WO2020085138A1 - Ball-sheet-securing structure for ball joint - Google Patents

Ball-sheet-securing structure for ball joint Download PDF

Info

Publication number
WO2020085138A1
WO2020085138A1 PCT/JP2019/040406 JP2019040406W WO2020085138A1 WO 2020085138 A1 WO2020085138 A1 WO 2020085138A1 JP 2019040406 W JP2019040406 W JP 2019040406W WO 2020085138 A1 WO2020085138 A1 WO 2020085138A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
ball
housing
ball seat
fixing structure
Prior art date
Application number
PCT/JP2019/040406
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 茂
裕也 永田
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019068768A external-priority patent/JP7228449B2/en
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2020085138A1 publication Critical patent/WO2020085138A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints

Definitions

  • the present invention relates to a ball seat fixing structure of a ball joint in a suspension that plays a role of reducing a shock from a road surface of a vehicle.
  • the vehicle suspension reduces the impact transmitted from the road surface to the vehicle body, and the stabilizer enhances the roll rigidity (rigidity against torsion) of the vehicle body.
  • the suspension and the stabilizer are connected via a stabilizer link.
  • the stabilizer link is configured by providing ball joints at both ends of a rod-shaped support bar.
  • a ball portion 10b of a metal ball stud 10 is rotatably housed (included) in a metal cup-shaped housing 11 via a resin ball seat 12.
  • a resin ball seat 12 There is a configuration.
  • the ball stud 10 has a structure in which a spherical ball portion 10b is integrally connected to one end of a rod-shaped stud portion 10s.
  • a male screw 10n is threaded on the stud portion 10s, and a flange portion 10a1 and a small collar portion 10a2, which extend in a circular shape, are formed apart from each other on the tip side (ball portion 10b side) of the male screw 10n.
  • a dust cover 13 is arranged between the collar portion 10a1 and the upper end portion of the housing 11.
  • An iron link 13a is press-fitted and fixed to a portion of the dust cover 13 connected to the upper end of the housing 11.
  • a metal support bar 1a is fixed to the outer peripheral surface of the housing 11.
  • the axis of the ball stud 10 is perpendicular to the horizontal line H as shown by the vertical line V.
  • the ball seat 12 including the ball portion 10b is formed by bending the upper end 11a of the housing 11 and crimping the upper end 11a from the upper side to the lower side via a C-shaped stopper ring 14 (also referred to as a ring 14). It is pressed and fixed.
  • the upper end of the ball seat 12 has a tapered surface that is inclined from the flat surface toward the inner peripheral side.
  • the ring 14 has a flat surface that covers the upper end of the ball seat 12 and a tapered surface 14a.
  • the inclination angle of the tapered surface 14a is an angle that satisfies the swing angle of the ball stud 10 when the ball stud 10 swings (arrow ⁇ 1).
  • the inner wall of the housing 11 has a straight vertical wall in cross section, and the ball seat 12 is housed on the inner wall.
  • the inner surface of the ball seat 12 has a shape of a spherical curved surface 12a along the spherical shape of the ball portion 10b.
  • the spherical curved surface 12a is also referred to as a ball seat inner spherical surface 12a or an inner spherical surface 12a. Examples of ball joints having such a structure are described in Patent Documents 1 to 3.
  • the ball portion 10b and the inner spherical surface 12a of the ball seat oscillate as the suspension of the vehicle strokes.
  • the characteristics of the oscillating slide are swing torque and rotation torque (each torque). Also called).
  • the elastic lift amount is the amount of movement of the ball portion 10b via the ball seat 12 in the housing 11.
  • the elastic lift amount is increased, the ball portion 10b is largely moved in the housing 11 via the ball seat 12, and the ball joint J is loosened, which causes abnormal noise while the vehicle is traveling. That is, there is a reciprocal relationship between each torque and the elastic lift amount, such that when each torque decreases, the elastic lift amount increases.
  • the ball seat 12 is pressed by the upper end portion 11A of the housing 11 via the ring 14, but when the housing 11 is crimped, the caulking process has three stages for the convenience of molding. There is a problem that the tact time becomes long and the manufacturing cost of the ball joint J becomes high.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a ball seat fixing structure of a ball joint that enables a step of fixing a ring in a short tact time and can reduce costs.
  • a ball seat fixing structure for a ball joint is a ball in which a metallic sphere part is integrally joined to the other end of a stud part whose one end is connected to the structure.
  • a ball seat fixing structure of a ball joint in which the spherical portion covered with the ball seat is included in the housing, wherein the ball seat is inside the opening end of the housing and on the ball seat.
  • a ring is set so as to project from the opening end, and a corner of a boundary between the ring and the housing is welded and fixed by laser welding. .
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a top view which shows the state which carried out the perimeter welding of the boundary of the housing and stopper ring of 1st Embodiment. It is a top view which shows the state which carried out the intermittent welding of the boundary of the housing and stopper ring of 1st Embodiment. It is a top view which shows the state which carried out the pulse welding of the boundary of the housing and stopper ring of 1st Embodiment.
  • FIG. 11 is a sectional view taken along line XX of FIG. 10. It is a perspective view of a C ring of a 2nd embodiment. It is a top view showing the state where the housing and the C ring boundary of the second embodiment were welded all around. It is a top view which shows the state which carried out the intermittent welding of the boundary of the housing and C ring of 2nd Embodiment.
  • FIG. 18 is a plan view of a combined configuration of the housing, the C ring and the ball seat shown in FIG. 17.
  • FIG. 18 is a sectional view taken along line VV of FIG. 17. It is a perspective view which shows the structure of the 2nd modification of the ball seat in the ball joint of 2nd Embodiment.
  • FIG. 22 is a plan view of a combined configuration of the housing, C ring, and ball seat shown in FIG. 21.
  • FIG. 22 is a sectional view taken along line VII-VII of FIG. 21. It is sectional drawing which shows the other shape of C ring. It is sectional drawing which shows the other shape of a housing. It is a longitudinal cross-sectional view of a conventional ball joint.
  • FIG. 1 is a vertical sectional view of a ball joint according to an embodiment of the present invention.
  • the same components as those shown in FIG. 26 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the ball joint J1 of the first embodiment shown in FIG. 1 is different from the conventional ball joint J (FIG. 26) in that the ball joint 22 is annular so that the tightening margin of the ball seat 22 with respect to the ball portion 10b in the housing 21 is appropriate.
  • the ball seat 22 is pressed and set by the (O-shaped) stopper ring (also referred to as an O-ring) 24, and in this set state, the O-ring 24 is fixed to the upper end of the housing 21 by laser welding.
  • Laser welding is performed using a laser welding device such as a diode laser welding device (not shown).
  • the above-mentioned annular shape means an integrally continuous annular shape or an annular shape having a narrow slit.
  • the proper tightening allowance is a tightening allowance in which the swinging torque and the rotating torque are reduced so as to improve the riding comfort of the vehicle, and the elastic lift amount can be reduced so that the ball joint J1 does not rattle. is there.
  • the O-ring 24 presses and compresses the ball seat 22 to set the proper tightening allowance, and the set O-ring 24 is laser-welded to the housing 21. All references to "sets" herein have the same meaning as the set above.
  • the shapes of the housing 21, the ball seat 22, and the O-ring 24 of the ball joint J1 are different from those of the housing 11, the ball seat 12, and the stopper ring 14 of the conventional ball joint J (FIG. 26) as described later.
  • the dust cover 13 is omitted in order to make it easy to recognize the characteristic configuration.
  • the stud portion 10s of the ball joint J1 is fixed to a suspension or stabilizer (not shown).
  • the suspension or stabilizer constitutes the structure according to the claims.
  • the housing 21 is formed by pressing or cold forging a metal plate such as an iron plate into a cup shape as shown in the sectional view of FIG.
  • the opening end 21a on the opening side of the housing 21 has a plate thickness t smaller than the plate thickness T of the body 21b below the opening end 21a. It is preferable that each plate thickness T, t has a size represented by the following equation (1). 0.3 ⁇ t / T ⁇ 0.85 (1)
  • the inner surface of the housing 21 between the plate thickness t of the opening end portion 21a and the plate thickness T of the body portion 21b is a tapered step portion (taper step portion) P1.
  • This taper step portion P1 is also referred to as a taper-shaped portion (first taper-shaped portion) P1.
  • the taper angle ⁇ 1 of the tapered portion P1 has a magnitude shown by the following expression (2) in order to properly maintain the balance between the workability of the housing 21 and the centripetal effect described later.
  • the taper angle ⁇ 1 is the inclination angle of the tapered portion P1 of the housing 21 with respect to the horizontal line H shown in FIG. 30 ° ⁇ ⁇ 1 ⁇ 60 ° (2)
  • FIG. 3 is a plan view of the O-ring 24, and FIG. 4 is a sectional view of the O-ring 24 shown in FIG.
  • the outer peripheral lower end portion of the O-ring 24 shown in FIG. 4 is a tapered portion (second tapered portion) P2 having the same taper angle ⁇ 1 as the tapered portion P1 of the housing 21.
  • the inner diameter (ring inner diameter) R1 of the O-ring 24 shown in FIG. 3 is slightly larger than the spherical diameter (ball spherical diameter) R3 of the ball portion 10b shown in FIG. For example, when the ball sphere diameter R3 is ⁇ 16.0, the ring inner diameter R1 is ⁇ 16.1. This size is determined for inserting the O-ring 24 from the lower side of the ball portion 10b and moving it to the upper side of the ball portion 10b.
  • the ring outer diameter R2 shown in FIG. 3 is sized so that the O-ring 24 can be inserted inside the opening end 21a of the housing 21. As shown in FIG. 1, when the O-ring 24 is placed on the ball seat 22 in the housing 21, the radial gap between the outer peripheral surface of the O-ring 24 and the inner peripheral surface of the housing 21 is 0.25 mm.
  • the following ring outer diameter R2 is preferable. This gap size is determined by the laser spot diameter at the time of laser welding and the restriction of the welding spot area.
  • the upper end of the ball seat 22 projects from the open end 21 a of the housing 21.
  • the tapered portion P2 of the O-ring 24 is vertically separated from the tapered step portion P1 of the housing 21.
  • the ball seat 22 is compressed by pressing the O-ring 24 from above, and the tapered portion P2 of the O-ring 24 comes into contact with the tapered step portion P1 so that the O-ring 24 does not lower further.
  • the taper-shaped portion P2 does not have to abut the taper stepped portion P1 as long as the O-ring 24 is slightly pressed and the ball seat 22 has the proper tightening margin described above. That is, the ball seat 22 can be properly compressed at a height position between the position where the O-ring 24 is placed on the ball seat 22 and the position where the tapered portion P2 abuts the tapered step P1. Has become.
  • the taper step portion P1 does not lower further, so overcompression of the ball seat 22 can be prevented.
  • the height h1 from the lower surface 24a to the upper surface 24b of the O-ring 24 shown in FIG. 4 is such that when the O-ring 24 is placed in the housing 21 as shown in FIG.
  • the height is slightly higher than that in Fig. 2).
  • the height h1 is a height that slightly protrudes even when the mounted O-ring 24 is pushed down and set.
  • the height at which the O-ring 24 projects after the setting is preferably 0.05 mm or more for laser welding described later.
  • the O-ring 24 shown in FIG. 4 has a tapered surface 24c on the inner circumference side of the O-ring that is inclined at an angle ⁇ 2 with respect to the vertical line V (FIG. 1) when set in the housing 21.
  • the inclination angle ⁇ 2 of the tapered surface 24c is an angle that satisfies the swing angle of the ball stud 10 when the ball stud 10 shown in FIG. 1 swings (arrow ⁇ 1).
  • the outer housing 21 is lower than the inner O-ring 24. Due to this height relationship, when the O-ring 24 is pressed by the presser (not shown), the position of the presser is higher than that of the housing 21, so that contact and interference of the presser with the housing 22 can be prevented. ing.
  • the laser welding temperature should be higher than the melting point of the material of the housing 21.
  • the material is iron, for example, the melting point of iron or higher (1300 ° C. or higher) is used.
  • laser welding has the advantages that spatter does not occur and takt time is short.
  • FIG. 5 shows a state in which the boundary between the O-ring 24 and the housing 21 is welded over the entire circumference 31 indicated by a thick line.
  • FIG. 6 shows a state in which the boundary is intermittently welded (intermittent welding) 32, and
  • FIG. 7 shows a state in which the boundary is welded in a pulse shape (pulse welding) 33.
  • the intermittent welding 32 or the pulse welding 33 is performed by making the laser output of the laser welding device intermittent or pulsed.
  • FIG. 8 shows the penetration depth (penetration depth) d1 at the boundary by laser welding.
  • the penetration depth d1 is set to an appropriate depth such that the resin ball seat 22 below the O-ring 24 is not deformed or melted by the amount of electric heat during laser welding.
  • the strength of laser welding is adjusted in order to obtain the appropriate penetration depth d1.
  • the limit of the penetration depth d1 is determined according to the material of the ball seat 22 and the height of the O-ring 24 (that is, the electrothermal distance). Further, since the laser welding is performed by rotating the housing 21 at a high speed or moving the laser output side at a high speed, the amount of heat per unit time is small and the heat influence on the ball seat 22 is reduced.
  • the penetration depth required for the entire circumference welding to satisfy the necessary breaking load is d1
  • the penetration depth is 1.5 times the d1
  • the welding length is 2/3 round, and if it is doubled d1, it is 1/2 round. If it is too deep, the ball seat 22 made of resin is affected.
  • the penetration depth d1 ⁇ the penetration length is premised on that the contact area between the ball seat 22 and the O-ring 24 does not change.
  • any welding configuration is possible as long as the required breaking load is satisfied.
  • the ball joint J1 includes a ball stud 10 in which a metal ball portion 10b is integrally joined to the other end of a stud portion 10s whose one end is connected to a suspension or a stabilizer as a structure, and the ball stud 10 of the ball stud 10.
  • a metal housing 21 having a space in which the ball portion 10b is swingably and rotatably supported and one of which is open; and a resin ball seat 22 interposed between the housing 21 and the ball portion 10b.
  • the ball portion 10b covered with the ball seat 22 is included in the housing 21.
  • the ball seat fixing structure of the ball joint J1 having this structure has the following characteristic structure.
  • An O-ring 24 that is set inside the opening end 21a of the housing 21 and above the ball seat 22 so as to project from the opening end 21a is provided, and the corner of the boundary between the O-ring 24 and the housing 21 is provided.
  • the part is welded and fixed by laser welding.
  • the O-ring 24 on the ball seat 22 in the housing 21 projects more than the outer housing 21. Therefore, it becomes easy to perform laser welding from the outside of the housing 21. On the contrary, from the inside of the housing 21, the ball stud 10 is erected inside the housing 21, so that it is difficult to perform laser welding. Further, since the O-ring 24 on the ball seat 22 projects from the housing 21, it becomes easy to press the O-ring 24 from above and properly compress the ball seat 22. With laser welding, welding can be performed in a short time. Due to these advantages, the step of fixing the O-ring 24 can be performed with a short takt time, and the cost can be reduced.
  • the O-ring 24 is configured as an integrally continuous ring.
  • the O-ring 24 is an integrally continuous ring, it is difficult to distort during processing, and it is possible to perform processing with stable shape and dimensions. Further, the O-ring 24 is less likely to be distorted during welding as compared with the conventional C-shaped ring 14.
  • a first taper-shaped portion P1 having a predetermined angle is provided on the inner circumference of the opening end 21a of the housing 21, and the first taper-shaped portion P1 is formed on the lower end of the outer circumference of the O-ring 24 at the same angle as the first taper-shaped portion P1.
  • the configuration is such that the second tapered shape portion P2 that can contact the shape portion P1 is provided.
  • the O-ring 24 can be set in the housing 21 so that the first tapered shape portion P1 uniformly abuts on the second tapered shape portion P2, so that the centripetal force toward the center of the O-ring 24 works (centripetal force). (Effect), the coaxiality of the O-ring 24 and the housing 21 is guaranteed. Therefore, the O-ring 24 does not rattle.
  • the O-ring 24 has a height that protrudes from the upper end of the housing 21 by a predetermined height when the first tapered portion P1 is set in contact with the second tapered portion P2 inside the housing 21.
  • the O-ring 24 when the O-ring 24 is placed in the housing 21, the O-ring 24 projects from the housing 21, so the placed O-ring 24 can be easily pushed down and set.
  • the position of the pressing element is higher than that of the housing 21, so that the pressing element can be prevented from contacting or interfering with the housing 21.
  • the inner diameter of the O-ring 24 is larger than the spherical diameter of the ball portion 10b.
  • the O-ring 24 can be inserted from the lower side to the upper side of the ball portion 10b. Therefore, the O-ring 24 inserted in the ball portion 10b can be easily placed in the housing 21.
  • FIG. 9 is a vertical sectional view of a ball joint according to a second embodiment of the present invention. 9, the same parts as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the ball joint J2 of the second embodiment shown in FIG. 9 differs from the ball joint J of the first embodiment (FIG. 1) in that the O-ring 24 is replaced with a C-shaped stopper ring having a gap 64g shown in FIG. This is due to the use of 64 (also called C ring). That is, the ball sheet 22 is pressed and set by the C ring 64, and in this set state, the C ring 64 is fixed to the upper end of the housing 21 by laser welding.
  • the O-ring 24 or the C-ring 64 constitutes the ring described in the claims.
  • FIG. 10 is a plan view of the C ring 64
  • FIG. 11 is a cross-sectional view of the C ring 64 shown in FIG.
  • FIG. 12 is a perspective view of the C ring 64.
  • the lower end of the outer periphery of the C ring 64 is a tapered portion (second tapered portion) P2 (see FIG. 9) having the same taper angle ⁇ 1 as the tapered step portion P1 of the housing 21.
  • the inner diameter (C ring inner diameter) R1 of the C ring 64 shown in FIG. 10 is slightly smaller than the spherical diameter (ball spherical diameter) R3 of the ball portion 10b shown in FIG.
  • the C ring inner diameter R1 is ⁇ 15.1. This size is determined in order to prevent the ball portion 10b from coming off from the C ring 64 that is laser-welded onto the ball portion 10b.
  • the C ring 64 (FIG. 1) has a cross-sectional shape with a height higher than that of the C-shaped stopper ring 14 (FIG. 26) of the conventional housing caulking. Therefore, in the C ring 64, the section modulus is increased, the section rigidity is increased, and strong crimping strength can be secured, and the stud slip-out load is increased.
  • a metal material such as SPCC (Steel Plate Cold Commercial: cold rolled steel sheet) or SPHC (Steel Plate Hot Commercial: hot rolled mild steel sheet) can be used, but a stronger metal material is used. As a result, the strength can be increased.
  • the C ring outer diameter R2 shown in FIG. 10 is sized so that the C ring 64 can be inserted inside the opening end 21a (FIG. 2) of the housing 21. Further, the gap 64g of the C ring 64 is larger than the neck portion 10d of the constricted portion to which the tip side ball portion 10b of the stud portion 10s shown in FIG. 9 is fixed. That is, the C ring 64 can be set on the ball seat 22 by passing the gap 64g through the neck portion 10d.
  • a C ring outer diameter R2 of 0.25 mm or less is preferable. This gap size is determined by the laser spot diameter at the time of laser welding and the restriction of the welding spot area.
  • the upper end 64b of the C-ring 64 projects from the open end 21a (FIG. 2) of the housing 21.
  • the tapered portion P2 of the C ring 64 is vertically separated from the tapered step portion P1 of the housing 21.
  • the ball seat 22 is compressed by pressing the C ring 64 from above, and the tapered portion P2 of the C ring 64 abuts on the tapered step portion P1 so that the ball ring 22 is not lowered further. .
  • the taper-shaped portion P2 does not have to abut the taper stepped portion P1 as long as the C-ring 64 is slightly pressed and the ball seat 22 has the proper tightening margin described above. That is, at a height position between the position where the C ring 64 is placed on the ball seat 22 and the position where the tapered portion P2 of the C ring 64 contacts the tapered step portion P1, the proper position of the ball seat 22 is obtained. It can be compressed.
  • the taper step portion P1 does not go down any further, so that overcompression of the ball seat 22 can be prevented.
  • the height h2 from the lower surface 64a to the upper surface 64b of the C ring 64 shown in FIG. 11 is that the C ring 64 slightly protrudes from the housing 21 when the C ring 64 is placed in the housing 21 as shown in FIG. It is high.
  • This height h2 is a height that slightly protrudes even when the mounted C-ring 64 is pushed down and set.
  • the protruding height of the C ring 64 after this setting is preferably 0.05 mm or more for laser welding described later.
  • the C ring 64 shown in FIG. 11 has a tapered surface 64c on the inner peripheral side of the C ring that is inclined at an angle ⁇ 2 with respect to the vertical line V (FIG. 9) when set in the housing 21.
  • the inclination angle ⁇ 2 of the tapered surface 64c is an angle that satisfies the swing angle of the ball stud 10 when the ball stud 10 shown in FIG. 9 swings (arrow ⁇ 1).
  • the corner portion of the boundary where the C ring 64 and the housing 21 are in contact with each other is laser-welded as shown by an arrow Y1.
  • This laser welding is performed in the same manner as the above-mentioned O-ring 24.
  • a load is applied to the C ring 64 from above with a pressing element (not shown), and the taper portion P2 of the C ring 64 and the taper step portion P1 of the housing 21 are brought into close contact with each other.
  • the ball seat 22 is compressed, and the ball seat 22 is compressed by an appropriate amount.
  • FIG. 13 shows a state in which the boundary between the C ring 64 and the housing 21 is C-shaped full circumference welded 31c indicated by a thick line.
  • FIG. 14 shows a state in which the boundary is intermittently welded (intermittent welding) 32, and
  • FIG. 15 shows a state in which the boundary is welded in a pulse shape (pulse welding) 33.
  • the penetration depth d1 of laser welding is as described above with reference to FIG.
  • the penetration depth d1 is required to have a predetermined depth over a predetermined circulation range. For example, when the penetration depth d1 that can safely clear the required breaking load is 0.2 mm and it is required over the entire circumference, if the penetration depth d1 is 0.3 mm, it is 2/3 circumferences. With 4 mm, it takes only 1/2 turn. If it is too deep, the ball seat 22 made of resin is affected.
  • the penetration depth d1 ⁇ welding length (entire circumference, intermittent, pulse-like plane length) is premised on that the contact area between the ball seat 22 and the C ring 64 does not change. Any welding form is possible as long as the necessary breaking load is satisfied.
  • the C ring 64 cannot be aimed by laser welding. It is preferable that the aim is the housing 21. The same applies to the O-ring 24.
  • a C ring 64 that is set inside the opening end 21a of the housing 21 and above the ball seat 22 so as to project from the opening end 21a is provided, and the corner of the boundary between the C ring 64 and the housing 21 is provided.
  • the part is welded and fixed by laser welding.
  • the C ring 64 on the ball seat 22 inside the housing 21 projects more than the outside housing 21, so that it becomes easier to perform laser welding from the outside of the housing 21.
  • the ball stud 10 is erected inside the housing 21, so that it is difficult to perform laser welding.
  • the C ring 64 on the ball seat 22 projects from the housing 21, it becomes easy to press the C ring 64 from above and properly compress the ball seat 22. With laser welding, welding can be performed in a short time. Due to these advantages, the step of pressing and fixing the ball seat 22 for tightening the ball portion 10b in the housing 21 so as to have an appropriate tightening allowance can be performed in a short takt time, which can reduce the manufacturing cost. .
  • a first taper-shaped portion P1 (taper step P1) having a predetermined angle is provided on the inner periphery of the opening end 21a of the housing 21, and the outer peripheral lower end of the C ring 64 has the same angle as the first taper-shaped portion P1. Then, the second tapered shape portion P2 that can contact the first tapered shape portion P1 is provided.
  • the C ring 64 can be set in the housing 21 such that the first tapered shape portion P1 is evenly in contact with the second tapered shape portion P2, so that the centripetal force toward the center of the C ring 64 works (centripetal force). (Effect), the coaxiality of the C ring 64 and the housing 21 is guaranteed. Therefore, the C ring 64 does not rattle.
  • the C ring 64 has a predetermined height from the upper end (or upper end surface) 21c of the housing 21 when the first tapered portion P1 is set in the housing 21 in a state of abutting against the second tapered portion P2. It is configured to have a protruding height.
  • the C ring 64 when the C ring 64 is placed in the housing 21, the C ring 64 projects from the housing 21, so that the placed C ring 64 can be easily pushed down and set.
  • the position of the pressing element is higher than that of the housing 21, so that the pressing element can be prevented from contacting or interfering with the housing 21.
  • the inner diameter of the C ring 64 is smaller than the spherical diameter of the ball portion 10b.
  • FIG. 16 is a perspective view showing the configuration of a first modified example of the ball seat 22A in the ball joint J2 of the second embodiment.
  • FIG. 17 is a perspective view showing a configuration in which the C ring 64 is placed on the ball seat 22A inserted into the housing 21.
  • FIG. 18 is a plan view of a combined configuration of the housing 21, the C ring 64, and the ball seat 22A shown in FIG.
  • FIG. 19 is a sectional view taken along line VV of FIG. However, FIG. 19 shows the ball portion 10b on the tip side of the stud portion 10s in the ball seat 22A.
  • the ball seat 22A of the first modified example shown in FIG. 16 is different from the above-described ball seat 22 (see FIG. 9) in that the upper end surface 22u of the ball seat 22A is fitted into the gap 64g (FIG. 17) of the C ring 64. This is because the projection 22b to be fitted is provided.
  • the convex portion 22b fills the gap 64g of the C ring 64, and thus can be prevented as follows. That is, it is possible to prevent the ball stud 10 from being tilted more than necessary (or improperly) when the stud portion 10s swings, it passes through the gap 64g and tilts to the inner peripheral surface of the housing 21.
  • the lateral width w1 of the convex portion 22b shown in FIG. 16 is dimensioned to fit evenly into the gap 64g (FIG. 17) of the C ring 64. Further, the upper end surface 22c of the convex portion 22b has a height lower than the upper end 21c of the housing 21 when the ball seat 22A is incorporated in the housing 21, as shown in FIG.
  • the upper end surface 22c of the convex portion 22b is located at a depth position d2 further lower than the penetration depth d1 when the C ring 64 is laser-welded to the housing 21.
  • the height is h3.
  • the height h3 is the height from the bottom surface of the ball seat 22A to the upper end surface 22c of the convex portion 22b.
  • the upper end surface 22c of the convex portion 22b has a height h3 that is separated by a distance that does not melt by laser welding when incorporated in the housing 21. This can prevent melting of the ball seat 22A due to laser welding.
  • the convex portion 22b of the ball seat 22A has a tapered surface 22d (see FIGS. 16 and 17) formed on the inner peripheral side thereof so as to be flush with the tapered surface 64c of the C ring 64. ing.
  • the tapered surfaces 64c and 22d having an angle ⁇ 2 that satisfies a predetermined swing angle of the ball stud 10 can be formed. With this configuration, the ball stud 10 can be properly swung at a predetermined swing angle.
  • FIG. 20 is a perspective view showing a configuration of a second modified example of the ball seat 22B in the ball joint J2 of the second embodiment.
  • FIG. 21 is a perspective view showing a configuration in which the C ring 64 is placed on the ball seat 22B inserted into the housing 21.
  • 22 is a plan view of a combined configuration of the housing 21, the C ring 64, and the ball seat 22B shown in FIG. 23 is a sectional view taken along line VII-VII of FIG. However, FIG. 23 shows the ball portion 10b on the tip side of the stud portion 10s in the ball seat 22B.
  • the ball seat 22B of the second modification shown in FIG. 20 differs from the ball seat 22A of the first modification (see FIG. 16) described above in the shape of the convex portion 22e.
  • the outer peripheral surface of the convex portion 22b of the ball seat 22A was in contact with the inner peripheral surface of the housing 21.
  • the outer peripheral surface of the convex portion 22e of the ball seat 22B of the second modified example is radially separated from the inner peripheral surface of the housing 21 by a distance d6.
  • This separation distance d6 is a distance that the heat of laser welding does not reach the convex portion 22e.
  • the gap of this spacing is indicated by an arrow 22g in FIGS. 21 to 23.
  • the outer peripheral surface of the convex portion 22e is flush with the outer peripheral surface of the main body of the ball seat 22B, and the radial width of the convex portion 22e is indicated by d5.
  • the inner peripheral side surface 21Ab of the housing 21A is formed in a straight shape, and a taper surface 22Cb is provided on the inner peripheral side of the upper end surface 22Ca of the ball seat 22C in the housing 21A.
  • a configuration may be used in which a C ring 74 having a shape that abuts on the upper end surface 22Ca and the tapered surface 22Cb without a gap is placed.
  • the C ring 74 has a tapered shape in which the inner peripheral side descends along the tapered surface 22Cb of the ball seat 22C, and the tapered lower surface 74e contacts the tapered surface 22Cb of the ball seat 22C. Touching.
  • the tapered upper surface 74c has a tapered shape 74f with a steeper angle on the inner peripheral side. This taper shape 74f avoids the interference between the stud portion 10s (stud shaft) and the C ring 74, and preferentially contacts the upper surface 74c.
  • the gap between the outer surface 74d of the C ring 74 and the inner peripheral side surface of the housing 21A has a C ring outer diameter of 0.25 mm or less. This gap size is determined by the laser spot diameter at the time of laser welding and the restriction of the welding spot area.
  • the C ring 74 can have a centripetal effect. Further, there is no need to process the inner peripheral side surface 21Ab of the housing 21A into a stepped shape via the tapered stepped portion P1 unlike the above-described upper end 21c (FIG. 1) of the housing 21, so that there is an advantage that manufacturing becomes easy. .
  • the ball joint J1 of the ball seat fixing structure of the present invention can be applied to a joint part of a robot arm of an industrial robot or a humanoid robot, or a device in which an arm of a shovel car or a crane truck rotates at the joint part.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

A ball joint (J1) has a ball stud (10) in which a metal ball part (10b) is integrally joined to one end part of a stud part (10s) of which another end is connected to a suspension or a stabilizer, a metal housing (21) having a space that swingably and rotatably supports the ball part (10b) and that is open on one side, and a resin ball sheet (22) interposed between the housing (21) and the ball part (10b). The ball part (10b) which is covered by the ball sheet (22), is enclosed within the housing (21). The present invention is configured such that an O ring (24) set so as to protrude past an open end part (21a) of the housing (21) is provided inside the open end part (21a) and above the ball sheet (22), and a corner of the border between the O ring (24) and the housing (21) is welded and secured by laser welding.

Description

ボールジョイントのボールシート固定構造Ball seat fixing structure of ball joint
 本発明は、車両の路面からの衝撃軽減等の役割を果たすサスペンションにおけるボールジョイントのボールシート固定構造に関する。 The present invention relates to a ball seat fixing structure of a ball joint in a suspension that plays a role of reducing a shock from a road surface of a vehicle.
 車両のサスペンションは、路面から車体に伝わる衝撃を軽減し、スタビライザは、車体のロール剛性(捩れに対する剛性)を高める。このサスペンションとスタビライザは、スタビリンクを介して連結されている。スタビリンクは、棒状のサポートバーの両端にボールジョイントを備えて構成されている。 The vehicle suspension reduces the impact transmitted from the road surface to the vehicle body, and the stabilizer enhances the roll rigidity (rigidity against torsion) of the vehicle body. The suspension and the stabilizer are connected via a stabilizer link. The stabilizer link is configured by providing ball joints at both ends of a rod-shaped support bar.
 図26に示すように、ボールジョイントJとして、金属製のカップ状のハウジング11内に、樹脂製のボールシート12を介して金属製のボールスタッド10のボール部10bを回転自在に収容(包含)した構成がある。 As shown in FIG. 26, as a ball joint J, a ball portion 10b of a metal ball stud 10 is rotatably housed (included) in a metal cup-shaped housing 11 via a resin ball seat 12. There is a configuration.
 ボールスタッド10は、棒状のスタッド部10sの一端に球状のボール部10bが一体に連結された構造となっている。スタッド部10sには、雄ねじ10nが螺刻されており、この雄ねじ10nよりも先端側(ボール部10b側)に、周回状に拡がる鍔部10a1と小鍔部10a2とが離間して形成されている。鍔部10a1とハウジング11の上端部との間には、ダストカバー13が配設されている。ダストカバー13におけるハウジング11の上端部への接続部分には、鉄リンク13aが圧入固定されている。 The ball stud 10 has a structure in which a spherical ball portion 10b is integrally connected to one end of a rod-shaped stud portion 10s. A male screw 10n is threaded on the stud portion 10s, and a flange portion 10a1 and a small collar portion 10a2, which extend in a circular shape, are formed apart from each other on the tip side (ball portion 10b side) of the male screw 10n. There is. A dust cover 13 is arranged between the collar portion 10a1 and the upper end portion of the housing 11. An iron link 13a is press-fitted and fixed to a portion of the dust cover 13 connected to the upper end of the housing 11.
 ハウジング11の外周面には、金属製のサポートバー1aが固定されている。サポートバー1aを水平線Hに沿って水平とした際に、ボールスタッド10の軸芯が水平線Hに対して垂直線Vで示す垂直となるように構成されている。 A metal support bar 1a is fixed to the outer peripheral surface of the housing 11. When the support bar 1a is horizontal along the horizontal line H, the axis of the ball stud 10 is perpendicular to the horizontal line H as shown by the vertical line V.
 ボール部10bを包含するボールシート12は、ハウジング11の上端部11aを折り曲げ、この折り曲げられた上端部11aで、C型ストッパリング14(リング14ともいう)を介して上方から下方へ向かってカシメられ、押圧固定されている。ボールシート12の上端部は、平坦面から内周側に傾斜するテーパ面を有する形状となっている。リング14は、ボールシート12の上端部を被覆する平坦面とテーパ面14aを有する形状となっている。テーパ面14aの傾斜角は、ボールスタッド10が揺動(矢印α1)した際に、ボールスタッド10の揺動角を満たす角度となっている。 The ball seat 12 including the ball portion 10b is formed by bending the upper end 11a of the housing 11 and crimping the upper end 11a from the upper side to the lower side via a C-shaped stopper ring 14 (also referred to as a ring 14). It is pressed and fixed. The upper end of the ball seat 12 has a tapered surface that is inclined from the flat surface toward the inner peripheral side. The ring 14 has a flat surface that covers the upper end of the ball seat 12 and a tapered surface 14a. The inclination angle of the tapered surface 14a is an angle that satisfies the swing angle of the ball stud 10 when the ball stud 10 swings (arrow α1).
 ハウジング11の内面は、断面形状の縦壁がストレート形状となっており、この内面にボールシート12が収容されている。ボールシート12の内面は、ボール部10bの球状に沿った球形湾曲面12aの形状となっている。球形湾曲面12aをボールシート内球面12a又は内球面12aともいう。このような構成のボールジョイントとして、例えば特許文献1~3に記載のものがある。 The inner wall of the housing 11 has a straight vertical wall in cross section, and the ball seat 12 is housed on the inner wall. The inner surface of the ball seat 12 has a shape of a spherical curved surface 12a along the spherical shape of the ball portion 10b. The spherical curved surface 12a is also referred to as a ball seat inner spherical surface 12a or an inner spherical surface 12a. Examples of ball joints having such a structure are described in Patent Documents 1 to 3.
 ボールジョイントJでは、車両のサスペンションがストロークするに伴い、ボール部10bとボールシート内球面12aとが揺摺動するが、この揺摺動する際の特性が、揺動トルク及び回転トルク(各トルクともいう)と定義づけられる。ボール部10bの回転時の内球面12aへの摩擦力が増加して各トルクが高まると、乗り心地が悪化する。 In the ball joint J, the ball portion 10b and the inner spherical surface 12a of the ball seat oscillate as the suspension of the vehicle strokes. The characteristics of the oscillating slide are swing torque and rotation torque (each torque). Also called). When the frictional force on the inner spherical surface 12a during the rotation of the ball portion 10b increases and each torque increases, the riding comfort deteriorates.
 ハウジング11内のボール部10bに対するボールシート12の締め代を減少させると、各トルクを下げることができるが、同時に弾性リフト量が上がる。弾性リフト量とは、ハウジング11内のボールシート12を介したボール部10bの移動量である。弾性リフト量が大きくなると、ボール部10bがハウジング11内でボールシート12を介して大きく移動し、ボールジョイントJにガタが発生し、車両走行中の異音の発生に繋がる。つまり、各トルクと弾性リフト量との間には、各トルクが低下すると、弾性リフト量が増大するといった相反関係がある。 By reducing the tightening margin of the ball seat 12 with respect to the ball portion 10b in the housing 11, each torque can be reduced, but at the same time, the elastic lift amount increases. The elastic lift amount is the amount of movement of the ball portion 10b via the ball seat 12 in the housing 11. When the elastic lift amount is increased, the ball portion 10b is largely moved in the housing 11 via the ball seat 12, and the ball joint J is loosened, which causes abnormal noise while the vehicle is traveling. That is, there is a reciprocal relationship between each torque and the elastic lift amount, such that when each torque decreases, the elastic lift amount increases.
特表2009-536122号公報Japanese Patent Publication No. 2009-536122 特許3168229号公報Japanese Patent No. 3168229 特許3369659号公報Japanese Patent No. 3369659
 ボールジョイントJの製造工程においてハウジング11の上端部11Aでリング14を介してボールシート12を押さえているが、ハウジング11をカシメる際に、成形の都合上、カシメ工程が三段階となるため、タクトタイムが長くなり、ボールジョイントJの製造コストが高くなる問題があった。 In the manufacturing process of the ball joint J, the ball seat 12 is pressed by the upper end portion 11A of the housing 11 via the ring 14, but when the housing 11 is crimped, the caulking process has three stages for the convenience of molding. There is a problem that the tact time becomes long and the manufacturing cost of the ball joint J becomes high.
 本発明は、このような背景に鑑みてなされたものであり、リングを固定する工程を、短いタクトタイムで可能とし、コストを下げることができるボールジョイントのボールシート固定構造を提供することを課題とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide a ball seat fixing structure of a ball joint that enables a step of fixing a ring in a short tact time and can reduce costs. And
 前記した課題を解決するため、本発明のボールジョイントのボールシート固定構造は、構造体に一端部が連結されるスタッド部の他端部に、金属製の球体部が一体に接合されて成るボールスタッドと、当該ボールスタッドの球体部を揺動及び回転可能に支持し一方が開口した空間を有する金属製のハウジングと、当該ハウジングと前記球体部との間に介在される樹脂製のボールシートとを有し、当該ボールシートに覆われた前記球体部が前記ハウジングで包含されるボールジョイントのボールシート固定構造であって、前記ハウジングの開口端部の内側で且つ前記ボールシートの上に、当該開口端部よりも突出してセットされるリングを備え、前記リングと前記ハウジングとの境界の隅部がレーザ溶接で溶接固定されて成ることを特徴とする。 In order to solve the above-mentioned problems, a ball seat fixing structure for a ball joint according to the present invention is a ball in which a metallic sphere part is integrally joined to the other end of a stud part whose one end is connected to the structure. A stud, a metal housing having a space in which one side of the ball stud is swingably and rotatably supported and one of which is open, and a resin ball seat interposed between the housing and the sphere. A ball seat fixing structure of a ball joint in which the spherical portion covered with the ball seat is included in the housing, wherein the ball seat is inside the opening end of the housing and on the ball seat. A ring is set so as to project from the opening end, and a corner of a boundary between the ring and the housing is welded and fixed by laser welding. .
 本発明によれば、リングを固定する工程を、短いタクトタイムで可能とし、コストを下げるボールジョイントのボールシート固定構造を提供することができる。 According to the present invention, it is possible to provide a ball seat fixing structure of a ball joint that enables a process of fixing a ring in a short tact time and reduces costs.
本発明に係る実施形態のボールジョイントの縦断面図である。It is a longitudinal section of a ball joint of an embodiment concerning the present invention. 第1及び第2実施形態のハウジングの断面図である。It is sectional drawing of the housing of 1st and 2nd embodiment. 第1実施形態のO形状のストッパリングの平面図である。It is a top view of the O-shaped stopper ring of 1st Embodiment. 図3のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 第1実施形態のハウジングとストッパリングの境界を全周溶接した状態を示す平面図である。It is a top view which shows the state which carried out the perimeter welding of the boundary of the housing and stopper ring of 1st Embodiment. 第1実施形態のハウジングとストッパリングの境界を断続溶接した状態を示す平面図である。It is a top view which shows the state which carried out the intermittent welding of the boundary of the housing and stopper ring of 1st Embodiment. 第1実施形態のハウジングとストッパリングの境界をパルス溶接した状態を示す平面図である。It is a top view which shows the state which carried out the pulse welding of the boundary of the housing and stopper ring of 1st Embodiment. 第1実施形態のレーザ溶接によるハウジングとストッパリングの境界の溶込深さを示す断面図である。It is sectional drawing which shows the penetration depth of the boundary of the housing and stopper ring by laser welding of 1st Embodiment. 本発明に係る第2実施形態のボールジョイントの縦断面図である。It is a longitudinal section of a ball joint of a 2nd embodiment concerning the present invention. 第2実施形態のストッパリングの平面図である。It is a top view of a stopper ring of a 2nd embodiment. 図10のX-X断面図である。FIG. 11 is a sectional view taken along line XX of FIG. 10. 第2実施形態のCリングの斜視図である。It is a perspective view of a C ring of a 2nd embodiment. 第2実施形態のハウジングとCリング境界を全周溶接した状態を示す平面図である。It is a top view showing the state where the housing and the C ring boundary of the second embodiment were welded all around. 第2実施形態のハウジングとCリングの境界を断続溶接した状態を示す平面図である。It is a top view which shows the state which carried out the intermittent welding of the boundary of the housing and C ring of 2nd Embodiment. 第2実施形態のハウジングとCリングの境界をパルス溶接した状態を示す平面図である。It is a top view which shows the state which carried out the pulse welding of the boundary of the housing and C ring of 2nd Embodiment. 第2実施形態のボールジョイントにおけるボールシートの第1変形例の構成を示す斜視図である。It is a perspective view which shows the structure of the 1st modification of the ball seat in the ball joint of 2nd Embodiment. ハウジング内に挿入されたボールシートの上にCリングを載置した場合の構成を示す斜視図である。It is a perspective view which shows the structure at the time of mounting a C ring on the ball seat inserted in the housing. 図17に示すハウジング、Cリング及びボールシートの組合せ構成の平面図である。FIG. 18 is a plan view of a combined configuration of the housing, the C ring and the ball seat shown in FIG. 17. 図17のV-V断面図である。FIG. 18 is a sectional view taken along line VV of FIG. 17. 第2実施形態のボールジョイントにおけるボールシートの第2変形例の構成を示す斜視図である。It is a perspective view which shows the structure of the 2nd modification of the ball seat in the ball joint of 2nd Embodiment. ハウジング内に挿入されたボールシートの上にCリングを載置した場合の構成を示す斜視図である。It is a perspective view which shows the structure at the time of mounting a C ring on the ball seat inserted in the housing. 図21に示すハウジング、Cリング及びボールシートの組合せ構成の平面図である。FIG. 22 is a plan view of a combined configuration of the housing, C ring, and ball seat shown in FIG. 21. 図21のVII-VII断面図である。FIG. 22 is a sectional view taken along line VII-VII of FIG. 21. Cリングの他の形状を示す断面図である。It is sectional drawing which shows the other shape of C ring. ハウジングの他の形状を示す断面図である。It is sectional drawing which shows the other shape of a housing. 従来のボールジョイントの縦断面図である。It is a longitudinal cross-sectional view of a conventional ball joint.
 以下、本発明の実施形態を、図面を参照して説明する。
<第1実施形態>
 図1は、本発明に係る実施形態のボールジョイントの縦断面図である。図1において図26に示した構成要素と同一部分には同一符号を付し、その説明を適宜省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a vertical sectional view of a ball joint according to an embodiment of the present invention. In FIG. 1, the same components as those shown in FIG. 26 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図1に示す第1実施形態のボールジョイントJ1が、従来のボールジョイントJ(図26)と異なる点は、ハウジング21内のボール部10bに対するボールシート22の締め代が適正となるように、環状(O形状)のストッパリング(Oリングともいう)24でボールシート22を押圧してセットし、このセット状態で、当該Oリング24をハウジング21の上端部にレーザ溶接で固定したことにある。レーザ溶接は、図示せぬダイオードレーザ溶接装置等のレーザ溶接装置を用いて行う。上記環状とは、一体に連続した環状、又は幅狭のスリットが入った環状をいう。 The ball joint J1 of the first embodiment shown in FIG. 1 is different from the conventional ball joint J (FIG. 26) in that the ball joint 22 is annular so that the tightening margin of the ball seat 22 with respect to the ball portion 10b in the housing 21 is appropriate. The ball seat 22 is pressed and set by the (O-shaped) stopper ring (also referred to as an O-ring) 24, and in this set state, the O-ring 24 is fixed to the upper end of the housing 21 by laser welding. Laser welding is performed using a laser welding device such as a diode laser welding device (not shown). The above-mentioned annular shape means an integrally continuous annular shape or an annular shape having a narrow slit.
 また、上記適正な締め代とは、車両の乗り心地が向上するように揺動トルク及び回転トルクを低下させ、ボールジョイントJ1にガタが発生しないように弾性リフト量を小さくできる締め代のことである。この適正な締め代となるように、Oリング24でボールシート22を押圧して圧縮するセットを行い、このセットされたOリング24をハウジング21にレーザ溶接するようにした。本明細書に記載の「セット」の表現は、全てが上記セットと同じ意味を成す。 Further, the proper tightening allowance is a tightening allowance in which the swinging torque and the rotating torque are reduced so as to improve the riding comfort of the vehicle, and the elastic lift amount can be reduced so that the ball joint J1 does not rattle. is there. The O-ring 24 presses and compresses the ball seat 22 to set the proper tightening allowance, and the set O-ring 24 is laser-welded to the housing 21. All references to "sets" herein have the same meaning as the set above.
 ボールジョイントJ1のハウジング21、ボールシート22及びOリング24の形状は、従来のボールジョイントJ(図26)のハウジング11、ボールシート12及びストッパリング14と後述のように異なる。なお、第1実施形態のボールジョイントJ1は、特徴構成を認識し易くするため、ダストカバー13を省略してある。また、ボールジョイントJ1のスタッド部10sは、図示せぬサスペンション又はスタビライザに固定されている。サスペンション又はスタビライザは、請求項記載の構造体を構成する。 The shapes of the housing 21, the ball seat 22, and the O-ring 24 of the ball joint J1 are different from those of the housing 11, the ball seat 12, and the stopper ring 14 of the conventional ball joint J (FIG. 26) as described later. In the ball joint J1 of the first embodiment, the dust cover 13 is omitted in order to make it easy to recognize the characteristic configuration. The stud portion 10s of the ball joint J1 is fixed to a suspension or stabilizer (not shown). The suspension or stabilizer constitutes the structure according to the claims.
 ハウジング21は、鉄板等の金属板がプレス成形又は冷鍛によって、図2の断面図に示すようにカップ形状に成形されている。ハウジング21の開口側の開口端部21aは、開口端部21aの下側の胴部21bの板厚Tよりも、薄い板厚tとなっている。各板厚T,tは、次式(1)で示すサイズとするのが好ましい。

 0.3≦t/T≦0.85 …(1)
The housing 21 is formed by pressing or cold forging a metal plate such as an iron plate into a cup shape as shown in the sectional view of FIG. The opening end 21a on the opening side of the housing 21 has a plate thickness t smaller than the plate thickness T of the body 21b below the opening end 21a. It is preferable that each plate thickness T, t has a size represented by the following equation (1).

0.3 ≦ t / T ≦ 0.85 (1)
 開口端部21aの板厚tと、胴部21bの板厚Tとの間のハウジング21内面は、テーパ形状の段差部(テーパ段差部)P1となっている。このテーパ段差部P1をテーパ形状部(第1テーパ形状部)P1とも称す。テーパ形状部P1のテーパ角度θ1は、ハウジング21の加工性と後述する求心効果とのバランスを適正に保持するために、次式(2)で示す大きさとなっている。但し、テーパ角度θ1は、図1に示す水平線Hに対するハウジング21におけるテーパ形状部P1の傾斜角度である。

 30°≦θ1≦60° …(2)
The inner surface of the housing 21 between the plate thickness t of the opening end portion 21a and the plate thickness T of the body portion 21b is a tapered step portion (taper step portion) P1. This taper step portion P1 is also referred to as a taper-shaped portion (first taper-shaped portion) P1. The taper angle θ1 of the tapered portion P1 has a magnitude shown by the following expression (2) in order to properly maintain the balance between the workability of the housing 21 and the centripetal effect described later. However, the taper angle θ1 is the inclination angle of the tapered portion P1 of the housing 21 with respect to the horizontal line H shown in FIG.

30 ° ≦ θ1 ≦ 60 ° (2)
 図3はOリング24の平面図、図4は図3に示すOリング24のIV-IV断面図である。
 図4に示すOリング24の外周下端部は、ハウジング21のテーパ形状部P1と同じテーパ角度θ1のテーパ形状部(第2テーパ形状部)P2となっている。図3に示すOリング24の内径(リング内径)R1は、図1に示すボール部10bの球径(ボール球径)R3より僅かに大きいサイズとなっている。例えば、ボール球径R3がφ16.0の場合、リング内径R1はφ16.1となっている。このサイズは、Oリング24をボール部10bの下方側から挿入し、ボール部10bの上側に移動させるために定めたものである。
3 is a plan view of the O-ring 24, and FIG. 4 is a sectional view of the O-ring 24 shown in FIG.
The outer peripheral lower end portion of the O-ring 24 shown in FIG. 4 is a tapered portion (second tapered portion) P2 having the same taper angle θ1 as the tapered portion P1 of the housing 21. The inner diameter (ring inner diameter) R1 of the O-ring 24 shown in FIG. 3 is slightly larger than the spherical diameter (ball spherical diameter) R3 of the ball portion 10b shown in FIG. For example, when the ball sphere diameter R3 is φ16.0, the ring inner diameter R1 is φ16.1. This size is determined for inserting the O-ring 24 from the lower side of the ball portion 10b and moving it to the upper side of the ball portion 10b.
 図3に示すリング外径R2は、ハウジング21の開口端部21aの内側にOリング24が挿入可能なサイズとなっている。図1に示すように、Oリング24をハウジング21内のボールシート22上に載置した際に、Oリング24の外周面とハウジング21の内周面との径方向のギャップが、0.25mm以下となるリング外径R2が好ましい。このギャップサイズは、レーザ溶接時のレーザスポット径や、溶接個所面積の制約によって定まる。 The ring outer diameter R2 shown in FIG. 3 is sized so that the O-ring 24 can be inserted inside the opening end 21a of the housing 21. As shown in FIG. 1, when the O-ring 24 is placed on the ball seat 22 in the housing 21, the radial gap between the outer peripheral surface of the O-ring 24 and the inner peripheral surface of the housing 21 is 0.25 mm. The following ring outer diameter R2 is preferable. This gap size is determined by the laser spot diameter at the time of laser welding and the restriction of the welding spot area.
 ハウジング21内にボールシート22を載置した場合、ボールシート22の上端がハウジング21の開口端部21aから突出するようになっている。このOリング24をボールシート22上に載置した状態では、Oリング24のテーパ形状部P2がハウジング21のテーパ段差部P1と上下に離間状態となる。 When the ball seat 22 is placed in the housing 21, the upper end of the ball seat 22 projects from the open end 21 a of the housing 21. When the O-ring 24 is placed on the ball seat 22, the tapered portion P2 of the O-ring 24 is vertically separated from the tapered step portion P1 of the housing 21.
 この上下離間状態で、Oリング24を上から押圧することでボールシート22が圧縮され、Oリング24のテーパ形状部P2がテーパ段差部P1に当接してこれ以上、下がらないセット状態となる。このセット状態は、Oリング24をやや押圧してボールシート22が前述した適正な締め代となれば、テーパ形状部P2がテーパ段差部P1に当接しなくてもよい。つまり、Oリング24がボールシート22上に載置された位置と、テーパ形状部P2がテーパ段差部P1に当接する位置との間の高さ位置で、ボールシート22の適正な圧縮が可能となっている。 In this vertically separated state, the ball seat 22 is compressed by pressing the O-ring 24 from above, and the tapered portion P2 of the O-ring 24 comes into contact with the tapered step portion P1 so that the O-ring 24 does not lower further. In this set state, the taper-shaped portion P2 does not have to abut the taper stepped portion P1 as long as the O-ring 24 is slightly pressed and the ball seat 22 has the proper tightening margin described above. That is, the ball seat 22 can be properly compressed at a height position between the position where the O-ring 24 is placed on the ball seat 22 and the position where the tapered portion P2 abuts the tapered step P1. Has become.
 また、Oリング24を上から押圧した際に、テーパ形状部P2がテーパ段差部P1に当接するとこれ以上、下がらないので、ボールシート22のオーバー圧縮を防止可能となっている。 Further, when the tapered portion P2 comes into contact with the tapered step portion P1 when the O-ring 24 is pressed from above, the taper step portion P1 does not lower further, so overcompression of the ball seat 22 can be prevented.
 図4に示すOリング24の下面24aから上面24bまでの高さh1は、図1に示すようにOリング24をハウジング21内に載置した際に、Oリング24がハウジング21の上端21c(図2)から僅かに突き出る高さとなっている。この高さh1は、載置されたOリング24を下方側に押し込んでセットした場合も、僅かに突き出る高さとする。このセット後のOリング24が突き出る高さは、後述のレーザ溶接のために0.05mm以上であることが好ましい。 The height h1 from the lower surface 24a to the upper surface 24b of the O-ring 24 shown in FIG. 4 is such that when the O-ring 24 is placed in the housing 21 as shown in FIG. The height is slightly higher than that in Fig. 2). The height h1 is a height that slightly protrudes even when the mounted O-ring 24 is pushed down and set. The height at which the O-ring 24 projects after the setting is preferably 0.05 mm or more for laser welding described later.
 また、ハウジング21のテーパ段差部P1にOリング24のテーパ形状部P1が当接した場合、Oリング24の中心に向かう求心力が働き(求心効果)、Oリング24とハウジング21との同軸が保証される。このため、Oリング24がガタつかなくなる。 Further, when the tapered step portion P1 of the housing 21 comes into contact with the tapered portion P1 of the O-ring 24, a centripetal force toward the center of the O-ring 24 works (centripetal effect) to ensure that the O-ring 24 and the housing 21 are coaxial. To be done. Therefore, the O-ring 24 does not rattle.
 図4に示すOリング24は、ハウジング21内へのセット状態で垂直線V(図1)に対して角度θ2で傾斜するテーパ面24cを、Oリング内周側に有する。このテーパ面24cの傾斜角θ2は、図1に示すボールスタッド10が揺動(矢印α1)した際に、ボールスタッド10の揺動角を満たす角度となる。 The O-ring 24 shown in FIG. 4 has a tapered surface 24c on the inner circumference side of the O-ring that is inclined at an angle θ2 with respect to the vertical line V (FIG. 1) when set in the housing 21. The inclination angle θ2 of the tapered surface 24c is an angle that satisfies the swing angle of the ball stud 10 when the ball stud 10 shown in FIG. 1 swings (arrow α1).
 次に、図1に示すOリング24をハウジング21内にセットした後、矢印Y1で示すように、Oリング24とハウジング21が当接した境界の隅部をレーザ溶接する。 Next, after setting the O-ring 24 shown in FIG. 1 in the housing 21, the corner of the boundary where the O-ring 24 and the housing 21 abut each other is laser-welded as shown by an arrow Y1.
 レーザ溶接は、ハウジング21の中央にボールスタッド10が立設するので、ハウジング21の内側からは適正に行えず、このため外側から行うようになっている。この外側からのレーザ溶接を行い易くするため、外側のハウジング21が内側のOリング24よりも低くなっている。この高さ関係によって、Oリング24を押圧子(図示せず)で押圧する際に、押圧子の位置がハウジング21よりも高いので、押圧子のハウジング22への接触や干渉を防止可能となっている。 Laser welding cannot be properly performed from the inside of the housing 21 because the ball stud 10 is erected in the center of the housing 21, and therefore is performed from the outside. In order to facilitate the laser welding from the outside, the outer housing 21 is lower than the inner O-ring 24. Due to this height relationship, when the O-ring 24 is pressed by the presser (not shown), the position of the presser is higher than that of the housing 21, so that contact and interference of the presser with the housing 22 can be prevented. ing.
 レーザ溶接の温度は、ハウジング21の素材の融点以上とする。その素材が例えば鉄である場合、鉄の融点以上(1300℃以上)とする。レーザ溶接は、アーク溶接のようにスパッタが出ず、タクトタイムも早いといった利点がある。 -The laser welding temperature should be higher than the melting point of the material of the housing 21. When the material is iron, for example, the melting point of iron or higher (1300 ° C. or higher) is used. Unlike arc welding, laser welding has the advantages that spatter does not occur and takt time is short.
 レーザ溶接は、ハウジング21を回転させながら後述のように全周、断続的、パルス状等で行う。図5にOリング24とハウジング21の境界を太線で示す全周溶接31した状態を示す。図6に上記境界を断続的に溶接(断続溶接)32した状態、図7に上記境界をパルス状に溶接(パルス溶接)33した状態を示す。断続溶接32又はパルス溶接33は、レーザ溶接装置のレーザ出力を断続的又はパルス状にして行う。 Laser welding is performed on the entire circumference, intermittently, in pulses, etc. while rotating the housing 21, as described later. FIG. 5 shows a state in which the boundary between the O-ring 24 and the housing 21 is welded over the entire circumference 31 indicated by a thick line. FIG. 6 shows a state in which the boundary is intermittently welded (intermittent welding) 32, and FIG. 7 shows a state in which the boundary is welded in a pulse shape (pulse welding) 33. The intermittent welding 32 or the pulse welding 33 is performed by making the laser output of the laser welding device intermittent or pulsed.
 図8にレーザ溶接による境界の溶け込みの深さ(溶込深さ)d1を示す。溶込深さd1は、Oリング24の下側の樹脂製ボールシート22がレーザ溶接時の電熱量によって変形や溶解しない適正な深さとする。この適正な溶込深さd1とするために、レーザ溶接の強度を調整する。また、レーザ溶接では、ボールシート22の素材、Oリング24の高さ(即ち電熱距離)に応じて溶込深さd1の限界が決まる。更に、レーザ溶接は、ハウジング21を高速回転もしくはレーザー出力側の高速移動により行うため、単位時間当たりの熱量が少なく、ボールシート22への熱影響が軽減される。 FIG. 8 shows the penetration depth (penetration depth) d1 at the boundary by laser welding. The penetration depth d1 is set to an appropriate depth such that the resin ball seat 22 below the O-ring 24 is not deformed or melted by the amount of electric heat during laser welding. The strength of laser welding is adjusted in order to obtain the appropriate penetration depth d1. In laser welding, the limit of the penetration depth d1 is determined according to the material of the ball seat 22 and the height of the O-ring 24 (that is, the electrothermal distance). Further, since the laser welding is performed by rotating the housing 21 at a high speed or moving the laser output side at a high speed, the amount of heat per unit time is small and the heat influence on the ball seat 22 is reduced.
 必要な破壊荷重(Oリング24が外れない強度)を満足するために全周溶接が必要な溶け込み深さを仮にd1とした場合、溶け込み深さをd1の1.5倍にすれば、必要な溶接長さは2/3周、d1の2倍とすれば1/2周で済む。あまりに深いと樹脂製ボールシート22に影響が生じる。 If the penetration depth required for the entire circumference welding to satisfy the necessary breaking load (strength at which the O-ring 24 does not come off) is d1, and if the penetration depth is 1.5 times the d1, it is necessary. The welding length is 2/3 round, and if it is doubled d1, it is 1/2 round. If it is too deep, the ball seat 22 made of resin is affected.
 このため、レーザ溶接は、ボールシート22とOリング24の接触面積が変わらないことを前提に、溶込深さd1×溶込み長さ(全周、断続的、パルス状等の平面長さ)が、必要な破壊荷重を満たせば如何なる溶接形態も可能である。 Therefore, in the laser welding, the penetration depth d1 × the penetration length (entire circumference, intermittent, pulse-like plane length) is premised on that the contact area between the ball seat 22 and the O-ring 24 does not change. However, any welding configuration is possible as long as the required breaking load is satisfied.
<第1実施形態の効果>
 このような第1実施形態のボールジョイントのボールシート固定構造の効果について説明する。ボールジョイントJ1は、構造体としてのサスペンション又はスタビライザに一端部が連結されるスタッド部10sの他端部に、金属製のボール部10bが一体に接合されて成るボールスタッド10と、ボールスタッド10のボール部10bを揺動及び回転可能に支持し一方が開口した空間を有する金属製のハウジング21と、ハウジング21とボール部10bとの間に介在される樹脂製のボールシート22とを有し、ボールシート22に覆われたボール部10bがハウジング21で包含されて成る。この構成のボールジョイントJ1のボールシート固定構造を次の特徴構成とした。
<Effects of First Embodiment>
The effect of the ball seat fixing structure for the ball joint of the first embodiment will be described. The ball joint J1 includes a ball stud 10 in which a metal ball portion 10b is integrally joined to the other end of a stud portion 10s whose one end is connected to a suspension or a stabilizer as a structure, and the ball stud 10 of the ball stud 10. A metal housing 21 having a space in which the ball portion 10b is swingably and rotatably supported and one of which is open; and a resin ball seat 22 interposed between the housing 21 and the ball portion 10b. The ball portion 10b covered with the ball seat 22 is included in the housing 21. The ball seat fixing structure of the ball joint J1 having this structure has the following characteristic structure.
 (1)ハウジング21の開口端部21aの内側で且つボールシート22の上に、当該開口端部21aよりも突出してセットされるOリング24を備え、Oリング24とハウジング21との境界の隅部がレーザ溶接で溶接固定されて成る構成とした。 (1) An O-ring 24 that is set inside the opening end 21a of the housing 21 and above the ball seat 22 so as to project from the opening end 21a is provided, and the corner of the boundary between the O-ring 24 and the housing 21 is provided. The part is welded and fixed by laser welding.
 この構成によれば、ハウジング21内のボールシート22上のOリング24が外側のハウジング21よりも突出しているので、ハウジング21の外側からレーザ溶接を行い易くなる。この逆にハウジング21の内側からは、ハウジング21内にボールスタッド10が立設しているため、レーザ溶接を行うことが困難である。また、ボールシート22上のOリング24がハウジング21よりも突出しているので、Oリング24を上から押圧してボールシート22を適正に圧縮することが容易となる。レーザ溶接では短時間で溶接を行うことができる。これらの利点から、Oリング24を固定する工程を、短いタクトタイムで可能とし、コストを下げることができる。 According to this configuration, the O-ring 24 on the ball seat 22 in the housing 21 projects more than the outer housing 21. Therefore, it becomes easy to perform laser welding from the outside of the housing 21. On the contrary, from the inside of the housing 21, the ball stud 10 is erected inside the housing 21, so that it is difficult to perform laser welding. Further, since the O-ring 24 on the ball seat 22 projects from the housing 21, it becomes easy to press the O-ring 24 from above and properly compress the ball seat 22. With laser welding, welding can be performed in a short time. Due to these advantages, the step of fixing the O-ring 24 can be performed with a short takt time, and the cost can be reduced.
 (2)Oリング24は、一体に連続した環状を成す構成とした。 (2) The O-ring 24 is configured as an integrally continuous ring.
 この構成によれば、Oリング24が一体に連続した環状であるため、加工時に歪み難く、形状及び寸法を安定させて加工できる。また、従来のC型のリング14に比べ溶接時にOリング24の歪が生じ難くなる。 According to this configuration, since the O-ring 24 is an integrally continuous ring, it is difficult to distort during processing, and it is possible to perform processing with stable shape and dimensions. Further, the O-ring 24 is less likely to be distorted during welding as compared with the conventional C-shaped ring 14.
 (3)ハウジング21の開口端部21aの内周に所定角度の第1テーパ形状部P1を設け、Oリング24の外周下端部に、第1テーパ形状部P1と同じ角度で、当該第1テーパ形状部P1に当接可能な第2テーパ形状部P2を設ける構成とした。 (3) A first taper-shaped portion P1 having a predetermined angle is provided on the inner circumference of the opening end 21a of the housing 21, and the first taper-shaped portion P1 is formed on the lower end of the outer circumference of the O-ring 24 at the same angle as the first taper-shaped portion P1. The configuration is such that the second tapered shape portion P2 that can contact the shape portion P1 is provided.
 この構成によれば、Oリング24をハウジング21内に、第1テーパ形状部P1が第2テーパ形状部P2に満遍なく当接する状態にセットできるので、Oリング24の中心に向かう求心力が働き(求心効果)、Oリング24とハウジング21との同軸が保証される。このため、Oリング24がガタつかなくなる。 According to this configuration, the O-ring 24 can be set in the housing 21 so that the first tapered shape portion P1 uniformly abuts on the second tapered shape portion P2, so that the centripetal force toward the center of the O-ring 24 works (centripetal force). (Effect), the coaxiality of the O-ring 24 and the housing 21 is guaranteed. Therefore, the O-ring 24 does not rattle.
 (4)Oリング24は、ハウジング21内に第1テーパ形状部P1が第2テーパ形状部P2に当接状態にセットされた際に、ハウジング21の上端より所定高さ突き出る高さを有する構成とした。 (4) The O-ring 24 has a height that protrudes from the upper end of the housing 21 by a predetermined height when the first tapered portion P1 is set in contact with the second tapered portion P2 inside the housing 21. And
 この構成によれば、Oリング24をハウジング21内に載置した際に、Oリング24がハウジング21から突き出ているので、載置されたOリング24を下方側に押し込んで容易にセットできる。Oリング24を押圧子で押圧する際に、押圧子の位置がハウジング21よりも高いので、押圧子がハウジング21と接触や干渉しないようにできる。 According to this configuration, when the O-ring 24 is placed in the housing 21, the O-ring 24 projects from the housing 21, so the placed O-ring 24 can be easily pushed down and set. When the O-ring 24 is pressed by the pressing element, the position of the pressing element is higher than that of the housing 21, so that the pressing element can be prevented from contacting or interfering with the housing 21.
 (5)Oリング24の内径は、ボール部10bの球径よりも大きい構成とした。 (5) The inner diameter of the O-ring 24 is larger than the spherical diameter of the ball portion 10b.
 この構成によれば、Oリング24をボール部10bの下方側から上方側へ挿通できる。このため、ボール部10bに挿通されたOリング24をハウジング21内に容易に載置できる。 According to this configuration, the O-ring 24 can be inserted from the lower side to the upper side of the ball portion 10b. Therefore, the O-ring 24 inserted in the ball portion 10b can be easily placed in the housing 21.
<第2実施形態>
 図9は、本発明に係る第2実施形態のボールジョイントの縦断面図である。図9において図1に示した構成要素と同一部分には同一符号を付し、その説明を適宜省略する。
<Second Embodiment>
FIG. 9 is a vertical sectional view of a ball joint according to a second embodiment of the present invention. 9, the same parts as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図9に示す第2実施形態のボールジョイントJ2が、第1実施形態のボールジョイントJ(図1)と異なる点は、Oリング24に代え、図12に示す隙間64gを有するC形状のストッパリング(Cリングともいう)64を用いたことにある。即ち、Cリング64でボールシート22を押圧してセットし、このセット状態で、Cリング64をハウジング21の上端部にレーザ溶接で固定したことにある。なお、Oリング24又はCリング64は、請求項記載のリングを構成する。 The ball joint J2 of the second embodiment shown in FIG. 9 differs from the ball joint J of the first embodiment (FIG. 1) in that the O-ring 24 is replaced with a C-shaped stopper ring having a gap 64g shown in FIG. This is due to the use of 64 (also called C ring). That is, the ball sheet 22 is pressed and set by the C ring 64, and in this set state, the C ring 64 is fixed to the upper end of the housing 21 by laser welding. The O-ring 24 or the C-ring 64 constitutes the ring described in the claims.
 図10はCリング64の平面図、図11は図10に示すCリング64のX-X断面図、
図12はCリング64の斜視図である。
10 is a plan view of the C ring 64, and FIG. 11 is a cross-sectional view of the C ring 64 shown in FIG.
FIG. 12 is a perspective view of the C ring 64.
 図11に示すように、Cリング64の外周下端部は、ハウジング21のテーパ段差部P1と同じテーパ角度θ1のテーパ形状部(第2テーパ形状部)P2(図9参照)となっている。図10に示すCリング64の内径(Cリング内径)R1は、図9に示すボール部10bの球径(ボール球径)R3より僅かに小さいサイズとなっている。例えば、ボール球径R3がφ16.0の場合、Cリング内径R1はφ15.1となっている。このサイズは、ボール部10bが、この上にレーザ溶接されるCリング64から抜けない様にするために定めたものである。 As shown in FIG. 11, the lower end of the outer periphery of the C ring 64 is a tapered portion (second tapered portion) P2 (see FIG. 9) having the same taper angle θ1 as the tapered step portion P1 of the housing 21. The inner diameter (C ring inner diameter) R1 of the C ring 64 shown in FIG. 10 is slightly smaller than the spherical diameter (ball spherical diameter) R3 of the ball portion 10b shown in FIG. For example, when the ball sphere diameter R3 is φ16.0, the C ring inner diameter R1 is φ15.1. This size is determined in order to prevent the ball portion 10b from coming off from the C ring 64 that is laser-welded onto the ball portion 10b.
 更に、Cリング64(図1)は、従来のハウジングカシメのC型ストッパリング14(図26)と比較して、高さの高い断面形状を有する。このため、Cリング64では、断面係数が大きくなって、断面剛性が上がり強いカシメ強度を確保でき、スタッド抜け荷重が増大する。このCリング64には、SPCC(Steel Plate Cold Commercial:冷間圧延鋼板)やSPHC(Steel Plate Hot Commercial:熱間圧延軟鋼板)等の金属材料を使用できるが、より強度の高い金属材料を用いることで、上記強度をより強くできる。 Furthermore, the C ring 64 (FIG. 1) has a cross-sectional shape with a height higher than that of the C-shaped stopper ring 14 (FIG. 26) of the conventional housing caulking. Therefore, in the C ring 64, the section modulus is increased, the section rigidity is increased, and strong crimping strength can be secured, and the stud slip-out load is increased. For the C ring 64, a metal material such as SPCC (Steel Plate Cold Commercial: cold rolled steel sheet) or SPHC (Steel Plate Hot Commercial: hot rolled mild steel sheet) can be used, but a stronger metal material is used. As a result, the strength can be increased.
 図10に示すCリング外径R2は、ハウジング21の開口端部21a(図2)の内側にCリング64が挿入可能なサイズとなっている。また、Cリング64の隙間64gは、図9に示すスタッド部10sの先端側のボール部10bが固定された、くびれ部分の首部10dよりも大きいサイズとなっている。つまり、隙間64gを首部10dに通してCリング64を、ボールシート22上にセット可能となっている。 The C ring outer diameter R2 shown in FIG. 10 is sized so that the C ring 64 can be inserted inside the opening end 21a (FIG. 2) of the housing 21. Further, the gap 64g of the C ring 64 is larger than the neck portion 10d of the constricted portion to which the tip side ball portion 10b of the stud portion 10s shown in FIG. 9 is fixed. That is, the C ring 64 can be set on the ball seat 22 by passing the gap 64g through the neck portion 10d.
 Cリング64をハウジング21内のボールシート22上に載置した際に、図9に示すCリング64の外周面64d(図11)とハウジング21の内周面との径方向のギャップが、0.25mm以下となるCリング外径R2が好ましい。このギャップサイズは、レーザ溶接時のレーザスポット径や、溶接個所面積の制約によって定まる。 When the C ring 64 is placed on the ball seat 22 in the housing 21, the radial gap between the outer peripheral surface 64d (FIG. 11) of the C ring 64 and the inner peripheral surface of the housing 21 shown in FIG. A C ring outer diameter R2 of 0.25 mm or less is preferable. This gap size is determined by the laser spot diameter at the time of laser welding and the restriction of the welding spot area.
 ハウジング21内に挿入されたボールシート22の上にCリング64を載置した場合、Cリング64の上端部64bがハウジング21の開口端部21a(図2)から突出するようになっている。このCリング64をボールシート22上に載置した状態では、Cリング64のテーパ形状部P2がハウジング21のテーパ段差部P1と上下に離間状態となる。 When the C-ring 64 is placed on the ball seat 22 inserted into the housing 21, the upper end 64b of the C-ring 64 projects from the open end 21a (FIG. 2) of the housing 21. When the C ring 64 is placed on the ball seat 22, the tapered portion P2 of the C ring 64 is vertically separated from the tapered step portion P1 of the housing 21.
 この上下離間状態で、Cリング64を上から押圧することでボールシート22が圧縮され、Cリング64のテーパ形状部P2がテーパ段差部P1に当接して、これ以上、下がらないセット状態となる。このセット状態は、Cリング64をやや押圧してボールシート22が前述した適正な締め代となれば、テーパ形状部P2がテーパ段差部P1に当接しなくてもよい。つまり、Cリング64がボールシート22上に載置された位置と、Cリング64のテーパ形状部P2がテーパ段差部P1に当接する位置との間の高さ位置で、ボールシート22の適正な圧縮が可能となっている。 In this vertically separated state, the ball seat 22 is compressed by pressing the C ring 64 from above, and the tapered portion P2 of the C ring 64 abuts on the tapered step portion P1 so that the ball ring 22 is not lowered further. . In this set state, the taper-shaped portion P2 does not have to abut the taper stepped portion P1 as long as the C-ring 64 is slightly pressed and the ball seat 22 has the proper tightening margin described above. That is, at a height position between the position where the C ring 64 is placed on the ball seat 22 and the position where the tapered portion P2 of the C ring 64 contacts the tapered step portion P1, the proper position of the ball seat 22 is obtained. It can be compressed.
 また、Cリング64を上から押圧した際に、テーパ形状部P2がテーパ段差部P1に当接するとこれ以上、下がらないので、ボールシート22のオーバー圧縮を防止可能となっている。 Further, when the tapered portion P2 comes into contact with the tapered step portion P1 when the C ring 64 is pressed from above, the taper step portion P1 does not go down any further, so that overcompression of the ball seat 22 can be prevented.
 図11に示すCリング64の下面64aから上面64bまでの高さh2は、図9に示すようにCリング64をハウジング21内に載置した際に、Cリング64がハウジング21から僅かに突き出る高さとなっている。この高さh2は、載置されたCリング64を下方側に押し込んでセットした場合も、僅かに突き出る高さとする。このセット後のCリング64が突き出る高さは、後述のレーザ溶接のために0.05mm以上であることが好ましい。 The height h2 from the lower surface 64a to the upper surface 64b of the C ring 64 shown in FIG. 11 is that the C ring 64 slightly protrudes from the housing 21 when the C ring 64 is placed in the housing 21 as shown in FIG. It is high. This height h2 is a height that slightly protrudes even when the mounted C-ring 64 is pushed down and set. The protruding height of the C ring 64 after this setting is preferably 0.05 mm or more for laser welding described later.
 また、ハウジング21のテーパ段差部P1にCリング64のテーパ形状部P2が当接した場合、Cリング64の中心に向かう求心力が働き(求心効果)、Cリング64とハウジング21との同軸が保証される。このため、Cリング64がガタつかなくなる。 Also, when the tapered step portion P1 of the housing 21 contacts the tapered portion P2 of the C ring 64, a centripetal force toward the center of the C ring 64 works (centripetal effect) to ensure that the C ring 64 and the housing 21 are coaxial. To be done. Therefore, the C ring 64 does not rattle.
 図11に示すCリング64は、ハウジング21内へのセット状態で垂直線V(図9)に対して角度θ2で傾斜するテーパ面64cを、Cリング内周側に有する。このテーパ面64cの傾斜角θ2は、図9に示すボールスタッド10が揺動(矢印α1)した際に、ボールスタッド10の揺動角を満たす角度となる。 The C ring 64 shown in FIG. 11 has a tapered surface 64c on the inner peripheral side of the C ring that is inclined at an angle θ2 with respect to the vertical line V (FIG. 9) when set in the housing 21. The inclination angle θ2 of the tapered surface 64c is an angle that satisfies the swing angle of the ball stud 10 when the ball stud 10 shown in FIG. 9 swings (arrow α1).
 次に、図9に示すCリング64をハウジング21内にセットした後、矢印Y1で示すように、Cリング64とハウジング21が当接した境界の隅部をレーザ溶接する。このレーザ溶接は、前述したOリング24と同様に行われる。但し、レーザ溶接を行う場合、必要に応じて、押圧子(図示せず)で上方からCリング64に荷重を掛け、Cリング64のテーパ形状部P2とハウジング21のテーパ段差部P1との密着性を上げたり、ボールシート22を適正量圧縮したりする。 Next, after setting the C ring 64 shown in FIG. 9 in the housing 21, the corner portion of the boundary where the C ring 64 and the housing 21 are in contact with each other is laser-welded as shown by an arrow Y1. This laser welding is performed in the same manner as the above-mentioned O-ring 24. However, when performing laser welding, if necessary, a load is applied to the C ring 64 from above with a pressing element (not shown), and the taper portion P2 of the C ring 64 and the taper step portion P1 of the housing 21 are brought into close contact with each other. The ball seat 22 is compressed, and the ball seat 22 is compressed by an appropriate amount.
 レーザ溶接は、ハウジング21を回転させながら後述のようにCリング64の全周、断続的、パルス状等で行う。図13にCリング64とハウジング21の境界を太線で示すC型全周溶接31cした状態を示す。図14に上記境界を断続的に溶接(断続溶接)32した状態、図15に上記境界をパルス状に溶接(パルス溶接)33した状態を示す。 Laser welding is performed while rotating the housing 21, as described below, on the entire circumference of the C ring 64, intermittently, in a pulse shape, or the like. FIG. 13 shows a state in which the boundary between the C ring 64 and the housing 21 is C-shaped full circumference welded 31c indicated by a thick line. FIG. 14 shows a state in which the boundary is intermittently welded (intermittent welding) 32, and FIG. 15 shows a state in which the boundary is welded in a pulse shape (pulse welding) 33.
 レーザ溶接の溶込深さd1は、図8を参照して前述した通りである。要求される破壊荷重(Cリング64が外れない強度)を安全にクリアするために、溶込深さd1は、所定の深さが所定の周回範囲に渡って必要である。例えば、必要な破壊荷重を安全にクリアできる溶込深さd1が0.2mmでは全周に渡って必要である場合、溶込深さd1が0.3mmでは2/3周で済み、0.4mmでは1/2周で済む。あまりに深いと樹脂製ボールシート22に影響が生じる。 The penetration depth d1 of laser welding is as described above with reference to FIG. In order to safely clear the required breaking load (strength with which the C ring 64 does not come off), the penetration depth d1 is required to have a predetermined depth over a predetermined circulation range. For example, when the penetration depth d1 that can safely clear the required breaking load is 0.2 mm and it is required over the entire circumference, if the penetration depth d1 is 0.3 mm, it is 2/3 circumferences. With 4 mm, it takes only 1/2 turn. If it is too deep, the ball seat 22 made of resin is affected.
 このため、レーザ溶接は、ボールシート22とCリング64の接触面積が変わらないことを前提に、溶込深さd1×溶接長さ(全周、断続的、パルス状等の平面長さ)が、必要な破壊荷重を満たせば如何なる溶接形態も可能である。 Therefore, in laser welding, the penetration depth d1 × welding length (entire circumference, intermittent, pulse-like plane length) is premised on that the contact area between the ball seat 22 and the C ring 64 does not change. Any welding form is possible as long as the necessary breaking load is satisfied.
 また、ボールシート22、Cリング64、ハウジング21の組合せ状態に応じて、Cリング64がハウジング21の先端より相対的に沈んでいる場合、レーザ溶接でCリング64が狙えないため、レーザ溶接の狙いをハウジング21とするのが好ましい。この内容は、Oリング24においても同様である。 Further, depending on the combination state of the ball seat 22, the C ring 64, and the housing 21, when the C ring 64 is relatively sunk from the tip of the housing 21, the C ring 64 cannot be aimed by laser welding. It is preferable that the aim is the housing 21. The same applies to the O-ring 24.
<第2実施形態の効果>
 このような第2実施形態のボールジョイントJ2のボールシート固定構造の効果について説明する。
<Effects of Second Embodiment>
The effect of the ball seat fixing structure of the ball joint J2 of the second embodiment will be described.
 (1)ハウジング21の開口端部21aの内側で且つボールシート22の上に、当該開口端部21aよりも突出してセットされるCリング64を備え、Cリング64とハウジング21との境界の隅部がレーザ溶接で溶接固定されて成る構成とした。 (1) A C ring 64 that is set inside the opening end 21a of the housing 21 and above the ball seat 22 so as to project from the opening end 21a is provided, and the corner of the boundary between the C ring 64 and the housing 21 is provided. The part is welded and fixed by laser welding.
 この構成によれば、ハウジング21内のボールシート22上のCリング64が外側のハウジング21よりも突出しているので、ハウジング21の外側からレーザ溶接を行い易くなる。この逆にハウジング21の内側からは、ハウジング21内にボールスタッド10が立設しているため、レーザ溶接を行うことが困難である。また、ボールシート22上のCリング64がハウジング21よりも突出しているので、Cリング64を上から押圧してボールシート22を適正に圧縮することが容易となる。レーザ溶接では短時間で溶接を行うことができる。これらの利点から、ハウジング21内でボール部10bを締め付けるボールシート22を適正な締め代となるように押圧固定する工程を、短いタクトタイムで行うことができ、これにより製造コストを下げることができる。 According to this configuration, the C ring 64 on the ball seat 22 inside the housing 21 projects more than the outside housing 21, so that it becomes easier to perform laser welding from the outside of the housing 21. On the contrary, from the inside of the housing 21, the ball stud 10 is erected inside the housing 21, so that it is difficult to perform laser welding. Further, since the C ring 64 on the ball seat 22 projects from the housing 21, it becomes easy to press the C ring 64 from above and properly compress the ball seat 22. With laser welding, welding can be performed in a short time. Due to these advantages, the step of pressing and fixing the ball seat 22 for tightening the ball portion 10b in the housing 21 so as to have an appropriate tightening allowance can be performed in a short takt time, which can reduce the manufacturing cost. .
 (2)ハウジング21の開口端部21aの内周に所定角度の第1テーパ形状部P1(テーパ段差部P1)を設け、Cリング64の外周下端部に、第1テーパ形状部P1と同じ角度で、当該第1テーパ形状部P1に当接可能な第2テーパ形状部P2を設ける構成とした。 (2) A first taper-shaped portion P1 (taper step P1) having a predetermined angle is provided on the inner periphery of the opening end 21a of the housing 21, and the outer peripheral lower end of the C ring 64 has the same angle as the first taper-shaped portion P1. Then, the second tapered shape portion P2 that can contact the first tapered shape portion P1 is provided.
 この構成によれば、Cリング64をハウジング21内に、第1テーパ形状部P1が第2テーパ形状部P2に満遍なく当接する状態にセットできるので、Cリング64の中心に向かう求心力が働き(求心効果)、Cリング64とハウジング21との同軸が保証される。このため、Cリング64がガタつかなくなる。 According to this configuration, the C ring 64 can be set in the housing 21 such that the first tapered shape portion P1 is evenly in contact with the second tapered shape portion P2, so that the centripetal force toward the center of the C ring 64 works (centripetal force). (Effect), the coaxiality of the C ring 64 and the housing 21 is guaranteed. Therefore, the C ring 64 does not rattle.
 (3)Cリング64は、ハウジング21内に第1テーパ形状部P1が第2テーパ形状部P2に当接状態にセットされた際に、ハウジング21の上端(又は上端面)21cより所定高さ突き出る高さを有する構成とした。 (3) The C ring 64 has a predetermined height from the upper end (or upper end surface) 21c of the housing 21 when the first tapered portion P1 is set in the housing 21 in a state of abutting against the second tapered portion P2. It is configured to have a protruding height.
 この構成によれば、Cリング64をハウジング21内に載置した際に、Cリング64がハウジング21から突き出ているので、載置されたCリング64を下方側に押し込んで容易にセットできる。Cリング64を押圧子で押圧する際に、押圧子の位置がハウジング21よりも高いので、押圧子がハウジング21と接触や干渉しないようにできる。 According to this configuration, when the C ring 64 is placed in the housing 21, the C ring 64 projects from the housing 21, so that the placed C ring 64 can be easily pushed down and set. When the C-ring 64 is pressed by the pressing element, the position of the pressing element is higher than that of the housing 21, so that the pressing element can be prevented from contacting or interfering with the housing 21.
 (4)Cリング64の内径は、ボール部10bの球径よりも小さい構成とした。 (4) The inner diameter of the C ring 64 is smaller than the spherical diameter of the ball portion 10b.
 この構成によれば、ボール部10bの球形が、この上のCリング64の内径よりも大きいので、レーザ溶接されたCリング64から、上方へ引っ張られるボール部10bが抜けない様にできる。 According to this configuration, since the spherical shape of the ball portion 10b is larger than the inner diameter of the C ring 64 above this, the ball portion 10b pulled upward can be prevented from coming off from the laser-welded C ring 64.
<ボールシートの第1変形例>
 図16は第2実施形態のボールジョイントJ2におけるボールシート22Aの第1変形例の構成を示す斜視図である。図17はハウジング21内に挿入されたボールシート22Aの上にCリング64を載置した場合の構成を示す斜視図である。図18は図17に示すハウジング21、Cリング64及びボールシート22Aの組合せ構成の平面図である。図19は図17のV-V断面図である。但し、図19には、ボールシート22A内のスタッ
ド部10sの先端側のボール部10bを記載している。
<First modified example of ball seat>
FIG. 16 is a perspective view showing the configuration of a first modified example of the ball seat 22A in the ball joint J2 of the second embodiment. FIG. 17 is a perspective view showing a configuration in which the C ring 64 is placed on the ball seat 22A inserted into the housing 21. FIG. 18 is a plan view of a combined configuration of the housing 21, the C ring 64, and the ball seat 22A shown in FIG. FIG. 19 is a sectional view taken along line VV of FIG. However, FIG. 19 shows the ball portion 10b on the tip side of the stud portion 10s in the ball seat 22A.
 図16に示す第1変形例のボールシート22Aが、上述したボールシート22(図9参照)と異なる点は、ボールシート22Aの上端面22uに、Cリング64の隙間64g(図17)に嵌合される凸部22bを設けたことにある。この凸部22bが、Cリング64の隙間64gが埋まるので、次のように防止できる。即ち、スタッド部10sが揺動した際に隙間64gを抜けてハウジング21の内周面まで傾き、ボールスタッド10が必要以上に(又は不適正に)傾いてしまうことを防止できる。 The ball seat 22A of the first modified example shown in FIG. 16 is different from the above-described ball seat 22 (see FIG. 9) in that the upper end surface 22u of the ball seat 22A is fitted into the gap 64g (FIG. 17) of the C ring 64. This is because the projection 22b to be fitted is provided. The convex portion 22b fills the gap 64g of the C ring 64, and thus can be prevented as follows. That is, it is possible to prevent the ball stud 10 from being tilted more than necessary (or improperly) when the stud portion 10s swings, it passes through the gap 64g and tilts to the inner peripheral surface of the housing 21.
 図16に示す凸部22bの横幅w1は、Cリング64の隙間64g(図17)に満遍なく嵌る寸法となっている。また、凸部22bの上端面22cは、図17に示すように、ハウジング21にボールシート22Aを組み込んだ際に、ハウジング21の上端21cよりも低くなる高さにしてある。 The lateral width w1 of the convex portion 22b shown in FIG. 16 is dimensioned to fit evenly into the gap 64g (FIG. 17) of the C ring 64. Further, the upper end surface 22c of the convex portion 22b has a height lower than the upper end 21c of the housing 21 when the ball seat 22A is incorporated in the housing 21, as shown in FIG.
 詳細には、凸部22bの上端面22cは、図19に示すように、ハウジング21にCリング64をレーザ溶接した際の溶込深さd1よりも、更に下方側の深さ位置d2となる高さh3にしてある。この高さh3は、ボールシート22Aの底面から凸部22bの上端面22cまでの高さである。言い換えれば、凸部22bの上端面22cは、ハウジング21内に組み込んだ際に、レーザ溶接で溶けない距離離間する高さh3とされている。これによって、レーザ溶接によるボールシート22Aの溶融を防止できる。 In detail, as shown in FIG. 19, the upper end surface 22c of the convex portion 22b is located at a depth position d2 further lower than the penetration depth d1 when the C ring 64 is laser-welded to the housing 21. The height is h3. The height h3 is the height from the bottom surface of the ball seat 22A to the upper end surface 22c of the convex portion 22b. In other words, the upper end surface 22c of the convex portion 22b has a height h3 that is separated by a distance that does not melt by laser welding when incorporated in the housing 21. This can prevent melting of the ball seat 22A due to laser welding.
 また、図19に示すように、ボールシート22Aの凸部22bは、この内周側に、Cリング64のテーパ面64cと面一となるテーパ面22d(図16及び図17参照)が形成されている。これによって、図9に示すボールスタッド10が揺動(矢印α1)した際に、ボールスタッド10の予め定められた揺動角を満たす角度θ2のテーパ面64c,22dを構成できる。この構成により、ボールスタッド10を予め定められた揺動角で適正に揺動できる。 Further, as shown in FIG. 19, the convex portion 22b of the ball seat 22A has a tapered surface 22d (see FIGS. 16 and 17) formed on the inner peripheral side thereof so as to be flush with the tapered surface 64c of the C ring 64. ing. As a result, when the ball stud 10 shown in FIG. 9 swings (arrow α1), the tapered surfaces 64c and 22d having an angle θ2 that satisfies a predetermined swing angle of the ball stud 10 can be formed. With this configuration, the ball stud 10 can be properly swung at a predetermined swing angle.
<ボールシートの第2変形例>
 図20は第2実施形態のボールジョイントJ2におけるボールシート22Bの第2変形例の構成を示す斜視図である。図21はハウジング21内に挿入されたボールシート22Bの上にCリング64を載置した場合の構成を示す斜視図である。図22は図21に示すハウジング21、Cリング64及びボールシート22Bの組合せ構成の平面図である。図23は図21のVII-VII断面図である。但し、図23には、ボールシート22B内のス
タッド部10sの先端側のボール部10bを記載している。
<Second Modification of Ball Seat>
FIG. 20 is a perspective view showing a configuration of a second modified example of the ball seat 22B in the ball joint J2 of the second embodiment. FIG. 21 is a perspective view showing a configuration in which the C ring 64 is placed on the ball seat 22B inserted into the housing 21. 22 is a plan view of a combined configuration of the housing 21, the C ring 64, and the ball seat 22B shown in FIG. 23 is a sectional view taken along line VII-VII of FIG. However, FIG. 23 shows the ball portion 10b on the tip side of the stud portion 10s in the ball seat 22B.
 図20に示す第2変形例のボールシート22Bが、上述した第1変形例のボールシート22A(図16参照)と異なる点は、凸部22eの形状にある。ボールシート22Aの凸部22bは、図19に示すように、外周面がハウジング21の内周面に当接していた。しかし、第2変形例のボールシート22Bの凸部22eは、図23に示すように、外周面がハウジング21の内周面から径方向に距離d6だけ離間している。この離間距離d6は、レーザ溶接の熱が凸部22eに届かない距離となっている。この離間間隔の隙間を矢印22gで、図21~図23に指し示した。 The ball seat 22B of the second modification shown in FIG. 20 differs from the ball seat 22A of the first modification (see FIG. 16) described above in the shape of the convex portion 22e. As shown in FIG. 19, the outer peripheral surface of the convex portion 22b of the ball seat 22A was in contact with the inner peripheral surface of the housing 21. However, as shown in FIG. 23, the outer peripheral surface of the convex portion 22e of the ball seat 22B of the second modified example is radially separated from the inner peripheral surface of the housing 21 by a distance d6. This separation distance d6 is a distance that the heat of laser welding does not reach the convex portion 22e. The gap of this spacing is indicated by an arrow 22g in FIGS. 21 to 23.
 図23では、凸部22eの外周面が、ボールシート22Bの本体の外周面と面一となっており、凸部22eの径方向の幅をd5で示した。 In FIG. 23, the outer peripheral surface of the convex portion 22e is flush with the outer peripheral surface of the main body of the ball seat 22B, and the radial width of the convex portion 22e is indicated by d5.
 このようなボールシート22Bの凸部22eによれば、この凸部22eをCリング64の隙間64gに嵌合してボールシート22Bをセット後に、Cリング64とハウジング21とをレーザ溶接した際に、レーザ溶接の熱が凸部22eに届かない距離d6離れているので、レーザ溶接によるボールシート22Bの溶融を適正に防止できる。 According to such a convex portion 22e of the ball seat 22B, when the convex portion 22e is fitted in the gap 64g of the C ring 64 and the ball seat 22B is set, the C ring 64 and the housing 21 are laser-welded. Since the heat of the laser welding is away from the convex portion 22e by the distance d6, it is possible to properly prevent the melting of the ball seat 22B due to the laser welding.
 この他、図24に示すように、ハウジング21Aの内周側面21Abをストレート形状とし、このハウジング21A内のボールシート22Cにおける上端面22Caの内周側にテーパ面22Cbを設ける。この上端面22Ca及びテーパ面22Cbに隙間なく当接する形状のCリング74を載置した構成としてもよい。 In addition, as shown in FIG. 24, the inner peripheral side surface 21Ab of the housing 21A is formed in a straight shape, and a taper surface 22Cb is provided on the inner peripheral side of the upper end surface 22Ca of the ball seat 22C in the housing 21A. A configuration may be used in which a C ring 74 having a shape that abuts on the upper end surface 22Ca and the tapered surface 22Cb without a gap is placed.
 Cリング74は、図25に示すように、内周側がボールシート22Cのテーパ面22Cbに沿って下降するテーパ形状となっており、このテーパ形状の下面74eがボールシート22Cのテーパ面22Cbに当接している。そのテーパ形状の上面74cは、内周側が更に急角度のテーパ形状74fとなっている。このテーパ形状74fにすることでスタッド部10s(スタッドシャフト)とCリング74の干渉を回避し、上面74cと優先的に接するようにしている。Cリング74の外側面74dとハウジング21Aの内周側面のギャップは、0.25mm以下となるCリング外径が好ましい。このギャップサイズは、レーザ溶接時のレーザスポット径や、溶接個所面積の制約によって定まる。 As shown in FIG. 25, the C ring 74 has a tapered shape in which the inner peripheral side descends along the tapered surface 22Cb of the ball seat 22C, and the tapered lower surface 74e contacts the tapered surface 22Cb of the ball seat 22C. Touching. The tapered upper surface 74c has a tapered shape 74f with a steeper angle on the inner peripheral side. This taper shape 74f avoids the interference between the stud portion 10s (stud shaft) and the C ring 74, and preferentially contacts the upper surface 74c. It is preferable that the gap between the outer surface 74d of the C ring 74 and the inner peripheral side surface of the housing 21A has a C ring outer diameter of 0.25 mm or less. This gap size is determined by the laser spot diameter at the time of laser welding and the restriction of the welding spot area.
 このような構成によって、Cリング74に求心効果を持たせることができる。また、ハウジング21Aの内周側面21Abを、前述したハウジング21の上端21c(図1)のようにテーパ段差部P1を介して段差状に加工する必要がなくなるので、製造が容易になるメリットがある。 With such a configuration, the C ring 74 can have a centripetal effect. Further, there is no need to process the inner peripheral side surface 21Ab of the housing 21A into a stepped shape via the tapered stepped portion P1 unlike the above-described upper end 21c (FIG. 1) of the housing 21, so that there is an advantage that manufacturing becomes easy. .
 その他、具体的な構成について、本発明の主旨を逸脱しない範囲で適宜変更が可能である。
 本発明のボールシート固定構造のボールジョイントJ1は、産業用ロボットや人型ロボット等のロボットアームの関節部分や、ショベルカーやクレーン車等のアームが関節部分で回転する装置に適用可能である。
In addition, the specific configuration can be appropriately changed without departing from the gist of the present invention.
The ball joint J1 of the ball seat fixing structure of the present invention can be applied to a joint part of a robot arm of an industrial robot or a humanoid robot, or a device in which an arm of a shovel car or a crane truck rotates at the joint part.
 1a サポートバー
 10 ボールスタッド
 10b ボール部(球体部)
 10s スタッド部
 21 ハウジング
 21c ハウジングの上端又は上端面
 22,22A,22B ボールシート
 22b,22e ボールシートの凸部
 22c ボールシートの凸部の上端面
 24 O形状のストッパリング(Oリング)
 64 C型ストッパリング(Cリング)
 64a Cリングの下面
 64b Cリングの上面
 64c Cリングのテーパ面
 64g Cリングの隙間
 d1 溶込深さ
 J1,J2 ボールジョイント
 P1 ハウジングのテーパ段差部(第1テーパ形状部)
 P2 Cリングの第2テーパ形状部
1a Support bar 10 Ball stud 10b Ball part (sphere part)
10s Stud portion 21 Housing 21c Upper end or upper end surface of housing 22, 22A, 22B Ball seats 22b, 22e Convex portion of ball seat 22c Upper end surface of convex portion of ball seat 24 O-shaped stopper ring (O ring)
64 C type stopper ring (C ring)
64a Lower surface of C ring 64b Upper surface of C ring 64c Tapered surface of C ring 64g Clearance of C ring d1 Penetration depth J1, J2 Ball joint P1 Tapered stepped portion of housing (first tapered shape portion)
Second taper part of P2 C ring

Claims (11)

  1.  構造体に一端部が連結されるスタッド部の他端部に、金属製の球体部が一体に接合されて成るボールスタッドと、当該ボールスタッドの球体部を揺動及び回転可能に支持し一方が開口した空間を有する金属製のハウジングと、当該ハウジングと前記球体部との間に介在される樹脂製のボールシートとを有し、当該ボールシートに覆われた前記球体部が前記ハウジングで包含されるボールジョイントのボールシート固定構造であって、
     前記ハウジングの開口端部の内側で且つ前記ボールシートの上に、当該開口端部よりも突出してセットされるリングを備え、
     前記リングと前記ハウジングとの境界の隅部がレーザ溶接で溶接固定されて成る
     ことを特徴とするボールジョイントのボールシート固定構造。
    A ball stud in which a metallic sphere is integrally joined to the other end of the stud, one end of which is connected to the structure, and the sphere of the ball stud is swingably and rotatably supported, and one of A metal housing having an open space and a resin ball seat interposed between the housing and the spherical body portion, and the spherical body portion covered with the ball seat is included in the housing. The ball seat fixing structure of the ball joint,
    A ring that is set inside the opening end of the housing and on the ball seat so as to project from the opening end,
    A ball seat fixing structure of a ball joint, wherein a corner portion of a boundary between the ring and the housing is welded and fixed by laser welding.
  2.  前記リングは、一体に連続した環状を成す
     ことを特徴とする請求項1に記載のボールジョイントのボールシート固定構造。
    The ball seat fixing structure for a ball joint according to claim 1, wherein the ring forms an integrally continuous ring.
  3.  前記リングの内径は、前記球体部の球径よりも大きい
     ことを特徴とする請求項2に記載のボールジョイントのボールシート固定構造。
    The ball seat fixing structure of the ball joint according to claim 2, wherein the inner diameter of the ring is larger than the spherical diameter of the spherical body portion.
  4.  前記リングは、隙間が形成されたC形状を成す
     ことを特徴とする請求項1に記載のボールジョイントのボールシート固定構造。
    The ball seat fixing structure of the ball joint according to claim 1, wherein the ring has a C shape with a gap formed therein.
  5.  前記リングの内径は、前記球体部の球径よりも小さい
     ことを特徴とする請求項4に記載のボールジョイントのボールシート固定構造。
    The ball seat fixing structure for a ball joint according to claim 4, wherein the inner diameter of the ring is smaller than the spherical diameter of the spherical body portion.
  6.  前記ボールシートは、当該ボールシートの上端面に、前記リングの隙間に嵌合される凸部を備える
     ことを特徴とする請求項4又は5に記載のボールジョイントのボールシート固定構造。
    The ball seat fixing structure for a ball joint according to claim 4 or 5, wherein the ball seat is provided with a convex portion that is fitted into a gap of the ring on an upper end surface of the ball seat.
  7.  前記ボールシートの凸部は、前記ハウジングの内部に組み込まれた当該ボールシート上の前記リングと、当該ハウジングとのレーザ溶接により下方に延びる溶込深さよりも深い位置に、当該凸部の上端面が位置する高さを備える
     ことを特徴とする請求項6に記載のボールジョイントのボールシート固定構造。
    The convex portion of the ball seat has an upper end surface of the convex portion at a position deeper than a penetration depth extending downward by laser welding with the ring and the ring on the ball seat incorporated inside the housing. The ball seat fixing structure of the ball joint according to claim 6, further comprising a height at which is located.
  8.  前記リングは、当該リングの内周面に予め定められた角度で傾斜するテーパ面を備え、
     前記ボールシートの凸部は、当該凸部の内周側に、前記リングのテーパ面と面一となるテーパ面を備える
     ことを特徴とする請求項6に記載のボールジョイントのボールシート固定構造。
    The ring has a taper surface inclined at a predetermined angle on the inner peripheral surface of the ring,
    The ball seat fixing structure for the ball joint according to claim 6, wherein the convex portion of the ball seat includes a tapered surface on the inner peripheral side of the convex portion, the tapered surface being flush with the tapered surface of the ring.
  9.  前記ボールシートの凸部は、当該凸部の外周面が前記ハウジングの内周面から径方向にレーザ溶接で溶けない距離離間している
     ことを特徴とする請求項6に記載のボールジョイントのボールシート固定構造。
    The ball of the ball joint according to claim 6, wherein the convex portion of the ball seat is such that the outer peripheral surface of the convex portion is radially separated from the inner peripheral surface of the housing by a distance that does not melt by laser welding. Seat fixing structure.
  10.  前記ハウジングの開口端部の内周に所定角度の第1テーパ形状部を設け、
     前記リングの外周下端部に、前記第1テーパ形状部と同じ角度で、当該第1テーパ形状部に当接可能な第2テーパ形状部を設けた
     ことを特徴とする請求項1に記載のボールジョイントのボールシート固定構造。
    A first taper portion having a predetermined angle is provided on the inner circumference of the opening end of the housing,
    The ball according to claim 1, wherein the outer peripheral lower end portion of the ring is provided with a second tapered shape portion that can abut the first tapered shape portion at the same angle as the first tapered shape portion. Joint ball seat fixing structure.
  11.  前記リングは、前記ハウジング内に前記第1テーパ形状部が前記第2テーパ形状部に当接してセットされた際に、当該ハウジングの上端より所定高さ突き出る高さを有する
     ことを特徴とする請求項10に記載のボールジョイントのボールシート固定構造。
    The ring has a height protruding from the upper end of the housing by a predetermined height when the first taper-shaped portion is set in the housing in contact with the second taper-shaped portion. Item 11. A ball seat fixing structure for a ball joint according to Item 10.
PCT/JP2019/040406 2018-10-24 2019-10-15 Ball-sheet-securing structure for ball joint WO2020085138A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-200288 2018-10-24
JP2018200288 2018-10-24
JP2019-068768 2019-03-29
JP2019068768A JP7228449B2 (en) 2018-10-24 2019-03-29 Ball joint ball seat fixing structure

Publications (1)

Publication Number Publication Date
WO2020085138A1 true WO2020085138A1 (en) 2020-04-30

Family

ID=70330602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040406 WO2020085138A1 (en) 2018-10-24 2019-10-15 Ball-sheet-securing structure for ball joint

Country Status (1)

Country Link
WO (1) WO2020085138A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559692A (en) * 1981-01-23 1985-12-24 Societe Anonyme D.B.A. Method and apparatus for the manufacture of a ball joint
US5564853A (en) * 1993-07-22 1996-10-15 Dana Corporation Ball and socket joint assembly
DE19756984A1 (en) * 1997-12-20 1999-07-08 Daimler Chrysler Ag Ball joint and procedure for its preload
US6488436B1 (en) * 1999-02-04 2002-12-03 Societe Mecanique De Villeurbanne Ball joint, in particular steering or suspension ball joint for motor vehicles and, method for making a bearing for same
DE102004040403A1 (en) * 2004-08-19 2006-03-09 Zf Friedrichshafen Ag Ball joint and method for its production
US9010783B2 (en) * 2013-05-17 2015-04-21 Benteler Automobiltechnik Gmbh Ball joint and control arm for a motor vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559692A (en) * 1981-01-23 1985-12-24 Societe Anonyme D.B.A. Method and apparatus for the manufacture of a ball joint
US5564853A (en) * 1993-07-22 1996-10-15 Dana Corporation Ball and socket joint assembly
DE19756984A1 (en) * 1997-12-20 1999-07-08 Daimler Chrysler Ag Ball joint and procedure for its preload
US6488436B1 (en) * 1999-02-04 2002-12-03 Societe Mecanique De Villeurbanne Ball joint, in particular steering or suspension ball joint for motor vehicles and, method for making a bearing for same
DE102004040403A1 (en) * 2004-08-19 2006-03-09 Zf Friedrichshafen Ag Ball joint and method for its production
US9010783B2 (en) * 2013-05-17 2015-04-21 Benteler Automobiltechnik Gmbh Ball joint and control arm for a motor vehicle

Similar Documents

Publication Publication Date Title
EP2816245B1 (en) Stabilizer link and manufacturing method therefor
US20140376989A1 (en) Connection arrangement for a motor vehicle wheel suspension
WO2006019145A1 (en) Ball joint and method of producing the same
US6598778B2 (en) Aluminum-based metal link for vehicles and a method for producing same
WO2020085138A1 (en) Ball-sheet-securing structure for ball joint
WO2020203479A1 (en) Ball seat fixing structure for ball joint
JP2020067180A (en) Ball seat fixing structure of ball joint
JP4323358B2 (en) Stabilizer anti-slip device
JP2009088309A (en) Optical semiconductor device and method of manufacturing the same, and metal cap
US7374823B2 (en) Welded portion constitution and welding method
WO2021010375A1 (en) Ball seat securing method for ball joint, and ball seat securing structure
JP4891572B2 (en) Valve body for solenoid valve or electronic expansion valve
JP5166104B2 (en) Ball joint
JP7181149B2 (en) Ball seat fixing structure of ball joint and ball seat fixing method
JP6650036B2 (en) Valve housing assembly and valve
JP4560288B2 (en) Welding method
JP7398948B2 (en) axle case
KR20200020706A (en) Method for manufacturing vehicle parts and vehicle parts manufactured according to the method
JP4547384B2 (en) Manufacturing method of full face wheel for automobile
KR20180068412A (en) Installation structure of ball-joint and installation method thereof
JP2006168641A (en) Suspension arm of automobile
JP5013255B2 (en) Cylinder device and manufacturing method thereof
JP2000356238A (en) Retaining structure of shock absorber
JP2017006946A (en) Welding method and welding structure of metal member
KR101793678B1 (en) The method for cutting the collar hole of trailing arm for torsion beam axle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877306

Country of ref document: EP

Kind code of ref document: A1