WO2020085596A1 - 백 라이트 유닛 및 이를 포함하는 디스플레이 장치 - Google Patents

백 라이트 유닛 및 이를 포함하는 디스플레이 장치 Download PDF

Info

Publication number
WO2020085596A1
WO2020085596A1 PCT/KR2019/005933 KR2019005933W WO2020085596A1 WO 2020085596 A1 WO2020085596 A1 WO 2020085596A1 KR 2019005933 W KR2019005933 W KR 2019005933W WO 2020085596 A1 WO2020085596 A1 WO 2020085596A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sheet
shape memory
backlight unit
display device
Prior art date
Application number
PCT/KR2019/005933
Other languages
English (en)
French (fr)
Inventor
김순정
김대영
이공희
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US17/276,219 priority Critical patent/US11320579B2/en
Publication of WO2020085596A1 publication Critical patent/WO2020085596A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133311Environmental protection, e.g. against dust or humidity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the disclosed invention relates to a display device.
  • a display device is a type of output device that converts acquired or stored electrical information into visual information and displays it to a user, and is used in various fields such as a home or business.
  • a monitor device connected to a personal computer or a server computer, a portable computer device, a navigation terminal device, a general television device, an Internet Protocol television (IPTV) device, a smart phone, a tablet PC, Personal digital assistants (PDAs), portable terminal devices such as cellular phones, various display devices used to reproduce images such as advertisements or movies in industrial sites, or various other types of audio / video systems And so on.
  • IPTV Internet Protocol television
  • PDAs Personal digital assistants
  • portable terminal devices such as cellular phones
  • various display devices used to reproduce images such as advertisements or movies in industrial sites, or various other types of audio / video systems And so on.
  • the display device can display a still image or a moving image to a user using various kinds of display means.
  • a display means a cathode ray tube, a light emitting diode, an organic light emitting diode, an active-matrix organic light emitting diode, liquid crystal or electronic paper may be used. have.
  • One aspect of the disclosed invention provides a backlight unit having an improved optical sheet filling phenomenon due to external factors such as temperature or humidity and a display device including the same.
  • a display device includes a backlight unit including an optical sheet; an image forming unit that generates an image by transmitting or blocking light emitted from the backlight unit; and the optical sheet includes a plurality of sheets. And a shape memory material in at least one of the plurality of sheets.
  • the optical sheet may include a shape memory alloy or a shape memory polymer on at least one of the plurality of sheets.
  • the shape memory alloy may include Nitinol (Nitinol).
  • shape memory material may be provided on the entire surface of the at least one sheet.
  • shape memory material may be provided on an outer portion of the surface of the at least one sheet.
  • shape memory material may be provided on upper and lower surfaces of the at least one sheet.
  • shape memory material may be provided on the right side and the left side of the surface of the at least one sheet.
  • a backlight unit includes a light source; And an optical sheet provided to allow light emitted from the light source to enter, wherein the optical sheet includes a plurality of sheets, and includes a shape memory material on at least one of the plurality of sheets.
  • the optical sheet may include at least one of a diffusion sheet, a prism sheet, a protective sheet and a brightness enhancing sheet.
  • the optical sheet may include a shape memory alloy or a shape memory polymer on at least one of the plurality of sheets.
  • the shape memory alloy may include Nitinol (Nitinol).
  • shape memory material may be provided on the entire surface of the at least one sheet.
  • shape memory material may be provided on an outer portion of the surface of the at least one sheet.
  • shape memory material may be provided on upper and lower surfaces of the at least one sheet.
  • shape memory material may be provided on the right side and the left side of the surface of the at least one sheet.
  • the crying phenomenon of the optical sheet can be reduced by using a shape memory material for the optical sheet.
  • FIG. 1 is a view illustrating the appearance of a display device according to an embodiment.
  • FIG. 2 is an exploded view of a display device according to an embodiment.
  • FIG 3 is a side-sectional view of one pixel included in an image forming unit of a display device according to an embodiment.
  • FIG. 4 is an exploded view of a backlight unit according to an embodiment.
  • FIG. 5 shows a side-section of a backlight unit according to one embodiment.
  • FIG. 6 shows a spectrum of light emitted from a light source included in a backlight unit according to an embodiment.
  • FIG. 7 is an exploded view of a backlight unit according to another embodiment.
  • FIG. 8 shows a side-section of a backlight unit according to another embodiment.
  • FIG 9 shows an optical sheet in which a shape memory material is used according to an embodiment.
  • ⁇ unit may refer to a unit that processes at least one function or operation.
  • the terms may mean at least one process processed by at least one hardware, at least one software or processor stored in memory, such as a field-programmable gate array (FPGA) / application specific integrated circuit (ASIC).
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • white light refers to light in which red light, green light and blue light are mixed, or blue light and yellow light are mixed.
  • natural light represents light in which light of all wavelengths corresponding to the visible light region is mixed.
  • FIG. 1 is a view illustrating the appearance of a display device according to an embodiment.
  • the display device 100 is a device capable of processing an image signal received from the outside and visually displaying the processed image.
  • the display apparatus 100 is a television (Television, TV) is illustrated, but is not limited thereto.
  • the display device 100 may be implemented in various forms, such as a monitor, a portable multimedia device, and a portable communication device. If the display device 100 is a device that visually displays an image, its form is not limited. .
  • the display device 100 includes a main body 101, a screen 102 displaying an image I, and a support 103 provided under the main body 101 to support the main body 103. It can contain.
  • the main body 101 forms an external shape of the display device 100, and therein, the display device 100 may include components for displaying an image I or performing various functions.
  • the body 101 shown in FIG. 1 is a flat plate shape, but the shape of the body 101 is not limited to that shown in FIG. 1.
  • the main body 101 may have a shape in which both right and left ends protrude forward and the center portion is concave.
  • the screen 102 is formed on the front surface of the main body 101 and can display an image I that is visual information.
  • the screen 102 may display a still image or a moving image, and may display a two-dimensional plane image or a three-dimensional stereoscopic image using parallax of both eyes of the user.
  • a plurality of pixels P are formed on the screen 102, and the image I displayed on the screen 102 may be formed by a combination of light emitted by the plurality of pixels P.
  • a single still image I may be formed on the screen 102 by combining light emitted from a plurality of pixels P.
  • Each of the plurality of pixels P may emit light of various brightness and color.
  • the plurality of pixels P may include red pixels R, green pixels G, and blue pixels B to form images I of various colors.
  • the red pixel R may emit red light of various brightness
  • the green pixel G may emit green light of various brightness
  • the blue pixel B emit blue light of various brightness.
  • Red light represents light having a wavelength in the range of approximately 620 nm (nano-meter, one billionth of a meter) to 750 nm
  • green light represents light having a wavelength in the range of approximately 495 nm to 570 nm
  • blue light approximately 450 nm to 495 nm Represents light having a wavelength in the range.
  • each of the pixels P can generate light of various brightnesses and colors.
  • the support 103 is installed on the lower portion of the main body 101, so that the main body 101 can stably maintain a posture on the floor surface.
  • the support 103 may be installed on the back of the body 101, so that the body 101 is fixed to the wall surface.
  • the support 103 shown in FIG. 1 is not limited by the shape of the bar projecting forward from the lower portion of the main body 101 or the bar shown in FIG. 1 in the shape of the support 103, and the support 103 ) May have various shapes capable of stably supporting the main body 101.
  • FIG. 2 is an exploded view of a display device according to an embodiment.
  • the main body 101 may include various component parts for generating an image I on the screen 102 therein. Specifically, the main body 101 forms an image that generates an image I by transmitting or blocking a backlight unit 200 that emits surface light therein, or light emitted from the backlight unit 200. It may include a unit 110.
  • the main body 101 may include a front chassis 101a, a rear chassis 101b, and a mold frame 101c to fix the image forming unit 110 and the backlight unit 200.
  • the front chassis 101a may have a shape of a plate having an opening on the front side. The user can view the image generated by the image forming unit 110 through the front opening of the front chassis 101a.
  • the rear chassis 101b has a box shape in which the front surface is opened, and accommodates the image forming unit 110 and the backlight unit 200 constituting the display device 100.
  • the mold frame 101c may be provided between the front chassis 101a and the rear chassis 101b.
  • the mold frame 101c is provided between the image forming unit 110 and the backlight unit 200 to fix the image forming unit 110 and the backlight unit 200, respectively.
  • the backlight unit 200 may include a point light source that emits monochromatic light or white light, and may refract, reflect, and scatter light to convert light emitted from the point light source into uniform surface light. As described above, by refracting, reflecting, and scattering the light, the backlight unit 200 may emit uniform surface light toward the front.
  • the image forming unit 110 is provided in front of the backlight unit 200, and blocks or transmits light emitted from the backlight unit 200 to form the image I.
  • the front surface of the image forming unit 110 forms the screen 102 of the display device 100 described above, and is composed of a plurality of pixels P.
  • the plurality of pixels P included in the image forming unit 110 may independently block or transmit light from the backlight unit 200.
  • the light transmitted by the plurality of pixels P forms an image I displayed by the display device 100.
  • the image forming unit 110 may use a liquid crystal panel whose optical properties change according to an electric field.
  • liquid crystal panel will be described as an example of the image forming unit 110.
  • FIG 3 is a side-sectional view of one pixel included in an image forming unit of a display device according to an embodiment.
  • the image forming unit 110 includes a first polarizing film 111, a first transparent substrate 112, a thin film transistor 113, a pixel electrode 114, a liquid crystal layer 115, and a common electrode. (116), a color filter 117, a second transparent substrate 118, may include a second polarizing film (119).
  • the liquid crystal panel according to the disclosed embodiment includes a first transparent substrate 112, a thin film transistor 113, a pixel electrode 114, a liquid crystal layer 115, a common electrode 116, a color filter 117, a second transparent substrate It can be defined as including (118).
  • the first transparent substrate 112 and the second transparent substrate 118 form the external appearance of the image forming unit 110, and the liquid crystal layer provided between the first transparent substrate 112 and the second transparent substrate 118 ( 114) and the color filter 117.
  • the first and second transparent substrates 112 and 118 may be made of tempered glass or transparent resin.
  • the first polarizing film 111 and the second polarizing film 119 are provided outside the first and second transparent substrates 112 and 118.
  • Light consists of a pair of electric and magnetic fields that vibrate in a direction perpendicular to the direction of travel.
  • the vibration direction of the electric field and the magnetic field can vibrate in all directions orthogonal to the light traveling direction.
  • the phenomenon that the electric field or the magnetic field vibrates only in a specific direction is called polarization, and transmits light including an electric field or a magnetic field vibrating in a predetermined direction, and light comprising an electric field and a magnetic field vibrating in a direction other than the predetermined direction.
  • the film blocking the film is referred to as a polarizing film.
  • the polarizing film can transmit light vibrating in a predetermined direction and block light vibrating in another direction.
  • the first polarizing film 111 transmits light having an electric field and a magnetic field vibrating in the first direction, and blocks other light.
  • the second polarizing film 119 transmits light having an electric field and a magnetic field vibrating in the second direction, and blocks other light.
  • the first direction and the second direction are orthogonal to each other.
  • the polarization direction of light transmitted through the first polarizing film 111 and the vibration direction of light transmitted through the second polarizing film 119 are orthogonal to each other.
  • light cannot be transmitted through the first polarizing film 111 and the second polarizing film 119 at the same time.
  • a color filter 117 may be provided inside the second transparent substrate 118.
  • the color filter 117 may include a red filter 117r that transmits red light, a green filter 117g that transmits green light, and a blue filter 117b that transmits blue light.
  • the green filter 117g and the blue filter 117b may be arranged side by side with each other.
  • the color filter 117 prevents color interference between the red filter 117r, the green filter 117g, and the blue filter 117b, and the red filter 117r, the green filter 117g, and the blue filter 117b part
  • Other parts include a black matrix that blocks light so that the light of the backlight unit does not leak.
  • the black matrix 120 is provided between the red filter 117r, the green filter 117g, and the blue filter 117b.
  • the area where the color filter 117 is formed corresponds to the pixel P described above.
  • the area where the red filter 117r is formed corresponds to the red pixel R
  • the area where the green filter 117g is formed corresponds to the green pixel G
  • the area where the blue filter 117b is formed is a blue pixel ( B).
  • a red pixel (R), a green pixel (G), and a blue pixel (B) are formed by the red filter (117r), the green filter (117g), and the blue filter (117b), and the red filter (117r)
  • green A pixel P is formed by the combination of the filter 117g and the blue filter 117b.
  • a thin film transistor (TFT) 113 is formed inside the first transparent substrate 112.
  • the thin film transistor 113 may be formed at a position corresponding between the red filter 117r, the green filter 117g, and the blue filter 117b. In other words, the thin film transistor 113 may be positioned between the red pixel (R), the green pixel (G), and the blue pixel (B).
  • the thin film transistor 113 may pass or block current flowing through the pixel electrode 114 to be described below. Specifically, an electric field may be formed or removed between the pixel electrode 114 and the common electrode 116 according to turn-on (closed) or turn-off (open) of the thin film transistor 113.
  • the thin-film transistor may be made of poly-silicon, and may be manufactured using semiconductor processes such as lithography, deposition, and ion implantation.
  • the pixel electrode 114 may be formed inside the thin film transistor 113 of the first transparent substrate 112, and the common electrode 116 may be formed inside the color filter 117 of the second transparent substrate 118. have.
  • the pixel electrode 114 and the common electrode 116 are made of a metal material that conducts electricity, and can generate an electric field for changing the arrangement of the liquid crystal molecules 115a constituting the liquid crystal layer 115 to be described below. have.
  • the pixel electrode 114 may be formed in regions corresponding to the red filter 117r, the green filter 117g, and the blue filter 117b, and the common electrode 116 may be formed on the entire panel.
  • an electric field may be selectively formed in regions corresponding to the red filter 117r, the green filter 117g, and the blue filter 117b among the liquid crystal layers 115 described below.
  • the pixel electrode 114 and the common electrode 116 are made of a transparent material and can transmit light incident from the outside.
  • the pixel electrode 114 and the common electrode 116 are indium tin oxide (ITO), indium zinc oxide (IZO), silver nanowire, Ag nano wire, carbon nanotube tube: CNT), graphene, or PEDOT (3,4-ethylenedioxythiophene).
  • a liquid crystal layer 115 is formed between the pixel electrode 114 and the common electrode 116, and the liquid crystal layer 115 includes liquid crystal molecules 115a.
  • Liquid crystal means an intermediate state between a solid (crystal) and a liquid.
  • a general substance heats a substance in a solid state, it changes from a solid state to a transparent liquid state at a melting temperature.
  • the liquid crystal material changes to a opaque and cloudy liquid at a melting temperature and then to a transparent liquid state.
  • the name liquid crystal refers to a liquid crystal state that is an intermediate state between a solid phase and a liquid phase, or may refer to a substance itself having such a liquid crystal state.
  • liquid crystal materials are organic compounds, and the molecular shape has an elongated rod shape, and the arrangement of molecules is the same as an irregular state in one direction, but may have a regular crystal form in other directions.
  • the liquid crystal has both the fluidity of the liquid and the optical anisotropy of the crystal (solid).
  • the liquid crystal may exhibit optical properties according to changes in the electric field.
  • the direction of the molecular arrangement constituting the liquid crystal may change according to a change in the electric field.
  • the liquid crystal molecules 115a of the liquid crystal layer 115 are disposed according to the direction of the electric field, and when no electric field is generated in the liquid crystal layer 115, the liquid crystal molecules 115a are irregularly disposed Or may be disposed along an alignment layer (not shown).
  • the optical properties of the image forming unit 110 may vary according to the presence or absence of the electric field of the liquid crystal layer 115.
  • the light polarized by the first polarizing film 111 due to the arrangement of the liquid crystal molecules 115a of the liquid crystal layer 115 is the second flat polarizing film 119. Can pass through. In other words, light may pass through the image forming unit 110 in the pixel P in which the electric field is not formed in the liquid crystal layer 115.
  • the image forming unit 110 may independently control light transmittance for each pixel P (more specifically, a red pixel, a green pixel, and a blue pixel included in the pixel). As a result, light by a plurality of pixels P may be combined, and the image I may be displayed on the screen 102 of the display device 100.
  • the backlight unit 200 may be divided into a direct-tyep back light unit and an edge-type back light unit according to the position of the light source.
  • FIG. 4 is an exploded view of a backlight unit according to an embodiment
  • FIG. 5 is a side-sectional view of the backlight unit according to an embodiment
  • 6 shows a spectrum of light emitted from a light source included in a backlight unit according to an embodiment.
  • the edge type backlight unit 200 includes a light emitting module 210 that generates light, a waveguide plate 220 that disperses light, and a reflective sheet that reflects light. It includes 230 and an optical sheet 240 for improving light luminance.
  • the light emitting module 210 may include a plurality of light sources 211 that emit light, and a support 212 that supports / fixes the plurality of light sources 211.
  • the plurality of light sources 211 may be uniformly disposed on the side surface of the backlight unit 200 as illustrated in FIG. 4, and may emit light toward the center of the backlight unit 200.
  • the light source 211 may employ a device capable of emitting monochromatic light (light of a specific wavelength, for example, blue light) or white light (light mixed light of various wavelengths) in various directions when power is supplied.
  • the light source 211 may employ a light emitting diode (LED) or a cold cathode tube (Cold Cathode Fluorescence Lamp, CCFL) with low heat generation.
  • LED light emitting diode
  • CCFL Cold Cathode Fluorescence Lamp
  • the light source 211 includes a blue light emitting diode 211a that emits blue light, which is high energy light, and a phosphor 211b that absorbs blue light and emits green light and red light, as shown on the left side of FIG. 6. can do.
  • the phosphor 211b may emit visible light by converting energy absorbed from the outside into visible light.
  • the phosphor 211b may include a yellow (YAG) phosphor, a KSF (K 2 SiF 6 ) phosphor, or a KTF (K 2 TiF 6 ) phosphor.
  • the support 212 may fix the plurality of light sources 211 so that the positions of the light sources 211 are not changed. In addition, the support 212 may supply power for each light source 211 to emit light to each light source 211.
  • the support 212 may be disposed on the side of the backlight unit 200 together with the light source 211.
  • the support 212 may be disposed on the left and right sides of the backlight unit 200.
  • the arrangement of the support 212 is not limited to that shown in FIG. 4, and may be arranged only on one of the left and right sides of the backlight unit 200.
  • the support 212 is formed of a synthetic resin having a plurality of light sources 211 fixed thereon and a conductive power supply line for supplying power to the light sources 211, or a printed circuit board (PCB). Can be configured.
  • the light guide plate 220 changes the traveling direction of light incident from the light emitting module 210 on the side and emits it toward the front.
  • the light guide plate 220 emits light that is incident from the light emitting module 210 on the side surface by dispersing it on the front surface 220a of the light guide plate 220.
  • a plurality of convex stripes may be formed on the front surface 220a of the light guide plate 220 to change the light traveling direction, and a plurality of dots may be formed on the rear surface 220b of the light guide plate 220.
  • the size and spacing of the convex stripes may be adjusted so that uniform light is emitted toward the front surface 220a of the light guide plate 220, and the size and spacing of dots may be adjusted.
  • the convex stripes on the front surface 220a of the light guide plate 220 may be embossed through a printing technique, and the dots on the rear surface 220b of the light guide plate 220 may be formed in an engraved shape using a laser.
  • the light guide plate 220 may diffuse light emitted from the light emitting module 210 in the light guide plate 220 to remove unevenness in luminance due to the position of the light emitting module 210.
  • the light guide plate 220 may have a milky color to diffuse light.
  • Light incident into the light guide plate 220 may travel in various directions according to an incident angle. For example, as shown in FIG. 5, the light incident toward the front of the light guide plate 220 is reflected from the front surface 220a of the light guide plate 220 and proceeds toward the rear side 220b, or the front surface of the light guide plate 220 It may be refracted at 220a and incident on the optical sheet 240. In addition, the light incident toward the rear of the light guide plate 220 may be reflected from the rear surface 220b of the light guide plate 220 or scattered by the dots of the back side 220b of the light guide plate 220 to proceed toward the front surface 220a. .
  • the light guide plate 220 may employ poly methyl methacrylate (PMMA) or transparent polycarbonate (PC).
  • PMMA poly methyl methacrylate
  • PC transparent polycarbonate
  • the reflective sheet 230 is provided at the rear of the light guide plate 220 and may reflect light emitted through the rear surface 220b of the light guide plate 220 toward the light guide plate 220.
  • the reflective sheet 230 may be manufactured by coating a base material with a material having high reflectivity.
  • the reflective sheet 230 may be manufactured by coating a polymer having high reflectivity on a base material such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the optical sheet 240 may include various sheets for improving luminance and uniformity of luminance.
  • the optical sheet 240 may include a diffusion sheet 241, a prism sheet 242, a protective sheet 243, and a luminance enhancement sheet 244.
  • the diffusion sheet 241 diffuses light for uniformity of luminance. Light emitted from the light source 211 may be diffused by the light guide plate 220 and diffused again by the diffusion sheet 241 included in the optical sheet 240.
  • a microlens sheet that diffuses light and widens a viewing angle like the diffusion sheet 241 may be used instead of the diffusion sheet 241.
  • Light that has passed through the diffusion sheet 241 is diffused in a direction parallel to the diffusion sheet 241, whereby the luminance may decrease.
  • the prism sheet 242 increases the luminance by condensing the light diffused by the diffusion sheet 241.
  • the prism sheet 242 includes a triangular prism-shaped prism pattern, and a plurality of prism patterns are arranged adjacent to each other to form a plurality of strips.
  • the prism sheet may include a first prism sheet and a second prism sheet, wherein the direction in which the prism patterns of the first prism sheet are arranged and the direction in which the prism patterns of the second prism sheet are arranged may be orthogonal to each other.
  • the light passing through the prism sheet 242 has a viewing angle of approximately 70 degrees, and luminance is improved due to progress toward the front of the backlight unit 200.
  • the protection sheet 243 protects various components included in the backlight unit 200 from external impact or foreign matter.
  • the prism sheet 242 is susceptible to scratching, and the protective sheet 243 can prevent the prism sheet 242 from being scratched.
  • the brightness enhancement sheet 244 is a type of polarizing film and is also referred to as a reflective polarizing film.
  • the brightness enhancement sheet may transmit some of the incident light to reflect the brightness and reflect the other.
  • the brightness enhancing sheet 244 may transmit light in a predetermined polarization direction and reflect other light.
  • the polarization direction of the brightness improving sheet 244 may be the same as the polarization direction of the first polarizing film 111 described above.
  • the light transmitted through the luminance enhancement sheet 244 may also transmit the first polarizing film 111 included in the image forming unit 110.
  • the light reflected by the brightness enhancing sheet 244 is recycled inside the backlight unit 200, and the brightness of the display device 100 may be improved by such light recycling.
  • the optical sheet 240 is not limited to the sheet or film illustrated in FIG. 5, and may include more various sheets or films.
  • FIG. 7 is an exploded view of a backlight unit according to another embodiment
  • FIG. 8 is a side-sectional view of a backlight unit according to another embodiment.
  • the direct type backlight unit 300 includes a light emitting module 310 that generates light, a reflective sheet 320 that reflects light, and a diffuser plate 330 that disperses light. ), And an optical sheet 340 that improves light luminance.
  • the light emitting module 310 may include a plurality of light sources 311 that emit light, and a support 312 that supports / fixes the plurality of light sources 311.
  • the plurality of light sources 311 may be uniformly disposed at the rear end of the backlight unit 300 as illustrated in FIG. 7, and may emit light toward the front.
  • the plurality of light sources 311 may be arranged in a predetermined pattern so that the light emitted by the plurality of light sources 311 has as uniform luminance as possible.
  • a plurality of light sources 311 may be arranged such that the distance between one light source and adjacent light sources is the same.
  • rows and columns of a plurality of light sources may be arranged to form a square by four adjacent light sources.
  • the pattern in which the plurality of light sources 311 are arranged is not limited to the pattern described above, and the plurality of light sources 311 are formed in various patterns so that the light emitted by the plurality of light sources 311 has a uniform luminance as much as possible. Can be deployed.
  • the light source 311 may employ a device capable of emitting monochromatic light (light of a specific wavelength, for example, blue light) or white light (light mixed light of various wavelengths) in various directions when power is supplied.
  • monochromatic light light of a specific wavelength, for example, blue light
  • white light light mixed light of various wavelengths
  • the support 312 may fix the plurality of light sources 311 so that the positions of the light sources 311 are not changed. In addition, the support 312 may supply power for each light source 311 to emit light to each light source 311.
  • a plurality of supporters 312 may be provided according to the arrangement of the plurality of light sources 311.
  • the support 312 is provided with the same number of rows as the plurality of light sources 311, and the plurality of support 312 )
  • Each of the plurality of light sources 311 belonging to the same row may be fixed.
  • the support 312 is made of synthetic resin having a plurality of light sources 311 fixed thereon and a conductive power supply line for supplying power to the light source 311, or a printed circuit board (PCB). Can be.
  • the reflective sheet 320 is provided in front of the light emitting module 310 and may reflect light traveling toward the rear in a forward direction or in a direction close to the front.
  • the reflective sheet 320 is formed with a plurality of through holes 320a at positions corresponding to the plurality of light sources 311.
  • the light source 311 may pass through the through hole 320a and protrude toward the front of the reflective sheet 320.
  • the reflective sheet 320 may be manufactured by coating a base material with a material having high reflectivity.
  • the reflective sheet 230 may be manufactured by coating a polymer having high reflectivity on a base material such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the diffusion plate 330 may be provided in front of the light emitting module 310 and the reflective sheet 320, and may uniformly disperse the light emitted from the light source 311.
  • the diffuser plate 330 may diffuse light emitted from the light source 311 within the diffuser plate 330 in order to remove uneven luminance due to the light source 311. In other words, the diffusion plate 330 may receive non-uniform light from the light source 311 and emit uniform light to the front surface.
  • the diffusion plate 330 may employ poly methyl methacrylate (PMMA) or polycarbonate (PC) to which a diffusion agent for light diffusion is added.
  • PMMA poly methyl methacrylate
  • PC polycarbonate
  • the optical sheet 340 may include various sheets for improving luminance and uniformity of luminance.
  • the optical sheet 340 may include a diffusion sheet 341, a first prism sheet 342, a protective sheet 343, and a brightness enhancing sheet 344.
  • the description of the optical sheet 340 is the same as the description of the optical sheet 240 described above, and thus is omitted.
  • the optical sheet is partially or totally crying under the influence of temperature or humidity.
  • a problem may occur in which sheet movement is recognized by the display screen.
  • the disclosed embodiment provides a backlight unit that uniformly transmits a light source without a screen abnormality and a display device including the same by preventing the crying of the optical sheet using a shape memory material.
  • a shape memory material is specifically described.
  • the optical sheet according to the disclosed embodiment includes a shape memory polymer or a shape memory alloy.
  • the shape memory effect is a phenomenon in which a shape memorized at a constant temperature is remembered, and then transformed into a completely different shape by applying force and then heated to return to the original shape.
  • Materials exhibiting such a shape memory effect may be classified into a shape memory alloy (SMA) and a shape memory polymer (SMP) according to materials.
  • the shape memory alloy according to the disclosed embodiment may include a nickel-titanium alloy (nitinol), a copper-zinc alloy, a gold-cadmium alloy, an indium-thallium alloy, and the like depending on the type of alloy.
  • the shape memory alloy according to the disclosed embodiment may include nickel-titanium alloy, nitinol, and other shape memory alloys may be used depending on the temperature at which the shape memory effect is required.
  • the shape-memory effect is caused by the transformation of a phase at a specific temperature. That is, in the shape memory alloy, the arrangement of crystals is changed to an austenitic phase and a martensitic phase according to the temperature applied from the outside. In the low temperature phase, even if deformation is applied to the shape, heating to a certain temperature (displacement temperature) or higher restores the original shape.
  • the shape memory polymer may be divided into physical crosslinking and chemical crosslinking depending on the type of crosslinking.
  • the chemically crosslinked shape memory polymer becomes a thermosetting resin
  • the physically crosslinked polymer becomes a thermoplastic resin.
  • the polyurethane shape memory polymer has a high shape recovery force (maximum recovery strain of 400% or more), a wide shape recovery temperature range (30 degrees to 70 degrees), and good processability.
  • the epoxy shape memory polymer has a shape memory recovery ratio of 98 to 100%, an elastic modulus of 2 to 4.5 GPa, and is stable to moisture.
  • the shape memory polymer according to the disclosed embodiment may include the aforementioned shape memory polymer, but is not limited thereto, and may include various known shape memory polymers.
  • the aforementioned optical sheet may include any one or more materials of polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), and polycarbonate (PC) as a base film.
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • PC polycarbonate
  • the optical sheet according to the disclosed embodiment may be implemented as a base film to which a shape memory polymer or a shape memory alloy is added to these materials.
  • the optical film may be manufactured by processing a pattern on an optical film containing a shape memory polymer or a shape memory alloy.
  • the shape memory material When the shape memory material is added to the base film, it can be added over the entire surface of the optical sheet to cover the entire surface of the optical sheet, as shown in Fig. 9 (a).
  • a shape memory material may be added along the outer portion of the optical sheet to cover the outer portion of the optical sheet, and may be added to FIGS. 9 (c) and 9 (d). As shown, it may be added to the top, bottom, left and right of the optical sheet.
  • the position or shape in which the shape memory material is added to the optical sheet is not limited to the example shown in FIG. 9 and may be added in various forms to various other positions of the optical sheet.
  • the optical sheet may include a diffusion sheet, a prism sheet, a protective sheet, and a brightness enhancing sheet, wherein the shape memory material is shown in FIG. 9 on at least one of the plurality of sheets constituting the optical sheet. Can be added.
  • the shape memory material may be added to all sheets constituting the optical sheet, or may be added to one or more sheets constituting the optical sheet according to the characteristics of the display device.
  • the optical sheet according to the disclosed embodiment may include other sheets in addition to the aforementioned sheets, the shape memory material can be added to the sheet, of course, if other types of sheets not previously mentioned are employed in the optical sheet. .
  • the shape memory material can restore the original shape and remove the sheet.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Planar Illumination Modules (AREA)
  • Display Devices Of Pinball Game Machines (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

개시된 발명의 일 측면은 온도나 습도와 같은 외부 요인에 의해 광학시트가우는 현상이 개선된 백 라이트 유닛 및 이를 포함하는 디스플레이 장치를 제공한다. 일 실시예에 따른 디스플레이 장치는 광학시트를 포함하는 백 라이트 유닛;상기 백 라이트 유닛으로부터 방출된 광을 투과 또는 차단하여 영상을 생성하는 영상 형성 유닛;을 포함하고,상기 광학시트는 복수의 시트를 포함하고, 상기 복수의 시트 중 적어도 하나에 형상기억재료를 포함한다.

Description

백 라이트 유닛 및 이를 포함하는 디스플레이 장치
개시된 발명은 디스플레이 장치에 관한 것이다.
디스플레이 장치는, 획득 또는 저장된 전기적 정보를 시각적 정보로 변환하여 사용자에게 표시하는 출력 장치의 일종으로, 가정이나 사업장 등 다양한 분야에서 이용되고 있다.
디스플레이 장치로는, 개인용 컴퓨터 또는 서버용 컴퓨터 등에 연결된 모니터 장치나, 휴대용 컴퓨터 장치나, 내비게이션 단말 장치나, 일반 텔레비전 장치나, 인터넷 프로토콜 텔레비전(IPTV, Internet Protocol television) 장치나, 스마트 폰, 태블릿 피씨, 개인용 디지털 보조 장치(PDA, Personal Digital Assistant), 또는 셀룰러 폰 등의 휴대용 단말 장치나, 산업 현장에서 광고나 영화 같은 화상을 재생하기 위해 이용되는 각종 디스플레이 장치나, 또는 이외 다양한 종류의 오디오/비디오 시스템 등이 있다.
디스플레이 장치는, 다양한 종류의 디스플레이 수단을 이용하여 정지화상 또는 동화상을 사용자에게 표시할 수 있다. 이와 같은 디스플레이 수단으로는 음극 선관, 발광 다이오드(Light Emitting Diode), 유기 발광 다이오드(Organic Light Emitting Diode), 능동형 유기 발광 다이오드(Active-Matrix Organic Light Emitting Diode), 액정 또는 전자 종이 등이 이용될 수 있다.
개시된 발명의 일 측면은 온도나 습도와 같은 외부 요인에 의해 광학시트가우는 현상이 개선된 백 라이트 유닛 및 이를 포함하는 디스플레이 장치를 제공한다.
일 실시예에 따른 디스플레이 장치는 광학시트를 포함하는 백 라이트 유닛;상기 백 라이트 유닛으로부터 방출된 광을 투과 또는 차단하여 영상을 생성하는 영상 형성 유닛;을 포함하고,상기 광학시트는 복수의 시트를 포함하고, 상기 복수의 시트 중 적어도 하나에 형상기억재료를 포함한다.
또한, 상기 광학시트는 상기 복수의 시트 중 적어도 하나에 형상기억합금 또는 형상기억 고분자를 포함할 수 있다.
또한, 상기 형상기억합금은 니티놀(Nitinol)을 포함할 수 있다.
또한, 상기 형상기억재료는 상기 적어도 하나의 시트의 면 전체에 마련될 수있다.
또한, 상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 외곽부에 마련될 수 있다.
또한, 상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 상부 및 하부에 마련될 수 있다.
또한, 상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 우측부 및 좌측부에 마련될 수 있다.
일 실시예에 따른 백 라이트 유닛은 광원; 및 상기 광원으로부터 방출된 광이 입사하도록 마련된 광학시트;를 포함하고, 상기 광학시트는 복수의 시트를 포함하고, 상기 복수의 시트 중 적어도 하나에 형상기억재료를 포함한다.
또한, 상기 광학시트는 확산시트, 프리즘시트, 보호시트 및 휘도향상시트 중 적어도 하나를 포함할 수 있다.
또한, 상기 광학시트는 상기 복수의 시트 중 적어도 하나에 형상기억합금 또는 형상기억 고분자를 포함할 수 있다.
또한, 상기 형상기억합금은 니티놀(Nitinol)을 포함할 수 있다.
또한, 상기 형상기억재료는 상기 적어도 하나의 시트의 면 전체에 마련될 수있다.
또한, 상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 외곽부에 마련될 수 있다.
또한, 상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 상부 및 하부에 마련될 수 있다.
또한, 상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 우측부 및 좌측부에 마련될 수 있다.
개시된 발명의 일 측면에 따르면, 형상기억재료를 광학시트에 사용함으로써광학시트가 우는 현상을 저감시킬 수 있다.
도 1은 일 실시예에 따른 디스플레이 장치의 외관을 도시한다.
도 2는 일 실시예에 따른 디스플레이 장치를 분해 도시한다.
도 3은 일 실시예에 따른 디스플레이 장치의 영상 형성 유닛에 포함된 하나의 화소의 측-단면을 도시한다.
도 4는 일 실시예에 따른 백 라이트 유닛을 분해 도시한다.
도 5는 일 실시예에 따른 백 라이트 유닛의 측-단면을 도시한다.
도 6은 일 실시예에 따른 백 라이트 유닛에 포함된 광원으로부터 방출된 광을 스펙트럼을 도시한다.
도 7은 다른 일 실시예에 따른 백 라이트 유닛을 분해 도시한다.
도 8은 다른 일 실시예에 따른 백 라이트 유닛의 측-단면을 도시한다.
도 9는 일 실시예에 따른 형상 기억 재료가 사용된 광학시트를 도시한다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예에 불과할 뿐이며, 본 출원의 출원시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.
본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다.
예를 들어, 본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들의 조합이 존재함을 표현하고자 하는 것이며, 하나 또는 그 이상의 다른 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들의 조합의 추가적인 존재 또는 부가 가능성을 배제하지 않는다.
또한, "제1", "제2" 등과 같이 서수를 포함하는 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위하여 사용되며, 상기 하나의 구성요소들을 한정하지 않는다.
또한, "~부", "~기", "~블록", "~부재", "~모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미할 수 있다. 예를 들어, 상기 용어들은 FPGA (field-programmable gate array)/ ASIC (application specific integrated circuit) 등 적어도 하나의 하드웨어, 메모리에 저장된 적어도 하나의 소프트웨어 또는 프로세서에 의하여 처리되는 적어도 하나의 프로세스를 의미할 수 있다.
이하에서는 첨부한 도면을 참조하여 개시된 발명의 일 실시예가 상세하게 설명된다. 첨부된 도면에서 제시된 동일한 참조번호 또는 부호는 실질적으로 동일한 기능을 수행하는 부품 또는 구성요소를 나타낼 수 있다.
본 명세서에서 이용되는 용어를 간단히 정의하면, 백색 광은 적색 광, 녹색 광 및 청색 광이 혼합되거나 청색광과 황색 광이 혼합된 광을 나타낸다. 또한, 자연광은 가시광선 영역에 해당하는 모든 파장의 광이 혼합된 광을 나타낸다.
도 1은 일 실시예에 따른 디스플레이 장치의 외관을 도시한다.
디스플레이 장치(100)는 외부로부터 수신되는 영상 신호를 처리하고, 처리된 영상을 시각적으로 표시할 수 있는 장치이다. 이하에서는 디스플레이 장치(100)가 텔레비전(Television, TV)인 경우를 예시하고 있으나, 이에 한정되는 것은 아니다. 예를 들어, 디스플레이 장치(100)는 모니터(Monitor), 휴대용 멀티미디어 장치, 휴대용 통신장치 등 다양한 형태로 구현할 수 있으며, 디스플레이 장치(100)는 영상을 시각적으로 표시하는 장치라면 그 형태가 한정되지 않는다.
도 1에 도시된 바와 같이 디스플레이 장치(100)는 본체(101), 영상(I)을 표시하는 스크린(102), 본체(101)의 하부에 마련되어 본체(103)를 지지하는 지지대(103)를 포함할 수 있다.
본체(101)는 디스플레이 장치(100)의 외형을 형성하며, 그 내부에는 디스플레이 장치(100)가 영상(I)을 표시하거나 각종 기능을 수행하기 위한 부품을 포함할 수 있다. 도 1에 도시된 본체(101)는 평평한 판 형상이나, 본체(101)의 형상이 도 1에 도시된 바에 한정되는 것은 아니다. 예를 들어, 본체(101)는 좌우 양단이 전방으로 돌출되고 중심부가 오목하도록 휘어진 형상일 수 있다.
스크린(102)은 본체(101)의 전면에 형성되며, 시각 정보인 영상(I)을 표시할 수 있다. 예를 들어, 스크린(102)은 정지 영상 또는 동영상을 표시할 수 있으며, 2차원 평면 영상 또는 사용자의 양안의 시차를 이용한 3차원 입체 영상을 표시할 수 있다.
또한, 스크린(102)에는 복수의 화소(P)가 형성되며, 스크린(102)에 표시되는 영상(I)은 복수의 화소(P)가 방출하는 광의 조합에 의하여 형성될 수 있다. 모자이크(mosaic)와 같이, 복수의 화소(P)가 방출하는 광이 조합됨으로써 스크린(102) 상에 하나의 정지 영상(I)이 형성될 수 있다.
복수의 화소(P) 각각은 다양한 밝기 및 색상의 광을 방출할 수 있다. 예를 들어, 복수의 화소(P)는 다양한 색상의 영상(I)을 형성하기 위하여 적색 화소(R), 녹색 화소(G) 및 청색 화소(B)을 포함할 수 있다. 이때, 적색 화소(R)은 다양한 밝기의 적색 광을 방출할 수 있으며, 녹색 화소(G)은 다양한 밝기의 녹색 광을 방출할 수 있고, 청색 화소(B)은 다양한 밝기의 청색 광을 방출할 수 있다. 적색 광은 대략 620nm(nano-meter, 10억분의 1미터) 내지 750nm 범위의 파장을 갖는 광을 나타내고, 녹색 광은 대략 495nm 내지 570nm 범위의 파장을 갖는 광을 나타내며, 청색 광은 대략 450nm 내지 495nm 범위의 파장을 갖는 광을 나타낸다.
적색 화소(R)의 적색 광, 녹색 화소(G)의 녹색 광 및 청색 화소(B)의 청색 광의 조합에 의하여, 화소(P) 각각은 다양한 밝기 및 색상의 광을 생성할 수 있다.
지지대(103)는 본체(101)의 하부에 설치되어, 본체(101)가 바닥 면에서 안정적으로 자세를 유지할 수 있도록 할 수 있다. 또한, 선택적으로, 지지대(103)는 본체(101)의 후면에 설치되어, 본체(101)가 벽면에 고정되도록 할 수 있다.
도 1에 도시된 지지대(103)는 본체(101)의 하부로부터 전방으로 돌출된 바(bar)의 형상이나, 지지대(103)의 형상의 도 1에 도시된 바에 의하여 한정되는 것은 아니며 지지대(103)는 본체(101)를 안정적으로 지지할 수 있는 다양한 형상을 가질 수 있다.
도 2는 일 실시예에 따른 디스플레이 장치를 분해 도시한다.
도 2에 도시된 바와 같이, 본체(101)는 그 내부에 스크린(102)에 영상(I)을 생성하기 위한 각종 구성 부품들을 포함할 수 있다. 구체적으로, 본체(101)는 그 내부에 면광(面光)을 방출하는 백 라이트 유닛(200), 백 라이트 유닛(200)으로부터 방출된 광을 투과 또는 차단함으로써 영상(I)을 생성하는 영상 형성 유닛(110)을 포함할 수 있다.
또한, 본체(101)는 영상 형성 유닛(110)과 백 라이트 유닛(200)을 고정하기 위하여 전방 샤시(101a), 후방 샤시(101b) 및 몰드프레임(101c)을 포함할 수 있다.
전방 샤시(101a)는 전면에 개구가 형성된 판의 형상을 가질 수 있다. 사용자는 영상 형성 유닛(110)에서 생성된 영상을 전방 샤시(101a)의 전면의 개구를 통하여 볼 수 있다.
후방 샤시(101b)는 전면이 개방된 박스 형상이며, 디스플레이 장치(100)를 구성하는 영상 형성 유닛(110)과 백 라이트 유닛(200)을 수용한다.
몰드프레임(101c)은 전방 샤시(101a)와 후방 샤시(101b) 사이에 마련될 수 있다. 특히, 몰드프레임(101c)은 영상 형성 유닛(110)과 백 라이트 유닛(200) 사이에 마련되어 영상 형성 유닛(110)과 백 라이트 유닛(200)를 각각 고정할 수 있다.
백 라이트 유닛(200)은 단색광 또는 백색광을 방출하는 점 광원을 포함할 수 있으며, 점 광원으로부터 방출되는 광을 균일한 면광으로 변환하기 위하여 광을 굴절, 반사 및 산란시킬 수 있다. 이처럼, 광을 굴절, 반사 및 산란시킴으로써, 백 라이트 유닛(200)은 전방을 향하여 균일한 면광을 방출할 수 있다.
백 라이트 유닛(200)의 구성 및 동작에 대해서는 아래에서 자세하게 설명하기로 한다.
영상 형성 유닛(110)은 백 라이트 유닛(200)의 전방에 마련되며, 영상(I)을 형성하기 위하여 백 라이트 유닛(200)으로부터 방출되는 광을 차단 또는 투과시킨다.
영상 형성 유닛(110)의 전면은 앞서 설명한 디스플레이 장치(100)의 스크린(102)을 형성하며, 복수의 화소(P)로 구성된다.
영상 형성 유닛(110)에 포함된 복수의 화소(P)는 각각 독립적으로 백 라이트 유닛(200)의 광을 차단하거나 투과시킬 수 있다. 복수의 화소(P)에 의하여 투과된 광이 디스플레이 장치(100)가 표시하는 영상(I)을 형성한다.
이러한, 영상 형성 유닛(110)은 전기장에 따라 광학적 성질이 변하는 액정 패널을 이용할 수 있다.
이하에서는 영상 형성 유닛(110)의 일 예로 액정 패널에 대하여 설명한다.
도 3은 일 실시예에 따른 디스플레이 장치의 영상 형성 유닛에 포함된 하나의 화소의 측-단면을 도시한다.
도 3에 도시된 바와 같이 영상 형성 유닛(110)은 제1 편광 필름(111), 제1 투명 기판(112), 박막 트랜지스터(113), 화소 전극(114), 액정층(115), 공통 전극(116), 컬러 필터(117), 제2 투명 기판(118), 제2 편광 필름(119)를 포함할 수 있다. 개시된 실시예에 따른 액정 패널은 제1 투명 기판(112), 박막 트랜지스터(113), 화소 전극(114), 액정층(115), 공통 전극(116), 컬러 필터(117), 제2 투명 기판(118)을 포함하는 것으로 정의할 수 있다.
제1 투명 기판(112) 및 제2 투명 기판(118)은 영상 형성 유닛(110)의 외관을 형성하며, 제1 투명 기판(112) 및 제2 투명 기판(118) 사이에 마련되는 액정층(114) 및 컬러 필터(117)를 보호할 수 있다. 이러한, 제1 및 제2 투명 기판(112, 118)은 강화 유리 또는 투명 수지로 구성될 수 있다.
제1 및 제2 투명 기판(112, 118)의 외측에는 제1 편광 필름(111) 및 제2 편광 필름(119)이 마련된다.
광은 진행 방향과 직교하는 방향으로 진동하는 전기장과 자기장의 쌍으로 이루어진다. 또한, 전기장과 자기장의 진동 방향은 광의 진행 방향과 직교하는 모든 방향으로 진동할 수 있다. 이때, 전기장 또는 자기장이 특정한 방향으로만 진동하는 현상을 편광이라 하며, 미리 정해진 방향으로 진동하는 전기장 또는 자기장을 포함하는 광을 투과시키고 미리 정해진 방향 이외의 방향으로 진동하는 전기장과 자기장을 포함하는 광을 차단하는 필름을 편광 필름이라 한다. 다시 말해, 편광 필름은 미리 정해진 방향으로 진동하는 광은 투과시키고, 다른 방향으로 진동하는 광은 차단할 수 있다.
제1 편광 필름(111)은 제1 방향으로 진동하는 전기장 및 자기장을 갖는 광을 투과시키고, 다른 광을 차단한다. 또한, 제2 편광 필름(119)은 제2 방향으로 진동하는 전기장 및 자기장을 갖는 광을 투과시키고, 다른 광을 차단한다. 이때, 제1 방향과 제2 방향은 서로 직교한다. 다시 말해, 제1 편광 필름(111)이 투과시키는 광의 편광 방향과 제2 편광 필름(119)이 투과시키는 광의 진동 방향은 서로 직교한다. 그 결과, 일반적으로 광은 제1 편광 필름(111)와 제2 편광 필름(119)를 동시에 투과할 수 없다.
제2 투명 기판(118)의 내측에는 컬러 필터(117)가 마련될 수 있다.
컬러 필터(117)는 적색 광을 투과시키는 적색 필터(117r), 녹색 광을 투과시키는 녹색 필터(117g), 청색 광을 투과시키는 청색 필터(117b)를 포함할 수 있으며, 적색 필터(117r), 녹색 필터(117g) 및 청색 필터(117b)는 서로 나란하게 배치될 수 있다. 그리고, 컬러 필터(117)는 적색 필터(117r), 녹색 필터(117g) 및 청색 필터(117b) 간의 색 간섭을 방지하고 상기 적색 필터(117r), 녹색 필터(117g) 및 청색 필터(117b) 부분을 제외한 다른 부분으로는 백 라이트 유닛의 광이 새어 나가지 않도록 광을 차단하는 블랙 매트릭스(Black matrix)를 포함한다. 블랙 매트릭스(120)는 적색 필터(117r), 녹색 필터(117g) 및 청색 필터(117b) 사이에 마련된다.
컬러 필터(117)가 형성된 영역은 앞서 설명한 화소(P)에 대응된다. 또한, 적색 필터(117r)가 형성된 영역은 적색 화소(R)에 대응되고, 녹색 필터(117g)가 형성된 영역은 녹색 화소(G)에 대응되고, 청색 필터(117b)가 형성된 영역은 청색 화소(B)에 대응된다. 다시 말해, 적색 필터(117r), 녹색 필터(117g) 및 청색 필터(117b)에 의하여 적색 화소(R), 녹색 화소(G) 및 청색 화소(B)가 형성되고, 적색 필터(117r), 녹색 필터(117g) 및 청색 필터(117b)의 조합에 의하여, 화소(P)가 형성된다.
제1 투명 기판(112)의 내측에는 박막 트랜지스터(Thin Film Transistor, TFT) (113)가 형성된다.
구체적으로, 박막 트랜지스터(113)는 적색 필터(117r), 녹색 필터(117g) 및 청색 필터(117b)의 사이에 대응되는 위치에 형성될 수 있다. 다시 말해, 박막 트랜지스터(113)는 적색 화소(R), 녹색 화소(G) 및 청색 화소(B) 사이에 위치할 수 있다.
박막 트랜지스터(113)는 아래에서 설명할 화소 전극(114)에 흐르는 전류를 통과시키거나 차단할 수 있다. 구체적으로, 박막 트랜지스터(113)의 턴온(폐쇄) 또는 턴오프(개방)에 따라, 화소 전극(114)과 공통 전극(116) 사이에 전기장이 형성되거나 제거될 수 있다. 이러한, 박박 트랜지스터는 폴리 실리콘(Poly-Slicon)으로 구성될 수 있으며, 리소그래피(lithography), 증착(deposition), 이온 주입(ion implantation) 공정 등 반도체 공정을 이용하여 제조될 수 있다.
제1 투명 기판(112)의 박막 트랜지스터(113)의 내측에는 화소 전극(114)이 형성되고, 제2 투명 기판(118)의 컬러 필터(117)의 내측에는 공통 전극(116)이 형성될 수 있다.
화소 전극(114)과 공통 전극(116)은 전기가 도통되는 금속 재질로 구성되며, 아래에서 설명할 액정층(115)을 구성하는 액정 분자(115a)의 배치를 변화시키기 위한 전기장을 생성할 수 있다.
이때, 화소 전극(114)는 적색 필터(117r), 녹색 필터(117g) 및 청색 필터(117b)에 대응하는 영역에 형성되고, 공통 전극(116)은 패널 전체에 형성될 수 있다. 그 결과, 아래에서 설명한 액정 층(115) 중에 적색 필터(117r), 녹색 필터(117g) 및 청색 필터(117b)에 대응하는 영역에 선택적으로 전기장이 형성될 수 있다.
또한, 화소 전극(114)과 공통 전극(116)은 투명한 재질로 구성되며, 외부로부터 입사되는 광을 투과시킬 수 있다. 이러한, 화소 전극(114)과 공통 전극(116)은 인듐산화주석(Indium Tin Oxide: ITO), 인듐산화아연(Indium Zinc Oxide: IZO), 은나노와이어(Ag nano wire), 탄소나노튜브(carbon nano tube: CNT), 그래핀(graphene) 또는 PEDOT(3,4-ethylenedioxythiophene) 등으로 구성될 수도 있다.
화소 전극(114)과 공통 전극(116) 사이에는 액정 층(115)이 형성되며, 액정 층(115)은 액정 분자(115a)를 포함한다.
액정이란 고체(결정)과 액체의 중간 상태를 의미한다. 일반적인 물질은 고체 상태의 물질에 열을 가하면, 용융 온도에서 고체 상태에서 투명한 액체 상태로 변화한다. 이에 비하여, 고체 상태의 액정 물질에 열을 가하면, 액정 물질은 용융 온도에서 불투명하고 혼탁한 액체로 변화한 이후 투명한 액체 상태로 변화한다. 액정이란 명칭은 고체상과 액체상의 중간상태인 액정 상태를 나타내거나 이러한 액정 상태를 갖는 물질 그 자체를 나타내기도 한다.
이와 같은 액정 물질의 대부분은 유기화합물이며 분자형상은 가늘고 긴 막대 모양을 하고 있으며, 분자의 배열이 어떤 방향으로는 불규칙한 상태와 같지만, 다른 방향에서는 규칙적인 결정의 형태를 가질 수 있다. 그 결과, 액정은 액체의 유동성과 결정(고체)의 광학적 이방성을 모두 갖는다.
또한, 액정은 전기장의 변화에 따라 광학적 성질을 나타내기도 한다. 예를 들어, 액정은 전기장의 변화에 따라 액정을 구성하는 분자 배열의 방향이 변화할 수 있다. 액정 층(115)에 전기장이 생성되면 액정 층(115)의 액정 분자(115a)는 전기장의 방향에 따라 배치되고, 액정 층(115)에 전기장이 생성되지 않으면 액정 분자(115a)는 불규칙하게 배치되거나 배향막(미도시)을 따라 배치될 수 있다.
그 결과, 액정 층(115)의 전기장의 존부에 따라 영상 형성 유닛(110)의 광학적 성질이 달라질 수 있다.
예를 들어, 액정 층(115)에 전기장이 형성되지 않으면 액정 층(115)의 액정 분자(115a)의 배치로 인하여 제1 편광 필름(111)에 의하여 편광된 광이 제2 평광 필름(119)를 통과할 수 있다. 다시 말해, 액정 층(115)에 전기장이 형성되지 않은 화소(P)에서 광이 영상 형성 유닛(110)을 투과할 수 있다.
반면, 액정 층(115)에 전기장이 형성되면 액정 층(115)의 액정 분자(115a)의 배치로 인하여 제1 편광 필름(111)에 의하여 편광된 광이 제2 편광 필름(119)를 통과하지 못한다. 다시 말해, 액정 층(115)에 전기장이 형성된 화소(P)에서 광이 영상 형성 유닛(110)에 의하여 차단된다.
이상에서 설명한 바와 같이, 영상 형성 유닛(110)은 화소(P)(더욱 상세하게는 화소에 포함된 적색 화소, 녹색 화소, 청색 화소) 별로 독립적으로 광 투과성을 제어할 수 있다. 그 결과, 복수의 화소(P)에 의한 광이 조합되어, 디스플레이 장치(100)의 스크린(102)에 영상(I)이 표시될 수 있다.
이하에서는 백 라이트 유닛(200)에 대하여 설명한다.
백 라이트 유닛(200)은 광원의 위치에 따라 직하형 백 라이트 유닛(direct-tyep back light unit)과 엣지형 백 라이트 유닛(edge-type back light unit)으로 구분될 수 있다.
도 4는 일 실시예에 따른 백 라이트 유닛을 분해 도시하고, 도 5는 일 실시예에 따른 백 라이트 유닛의 측-단면을 도시한다. 도 6은 일 실시예에 따른 백 라이트 유닛에 포함된 광원으로부터 방출된 광을 스펙트럼을 도시한다.
도 4, 도 5 및 도 6을 참조하면, 엣지형 백 라이트 유닛(200)은 광을 생성하는 발광 모듈(210), 광을 분산시키는 도광판(waveguide plate) (220), 광을 반사시키는 반사 시트(230) 및 광 휘도를 향상시키는 광학 시트(240)를 포함한다.
발광 모듈(210)은 광을 방출하는 복수의 광원(211), 복수의 광원(211)을 지지/고정하는 지지체(212)를 포함할 수 있다.
복수의 광원(211)은 도 4에 도시된 바와 같이 백 라이트 유닛(200)의 측면에 균일하게 배치될 수 있으며, 백 라이트 유닛(200)의 중심부를 향하여 광을 방출할 수 있다.
복수의 광원(211)이 방출한 광이 가능한 한 균일한 휘도를 갖도록 복수의 광원(211)은 등간격으로 배치될 수 있다. 예를 들어, 도 4에 도시된 바와 같이 복수의 광원(211)은 백 라이트 유닛(200)의 좌우 측면에 각각 등간격으로 배치될 수 있다. 다만, 광원(211)의 배치는 도 4에 도시된 바에 한정되는 것은 아니며, 백 라이트 유닛(200)의 좌우 측면 중 어느 하나의 측면에만 배치될 수도 있다.
광원(211)은 전력이 공급되면 단색광(특정한 파장의 광, 예를 들어 청색 광) 또는 백색광(다양한 파장의 광이 혼합된 광)을 다양한 방향으로 방출할 수 있는 소자를 채용할 수 있다. 예를 들어, 광원(211)은 발열량이 적은 발광 다이오드(Light Emitting Diode, LED) 또는 냉-음극관(Cold Cathode Fluorescence Lamp, CCFL) 등을 채용할 수 있다.
특히, 광원(211)은 도 6의 좌측에 도시된 바와 같이 고 에너지 광인 청색 광을 방출하는 청색 발광 다이오드(211a)와 청색 광을 흡수하여 녹색 광 및 적색 광을 방출하는 형광체(211b)를 포함할 수 있다.
청색 발광 다이오드(211a)은 광원(211)은 갈륨-질소 화합물(GaN)에 인듐(In)을 첨가한 인듐-갈륨-질소 화합물(InGaN)로 제조될 수 있다.
형광체(211b)는 외부로부터 흡수된 에너지를 가시 광선으로 변환하여, 가시 광선을 방출할 수 있다. 이러한 형광체(211b)는 황색(YAG) 형광체, KSF(K2SiF6) 형광체 또는 KTF(K2TiF6) 형광체를 포함할 수 있다.
광원(211)은 대략 450nm 파장의 청색 광(BL), 대략 535nm 파장의 녹색 광(GL) 및 대략 620nm 파장의 적색 광(RL)을 방출할 수 있다. 그러나, 광원(211)이 청색 광(BL), 녹색 광(GL) 및 적색 광(RL)만을 방출하는 것은 아니며, 도 6의 우측에 도시된 바와 같이 광원(211)은 청색 광(BL), 녹색 광(GL) 및 적색 광(RL)과 함께 황색 광(YL) 또는 오렌지색 광(OL)을 방출할 수 있다.
지지체(212)는 광원(211)의 위치가 변경되지 않도록 복수의 광원(211)을 고정할 수 있다. 또한, 지지체(212)는 광원(211)이 광을 방출하기 위한 전력을 각각의 광원(211)에 공급할 수 있다.
지지체(212)는 광원(211)과 함께 백 라이트 유닛(200)의 측면에 배치될 수 있다. 예를 들어, 도 4에 도시된 바와 같이 지지체(212)는 백 라이트 유닛(200)의 좌우 측면에 배치될 수 있다. 그러나, 지지체(212)의 배치는 도 4에 도시된 바에 한정되는 것은 아니며, 백 라이트 유닛(200)의 좌우 측면 중 어느 하나의 측면에만 배치될 수도 있다. 이러한, 지지체(212)는 복수의 광원(211)을 고정하고, 광원(211)에 전력을 공급하기 위한 전도성 전력 공급 라인이 형성된 합성 수지로 구성되거나, 인쇄 회로 기판(Printed Circuit Board, PCB)로 구성될 수 있다.
도광판(220)은 측면의 발광 모듈(210)으로부터 입사되는 광의 진행 방향을 변경하여 전방을 향하여 방출한다. 또한, 도광판(220)은 측면의 발광 모듈(210)으로부터 입사되는 광을 도광판(220)의 전면(220a)에 분산시켜 방출한다.
광의 진행 방향을 변경하기 위하여 도광판(220)의 전면(220a)에는 복수의 볼록한 줄무늬가 형성될 수 있으며, 도광판(220)의 후면(220b)에는 복수의 도트(dot)가 형성될 수 있다. 또한, 도광판(220)의 전면(220a)을 향하여 균일한 광이 출사되도록 볼록한 줄무늬의 크기 및 간격이 조절될 수 있으며, 도트의 크기 및 간격이 조절될 수 있다. 또한, 도광판(220) 전면(220a)의 볼록한 줄무늬는 인쇄 기법을 통하여 양각으로 형성될 수 있으며, 도광판(220) 후면(220b)의 도트는 레이저를 이용하여 음각으로 형성될 수 있다.
앞서 설명한 바와 같이 발광 모듈(210)은 백 라이트 유닛(200)의 측면에 배치되므로, 발광 모듈(210)의 위치에 의하여 휘도의 불균일이 발생할 수 있다. 이에, 도광판(220)은 발광 모듈(210)의 위치로 인한 휘도의 불균일을 제거하기 위하여 발광 모듈(210)으로부터 방출된 광을 도광판(220) 내에서 확산시킬 수 있다. 예를 들어, 광을 확산시키기 위하여 도광판(220)은 우유빛의 색상을 가질 수 있다.
도광판(220) 내부로 입사된 광은 입사 각도에 따라 다양한 방향을 진행할 수 있다. 예를 들어, 도 5에 도시된 바와 같이 도광판(220)의 전방을 향하여 입사된 광은 도광판(220)의 전면(220a)에서 반사되어 후면(220b)을 향하여 진행하거나, 도광판(220)의 전면(220a)에서 굴절되어 광학 시트(240)로 입사될 수 있다. 또한, 도광판(220)의 후방을 향하여 입사된 광은 도광판(220)의 후면(220b)에서 반사되거나, 도광판(220) 후면(220b)의 도트에 의하여 산란되어 전면(220a)을 향하여 진행할 수 있다.
도광판(220)의 전면(220a)과 후면(220b)에서 발생되는 광의 반사에 의하여 도광판(220)의 측면에서 입사된 광은 도광판(220)의 중심부까지 진행할 수 있다. 또한, 도광판(220)의 후면(220b)에서 발생되는 광의 산란과 도광판(220)의 전면(220a)에서 발생되는 광의 굴절에 의하여 도광판(220) 내부의 광은 도광판(220a)의 전면(220a)을 통하여 방출될 수 있다.
이러한 도광판(220)은 폴리 메틸 메타아크릴레이트(poly methyl methacrylate, PMMA) 또는 투명 폴리 카보네이트(polycarbonate, PC) 등을 채용할 수 있다.
반사 시트(230)는 도광판(220)의 후방에 마련되며, 도광판(220)의 후면(220b)을 통하여 방출되는 광을 도광판(220)을 향하여 반사시킬 수 있다.
이러한 반사 시트(230)는 모재(base materials)에 반사율이 높은 물질을 코팅하여 제조될 수 다. 예를 들어, 페트(polyethylene terephthalate, PET) 등의 모재 상에 고반사율을 갖는 폴리머(polymer)를 코팅함으로써 반사 시트(230)가 제조될 수 있다.
광학 시트(240)는 휘도 및 휘도의 균일성을 향상시키기 위한 다양한 시트를 포함할 수 있다. 예를 들어, 광학 시트(240)는 확산 시트(241), 프리즘 시트(242), 보호시트(243), 휘도향상시트(244)를 포함할 수 있다.
확산 시트(241)은 휘도의 균일성을 위하여 광을 확산시킨다. 광원(211)으로부터 방출된 광은 도광판(220)에 의하여 확산되고, 광학 시트(240)에 포함된 확산 시트(241)에 의하여 다시 확산될 수 있다.
다른 실시예로, 확산 시트(241) 대신 확산 시트(241)처럼 광을 확산시키고 시야각을 넓혀주는 마이크로 렌즈시트(microlens sheet)가 이용될 수도 있다.
확산 시트(241)를 통과한 광은 확산 시트(241)와 평행한 방향으로 확산되며, 그로 인하여 휘도가 감소할 수 있다.
프리즘 시트(242)는 확산 시트(241)에 의하여 확산된 광을 집광시킴으로써 휘도를 증가시킨다.
프리즘 시트(242)는 삼각 프리즘 형상의 프리즘 패턴을 포함하고, 이 프리즘 패턴은 복수 개가 인접 배열되어 복수 개의 띠 모양을 이룬다. 프리즘 시트는 제1프리즘 시트와 제2프리즘 시트를 포함할 수 있고, 이때, 제1 프리즘 시트의 프리즘 패턴이 배열되는 방향과 제2 프리즘 시트의 프리즘 패턴이 배열되는 방향은 서로 직교할 수 있다.
프리즘 시트(242)를 통과한 광은 대략 70도의 시야각을 가지며, 백 라이트 유닛(200)의 전방으로 진행함으로 인하여 휘도가 개선된다.
보호 시트(243)는 백 라이트 유닛(200)에 포함된 각종 구성 부품을 외부의 충격이나 이물질의 유입으로부터 보호한다. 특히, 프리즘 시트(242)는 스크래치(scratch)가 발생하기 쉬우며, 보호 시트(243)는 프리즘 시트(242)의 스크래치를 방지할 수 있다.
휘도 향상 시트(244)는 편광 필름의 일종으로 반사형 편광 필름이라고도 한다. 휘도 향상 시트는 휘도 향상을 위하여 입사된 광 중 일부를 투과시키고, 다른 일부를 반사할 수 있다. 예를 들어, 휘도 향상 시트(244)는 미리 정해진 편광 방향의 광을 투과시키고, 다른 광을 반사할 수 있다. 이때, 휘도 향상 시트(244)의 편광 방향은 앞서 설명한 제1 편광 필름(111)의 편광 방향과 동일할 수 있다. 그 결과, 휘도 향상 시트(244)를 투과한 광은 영상 형성 유닛(110)에 포함된 제1 편광 필름(111)도 투과할 수 있다.
또한, 휘도 향상 시트(244)에 의하여 반사된 광은 백 라이트 유닛(200) 내부에서 재활용되며, 이러한 광 재활용(light recycle)에 의하여 디스플레이 장치(100)의 휘도가 향상될 수 있다.
광학 시트(240)는 도 5에 도시된 시트 또는 필름에 한정되지 않으며, 더욱 다양한 시트 또는 필름을 포함할 수 있다.
도 7은 다른 일 실시예에 따른 백 라이트 유닛을 분해 도시하고, 도 8은 다른 일 실시예에 따른 백 라이트 유닛의 측-단면을 도시한다.
도 7 및 도 8을 참조하면, 직하형 백 라이트 유닛(300)은 광을 생성하는 발광 모듈(310), 광을 반사시키는 반사 시트(320), 광을 분산시키는 확산판(diffuser plate) (330), 광 휘도를 향상시키는 광학 시트(340)를 포함한다.
발광 모듈(310)은 광을 방출하는 복수의 광원(311), 복수의 광원(311)을 지지/고정하는 지지체(312)를 포함할 수 있다.
복수의 광원(311)은 도 7에 도시된 바와 같이 백 라이트 유닛(300)의 최후방에 균일하게 배치될 수 있으며, 전방을 향하여 광을 방출할 수 있다.
복수의 광원(311)이 방출한 광이 가능한 한 균일한 휘도를 갖도록 복수의 광원(311)은 미리 정해진 패턴으로 배치될 수 있다. 구체적으로, 하나의 광원과 그에 인접한 광원들 사이의 거리가 동일해지도록 복수의 광원(311)이 배치될 수 있다. 예를 들어, 도 17에 도시된 바와 같이 인접한 4개의 광원에 의하여 정사각형이 형성되도록 복수의 광원의 행과 열을 맞추어 배치될 수 있다. 다만, 복수의 광원(311)이 배치되는 패턴은 이상에서 설명한 패턴에 한정되지 않으며, 복수의 광원(311)이 방출한 광이 가능한 한 균일한 휘도를 갖도록 복수의 광원(311)은 다양한 패턴으로 배치될 수 있다.
광원(311)은 전력이 공급되면 단색광(특정한 파장의 광, 예를 들어 청색 광) 또는 백색광(다양한 파장의 광이 혼합된 광)을 다양한 방향으로 방출할 수 있는 소자를 채용할 수 있다.
지지체(312)는 광원(311)의 위치가 변경되지 않도록 복수의 광원(311)을 고정할 수 있다. 또한, 지지체(312)는 광원(311)이 광을 방출하기 위한 전력을 각각의 광원(311)에 공급할 수 있다.
또한, 지지체(312)는 복수의 광원(311)의 배치에 따라 복수 개가 마련될 수 있다. 예를 들어, 도 7에 도시된 바와 같이 복수의 광원(311)이 행을 맞추어 배치된 경우, 지지체(312)는 복수의 광원(311)의 행과 동일한 개수가 마련되고, 복수의 지지체(312) 각각은 동일한 행에 속하는 복수의 광원(311)을 고정할 수 있다. 이러한 지지체(312)는 복수의 광원(311)을 고정하고, 광원(311)에 전력을 공급하기 위한 전도성 전력 공급 라인이 형성된 합성 수지로 구성되거나, 인쇄 회로 기판(Printed Circuit Board, PCB)로 구성될 수 있다.
반사 시트(320)는 발광 모듈(310)의 전방에 마련되며, 후방을 향하여 진행하는 광을 전방으로 또는 전방과 근사한 방향으로 반사할 수 있다.
반사 시트(320)에는 복수의 광원(311)에 대응하는 위치에 복수의 관통홀(320a)이 형성된다. 또한, 광원(311)은 도 18에 도시된 바와 같이 관통 홀(320a)을 통과하여, 반사 시트(320) 전방으로 돌출될 수 있다.
이러한 반사 시트(320)는 모재(base materials)에 반사율이 높은 물질을 코팅하여 제조될 수 다. 예를 들어, 페트(polyethylene terephthalate, PET) 등의 모재 상에 고반사율을 갖는 폴리머(polymer)를 코팅함으로써 반사 시트(230)가 제조될 수 있다.
확산판(330)은 발광 모듈(310) 및 반사 시트(320)의 전방에 마련될 수 있으며, 광원(311)으로부터 방출된 광을 고르게 분산시킬 수 있다.
비록, 광원(311)이 등간견으로 배치되나, 광원(311)의 위치에 따라 휘도의 불균일이 발생할 수 있다. 확산판(330)은 광원(311)으로 인한 휘도의 불균일을 제거하기 위하여 광원(311)으로부터 방출된 광을 확산판(330) 내에서 확산시킬 수 있다. 다시 말해, 확산판(330)은 광원(311)으로부터 불균일한 광을 입사받고, 전면으로 균일한 광을 방사할 수 있다.
이러한 확산판(330)은 광 확산을 위한 확산제가 첨가된 폴리 메틸 메타아크릴레이트(poly methyl methacrylate, PMMA) 또는 폴리 카보네이트(polycarbonate, PC) 등을 채용할 수 있다.
광학 시트(340)는 휘도 및 휘도의 균일성을 향상시키기 위한 다양한 시트를 포함할 수 있다. 예를 들어, 광학 시트(340)는 확산 시트(341), 제1 프리즘 시트(342), 보호 시트(343), 휘도 향상 시트(344)를 포함할 수 있다. 광학 시트(340)에 대한 설명은 전술한 광학 시트(240)에 대한 설명과 동일하므로 생략한다.
한편, 백 라이트 유닛이 대형화되면서, 온도나 습도 등의 영향을 받아 광학시트가 일부분 또는 전체적으로 우는 현상이 발생하고 있다. 광학 시트가 울게 되면 디스플레이 화면으로 시트 움이 시인되는 문제가 발생할 수 있다. 이에 개시된 실시예는 형상 기억 재료를 사용하여 광학 시트가 우는 현상을 방지함으로써, 화면 이상 없이 광원을 균일하게 전달하는 백 라이트 유닛 및 이를 포함하는 디스플레이 장치를 제공한다. 이하 형상 기억 재료가 사용된 광학 시트가 구체적으로 설명된다.
도 9는 일 실시예에 따른 형상 기억 재료가 사용된 광학시트를 도시한다. 우선 개시된 실시예의 광학시트에 사용되는 형상 기억 재료에 대해서 설명한다. 개시된 실시예에 따른 광학시트는 형상 기억 고분자 또는 형상 기억 합금을 포함한다.
형상기억효과(SME: Shape Memory Effect)란 일정한 온도에서 기억시킨 형상을 기억하고 있다가, 힘을 가해 전혀 다른 형상으로 변형시킨 후 가열하면 본래의 형상으로 돌아가는 현상이다. 이와 같은 형상기억효과를 나타내는 물질은 재질에 따라 형상기억합금(SMA: Shape Memory Alloy)과 형상기억고분자(SMP: Shape Memory Polymer)로 구별될 수 있다.
개시된 실시예에 따른 형상기억합금은 합금의 종류에 따라 니켈-티탄 합금(니티놀), 동-아연 합금, 금-카드뮴 합금, 인듐-탈륨 합금 등을 포함할 수 있다.
개시된 실시예에 따른 형상기억합금으로는 니켈-티탄 합금인 니티놀을 포함할 수 있고, 형상기억효과가 필요한 온도에 따라 다른 형상기억합금이 사용될 수도 있다.
형상기억합금에서 형상기억 효과는 특정한 온도에서의 상의 변환에 의해 발생된다. 즉 형상기억합금은 외부에서 가해지는 온도에 따라 고온 상 (austenitic phase)과 저온 상(martensitic phase)으로 결정의 배열이 변하게 된다. 저온 상에서는 형태에 변형을 가해도 일정한 온도 (변위온도) 이상으로 가열하면 본래의 형태로 회복된다.
한편, 형상 기억 고분자는 가교의 형태에 따라 물리적인 가교와 화학적인 가교로 구별될 수 있다. 화학적으로 가교된 형상기억고분자는 열경화성 수지가 되고, 물리적으로 가교된 고분자는 열가소성 수지가 된다.
열가소성 형상기억고분자의 일 예로 폴리우레탄 형상기억고분자는 높은 형상회복력(400% 이상의 최대 회복 Strain), 넓은 형상회복 온도 범위(30도~70도), 양호한 가공성 등을 가진다.
열경화성 형상 기억 고분자의 일 예로 에폭시 형상기억고분자는 형상기억회복비가 98~100%이고 탄성 modulus도 2~4.5GPa이며, 습기에도 안정적이다.
개시된 실시예에 따른 형상기억 고분자는 전술한 형상 기억 고분자를 포함할수 있으나, 이에 한정되지 않고 공지된 다양한 형상 기억 고분자를 포함할 수 있다.
전술한 광학시트는 기재필름으로 폴리메틸메타크릴레이트(PMMA), 폴리에틸렌테레프탈레이트(PET), 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리카보네이트(PC) 중에서 어느 하나 이상 재질을 포함할 수 있다.
개시된 실시예에 따른 광학시트는 이러한 소재에 형상기억 고분자 또는 형상기억합금이 첨가된 기재필름으로 구현될 수 있다. 형상기억 고분자나 형상기억합금이 포함된 광학필름에 패턴을 가공하여 광학필름이 제작될 수 있다.
형상기억재료는 기재필름에 첨가될 때, 도 9의 (a)에 도시된 것처럼, 광학시트의 면 전체를 커버하도록 광학시트의 면 전체에 걸쳐 첨가될 수 있다. 다른 예로, 도 9의 (b)에 도시된 것처럼, 형상기억재료는 광학시트의 외곽부분을 커버할 수 있도록 광학시트의 외곽부를 따라 첨가될 수도 있고, 도 9의 (c) 및 (d)에 도시된 것처럼, 광학시트의 상하부나 좌우에 첨가될 수도 있다. 형상기억재료가 광학시트에 첨가되는 위치나 형태는 도 9에 도시된 예에 한정되지 않고 광학시트의 다른 다양한 위치에 다양한 형태로 첨가될 수 있다.
전술한 것처럼, 광학시트는 확산시트, 프리즘시트, 보호시트 및 휘도향상시트를 포함할 수 있는데, 형상기억재료는 광학시트를 구성하는 이러한 복수의 시트 중 적어도 하나의 시트에 도 9에 도시된 것처럼 첨가될 수 있다.
즉, 형상기억재료는 광학시트를 구성하는 모든 시트에 첨가될 수도 있고, 디스플레이 장치의 특성에 따라 광학시트를 구성하는 하나 또는 둘 이상의 시트에 첨가될 수도 있다.
또한, 개시된 실시예에 따른 광학시트는 전술한 시트들 외에 다른 시트를 포함할 수도 있으므로, 형상기억재료는 앞서 언급되지 않은 다른 종류의 시트가 광학시트에 채용된다면, 그 시트에도 물론 첨가될 수 있다.
광학시트가 온도나 습도 또는 다른 외부 요인으로 울어 있는 상태에서, 백 라이트 유닛이 작동하게 되면, 광원 또는 파워로부터 열이 발생하여 패널 내부 온도가 상승하게 되고, 이러한 열원이 광학시트에 포함된 형상기억재료에 영향을 미쳐 형상기억재료가 원래 형상을 회복하여 시트의 움을 제거할 수 있다. 또는, 시트가 울기 전에 전술한 것처럼 형상기억재료가 패널 내부 열원에 의해 원래 형상을 회복 및 유지하여 시트가 우는 것을 방지할 수 있다.
이상에서는 개시된 발명의 일 실시예에 대하여 도시하고 설명하였지만, 개시된 발명은 상술한 특정의 실시예에 한정되지 아니하며 청구범위에서 청구하는 요지를 벗어남 없이 개시된 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의하여 다양한 변형실시가 가능함을 물론이고 이러한 변형실시들은 개시된 발명으로부터 개별적으로 이해될 수 없다.

Claims (15)

  1. 광학시트를 포함하는 백 라이트 유닛;
    상기 백 라이트 유닛으로부터 방출된 광을 투과 또는 차단하여 영상을 생성하는 영상 형성 유닛;을 포함하고,
    상기 광학시트는 복수의 시트를 포함하고, 상기 복수의 시트 중 적어도 하나에 형상기억재료를 포함하는 디스플레이 장치.
  2. 제1항에 있어서,
    상기 광학시트는 상기 복수의 시트 중 적어도 하나에 형상기억합금 또는 형상기억 고분자를 포함하는 디스플레이 장치.
  3. 제1항에 있어서,
    상기 형상기억합금은 니티놀(Nitinol)을 포함하는 디스플레이 장치.
  4. 제1항에 있어서,
    상기 형상기억재료는 상기 적어도 하나의 시트의 면 전체에 마련되는 디스플레이 장치.
  5. 제1항에 있어서,
    상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 외곽부에 마련되는 디스플레이 장치.
  6. 제1항에 있어서,
    상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 상부 및 하부에 마련되는 디스플레이 장치.
  7. 제1항에 있어서,
    상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 우측부 및 좌측부에 마련되는 디스플레이 장치.
  8. 광원; 및
    상기 광원으로부터 방출된 광이 입사하도록 마련된 광학시트;를 포함하고,
    상기 광학시트는 복수의 시트를 포함하고, 상기 복수의 시트 중 적어도 하나에 형상기억재료를 포함하는 백 라이트 유닛.
  9. 제8항에 있어서,
    상기 광학시트는 확산시트, 프리즘시트, 보호시트 및 휘도향상시트 중 적어도 하나를 포함하는 백 라이트 유닛.
  10. 제8항에 있어서,
    상기 광학시트는 상기 복수의 시트 중 적어도 하나에 형상기억합금 또는 형상기억 고분자를 포함하는 백 라이트 유닛.
  11. 제8항에 있어서,
    상기 형상기억합금은 니티놀(Nitinol)을 포함하는 백 라이트 유닛.
  12. 제8항에 있어서,
    상기 형상기억재료는 상기 적어도 하나의 시트의 면 전체에 마련되는 백 라이트 유닛.
  13. 제8항에 있어서,
    상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 외곽부에 마련되는 백 라이트 유닛.
  14. 제8항에 있어서,
    상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 상부 및 하부에 마련되는 백 라이트 유닛.
  15. 제8항에 있어서,
    상기 형상기억재료는 상기 적어도 하나의 시트의 면 중 우측부 및 좌측부에 마련되는 백 라이트 유닛.
PCT/KR2019/005933 2018-10-22 2019-05-17 백 라이트 유닛 및 이를 포함하는 디스플레이 장치 WO2020085596A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/276,219 US11320579B2 (en) 2018-10-22 2019-05-17 Back light unit comprising shape memory material and display apparatus comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0126067 2018-10-22
KR1020180126067A KR102600961B1 (ko) 2018-10-22 2018-10-22 백 라이트 유닛 및 이를 포함하는 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2020085596A1 true WO2020085596A1 (ko) 2020-04-30

Family

ID=70331028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005933 WO2020085596A1 (ko) 2018-10-22 2019-05-17 백 라이트 유닛 및 이를 포함하는 디스플레이 장치

Country Status (3)

Country Link
US (1) US11320579B2 (ko)
KR (1) KR102600961B1 (ko)
WO (1) WO2020085596A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482899A (zh) * 2023-04-19 2023-07-25 惠科股份有限公司 支撑件及其制备方法、背光模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237223B1 (ko) * 2005-10-28 2013-02-26 분데스드룩커라이 게엠베하 표시장치를 구비한 문서
US20130258565A1 (en) * 2012-03-30 2013-10-03 Sony Corporation Display unit and electronic apparatus
KR20160002556A (ko) * 2014-06-30 2016-01-08 엘지디스플레이 주식회사 형상 기억 복합체 및 이를 포함하는 가변형 표시장치
US20170205654A1 (en) * 2014-09-26 2017-07-20 Sakai Display Products Corporation Display Apparatus and Method of Manufacturing Display Apparatus
KR20170105509A (ko) * 2015-01-13 2017-09-19 칼 짜이스 에스엠테 게엠베하 광학 시스템용, 특히 마이크로리소그래픽 투영 노광 유닛용 광학 요소의 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219338A1 (en) 2003-05-01 2004-11-04 Hebrink Timothy J. Materials, configurations, and methods for reducing warpage in optical films
US10371887B2 (en) * 2014-09-26 2019-08-06 Sakai Display Products Corporation Display apparatus with U-shaped coupling member
KR102365173B1 (ko) * 2015-06-10 2022-02-21 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 표시 장치
KR102618293B1 (ko) * 2016-10-31 2023-12-26 엘지디스플레이 주식회사 표시장치용 지지프레임 및 이를 포함하는 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237223B1 (ko) * 2005-10-28 2013-02-26 분데스드룩커라이 게엠베하 표시장치를 구비한 문서
US20130258565A1 (en) * 2012-03-30 2013-10-03 Sony Corporation Display unit and electronic apparatus
KR20160002556A (ko) * 2014-06-30 2016-01-08 엘지디스플레이 주식회사 형상 기억 복합체 및 이를 포함하는 가변형 표시장치
US20170205654A1 (en) * 2014-09-26 2017-07-20 Sakai Display Products Corporation Display Apparatus and Method of Manufacturing Display Apparatus
KR20170105509A (ko) * 2015-01-13 2017-09-19 칼 짜이스 에스엠테 게엠베하 광학 시스템용, 특히 마이크로리소그래픽 투영 노광 유닛용 광학 요소의 제조 방법

Also Published As

Publication number Publication date
US20220035092A1 (en) 2022-02-03
KR20200045239A (ko) 2020-05-04
KR102600961B1 (ko) 2023-11-13
US11320579B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2017099315A1 (en) Light diffusion plate and display apparatus having the same
WO2016126049A1 (en) Display apparatus
WO2016200019A1 (en) Back light unit and display apparatus including the same
WO2018088750A1 (en) Backlight unit and display apparatus including the same
WO2019083331A1 (en) DISPLAY DEVICE
EP3301507B1 (en) Liquid crystal display
WO2021066329A1 (ko) 디스플레이 장치, 디스플레이 장치 제조방법 및 백 라이트 유닛
WO2020032387A1 (en) Display apparatus
WO2018034423A1 (ko) 디스플레이 패널 및 이를 포함하는 디스플레이 장치
WO2016098985A1 (en) Backlight apparatus and display apparatus having the same
US10330836B2 (en) Display apparatus and back light unit included therein
WO2019078647A1 (en) DISPLAY APPARATUS
US10247978B2 (en) Display apparatus with main body supporting image forming unit
WO2020085649A1 (en) Display apparatus
WO2020085596A1 (ko) 백 라이트 유닛 및 이를 포함하는 디스플레이 장치
WO2020022630A1 (en) Display apparatus
WO2020130497A1 (en) Display device
WO2020045811A1 (en) Display apparatus
WO2020071610A1 (ko) 백라이트유닛 및 이를 포함하는 액정표시장치
WO2020059993A1 (ko) 백 라이트 유닛 및 이를 포함하는 디스플레이 장치
WO2018088692A1 (en) Backlight unit and display device having the same
WO2024071574A1 (ko) 디스플레이 장치
WO2023171874A1 (ko) 디스플레이 장치 및 그 광원 장치
WO2024043452A1 (ko) 디스플레이 장치 및 광원 장치
WO2023008649A1 (ko) 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876170

Country of ref document: EP

Kind code of ref document: A1