねじり振動の共振周波数f、実測したねじり振動の共振周波数fの含まれる周波数帯域の上限値又は下限値等を挙げることができる。
 また、ベルト張力状態値算出部6は、フーリエ変換を用いずに、駆動検出信号52の周波数特性を得ることもできる。フーリエ変換を用いずに周波数特性を算出する動作の例としては、あらかじめ定めた周波数範囲の信号成分を抽出する、あらかじめ定めた周波数の信号成分をサンプリングする等を挙げることができる。上記のあらかじめ定めた信号成分を抽出する場合のベルト張力状態値算出部6の動作の一例を挙げる。
 駆動検出信号52から、ベルト駆動部2のねじり振動の共振周波数fの信号成分を含む信号を抽出し、抽出した信号の強度を検出する。この信号の強度が、あらかじめ定めた値を下回った場合に、ベルト張力Sに異常が発生したことを示す信号をベルト張力状態値53として出力する。このようにして、ベルト張力状態値算出部6は、駆動検出信号52の周波数特性を取得しベルト張力状態値53を出力してもよい。
 また、図1において、電動機制御装置100の構成要素の一部を、ベルト張力状態値算出部6を含む装置とは別に、ベルト張力状態値算出部6を含む装置の外部に設けた構成としても、電動機制御装置100と同様に、ベルト張力Sの状態を検出することができる。構成要素の一部を外部に設けた構成の例としては、図1の駆動検出部3を外部に設けた電動機制御装置、図1の駆動制御部4を外部に設けた装置等を挙げることができる。以下では、駆動制御部4を外部に設けた装置を、ベルト張力状態検出装置とよぶ。
 また、ベルト張力状態値53の算出に用いられる駆動検出信号52を、駆動検出部3が出力している時と出力していない時とで、駆動指令信号51の周波数帯域を変化させてもよい。駆動検出部3が駆動検出信号52を出力する時は、ベルト張力状態値算出部6がベルト張力状態値53を出力するために、ねじり振動の共振周波数fの信号成分を含む駆動指令信号51を駆動制御部4が出力することが望ましい。一方、駆動検出部3が駆動検出信号52を出力しない時は、ベルト張力状態値算出部6がベルト張力状態値53を算出する必要がないため、駆動制御部4は制約を受けずに駆動指令信号51の周波数帯域を選択できる。
 そこで、駆動検出信号52を駆動検出部3が出力していない時、電動機1の動作に適した周波数帯域を有する駆動指令信号51を駆動制御部4が出力して駆動検出信号52の非検出時の電動機1のエネルギー効率を向上させてもよい。そして、エネルギー効率を向上することによって、電動機1の動作時間を短縮してもよい。
 例えば、電動機システム1000が所望の動作をするのに、ねじり振動の共振周波数fより低い周波数で動作させた場合に、エネルギー効率が最も高くなるとする。このような場合、駆動制御部4は、駆動検出部3が駆動検出信号52を出力する時のみ、ねじり振動の共振周波数fを含む駆動指令信号51を出力し、駆動検出部3が駆動検出信号52を出力しない時は、ねじり振動の共振周波数fを含まない、低い周波数の駆動指令信号51を出力してもよい。
 特許文献2、特許文献3は、ベルトの横振動(ベルト203の進行方向に対して垂直方向の振動)の共振現象を検出してベルト張力を検出している。一方、本実施の形態の電動機制御装置100は、縦振動(ベルト203の進行方向に平行な方向の振動)における共振現象を用いてベルト張力状態値53を算出する。縦振動における共振周波数は、横振動における共振周波数に比べて周波数が高い。そのため、横振動における共振現象を利用して検出をおこなう装置に比べて、周囲の雑音の影響を受けにくく、誤検出が発生しにくい。
 図1の電動機制御装置100によれば、電動機システム1000の回転動作の検出結果からベルト張力Sの状態を検出することができる。そのため、ベルト張力Sの状態を検出するために、回転動作を検出する装置に加えて、新たに、歪センサ、圧力検出装置、トランスデューサ等の検出装置を設ける必要がない。
 歪センサ、圧力検出装置、トランスデューサ等を設置すると、電動機システムに、これらの検出装置の配線、設置スペース等による制約が生じる。一方、電動機制御装置100が適用される電動機システムには、トランスデューサ等の検出装置を設ける必要がなく、上記の制約が生じない。そのため、電動機制御装置100によれば、小型又は簡単な構成の装置を用いて、ベルト張力の状態を検出することができる。
 また、電動機制御装置100によれば、電動機システム1000の構成要素の回転動作を検出すればよいため、ベルト203から離れた位置に検出装置を設けることも可能となる。そのため、小型又は簡単な構成の装置を用いて、ベルト張力の状態を検出することができる。
 また、電動機システム1000の回転動作を検出する装置が電動機1を制御する目的で設けられている場合には、制御のために設けた検出装置を、駆動検出部3として使用することができる。そして、ベルト張力の状態を検出するための検出装置を、新たに設ける必要がない。そのため、電動機制御装置100によれば、小型又は簡単な構成の装置を用いて、ベルト張力の状態を検出することができる。
 また、図1の電動機制御装置100によれば、横振動を発生させる加振手段を新たに設けることなく、ベルト張力Sの状態を検出することができる。そのため、小型又は簡単な構成の装置を用いて、ベルト張力の状態を検出することができる。
 以上説明したように、電動機制御装置100は、電動機システム1000の電動機1を駆動する信号である駆動指令信号51を出力する駆動制御部4を備える。電動機システム1000は、負荷機械5、負荷機械5に機械的に接続された従動プーリ202、従動プーリ202に巻きかけられたベルト203、ベルト203が巻きかけられた駆動プーリ201及び駆動プーリ201に機械的に接続された電動機1を含む。
 さらに、電動機制御装置100は、ベルト張力状態値算出部6を備える。ベルト張力状態値算出部6は、電動機システム1000の回転動作の角度、角速度又は角加速度を検出した駆動検出信号52に基づきベルト203のベルト張力の状態を示すベルト張力状態値53を出力する。
 図1に示すベルト張力状態値算出部6は、駆動検出信号52にあらわれるねじり振動の状態を検出した検出結果に基づいてベルト張力状態値53を出力してもよい。また、駆動検出信号52の周波数特性に基づいてベルト張力状態値53を出力してもよい。また、駆動検出信号52にあらわれるねじり振動の共振周波数fを検出した結果からベルト張力状態値53を出力してもよい。
 また、ねじり振動の共振周波数fの信号成分を含む周波数帯域を求め、求めた周波数帯域からベルト張力Sの取りうる値の範囲を求め、この範囲をベルト張力状態値53として出力してもよい。また、ねじり振動の共振周波数fを求め、求めたねじり振動の共振周波数fからベルト張力Sの値を算出し、算出したベルト張力Sの値をベルト張力状態値53として出力してもよい。
 また、図1に示すベルト張力状態値算出部6は、ねじり振動の状態の変化、周波数特性の変化、ねじり振動の共振周波数fの変化のいずれかひとつからベルト張力Sの状態の変化を検知してもよい。
 本実施の形態によれば、電動機等の回転動作を検出するセンサの検出結果からベルト張力を求めることができる。そのため、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置又はベルト張力状態検出装置を提供することができる。
実施の形態2.
 図5は、本発明を実施するための実施の形態2における電動機制御装置100aの構成を示すブロック図である。電動機制御装置100aは、ベルト張力状態値算出部6に代えてベルト張力状態値算出部6aを備える点が、実施の形態1の図1に示す電動機制御装置100と異なる。
 図1のベルト張力状態値算出部6は、駆動検出信号52に基づいてベルト張力状態値53を出力する。一方、図5に示すベルト張力状態値算出部6aは、駆動指令信号51及び駆動検出信号52に基づいてベルト張力状態値53を出力する。
 図5に示す電動機制御装置100aの説明において、図1に示す実施の形態1の電動機制御装置100の構成要素と同じ又は対応する構成要素については、同一の符号を付す。図5を参照して電動機制御装置100aの動作について説明する。
 ベルト張力状態値算出部6aは、図1のベルト張力状態値算出部6と同様に、駆動検出信号52を取得し駆動検出信号52の周波数特性である(1)式のA(f)を算出する。さらに、ベルト張力状態値算出部6aは、電動機1の発生するトルクを指示して電動機1を制御し駆動する駆動指令信号51を取得する。このトルクをT(t)とする。
 ベルト張力状態値算出部6aは、駆動指令信号51についてフーリエ変換による周波数解析を行い、トルクであるT(t)から(4)式を得る。(4)式のT(f)は、フーリエ変換によって得られた駆動指令信号51の周波数特性である。ベルト張力状態値算出部6aは、駆動検出信号52の周波数特性を駆動指令信号51の周波数特性で除すことによって(5)式を得る。
 ベルト張力状態値算出部6aは、(5)式の極大値を与える周波数fを、ねじり振動の共振周波数fとすることによって、ねじり振動の共振周波数fを求める。すなわち、駆動検出信号52の周波数特性の駆動指令信号51の周波数特性に対する比をとる。そして、上記の比の極大値を与える周波数fを、ねじり振動の共振周波数fとする。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 さらに、図5のベルト張力状態値算出部6aは、図1のベルト張力状態値算出部6と同様に、(2)式、(3)式、図3及び図4に示す関係を用いてねじり振動の共振周波数fからベルト張力Sを算出する。そして、算出した結果をベルト張力状態値53として出力する。以上が、図5のベルト張力状態値算出部6aの動作である。
 駆動検出信号52の周波数特性は、駆動指令信号51の周波数特性に依存して変化する。図5のベルト張力状態値算出部6aによれば、(5)式の極大値を与える周波数fをねじり振動の共振周波数fとすることによって、駆動指令信号51の周波数特性の変動が、ねじり振動の共振周波数fの算出結果におよぼす影響を低減することができる。
 そのため、ねじり振動の共振周波数fを精度よく算出することが可能となる。そして、精度よくベルト張力Sを算出することができる。特に、ねじり振動の共振周波数fにおいて駆動指令信号51の周波数特性が、周波数に依存して大きく変化する場合、図5の電動機制御装置100aは顕著な効果を奏する。
 なお、ベルト張力状態値算出部6aは、駆動指令信号51に代えて、電動機1に流れる電流の検出値又は電動機1の発生するトルクの検出値を用いても、精度よくベルト張力状態値53を算出することができる。
 また、電動機制御装置100aの構成要素の一部を、ベルト張力状態値算出部6aを含む装置とは別に、ベルト張力状態値算出部6aを含む装置の外部に設けた構成としても、電動機制御装置100aと同様に、精度よくベルト張力Sの状態を検出することができる。構成要素の一部を、ベルト張力状態値算出部6aを含む装置の外部に設けた構成の例としては、図5の駆動検出部3を電動機制御装置の外部に設けた電動機制御装置、図5の駆動制御部4をベルト張力状態検出装置の外部に設けたベルト張力状態検出装置等を挙げることができる。
 また、ベルト張力状態値算出部6aは、実施の形態1のベルト張力状態値算出部6と同様に、ベルト張力Sの値に代えて、ベルト張力Sの状態を示す信号を、適宜、ベルト張力状態値53として出力することができる。また、ベルト張力状態値算出部6aは、ベルト張力Sと相関関係を有しその信号の変化からベルト張力Sの変化を検出することができる信号をベルト張力状態値53として出力することもできる。
 ベルト張力状態値53の例としては、ベルト張力Sの値があらかじめ定めた正常な範囲の中にあるかどうかを示す信号、ベルト張力Sの時間変動の振幅、ベルト張力Sの時間変動における最大値又は最小値、ベルト203を取り付けた直後の検出結果からのベルト張力Sの変化量等を挙げることができる。
 また、ベルト張力状態値53として、ねじり振動の共振周波数f、ねじり振動の共振周波数fの時間変動の振幅、ベルト203を取り付けた直後のねじり振動の共振周波数fの検出結果からのねじり振動の共振周波数fの変化量等を出力することもできる。そして、ねじり振動の共振周波数fの値の変化からベルト張力Sの変化を検知し、異常発生の有無を監視してもよい。
 また、電動機制御装置100aにおいても、実施の形態1において説明した電動機制御装置100の動作と同様に、周波数帯域の異なる複数の駆動指令信号51を、出力する時刻を変えて出力するように、図5の駆動制御部4を動作させることができる。そして、駆動指令信号51及び駆動検出信号52の周波数特性を利用せずに、ベルト張力状態値53を精度よく出力することができる。
 以上説明したように、ベルト張力状態値算出部6aは、駆動指令信号51および駆動検出信号52に基づいてベルト張力状態値53を出力する。または、ベルト張力状態値算出部6aは、駆動指令信号51と、電動機1の電流の検出値又は電動機1のトルクの検出値とに基づいてベルト張力状態値53を出力する。
 また、図5に示すベルト張力状態値算出部6aは、駆動検出信号52の周波数特性と、駆動指令信号51、電動機1の電流の検出値、電動機1のトルクの検出値のいずれかひとつの周波数特性との比をとる。そして、この比からベルト張力状態値53を出力してもよい。また、この比にあらわれるねじり振動の状態を検出した検出結果に基づきベルト張力状態値53を出力してもよい。
 図5に示す本実施の形態において、ねじり振動の状態は、駆動検出信号52及び駆動指令信号51から取得され、ベルト張力状態値53を算出する際に用いられる信号又はデータである。
 本実施の形態のねじり振動の状態の例としては、駆動検出信号52、駆動指令信号51、電動機1のトルクの検出値、電動機1の電流の検出値のいずれかひとつについての時間波形又はフーリエ変換による周波数特性を挙げることができる。さらに、実測したねじり振動の共振周波数f、実測したねじり振動の共振周波数fの含まれる周波数帯域の上限値又は下限値等を挙げることができる。
 なお、この比の極大値を与える周波数を、ねじり振動の共振周波数fとすることによってねじり振動の共振周波数fを求め、さらに、求めたねじり振動の共振周波数fからベルト張力Sを求め、ベルト張力状態値53を出力してもよい。
 また、この比から、ねじり振動の共振周波数fの信号成分を含む周波数帯域を求め、求めた周波数帯域からベルト張力Sの取りうる値の範囲を求め、この範囲をベルト張力状態値53として出力してもよい。また、この比から、ねじり振動の共振周波数fを求め、求めたねじり振動の共振周波数fからベルト張力Sの値を算出し、算出したベルト張力Sの値をベルト張力状態値53として出力してもよい。
 本実施の形態によれば、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置又はベルト張力状態検出装置を提供することができる。さらに、ベルト張力の状態を精度よく検出することができるという効果を奏する。
実施の形態3.
 図6は、この発明を実施するための実施の形態3における電動機制御装置100bの構成を示すブロック図である。図6の電動機制御装置100bは、動作指令生成部9を備える点が、実施の形態2の図5に示す電動機制御装置100aと異なる。さらに、駆動制御部4に代えて駆動制御部4aを備える点が、図5の電動機制御装置100aと異なる。
 図6の駆動制御部4aは、駆動検出信号52と動作指令生成部9の出力する動作指令信号54に基づいて駆動指令信号51を出力し、電動機1の動作を動作指令信号54に追従させ、フィードバック制御を行う。
 図6に示す実施の形態3の電動機制御装置100bの説明において、図5に示す実施の形態2の電動機制御装置100aの構成要素と同じ又は対応する構成要素については、同一の符号を付す。図6を参照して電動機制御装置100bの動作について説明する。動作指令生成部9は、電動機1の動作の指令値であり、駆動指令信号51を生成する際の目標となる動作指令信号54を出力する。動作指令生成部9として、例えば電子計算機を用いることができる。
 図6の動作指令信号54は、電動機1の回転動作のトルクの指令値である。駆動制御部4aは、動作指令信号54及び駆動検出信号52に基づいて電動機1の動作を指示する駆動指令信号51を出力し、電動機1の発生するトルクを動作指令信号54に追従させる。すなわち、駆動指令信号51を出力することによって、動作指令信号54と電動機1のトルクの差異が小さくなるように電動機1を動作させる。図6のベルト張力状態値算出部6aは、図5に示す実施の形態2のベルト張力状態値算出部6aと同様にベルト張力状態値53を出力する。
 図6の電動機制御装置100bによれば、電動機システム1000に対するフィードバック制御を行い、かつ、ベルト張力Sの状態を検出することができる。そして、電動機システム1000がフィードバック制御を行うことが必要となる場合に、顕著な効果を奏する。フィードバック制御を行うことが必要となる場合の例としては、電動機システム1000の動作が外乱の影響を強く受ける場合、電動機システム1000の動作が高精度である場合等を挙げることができる。
 なお、動作指令信号54は、電動機1の発生するトルクの指令値に限定されるものではない。動作指令信号54を、電動機システム1000の回転動作の角度又は角速度の指令値としてもよい。動作指令信号54の例としては、電動機1、駆動プーリ201、従動プーリ202、負荷機械5、駆動側連結部204の有するプーリ、従動側連結部205の有するプーリのいずれか一つの回転動作の角度又は角速度の指令値を挙げることができる。
 また、動作指令信号54が、電動機1以外の構成要素の回転動作の角度又は角速度の指令値である場合、駆動制御部4aは、動作指令信号54を、電動機1の回転動作の指令値に換算してもよい。そして、換算した指令値に電動機1を追従させることによって、電動機1の回転動作を動作指令信号54に追従させてもよい。
 また、本実施の形態で、電動機1の動作は動作指令信号54に追従するが、電動機1の動作は、すべての時刻において電動機1の動作が動作指令信号54に一致するものに限定されるものではない。例えば、動作中は両者の間に誤差が発生し、停止時にはこの誤差がなくなるように動作させてもよい。また、実施の形態1に説明した駆動制御部4の動作例と同様に、駆動指令信号51の周波数帯域が時間に依存して切り替わるように図6の駆動制御部4aを動作させ、電動機1の動作効率を向上してもよい。
 また、図6の駆動制御部4aは、実施の形態1の駆動制御部4と同様に、電動機システム1000の回転動作における角度又は角速度を、駆動指令信号51として出力することができる。また、実施の形態1の電動機制御装置100の構成に動作指令生成部9を加え、図6の電動機制御装置100bと同様に、フィードバック制御系を構成し、かつ、ベルト張力Sの状態を検出することができる電動機制御装置を構成してもよい。
 また、図6の電動機制御装置100bの構成要素の一部を、ベルト張力状態値算出部6aを含む装置とは別に、ベルト張力状態値算出部6aを含む装置の外部に設けた構成でも、電動機制御装置100bと同様に、フィードバック制御系を構成する電動機制御装置において、ベルト張力Sの状態を検出することができる。
 構成要素の一部を、ベルト張力状態値算出部6aを含む装置の外部に設けた構成の例としては、駆動検出部3を電動機制御装置の外部に設けた電動機制御装置、駆動制御部4a又は動作指令生成部9をベルト張力状態検出装置の外部に設けたベルト張力状態検出装置等を挙げることができる。
 以上説明したように、電動機制御装置100bは、電動機1の動作の指令であり駆動指令信号51を生成する際の目標となる動作指令信号54を出力する動作指令生成部9をさらに備える。そして、駆動制御部4aは、動作指令信号54及び駆動検出信号52に基づいて電動機1を動作指令信号54に追従させる駆動指令信号51を出力する。
 本実施の形態によれば、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置又はベルト張力状態検出装置を提供することができる。さらに、電動機制御装置がフィードバック制御系を構成する場合においても、ベルト張力の状態を検出することができるという効果を奏する。
実施の形態4.
 図7は、この発明を実施するための実施の形態4における電動機制御装置100cの構成を示すブロック図である。電動機制御装置100cは、ベルト張力異常判定部10を備える点が実施の形態2の図5に示す電動機制御装置100aと異なる。ベルト張力異常判定部10は、ベルト張力状態値53と基準値を比較し、比較した結果に基づいてベルト張力の状態が正常であるか異常であるかを示す信号を出力する。図7に示す電動機制御装置100cの説明において、電動機制御装置100aの構成要素と同じ又は対応する構成要素については、同一の符号を付す。
 ベルト張力異常判定部10として、比較回路と比較回路の出力に応じて信号を出力する信号出力回路を用いてもよい。また、電子計算機を用いてもよい。図7を参照して電動機制御装置100cの動作について説明する。ベルト張力異常判定部10は、ベルト張力状態値53をあらかじめ定めた基準値と比較し、比較した結果に基づいてベルト張力Sの状態が正常であるか異常であるかを示すベルト張力異常判定値55を出力する。
 この基準値として、下限判定値又は上限判定値を定めてもよい。また、下限判定値及び上限判定値の両方を定めてもよい。下限判定値はベルト張力状態値53の正常範囲の下限である。上限判定値はベルト張力状態値53の正常範囲の上限である。これらの基準値は、実験に基づいて定めてもよく、計算に基づいて定めてもよい。実施の形態1と同様に、本実施の形態のベルト張力状態値53を、ベルト張力S以外のベルト張力Sの状態を示す値としてもよい。
 下限判定値を定めた場合のベルト張力異常判定部10の動作を例示する。ベルト張力状態値53が下限判定値より小さい場合異常であることを示す信号を出力し、ベルト張力状態値53が下限判定値と同じであるか又は下限判定値より大きい場合、正常であることを示す信号を出力してもよい。
 上限判定値を定めた場合のベルト張力異常判定部10の動作を例示する。ベルト張力状態値53が上限判定値より大きい場合異常であることを示す信号を出力し、ベルト張力状態値53が上限判定値と同じである場合又は上限判定値より小さい場合、正常であることを示す信号を出力してもよい。
 下限判定値と上限判定値の両方を定めた場合のベルト張力異常判定部10の動作を例示する。ベルト張力異常判定部10は、ベルト張力状態値53が、上限判定値より大きい場合に正常範囲の上限より大きいことを示す信号を出力してもよい。そして、ベルト張力状態値53が下限判定値より小さい場合に、正常範囲の下限より小さいことを示す信号を出力してもよい。
 そして、ベルト張力状態値53が、下限判定値もしくは上限判定値と同じ値である場合又は下限判定値と上限判定値の間の値である場合には、ベルト張力状態値53が正常範囲の中にあることを示す信号を出力してもよい。以上が下限判定値と上限判定値の両方を定めた場合のベルト張力異常判定部10の動作例である。
 電動機制御装置100cによれば、ベルト張力Sの状態が正常であるか異常であるかを示すベルト張力異常判定値55を出力するため、より確実に又は容易に、ベルト張力Sに異常が発生したことを検知することができる。なお、電動機制御装置100又は電動機制御装置100bに、図7のベルト張力異常判定部10を追加し、より確実に又は容易に、ベルト張力Sの状態に異常が発生したことを検知してもよい。
 また、電動機制御装置100cの構成要素の一部を、ベルト張力状態値算出部6aを含む装置とは別に、ベルト張力状態値算出部6aを含む装置の外部に設けた構成としても、より確実に又は容易に、ベルト張力Sの状態に異常が発生したことを検知することができる。構成要素の一部を、ベルト張力状態値算出部6aを含む装置の外部に設けた構成の例としては、図7の駆動制御部4をベルト張力状態検出装置の外部に設けたベルト張力状態検出装置等を挙げることができる。
 以上説明したように、電動機制御装置100cは、ベルト張力異常判定部10をさらに備える。ベルト張力異常判定部10は、あらかじめ定めた基準値とベルト張力状態値53とを比較し、比較した結果に基づいてベルト203のベルト張力Sの状態が正常であるか異常であるかを示すベルト張力異常判定値55を出力する。
 本実施の形態によれば、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置又はベルト張力状態検出装置を提供することができる。さらに、より確実に又は容易にベルト張力の状態に異常が発生したことを検知することができるという効果を奏する。
実施の形態5.
 図8は、この発明を実施するための実施の形態5における電動機制御装置100dの構成を示すブロック図である。図8に示す電動機制御装置100dは、機械諸元記憶部11(第一の機械諸元記憶部)を備える点が、図5に示す実施の形態2の電動機制御装置100aと異なる。さらに、駆動制御部4に代えて、駆動制御部4bを備える点が電動機制御装置100aと異なる。駆動制御部4bは、電動機システム1000の機械諸元である機械諸元56に基づいて駆動指令信号51を出力する。
 図8に示す電動機制御装置100dの説明において、実施の形態2の電動機制御装置100aの構成要素と同じ又は対応する構成要素については、同一の符号を付す。機械諸元記憶部11は、例えば、半導体メモリ、ハードディスク等の記憶媒体としてもよい。また、記憶装置を有する計算機としてもよい。図8を参照して電動機制御装置100dの動作について説明する。
 機械諸元記憶部11は、ベルト203を取り付けた時(初期)のベルト張力S、ベルト203の特性、駆動プーリ201の半径、従動プーリ202の半径、電動機側イナーシャJ、負荷機械側イナーシャJ等を機械諸元56(第一の機械諸元)として記憶する。機械諸元56は、ベルト203に発生するねじり振動の状態に関する電動機システム1000の機械的特性値である。駆動制御部4bは、機械諸元記憶部11から出力された機械諸元56に基づいて駆動指令信号51を出力する。
 駆動制御部4bの動作について説明する。駆動制御部4bは、ベルト駆動部2が有するねじり振動の共振周波数fの予測値である予測共振周波数58(第一の予測共振周波数)を算出する。さらに、駆動制御部4bは、予測共振周波数58の信号成分を含む駆動指令信号51を出力することによって、ねじり振動の共振周波数fの信号成分を含む駆動指令信号51をより確実に出力することができる。
 そのため、図8のベルト張力状態値算出部6aが取得する駆動指令信号51及び駆動検出信号52には、ねじり振動の共振周波数fの信号成分がより確実に含まれることとなる。そのため、電動機制御装置100dによれば、より確実にねじり振動の状態を検出することができる。そして、より確実にベルト張力Sの状態を検出することができる。
 また、駆動制御部4bは、予測共振周波数58を用いて駆動指令信号51の周波数帯域を設定し、ねじり振動の共振周波数fの信号成分を含む駆動指令信号51の周波数帯域をより狭くすることができる。そして、ベルト張力状態値53を算出する際の駆動指令信号51及び駆動検出信号52に含まれる雑音の量を減らすことができる。そのため、電動機制御装置100dによれば、精度よくベルト張力Sの状態を検出することができる。
 なお、電動機制御装置100、電動機制御装置100b、電動機制御装置100cのいずれか一つに、機械諸元記憶部11を追加した構成を用いて、電動機制御装置100dを用いた場合と同様に、より確実に又は精度よくベルト張力Sの状態を検出してもよい。
 また、機械諸元記憶部11が記憶する機械諸元56は、初期の値に限定されるものではなく、ベルト203を取り付けた時から時間が経過した後の値でもよい。また、一定の時間が経過するごとに、機械諸元56を更新してもよい。また、異なる時点の機械諸元56の値を複数記憶し、記憶した値の平均値を用いてもよい。
 また、駆動制御部4bは、駆動指令信号51について、周波数帯域の幅、データ間隔、単位時間あたりのデータ数、信号出力期間等の信号の仕様を機械諸元56に基づいて決定してもよい。例えば、駆動制御部4bは、機械諸元56を用いて、ベルト張力状態値53に求められる精度から駆動指令信号51の信号仕様を決定してもよい。以下に、駆動制御部4bの駆動指令信号51の信号仕様を決定する具体的な動作について説明する。
 ベルト張力Sの値が、あらかじめ設けたベルト張力Sの許容範囲内にあるか否かを検知する場合に、あらかじめ設けたベルト張力Sの許容範囲から、機械諸元56を用いてねじり振動の共振周波数fの許容範囲を算出する。さらに、ねじり振動の共振周波数fの許容範囲の幅から、駆動指令信号51の信号仕様を決定する。
 駆動指令信号51の信号仕様を決定する際には、実測したねじり振動の共振周波数fが許容範囲の中にはいっているかどうかを判断できるように、駆動指令信号51の単位時間あたりのデータ数、周波数帯域の幅等の信号仕様を決定する。このように、駆動制御部4bは、予測共振周波数58を算出せずに駆動指令信号51を出力してもよい。
 駆動制御部4bは、上記に例示した動作によって、ねじり振動の共振周波数fの信号成分を含む駆動指令信号51の周波数帯域を狭くしてもよい。また、ねじり振動の共振周波数fの信号成分を含む駆動指令信号51を、より確実に出力してもよい。そして、電動機制御装置100dと同様に、より確実に又は精度よくベルト張力Sの状態を検出してもよい。
 なお、実施の形態1の駆動制御部4と同様に、本実施の形態の駆動制御部4bは、電動機1の発生するトルクに代えて、電動機システム1000の回転動作の角度又は角速度を駆動指令信号51として出力することもできる。
 また、電動機制御装置100dの構成要素の一部を、ベルト張力状態値算出部6aを含む装置の外部に、ベルト張力状態値算出部6aを含む装置とは別に設けても、電動機制御装置100dを用いた場合と同様に、ベルト張力Sの状態を、精度よく又はより確実に検出することができる。
 構成要素の一部を、ベルト張力状態値算出部6aを含む装置の外部に設けた構成の例としては、図8の駆動検出部3又は機械諸元記憶部11を電動機制御装置の外部に設けた電動機制御装置、図8の駆動制御部4bをベルト張力状態検出装置の外部に設けたベルト張力状態検出装置等を挙げることができる。
 以上説明したように、駆動制御部4bは、電動機システム1000の機械諸元であってベルト203に発生するねじり振動の状態に関する機械諸元56を記憶する機械諸元記憶部11から出力された機械諸元56に基づいて駆動指令信号51を出力する。
 駆動制御部4bは、機械諸元56からねじり振動の共振周波数fの予測値である予測共振周波数58を算出し、予測共振周波数58の信号成分を含む駆動指令信号51を出力してもよい。また、駆動指令信号51について、周波数帯域の幅、データ間隔、単位時間あたりのデータ数、信号出力期間等の信号仕様を機械諸元56に基づいて決定し、決定した信号仕様に従って駆動指令信号51を出力してもよい。
 駆動制御部4bが信号仕様を決定する際、機械諸元56に基づいて、機械諸元56を用いてねじり振動の状態とベルト張力Sの状態とを関係づけてもよい。
 本実施の形態によれば、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置又はベルト張力状態検出装置を提供することができる。さらに、精度よく又はより確実に、ベルト張力の状態を検出することができるという効果を奏する。
実施の形態6.
 図9は、この発明を実施するための実施の形態6における電動機制御装置100eの構成を示すブロック図である。図9に示す電動機制御装置100eは、機械諸元記憶部11a(第二の機械諸元記憶部)を備える点が、図5に示す実施の形態2の電動機制御装置100aと異なる。さらに、ベルト張力状態値算出部6aに代えて、ベルト張力状態値算出部6bを備える点が、電動機制御装置100aと異なる。
 図9に示すベルト張力状態値算出部6bは、機械諸元56aに基づいて駆動指令信号51号及び駆動検出信号52に信号処理SPを施す。そして、ベルト張力状態値算出部6aは、信号処理SPを施した信号を用いてベルト張力状態値53を出力する。
 図9に示す電動機制御装置100eの説明において、図5に示す電動機制御装置100aの構成要素と同じ又は対応する構成要素については、同一の符号を付す。図9を参照して電動機制御装置100eの動作について説明する。機械諸元記憶部11aは、機械諸元記憶部11と同様に、半導体メモリ、ハードディスク等の記憶媒体としてもよく、記憶装置を有する計算機としてもよい。
 機械諸元記憶部11aは、ベルト取り付け時(初期)のベルト張力S、ベルト203の特性、駆動プーリ201の半径、従動プーリ202の半径、電動機側イナーシャJ、負荷機械側イナーシャJ等を機械諸元56a(第二の機械諸元)として記憶する。機械諸元56aは、電動機システム1000の機械特性であって、ベルト203に発生するねじり振動の状態に関する数値である。実施の形態5の機械諸元56と同様に、初期の値に限定されるものではない。
 ベルト張力状態値算出部6bは、機械諸元56aに基づいて、駆動指令信号51及び駆動検出信号52に信号処理SP(第一の信号処理)を施す。そして、信号処理SPを施して得た信号に基づいてベルト張力状態値53を算出する。ベルト張力状態値算出部6bが信号処理SPを施して得た信号からベルト張力状態値53を算出する動作は、ベルト張力状態値算出部6aが駆動指令信号51及び駆動検出信号52からベルト張力状態値53を算出する動作と同様である。以下に、信号処理SPについて説明する。
 ベルト張力状態値算出部6bは、機械諸元記憶部11aから出力された機械諸元56aに基づいてねじり振動の共振周波数fの予測値である予測共振周波数58a(第二の予測共振周波数)を算出する。そして、あらかじめ定めた周波数範囲の信号成分のみを通過させるフィルタを構成する。上記周波数範囲には、予測共振周波数58aが含まれている。また、用いるフィルタの種類は、信号に含まれる外乱成分の特性を考慮し、バンドパスフィルタ、ローパスフィルタ、ハイパスフィルタ等から選択してもよい。
 駆動指令信号51及び駆動検出信号52はこのフィルタを通過する。ベルト張力状態値算出部6bは、このフィルタを通過した信号を、ベルト張力状態値53を算出する際に用いる。以上が信号処理SPの一例である。ベルト張力状態値算出部6bは、信号処理SPを施すことによって雑音の量を低減し、ベルト張力状態値53を精度よく算出することができる。ここで、フィルタを通過した信号には、予測共振周波数58aの信号成分が含まれている。
 なお、電動機制御装置100eに、実施の形態4において説明したベルト張力異常判定部10を追加し、より確実に又は容易に、ベルト張力Sに異常が発生したことを検出してもよい。また、電動機制御装置100aに代えて、電動機制御装置100、電動機制御装置100b、電動機制御装置100c、電動機制御装置100dのいずれか一つに機械諸元記憶部11aを追加してもよい。そして、各構成において、精度よくベルト張力Sの状態を検出してもよい。
 また、図5のベルト張力状態値算出部6aと同様に、ベルト張力状態値算出部6bは、駆動指令信号51に代えて、電動機1の電流の検出値又は電動機1の発生するトルクの検出値を用いることもできる。電動機制御装置100eにおいて、駆動指令信号51に代えて、電動機1の電流又はトルクを用いた場合には、電流の検出値又はトルクの検出値に信号処理SPを施して、ベルト張力Sの状態を精度よく検出してもよい。
 また、予測共振周波数58aを算出しない信号処理SPによって、ベルト張力Sの状態を、精度よく検出することもできる。予測共振周波数58aを算出しない信号処理SPの例としては、駆動指令信号51又は駆動検出信号52からデータを取得する際のデータサンプリングを挙げることができる。ベルト張力状態値算出部6bは、データサンプリング周期、データサンプリング期間等の条件を、機械諸元56aに基づいて決定してもよい。
 そして、決定した条件に従って駆動指令信号51及び駆動検出信号52に対してデータサンプリングをおこない、雑音の量を低減した信号を用いて、ベルト張力状態値53を精度よく出力してもよい。また、ベルト張力状態値算出部6bは、駆動指令信号51と駆動検出信号52のいずれか一方に信号処理SPを施し、信号処理SPを施した信号と信号処理SPを施していない信号に基づいてベルト張力状態値53を精度よく出力してもよい。
 また、電動機制御装置100eの構成要素の一部を、ベルト張力状態値算出部6bを含む装置の外部に、ベルト張力状態値算出部6bを含む装置とは別に設けても、ベルト張力Sの状態を精度よく検出することができる。構成要素の一部を、ベルト張力状態値算出部6bを含む装置の外部に設けた構成の例としては、駆動検出部3又は機械諸元記憶部11aを電動機制御装置の外部に設けた電動機制御装置、駆動制御部4bをベルト張力状態検出装置の外部に設けたベルト張力状態検出装置等を挙げることができる。
 ベルト張力状態値算出部6bは、機械諸元56aに基づいてねじり振動の共振周波数fの予測値である予測共振周波数58aを算出する。そして、予測共振周波数58aの信号成分を含む周波数範囲のみを通過させるフィルタを構成する。そして、駆動指令信号51及び駆動検出信号52に対してこのフィルタを通過させることにより、周波数領域でのフィルタリングによる信号処理SPを行ってもよい。
 また、データサンプリング周期、データサンプリング期間等のデータサンプリングの条件を、機械諸元56aに基づいて決定してもよい。そして、決定した条件に従って駆動指令信号51及び駆動検出信号52に対してデータサンプリングをおこなってもよい。さらに、データサンプリングを行う際、ベルト張力状態値53に必要とされる精度からデータサンプリングの条件を決定するために機械諸元56aを用いてもよい。
 例えば、ベルト張力Sの値の正常範囲をあらかじめ決定し、ベルト張力Sの値がその正常範囲内にあるか否かを検知する場合、ベルト張力Sの正常範囲から機械諸元56aを用いてねじり振動の共振周波数fの正常範囲を算出する。
 そして、ねじり振動の共振周波数fの検出値がねじり振動の共振周波数fの正常範囲にあるか否かを判断するのに、必要十分なデータ間隔となるようにデータサンプリングの条件を決定する。このようにして、計算時間を短縮し、かつ、ベルト張力Sの値がその正常範囲内にあるか否かを検知してもよい。
 以上説明したように、ベルト張力状態値算出部6bは、電動機システム1000の機械諸元であってベルト203に発生するねじり振動の状態に関する機械諸元56aを記憶する機械諸元記憶部11aから出力された機械諸元56aに基づいて、駆動検出信号52に対して信号処理SPを施す。信号処理SPは、周波数領域でのフィルタリング又はデータサンプリングである。さらに、ベルト張力状態値算出部6bは、駆動検出信号52に信号処理SPを施して得た信号に基づいてベルト張力状態値53を出力する。
 本実施の形態によれば、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置又はベルト張力状態検出装置を提供することができる。さらに、ベルト張力の状態を精度よく検出できるという効果を奏する。
実施の形態7.
 図10は、この発明を実施するための実施の形態7における電動機制御装置100fの構成を示すブロック図である。図10に示す電動機制御装置100fは、ベルト張力状態値記憶部12(第一のベルト張力状態値記憶部)を備える点が、図5に示す実施の形態2の電動機制御装置100aと異なる。さらに、駆動制御部4に代えて駆動制御部4cを備える点が、電動機制御装置100aと異なる。駆動制御部4cは、ベルト張力状態値記憶57に基づいて駆動指令信号51を出力する。
 図10に示す電動機制御装置100fの説明において、図5に示す電動機制御装置100aの構成要素と同じ又は対応する構成要素には、同一の符号を付す。図10を参照して、電動機制御装置100fの動作について説明する。ベルト張力状態値記憶部12は、ベルト張力状態値53をベルト張力状態値記憶57(第一のベルト張力状態値記憶)としてあらかじめ記憶する。
 ベルト張力状態値記憶部12を、半導体メモリ、ハードディスク等の記憶媒体としてもよい。また、記憶装置を有する計算機としてもよい。駆動制御部4cは、ベルト張力状態値記憶部12から出力されたベルト張力状態値記憶57に基づいて、ねじり振動の共振周波数fの予測値を算出する。算出した予測値を、共振周波数計算値59(第一の共振周波数計算値)とする。
 駆動制御部4cは、共振周波数計算値59の信号成分を含む駆動指令信号51を出力する。その結果、図10のベルト張力状態値算出部6aは、ねじり振動の共振周波数fの信号成分を含む駆動指令信号51及び駆動検出信号52を、より確実に取得することができる。そして、電動機制御装置100fによれば、より確実にベルト張力の状態を検出することができる。
 さらに、駆動制御部4cは、共振周波数計算値59を用いて、駆動指令信号51の周波数帯域をより狭く設定することができる。これにより、図10のベルト張力状態値算出部6aは、雑音の量が低減され共振周波数計算値59の信号成分を含む信号を、ベルト張力状態値53の算出に用いることができる。その結果、電動機制御装置100fによれば、精度よくベルト張力Sの状態を検出することができる。
 駆動制御部4cは、共振周波数計算値59を算出せずに駆動指令信号51を出力することもできる。共振周波数計算値59を算出しない動作の例としては、駆動指令信号51について、周波数帯域の幅、データ間隔、単位時間あたりのデータ数等の信号仕様を、ベルト張力状態値記憶57に基づいて決定する動作を挙げることができる。
 上記に例示した動作によって、ねじり振動の共振周波数fの信号成分を含む駆動指令信号51をより確実に出力してもよい。また、駆動指令信号51及び駆動検出信号52に含まれる雑音の量を低減させてもよい。駆動指令信号51の信号仕様を決定する駆動制御部4cの動作をさらに例示する。
 例えば、ベルト張力Sの値が、あらかじめ定めた正常範囲内にあるかどうかを検知する場合に、ベルト張力状態値記憶57を用いて、正常時のベルト張力Sのばらつきの範囲を求める。さらに、求めたばらつきの範囲を参照して、ベルト張力Sの正常範囲を決定し、ベルト張力Sの正常範囲から、ねじり振動の共振周波数fの正常範囲を求める。駆動制御部4cは、この正常範囲の幅から、駆動指令信号51の信号仕様を決定してもよい。
 ベルト張力状態値53が一度も出力されていない場合、ベルト張力状態値記憶部12がベルト張力状態値記憶57を記憶していないため、駆動制御部4cがベルト張力状態値記憶57を使用できない状態が発生し得る。このような場合、ベルト張力状態値53の予測値を算出し、この予測値をベルト張力状態値記憶57に代えて用いてもよい。予測値を算出する際に用いる数値データの例としては、実施の形態5の図8の機械諸元56等の数値データ、電動機システム1000の周波数応答特性等を挙げることができる。
 なお、電動機制御装置100、電動機制御装置100b、電動機制御装置100c、電動機制御装置100eのいずれか一つにベルト張力状態値記憶部12を追加し、ベルト張力Sの状態を精度よく又はより確実に検出してもよい。また、本実施の形態の駆動制御部4cは、駆動制御部4と同様に、電動機1の発生するトルクに代えて、電動機システム1000の回転動作の角度又は角速度を出力することができる。
 また、図10の電動機制御装置100fの構成要素の一部を、ベルト張力状態値算出部6aを含む装置とは別に、ベルト張力状態値算出部6aを含む装置の外部に設けても、ベルト張力Sの状態を精度よく又はより確実に検出することができる。構成要素の一部を、ベルト張力状態値算出部6aを含む装置の外部に設けた構成の例としては、図10の駆動検出部3又はベルト張力状態値記憶部12を、電動機制御装置の外部に設けた電動機制御装置、図10の駆動制御部4cをベルト張力状態検出装置の外部に設けたベルト張力状態検出装置等を挙げることができる。
 以上説明したように、駆動制御部4cは、ベルト張力状態値53をベルト張力状態値記憶57としてあらかじめ記憶するベルト張力状態値記憶部12から出力されたベルト張力状態値記憶57に基づいて駆動指令信号51を出力する。
 また、駆動制御部4cは、ねじり振動の共振周波数fの予測値である共振周波数計算値59を算出し、共振周波数計算値59の信号成分を含む駆動指令信号51を出力してもよい。また、駆動制御部4cは、駆動指令信号51について、周波数帯域の幅、データ間隔、単位時間あたりのデータ数等の信号仕様をベルト張力状態値記憶57に基づいて決定し、決定した信号仕様を有する駆動指令信号51を出力してもよい。
 本実施の形態によれば、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置又はベルト張力状態検出装置を提供することができる。さらに、ベルト張力の状態を、精度よく又はより確実に検出することができるという効果を奏する。
実施の形態8.
 図11は、この発明を実施するための実施の形態8における電動機制御装置100gの構成を示すブロック図である。図11に示す電動機制御装置100gは、ベルト張力状態値記憶部12a(第二のベルト張力状態値記憶部)を備える点が、図5に示す実施の形態2の電動機制御装置100aと異なる。さらに、ベルト張力状態値算出部6aに代えてベルト張力状態値算出部6cを備える点が、図5に示す電動機制御装置100aと異なる。
 図11のベルト張力状態値算出部6cは、あらかじめベルト張力状態値53を記憶したベルト張力状態値記憶57aに基づいて、駆動指令信号51及び駆動検出信号52に対して信号処理SP1を施し、信号処理SP1を施して得た信号に基づいてベルト張力状態値53を出力する。
 図11に示す電動機制御装置100gの説明において、図5に示す電動機制御装置100aの構成要素と同じ又は対応する構成要素については、同一の符号を付す。以下に、図11を参照して電動機制御装置100gの動作について説明する。
 ベルト張力状態値記憶部12aは、ベルト張力状態値53をベルト張力状態値記憶57a(第二のベルト張力状態値記憶)としてあらかじめ記憶する。ベルト張力状態値算出部6cは、ベルト張力状態値記憶57aに基づいて、駆動指令信号51及び駆動検出信号52に対して信号処理SP1を施す。
 さらに、ベルト張力状態値算出部6cは、駆動指令信号51及び駆動検出信号52に信号処理SP1を施して得た信号に基づいてベルト張力状態値53を出力する。ベルト張力状態値算出部6cが信号処理SP1を施して得た信号からベルト張力状態値53を算出する動作は、ベルト張力状態値算出部6aが駆動指令信号51及び駆動検出信号52からベルト張力状態値53を算出する動作と同様である。
 以下に、信号処理SP1について説明する。ベルト張力状態値算出部6cは、ベルト張力状態値記憶57aに基づいて、共振周波数計算値59a(第二の共振周波数計算値)を算出する。共振周波数計算値59aは、ベルト駆動部2のねじり振動の共振周波数fの予測値である。ベルト張力状態値算出部6cは、駆動指令信号51及び駆動検出信号52から、共振周波数計算値59aの信号成分を含む信号をそれぞれ抽出する。
 ベルト張力状態値算出部6cは、共振周波数計算値59aを用いることによって、共振周波数計算値59aの信号成分を含み、周波数帯域が狭く雑音の量が低減された信号をベルト張力状態値53の算出に用いることができる。その結果、精度よくベルト張力Sの状態を検出することができる。
 また、ベルト張力状態値算出部6cがベルト張力状態値記憶57aを利用できない場合、実施の形態7のベルト張力状態値記憶部12と同様に、計算によって求めたベルト張力状態値53の予測値を、ベルト張力状態値記憶57aに代えて用いてもよい。
 また、信号処理SP1を、共振周波数計算値59aを算出しない信号処理としてもよい。共振周波数計算値59aを算出しない信号処理SP1の例としては、データサンプリングを挙げることができる。このデータサンプリングの際に、データサンプリング周期、データサンプリング期間等のデータサンプリングの条件を、ベルト張力状態値記憶57aに基づいて決定してもよい。
 上記に例示したデータサンプリングによる信号処理SP1を、駆動指令信号51及び駆動検出信号52に施すことによって、ベルト張力状態値算出部6cがベルト張力状態値53を算出する際に用いる信号の雑音の量を低減させてもよい。そして、ベルト張力Sの状態を検出する精度を向上させてもよい。さらに、ベルト張力状態値算出部6cがデータサンプリングの条件を決定する動作を例示する。
 ベルト張力Sの値が、ベルト張力Sの正常範囲の中にあるかどうかを検知する場合に、ベルト張力状態値記憶57aを用いて正常時のベルト張力Sのばらつきの範囲を決定する。さらに、決定したベルト張力Sの正常時のばらつきの範囲からベルト張力Sの正常範囲を設定し、ベルト張力Sの正常範囲からねじり振動の共振周波数fの正常範囲を算出する。そして、算出されたねじり振動の共振周波数fの正常範囲の幅から、データサンプリングの条件を決定する。
 また、電動機制御装置100、電動機制御装置100b、電動機制御装置100c、電動機制御装置100d、電動機制御装置100fのいずれか一つに、ベルト張力状態値記憶部12aを追加し、精度よくベルト張力Sの状態を検出してもよい。また、図11のベルト張力状態値算出部6cは、駆動指令信号51と駆動検出信号52の両方に信号処理SP1を施すが、駆動指令信号51と駆動検出信号52のいずれか一方に、信号処理SP1を施してもよい。
 また、図11のベルト張力状態値算出部6cは、図5に示すベルト張力状態値算出部6aと同様に、駆動指令信号51に代えて、電動機1に流れる電流の検出値又は電動機1の発生するトルクの検出値を用いることもできる。電動機1の電流の検出値又はトルクの検出値を用いた場合には、電流の検出値又はトルクの検出値に信号処理SP1を施し、ベルト張力Sの状態を精度よく検出してもよい。
 また、図11に示す電動機制御装置100gの構成要素の一部を、ベルト張力状態値算出部6cを含む装置とは別に、ベルト張力状態値算出部6cを含む装置の外部に設け、電動機制御装置100gと同様に、精度よくベルト張力Sの状態を検出してもよい。構成要素の一部を、ベルト張力状態値算出部6cを含む装置の外部に設けた構成の例としては、駆動検出部3又はベルト張力状態値記憶部12aを電動機制御装置の外部に設けた電動機制御装置、駆動制御部4をベルト張力状態検出装置の外部に設けたベルト張力状態検出装置等を挙げることができる。
 ベルト張力状態値算出部6cは、ベルト張力状態値53をベルト張力状態値記憶57aとしてあらかじめ記憶するベルト張力状態値記憶部12aから出力されたベルト張力状態値記憶57aに基づいて駆動検出信号52に対して信号処理SP1を施す。さらに、駆動検出信号52に信号処理SP1を施して得た信号に基づいてベルト張力状態値53を出力する。
 また、ベルト張力状態値算出部6cは、ベルト張力状態値記憶57aに基づいてねじり振動の共振周波数fの予測値である共振周波数計算値59aを算出し、駆動指令信号51及び駆動検出信号52から、共振周波数計算値59aの信号成分を含む信号をそれぞれ抽出してもよい。
 また、ベルト張力状態値算出部6cは、データサンプリング周期、データサンプリング期間等のデータサンプリングの条件を、ベルト張力状態値記憶57aに基づいて決定し、決定した条件に従って駆動指令信号51及び駆動検出信号52に対してデータサンプリングを施してもよい。
 本実施の形態によれば、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置又はベルト張力状態検出装置を提供することができる。さらに、ベルト張力の状態を、精度よく検出することができるという効果を奏する。
実施の形態9.
 図12は、この発明を実施するための実施の形態9における電動機制御装置100hの構成を示すブロック図である。電動機制御装置100hは、実施の形態4の図7に示す電動機制御装置100cのベルト張力異常判定部10に代えて、ベルト張力異常判定部10aを備える。さらに、図7に示す電動機制御装置100cの構成要素に加えて、機械学習装置13を備える。本実施の形態において、実施の形態4の図7と同じ又は対応する構成要素については、同一の符合を付す。
 ベルト張力異常判定部10aは、ベルト張力異常判定部10と同様に、ベルト張力状態値53と基準値を比較し、比較した結果に基づいてベルト張力Sの状態が正常であるか異常であるかを示す値を、ベルト張力異常判定値55として出力する。ベルト張力異常判定部10aは、判断に用いる基準値を、機械学習装置13から取得する。以下では、ベルト張力異常判定部10aが判断に用いる基準値をrvとする。機械学習装置13は、状態変数svに基づいて作成される訓練データセットに従って、基準値rvを学習する。そして、学習した結果に基づき上記の基準値rvを決定する。
 図13は、実施の形態9における電動機制御装置100hが備える機械学習装置13の構成を示すブロック図である。
 機械学習装置13は、状態観測部21、データ記憶部22、学習部23及び意思決定部24を備える。また、学習部23は、報酬計算部231及び行動価値関数更新部232を備える。状態観測部21は、駆動指令信号51、駆動検出信号52、ベルト張力状態値53、ベルト張力異常判定値55及び基準値rvを取得し、状態変数svを決定する。ここで、状態観測部21は駆動指令信号51及び駆動検出信号52を取得しない構成としてもよい。
 データ記憶部22は、状態観測部21が取得した、駆動指令信号51、駆動検出信号52、ベルト張力状態値53、ベルト張力異常判定値55及び基準値rvと、決定した状態変数svとを記憶する。状態観測部21は、データ記憶部22を利用して、取得した信号の情報を、時間ごとに区分する、関連のあるデータごとにまとめる、等のデータ処理を行った後、状態変数svとして学習部23へ出力してもよい。また、データ記憶部22は、必要に応じて設ければよく、省いてもよい。また、データ記憶部22は、機械学習装置13の外部、電動機制御装置100hの外部等に設けることもできる。
 学習部23は、状態変数svに基づいて作成される訓練データセットに従って、基準値rvを学習する。換言すれば、学習部23は、状態変数svと関連付けて、基準値rvを学習する。本実施の形態では、一例として強化学習(Reinforcement Learning)を適用した場合を説明するが、本実施の形態の学習部23が使用する学習アルゴリズムは、強化学習に限定されるものではない。学習部23は、様々な学習アルゴリズムを用いて学習を実行することができる。教師あり学習、教師なし学習、半教師あり学習等の学習アルゴリズムを適用することも可能である。また、上述した学習アルゴリズムとして、特徴量そのものの抽出を学習する深層学習(Deep Learning)を用いてもよい。また、他の方法、例えば、ニューラルネットワーク、遺伝的プログラミング、機能論理プログラミング、サポートベクターマシン、ベイズ最適化等に従って機械学習を実行してもよい。
 強化学習は、ある環境内におけるエージェント(行動主体)が現在の状態を観測し、取るべき行動を決定するというものである。エージェントは行動を選択し、環境から報酬を得る。そして、エージェントは、一連の行動を通じて報酬が最も多く得られるような方策を学習する。強化学習の代表的な手法として、Q学習(Q-Learning)、TD学習(TD-Learning)等が知られている。例えばQ学習の場合、行動価値関数Q(s,a)の一般的な更新式は、(6)式で表される。更新式は、行動価値テーブルで表記してもよい。
Figure JPOXMLDOC01-appb-M000006
 (6)式において、sは時刻tにおける環境を表し、aは時刻tにおける行動を表す。行動aによって環境はst+1に変わる。rt+1はその環境の変化によってもらえる報酬を表し、γは割引率を表し、αは学習係数を表す。なお、割引率γは0より大きく1以下の範囲(0<γ≦1)、学習係数αは0より大きく1以下の範囲(0<α≦1)とする。本実施の形態にQ学習を適用した場合、行動aは、基準値rvの決定である。
 報酬計算部231の動作例を示す。報酬計算部231は、ベルト張力状態値53、基準値rv、ベルト張力異常判定値55及び実際の異常発生の有無から構成される組を、複数組生成する。ここで、実際の異常発生の有無は、駆動指令信号51、駆動検出信号52、ベルト張力状態値53等に基づく状態変数svから判定する。そして、報酬計算部231は、ベルト張力異常判定値55の示す異常の有無と、実際の異常発生の有無を照合し、両者が一致した回数を、照合を実行した全回数で除して得た値を報酬rとしてもよい。このようにすれば、ベルト張力異常判定部10aの判断と、実際に発生した異常の有無とが一致する回数が多いほど、高い報酬を与えることができるため、より正しい判断結果を得ることができる基準値rvを学習することができる。
 なお、ベルト張力異常判定値55が異常の種類を示す場合、報酬計算部231は、ベルト張力異常判定値55の示す異常の種類と、実際に発生した異常の種類を照合してもよい。そして、異常の有無及び種類が一致した場合、最も高い報酬を与え、異常の有無は一致して異常の種類は一致しなかった場合、中程度の報酬を与え、異常の有無が一致しなかった場合は小さい報酬又はマイナスの報酬を与えるとしてもよい。このようにすれば、異常の有無及び異常の種類を、より正確に検出できる基準値rvを学習することができる。
 行動価値関数更新部232は、報酬計算部231で計算された報酬rと状態変数svとに基づき、基準値rvを計算するための行動価値関数Qを更新する。意思決定部24は、行動価値関数Qに基づいて基準値rvを決定する。具体的には、意思決定部24は、更新された行動価値関数Qが最も大きくなる行動a、すなわち基準値rvを決定する。このようにして、基準値rvを更新することにより、異常についてより正確な判断を実施することができる基準値rvについて学習を進めることができる。
 なお、電動機システム1000と同様の電動機システムを複数設け、複数の電動機システムによる判断を並行して実行し、効率よく学習を進めてもよい。また、電動機システム1000から取得したデータを用いて学習を行った電動機制御装置100hを、別の電動機システムに接続し、別の電動機システムから取得したデータを用いて、さらに学習を実行してもよい。
 また、本実施の形態の学習の結果を搭載した学習済み学習器を用いて、電動機制御装置を構成してもよい。上記の学習済み学習器は、本実施の形態の学習によって更新済の行動価値関数Qを用いて基準値rvを決定する学習済プログラムによって実現してもよい。また、本実施の形態の学習による基準値rvの調整の結果を記憶させた学習済みデータによって上記の学習済み学習器を実現してもよい。このようにすれば、学習済プログラム、学習済みデータ等を、電動機制御装置に追加することによって、学習結果を利用することができる電動機制御装置を、短時間で提供することができる。また、本実施の形態に説明した方法によって、基準値rvの自動調整、電動機制御装置の製造等を実行してもよい。
 本実施の形態によれば、小型又は簡単な構成の装置を用いて、電動機システムが有する電動機のトルクを伝達するベルトのベルト張力の状態を検出することが可能な電動機制御装置又はベルト張力状態検出装置を提供することができる。さらに、ベルト張力に発生する異常の有無の判断に用いる基準値rvを学習することができる。これにより、より正確に異常の有無を判断することのできる電動機制御装置を提供できるという効果を奏する。
 以上に説明した実施の形態は、適宜組み合わせて使用することができる。また、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 電動機、2 ベルト駆動部、3 駆動検出部、4,4a,4b,4c 駆動制御部、5 負荷機械、6,6a,6b,6c ベルト張力状態値算出部、9 動作指令生成部、10,10a ベルト張力異常判定部、11,11a 機械諸元記憶部、12,12a ベルト張力状態値記憶部、13 機械学習装置、21 状態観測部、22 データ記憶部、23 学習部、24 意思決定部、51 駆動指令信号、52 駆動検出信号、53 ベルト張力状態値、54 動作指令信号、55 ベルト張力異常判定値、56,56a 機械諸元、57,57a ベルト張力状態値記憶、100,100a,100b,100c,100d,100e,100f,100g,100h 電動機制御装置、201 駆動プーリ、202 従動プーリ、203 ベルト、231 報酬計算部、232 行動価値関数更新部、1000 電動機システム、Q 行動価値関数、S ベルト張力、SP,SP1 信号処理、sv 状態変数、r 報酬、rv 基準値、f ねじり振動の共振周波数。

Claims (14)

  1.  負荷機械、前記負荷機械に機械的に接続された従動プーリ、前記従動プーリに巻きかけられたベルト、前記ベルトが巻きかけられた駆動プーリ及び前記駆動プーリに機械的に接続された電動機を含む電動機システムの前記電動機を駆動する信号である駆動指令信号を出力する駆動制御部と、
     前記電動機システムの回転動作の角度、角速度又は角加速度を検出した駆動検出信号に基づき前記ベルトのベルト張力の状態を示すベルト張力状態値を出力するベルト張力状態値算出部と
     を備える電動機制御装置。
  2.  前記駆動プーリ、前記従動プーリ及び前記ベルトはベルト駆動部を構成し、前記ベルト張力状態値算出部は、前記ベルト駆動部のねじり振動の状態を検出した検出結果に基づき前記ベルト張力状態値を出力することを特徴とする請求項1に記載の電動機制御装置。
  3.  前記ベルト張力状態値算出部は、前記駆動指令信号、前記電動機の電流の検出値又は前記電動機のトルクの検出値に基づいて前記ベルト張力状態値を出力することを特徴とする請求項1又は2に記載の電動機制御装置。
  4.  前記ベルト張力状態値算出部は、前記駆動検出信号の周波数特性と、前記駆動指令信号、前記電動機の電流の検出値、前記電動機のトルクの検出値のいずれかひとつの周波数特性との比をとり、前記比にあらわれるねじり振動の状態を検出した検出結果に基づき前記ベルト張力状態値を出力することを特徴とする請求項3に記載の電動機制御装置。
  5.  電動機の動作の指令であり前記駆動指令信号を生成する際の目標となる動作指令信号を出力する動作指令生成部をさらに備え、
     前記駆動制御部は、前記動作指令信号及び前記駆動検出信号に基づいて前記電動機を前記動作指令信号に追従させる前記駆動指令信号を出力することを特徴とする請求項1から4のいずれか1項に記載の電動機制御装置。
  6.  あらかじめ定めた基準値と前記ベルト張力状態値とを比較し、比較した結果に基づいて前記ベルトのベルト張力の状態が正常であるか異常であるかを示すベルト張力異常判定値を出力するベルト張力異常判定部をさらに備えることを特徴とする請求項1から5のいずれか1項に記載の電動機制御装置。
  7.  前記駆動制御部は、前記電動機システムの前記ベルトに発生するねじり振動の状態に関する機械諸元である第一の機械諸元を記憶する第一の機械諸元記憶部から出力された前記第一の機械諸元に基づいて前記駆動指令信号を出力することを特徴とする請求項1から6のいずれか1項に記載の電動機制御装置。
  8.  前記ベルト張力状態値算出部は、前記電動機システムの前記ベルトに発生するねじり振動の状態に関する機械諸元である第二の機械諸元を記憶する第二の機械諸元記憶部から出力された前記第二の機械諸元に基づいて前記駆動検出信号に対して周波数領域フィルタリング又はデータサンプリングである第一の信号処理を施し、さらに、前記駆動検出信号に前記第一の信号処理を施して得た信号に基づいて前記ベルト張力状態値を出力することを特徴とする請求項1から7のいずれか1項に記載の電動機制御装置。
  9.  前記駆動制御部は、前記ベルト張力状態値を第一のベルト張力状態値記憶としてあらかじめ記憶する第一のベルト張力状態値記憶部から出力された前記第一のベルト張力状態値記憶に基づいて前記駆動指令信号を出力することを特徴とする請求項1から8のいずれか1項に記載の電動機制御装置。
  10.  前記ベルト張力状態値算出部は、前記ベルト張力状態値を第二のベルト張力状態値記憶としてあらかじめ記憶する第二のベルト張力状態値記憶部から出力された前記第二のベルト張力状態値記憶に基づいて前記駆動検出信号に対して周波数領域フィルタリング又はデータサンプリングである第二の信号処理を施し、さらに、前記駆動検出信号に前記第二の信号処理を施して得た信号に基づいて前記ベルト張力状態値を出力することを特徴とする請求項1から7のいずれか1項に記載の電動機制御装置。
  11.  負荷機械、前記負荷機械に機械的に接続された従動プーリ、前記従動プーリに巻きかけられたベルト、前記ベルトが巻きかけられた駆動プーリ、前記駆動プーリに機械的に接続され駆動制御部から出力された駆動指令信号によって駆動される電動機を含む電動機システムの回転動作の角度、角速度又は角加速度を検出した駆動検出信号に基づき前記ベルトのベルト張力の状態を示すベルト張力状態値を出力するベルト張力状態値算出部を備えるベルト張力状態検出装置。
  12.  前記ベルト張力状態値及び前記ベルト張力異常判定値を含む状態変数を観測する状態観測部と、
     前記状態変数に基づいて作成される訓練データセットに従って、前記基準値を学習する学習部と、
     を有する機械学習装置をさらに備える請求項6に記載の電動機制御装置。
  13.  前記学習部は、
     前記基準値及び前記状態変数に基づいて報酬を計算する報酬計算部と、
     前記状態変数及び前記報酬に基づいて、前記基準値を計算するための行動価値関数を更新する行動価値関数更新部と、
     を備える請求項12に記載の電動機制御装置。
  14.  前記機械学習装置は、
     前記行動価値関数に基づいて前記基準値を決定する意思決定部、
     を備える請求項13に記載の電動機制御装置。
PCT/JP2019/039832 2018-10-31 2019-10-09 電動機制御装置及びベルト張力状態検出装置 WO2020090394A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020514646A JP6742559B1 (ja) 2018-10-31 2019-10-09 電動機制御装置及びベルト張力状態検出装置
US17/285,099 US11828665B2 (en) 2018-10-31 2019-10-09 Motor control device and belt tension state detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018205596 2018-10-31
JP2018-205596 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090394A1 true WO2020090394A1 (ja) 2020-05-07

Family

ID=70462217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039832 WO2020090394A1 (ja) 2018-10-31 2019-10-09 電動機制御装置及びベルト張力状態検出装置

Country Status (4)

Country Link
US (1) US11828665B2 (ja)
JP (1) JP6742559B1 (ja)
TW (1) TWI734225B (ja)
WO (1) WO2020090394A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019116913B4 (de) * 2019-06-24 2021-12-16 Gebr. Bode Gmbh & Co. Kg Verfahren zur Bestimmung der Spannung eines Antriebsriemens
SE2250443A1 (en) * 2022-04-07 2023-10-08 Husqvarna Ab Construction equipment with belt slip detection function
TWI819981B (zh) * 2023-03-29 2023-10-21 台達電子工業股份有限公司 動態皮帶張力推論方法及相關馬達驅動輪系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278726A (ja) * 1985-06-05 1986-12-09 Hitachi Ltd 張力測定器
JP2002310822A (ja) * 2001-04-09 2002-10-23 Toray Ind Inc 糸条延伸仮撚加工機の異常検出方法
JP2006169661A (ja) * 2004-12-15 2006-06-29 Murata Mach Ltd 解析装置及びこれを備えた機械設備と解析プログラム
US20110004373A1 (en) * 2009-07-04 2011-01-06 Ford Global Technologies, Llc Method for reducing variations in drive belt tension
JP2013217692A (ja) * 2012-04-05 2013-10-24 Toyota Motor Corp ベルト張力測定装置およびベルト張力測定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326853A (ja) * 1995-05-30 1996-12-10 Honda Motor Co Ltd 内燃機関における無端伝動帯の張力調整装置
JPH08327477A (ja) 1995-06-05 1996-12-13 Mitsubishi Electric Corp ベルト張力測定装置
US6019692A (en) * 1996-04-24 2000-02-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Belt drive device for reducing belt load
JP3355310B2 (ja) 1998-10-29 2002-12-09 三ツ星ベルト株式会社 張力測定装置
JP2002213550A (ja) * 2001-01-17 2002-07-31 Daihatsu Motor Co Ltd 無段変速機の張力制御方法
ATE335144T1 (de) * 2001-11-27 2006-08-15 Litens Automotive Synchronantriebsvorrichtung mit nichtkreisförmigen antriebselementen
JP4048901B2 (ja) * 2002-10-04 2008-02-20 株式会社デンソー 車載内燃機関による駆動システム
JP2013071536A (ja) 2011-09-27 2013-04-22 Hitachi Automotive Systems Ltd 電動倍力装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278726A (ja) * 1985-06-05 1986-12-09 Hitachi Ltd 張力測定器
JP2002310822A (ja) * 2001-04-09 2002-10-23 Toray Ind Inc 糸条延伸仮撚加工機の異常検出方法
JP2006169661A (ja) * 2004-12-15 2006-06-29 Murata Mach Ltd 解析装置及びこれを備えた機械設備と解析プログラム
US20110004373A1 (en) * 2009-07-04 2011-01-06 Ford Global Technologies, Llc Method for reducing variations in drive belt tension
JP2013217692A (ja) * 2012-04-05 2013-10-24 Toyota Motor Corp ベルト張力測定装置およびベルト張力測定方法

Also Published As

Publication number Publication date
TW202035201A (zh) 2020-10-01
JP6742559B1 (ja) 2020-08-19
US20210348974A1 (en) 2021-11-11
TWI734225B (zh) 2021-07-21
US11828665B2 (en) 2023-11-28
JPWO2020090394A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6742559B1 (ja) 電動機制御装置及びベルト張力状態検出装置
EP3685137B1 (en) System and method for automated fault diagnosis and prognosis for rotating equipment
US9116062B2 (en) Dynamometer system
DK2470782T3 (da) Driftstyringssystem til et vindenergianlæg og fremgangsmåde ved anvendelse af driftstyringssystemet
CN101749220B (zh) 扭转模式阻尼装置
CN101772745B (zh) 具有加速度传感器的过程变量变送器
JP4560110B2 (ja) 異常診断装置及び異常診断方法
US9267864B2 (en) Method for identifying damage on transmissions
US9207149B2 (en) Drive-train testing system
JP6037302B2 (ja) 風力発電装置
Han et al. Motor fault diagnosis using CNN based deep learning algorithm considering motor rotating speed
EP3206103A1 (en) Model based system monitoring
JP2000193560A (ja) 運転装置の軸のひヾ割れ又はピニオンの初期滑りを監視する装置と方法
CN104093976B (zh) 用于确定驱动链的至少一个旋转部件的总受损程度的方法和计算单元
JP7338584B2 (ja) 異常判定装置
Han et al. A study on the effectiveness of current data in motor mechanical fault diagnosis using XAI
JP7035178B2 (ja) 圧延設備の診断装置及び診断方法
JP2014508677A (ja) 伝導機構の振動の検出
Liu et al. A global–local integrated study of roller chain meshing dynamics
CN111936278A (zh) 机器人控制装置、维护管理方法以及维护管理程序
KR20200130143A (ko) 스티어링 시스템에 대한 핸즈-온 식별을 위한 방법 및 장치
JP2021071341A (ja) 音・振動評価装置
US11592356B2 (en) System and method for monitoring the wear of a free-wheel and associated apparatus
EP4386351A1 (en) Vibration test support network system
JP2020122762A (ja) 診断システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020514646

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877611

Country of ref document: EP

Kind code of ref document: A1