WO2020085229A1 - Operation route generation system, operation route generation method, operation route generation program, and drone - Google Patents

Operation route generation system, operation route generation method, operation route generation program, and drone Download PDF

Info

Publication number
WO2020085229A1
WO2020085229A1 PCT/JP2019/041049 JP2019041049W WO2020085229A1 WO 2020085229 A1 WO2020085229 A1 WO 2020085229A1 JP 2019041049 W JP2019041049 W JP 2019041049W WO 2020085229 A1 WO2020085229 A1 WO 2020085229A1
Authority
WO
WIPO (PCT)
Prior art keywords
departure
route
area
arrival
point
Prior art date
Application number
PCT/JP2019/041049
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
洋 柳下
泰 村雲
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020553333A priority Critical patent/JP7008999B2/en
Priority to CN201980069783.XA priority patent/CN112912693B/en
Publication of WO2020085229A1 publication Critical patent/WO2020085229A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/24Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to a driving route generation system, a driving route generation method, a driving route generation program, and a drone.
  • drones multicopters
  • spraying chemicals such as pesticides and liquid fertilizers on farmland (field) (for example, Patent Document 1).
  • field for example, Patent Document 1
  • drones In relatively small farms, it is often appropriate to use drones instead of manned planes and helicopters.
  • Patent Document 3 discloses a traveling route generation system that generates a reciprocating traveling route for traveling back and forth in a field and a traveling traveling route for traveling along an outer peripheral shape. This system is assumed to be a ground-running machine such as a seedling planting device.
  • Patent Document 4 discloses a traveling route generation device that generates a route when a contour line of a field has a concave portion that locally enters inside.
  • Patent Document 5 discloses an autonomous traveling route generation system that generates a traveling route that bypasses an obstacle existing in the traveling region.
  • a driving route generation system that generates a driving route that can efficiently perform movement control by autonomous driving between a departure / arrival point of a mobile device and a predetermined point in a work target area.
  • a driving route generation system is a driving route generation system that generates a driving route of a drone that moves in and out of a target area at a departure and arrival point outside the target area. Then, based on the acquired coordinate information of the target area, an intra-area route generation unit that generates an intra-area driving route within the target area, the departure / arrival point, and a predetermined connection point on the intra-area driving route.
  • a departure-and-arrival route generation unit that generates a departure-and-arrival route that connects between and, the drone includes an interruption point storage unit that stores the coordinates of a point where flight is interrupted on the in-area driving route, and the departure-and-arrival route generation unit, If the flight was interrupted during the previous flight, a departure / arrival route is generated with the coordinates of the flight interruption point stored in the interruption point storage unit as the connection point, If the flight is not interrupted, it generates a departure route the coordinates of the end point of the area driving path as the connection point.
  • the intra-area route generation unit may generate the intra-area driving route in an area within the target area excluding the entry-prohibited area, which is determined based on information on the position and shape of an obstacle.
  • the departure / arrival route generation unit may generate the departure / arrival route in an area other than the entry-prohibited area determined based on the position and shape information of the obstacle.
  • the departure / arrival route generation unit determines whether or not a virtual line segment defined between the departure / arrival point and the connection point is within the entry prohibited area, and the virtual line segment is within the entry prohibited area. In this case, a departure / arrival route that bypasses the entry prohibited area may be generated.
  • the departure / arrival route generation unit may generate a departure / arrival route passing through the end points of the in-area driving route.
  • the departure / arrival route generation unit includes a relay route connecting the connection point and a connection point on the in-area driving route, and a route generated along a part of the in-area driving route including end points of the in-area driving route. , And the route connecting the end point of the in-area driving route and the departure / arrival point may be connected to generate the departure / arrival route.
  • the information on the departure / arrival route may include three-dimensional coordinates from the start point to the end point, and at least one piece of information on the flight speed, the flight acceleration, and the turning position and speed.
  • the departure / arrival route generation unit may generate the departure / arrival route that causes the drone to fly at an altitude such that the downdraft generated during flight of the drone does not cause the crops growing in the target area to fall over.
  • the departure / arrival route generation unit may be mounted on the drone, and the intra-area route generation unit may be mounted on a server device connected to the drone via a network.
  • the above-mentioned departure / arrival route generation unit and the above-mentioned intra-area route generation unit may be mounted on the drone.
  • a driving route generation method for generating a driving route of a mobile device that moves in and out of a target area at a departure / arrival point outside the target area. Between the step of generating an in-area driving route in the target area based on the acquired coordinate information of the target area, and between the departure point and the arrival point and a predetermined connection point on the in-area driving route. Generating a departure / arrival route connecting the two.
  • the departure and arrival route is generated by using the coordinates of the flight interruption point as the connection point. May generate a departure / arrival route using the coordinates of the end points of the in-area driving route as the connection points.
  • a driving route generation program is a driving route generation for generating a driving route of a mobile device that moves in and out of a target area at a departure and arrival point outside the target area. It is a program, based on the acquired coordinate information of the target area, a command to generate an in-area driving route in the target area, the departure and arrival points and a predetermined connection point on the in-area driving route And causing the computer to execute an instruction for generating a departure and arrival route connecting the two.
  • the computer program can be provided by being downloaded through a network such as the Internet, or can be provided by being recorded in various computer-readable recording media such as a CD-ROM.
  • a drone according to still another aspect of the present invention is a drone capable of flying along a driving route generated by a driving route generation system, and the driving route generation system is any one of the above.
  • FIG. 2 is an overall conceptual diagram showing a state of a driving route generation device according to the present invention, a base station, an operating device, a drone, and a field surveying device connected via a network.
  • FIG. 3 is a functional block diagram of the driving route generation device.
  • FIG. 6 is a schematic diagram showing an example of a farm field in which the driving route generation device generates a driving route, an entry prohibition area determined in the vicinity of the farm field, and a movable area generated in the farm field. It is a schematic diagram showing in detail the departure and arrival route which the departure and arrival route generation part which the above-mentioned drone has.
  • FIG. 6 is a schematic diagram showing another embodiment of a departure / arrival route generated by the departure / arrival route generation unit in more detail. It is a schematic diagram showing further another embodiment of a departure and arrival course which the above-mentioned departure and arrival course generation part generates.
  • 6 is a flowchart in which the departure / arrival route generation unit determines a start point and an end point of a departure / arrival route. 6 is a flowchart in which the departure / arrival route generation unit generates a departure / arrival route based on information on the entry prohibited area.
  • the drone regardless of power means (electric power, prime mover, etc.), control method (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft that have multiple rotors.
  • the drone is an example of a mobile device, and can appropriately receive information on a driving route generated by the driving route generation device according to the present invention and fly along the driving route.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of battery consumption, eight aircraft (four sets of two-stage rotary blades) are provided.
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been.
  • the motor (102) is an example of a propeller.
  • the upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc.
  • the axes are collinear and rotate in opposite directions.
  • the radial member for supporting the propeller guard which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is to promote the buckling of the member to the outside of the rotor blade at the time of collision and prevent the member from interfering with the rotor.
  • the drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines.
  • the term "medicine” generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
  • the drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and each drug nozzle 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve to support the chemical nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of a system using an example of drug spraying application of the drone 100 according to the present invention.
  • the operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and in an emergency.
  • an emergency operating device (not shown) that has a function dedicated to emergency stop (the emergency operating device is a large emergency stop button, etc. so that you can respond quickly in an emergency). It may be a dedicated device with).
  • the operation unit 401 and the drone 100 perform wireless communication by Wi-Fi or the like.
  • the field 403 is a rice field, a field, etc. to which the drug is sprayed by the drone 100.
  • the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance, or the topographic map and the situation at the site are inconsistent.
  • the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like.
  • the base station 404 is a device that provides a master device function of Wi-Fi communication and the like, and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices).
  • the farm cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like.
  • the farm cloud 405 may also be configured with hardware such as a server device connected to the drone 100 via a network.
  • the farm cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route.
  • the drone 100 may be provided with the topographical information of the farm field 403 that has been saved.
  • the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from a landing point 406 outside the field 403 and returns to the landing point 406 after spraying a drug on the field 403, or when it becomes necessary to replenish or charge the drug.
  • the flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
  • FIG. 7 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten via a storage medium or the like for function expansion / change, problem correction, etc., or via communication means such as Wi-Fi communication or USB.
  • encryption, checksum, electronic signature, virus check software, etc. are used to prevent rewriting by unauthorized software.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation device 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
  • the battery 502 is a means for supplying electric power to the flight controller 501 and other components of the drone, and may be rechargeable.
  • the battery 502 is connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker.
  • the battery 502 may be a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
  • the flight controller 501 interacts with the operation unit 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit. Can be sent to 401.
  • the communication may be encrypted so as to prevent illegal acts such as interception, spoofing, and hijacking of the device.
  • the base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi.
  • the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is of high importance, it may be duplicated / multiplexed, and each redundant GPS module 504 should use a different satellite to cope with the failure of a specific GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring acceleration of the drone aircraft in three directions orthogonal to each other (further, a means for calculating speed by integrating acceleration).
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves. These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and when it fails, it may switch to another sensor and use it. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount.
  • the multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open.
  • the drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided at the base station 404 outside the drone 100, the operation device 401, or another place, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind force / wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge.
  • the current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
  • LED107 is a display means for notifying the drone operator of the status of the drone.
  • a display means such as a liquid crystal display may be used instead of or in addition to the LED.
  • the buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal.
  • the Wi-Fi slave device function 519 is an optional component for communicating with an external computer or the like, for example, for software transfer, etc., separately from the controller 401.
  • other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying the drone state (particularly, the error state) by the recorded human voice, synthesized voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice.
  • the warning light 521 is a display means such as a strobe light for notifying the drone state (particularly an error state). These input / output means may be selected according to the cost target and performance requirements of the drone, or may be duplicated / multiplexed.
  • the drone 100 takes off from the landing point 406 and flies to a predetermined point in the field 403, flies along the area driving route described later in the field 403, and then flies from the predetermined point in the field 403 to the landing point 406. And then return. Therefore, the drone 100, in addition to the in-area driving route in the farm field 403, automatically generates a driving route from the landing point 406 to a predetermined point in the farm field 403, and also from the predetermined point to the landing point 406. Need to move.
  • the predetermined point in the field 403 is a point on the in-area driving route, and is a point connecting the out-of-area driving route and the in-area driving route (hereinafter, also referred to as “connection point”).
  • connection points are, for example, the starting point and the ending point of the work such as spraying or monitoring of chemicals in the field 403. Further, the connection point includes an interruption point at which work is interrupted when the battery runs out or the sprayed medicine runs out. Furthermore, the connection point includes an interruption point at which work is interrupted by a command from the user 402.
  • the drone 100 Since the coordinates of the connection point vary depending on the progress of the work, it is difficult to generate the driving route between the departure point 406 and the connection point in advance before the flight of the drone 100.
  • the departure / arrival point 406 due to the situation at the site such as an obstacle such as a car placed at the departure / arrival point 406 that was originally planned when the drone 100 was placed, the originally scheduled departure / arrival point It may not be possible to take off from point 406. Therefore, the drone 100 generates the driving route between the departure point 406 and the connection point.
  • the driving route in the area is generated in advance by the driving route generation device because it does not change depending on the progress of work or the situation of the site.
  • the calculation processing load of the drone 100 can be reduced. Further, by generating the driving route between the departure point 406 and the connection point, which changes depending on the situation, by the drone 100, the time generated by the communication with the external device is saved, and the entry / exit to / from the farm field 403 is saved. It can be done smoothly.
  • the driving route generation device 1 is connected to the drone 100, the operation device 401, the base station 404, and the field survey device 2 via the network NW.
  • the function of the driving route generation device 1 may be on the farm cloud 405 or may be a separate device.
  • the farm field is an example of the target area.
  • Drone 100 is an example of a mobile device.
  • the drone 100 may have a configuration including the driving route generation device 1.
  • a departure / arrival route generation unit 61 see FIG. 8) and an in-area route generation unit (see FIG. 9) described later may be mounted on the drone 100.
  • the field surveying device 2 may have the driving route generating device 1. At least, the driving route generation device 1 and the drone 100 configure a driving route generation system 1000.
  • the field surveying device 2 is a device having the function of a mobile station of RTK-GPS, and can measure the coordinate information of the field.
  • the field surveying device 2 is a small device that can be held and walked by the user, and is, for example, a rod-shaped device.
  • the field surveying device 2 may be a device such as a cane that is long enough to allow the user to stand upright and hold the upper end with the lower end attached to the ground.
  • the number of field surveying devices 2 that can be used to read the coordinate information of a certain field may be one or more. According to the configuration in which the coordinate information about one field can be measured by the plurality of field surveying devices 2, a plurality of users can hold the field surveying device 2 and walk in the field. It can be completed in a short time.
  • the field surveying device 2 can measure information on obstacles in the field.
  • the obstacles include walls and slopes at which the drone 100 may collide, utility poles, electric wires, and various objects that do not require drug spraying or monitoring.
  • the field survey device 2 includes an input unit 201, a coordinate detection unit 202, and a transmission unit 203.
  • the input unit 201 is provided at the upper end of the field surveying device 2, and is, for example, a button that receives a user's press. The user presses the button of the input unit 201 when measuring the coordinates of the lower end of the field surveying device 2.
  • the input unit 201 is configured to be able to input by distinguishing whether the input information is the coordinates relating to the outer circumference of the field or the coordinates of the outer circumference of the obstacle. Further, the input unit 201 can input the coordinates of the outer circumference of the obstacle in association with the type of the obstacle.
  • the coordinate detection unit 202 is a functional unit that can appropriately communicate with the base station 404 and detect the three-dimensional coordinates of the lower end of the field surveying device 2.
  • the transmission unit 203 based on the input to the input unit 201, a three-dimensional coordinate of the lower end of the field surveying device 2 at the time of the input, a functional unit that transmits to the operation unit 401 or the driving route generation device 1 via the network NW. is there.
  • the transmission unit 203 transmits the three-dimensional coordinates together with the pointing order.
  • the user moves the field with the field survey device 2.
  • the three-dimensional coordinates of the field are acquired.
  • the user performs pointing with the input unit 201 on the end point or the end side of the field.
  • the user performs pointing with the input unit 201 on the end point or the end side of the obstacle.
  • 3D coordinates on the endpoints or edges of the field that are pointed and transmitted are received by the driving route generation device 1 by distinguishing between the 3D coordinates of the field periphery and the 3D coordinates of obstacles.
  • the three-dimensional coordinates to be pointed may be received by the receiving unit 4011 of the operation device 401 and displayed by the display unit 4012.
  • the operation unit 401 determines whether the received three-dimensional coordinates are suitable as the three-dimensional coordinates of the field outer circumference or the obstacle, and if re-measurement is determined to be necessary, the operation unit 401 re-displays it to the user through the display unit 4012. You may encourage surveying.
  • the field surveying device 2 may acquire the position and the outer edge shape of the field and obstacles by capturing an image and then analyzing the image instead of acquiring the coordinate information.
  • the input unit 201 is an image capturing unit, and may be a camera capable of capturing a still image or a moving image, or a stereo camera or a 360 ° camera. Further, the field surveying device 2 may acquire the position and shape of the obstacle by a sonar or a distance measuring device using radar waves.
  • the driving route generation device 1 includes a target area information acquisition unit 10, a movement permitted area generation unit 20, an area planning unit 30, an intra-area route generation unit 40, and a route selection unit 50.
  • the target area information acquisition unit 10 is a functional unit that acquires information on the three-dimensional coordinates transmitted from the field surveying device 2.
  • the movement permission area generation unit 20 specifies the movement permission area 80i in the field 403 where the drone 100 moves based on the three-dimensional coordinates acquired by the target area information acquisition unit 10.
  • the movement permission area generation unit 20 includes an entry prohibition area determination unit 21 and a movement permission area determination unit 22.
  • the prohibited area determining unit 21 determines the prohibited area 81b of the drone 100 based on the three-dimensional coordinates of the obstacles 81a, 82a, 83a, 84a, 85a acquired by the target area information acquisition unit 10 and the type of the obstacle.
  • 82b, 83b, 84b, 85b is a functional unit for determining.
  • the prohibited areas 81b, 82b, 83b, 84b, 85b are areas including obstacles 81a, 82a, 83a, 84a, 85a and areas around the obstacles.
  • the no-entry areas 81b, 82b, 83b, 84b, 85b are areas defined in the horizontal direction and the height direction and having a three-dimensional spread, for example, obstacles 81a, 82a, 83a, 84a, 85a It is a rectangular parallelepiped area drawn as.
  • the prohibited areas 81b, 82b, 83b, 84b, 85b may be spherical areas drawn around an obstacle. Since the drone 100 flies in the air, it is possible to fly over the obstacle depending on the size of the obstacle in the height direction. Due to the size of the obstacle in the height direction, the structure above the obstacle is not considered as an inaccessible area, so that the obstacle can be efficiently bypassed without circumventing the obstacle.
  • the distance from the outer edge of the obstacle to the outer edge of the no-entry areas 81b, 82b, 83b, 84b, 85b is determined by the type of obstacle 81a, 82a, 83a, 84a, 85a.
  • the area of 50 cm from the outer edge of the house is set as the entry prohibited area, while the area of 80 cm from the outer edge of the electric wire is set as the entry prohibited area.
  • the no-entry area determination unit 21 stores in advance an obstacle table in which the type of obstacle and the size of the no-entry area are associated with each other, and determines the size of the no-entry area in accordance with the type of obstacle acquired. To do.
  • the movement permission area determination unit 22 is a functional unit that determines the movement permission area 80i.
  • the plane direction of the movement permitted area 80i it is assumed that the coordinates on the plane acquired by the target area information acquisition unit 10 of the farm field 403 are at the outer peripheral position of the farm field 403.
  • the movement-permitted area determination unit 22 ensures that the coordinates of the height direction acquired by the target area information acquisition unit 10 ensure the safety of the crop height and the flight control.
  • the possible margins are totaled to determine the range in the height direction of the movement permitted area 80i.
  • the movement-permitted area determining unit 22 determines the movement-permitted area 80i by removing the entry-prohibited areas 81b, 82b, 83b, 84b, and 85b from the inner area surrounded by the three-dimensional coordinates.
  • the intra-area route generation unit 40 shown in FIGS. 9 and 10 is a functional unit that generates an intra-area driving route 80r that comprehensively flies within the movement permitted area 80i in the movement permitted area 80i.
  • the in-area driving route 80r is, for example, an outer peripheral route that circulates in an outer peripheral region defined along the outer edge of the movement-permitted area 80i, a reciprocating route that reciprocally scans an inner region defined inside the outer peripheral area, and an outer peripheral area.
  • an outer edge that defines a convex polygon as a convex polygon it has a variant area path that reciprocally scans a variant area protruding outward from the convex polygon.
  • the start point and the end point of the intra-area driving route 80r are generated at the outer edges of the movement-permitted area 80i and in the vicinity of the departure point 406. That is, the start point and the end point of the in-area driving route 80r are generated at the ends of the outer peripheral route or the irregular area route.
  • the start point and the end point of the in-area driving route 80r may be the same point or different points.
  • the intra-area route generation unit 40 shown in FIG. 10 may be able to generate multiple types of driving routes in the route generation target area.
  • the route selection unit 50 can select which one of the driving routes in the area 80r is to be determined. The user may visually determine the driving routes to determine the driving routes.
  • the route selection unit 50 may be capable of inputting priority information by the user. For example, the user inputs into the operation device 401 which of the working time, the battery consumption of the drone 100, and the medicine consumption is to be given the highest priority. In addition, the operation unit 401 may be able to input the second priority index together. The route selection unit 50 selects the driving route that most closely matches the input priority order from the plurality of driving routes. With this configuration, it is possible to efficiently generate a route in accordance with the policy of the user.
  • the drone 100 is a departure / arrival route that generates a driving route 41r (hereinafter, also referred to as “departure / arrival route 41r”) between a departure / arrival point 406 (see FIG. 10) and a predetermined connection point P1. It has a generation unit 61.
  • the departure / arrival route generation unit 61 includes a current location acquisition unit 610, a departure / arrival point storage unit 611, an interruption point storage unit 612, a connection point determination unit 613, an inaccessible area acquisition unit 614, and a departure / arrival route determination unit 615.
  • the current location acquisition unit 610 is a functional unit that acquires the current position coordinates of the drone 100.
  • the current position acquisition unit 610 may acquire the position coordinates of the drone 100 by combining the signal from the RTK base station and the signal from the GPS positioning satellite using the GPS module 504 included in the drone 100.
  • the departure and arrival point storage unit 611 is a functional unit that stores the position coordinates of the departure and arrival point 406 of the drone 100.
  • the position coordinates of the departure / arrival point 406 are the coordinates of the first endpoint of the generated departure / arrival route 41r, that is, the start point or the end point.
  • the departure / arrival point storage unit 611 stores the position coordinates acquired by the current position acquisition unit 610 when the drone 100 takes off.
  • the suspension point storage unit 612 is a functional unit that stores the coordinates of the point where the drone 100 suspends flight on the in-area driving route 80r.
  • the drone 100 suspends the flight when, for example, the battery is exhausted or the stored medicine is exhausted, or when an abnormality occurs in the drone 100 or the surrounding environment and the flight in the movement permission area 80i cannot be continued.
  • the drone 100 suspends flight according to a command from the user 402.
  • the interruption point storage unit 612 stores the position coordinates of the interruption point when the flight is interrupted, which is acquired by the current position acquisition unit 610.
  • connection point determination unit 613 is a functional unit that determines the coordinates of the connection point P1.
  • the coordinates of the connection point P1 are the coordinates of the second endpoint of the generated departure / arrival route 41r.
  • the coordinates of the connection point P1 are determined as the coordinates of the current position of the drone 100 as the coordinates of the connection point P1.
  • connection point P1 is, for example, the interruption point stored in the interruption point storage unit 612 in the immediately preceding flight. If the flight was interrupted during the previous flight, the connection point determination unit 613 determines the coordinates of the flight interruption point stored in the interruption point storage unit 612 as the connection point P1. If the flight is not interrupted during the previous flight, the coordinates of the end point of the in-area driving route 80r are determined as the connection point P1.
  • the entry prohibition area acquisition unit 614 is a functional unit that obtains information on the entry prohibition area in the field 403, which is determined by the entry prohibition area determination unit 21 of the driving route generation device 1. Obstacles need to avoid collisions in the generation of departure and arrival routes. According to the configuration of the entry prohibition area acquisition unit 614, it is possible to generate a safe departure / arrival route based on the information of the entry prohibition area determined by the driving route generation device 1. Note that the prohibited area acquisition unit 614 may determine the prohibited area independently of the driving route generation apparatus 1 based on the coordinate information of the obstacle acquired by the field surveying device 2.
  • the departure and arrival route determination unit 615 is a functional unit that determines the departure and arrival route 41r based on information from the departure and arrival point storage unit 611, the interruption point storage unit 612, the connection point determination unit 613, and the entry prohibition area acquisition unit 614.
  • the departure / arrival route determination unit 615 determines the end points of the departure / arrival route 41r, that is, the start point and the end point, based on the information from the departure / arrival point storage unit 611, the interruption point storage unit 612, and the connection point determination unit 613.
  • the departure / arrival route determination unit 615 determines the departure / arrival route connecting the start point and the end point based on the coordinates of the start point and the end point and the information from the entry prohibited area acquisition unit 614.
  • the departure / arrival route determination unit 615 defines, for example, a virtual line segment that linearly connects the departure / arrival point 406 and the connection point, that is, the start point or the end point of the in-area driving route 80r, or the interruption point, and the virtual line segment is the entry prohibited area.
  • 81b-85b Determine whether or not it has invaded.
  • the departure / arrival route determination unit 615 determines whether the departure / arrival route 41r is the departure / arrival route 41r. If the virtual line segment 410r has not entered the inaccessible areas 81b-85b, the route along the virtual line segment 410 is determined as the departure / arrival route 41r.
  • the departure / arrival route determination unit 615 generates the detour 42r that detours the inaccessible area 83b.
  • the detour 42r is a route 421r along the virtual line segment with respect to the start point of the departure / arrival route, that is, the route from the interruption point P2 to the intersection 421p where the virtual line segment 420r intersects the inaccessible areas 81b-85b.
  • a route 422r is generated along the outer edge of the no-entry area 83b.
  • the route 422r along the plane that flies without changing the height of the drone 100 is generated, but the route along the height direction is generated. Good.
  • the second virtual line segment 424r that connects to the departure / arrival point 406 is redefined, and the second virtual line segment 424r enters the prohibited area 81b-85b. If not, the remaining route 423r is generated along the second virtual line segment 424r.
  • the route up to the intersection with the prohibited area 81b-85b is set as the route along the second virtual line segment 424, and after the intersection, the vehicle enters the area.
  • a detour along the prohibited area 81b-85b is generated and repeated thereafter.
  • the route 432r along the outer edge portion of the entry prohibition area 83b is crossed again with the virtual line segment 420r. You may generate up to the intersection 423p. From the second intersection 423 to the end point of the departure / arrival route 43r, that is, the departure / arrival point 406 in this embodiment, the route 433r is along the virtual line segment 420r. If the vehicle has entered the prohibited area 81b-85b between the second intersection 423 and the end point of the departure / arrival path 43r, a path along the outer edge of the prohibited area 81b-85b is further created and repeated thereafter. By connecting the routes 421r, 432r, and 433r generated in this way, a detouring departure / arrival route 43r is generated.
  • a slender shaped entry-prohibited area 86b is arranged along the outer edge of the movement-permitted area 80i.
  • the departure / arrival route determination unit 615 may generate a departure / arrival route passing through the end point P5 of the in-area driving route 80r, that is, the start point or the end point. More specifically, the departure / arrival route determination unit 615 generates a relay route 44r that connects the interruption point P4 and the connection point 441p on the in-area driving route 80r.
  • the departure / arrival route may be generated by connecting the route 801r generated along a part of the in-area driving route 80r including the end point P5 of the in-area driving route 80r and the relay route 44r.
  • the connection point 441p is, for example, a point on the outer route, and the relay route 44r is generated in the inner area. Further, the connection point 441p may be a point on the round-trip route of the inner area or a variant area route of the irregular area, and the relay route 44r is a route connecting the predetermined coupling point 441p from the interruption point P4. Good.
  • the relay route 44r is a route that does not follow the in-area driving route 80r, and is, for example, the shortest route that linearly connects the interruption point P4 and the connection point 441p.
  • the route 45r from the end point P5 to the departure and arrival point 406 is the same route as when returning after finishing the work in the movement permitted area 80i.
  • the drone 100 moving along the departure / arrival route from the interruption point P4 to the departure / arrival point 406 has a relay route 44r in the inner area, and a route 801r along a part of the driving route in the area from the connection point 441p to the end point P5, and the end point P5. From to the departure point 406 moves along the route 45r. Further, when moving from the departure point 406 to the interruption point P4, the movement is performed in the reverse order.
  • the route 801r may be the same as the moving direction of the in-area driving route 80r or may be the opposite direction. By moving along the in-area driving route 80r, it is possible to utilize a route that has already secured safety, and this safety does not depend on the moving direction.
  • the departure / arrival route determination unit 615 determines a route that bypasses the entry prohibition area. May be generated. Further, the connecting point 441p may be set at another place. Further, the relay route 44r may not be generated, and the stop point P4 to the end point P5 may be moved along the in-area driving route 80r.
  • the calculation processing load for the departure / arrival route determination unit 615 to generate the route is reduced. Further, with respect to the outer edge of the movement permitted area 80i and the entry prohibited area located between the movement permitted area 80i and the departure / arrival point 406, there is no need to calculate when the departure / arrival route is generated, and thus the calculation processing load of the departure / arrival route determination unit 615. Is further reduced. Further, when the drone 100 moves outside the field, if the drone 100 moves along a route that has never moved, the user may be anxious about safety and the like. According to this configuration, since the driving route used during normal work is used when moving out of the field, the operation of the drone 100 becomes known to the user, and the user can feel secure.
  • Information on departure / arrival routes 41r-43r includes three-dimensional coordinates from the start point to the end point, and flight speed, flight acceleration, and turning position and speed information.
  • the departure / arrival route determination unit 615 generates departure / arrival routes 41r-43r that cause the drone 100 to fly at an altitude and speed at which the downdraft generated during the flight of the drone 100 does not collapse the crops growing in the field 403. Specifically, the altitude of the drone 100 on the departure / arrival routes 41r-43r is higher than the altitude on the in-area driving route 80r. Further, the speed of the drone 100 on the departure / arrival routes 41r-43r is slower than the speed on the intra-area driving route 80r.
  • the drone 100 it is difficult for the drone 100 to lodge the crop when flying on the departure and arrival routes 41r-43r.
  • the altitude of the drone 100 on the departure / arrival routes 41r-43r may be sufficiently increased and the speed may be equal to or higher than that of the in-area driving route 80r.
  • the drone 100 can be quickly retracted from the field 403 and can reach a predetermined point in the field 403, so that the drone 100 can be swiftly moved to the next operation.
  • each functional block of the departure / arrival route generation unit 61 determines a start point and an end point of the departure / arrival route will be described with reference to FIG.
  • the generation of the departure / arrival route 41r is started, for example, during preparation for takeoff at the departure / arrival point 406, or at a predetermined time before or after the drone 100 reaches the end point of the in-area driving route 80r. Further, the generation of the arrival / departure route is triggered by the drone 100 running out of medicine, the battery running out, the abnormality detection of the drone 100 and its surroundings, or the work interruption command from the user.
  • the current location acquisition unit 610 acquires the current position coordinates of the drone 100 (S50).
  • the departure / arrival route generation unit 61 determines the departure / arrival point 406 as the start point of the departure / arrival route (S52).
  • the connection point determination unit 613 determines whether or not the interruption point storage unit 612 has a record of the interruption point (S53). When the interruption point is recorded, the connection point determining unit 613 determines the interruption point coordinates as the connection point (S54). That is, the departure / arrival route determination unit 615 determines the interruption point as the end point of the departure / arrival route.
  • the method of determining the connection point in step S53 can be determined by the presence or absence of the recording of the interruption point in the interruption point storage unit 612 as described above, but based on the storage unit that stores the presence or absence of the interruption itself. It is also possible to judge the presence or absence of interruption. Further, it is possible to make the determination based on the information on the presence or absence of interruption input by the operator via the operation device 401.
  • the departure / arrival route determination unit 615 determines the start point coordinates of the in-area driving route 80r as the end point of the departure / arrival route (S55).
  • the departure / arrival route generation unit 61 determines whether or not the current position is the end point of the in-area driving route 80r (S56). If the current location is the end point of the intra-area driving route 80r, the drone 100 may send a record that the planned work is completed in the field 403 to the farm cloud 405 via the network NW (S57). If step S50 is started when the current location is at the end point of the in-area driving route 80r, a record of work completion may be transmitted to the farm cloud 405 before step S50, and step S57. May be omitted.
  • the current position acquisition unit 610 acquires the current position coordinates of the drone 100, and the interruption point storage unit records the position coordinates as the interruption point (S58).
  • the departure / arrival route determination unit 615 determines the current location as the start point of the departure / arrival route 41r and the departure / arrival point 406 as the end point (S59).
  • each functional block of the departure / arrival route generation unit 61 connects the start point and the end point of the departure / arrival route and determines the departure / arrival route will be described with reference to FIG. 15.
  • the prohibited area acquisition unit 614 acquires information about the prohibited area, that is, three-dimensional coordinates from the driving route generation device 1 (S61).
  • the departure / arrival route determination unit 615 defines a virtual line segment between the departure / arrival point 406 and the connection point, that is, the start point or the end point of the in-area driving route 80r, or the interruption point, and the virtual line segment is within the inaccessible area 81b-85b. (S62). If the virtual line segment is inside the entry prohibition area 81b-85b, the departure / arrival route determination unit 615 generates a departure / arrival route that bypasses the entry prohibition area 81b-85b (S63). If the virtual line segment is not within the inaccessible areas 81b-85b, the departure / arrival route determination unit 615 determines the route along the virtual segment as the departure / arrival route (S64).
  • the departure / arrival route determination unit 615 may generate a relay route connecting the connection point and the connection point on the in-area driving route. Further, when the entry prohibited area exists on the relay route, a route bypassing the entry prohibited area may be generated, or another connection point may be defined to regenerate the relay route.
  • the agricultural drug spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and is applicable to all machines that operate autonomously. It can be applied to drones other than agricultural ones that fly autonomously. It can also be applied to a machine that operates autonomously and runs on the ground.
  • a driving route generation system capable of efficiently performing movement control by autonomous driving between a departure / arrival point of a moving device and a predetermined point in a work target area is generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Instructional Devices (AREA)

Abstract

The present invention addresses the problem of generating operation routes that make it possible to efficiently perform movement control by autonomous operation between a departure/arrival point for a mobile device and a prescribed point in a work area. This operation route generation system (1000): generates an operation route for a drone (100) that is to depart/arrive from/to a departure/arrival point that is outside a target area (80) and move within the target area; and comprises an in-area route generation part (40) that generates an in-area operation route (80r) for within the target area on the basis of coordinate information acquired for the target area; a departure/arrival route generation part (61) that generates a departure/arrival route (41r) that connects the departure/arrival point and a prescribed connection point (P1) on the in-area operation route; and an interruption point storage part (612) that stores the coordinates of points at which the travel of the drone along the in-area operation route is interrupted.

Description

運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローンDriving route generation system, driving route generation method, driving route generation program, and drone
本願発明は、運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローンに関する。 The present invention relates to a driving route generation system, a driving route generation method, a driving route generation program, and a drone.
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) generally called drones is progressing. One of its important fields of application is spraying chemicals such as pesticides and liquid fertilizers on farmland (field) (for example, Patent Document 1). In relatively small farms, it is often appropriate to use drones instead of manned planes and helicopters.
準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 With technologies such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Kinematic-Global Positioning System), drones have become able to accurately know their absolute position in centimeters during flight. Even in a farmland with a narrow and complicated terrain typical of the above, it is possible to autonomously fly with minimal manual operation, and to carry out chemical spraying efficiently and accurately.
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。 On the other hand, there were cases in which it was difficult to say that safety considerations were sufficient for autonomous flight drones for agricultural drug spraying. A drone loaded with medicines weighs tens of kilograms, which could have serious consequences in the event of an accident such as falling onto a person. In addition, the drone operator is usually not an expert, so a foolproof mechanism is necessary, but the consideration for this was also insufficient. Until now, there have been drone safety technologies that are premised on human control (for example, Patent Document 2), but in particular, address the safety issues peculiar to autonomous flight drones for drug spraying for agriculture. There was no technology to do this.
また、ドローンが自律飛行を行う運転経路を自動で生成する方法が必要とされている。特許文献3には、圃場において、往復走行させる往復走行経路と、外周形状に沿って周回させる周回走行経路とを生成する走行経路生成システムが開示されている。このシステムは、苗植付装置等の地上走行型の機械が想定されている。 There is also a need for a method of automatically generating a driving route for a drone to fly autonomously. Patent Document 3 discloses a traveling route generation system that generates a reciprocating traveling route for traveling back and forth in a field and a traveling traveling route for traveling along an outer peripheral shape. This system is assumed to be a ground-running machine such as a seedling planting device.
特許文献4には、圃場の外形線が内側に局部的に入り込んだ凹部を有する場合の経路生成を行う走行経路生成装置が開示されている。特許文献5には、走行領域内に存在する障害物を迂回する走行経路を生成する自律走行経路生成システムが開示されている。 Patent Document 4 discloses a traveling route generation device that generates a route when a contour line of a field has a concave portion that locally enters inside. Patent Document 5 discloses an autonomous traveling route generation system that generates a traveling route that bypasses an obstacle existing in the traveling region.
特許公開公報 特開2001-120151Japanese Patent Laid-Open Publication No. 2001-120151 特許公開公報 特開2017-163265Japanese Patent Laid-Open Publication No. 2017-163265 特許公開公報 特開2018-117566Japanese Patent Laid-Open Publication No. 2018-117566 特許公開公報 特開2018-116614Japanese Patent Laid-Open Publication No. 2018-116614 特許公開公報 特開2017-204061Japanese Patent Laid-Open Publication No. 2017-204061
 移動装置の発着地点と作業対象エリアの所定地点との間の自律運転による移動制御を効率よく行うことができる運転経路を生成する運転経路生成システムを提供する。 Provide a driving route generation system that generates a driving route that can efficiently perform movement control by autonomous driving between a departure / arrival point of a mobile device and a predetermined point in a work target area.
 上記目的を達成するため、本発明の一の観点に係る運転経路生成システムは、対象エリア外の発着地点において発着し、前記対象エリア内を移動するドローンの運転経路を生成する運転経路生成システムであって、取得される前記対象エリアの座標情報に基づいて、前記対象エリア内にエリア内運転経路を生成するエリア内経路生成部と、前記発着地点と前記エリア内運転経路上の所定の接続地点との間をつなぐ発着経路を生成する発着経路生成部と、前記ドローンが前記エリア内運転経路上において飛行を中断した地点の座標を記憶する中断地点記憶部を備え、前記発着経路生成部は、前回の飛行時に飛行が中断された場合は、前記中断地点記憶部に記憶された飛行中断地点の座標を前記接続地点として発着経路を生成し、前回の飛行時に飛行が中断されていない場合は、前記エリア内運転経路の端点の座標を前記接続地点として発着経路を生成する。 In order to achieve the above object, a driving route generation system according to one aspect of the present invention is a driving route generation system that generates a driving route of a drone that moves in and out of a target area at a departure and arrival point outside the target area. Then, based on the acquired coordinate information of the target area, an intra-area route generation unit that generates an intra-area driving route within the target area, the departure / arrival point, and a predetermined connection point on the intra-area driving route. A departure-and-arrival route generation unit that generates a departure-and-arrival route that connects between and, the drone includes an interruption point storage unit that stores the coordinates of a point where flight is interrupted on the in-area driving route, and the departure-and-arrival route generation unit, If the flight was interrupted during the previous flight, a departure / arrival route is generated with the coordinates of the flight interruption point stored in the interruption point storage unit as the connection point, If the flight is not interrupted, it generates a departure route the coordinates of the end point of the area driving path as the connection point.
 前記エリア内経路生成部は、障害物の位置および形状の情報に基づいて決定される前記進入禁止エリアを除く前記対象エリア内のエリアに前記エリア内運転経路を生成するものとしてもよい。 The intra-area route generation unit may generate the intra-area driving route in an area within the target area excluding the entry-prohibited area, which is determined based on information on the position and shape of an obstacle.
 前記発着経路生成部は、障害物の位置及び形状の情報に基づいて決定される前記進入禁止エリアを除くエリアに前記発着経路を生成するものとしてもよい。 The departure / arrival route generation unit may generate the departure / arrival route in an area other than the entry-prohibited area determined based on the position and shape information of the obstacle.
 前記発着経路生成部は、前記発着地点と前記接続地点の間に定義される仮想線分が前記進入禁止エリア内にあるか否かを判断し、前記仮想線分が前記進入禁止エリア内にある場合に、前記進入禁止エリアを迂回する発着経路を生成するものとしてもよい。 The departure / arrival route generation unit determines whether or not a virtual line segment defined between the departure / arrival point and the connection point is within the entry prohibited area, and the virtual line segment is within the entry prohibited area. In this case, a departure / arrival route that bypasses the entry prohibited area may be generated.
 前記発着経路生成部は、前記エリア内運転経路の端点を経由する発着経路を生成するものとしてもよい。 The departure / arrival route generation unit may generate a departure / arrival route passing through the end points of the in-area driving route.
 前記発着経路生成部は、前記接続地点と前記エリア内運転経路上の連結地点とを結ぶ中継経路、前記エリア内運転経路の端点を含み前記エリア内運転経路の一部に沿って生成される経路、および前記エリア内運転経路の端点と前記発着地点とを結ぶ経路が連結されてなる前記発着経路を生成するものとしてもよい。 The departure / arrival route generation unit includes a relay route connecting the connection point and a connection point on the in-area driving route, and a route generated along a part of the in-area driving route including end points of the in-area driving route. , And the route connecting the end point of the in-area driving route and the departure / arrival point may be connected to generate the departure / arrival route.
 前記発着経路の情報は、始点から終点までの3次元座標、ならびに飛行速度、飛行加速度、および旋回の位置および速度の少なくとも1個の情報を含むものとしてもよい。 The information on the departure / arrival route may include three-dimensional coordinates from the start point to the end point, and at least one piece of information on the flight speed, the flight acceleration, and the turning position and speed.
 前記発着経路生成部は、前記ドローンの飛行時に生じる下降気流が、前記対象エリアに生育する作物を倒伏させない程度の高度で前記ドローンを飛行させる前記発着経路を生成するものとしてもよい。 The departure / arrival route generation unit may generate the departure / arrival route that causes the drone to fly at an altitude such that the downdraft generated during flight of the drone does not cause the crops growing in the target area to fall over.
 前記発着経路生成部は、前記ドローンに搭載され、前記エリア内経路生成部は、前記ドローンとネットワークを介して接続されるサーバ装置に搭載されるものとしてもよい。 The departure / arrival route generation unit may be mounted on the drone, and the intra-area route generation unit may be mounted on a server device connected to the drone via a network.
 前記発着経路生成部及び前記エリア内経路生成部は、前記ドローンに搭載されるものとしてもよい。 The above-mentioned departure / arrival route generation unit and the above-mentioned intra-area route generation unit may be mounted on the drone.
 上記目的を達成するため、本発明の別の観点に係る運転経路生成方法は、対象エリア外の発着地点において発着し、前記対象エリア内を移動する移動装置の運転経路を生成する運転経路生成方法であって、取得される前記対象エリアの座標情報に基づいて、前記対象エリア内にエリア内運転経路を生成するステップと、前記発着地点と前記エリア内運転経路上の所定の接続地点との間をつなぐ発着経路を生成するステップと、を含む。 In order to achieve the above-mentioned object, a driving route generation method according to another aspect of the present invention is a driving route generation method for generating a driving route of a mobile device that moves in and out of a target area at a departure / arrival point outside the target area. Between the step of generating an in-area driving route in the target area based on the acquired coordinate information of the target area, and between the departure point and the arrival point and a predetermined connection point on the in-area driving route. Generating a departure / arrival route connecting the two.
 前記発着経路を生成するステップにおいて、前回の飛行時に飛行が中断された場合には、飛行中断地点の座標を前記接続地点として発着経路を生成し、前回の飛行時に飛行が中断されていない場合には、前記エリア内運転経路の端点の座標を前記接続地点として発着経路を生成するものとしてもよい。 In the step of generating the departure and arrival route, when the flight is interrupted during the previous flight, when the flight is not interrupted during the previous flight, the departure and arrival route is generated by using the coordinates of the flight interruption point as the connection point. May generate a departure / arrival route using the coordinates of the end points of the in-area driving route as the connection points.
 上記目的を達成するため、本発明のさらに別の観点に係る運転経路生成プログラムは、対象エリア外の発着地点において発着し、前記対象エリア内を移動する移動装置の運転経路を生成する運転経路生成プログラムであって、取得される前記対象エリアの座標情報に基づいて、前記対象エリア内にエリア内運転経路を生成する命令と、前記発着地点と前記エリア内運転経路上の所定の接続地点との間をつなぐ発着経路を生成する命令と、をコンピュータに実行させる。
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
In order to achieve the above-mentioned object, a driving route generation program according to still another aspect of the present invention is a driving route generation for generating a driving route of a mobile device that moves in and out of a target area at a departure and arrival point outside the target area. It is a program, based on the acquired coordinate information of the target area, a command to generate an in-area driving route in the target area, the departure and arrival points and a predetermined connection point on the in-area driving route And causing the computer to execute an instruction for generating a departure and arrival route connecting the two.
The computer program can be provided by being downloaded through a network such as the Internet, or can be provided by being recorded in various computer-readable recording media such as a CD-ROM.
 上記目的を達成するため、本発明のさらに別の観点に係るドローンは、運転経路生成システムにより生成される運転経路に沿って飛行可能なドローンであって、前記運転経路生成システムは上述のいずれかに記載の運転経路生成システムである。
 
In order to achieve the above object, a drone according to still another aspect of the present invention is a drone capable of flying along a driving route generated by a driving route generation system, and the driving route generation system is any one of the above. The driving route generation system described in 1.
 移動装置の発着地点と作業対象エリアの所定地点との間の自律運転による移動制御を効率よく行うことができる運転経路を生成することができる。 ⑦ It is possible to generate a driving route that can efficiently perform movement control by autonomous driving between a departure / arrival point of a mobile device and a predetermined point in a work target area.
本願発明に係るドローンの第1実施形態を示す平面図である。It is a top view which shows 1st Embodiment of the drone which concerns on this invention. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right view of the said drone. 上記ドローンの背面図である。It is a rear view of the said drone. 上記ドローンの斜視図である。It is a perspective view of the drone. 上記ドローンが有する薬剤散布システムの全体概念図である。It is the whole conceptual diagram of the medicine spraying system which the drone has. 上記ドローンの制御機能を表した模式図である。It is a schematic diagram showing the control function of the said drone. 本願発明に係る運転経路生成装置と、ネットワークを介して接続される基地局、操作器、ドローン、および圃場測量装置の様子を示す全体概念図である。FIG. 2 is an overall conceptual diagram showing a state of a driving route generation device according to the present invention, a base station, an operating device, a drone, and a field surveying device connected via a network. 上記運転経路生成装置の機能ブロック図である。FIG. 3 is a functional block diagram of the driving route generation device. 上記運転経路生成装置が運転経路を生成する圃場、上記圃場近辺に決定される進入禁止エリア、および上記圃場内に生成される移動可能エリアの例を示す概略図である。FIG. 6 is a schematic diagram showing an example of a farm field in which the driving route generation device generates a driving route, an entry prohibition area determined in the vicinity of the farm field, and a movable area generated in the farm field. 上記ドローンが有する発着経路生成部が生成する発着経路をより詳細に示す概略図である。It is a schematic diagram showing in detail the departure and arrival route which the departure and arrival route generation part which the above-mentioned drone has. 上記発着経路生成部が生成する発着経路の別の実施形態をより詳細に示す概略図である。FIG. 6 is a schematic diagram showing another embodiment of a departure / arrival route generated by the departure / arrival route generation unit in more detail. 上記発着経路生成部が生成する発着経路の、さらに別の実施形態をより詳細に示す概略図である。It is a schematic diagram showing further another embodiment of a departure and arrival course which the above-mentioned departure and arrival course generation part generates. 上記発着経路生成部が、発着経路の始点および終点を決定するフローチャートである。6 is a flowchart in which the departure / arrival route generation unit determines a start point and an end point of a departure / arrival route. 上記発着経路生成部が、上記進入禁止エリアの情報に基づいて発着経路を生成するフローチャートである。6 is a flowchart in which the departure / arrival route generation unit generates a departure / arrival route based on information on the entry prohibited area.
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The figures are all examples. In the following detailed description, for purposes of explanation, certain specific details are set forth in order to facilitate a thorough understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, well-known structures and devices are schematically shown in order to simplify the drawing.
 本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。ドローンは移動装置の例であり、本願発明に係る運転経路生成装置により生成される運転経路の情報を適宜受信し、当該運転経路に沿って飛行することが可能である。 In the specification of the present application, the drone, regardless of power means (electric power, prime mover, etc.), control method (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft that have multiple rotors. The drone is an example of a mobile device, and can appropriately receive information on a driving route generated by the driving route generation device according to the present invention and fly along the driving route.
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。 As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of battery consumption, eight aircraft (four sets of two-stage rotary blades) are provided.
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター(102)は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been. The motor (102) is an example of a propeller. The upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc. The axes are collinear and rotate in opposite directions. Although some rotor blades 101-3b and the motor 102-3b are not shown, their positions are self-explanatory, and if there is a left side view, they are at the positions shown. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard, which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is to promote the buckling of the member to the outside of the rotor blade at the time of collision and prevent the member from interfering with the rotor.
 薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines. In the specification of the present application, the term "medicine" generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
 薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and each drug nozzle 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve to support the chemical nozzle. The pump 106 is a means for discharging the medicine from the nozzle.
 図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図示していない)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい)。操作器401とドローン100はWi-Fi等による無線通信を行う。 FIG. 6 shows an overall conceptual diagram of a system using an example of drug spraying application of the drone 100 according to the present invention. This figure is a schematic diagram and the scale is not accurate. The operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program. Although the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and in an emergency. In addition to portable information devices, you may use an emergency operating device (not shown) that has a function dedicated to emergency stop (the emergency operating device is a large emergency stop button, etc. so that you can respond quickly in an emergency). It may be a dedicated device with). The operation unit 401 and the drone 100 perform wireless communication by Wi-Fi or the like.
 圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。 The field 403 is a rice field, a field, etc. to which the drug is sprayed by the drone 100. Actually, the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance, or the topographic map and the situation at the site are inconsistent. Normally, the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like. In addition, there may be obstacles such as buildings and electric wires in the field 403.
 基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。また、営農クラウド405は、ドローン100とネットワークを介して接続されているサーバ装置等のハードウェアで構成されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The base station 404 is a device that provides a master device function of Wi-Fi communication and the like, and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices). The farm cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like. The farm cloud 405 may also be configured with hardware such as a server device connected to the drone 100 via a network. The farm cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route. Also, the drone 100 may be provided with the topographical information of the farm field 403 that has been saved. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
 通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Normally, the drone 100 takes off from a landing point 406 outside the field 403 and returns to the landing point 406 after spraying a drug on the field 403, or when it becomes necessary to replenish or charge the drug. The flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
 図7に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 FIG. 7 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, a memory, related software, and the like. The flight controller 501, based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100. The actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten via a storage medium or the like for function expansion / change, problem correction, etc., or via communication means such as Wi-Fi communication or USB. In this case, encryption, checksum, electronic signature, virus check software, etc. are used to prevent rewriting by unauthorized software. Further, a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation device 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
 バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であってもよい。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されている。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであってもよい。 The battery 502 is a means for supplying electric power to the flight controller 501 and other components of the drone, and may be rechargeable. The battery 502 is connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker. The battery 502 may be a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
 フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 interacts with the operation unit 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit. Can be sent to 401. In this case, the communication may be encrypted so as to prevent illegal acts such as interception, spoofing, and hijacking of the device. The base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is of high importance, it may be duplicated / multiplexed, and each redundant GPS module 504 should use a different satellite to cope with the failure of a specific GPS satellite. It may be controlled.
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring acceleration of the drone aircraft in three directions orthogonal to each other (further, a means for calculating speed by integrating acceleration). The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves. These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. When there are a plurality of sensors having the same purpose, the flight controller 501 may use only one of them, and when it fails, it may switch to another sensor and use it. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 The flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount. The multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis. The obstacle detection camera 513 is a camera for detecting a drone obstacle and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. . The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open. The drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed. In addition, a sensor may be provided at the base station 404 outside the drone 100, the operation device 401, or another place, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404, and information regarding wind force / wind direction may be transmitted to the drone 100 via Wi-Fi communication.
 フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge. The current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。表示手段は、LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for notifying the drone operator of the status of the drone. As the display means, a display means such as a liquid crystal display may be used instead of or in addition to the LED. The buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal. The Wi-Fi slave device function 519 is an optional component for communicating with an external computer or the like, for example, for software transfer, etc., separately from the controller 401. In addition to or in addition to the Wi-Fi cordless handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used. The speaker 520 is an output means for notifying the drone state (particularly, the error state) by the recorded human voice, synthesized voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice. The warning light 521 is a display means such as a strobe light for notifying the drone state (particularly an error state). These input / output means may be selected according to the cost target and performance requirements of the drone, or may be duplicated / multiplexed.
 ドローン100は、発着地点406から離陸して圃場403内の所定地点まで飛行し、圃場403内を後述するエリア内運転経路に沿って飛行した後、圃場403内の所定地点から発着地点406まで飛行して帰還する。そこで、ドローン100は、圃場403内のエリア内運転経路に加えて、発着地点406から圃場403内の所定地点まで、および当該所定地点から発着地点406までに関しても、運転経路を生成して自動で移動する必要がある。圃場403内の所定地点とは、エリア内運転経路上の地点であり、エリア外運転経路とエリア内運転経路を接続する地点である(以下、「接続地点」ともいう。)。 The drone 100 takes off from the landing point 406 and flies to a predetermined point in the field 403, flies along the area driving route described later in the field 403, and then flies from the predetermined point in the field 403 to the landing point 406. And then return. Therefore, the drone 100, in addition to the in-area driving route in the farm field 403, automatically generates a driving route from the landing point 406 to a predetermined point in the farm field 403, and also from the predetermined point to the landing point 406. Need to move. The predetermined point in the field 403 is a point on the in-area driving route, and is a point connecting the out-of-area driving route and the in-area driving route (hereinafter, also referred to as “connection point”).
 接続地点は、例えば圃場403内における薬剤散布又は監視等の作業の開始地点および終了地点である。また、接続地点は、バッテリー切れや散布する薬剤切れの場合に、作業を中断する中断地点を含む。さらに、接続地点は、使用者402からの指令により作業を中断する中断地点を含む。 The connection points are, for example, the starting point and the ending point of the work such as spraying or monitoring of chemicals in the field 403. Further, the connection point includes an interruption point at which work is interrupted when the battery runs out or the sprayed medicine runs out. Furthermore, the connection point includes an interruption point at which work is interrupted by a command from the user 402.
 接続地点の座標は、作業の進捗により異なるため、発着地点406と接続地点との間の運転経路はドローン100の飛行前にあらかじめ生成しておくことが困難である。また、発着地点406に関しても、ドローン100を載置しようとした際に当初予定していた発着地点406に車等の障害物が置かれている、といった現場の状況により、当初予定していた発着地点406から離陸できない可能性もある。そこで、発着地点406と接続地点との間の運転経路に関しては、ドローン100により生成する。また、エリア内運転経路に関しては、作業の進捗や現場の状況により変化することがないため、運転経路生成装置によりあらかじめ生成する。この構成によれば、あらかじめ生成可能であり計算処理の負担が大きい圃場内運転経路の生成はドローン100以外の外部装置に行わせることにより、ドローン100の計算処理負担を軽減することができる。また、状況に応じて変化する発着地点406と接続地点との間の運転経路の生成はドローン100により行わせることにより、外部装置との通信により生じる時間を節約し、圃場403への入退出をスムースに行うことができる。 Since the coordinates of the connection point vary depending on the progress of the work, it is difficult to generate the driving route between the departure point 406 and the connection point in advance before the flight of the drone 100. In addition, regarding the departure / arrival point 406, due to the situation at the site such as an obstacle such as a car placed at the departure / arrival point 406 that was originally planned when the drone 100 was placed, the originally scheduled departure / arrival point It may not be possible to take off from point 406. Therefore, the drone 100 generates the driving route between the departure point 406 and the connection point. The driving route in the area is generated in advance by the driving route generation device because it does not change depending on the progress of work or the situation of the site. According to this configuration, by causing an external device other than the drone 100 to generate an in-field operation route that can be generated in advance and has a heavy calculation processing load, the calculation processing load of the drone 100 can be reduced. Further, by generating the driving route between the departure point 406 and the connection point, which changes depending on the situation, by the drone 100, the time generated by the communication with the external device is saved, and the entry / exit to / from the farm field 403 is saved. It can be done smoothly.
 図8に示すように、運転経路生成装置1は、ネットワークNWを介してドローン100、操作器401、基地局404および圃場測量装置2に接続されている。運転経路生成装置1は、その機能が営農クラウド405上にあってもよいし、別途の装置であってもよい。圃場は、対象エリアの例である。ドローン100は、移動装置の例である。また、各構成がネットワークNWを介して接続されている構成に代えて、ドローン100が運転経路生成装置1を有する構成であってもよい。特に、後述する発着経路生成部61(図8参照)及びエリア内経路生成部(図9参照)がドローン100に搭載されていてもよい。さらに、圃場測量装置2が運転経路生成装置1を有する構成であってもよい。少なくとも、運転経路生成装置1およびドローン100は、運転経路生成システム1000を構成する。 As shown in FIG. 8, the driving route generation device 1 is connected to the drone 100, the operation device 401, the base station 404, and the field survey device 2 via the network NW. The function of the driving route generation device 1 may be on the farm cloud 405 or may be a separate device. The farm field is an example of the target area. Drone 100 is an example of a mobile device. Further, instead of the configuration in which each configuration is connected via the network NW, the drone 100 may have a configuration including the driving route generation device 1. In particular, a departure / arrival route generation unit 61 (see FIG. 8) and an in-area route generation unit (see FIG. 9) described later may be mounted on the drone 100. Further, the field surveying device 2 may have the driving route generating device 1. At least, the driving route generation device 1 and the drone 100 configure a driving route generation system 1000.
 圃場測量装置2は、RTK-GPSの移動局の機能を有する装置であり、圃場の座標情報を測量することができる。圃場測量装置2は、使用者により保持して歩行することが可能な小型の装置であり、例えば棒状の装置である。圃場測量装置2は、下端を地面についた状態で、使用者が直立して上端部を保持できる程度の長さの、杖のような装置であってもよい。ある圃場の座標情報を読み取るために使用可能な圃場測量装置2の個数は、1個であっても複数であってもよい。複数の圃場測量装置2により1か所の圃場に関する座標情報を測量可能な構成によれば、複数の使用者がそれぞれ圃場測量装置2を保持して圃場を歩行することができるため、測量作業を短時間で完了することができる。 The field surveying device 2 is a device having the function of a mobile station of RTK-GPS, and can measure the coordinate information of the field. The field surveying device 2 is a small device that can be held and walked by the user, and is, for example, a rod-shaped device. The field surveying device 2 may be a device such as a cane that is long enough to allow the user to stand upright and hold the upper end with the lower end attached to the ground. The number of field surveying devices 2 that can be used to read the coordinate information of a certain field may be one or more. According to the configuration in which the coordinate information about one field can be measured by the plurality of field surveying devices 2, a plurality of users can hold the field surveying device 2 and walk in the field. It can be completed in a short time.
 また、圃場測量装置2は、圃場における障害物の情報を測量することができる。障害物は、ドローン100が衝突する危険のある壁や法面、電柱、電線などや、薬剤散布又は監視を要さない各種物体を含む。 Also, the field surveying device 2 can measure information on obstacles in the field. The obstacles include walls and slopes at which the drone 100 may collide, utility poles, electric wires, and various objects that do not require drug spraying or monitoring.
 圃場測量装置2は、入力部201、座標検出部202および送信部203を備える。 The field survey device 2 includes an input unit 201, a coordinate detection unit 202, and a transmission unit 203.
 入力部201は、圃場測量装置2の上端部に設けられる構成であり、例えば使用者の押下を受け付けるボタンである。使用者は、圃場測量装置2の下端の座標を測量する際に、入力部201のボタンを押下する。 The input unit 201 is provided at the upper end of the field surveying device 2, and is, for example, a button that receives a user's press. The user presses the button of the input unit 201 when measuring the coordinates of the lower end of the field surveying device 2.
 また、入力部201は、入力される情報が圃場の外周に関する座標であるか、障害物の外周の座標であるかを区別して入力可能に構成されている。さらに、入力部201は、障害物の外周の座標を、障害物の種類と関連付けて入力可能である。 Also, the input unit 201 is configured to be able to input by distinguishing whether the input information is the coordinates relating to the outer circumference of the field or the coordinates of the outer circumference of the obstacle. Further, the input unit 201 can input the coordinates of the outer circumference of the obstacle in association with the type of the obstacle.
 座標検出部202は、基地局404と適宜通信を行って圃場測量装置2の下端の3次元座標を検出可能な機能部である。 The coordinate detection unit 202 is a functional unit that can appropriately communicate with the base station 404 and detect the three-dimensional coordinates of the lower end of the field surveying device 2.
 送信部203は、入力部201への入力に基づいて、当該入力時の圃場測量装置2下端の3次元座標を、ネットワークNWを介して操作器401又は運転経路生成装置1に送信する機能部である。送信部203は、当該3次元座標を、ポインティングされた順番とともに送信する。 The transmission unit 203, based on the input to the input unit 201, a three-dimensional coordinate of the lower end of the field surveying device 2 at the time of the input, a functional unit that transmits to the operation unit 401 or the driving route generation device 1 via the network NW. is there. The transmission unit 203 transmits the three-dimensional coordinates together with the pointing order.
 圃場の座標情報を読み取る工程において、使用者は、圃場測量装置2を持って圃場を移動する。まず、当該圃場の3次元座標を取得する。使用者は、圃場の端点又は端辺上において入力部201によるポインティングを行う。次いで、使用者は、障害物の端点又は端辺上において入力部201によるポインティングを行う。 In the process of reading the coordinate information of the field, the user moves the field with the field survey device 2. First, the three-dimensional coordinates of the field are acquired. The user performs pointing with the input unit 201 on the end point or the end side of the field. Next, the user performs pointing with the input unit 201 on the end point or the end side of the obstacle.
 ポインティングされて送信される圃場の端点又は端辺上の3次元座標は、圃場外周の3次元座標および障害物の3次元座標を区別して、運転経路生成装置1により受信される。また、ポインティングされる3次元座標は、操作器401の受信部4011により受信され、表示部4012により表示されてもよい。また、操作器401は、受信される3次元座標が圃場外周又は障害物の3次元座標として適しているかを判定し、再測量が必要と判定される場合は、表示部4012を通じて使用者に再測量を促してもよい。 3D coordinates on the endpoints or edges of the field that are pointed and transmitted are received by the driving route generation device 1 by distinguishing between the 3D coordinates of the field periphery and the 3D coordinates of obstacles. Also, the three-dimensional coordinates to be pointed may be received by the receiving unit 4011 of the operation device 401 and displayed by the display unit 4012. In addition, the operation unit 401 determines whether the received three-dimensional coordinates are suitable as the three-dimensional coordinates of the field outer circumference or the obstacle, and if re-measurement is determined to be necessary, the operation unit 401 re-displays it to the user through the display unit 4012. You may encourage surveying.
 なお、圃場測量装置2は、圃場および障害物の位置および外縁形状を、座標情報により取得する構成に代えて、画像を撮像した上で当該画像を解析することで取得してもよい。この場合、入力部201は撮像部であり、静止画像又は動画を撮像可能なカメラであってもよいし、ステレオカメラや360°カメラであってもよい。また、圃場測量装置2は、ソナーや、レーダー波による測距装置により障害物の位置および形状を取得してもよい。 Note that the field surveying device 2 may acquire the position and the outer edge shape of the field and obstacles by capturing an image and then analyzing the image instead of acquiring the coordinate information. In this case, the input unit 201 is an image capturing unit, and may be a camera capable of capturing a still image or a moving image, or a stereo camera or a 360 ° camera. Further, the field surveying device 2 may acquire the position and shape of the obstacle by a sonar or a distance measuring device using radar waves.
 図9に示すように、運転経路生成装置1は、対象エリア情報取得部10、移動許可エリア生成部20、エリア策定部30、エリア内経路生成部40、および経路選択部50を備える。 As shown in FIG. 9, the driving route generation device 1 includes a target area information acquisition unit 10, a movement permitted area generation unit 20, an area planning unit 30, an intra-area route generation unit 40, and a route selection unit 50.
 対象エリア情報取得部10は、圃場測量装置2から送信される3次元座標の情報を取得する機能部である。 The target area information acquisition unit 10 is a functional unit that acquires information on the three-dimensional coordinates transmitted from the field surveying device 2.
 図10に示すように、移動許可エリア生成部20は、対象エリア情報取得部10により取得される3次元座標に基づいて、圃場403内においてドローン100が移動する移動許可エリア80iを指定する。移動許可エリア生成部20は、進入禁止エリア決定部21、および移動許可エリア決定部22を有する。 As shown in FIG. 10, the movement permission area generation unit 20 specifies the movement permission area 80i in the field 403 where the drone 100 moves based on the three-dimensional coordinates acquired by the target area information acquisition unit 10. The movement permission area generation unit 20 includes an entry prohibition area determination unit 21 and a movement permission area determination unit 22.
 進入禁止エリア決定部21は、対象エリア情報取得部10により取得される障害物81a,82a,83a,84a,85aの3次元座標および当該障害物の種類に基づいて、ドローン100の進入禁止エリア81b,82b,83b,84b,85bを決定する機能部である。進入禁止エリア81b,82b,83b,84b,85bは、障害物81a,82a,83a,84a,85aおよび障害物周辺のエリアを含む領域である。進入禁止エリア81b,82b,83b,84b,85bは、水平方向および高さ方向に規定される、3次元方向に広がりを有する領域であり、例えば障害物81a,82a,83a,84a,85aを中心にして描かれる直方体状の領域である。なお、進入禁止エリア81b,82b,83b,84b,85bは、障害物を中心に描かれる球状の領域であってもよい。ドローン100は空中を飛行するため、障害物の高さ方向の大きさによっては障害物の上空を飛行することが可能である。障害物の高さ方向の大きさにより、障害物の上空を進入禁止エリアとはみなさない構成によれば、障害物を過剰に迂回することなく圃場内を効率的に飛行することができる。 The prohibited area determining unit 21 determines the prohibited area 81b of the drone 100 based on the three-dimensional coordinates of the obstacles 81a, 82a, 83a, 84a, 85a acquired by the target area information acquisition unit 10 and the type of the obstacle. , 82b, 83b, 84b, 85b is a functional unit for determining. The prohibited areas 81b, 82b, 83b, 84b, 85b are areas including obstacles 81a, 82a, 83a, 84a, 85a and areas around the obstacles. The no- entry areas 81b, 82b, 83b, 84b, 85b are areas defined in the horizontal direction and the height direction and having a three-dimensional spread, for example, obstacles 81a, 82a, 83a, 84a, 85a It is a rectangular parallelepiped area drawn as. Note that the prohibited areas 81b, 82b, 83b, 84b, 85b may be spherical areas drawn around an obstacle. Since the drone 100 flies in the air, it is possible to fly over the obstacle depending on the size of the obstacle in the height direction. Due to the size of the obstacle in the height direction, the structure above the obstacle is not considered as an inaccessible area, so that the obstacle can be efficiently bypassed without circumventing the obstacle.
 障害物外縁から進入禁止エリア81b,82b,83b,84b,85bの外縁に至る距離は、障害物81a,82a,83a,84a,85aの種類により決定される。ドローン100が衝突した場合の危険度が大きい障害物ほど、障害物外縁から進入禁止エリア81b,82b,83b,84b,85bの外縁に至る距離は大きい。例えば、家屋の場合、家屋の外縁から50cmの範囲を進入禁止エリアとする一方、電線の外縁から80cmの範囲を進入禁止エリアとする。電線の場合は衝突時にドローン100の故障に加えて送電不良や電線の破壊等の事象が起こり得るため、衝突時の危険度がより高いと考えられるためである。進入禁止エリア決定部21は、障害物の種類と進入禁止エリアの大きさとが関連付けられる障害物テーブルをあらかじめ記憶していて、取得される障害物の種類に応じて進入禁止エリアの大きさを決定する。 The distance from the outer edge of the obstacle to the outer edge of the no- entry areas 81b, 82b, 83b, 84b, 85b is determined by the type of obstacle 81a, 82a, 83a, 84a, 85a. The greater the degree of danger when the drone 100 collides, the greater the distance from the outer edge of the obstacle to the outer edges of the no- entry areas 81b, 82b, 83b, 84b, 85b. For example, in the case of a house, the area of 50 cm from the outer edge of the house is set as the entry prohibited area, while the area of 80 cm from the outer edge of the electric wire is set as the entry prohibited area. This is because in the case of an electric wire, in addition to the failure of the drone 100 at the time of a collision, an event such as a power transmission failure or a breakage of the electric wire may occur, so that the risk at the time of the collision is considered to be higher. The no-entry area determination unit 21 stores in advance an obstacle table in which the type of obstacle and the size of the no-entry area are associated with each other, and determines the size of the no-entry area in accordance with the type of obstacle acquired. To do.
 移動許可エリア決定部22は、移動許可エリア80iを決定する機能部である。移動許可エリア80iの平面方向に関しては、圃場403の対象エリア情報取得部10により取得される平面上の座標が圃場403の外周位置にあるものとする。移動許可エリア決定部22は、移動許可エリア80iの高さ方向に関しては、対象エリア情報取得部10により取得される高さ方向の座標に、作物の高さや、飛行を制御する際に安全が担保できるマージンを合計して、移動許可エリア80iの高さ方向の範囲を決定する。当該移動許可エリア決定部22は、当該3次元座標に囲まれている内側の領域から進入禁止エリア81b,82b,83b,84b,85bを除くことで移動許可エリア80iを決定する。 The movement permission area determination unit 22 is a functional unit that determines the movement permission area 80i. Regarding the plane direction of the movement permitted area 80i, it is assumed that the coordinates on the plane acquired by the target area information acquisition unit 10 of the farm field 403 are at the outer peripheral position of the farm field 403. Regarding the height direction of the movement-permitted area 80i, the movement-permitted area determination unit 22 ensures that the coordinates of the height direction acquired by the target area information acquisition unit 10 ensure the safety of the crop height and the flight control. The possible margins are totaled to determine the range in the height direction of the movement permitted area 80i. The movement-permitted area determining unit 22 determines the movement-permitted area 80i by removing the entry-prohibited areas 81b, 82b, 83b, 84b, and 85b from the inner area surrounded by the three-dimensional coordinates.
 図9および図10に示すエリア内経路生成部40は、移動許可エリア80iに、移動許可エリア80i内を網羅的に飛行するエリア内運転経路80rを生成する機能部である。 The intra-area route generation unit 40 shown in FIGS. 9 and 10 is a functional unit that generates an intra-area driving route 80r that comprehensively flies within the movement permitted area 80i in the movement permitted area 80i.
 エリア内運転経路80rは、例えば移動許可エリア80iの外縁に沿って規定される外周エリアを周回する外周経路、外周エリアの内側に規定される内側エリアを往復して走査する往復経路、および外周エリアを区画する外縁を凸多角形として規定するとき、当該凸多角形から外側に突出する異形エリアを往復して走査する異形エリア経路を有する。エリア内運転経路80rの始点および終点は、移動許可エリア80iの外縁であって、発着地点406に近接する地点に生成される。すなわち、エリア内運転経路80rの始点および終点は、外周経路又は異形エリア経路の端部に生成される。なお、エリア内運転経路80rの始点および終点は、互いに同一の地点であってもよいし、異なる地点であってもよい。 The in-area driving route 80r is, for example, an outer peripheral route that circulates in an outer peripheral region defined along the outer edge of the movement-permitted area 80i, a reciprocating route that reciprocally scans an inner region defined inside the outer peripheral area, and an outer peripheral area. When defining an outer edge that defines a convex polygon as a convex polygon, it has a variant area path that reciprocally scans a variant area protruding outward from the convex polygon. The start point and the end point of the intra-area driving route 80r are generated at the outer edges of the movement-permitted area 80i and in the vicinity of the departure point 406. That is, the start point and the end point of the in-area driving route 80r are generated at the ends of the outer peripheral route or the irregular area route. The start point and the end point of the in-area driving route 80r may be the same point or different points.
 図10に示すエリア内経路生成部40は、経路生成対象エリアに複数種類の運転経路を生成可能であってもよい。経路選択部50は、エリア内運転経路80rをいずれの運転経路に決定するかを選択可能である。使用者は、生成される複数の運転経路を目視して、運転経路を決定してもよい。 The intra-area route generation unit 40 shown in FIG. 10 may be able to generate multiple types of driving routes in the route generation target area. The route selection unit 50 can select which one of the driving routes in the area 80r is to be determined. The user may visually determine the driving routes to determine the driving routes.
 また、経路選択部50は、使用者により優先順位の情報が入力可能であってもよい。例えば、使用者は、作業時間、ドローン100のバッテリー消費量、および薬剤消費量のうち、いずれを最優先するかを操作器401に入力する。また、操作器401は、2番目に優先すべき指標を合わせて入力可能であってもよい。経路選択部50は、複数の運転経路のうち、入力される優先順位に最も合致する運転経路を選択する。この構成によれば、使用者の方針に合わせた、効率の良い経路生成が可能である。 Further, the route selection unit 50 may be capable of inputting priority information by the user. For example, the user inputs into the operation device 401 which of the working time, the battery consumption of the drone 100, and the medicine consumption is to be given the highest priority. In addition, the operation unit 401 may be able to input the second priority index together. The route selection unit 50 selects the driving route that most closely matches the input priority order from the plurality of driving routes. With this configuration, it is possible to efficiently generate a route in accordance with the policy of the user.
 図8に示すように、ドローン100は、発着地点406(図10参照)と所定の接続地点P1との間の運転経路41r(以下、それぞれ「発着経路41r」ともいう。)を生成する発着経路生成部61を有する。発着経路生成部61は、現在地取得部610、発着地点記憶部611、中断地点記憶部612、接続地点決定部613、進入禁止エリア取得部614および発着経路決定部615を有する。 As shown in FIG. 8, the drone 100 is a departure / arrival route that generates a driving route 41r (hereinafter, also referred to as “departure / arrival route 41r”) between a departure / arrival point 406 (see FIG. 10) and a predetermined connection point P1. It has a generation unit 61. The departure / arrival route generation unit 61 includes a current location acquisition unit 610, a departure / arrival point storage unit 611, an interruption point storage unit 612, a connection point determination unit 613, an inaccessible area acquisition unit 614, and a departure / arrival route determination unit 615.
 現在地取得部610は、ドローン100の現在の位置座標を取得する機能部である。現在地取得部610は、ドローン100が備えるGPSモジュール504を用いて、RTK基地局の信号とGPS測位衛星からの信号を組み合わせることでドローン100の位置座標を取得してもよい。 The current location acquisition unit 610 is a functional unit that acquires the current position coordinates of the drone 100. The current position acquisition unit 610 may acquire the position coordinates of the drone 100 by combining the signal from the RTK base station and the signal from the GPS positioning satellite using the GPS module 504 included in the drone 100.
 発着地点記憶部611は、ドローン100の発着地点406の位置座標を記憶する機能部である。発着地点406の位置座標は、生成する発着経路41rの第1端点、すなわち始点又は終点の座標である。発着地点記憶部611は、現在地取得部610により取得される、ドローン100が離陸を行う時点での位置座標を記憶しておく。 The departure and arrival point storage unit 611 is a functional unit that stores the position coordinates of the departure and arrival point 406 of the drone 100. The position coordinates of the departure / arrival point 406 are the coordinates of the first endpoint of the generated departure / arrival route 41r, that is, the start point or the end point. The departure / arrival point storage unit 611 stores the position coordinates acquired by the current position acquisition unit 610 when the drone 100 takes off.
 中断地点記憶部612は、ドローン100がエリア内運転経路80r上において飛行を中断した地点の座標を記憶する機能部である。ドローン100は、例えばバッテリー切れや貯留されている薬剤切れを検知した場合や、ドローン100や周辺環境に異常が発生し、移動許可エリア80i内の飛行を継続することができない場合に飛行を中断する。また、ドローン100は、使用者402からの指令により飛行を中断する。中断地点記憶部612は、現在地取得部610により取得される、飛行を中断する場合における当該中断地点の位置座標を記憶する。 The suspension point storage unit 612 is a functional unit that stores the coordinates of the point where the drone 100 suspends flight on the in-area driving route 80r. The drone 100 suspends the flight when, for example, the battery is exhausted or the stored medicine is exhausted, or when an abnormality occurs in the drone 100 or the surrounding environment and the flight in the movement permission area 80i cannot be continued. . In addition, the drone 100 suspends flight according to a command from the user 402. The interruption point storage unit 612 stores the position coordinates of the interruption point when the flight is interrupted, which is acquired by the current position acquisition unit 610.
 図9、10に示すように、接続地点決定部613は、接続地点P1の座標を決定する機能部である。接続地点P1の座標は、生成する発着経路41rの第2端点の座標である。接続地点P1の座標は、ドローン100が移動許可エリア80i内のエリア内運転経路80r上にいる場合は、ドローン100の現在の位置座標を接続地点P1の座標として決定する。 As shown in FIGS. 9 and 10, the connection point determination unit 613 is a functional unit that determines the coordinates of the connection point P1. The coordinates of the connection point P1 are the coordinates of the second endpoint of the generated departure / arrival route 41r. When the drone 100 is on the intra-area driving route 80r in the movement permitted area 80i, the coordinates of the connection point P1 are determined as the coordinates of the current position of the drone 100 as the coordinates of the connection point P1.
 ドローン100が発着地点406にある場合、接続地点P1は、例えば直前の飛行で中断地点記憶部612により記憶されている中断地点である。前回の飛行時に飛行が中断された場合、接続地点決定部613は、中断地点記憶部612に記憶されている飛行中断地点の座標を接続地点P1として決定する。また、前回の飛行時に飛行が中断されていない場合は、エリア内運転経路80rの端点の座標を接続地点P1として決定する。 When the drone 100 is at the departure point 406, the connection point P1 is, for example, the interruption point stored in the interruption point storage unit 612 in the immediately preceding flight. If the flight was interrupted during the previous flight, the connection point determination unit 613 determines the coordinates of the flight interruption point stored in the interruption point storage unit 612 as the connection point P1. If the flight is not interrupted during the previous flight, the coordinates of the end point of the in-area driving route 80r are determined as the connection point P1.
 進入禁止エリア取得部614は、運転経路生成装置1の進入禁止エリア決定部21が決定する、圃場403内の進入禁止エリアの情報を取得する機能部である。障害物は、発着経路の生成においても衝突を回避する必要がある。進入禁止エリア取得部614の構成によれば、運転経路生成装置1が決定する進入禁止エリアの情報に基づいて、安全な発着経路を生成することができる。なお、進入禁止エリア取得部614は、圃場測量装置2が取得する障害物の座標情報に基づいて、運転経路生成装置1とは独立して進入禁止エリアを決定してもよい。 The entry prohibition area acquisition unit 614 is a functional unit that obtains information on the entry prohibition area in the field 403, which is determined by the entry prohibition area determination unit 21 of the driving route generation device 1. Obstacles need to avoid collisions in the generation of departure and arrival routes. According to the configuration of the entry prohibition area acquisition unit 614, it is possible to generate a safe departure / arrival route based on the information of the entry prohibition area determined by the driving route generation device 1. Note that the prohibited area acquisition unit 614 may determine the prohibited area independently of the driving route generation apparatus 1 based on the coordinate information of the obstacle acquired by the field surveying device 2.
 発着経路決定部615は、発着地点記憶部611、中断地点記憶部612、接続地点決定部613、および進入禁止エリア取得部614からの情報に基づいて、発着経路41rを決定する機能部である。発着経路決定部615は、発着地点記憶部611、中断地点記憶部612および接続地点決定部613からの情報に基づいて、発着経路41rの端点、すなわち始点と終点を決定する。 The departure and arrival route determination unit 615 is a functional unit that determines the departure and arrival route 41r based on information from the departure and arrival point storage unit 611, the interruption point storage unit 612, the connection point determination unit 613, and the entry prohibition area acquisition unit 614. The departure / arrival route determination unit 615 determines the end points of the departure / arrival route 41r, that is, the start point and the end point, based on the information from the departure / arrival point storage unit 611, the interruption point storage unit 612, and the connection point determination unit 613.
 また、発着経路決定部615は、当該始点と終点の座標、および進入禁止エリア取得部614からの情報に基づいて、始点と終点とを結ぶ発着経路を決定する。発着経路決定部615は、例えば発着地点406と接続地点、すなわちエリア内運転経路80rの始点もしくは終点、又は中断地点とを直線的に結ぶ仮想線分を規定し、当該仮想線分が進入禁止エリア81b-85b内に侵入しているか否かを判定する。 Further, the departure / arrival route determination unit 615 determines the departure / arrival route connecting the start point and the end point based on the coordinates of the start point and the end point and the information from the entry prohibited area acquisition unit 614. The departure / arrival route determination unit 615 defines, for example, a virtual line segment that linearly connects the departure / arrival point 406 and the connection point, that is, the start point or the end point of the in-area driving route 80r, or the interruption point, and the virtual line segment is the entry prohibited area. 81b-85b Determine whether or not it has invaded.
 図11に示すように、例えばドローン100が発着地点406にあり、中断地点P1までの発着経路41rを生成する場合、発着経路決定部615は、発着地点406と中断地点P1を結ぶ仮想線分410rを規定する。仮想線分410rが進入禁止エリア81b-85b内に侵入していない場合、仮想線分410に沿う経路を発着経路41rに決定する。 As shown in FIG. 11, for example, when the drone 100 is at the departure / arrival point 406 and generates the departure / arrival route 41r to the interruption point P1, the departure / arrival route determination unit 615, the virtual line segment 410r connecting the departure / arrival point 406 and the interruption point P1. Stipulate. If the virtual line segment 410r has not entered the inaccessible areas 81b-85b, the route along the virtual line segment 410 is determined as the departure / arrival route 41r.
 例えばドローン100が中断地点P2にあり、発着地点406までの発着経路42rを生成する場合、中断地点P2と発着地点406を結ぶ仮想線分420rを規定する。本実施例においては、仮想線分420rは進入禁止エリア83b内に侵入している。したがって、発着経路決定部615は、進入禁止エリア83bを迂回する迂回路42rを生成する。迂回路42rは、発着経路の始点、すなわち中断地点P2から仮想線分420rが進入禁止エリア81b-85bと交わる交点421pまでの経路に関しては、仮想線分に沿う経路421rである。交点421p以降においては、進入禁止エリア83bの外縁部に沿う経路422rが生成される。なお、本実施例においては進入禁止エリア83bの外縁部に対し、ドローン100の高さを略変えずに飛行する、平面に沿う経路422rを生成したが、高さ方向に沿う経路を生成してもよい。 For example, when the drone 100 is at the interruption point P2 and generates the departure / arrival route 42r to the departure / arrival point 406, a virtual line segment 420r connecting the interruption point P2 and the departure / arrival point 406 is defined. In this embodiment, the virtual line segment 420r has entered the inaccessible area 83b. Therefore, the departure / arrival route determination unit 615 generates the detour 42r that detours the inaccessible area 83b. The detour 42r is a route 421r along the virtual line segment with respect to the start point of the departure / arrival route, that is, the route from the interruption point P2 to the intersection 421p where the virtual line segment 420r intersects the inaccessible areas 81b-85b. After the intersection 421p, a route 422r is generated along the outer edge of the no-entry area 83b. In addition, in the present embodiment, with respect to the outer edge portion of the entry-prohibited area 83b, the route 422r along the plane that flies without changing the height of the drone 100 is generated, but the route along the height direction is generated. Good.
 経路422r上の所定の地点、例えば変曲点422pにおいて、発着地点406までを結ぶ第2仮想線分424rを再度規定し直し、当該第2仮想線分424rが進入禁止エリア81b-85b内に侵入していない場合は、残りの経路423rを第2仮想線分424rに沿って生成する。第2仮想線分424rが進入禁止エリア81b-85b内に侵入している場合は、進入禁止エリア81b-85bとの交点までを第2仮想線分424に沿う経路とし、当該交点以降においては進入禁止エリア81b-85bに沿う迂回路を生成し、以降繰り返す。このようにして生成される経路421r-423rを連結することにより、迂回する発着経路42rが生成される。 At a predetermined point on the route 422r, for example, an inflection point 422p, the second virtual line segment 424r that connects to the departure / arrival point 406 is redefined, and the second virtual line segment 424r enters the prohibited area 81b-85b. If not, the remaining route 423r is generated along the second virtual line segment 424r. When the second virtual line segment 424r has entered the prohibited area 81b-85b, the route up to the intersection with the prohibited area 81b-85b is set as the route along the second virtual line segment 424, and after the intersection, the vehicle enters the area. A detour along the prohibited area 81b-85b is generated and repeated thereafter. By connecting the routes 421r-423r thus generated, the detouring departure / arrival route 42r is generated.
 図12に示すように、上述に代えて、仮想線分420rと進入禁止エリア83bとの交点421p以降において、進入禁止エリア83bの外縁部に沿う経路432rを、仮想線分420rと再び交わる第2交点423pまで生成してもよい。第2交点423から発着経路43rの終点、すなわち本実施例においては発着地点406までは、仮想線分420rに沿う経路433rとする。第2交点423から発着経路43rの終点までの間に進入禁止エリア81b-85bに侵入している場合は、当該進入禁止エリア81b-85bの外縁部に沿う経路をさらに作成し、以降繰り返す。このようにして生成される経路421r、432rおよび433rを連結することにより、迂回する発着経路43rが生成される。 As shown in FIG. 12, instead of the above, after the intersection 421p between the virtual line segment 420r and the entry prohibition area 83b, the route 432r along the outer edge portion of the entry prohibition area 83b is crossed again with the virtual line segment 420r. You may generate up to the intersection 423p. From the second intersection 423 to the end point of the departure / arrival route 43r, that is, the departure / arrival point 406 in this embodiment, the route 433r is along the virtual line segment 420r. If the vehicle has entered the prohibited area 81b-85b between the second intersection 423 and the end point of the departure / arrival path 43r, a path along the outer edge of the prohibited area 81b-85b is further created and repeated thereafter. By connecting the routes 421r, 432r, and 433r generated in this way, a detouring departure / arrival route 43r is generated.
 図13に示す例においては、移動許可エリア80iの外縁に沿う細長い形状の進入禁止エリア86bが配置されている。発着経路決定部615は、上述に代えて、エリア内運転経路80rの端点P5、すなわち始点又は終点を経由する発着経路を生成してもよい。より具体的には、発着経路決定部615は、中断地点P4とエリア内運転経路80r上の連結地点441pとを結ぶ中継経路44rを生成する。そして、エリア内運転経路80rの端点P5を含み、エリア内運転経路80rの一部に沿って生成される経路801rと中継経路44rとを連結させることで発着経路を生成してもよい。連結地点441pは、例えば外周経路上の地点であり、中継経路44rは内側エリアに生成される。また、連結地点441pは、内側エリアの往復経路上、又は異形エリアの異形エリア経路上の地点であってもよく、中継経路44rは中断地点P4から所定の連結地点441pを連結する経路であってもよい。中継経路44rは、エリア内運転経路80rに沿わない経路であり、例えば中断地点P4と連結地点441pとを直線的に結ぶ、最短の経路である。 In the example shown in FIG. 13, a slender shaped entry-prohibited area 86b is arranged along the outer edge of the movement-permitted area 80i. Instead of the above, the departure / arrival route determination unit 615 may generate a departure / arrival route passing through the end point P5 of the in-area driving route 80r, that is, the start point or the end point. More specifically, the departure / arrival route determination unit 615 generates a relay route 44r that connects the interruption point P4 and the connection point 441p on the in-area driving route 80r. Then, the departure / arrival route may be generated by connecting the route 801r generated along a part of the in-area driving route 80r including the end point P5 of the in-area driving route 80r and the relay route 44r. The connection point 441p is, for example, a point on the outer route, and the relay route 44r is generated in the inner area. Further, the connection point 441p may be a point on the round-trip route of the inner area or a variant area route of the irregular area, and the relay route 44r is a route connecting the predetermined coupling point 441p from the interruption point P4. Good. The relay route 44r is a route that does not follow the in-area driving route 80r, and is, for example, the shortest route that linearly connects the interruption point P4 and the connection point 441p.
 終点P5から発着地点406までの経路45rは、移動許可エリア80iの作業を終了して帰還する場合と同一の経路である。この発着経路に沿って中断地点P4から発着地点406まで移動するドローン100は、内側エリアにおいては中継経路44r、連結地点441pから端点P5まではエリア内運転経路の一部に沿う経路801r、端点P5から発着地点406までは経路45rに沿って移動する。また、発着地点406から中断地点P4まで移動する場合は、上述と逆の順序で移動する。なお、経路801rは、エリア内運転経路80rにおける移動方向と同じであってもよいし、逆方向であってもよい。エリア内運転経路80rに沿って移動することにより、既に安全を担保された経路を活用することができ、この安全性は移動方向に関わらない。 The route 45r from the end point P5 to the departure and arrival point 406 is the same route as when returning after finishing the work in the movement permitted area 80i. The drone 100 moving along the departure / arrival route from the interruption point P4 to the departure / arrival point 406 has a relay route 44r in the inner area, and a route 801r along a part of the driving route in the area from the connection point 441p to the end point P5, and the end point P5. From to the departure point 406 moves along the route 45r. Further, when moving from the departure point 406 to the interruption point P4, the movement is performed in the reverse order. The route 801r may be the same as the moving direction of the in-area driving route 80r or may be the opposite direction. By moving along the in-area driving route 80r, it is possible to utilize a route that has already secured safety, and this safety does not depend on the moving direction.
 なお、中継経路44rの生成において、中断地点P4と連結地点441pとを直線的に連結する経路上に進入禁止エリアが存在する場合、発着経路決定部615は、当該進入禁止エリアを迂回する経路を生成してもよい。また、連結地点441pを別の場所に設定してもよい。また、中継経路44rを生成せず、中断地点P4から端点P5までをエリア内運転経路80rに沿って移動してもよい。 In the generation of the relay route 44r, when the entry prohibition area exists on the route that linearly connects the interruption point P4 and the connection point 441p, the departure / arrival route determination unit 615 determines a route that bypasses the entry prohibition area. May be generated. Further, the connecting point 441p may be set at another place. Further, the relay route 44r may not be generated, and the stop point P4 to the end point P5 may be moved along the in-area driving route 80r.
 この構成によれば、移動許可エリア80iの移動において通常作業時の運転経路を利用するため、発着経路決定部615が経路を生成する計算処理負担が軽減される。また、移動許可エリア80iの外縁および移動許可エリア80iと発着地点406との間に位置する進入禁止エリアに関しては、発着経路の生成時に計算する必要がないため、発着経路決定部615の計算処理負担はさらに軽減される。さらに、圃場外の移動において、ドローン100が今まで移動したことのない経路を移動すると、安全性等の面で使用者に不安を与えるおそれがある。本構成によれば、圃場外の移動において通常作業時に使用する運転経路を利用するため、ドローン100の動作が使用者にとって既知なものとなり、使用者に安心感を与えることができる。 According to this configuration, since the operation route at the time of normal work is used in the movement of the movement permitted area 80i, the calculation processing load for the departure / arrival route determination unit 615 to generate the route is reduced. Further, with respect to the outer edge of the movement permitted area 80i and the entry prohibited area located between the movement permitted area 80i and the departure / arrival point 406, there is no need to calculate when the departure / arrival route is generated, and thus the calculation processing load of the departure / arrival route determination unit 615. Is further reduced. Further, when the drone 100 moves outside the field, if the drone 100 moves along a route that has never moved, the user may be anxious about safety and the like. According to this configuration, since the driving route used during normal work is used when moving out of the field, the operation of the drone 100 becomes known to the user, and the user can feel secure.
 発着経路41r-43rの情報は、始点から終点までの3次元座標、ならびに飛行速度、飛行加速度、および旋回の位置および速度の情報を含む。発着経路決定部615は、ドローン100の飛行時に生じる下降気流が、圃場403に生育する作物を倒伏させない程度の高度および速度でドローン100を飛行させる発着経路41r-43rを生成する。具体的には、発着経路41r-43rにおけるドローン100の高度は、エリア内運転経路80rにおける高度よりも高い。また、発着経路41r-43rにおけるドローン100の速度は、エリア内運転経路80rにおける速度よりも遅い。この構成によれば、ドローン100が発着経路41r-43rを飛行する際に作物を倒伏させづらい。なお、発着経路41r-43rにおけるドローン100の高度を十分上昇させ、速度はエリア内運転経路80rと同等以上であってもよい。この構成によれば、ドローン100を素早く圃場403から退避させ、また圃場403の所定地点まで到達させることができるため、迅速にドローン100を次の動作に移行させることができる。 Information on departure / arrival routes 41r-43r includes three-dimensional coordinates from the start point to the end point, and flight speed, flight acceleration, and turning position and speed information. The departure / arrival route determination unit 615 generates departure / arrival routes 41r-43r that cause the drone 100 to fly at an altitude and speed at which the downdraft generated during the flight of the drone 100 does not collapse the crops growing in the field 403. Specifically, the altitude of the drone 100 on the departure / arrival routes 41r-43r is higher than the altitude on the in-area driving route 80r. Further, the speed of the drone 100 on the departure / arrival routes 41r-43r is slower than the speed on the intra-area driving route 80r. According to this configuration, it is difficult for the drone 100 to lodge the crop when flying on the departure and arrival routes 41r-43r. The altitude of the drone 100 on the departure / arrival routes 41r-43r may be sufficiently increased and the speed may be equal to or higher than that of the in-area driving route 80r. According to this configuration, the drone 100 can be quickly retracted from the field 403 and can reach a predetermined point in the field 403, so that the drone 100 can be swiftly moved to the next operation.
 図14を用いて、発着経路生成部61が有する各機能ブロックが発着経路の始点および終点を決定する工程を説明する。発着経路41rの生成は、例えば発着地点406での離陸準備中、又はドローン100がエリア内運転経路80rの終点への到達時点もしくはその前後の所定時間内に開始される。また、発着経路の生成は、ドローン100の薬剤切れ、バッテリー切れ、ドローン100およびその周辺の異常検知、又は使用者からの作業中断命令を契機に開始される。 A process in which each functional block of the departure / arrival route generation unit 61 determines a start point and an end point of the departure / arrival route will be described with reference to FIG. The generation of the departure / arrival route 41r is started, for example, during preparation for takeoff at the departure / arrival point 406, or at a predetermined time before or after the drone 100 reaches the end point of the in-area driving route 80r. Further, the generation of the arrival / departure route is triggered by the drone 100 running out of medicine, the battery running out, the abnormality detection of the drone 100 and its surroundings, or the work interruption command from the user.
 まず、現在地取得部610は、ドローン100の現在の位置座標を取得する(S50)。現在地が発着地点記憶部611に記憶される発着地点406の範囲内にあるとき(S51)、発着経路生成部61は、発着地点406を発着経路の始点に決定する(S52)。 First, the current location acquisition unit 610 acquires the current position coordinates of the drone 100 (S50). When the current location is within the range of the departure / arrival point 406 stored in the departure / arrival point storage unit 611 (S51), the departure / arrival route generation unit 61 determines the departure / arrival point 406 as the start point of the departure / arrival route (S52).
 接続地点決定部613は、中断地点記憶部612が中断地点の記録を有するか否かを判定する(S53)。中断地点の記録があるとき、接続地点決定部613は当該中断地点座標を接続地点として決定する(S54)。すなわち、発着経路決定部615は、中断地点を発着経路の終点に決定する。ここで、ステップS53における接続地点の決定方法は、上記したような中断地点記憶部612に中断地点の記録の有無により判断することも可能であるが、中断の有無そのものを記憶した記憶部に基づいて、中断の有無を判断することも可能である。さらに、操作器401を介して操作者が入力する中断の有無の情報に基づいて判断することもできる。 The connection point determination unit 613 determines whether or not the interruption point storage unit 612 has a record of the interruption point (S53). When the interruption point is recorded, the connection point determining unit 613 determines the interruption point coordinates as the connection point (S54). That is, the departure / arrival route determination unit 615 determines the interruption point as the end point of the departure / arrival route. Here, the method of determining the connection point in step S53 can be determined by the presence or absence of the recording of the interruption point in the interruption point storage unit 612 as described above, but based on the storage unit that stores the presence or absence of the interruption itself. It is also possible to judge the presence or absence of interruption. Further, it is possible to make the determination based on the information on the presence or absence of interruption input by the operator via the operation device 401.
 ステップS52において中断地点の記録がない場合、発着経路決定部615はエリア内運転経路80rの始点座標を発着経路の終点に決定する(S55)。 If there is no record of the interruption point in step S52, the departure / arrival route determination unit 615 determines the start point coordinates of the in-area driving route 80r as the end point of the departure / arrival route (S55).
 ステップS51においてドローン100の現在地が発着地点406の範囲外にあるとき、発着経路生成部61は、現在地がエリア内運転経路80rの終点か否かを判定する(S56)。現在地がエリア内運転経路80rの終点である場合、ドローン100は当該圃場403において計画されている作業が完了した旨の記録を、ネットワークNWを通じて営農クラウド405に送信してもよい(S57)。なお、現在地がエリア内運転経路80rの終点にあることを契機にステップS50を開始している場合は、ステップS50の前に作業完了の記録を営農クラウド405に送信していてもよく、ステップS57は省略されてもよい。 When the current position of the drone 100 is outside the range of the departure / arrival point 406 in step S51, the departure / arrival route generation unit 61 determines whether or not the current position is the end point of the in-area driving route 80r (S56). If the current location is the end point of the intra-area driving route 80r, the drone 100 may send a record that the planned work is completed in the field 403 to the farm cloud 405 via the network NW (S57). If step S50 is started when the current location is at the end point of the in-area driving route 80r, a record of work completion may be transmitted to the farm cloud 405 before step S50, and step S57. May be omitted.
 現在地がエリア内運転経路80rの終点ではない場合、現在地取得部610は、ドローン100の現在の位置座標を取得し、中断地点記憶部が当該位置座標を中断地点として記録する(S58)。 If the current position is not the end point of the in-area driving route 80r, the current position acquisition unit 610 acquires the current position coordinates of the drone 100, and the interruption point storage unit records the position coordinates as the interruption point (S58).
 発着経路決定部615は、現在地を発着経路41rの始点、発着地点406を終点に決定する(S59)。 The departure / arrival route determination unit 615 determines the current location as the start point of the departure / arrival route 41r and the departure / arrival point 406 as the end point (S59).
 図15を用いて、発着経路生成部61が有する各機能ブロックが、発着経路の始点および終点を結んで発着経路を決定する工程を説明する。図14に示すステップS54,S55,又はS56の後、進入禁止エリア取得部614は、進入禁止エリアの情報、すなわち3次元座標を運転経路生成装置1から取得する(S61)。 A process in which each functional block of the departure / arrival route generation unit 61 connects the start point and the end point of the departure / arrival route and determines the departure / arrival route will be described with reference to FIG. 15. After step S54, S55, or S56 shown in FIG. 14, the prohibited area acquisition unit 614 acquires information about the prohibited area, that is, three-dimensional coordinates from the driving route generation device 1 (S61).
 発着経路決定部615は、発着地点406と接続地点、すなわちエリア内運転経路80rの始点もしくは終点、又は中断地点との間に仮想線分を規定し、仮想線分が進入禁止エリア81b-85b内にあるか否かを判定する(S62)。仮想線分が進入禁止エリア81b-85b内にある場合、発着経路決定部615は、進入禁止エリア81b-85bを迂回する発着経路を生成する(S63)。仮想線分が進入禁止エリア81b-85b内にない場合、発着経路決定部615は、当該仮想線分に沿う経路を発着経路に決定する(S64)。 The departure / arrival route determination unit 615 defines a virtual line segment between the departure / arrival point 406 and the connection point, that is, the start point or the end point of the in-area driving route 80r, or the interruption point, and the virtual line segment is within the inaccessible area 81b-85b. (S62). If the virtual line segment is inside the entry prohibition area 81b-85b, the departure / arrival route determination unit 615 generates a departure / arrival route that bypasses the entry prohibition area 81b-85b (S63). If the virtual line segment is not within the inaccessible areas 81b-85b, the departure / arrival route determination unit 615 determines the route along the virtual segment as the departure / arrival route (S64).
 また、ステップS62に代えて、発着経路決定部615は、エリア内運転経路上の連結地点と接続地点との間を結ぶ中継経路を生成してもよい。さらに、中継経路上に進入禁止エリアが存在する場合は、当該進入禁止エリアを迂回する経路を生成するか、別の連結地点を規定して中継経路を再生成してもよい。 Also, instead of step S62, the departure / arrival route determination unit 615 may generate a relay route connecting the connection point and the connection point on the in-area driving route. Further, when the entry prohibited area exists on the relay route, a route bypassing the entry prohibited area may be generated, or another connection point may be defined to regenerate the relay route.
 本構成によれば、自律運転時であっても効率よく移動し、移動装置の発着地点と作業対象エリアの所定地点との間の移動においても、高い安全性を維持できる運転経路を生成する。 According to this configuration, it is possible to efficiently move even during autonomous driving, and generate a driving route that can maintain high safety even when moving between the departure / arrival point of the mobile device and a predetermined point in the work area.
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、自律的に動作する機械全般に適用可能である。農業用以外の、自律飛行を行うドローンにも適用可能である。また、自律的に動作する、地面を自走する機械にも適用可能である。 In this description, the agricultural drug spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and is applicable to all machines that operate autonomously. It can be applied to drones other than agricultural ones that fly autonomously. It can also be applied to a machine that operates autonomously and runs on the ground.
(本願発明による技術的に顕著な効果)
 本発明に係る運転経路生成システムにおいては、移動装置の発着地点と作業対象エリアの所定地点との間の自律運転による移動制御を効率よく行うことができる運転経路を生成する。

 
(Technically remarkable effect of the present invention)
In the driving route generation system according to the present invention, a driving route capable of efficiently performing movement control by autonomous driving between a departure / arrival point of a moving device and a predetermined point in a work target area is generated.

Claims (14)

  1.  対象エリア外の発着地点において発着し、前記対象エリア内を移動するドローンの運転経路を生成する運転経路生成システムであって、
     取得される前記対象エリアの座標情報に基づいて、前記対象エリア内にエリア内運転経路を生成するエリア内経路生成部と、
     前記発着地点と前記エリア内運転経路上の所定の接続地点との間をつなぐ発着経路を生成する発着経路生成部と、
     前記ドローンが前記エリア内運転経路上において飛行を中断した地点の座標を記憶する中断地点記憶部を備え、
     前記発着経路生成部は、前回の飛行時に飛行が中断された場合は、前記中断地点記憶部に記憶された飛行中断地点の座標を前記接続地点として発着経路を生成し、
     前回の飛行時に飛行が中断されていない場合は、前記エリア内運転経路の端点の座標を前記接続地点として発着経路を生成する、
    運転経路生成システム。
     
     
    A driving route generation system for arriving and departing at a departure and arrival point outside a target area, for generating a driving route of a drone moving in the target area,
    An intra-area route generation unit that generates an intra-area driving route in the target area based on the acquired coordinate information of the target area;
    A departure / arrival route generation unit that generates a departure / arrival route that connects between the departure / arrival point and a predetermined connection point on the area driving route;
    The drone includes an interruption point storage unit that stores coordinates of a point where flight is interrupted on the driving route in the area,
    When the flight is interrupted during the previous flight, the departure / arrival route generation unit generates a departure / arrival route using the coordinates of the flight interruption point stored in the interruption point storage unit as the connection point,
    If the flight has not been interrupted during the previous flight, the departure / arrival route is generated with the coordinates of the end points of the in-area driving route as the connection points.
    Driving route generation system.

  2.  前記エリア内経路生成部は、障害物の位置および形状の情報に基づいて決定される進入禁止エリアを除く前記対象エリア内のエリアに前記エリア内運転経路を生成する、
    請求項1記載の運転経路生成システム。
     
    The intra-area route generation unit generates the intra-area driving route in an area within the target area excluding an entry-prohibited area that is determined based on information on the position and shape of an obstacle,
    The driving route generation system according to claim 1.
  3.   前記発着経路生成部は、障害物の位置及び形状の情報に基づいて決定される進入禁止エリアを除くエリアに前記発着経路を生成する、
    請求項1又は2記載の運転経路生成システム。
     
    The departure / arrival route generation unit generates the departure / arrival route in an area other than an entry-prohibited area determined based on information on the position and shape of an obstacle,
    The driving route generation system according to claim 1.
  4.  前記発着経路生成部は、前記発着地点と前記接続地点の間に定義される仮想線分が前記進入禁止エリア内にあるか否かを判断し、前記仮想線分が前記進入禁止エリア内にある場合に、前記進入禁止エリアを迂回する発着経路を生成する、
    請求項3記載の運転経路生成システム。
     
     
    The departure / arrival route generation unit determines whether or not a virtual line segment defined between the departure / arrival point and the connection point is within the entry prohibited area, and the virtual line segment is within the entry prohibited area. In this case, a departure / arrival route that bypasses the prohibited area is generated.
    The driving route generation system according to claim 3.

  5.  前記発着経路生成部は、前記エリア内運転経路の端点を経由する発着経路を生成する、
    請求項1乃至4のいずれかに記載の運転経路生成システム。
     
    The departure / arrival route generation unit generates a departure / arrival route passing through an end point of the in-area driving route,
    The driving route generation system according to any one of claims 1 to 4.
  6.  前記発着経路生成部は、前記接続地点と前記エリア内運転経路上の連結地点とを結ぶ中継経路、前記エリア内運転経路の端点を含み前記エリア内運転経路の一部に沿って生成される経路、および前記エリア内運転経路の端点と前記発着地点とを結ぶ経路が連結されてなる前記発着経路を生成する、
    請求項1乃至5のいずれかに記載の運転経路生成システム。
     
    The departure / arrival route generation unit includes a relay route connecting the connection point and a connection point on the in-area driving route, and a route generated along a part of the in-area driving route including end points of the in-area driving route. , And generating the departure / arrival route in which a route connecting the end point of the in-area driving route and the departure / arrival point is connected.
    The driving route generation system according to any one of claims 1 to 5.
  7.  前記発着経路の情報は、始点から終点までの3次元座標、ならびに飛行速度、飛行加速度、および旋回の位置および速度の少なくとも1個の情報を含む、
    請求項1乃至6のいずれかに記載の運転経路生成システム。
     
    The information of the departure and arrival route includes three-dimensional coordinates from a start point to an end point, and at least one piece of information on a flight speed, a flight acceleration, and a turning position and speed,
    The driving route generation system according to any one of claims 1 to 6.
  8.  前記発着経路生成部は、前記ドローンの飛行時に生じる下降気流が、前記対象エリアに生育する作物を倒伏させない程度の高度で前記ドローンを飛行させる前記発着経路を生成する、
    請求項1乃至7のいずれかに記載の運転経路生成システム。
     
    The departure / arrival route generation unit generates the departure / arrival route that causes the drone to fly at an altitude such that the downdraft that occurs during flight of the drone does not cause the crops growing in the target area to fall over.
    The driving route generation system according to any one of claims 1 to 7.
  9.  前記発着経路生成部は、前記ドローンに搭載され、
     前記エリア内経路生成部は、前記ドローンとネットワークを介して接続されるサーバ装置に搭載される、
    請求項1乃至8のいずれかに記載の運転経路生成システム。
     
    The departure / arrival route generation unit is mounted on the drone,
    The intra-area route generation unit is mounted on a server device connected to the drone via a network,
    The driving route generation system according to any one of claims 1 to 8.
  10.  前記発着経路生成部及び前記エリア内経路生成部は、前記ドローンに搭載される、
    請求項1乃至8のいずれかに記載の運転経路生成システム。
     
    The departure / arrival route generator and the intra-area route generator are mounted on the drone,
    The driving route generation system according to any one of claims 1 to 8.
  11.  対象エリア外の発着地点において発着し、前記対象エリア内を移動する移動装置の運転経路を生成する運転経路生成方法であって、
     取得される前記対象エリアの座標情報に基づいて、前記対象エリア内にエリア内運転経路を生成するステップと、
     前記発着地点と前記エリア内運転経路上の所定の接続地点との間をつなぐ発着経路を生成するステップと、
    を含む、運転経路生成方法。
     
    A driving route generation method of arriving and departing at a departure point outside a target area, and generating a driving route of a mobile device moving in the target area,
    Generating an in-area driving route in the target area based on the acquired coordinate information of the target area;
    Generating a departure / arrival route connecting the departure / arrival point and a predetermined connection point on the area driving route;
    And a driving route generation method.
  12.  前記発着経路を生成するステップにおいて、前回の飛行時に飛行が中断された場合には、飛行中断地点の座標を前記接続地点として発着経路を生成し、前回の飛行時に飛行が中断されていない場合には、前記エリア内運転経路の端点の座標を前記接続地点として発着経路を生成する、
    請求項11記載の運転経路生成方法。
     
    In the step of generating the departure and arrival route, when the flight is interrupted during the previous flight, the departure and arrival route is generated with the coordinates of the flight interruption point as the connection point, and when the flight is not interrupted during the previous flight. Is to generate a departure and arrival route using the coordinates of the end points of the driving route in the area as the connection point,
    The driving route generation method according to claim 11.
  13.  対象エリア外の発着地点において発着し、前記対象エリア内を移動する移動装置の運転経路を生成する運転経路生成プログラムであって、
     取得される前記対象エリアの座標情報に基づいて、前記対象エリア内にエリア内運転経路を生成する命令と、
     前記発着地点と前記エリア内運転経路上の所定の接続地点との間をつなぐ発着経路を生成する命令と、
    をコンピュータに実行させる、運転経路生成プログラム。
     
    A driving route generation program for arriving and departing at a departure / arrival point outside a target area, for generating a driving route of a mobile device moving in the target area,
    An instruction to generate an in-area driving route in the target area based on the acquired coordinate information of the target area;
    A command for generating a departure / arrival route connecting the departure / arrival point and a predetermined connection point on the area driving route;
    A driving route generation program that causes a computer to execute.
  14.  運転経路生成システムにより生成される運転経路に沿って飛行可能なドローンであって、
     前記運転経路生成システムは、請求項1乃至10のいずれかに記載の運転経路生成システムである、ドローン。
     

     
    A drone capable of flying along a driving route generated by a driving route generation system,
    The drone, wherein the driving route generation system is the driving route generation system according to any one of claims 1 to 10.


PCT/JP2019/041049 2018-10-22 2019-10-18 Operation route generation system, operation route generation method, operation route generation program, and drone WO2020085229A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020553333A JP7008999B2 (en) 2018-10-22 2019-10-18 Driving route generation system, driving route generation method, and driving route generation program, and drone
CN201980069783.XA CN112912693B (en) 2018-10-22 2019-10-18 Travel path generation system, travel path generation method, computer-readable recording medium, and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018198313 2018-10-22
JP2018-198313 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020085229A1 true WO2020085229A1 (en) 2020-04-30

Family

ID=70331363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041049 WO2020085229A1 (en) 2018-10-22 2019-10-18 Operation route generation system, operation route generation method, operation route generation program, and drone

Country Status (3)

Country Link
JP (1) JP7008999B2 (en)
CN (1) CN112912693B (en)
WO (1) WO2020085229A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934646B1 (en) * 2021-05-28 2021-09-15 株式会社センシンロボティクス Flight restriction area setting method, waypoint setting method and management server, information processing system, program
CN113537885A (en) * 2021-07-14 2021-10-22 合肥工业大学 Method and system for delivering packages distributed by combination of truck and unmanned aerial vehicle
US20230222809A1 (en) * 2022-01-12 2023-07-13 Mazen A. Al-Sinan Autonomous low-altitude uav detection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127994A (en) * 2001-10-24 2003-05-08 Kansai Electric Power Co Inc:The Control system for unmanned flying object
JP2018127076A (en) * 2017-02-08 2018-08-16 井関農機株式会社 Aerial spray machine
WO2018179404A1 (en) * 2017-03-31 2018-10-04 日本電気株式会社 Information processing device, information processing method, and information processing program

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060178823A1 (en) * 2005-02-04 2006-08-10 Novariant, Inc. System and method for propagating agricultural vehicle guidance paths that have varying curvature along their length
JP5724110B2 (en) * 2011-07-07 2015-05-27 株式会社日立製作所 Route creation system, route creation method and program
CN105279625A (en) * 2015-09-22 2016-01-27 慈溪市达飞淼电子科技有限公司 Unmanned express delivery conveying system and conveying method
FR3048773B1 (en) * 2016-03-14 2020-08-14 Thales Sa METHOD AND SYSTEM FOR MANAGING A MULTI-DESTINATION FLIGHT PLAN
CN106643697B (en) * 2016-12-09 2019-10-18 北京农业智能装备技术研究中心 A kind of aviation plant protection operation navigation system and method
CN106774395B (en) * 2016-12-14 2019-11-22 东北农业大学 Agricultural plant protection unmanned plane avoidance sprays paths planning method and unmanned plane
CN108341049A (en) * 2017-01-22 2018-07-31 昊翔电能运动科技(昆山)有限公司 Home intelligent unmanned plane
CN106843270B (en) * 2017-01-23 2019-02-01 中南大学 Paths planning method is delivered in a kind of unmanned plane express delivery automatically
JP6638683B2 (en) * 2017-03-28 2020-01-29 井関農機株式会社 Farm work support system
CN107289953A (en) * 2017-08-07 2017-10-24 深圳市华琥技术有限公司 A kind of navigation control method of unmanned aerial vehicle group

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127994A (en) * 2001-10-24 2003-05-08 Kansai Electric Power Co Inc:The Control system for unmanned flying object
JP2018127076A (en) * 2017-02-08 2018-08-16 井関農機株式会社 Aerial spray machine
WO2018179404A1 (en) * 2017-03-31 2018-10-04 日本電気株式会社 Information processing device, information processing method, and information processing program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934646B1 (en) * 2021-05-28 2021-09-15 株式会社センシンロボティクス Flight restriction area setting method, waypoint setting method and management server, information processing system, program
CN113537885A (en) * 2021-07-14 2021-10-22 合肥工业大学 Method and system for delivering packages distributed by combination of truck and unmanned aerial vehicle
CN113537885B (en) * 2021-07-14 2024-03-15 合肥工业大学 Method and system for delivering package by combining truck and unmanned aerial vehicle for delivery
US20230222809A1 (en) * 2022-01-12 2023-07-13 Mazen A. Al-Sinan Autonomous low-altitude uav detection system

Also Published As

Publication number Publication date
CN112912693B (en) 2024-03-19
JP7008999B2 (en) 2022-01-25
CN112912693A (en) 2021-06-04
JPWO2020085229A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JPWO2019168042A1 (en) Drone, its control method, and program
JP6727498B2 (en) Agricultural drone with improved foolproof
JP6851106B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP7008999B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP7075679B2 (en) Drone system
JP6996789B2 (en) Mobile
JP7270265B2 (en) Driving route generation device, driving route generation method, driving route generation program, and drone
JP6994798B2 (en) Drone system, drone, control device, drone system control method, and drone system control program
JP6982908B2 (en) Driving route generator, driving route generation method, and driving route generation program, and drone
WO2020095842A1 (en) Drone
WO2021205559A1 (en) Display device, drone flight propriety determination device, drone, drone flight propriety determination method, and computer program
JP7079547B1 (en) Field evaluation device, field evaluation method and field evaluation program
JP7285557B2 (en) Driving route generation system, driving route generation method, driving route generation program, and drone
WO2020241411A1 (en) Industrial machine system, industrial machine, control device, industrial machine system control method, and industrial machine system control program
WO2020085240A1 (en) Operation route generation system, operation route generation method, operation route generation program, coordinate surveying system, and drone
WO2020090671A1 (en) Drone, drone control method, and drone control program
WO2020116496A1 (en) Drone system
WO2020116495A1 (en) Drone system
WO2020116494A1 (en) Drone system
JPWO2020045397A1 (en) Drones, drone control methods, and drone control programs
WO2021191947A1 (en) Drone system, drone, and obstacle detection method
JP7412038B2 (en) Re-survey necessity determination device, survey system, drone system, and re-survey necessity determination method
JP7490208B2 (en) Drone system, drone, control device, drone system control method, and drone system control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875498

Country of ref document: EP

Kind code of ref document: A1