WO2020088106A1 - 一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法 - Google Patents

一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法 Download PDF

Info

Publication number
WO2020088106A1
WO2020088106A1 PCT/CN2019/104930 CN2019104930W WO2020088106A1 WO 2020088106 A1 WO2020088106 A1 WO 2020088106A1 CN 2019104930 W CN2019104930 W CN 2019104930W WO 2020088106 A1 WO2020088106 A1 WO 2020088106A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
battery
air conditioner
motor
Prior art date
Application number
PCT/CN2019/104930
Other languages
English (en)
French (fr)
Inventor
李俊峰
陈华英
李潇
郭爱斌
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020088106A1 publication Critical patent/WO2020088106A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to an integrated thermal management system, in particular to an integrated thermal management system and method based on an integrated battery, motor, and electronic control based on a heat pump air conditioner.
  • the electric car air conditioners on the market usually use the single cooling air conditioner cooling + PTC heating mode, which has low heating energy efficiency and affects the battery life of electric vehicles.
  • the thermal management system used in existing electric vehicles usually only has the function of battery cooling, and at low temperatures, PTC heating is still required to maintain the battery at the optimal temperature.
  • Equipped with a heat pump air conditioner and using a heat pump air conditioner to both cool and heat the battery take full advantage of the high energy efficiency of the heat pump to create a comprehensive heat management system based on the heat pump air conditioner, integrating batteries, motors, and electronic control is the future of electric vehicles Development trend.
  • the purpose of the present disclosure is to provide an integrated heat management system based on an integrated battery, motor, and electronic control for heat pump air conditioners, which can meet the temperature control needs of air conditioners and batteries under all working conditions , High practical value.
  • the purpose of the present disclosure is also to provide an integrated heat management method based on a heat pump air conditioner with integrated battery, motor and electric control.
  • An integrated battery, motor, and electronically controlled integrated thermal management system based on a heat pump air conditioner.
  • the integrated thermal management system includes a refrigerant cycle, a battery coolant cycle, and a motor electronically controlled coolant cycle.
  • An intermediate heat exchanger is used as a refrigerant
  • the circulating and battery cooling medium transfers the heat or cooling capacity of the refrigerant to the battery cooling system to realize the coupled operation of the battery pack and the heat pump air conditioner; when the air conditioner is cooling, the inner evaporator and The intermediate heat exchanger is controlled in parallel, and when the air conditioner is heating, the inner condenser and the intermediate heat exchanger in the refrigerant cycle are controlled in series.
  • the refrigerant cycle the compressor is connected to an electromagnetic three-way valve, a vapor-liquid separator and a supplementary electromagnetic two-way valve, and the electromagnetic three-way valve is then connected to the outside heat exchanger A and the second inside heat exchanger, the second The in-vehicle heat exchanger is connected to the intermediate heat exchanger; the out-of-vehicle heat exchanger A is sequentially connected to the first throttle element, the flasher and the supplementary electromagnetic two-way valve, and the flasher is sequentially connected to the second throttle Components, the first electromagnetic two-way valve, the first in-vehicle heat exchanger and the vapor-liquid separator; the flasher is also sequentially connected to the third throttling element and the intermediate heat exchanger, the intermediate heat exchanger passes A third electromagnetic two-way valve can be connected to the vapor-liquid separator, and in addition, the vapor-liquid separator is connected to the exterior heat exchanger A through a second electromagnetic two-way valve; the first interior heat exchanger and the second PTC electric heating
  • the battery cooling liquid circulation the battery cooling liquid circulating water pump is followed by a first cooling liquid system electromagnetic three-way valve, a battery pack, a second cooling liquid system electromagnetic three-way valve, an outside vehicle heat exchanger B, and a cooling system expansion water tank to form a circulation A circuit, wherein the electromagnetic three-way valve of the first cooling liquid system is also sequentially connected to the intermediate heat exchanger and the battery pack;
  • the motor electronically controlled cooling liquid circulation the motor electronically controlled circulating water pump is connected to the vehicle controller, the vehicle drive motor, the heat exchanger C outside the vehicle, and the motor electronically controlled expansion water tank to form a circulation circuit.
  • the HVAC internal heat exchanger connected in series on the side of the first in-vehicle heat exchanger and the second in-vehicle heat exchanger replaces PTC electric heating, and the HVAC internal heat exchanger can replace the PTC with heat of heat pump air-conditioning exhaust.
  • the motor electronically controlled cooling fluid circulation adding auxiliary PTC electric heating, motor electronically controlled electromagnetic two-way valve and heater core to realize heat recovery of the motor electronic control; if the heater core heat dissipation is insufficient, the outside of the vehicle The heat exchanger C and the heater core radiate heat in parallel; if the temperature of the coolant before entering the electric control of the motor is not high, the heater core directly performs heat recovery.
  • An integrated heat management method based on integrated batteries, motors, and electric control of a heat pump air conditioner.
  • the method can realize air conditioning refrigeration + battery cooling, air conditioning heating + battery cooling, air conditioning heating + battery heating, and air conditioning dehumidification modes.
  • the air-conditioning cooling + battery cooling mode used in summer when the outdoor heat load is large, the battery pack is not sufficient to meet its cooling needs only through the outdoor heat exchanger B, at this time it needs to pass the intermediate heat exchange
  • the heat exchanger transfers excess heat to the refrigerant cycle.
  • the first in-vehicle heat exchanger and the intermediate heat exchanger are arranged in parallel to complete the refrigerant cycle;
  • the coolant circulation of the battery pack brings the heat generated by the battery pack to the heat exchanger B and the intermediate heat exchanger outside the vehicle.
  • the coolant enters the battery pack to take the heat away and is selectively passed through the electromagnetic three-way valve of the second coolant system Heat exchanger B outside the car: According to the temperature of the coolant at the outlet of the battery pack and the temperature of the air passing through the heat exchanger A outside the car, if the coolant temperature is high, the coolant passes through the heat exchanger B outside the car, otherwise it does not pass the heat exchange outside Device B directly enters the expansion tank of the coolant system and returns to the circulating pump of the coolant system to complete the cycle.
  • the air-conditioning cooling + battery cooling mode or when the vehicle is running slowly or the battery pack does not generate heat when the vehicle is parked, and the heat load is small, the battery pack coolant circulation does not pass through the intermediate heat exchanger, and is only replaced outside the vehicle.
  • the heat dissipation of the heater B can meet the heat dissipation requirements of the battery pack; at this time, only the first in-vehicle heat exchanger is needed to complete the evaporation heat exchange in the refrigerant cycle.
  • the air conditioning heating + battery heating mode used in winter when the battery pack itself is insufficient to maintain its own operating temperature, the heat of the refrigerant needs to be transferred to the battery pack coolant circulation through the intermediate heat exchanger, the second car
  • the internal heat exchanger and the intermediate heat exchanger are arranged in series to jointly complete the refrigerant cycle;
  • the coolant circulation of the battery pack is: the coolant passes through the circulating water pump of the coolant system in turn-the first three-way valve of the electromagnetic system of the first coolant-the intermediate heat exchanger-the battery-the three-way valve of the electromagnetic system of the second coolant-the expansion tank of the cooling system — Circulating water pump for coolant system.
  • the air conditioning heating + battery cooling mode used in the spring and autumn or when the vehicle is running at high speed or fast battery charging, in the case where the air conditioning heating is needed in the vehicle and the battery pack needs to be cooled, the second interior heat exchange
  • the heat exchanger and the intermediate heat exchanger are arranged in series to jointly complete the refrigerant cycle; the battery pack coolant circulation does not pass through the intermediate heat exchanger, and the heat dissipation of the heat exchanger B outside the vehicle can meet the heat dissipation requirements of the battery pack.
  • the air conditioner dehumidification mode is that the refrigerant cycle completes the air conditioner dehumidification: the second heat exchanger in the vehicle, the intermediate heat exchanger, and the second heat exchanger in the vehicle are sequentially arranged in series to complete the dehumidification of the air in the vehicle.
  • the present disclosure proposes a comprehensive heat management system based on a heat pump air conditioner that integrates batteries, motors, and electronic controls. It uses the cooling capacity or heat of the heat pump air conditioner to cool and heat the battery, making full use of the high energy efficiency characteristics of the heat pump air conditioner Energy saving, improve the battery life;
  • the present disclosure cleverly uses system circulation to make the inner evaporator of the air conditioner refrigeration and the intermediate heat exchanger of heat management in parallel control, while the inner condenser of the air conditioner heating and the intermediate heat exchanger of thermal management are connected in series, the system principle is more reasonable and the control Simple and reliable
  • the integrated thermal management system of the present disclosure can realize many modes such as air conditioning cooling + battery cooling, air conditioning heating + battery cooling, air conditioning heating + battery heating, air conditioning dehumidification, etc. It can meet the temperature control needs of air conditioners and batteries under all working conditions, and is practical High value
  • the present disclosure has the function of heat recovery of the driving motor, realizes the recovery of the heat of the motor during the operation of the vehicle, and improves the energy efficiency of the operation.
  • the air conditioner can cool or heat the battery in conventional modes such as cooling, heating, and dehumidification, replacing the conventional PTC to heat the battery, and improving the overall energy efficiency of the system;
  • FIG. 1 is a cycle diagram of the integrated heat management system of the integrated battery, motor and electric control based on the heat pump air conditioner of the present disclosure
  • FIG. 2 is a cycle diagram of the air-conditioning cooling mode and battery cooling (when the heat load is large) of the present disclosure
  • FIG. 3 is a cycle diagram of the air-conditioning cooling mode and battery cooling (when the heat load is small) of the present disclosure
  • FIG. 4 is a heating system of the present disclosure and a cycle diagram of the battery heating system
  • FIG. 5 is a circulation diagram of the air-conditioning heating mode and battery cooling system of the present disclosure
  • FIG. 6 is a cycle diagram of the air conditioning dehumidification mode system of the present disclosure.
  • FIG. 7 is a cycle diagram of the integrated heat management system of the integrated battery, motor and electric control based on the heat pump air conditioner of the present disclosure (alternative solution 1);
  • FIG. 8 is a cycle diagram of the integrated heat management system based on the integrated battery, motor and electric control of the heat pump air conditioner (alternative solution 2);
  • 101 is the compressor (in the form of rotor or scroll, with or without air supplement and enthalpy increase function), 102 is the electromagnetic three-way valve (switching the air conditioning cooling, heating mode), 103 is the outdoor heat exchanger A (external refrigerant heat exchanger, air conditioning refrigeration as a condenser, heating as an evaporator), 104 is the first throttle element (can be an electronic expansion valve, capillary, etc.), 105 is a flasher (resulting in refrigerant saturation Gas is used for supplemental gas), 106 is a supplementary electromagnetic two-way valve, 107 is a second throttle element, 108 is a first electromagnetic two-way valve, and 109 is an in-vehicle heat exchanger 1 (evaporator for air conditioning and refrigeration) , 110 is a vapor-liquid separator, 111 is a second electromagnetic two-way valve, 112 is an in-vehicle heat exchanger 2 (condenser for air conditioning heating), 113 is a third electromagnetic two
  • 201 is the circulating water pump of the coolant system
  • 202 is the electromagnetic three-way valve of the first coolant system
  • 203 is the battery pack
  • 204 is the electromagnetic three-way valve of the second coolant system
  • 205 is the heat exchanger B outside the vehicle (for battery cooling Circulation)
  • 206 is the expansion tank of the coolant system;
  • 301 is the motor electronically controlled circulating water pump
  • 302 is the vehicle controller (including DC-DC, inverter, etc.)
  • 303 is the vehicle drive motor
  • 304 is the external heat exchanger C (for the motor and electronically controlled cooling cycle)
  • 305 is a motor-controlled expansion water tank
  • 306 is an auxiliary PTC electric heating (replacement device that replaces the original 117 air-cooled PTC in the replacement scheme to provide a heat source)
  • 307 is a warm air core (heat exchanger that dissipates heat through the coolant)
  • 308 Motor electronically controlled electromagnetic two-way valve.
  • the entire system includes three cycles: refrigerant cycle, battery coolant cycle, motor, and electronically controlled coolant cycle.
  • the intermediate heat exchanger 114 is used as a medium for the refrigerant circulation and the battery cooling fluid circulation, transferring the heat and the cooling capacity of the refrigerant circulation to the battery cooling fluid system, to realize the coupling operation of the battery pack and the air conditioner.
  • the inner evaporator and the intermediate heat exchanger 114 in the refrigerant cycle are controlled in parallel, while when the air conditioner is heating, the inner condenser and the intermediate heat exchanger 114 in the refrigerant cycle are controlled in series.
  • the compressor 101 is connected to the electromagnetic three-way valve 102, the vapor-liquid separator 110 and the supplementary electromagnetic two-way valve 106, and the electromagnetic three-way valve 102 is then connected to the outdoor heat exchanger A 103 and the indoor heat exchanger 2 112, the in-vehicle heat exchanger 2 is connected to the intermediate heat exchanger 114; the out-of-vehicle heat exchanger A is connected to the first throttle element 104, the flasher 105 and the supplementary electromagnetic two-way valve 106 in sequence, and the flasher 105 It is also connected to the in-vehicle heat exchanger 1 109 and the intermediate heat exchanger 114 through a throttle element, and a first electromagnetic two-way valve 108 is provided between the throttle element and the in-vehicle heat exchanger 1 109.
  • the intermediate heat exchanger 114 can be connected to the vapor-liquid separator 110 through the third electromagnetic two-way valve 113, and the vapor-liquid separator 110 is connected to the outdoor heat exchanger through the second electromagnetic two-way valve 111 A 103.
  • the circulating water pump 201 is followed by the first coolant system electromagnetic three-way valve 202, the battery pack 203, the second coolant system electromagnetic three-way valve 204, the outdoor heat exchanger B 205, the coolant system expansion water tank 206 and
  • the circulating water pump 201 forms a circulating circuit, wherein the electromagnetic three-way valve 202 of the first cooling liquid system is also sequentially connected to the intermediate heat exchanger 114 and the battery pack 203.
  • the motor electrically controlled circulating water pump 301 is connected to the vehicle controller 302, the vehicle drive motor 303, the heat exchanger C304 outside the vehicle, and the motor electronically controlled expansion water tank 305 to form a circulation circuit.
  • Figure 2 is the air conditioning cooling mode and battery cooling (when the heat load is large) system cycle diagram, mainly used in summer when the outdoor heat load is large, the battery pack 203 only through the outer heat exchanger B205 is insufficient to meet its cooling needs, at this time The intermediate heat exchanger 114 needs to transfer excess heat to the refrigerant cycle.
  • the refrigerant cycle is: the refrigerant is compressed into high-temperature and high-pressure steam by the compressor 101, passes through the electromagnetic three-way valve 102 (AB conduction), enters the outdoor heat exchanger A103 to be condensed, and then performs the first-stage throttling through the first throttling element 104 After the flow, it enters the flasher 105, part of the refrigerant enters the compressor 101 through the supplementary electromagnetic two-way valve 106 for supplemental air, and the other part of the refrigerant enters the evaporation side, the first electromagnetic two-way valve 108 and the third electromagnetic two-way valve 113 At the same time, in the refrigeration cycle, the evaporator-in-vehicle heat exchanger 1 109 and the intermediate heat exchanger 114 are in parallel relationship, and another part of the refrigerant passing through the flasher 105 passes through the second throttle element 107 and the third throttle Element 115 (throttling element for flow distribution), then evaporates in the in-vehicle
  • the battery coolant circulation is: this cycle brings the heat generated by the battery pack to the outside heat exchanger B205 and the intermediate heat exchanger 114 to ensure that the battery maintains the optimal operating temperature.
  • the cooling liquid enters the intermediate heat exchanger 114 through the cooling liquid system circulating water pump 201 through the first cooling liquid system electromagnetic three-way valve 202 (GH conduction), and the low temperature refrigerant circulates in the other side of the intermediate heat exchanger 114.
  • the heat exchanger 114 transfers the heat of the cooling liquid to the refrigerant side, the cooling liquid completes the heat dissipation to reach the optimal temperature, and the refrigerant absorbs the heat to complete the evaporation.
  • the coolant enters the battery pack 203 to take away the heat, and selectively passes through the outer heat exchanger-outboard heat exchanger B205 in the second coolant system electromagnetic three-way valve 204 (according to the outlet temperature of the battery pack and the outer ring Temperature comparison, if the coolant temperature is high, DF is connected, the coolant passes through the outside heat exchanger B205, otherwise DE is connected without passing through the outside heat exchanger B205, then the coolant enters the expansion tank 206 of the coolant system, and finally Return to the coolant pump 201 of the coolant system to complete the cycle).
  • This cycle brings the heat dissipated by the electric control and the motor to the heat exchanger C304 outside the vehicle, and the coolant in turn passes through the electrically controlled circulating water pump 301 of the motor-the vehicle controller 302-the vehicle drive motor 303 —External heat exchanger C 304—Motor electrically controlled expansion water tank 305—Motor electrically controlled circulating water pump 301 to complete the cycle.
  • the outside heat exchanger A103, the outside heat exchanger B205, and the outside heat exchanger C304 are located on the upper, middle, and downstream of the air flow, or the outside heat exchanger.
  • A103 is located in the upstream
  • the outdoor heat exchanger B205 and the outdoor heat exchanger C304 are located in parallel downstream, which is mainly determined according to their operating temperature. It is the relative position of the heat exchangers. From the front of the car, the outdoor heat exchanger A103 is at the front, followed by the outdoor heat exchanger B205 and the outdoor heat exchanger C304, but the outdoor heat exchanger B205 It is not necessary to place the heat exchanger C 304 outside the vehicle in series after the heat exchanger A103 outside the vehicle. They can be placed in parallel after the heat exchanger A103 outside the vehicle. Of course, the size will be smaller if they are connected in parallel.
  • FIG 3 is a cycle diagram of the air-conditioning cooling mode and battery cooling (when the heat load is small). The difference from the scheme of Figure 2 is that the battery pack does not generate high heat when the vehicle is slow or stops, and the coolant circulation does not pass through the intermediate heat exchange.
  • the heat exchanger 114 can satisfy the heat dissipation requirement of the battery pack only by the heat dissipation of the heat exchanger B205 outside the vehicle.
  • the refrigerant cycle is the same as in FIG. 2, the third electromagnetic two-way valve 113 is closed, and the refrigerant passing through the flasher 105 except the intake air passes through the secondary throttle 107 and enters the evaporator 1 in the vehicle 109 , And then enter the vapor-liquid separator 110, and finally return to the compressor 101.
  • the coolant circulation of the battery pack is: the electromagnetic three-way valve 202 of the first coolant system (GI is turned on), the electromagnetic three-way valve 204 of the second coolant system (DF is turned on), and the cooling fluid sequentially passes through the circulating water pump 201 of the cooling system
  • the three cycles are independent, and each can run a certain cycle independently.
  • the refrigerant cycle is: the refrigerant is compressed into high-temperature and high-pressure steam by the compressor 101, passes through the electromagnetic three-way valve 102 (AC conduction), enters the interior heat exchanger 2 112, and supplies heat to the interior of the vehicle, and the third electromagnetic two-way valve 113 and The first electromagnetic two-way valve 108 is closed, and then enters the intermediate heat exchanger 114 to exchange heat with the coolant system, and then enters the flasher 105 through the third throttle element 115, and the supplemental gas enters the compression through the supplementary electromagnetic two-way valve 106
  • the engine 101 another part of the refrigerant undergoes two-stage throttling through the first throttling element 104, then evaporates through the outer heat exchanger A103, the second electromagnetic two-way valve 111 is opened, then passes through the vapor-liquid separator 110 and finally returns to the compressor 101.
  • the in-vehicle heat exchanger 2 112 and the intermediate heat exchanger 114 are connected in series.
  • the coolant circulation of the battery pack is: the electromagnetic three-way valve 202 of the first cooling system (GH is turned on), the electromagnetic three-way valve 204 of the second cooling system (DE is turned on), and the cooling liquid sequentially passes through the circulating water pump 201 of the cooling system
  • FIG. 5 is a cycle diagram of an air-conditioning heating mode and a battery cooling system, which is mainly used when the vehicle is running at high speed in spring or autumn or similar conditions, or when the battery is fast-charged.
  • the refrigerant cycle is: the same as the scheme of Figure 4;
  • the coolant circulation of the battery pack is: the same as the scheme of FIG. 3.
  • FIG. 6 is a cycle diagram of the air conditioning dehumidification mode system. This figure focuses on the refrigerant cycle to realize the dehumidification mode in the vehicle.
  • the refrigerant is compressed by the compressor 101 into high-temperature and high-pressure steam through the electromagnetic three-way valve 102 (AC conduction) into the vehicle.
  • the heat exchanger 2 112 heats the interior of the vehicle, the third electromagnetic two-way valve 113 and the second electromagnetic two-way valve 111 are closed, then enters the intermediate heat exchanger 114, and then passes through the third throttle element 115 and the second throttle element 107.
  • the first electromagnetic two-way valve 108 is opened, and the throttled refrigerant enters the evaporator 1 in the vehicle 109 to dehumidify the air, and then returns to the compressor 101 through the vapor-liquid separator 110.
  • the air in the HVAC is cooled and dehumidified by the evaporator 109 in the car, and then heated by the heat exchanger 112 in the car to complete the dehumidification process of the air in the car.
  • the battery pack cooling fluid is circulated: the cooling or heating of the battery pack can be achieved according to the cycles in FIG. 4 (battery heating) and FIG. 5 (battery cooling).
  • thermal management 1 replacement of motor and electronically controlled cooling cycle
  • the difference between this system and the solution of Figure 1 is to achieve heat recovery of the motor and electronic control, adding auxiliary PTC electric heating 306.
  • the motor electrically controlled electromagnetic two-way valve 308 and the heater core 307. If there is a dual temperature zone requirement in the car, it is necessary to rotate the HVAC internal damper 116 to mix the air. At this time, there must be a stable heat source in the heater core 307. When the vehicle is not started or the start of the start, the motor has insufficient heat, you can open the auxiliary The PTC electric heater 306 temporarily provides heat to the heater core 307.
  • the auxiliary PTC electric heater 306 can be turned off to directly use the motor heat.
  • the motor electronically controlled electromagnetic two-way valve 308 is closed by default, and its switch can be judged according to the temperature of the coolant before entering the electronic control. If the temperature of the coolant here exceeds a certain set value, it proves that the interior heater core 307 Insufficient heat dissipation, at this time, the motor's electronically controlled electromagnetic two-way valve 308 is opened, and the outer heat exchanger C304 and the heater core 307 are connected in parallel to dissipate heat; if the temperature of the coolant before entering the electronic control is not high, you can continue to close the motor's electronically controlled electromagnetic two The valve 308 is opened to recover heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法,***包括制冷剂循环、电池冷却液循环和电机电控冷却液循环,采用中间换热器(114)作为制冷剂循环和电池冷却液循环的介质,将制冷剂循环的热量或冷量转移到电池冷却液***中,实现电池组(203)和热泵空调的耦合运行;在空调制冷时,制冷剂循环中的内侧蒸发器和中间换热器(114)并联控制,而空调制热时,制冷剂循环中内侧冷凝器和中间换热器(114)串联控制。

Description

一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法
本公开以2018年10月30日递交的、申请号为201811277351.1且名称为“一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法”的专利文件为优先权文件,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及一种综合热管理***,具体涉及一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法。
背景技术
目前市场上的电动汽车空调通常采用单冷空调制冷+PTC制热的模式,制热能效低,影响电动汽车续航。此外,现有的电动汽车上使用的热管理***通常只有电池冷却功能,而低温下还是得靠PTC加热才能使电池保持在最佳温度。
搭载热泵空调,并采用热泵空调既给电池冷却又给电池加热,充分利用热泵能效高的特点,打造以热泵空调为基础,集成电池、电机、电控的综合热管理***是电动汽车整车未来发展的趋势。
发明内容
为了克服现有技术中存在的缺点与不足,本公开的目的在于提供一种基于热泵空调的集成电池、电机、电控的综合热管理***,可满足所有工况下空调和电池的控温需求,实用价值高。
本公开的目的还在于提供一种基于热泵空调的集成电池、电机、电控的综合热管理方法。
本公开解决其技术问题所采用的技术方案是:
一种基于热泵空调的集成电池、电机、电控的综合热管理***,所述综合热管理***包括制冷剂循环、电池冷却液循环和电机电控冷却液循环,采用中间换热器作为制冷剂循环和电池冷却液循环的介质,将制冷剂循环的热量或冷量转移到电池冷却液***中,实现电池组和热泵空调的耦合运行;在空调制冷时,制冷剂循环中的内侧蒸发器和所述中间换热器并联控制,而空调制热时,制冷剂循环中内侧冷凝器和中间换热器串联控制。
所述制冷剂循环:压缩机分别连接电磁三通阀、汽液分离器和补气电磁二通阀,电磁三通阀再连接车外换热器A和第二车内换热器,第二车内换热器连接至所述中间换热器;车外换热器A依次连接第一节流元件、闪发器和所述补气电磁二通阀,闪发器依次连接第二节流元件、第一电磁二通阀、第一车内换热器和所述汽液分离器;闪发器还依次连接第三节流元件和所述中间换热器,所述中间换热器通过第三电磁二通阀可连接至所述汽液分离器,此外所述汽液分离器通过第二电磁二通阀连接所述车外换热器A;第一车内换热器和第二车内换热器侧设有PTC电加热;
所述电池冷却液循环:电池冷却液循环水泵依次第一冷却液***电磁三通阀、电池组、第二冷却液***电磁三通阀、车外换热器B、冷却液***膨胀水箱形成循环回路,其中第一冷却液***电磁三通阀还依次连接所述中间换热器和电池组;
所述电机电控冷却液循环:电机电控循环水泵依次连接整车控制器、整车驱动电机、车外换热器C、电机电控膨胀水箱形成循环回路。
进一步地,所述第一车内换热器和第二车内换热器侧串联HVAC内部换热器替换PTC电加热,HVAC内部换热器可利用热泵空调排气热量代替PTC。
进一步地,所述电机电控冷却液循环:增加辅助PTC电加热、电机电控电磁二通阀和暖风芯,实现电机电控的热回收;若暖风芯散热不足时,所述车外换热器C和暖风芯并联散热;若进入电机电控之前的冷却液温度不高,则直接由暖风芯进行热回收。
一种基于热泵空调的集成电池、电机、电控的综合热管理方法,所述方法可实现空调制冷+电池冷却、空调制热+电池冷却、空调制热+电池加热、空调除湿模式。
进一步地,所述空调制冷+电池冷却模式:用于夏季室外热负荷较大时,所述电池组仅通过车外换热器B不足以满足其冷却需求,此时需要通过所述中间换热器将多余的热量转移到制冷剂循环中,在制冷剂循环中第一车内换热器与中间换热器为并联设置,共同完成制冷剂循环;
电池组冷却液循环将电池组发热的热量带到车外换热器B和中间换热器, 冷却液进入电池组将热量带走,在第二冷却液***电磁三通阀中选择性地通过车外换热器B:根据电池组出口冷却液温度和经过车外换热器A空气温度比较,若冷却液温度较高则冷却液经过车外换热器B,否则不经过车外换热器B直接进入冷却液***膨胀水箱再回到冷却液***循环水泵,完成循环。
更进一步地,所述空调制冷+电池冷却模式:或者在车辆行驶较慢或停车时电池组发热不高热负荷小的情况下,电池组冷却液循环不经过中间换热器,仅靠车外换热器B散热就可以满足电池组散热需求;此时制冷剂循环中仅需要第一车内换热器完成蒸发换热。
进一步地,所述空调制热+电池加热模式:用于冬季电池组自身不足以维持自身工作温度时,需要通过中间换热器将制冷剂的热量转移到电池组冷却液循环中,第二车内换热器和中间换热器串联设置,共同完成制冷剂循环;
电池组冷却液循环为:冷却液依次通过冷却液***循环水泵—第一冷却液***电磁三通阀—中间换热器—电池组—第二冷却液***电磁三通阀—冷却液***膨胀水箱—冷却液***循环水泵。
进一步地,所述空调制热+电池冷却模式:用于春秋季或车辆高速运行或进行电池快充时,车内需要空调制热而电池组需要进行冷却的情况下,第二车内换热器和中间换热器串联设置,共同完成制冷剂循环;电池组冷却液循环不经过中间换热器,仅靠车外换热器B散热就可以满足电池组散热需求。
进一步地,所述空调除湿模式是制冷剂循环完成空调除湿:车内第二换热器、中间换热器和车内第二换热器三者依次串联设置,完成对车内空气的除湿。
本公开提出以热泵空调为基础,集成电池、电机、电控的综合热管理***,采用热泵空调的冷量或热量既给电池冷却又给电池加热,充分利用热泵空调高能效的特点给整车节能,提升整车续航;
本公开巧妙采用***循环,使空调制冷的内侧蒸发器和热管理的中间换热器并联控制,而空调制热的内侧冷凝器和热管理的中间换热器串联控制,***原理更加合理,控制简单可靠;
本公开的综合热管理***可实现空调制冷+电池冷却、空调制热+电池冷却、空调制热+电池加热、空调除湿等诸多模式,可满足所有工况下空调和电池的控温 需求,实用价值高;
本公开具有驱动电机热回收功能,在车运行过程中实现对电机热量的回收,提高运行能效。
综上,本公开具有如下优点:
1、空调可以在实现制冷、制热、除湿等常规模式下对电池进行冷却或加热,取代常规PTC给电池加热,提升***整体运行能效;
2、常规汽车空调和热管理通常都是独立的,本公开通过合理的***循环,提出以热泵空调为基础,集成电池、电机、电控的综合热管理***,该***功能强大,可使用热泵空调给电池加热等:可实现空调制冷+电池冷却、空调制热+电池冷却、空调制热+电池加热、空调除湿等诸多模式,可满足所有工况下空调和电池的控温需求。
附图说明
图1本公开基于热泵空调的集成电池、电机、电控的综合热管理***循环图;
图2本公开空调制冷模式和电池冷却(热负荷较大时)***循环图;
图3本公开空调制冷模式和电池冷却(热负荷较小时)***循环图;
图4本公开空调制热模式和电池加热***循环图;
图5本公开空调制热模式和电池冷却***循环图;
图6本公开空调除湿模式***循环图;
图7本公开基于热泵空调的集成电池、电机、电控的综合热管理***循环图(替代方案一);
图8本公开基于热泵空调的集成电池、电机、电控的综合热管理***循环图(替代方案二);
其中,101为压缩机(为转子或涡旋等形式,可带或不带补气增焓功能),102为电磁三通阀(切换空调制冷、制热模式),103为车外换热器A(制冷剂外侧换热器,空调制冷做冷凝器,制热做蒸发器),104为第一节流元件(可以为电 子膨胀阀、毛细管等),105为闪发器(产生制冷剂饱和气体用于补气),106为补气电磁二通阀,107为第二节流元件,108为第一电磁二通阀,109为车内换热器1(用于空调制冷的蒸发器),110为汽液分离器,111为第二电磁二通阀,112车内换热器2(用于空调制热的冷凝器),113为第三电磁二通阀,114为中间换热器(热管理冷却液***与制冷剂***热交换的介质,可以为板式换热器、壳管式换热器等),115为第三节流元件,116为HVAC内部风门(用于控制空调是否经过二次加热,用于实现双温区空调),117为PTC电加热,118为车外风机,119为HVAC鼓风机,120为HVAC内部换热器(替换方案中的HVAC内部换热器,其作用是替换之前的PTC电加热);
201为冷却液***循环水泵,202为第一冷却液***电磁三通阀,203为电池组,204为第二冷却液***电磁三通阀,205为车外换热器B(用于电池冷却循环),206为冷却液***膨胀水箱;
301为电机电控循环水泵,302为整车控制器(包括DC-DC,变频器等),303为整车驱动电机,304车外换热器C(用于电机和电控的冷却循环),305为电机电控膨胀水箱,306为辅助PTC电加热(替换方案中替代原有117风冷PTC提供热源的装置),307为暖风芯(通过冷却液散热的换热器),308为电机电控电磁二通阀。
具体实施方式
下面结合附图和实施例对本公开做进一步的说明。
本实施例的基于热泵空调的集成电池、电机、电控的综合热管理***,整个***包括三个循环:制冷剂循环、电池冷却液循环、电机和电控冷却液循环。其中采用中间换热器114作为制冷剂循环和电池冷却液循环的介质,将制冷剂循环的热量和冷量转移到电池冷却液***中,实现电池组和空调的耦合运行。
空调制冷时,制冷剂循环中的内侧蒸发器和中间换热器114并联控制,而空调制热时,制冷剂循环中内侧冷凝器和中间换热器114串联控制。
其中核心方案有三个,分别为图1、图7、图8;图1为主要方案,图7、图8为替换方案,其余附图都是对上面三个方案的延伸解释,图中用箭头表示了系 统循环。
制冷剂循环:压缩机101分别连接电磁三通阀102、汽液分离器110和补气电磁二通阀106,电磁三通阀102再连接车外换热器A 103和车内换热器2 112,车内换热器2 112连接至中间换热器114;车外换热器A 103依次连接第一节流元件104、闪发器105和补气电磁二通阀106,闪发器105还分别通过节流元件连接车内换热器1 109和中间换热器114,节流元件和车内换热器1 109之间设有第一电磁二通阀108,车内换热器1 109连接汽液分离器110,中间换热器114通过第三电磁二通阀113可连接至汽液分离器110,此外汽液分离器110通过第二电磁二通阀111连接车外换热器A 103。
电池冷却液循环:循环水泵201依次第一冷却液***电磁三通阀202、电池组203、第二冷却液***电磁三通阀204、车外换热器B 205、冷却液***膨胀水箱206和循环水泵201形成循环回路,其中第一冷却液***电磁三通阀202还依次连接中间换热器114和电池组203。
电机和电控冷却液循环:电机电控循环水泵301依次连接整车控制器302、整车驱动电机303、车外换热器C304、电机电控膨胀水箱305形成循环回路。
图2为空调制冷模式和电池冷却(热负荷较大时)***循环图,主要用于夏季室外热负荷较大时,电池组203仅通过外侧换热器B205不足以满足其冷却需求,此时需要通过中间换热器114将多余的热量转移到制冷剂循环中。
制冷剂循环为:制冷剂通过压缩机101压缩成高温高压蒸汽经过电磁三通阀102(A-B导通)进入到车外换热器A103进行冷凝,然后通过第一节流元件104进行一级节流后进入闪发器105,一部分制冷剂通过补气电磁二通阀106进入压缩机101进行补气,另一部分制冷剂进入蒸发侧,第一电磁二通阀108和第三电磁二通阀113同时打开,在制冷循环中蒸发器—车内换热器1 109与中间换热器114为并联关系,经过闪发器105的另一部分制冷剂同时经过第二节流元件107和第三节流元件115(节流元件用于流量分配),然后在车内换热器1 109和中间换热器114中蒸发,接着一起汇合回到汽液分离器110,第二电磁二通阀111关闭,最后回到压缩机101,完成制冷循环。
电池组冷却液循环为:此循环将电池组发热的热量带到车外换热器B205和 者中间换热器114,保证电池维持在最佳工作温度。冷却液通过冷却液***循环水泵201经过第一冷却液***电磁三通阀202(G-H导通)进入中间换热器114,在中间换热器114中另一侧为低温的制冷剂循环,中间换热器114将冷却液的热量转移到制冷剂侧,冷却液完成散热达到最佳温度,制冷剂吸收了热量完成蒸发。接着冷却液进入电池组203将热量带走,在第二冷却液***电磁三通阀204中选择性的通过外侧换热器—车外换热器B205(根据电池组出口冷却液温度和外环温度比较,若冷却液温度较高则D-F接通,冷却液经过车外换热器B205,否则D-E接通不经过车外换热器B205,接着冷却液进入冷却液***膨胀水箱206,最后再回到冷却液***循环水泵201,完成循环)。
电机和电控冷却液循环为:此循环将电控和电机散发的热量带到车外换热器C304,冷却液依次通过电机电控循环水泵301—整车控制器302—整车驱动电机303—车外换热器C 304—电机电控膨胀水箱305—电机电控循环水泵301,完成循环。
优选的是,车外三个换热器:车外换热器A103、车外换热器B205、车外换热器C 304分别位于空气流动的上、中、下游,或者车外换热器A103位于上游,车外换热器B205和车外换热器C 304并列位于下游,这主要根据其工作温度来确定。就是换热器布置的相对位置,从车头往后,车外换热器A103处于最前面,往后依次是车外换热器B205和车外换热器C 304,但车外换热器B205和车外换热器C 304不一定是串联放置在车外换热器A103之后,他俩可以并联放在车外换热器A103之后,当然并联的话其大小会小一些。
图3为空调制冷模式和电池冷却(热负荷较小时)***循环图,和图2方案的不同点在于:在车辆行驶较慢或停车时电池组发热不高,冷却液循环不经过中间换热器114,仅靠车外换热器B205散热就可以满足电池组散热需求。
制冷剂循环为:其他和图2相同,第三电磁二通阀113关闭,经过闪发器105的制冷剂除去进补气之外的全部经过二级节流107,进入到车内蒸发器1 109,然后进入汽液分离器110,最后回到压缩机101。
电池组冷却液循环为:第一冷却液***电磁三通阀202(G-I接通),第二冷却液***电磁三通阀204(D-F接通),冷却液依次通过冷却液***循环水泵201— 第一冷却液***电磁三通阀202—电池组203—第二冷却液***电磁三通阀204—车外换热器B205—冷却液***膨胀水箱206—冷却液***循环水泵201。
电机和电控冷却液循环同图2方案。
此时三个循环都是独立的,均可以单独运行某一个循环。
图4为空调制热模式和电池加热***循环图,主要用于冬季电池组203自身不足以维持自身最佳工作温度时,需要通过中间换热器114将制冷剂的热量转移到冷却液循环中。
制冷剂循环为:制冷剂通过压缩机101压缩成高温高压蒸汽经过电磁三通阀102(A-C导通)进入到车内换热器2 112给车内供热,第三电磁二通阀113和第一电磁二通阀108均关闭,接着进入中间换热器114和冷却液***换热,然后经过第三节流元件115进入闪发器105,补气经过补气电磁二通阀106进入压缩机101,另一部分制冷剂经过第一节流元件104进行二级节流,然后经过外侧换热器A103蒸发,第二电磁二通阀111打开,接着经过汽液分离器110最后回到压缩机101。在此过程中车内换热器2 112和中间换热器114为串联的关系。
电池组冷却液循环为:第一冷却液***电磁三通阀202(G-H接通),第二冷却液***电磁三通阀204(D-E接通),冷却液依次通过冷却液***循环水泵201—第一冷却液***电磁三通阀202—中间换热器114—电池组203—冷却液***电磁三通阀204—冷却液***膨胀水箱206—冷却液***循环水泵201。
电机和电控冷却液循环同图2方案。
图5为空调制热模式和电池冷却***循环图,主要用于春秋季或类似工况下车辆高速运行或进行电池快充时,车内需要空调制热,而电池组203需要进行冷却。
制冷剂循环为:同图4方案完全相同;
电池组冷却液循环为:同图3方案完全相同。
电机和电控冷却液循环同图2方案。
图6为空调除湿模式***循环图,此图重点在体现制冷剂循环实现车内除湿模式,制冷剂通过压缩机101压缩成高温高压蒸汽经过电磁三通阀102(A-C导 通)进入到车内换热器2 112给车内供热,第三电磁二通阀113和第二电磁二通阀111关闭,接着进入中间换热器114,然后经过第三节流元件115和第二节流元件107,第一电磁二通阀108打开,节流后的制冷剂进入车内蒸发器1 109对空气进行除湿,然后经过汽液分离器110回到压缩机101。HVAC中空气先经过车内蒸发器109冷却除湿,然后再经过车内换热器112加热,完成对车内空气的除湿过程。
此过程中,电池组冷却液循环:可以按照图4(电池加热)和图5(电池冷却)中的循环,实现给电池组的冷却或加热。
此过程中,电机和电控冷却液循环的方案同图2方案。
如图7所示,为热管理的替代方案1(为电机、电控冷却循环的替换);此***与图1方案的不同点在于实现对电机和电控的热回收,增加辅助PTC电加热306、电机电控电磁二通阀308和暖风芯307。若车内有双温区需求,就需要通过HVAC内部风门116转动进行混风,此时暖风芯307中必须有稳定的热源,在车辆未启动或启动初期,电机热量不足,则可打开辅助PTC电加热306暂时给暖风芯307提供热量,若车辆行驶一段时间电机发热量充足,则可关闭辅助PTC电加热306,将电机热量直接利用。而电机电控电磁二通阀308默认处于关闭状态,可根据进入电控之前的冷却液温度来判定其开关,若此处冷却液温度超过某一设定值,则证明车内暖风芯307散热不足,此时控制电机电控电磁二通阀308打开,外侧换热器C304和暖风芯307并联散热;若进入电控之前的冷却液温度不高,则可继续关闭电机电控电磁二通阀308,进行热回收。
如图8所示,为热管理的替代方案2;此***与图1方案的不同点在于在制冷剂排气侧串联HVAC内部换热器120取代原来的PTC电加热117(利用热泵排气热量代替图1的HVAC中的PTC电加热117),不论空调处于制冷、制热或除湿模式,压缩排气都要先经过HVAC内部换热器120,这样就保证了一个恒定的热源,便于混风实现车内双温区空调。利用排气热量代替PTC,可以节省整车电量。
以上所述仅为本公开的优选例实施方式,并不构成对本公开保护范围的限定。任何在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应 包含在本公开的权利要求保护范围之内。

Claims (10)

  1. 一种基于热泵空调的集成电池、电机、电控的综合热管理***,其特征在于,所述综合热管理***包括制冷剂循环、电池冷却液循环和电机电控冷却液循环,采用中间换热器作为制冷剂循环和电池冷却液循环的介质,将制冷剂循环的热量或冷量转移到电池冷却液***中,实现电池组和热泵空调的耦合运行;在空调制冷时,制冷剂循环中的内侧蒸发器和所述中间换热器并联控制,而空调制热时,制冷剂循环中内侧冷凝器和中间换热器串联控制。
  2. 根据权利要求1所述的一种基于热泵空调的集成电池、电机、电控的综合热管理***,其特征在于,所述制冷剂循环:压缩机分别连接电磁三通阀、汽液分离器和补气电磁二通阀,电磁三通阀再连接车外换热器A和第二车内换热器,第二车内换热器连接至所述中间换热器;车外换热器A依次连接第一节流元件、闪发器和所述补气电磁二通阀,闪发器依次连接第二节流元件、第一电磁二通阀、第一车内换热器和所述汽液分离器;闪发器还依次连接第三节流元件和所述中间换热器,所述中间换热器通过第三电磁二通阀可连接至所述汽液分离器,此外所述汽液分离器通过第二电磁二通阀连接所述车外换热器A;第一车内换热器和第二车内换热器侧设有PTC电加热;
    所述电池冷却液循环:电池冷却液循环水泵依次第一冷却液***电磁三通阀、电池组、第二冷却液***电磁三通阀、车外换热器B、冷却液***膨胀水箱形成循环回路,其中第一冷却液***电磁三通阀还依次连接所述中间换热器和电池组;
    所述电机电控冷却液循环:电机电控循环水泵依次连接整车控制器、整车驱动电机、车外换热器C、电机电控膨胀水箱形成循环回路。
  3. 根据权利要求2所述的一种基于热泵空调的集成电池、电机、电控的综合热管理***,其特征在于,所述第一车内换热器和第二车内换热器侧串联HVAC内部换热器替换PTC电加热,HVAC内部换热器可利用热泵空调排气热量代替PTC。
  4. 根据权利要求2所述的一种基于热泵空调的集成电池、电机、电控的综合热管理***,其特征在于,所述电机电控冷却液循环:增加辅助PTC电加热、电机电控电磁二通阀和暖风芯,实现电机电控的热回收;若暖风芯散热不足时, 所述车外换热器C和暖风芯并联散热;若进入电机电控之前的冷却液温度不高,则直接由暖风芯进行热回收。
  5. 一种基于热泵空调的集成电池、电机、电控的综合热管理方法,其特征在于,所述方法可实现空调制冷+电池冷却、空调制热+电池冷却、空调制热+电池加热、空调除湿模式。
  6. 根据权利要求5所述的一种基于热泵空调的集成电池、电机、电控的综合热管理方法,其特征在于,所述空调制冷+电池冷却模式:用于夏季室外热负荷较大时,所述电池组仅通过车外换热器B不足以满足其冷却需求,此时需要通过中间换热器将多余的热量转移到制冷剂循环中,在制冷剂循环中第一车内换热器与中间换热器为并联设置,共同完成制冷剂循环;
    电池组冷却液循环将电池组发热的热量带到车外换热器B和中间换热器,冷却液进入电池组将热量带走,在第二冷却液***电磁三通阀中选择性地通过车外换热器B:根据电池组出口冷却液温度和经过车外换热器A空气温度比较,若冷却液温度较高则冷却液经过车外换热器B,否则不经过车外换热器B直接进入冷却液***膨胀水箱再回到冷却液***循环水泵,完成循环。
  7. 根据权利要求6所述的一种基于热泵空调的集成电池、电机、电控的综合热管理方法,其特征在于,所述空调制冷+电池冷却模式:或者在车辆行驶较慢或停车时电池组发热不高热负荷小的情况下,电池组冷却液循环不经过中间换热器,仅靠车外换热器B散热就可以满足电池组散热需求;此时制冷剂循环中仅需要第一车内换热器完成蒸发换热。
  8. 根据权利要求5所述的一种基于热泵空调的集成电池、电机、电控的综合热管理方法,其特征在于,所述空调制热+电池加热模式:用于冬季电池组自身不足以维持自身工作温度时,需要通过中间换热器将制冷剂的热量转移到电池组冷却液循环中,第二车内换热器和中间换热器串联设置,共同完成制冷剂循环;
    电池组冷却液循环为:冷却液依次通过冷却液***循环水泵—第一冷却液***电磁三通阀—中间换热器—电池组—第二冷却液***电磁三通阀—冷却液***膨胀水箱—冷却液***循环水泵。
  9. 根据权利要求5所述的一种基于热泵空调的集成电池、电机、电控的综合 热管理方法,其特征在于,所述空调制热+电池冷却模式:用于春秋季或车辆高速运行或进行电池快充时,车内需要空调制热而电池组需要进行冷却的情况下,第二车内换热器和中间换热器串联设置,共同完成制冷剂循环;电池组冷却液循环不经过中间换热器,仅靠车外换热器B散热就可以满足电池组散热需求。
  10. 根据权利要求5所述的一种基于热泵空调的集成电池、电机、电控的综合热管理方法,其特征在于,所述空调除湿模式是制冷剂循环完成空调除湿:车内第二换热器、中间换热器和车内第二换热器三者依次串联设置,完成对车内空气的除湿。
PCT/CN2019/104930 2018-10-30 2019-09-09 一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法 WO2020088106A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811277351.1 2018-10-30
CN201811277351.1A CN109228824B (zh) 2018-10-30 2018-10-30 一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法

Publications (1)

Publication Number Publication Date
WO2020088106A1 true WO2020088106A1 (zh) 2020-05-07

Family

ID=65079415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104930 WO2020088106A1 (zh) 2018-10-30 2019-09-09 一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法

Country Status (2)

Country Link
CN (1) CN109228824B (zh)
WO (1) WO2020088106A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111806302A (zh) * 2020-08-15 2020-10-23 东风特汽(十堰)客车有限公司 电动公交***专用电池冷却装置
CN112193014A (zh) * 2020-09-18 2021-01-08 河南科技大学 一种电动拖拉机集成热管理***及控制方法
CN112693363A (zh) * 2021-02-07 2021-04-23 郑州科林车用空调有限公司 一种纯电动卡车整车热管理***
CN113715581A (zh) * 2021-09-30 2021-11-30 南方英特空调有限公司 一种电动汽车集成式热管理***
CN113811160A (zh) * 2021-09-14 2021-12-17 江苏银佳企业集团有限公司 一种稳定型电力设备专用电源设备及安装方法
CN114013236A (zh) * 2021-10-26 2022-02-08 浙江吉利控股集团有限公司 一种车用co2热管理***及其工作方法
CN114335807A (zh) * 2021-12-30 2022-04-12 中联重科股份有限公司 电动矿用自卸车电池冷却***及控制方法
CN114571945A (zh) * 2022-02-24 2022-06-03 智己汽车科技有限公司 一种电动汽车热管理回路***及其控制方法
CN114771206A (zh) * 2022-05-10 2022-07-22 广州小鹏汽车科技有限公司 热管理***和车辆
CN114801891A (zh) * 2022-05-13 2022-07-29 山东大学 一种多功能的电池热管理***及其工作方法
CN115042582A (zh) * 2022-06-10 2022-09-13 智己汽车科技有限公司 一种集成式换热阀模块、车辆热管理***及其控制方法
CN115366616A (zh) * 2022-09-09 2022-11-22 智己汽车科技有限公司 一种车辆直接、间接采暖的热管理***及其控制方法
CN115972858A (zh) * 2023-02-14 2023-04-18 广州小鹏汽车科技有限公司 热管理***和车辆
CN116834578A (zh) * 2023-06-14 2023-10-03 苏州酷吉制冷技术有限公司 新能源电车换电站用集中冷却***

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109228824B (zh) * 2018-10-30 2023-10-31 珠海格力电器股份有限公司 一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法
DE102020100428A1 (de) * 2019-02-06 2020-08-06 Hanon Systems Klimatisierungs- und Batteriekühlanordnung mit hoher Kälteleistung und passiver Batteriekühlung sowie Verfahren zum Betreiben einer Klimatisierungs- und Batteriekühlanordnung
DE102019107191A1 (de) * 2019-03-20 2020-09-24 Bayerische Motoren Werke Aktiengesellschaft Wärmesystem für ein Elektro- oder Hybridfahrzeug, Elektro- oder Hybridfahrzeug, Verfahren zum Betrieb eines Wärmesystems
CN109910548A (zh) * 2019-04-03 2019-06-21 汉腾汽车有限公司 一种新能源汽车电加热暖风装置
CN112109518B (zh) * 2019-06-21 2024-06-14 天津天汽集团有限公司 一种电动汽车热管理***及其控制方法、电动汽车
CN112297757B (zh) * 2019-07-30 2024-01-09 汉宇集团股份有限公司 一种冷却液集中循环的电动汽车热管理***及其使用方法
JP7316872B2 (ja) * 2019-08-06 2023-07-28 サンデン株式会社 車両搭載発熱機器の温度調整装置及びそれを備えた車両用空気調和装置
CN110641242B (zh) * 2019-09-05 2024-04-19 珠海格力电器股份有限公司 一种电动汽车热泵空调的化霜控制方法、装置及计算机可读存储介质
CN110682781A (zh) * 2019-09-25 2020-01-14 东风汽车有限公司 一种电动汽车整车热管理***
CN111525214B (zh) * 2020-05-06 2021-10-22 海马汽车有限公司 一种换热结构及换热控制方法
CN111725584B (zh) * 2020-06-22 2021-08-20 厦门金龙旅行车有限公司 一种电动车电池冷却装置及方法
CN111923694B (zh) * 2020-06-30 2022-08-19 华为数字能源技术有限公司 一种热管理***及电动车
CN112268392A (zh) * 2020-10-21 2021-01-26 扬州兆邦能源科技有限公司 一种组合式高效热管理换热器
CN113199923B (zh) * 2021-06-16 2022-05-10 广州小鹏汽车科技有限公司 热管理***、控制方法和车辆
CN113246688B (zh) * 2021-06-16 2022-05-10 广州小鹏汽车科技有限公司 热管理***、控制方法和车辆
CN113432339A (zh) * 2021-07-14 2021-09-24 同济大学 一种基于相变蓄热的多热源热泵型电动汽车热管理***
CN113432340A (zh) * 2021-07-14 2021-09-24 同济大学 一种多热源热泵型电动汽车热管理***
CN113400893B (zh) * 2021-07-28 2023-01-03 奇瑞汽车股份有限公司 汽车的热管理***、方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106183789A (zh) * 2016-07-06 2016-12-07 中国第汽车股份有限公司 一种电动车整车热管理***及其控制方法
CN106274372A (zh) * 2016-11-14 2017-01-04 吉林大学 具有电池热管理功能的热泵式汽车空调
CN107351618A (zh) * 2016-05-10 2017-11-17 比亚迪股份有限公司 汽车热管理***和电动汽车
DE102016114948A1 (de) * 2016-08-11 2018-02-15 Audi Ag Vorrichtung zum Temperieren eines Brennstoffzellenstapels sowie Kraftfahrzeug mit einer solchen Vorrichtung
CN109228824A (zh) * 2018-10-30 2019-01-18 珠海格力电器股份有限公司 一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745063A (zh) * 2011-04-19 2012-10-24 北京超力锐丰科技有限公司 一种电动车冷却***及其控制算法
CN103754085A (zh) * 2014-01-10 2014-04-30 常州昊康新能源科技有限公司 一种电动汽车废热回收暖风***
CN106985632B (zh) * 2017-04-24 2023-04-25 南京协众汽车空调集团有限公司 一种多联式多功能的热泵型电动空调***及其工作方法
CN107972445B (zh) * 2017-11-21 2021-05-18 重庆邮电大学 一种四驱混合动力汽车热管理***及其控制方法
CN108705915A (zh) * 2018-08-02 2018-10-26 威马智慧出行科技(上海)有限公司 一种用于电动车辆的热管理***
CN208931077U (zh) * 2018-10-30 2019-06-04 珠海格力电器股份有限公司 一种基于热泵空调的集成电池、电机、电控的综合热管理***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107351618A (zh) * 2016-05-10 2017-11-17 比亚迪股份有限公司 汽车热管理***和电动汽车
CN106183789A (zh) * 2016-07-06 2016-12-07 中国第汽车股份有限公司 一种电动车整车热管理***及其控制方法
DE102016114948A1 (de) * 2016-08-11 2018-02-15 Audi Ag Vorrichtung zum Temperieren eines Brennstoffzellenstapels sowie Kraftfahrzeug mit einer solchen Vorrichtung
CN106274372A (zh) * 2016-11-14 2017-01-04 吉林大学 具有电池热管理功能的热泵式汽车空调
CN109228824A (zh) * 2018-10-30 2019-01-18 珠海格力电器股份有限公司 一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111806302A (zh) * 2020-08-15 2020-10-23 东风特汽(十堰)客车有限公司 电动公交***专用电池冷却装置
CN112193014A (zh) * 2020-09-18 2021-01-08 河南科技大学 一种电动拖拉机集成热管理***及控制方法
CN112693363A (zh) * 2021-02-07 2021-04-23 郑州科林车用空调有限公司 一种纯电动卡车整车热管理***
CN113811160A (zh) * 2021-09-14 2021-12-17 江苏银佳企业集团有限公司 一种稳定型电力设备专用电源设备及安装方法
CN113715581B (zh) * 2021-09-30 2024-04-09 南方英特空调有限公司 一种电动汽车集成式热管理***
CN113715581A (zh) * 2021-09-30 2021-11-30 南方英特空调有限公司 一种电动汽车集成式热管理***
CN114013236A (zh) * 2021-10-26 2022-02-08 浙江吉利控股集团有限公司 一种车用co2热管理***及其工作方法
CN114335807A (zh) * 2021-12-30 2022-04-12 中联重科股份有限公司 电动矿用自卸车电池冷却***及控制方法
CN114335807B (zh) * 2021-12-30 2024-05-28 中联重科股份有限公司 电动矿用自卸车电池冷却***及控制方法
CN114571945A (zh) * 2022-02-24 2022-06-03 智己汽车科技有限公司 一种电动汽车热管理回路***及其控制方法
CN114771206A (zh) * 2022-05-10 2022-07-22 广州小鹏汽车科技有限公司 热管理***和车辆
CN114771206B (zh) * 2022-05-10 2024-05-28 广州小鹏汽车科技有限公司 热管理***和车辆
CN114801891A (zh) * 2022-05-13 2022-07-29 山东大学 一种多功能的电池热管理***及其工作方法
CN115042582A (zh) * 2022-06-10 2022-09-13 智己汽车科技有限公司 一种集成式换热阀模块、车辆热管理***及其控制方法
CN115042582B (zh) * 2022-06-10 2024-05-14 智己汽车科技有限公司 一种集成式换热阀模块、车辆热管理***及其控制方法
CN115366616A (zh) * 2022-09-09 2022-11-22 智己汽车科技有限公司 一种车辆直接、间接采暖的热管理***及其控制方法
CN115366616B (zh) * 2022-09-09 2024-05-14 智己汽车科技有限公司 一种车辆直接、间接采暖的热管理***及其控制方法
CN115972858A (zh) * 2023-02-14 2023-04-18 广州小鹏汽车科技有限公司 热管理***和车辆
CN116834578A (zh) * 2023-06-14 2023-10-03 苏州酷吉制冷技术有限公司 新能源电车换电站用集中冷却***

Also Published As

Publication number Publication date
CN109228824A (zh) 2019-01-18
CN109228824B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2020088106A1 (zh) 一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法
CN110525169B (zh) 纯电动汽车用集成乘员舱热泵空调及三电热管理***
CN111216515B (zh) 一种电动汽车热管理***
CN113400890B (zh) 一种电动汽车热泵型热管理***
JP7326074B2 (ja) 車両用ヒートポンプシステム
US10814692B2 (en) Multiple circuit heat pump system for vehicle
JP7271395B2 (ja) 車両用ヒートポンプシステム
CN109291763B (zh) 一种热泵空调***及其控制方法和汽车
JP7185469B2 (ja) 車両の熱管理システム
CN106985632B (zh) 一种多联式多功能的热泵型电动空调***及其工作方法
JP7250658B2 (ja) 車両用ヒートポンプシステム
US11325445B2 (en) Thermal management system for vehicle
JP5860361B2 (ja) 電動車両用熱管理システム
US10308095B2 (en) Heating, ventilation, and air conditioning system for vehicle
JP2021037931A (ja) 車両用ヒートポンプシステム
US20100293966A1 (en) Vehicle air conditioner
CN213007493U (zh) 电动汽车及其热管理***
CN208931077U (zh) 一种基于热泵空调的集成电池、电机、电控的综合热管理***
KR102474341B1 (ko) 차량용 히트 펌프 시스템
KR20190051742A (ko) 열관리 시스템
CN115675013A (zh) 新能源电动汽车多工况整车热管理***及方法
KR20220048170A (ko) 차량용 열 관리 시스템
KR20190081317A (ko) 차량용 열관리 시스템
CN114161907A (zh) 汽车热管理空调***及其控制方法、新能源汽车
CN210337493U (zh) 一种电动车辆的热管理***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879616

Country of ref document: EP

Kind code of ref document: A1