WO2020084810A1 - Cylindrical linear motor - Google Patents

Cylindrical linear motor Download PDF

Info

Publication number
WO2020084810A1
WO2020084810A1 PCT/JP2019/012439 JP2019012439W WO2020084810A1 WO 2020084810 A1 WO2020084810 A1 WO 2020084810A1 JP 2019012439 W JP2019012439 W JP 2019012439W WO 2020084810 A1 WO2020084810 A1 WO 2020084810A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
linear motor
armature
cylindrical
core
Prior art date
Application number
PCT/JP2019/012439
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 浩介
隆司 柿内
喜也 永溝
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2020084810A1 publication Critical patent/WO2020084810A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a cylindrical linear motor.
  • a cylindrical linear motor is, for example, an armature having U-phase, V-phase, and W-phase windings that are mounted in slots between a cylindrical core having a plurality of teeth arranged side by side in the axial direction on the outer periphery and teeth.
  • a stator including a bottomed cylindrical yoke provided on the outer circumference of the armature and a plurality of permanent magnets mounted on the inner circumference of the yoke so that the S poles and the N poles are alternately arranged in the axial direction.
  • a sinusoidal wave with a phase difference of 120 degrees is applied to each of the U-phase, V-phase and W-phase windings of the armature.
  • the armature is energized so as to be attracted by the permanent magnets by performing 120-degree energization control for applying a voltage, and the armature is axially driven as a mover with respect to the stator.
  • the magnetic sensor is configured to include the Hall sensor made of an electronic circuit and is installed near the armature that heats when energized, so the magnetic sensor is exposed to heat. . Therefore, in the conventional cylindrical linear motor, the reliability of the position of the armature detected by the magnetic sensor may decrease.
  • an object of the present invention is to provide a cylindrical linear motor that can improve the reliability of the detected position of the armature.
  • the armature 2 includes a core 3 and a winding wire 5.
  • the core 3 is configured to include a cylindrical core body 3a and a plurality of teeth 3b that are annular and are provided on the outer periphery of the core body 3a at intervals in the axial direction, and serve as a mover.
  • the core 3 has a tubular shape, and as shown in FIG. 1, is provided with ten teeth 3b arranged on the outer periphery of the core body 3a at equal intervals in the axial direction.
  • a slot 4 which is an air gap in which the winding 5 is mounted is formed therebetween.
  • each tooth 3b has an annular shape, and except for the teeth 3b arranged at both ends of the core 3, each tooth 3b has an isosceles trapezoid shape in which the width of the outer peripheral end is narrower than the width of the inner peripheral end in the axial direction, Side surfaces on both sides in the axial direction are tapered surfaces that are inclined at an equal angle with respect to the outer peripheral end.
  • the teeth 3b at the ends have a cross-sectional shape in which the teeth 3b other than the teeth 3b at the ends are cut in half in a plane orthogonal to the axis of the core 3.
  • the cross-sectional shape of each tooth 3b is a trapezoid whose width at the outer peripheral edge is narrower than that at the inner peripheral edge.
  • a total of nine slots 4 which are voids are provided between the teeth 3b, 3b adjacent to each other in FIG.
  • a winding 5 is wound around and attached to the slot 4.
  • the winding 5 is a U-phase, V-phase, and W-phase three-phase winding.
  • W phase, W phase, W phase and V phase, V phase, V phase, V phase and U phase, U phase, U phase, U phase and W phase are arranged in order from the left side in FIG.
  • the winding 5 is attached.
  • the armature 2 configured in this way is attached to the outer circumference of the rod 11, which is the output shaft and is made of a non-magnetic material.
  • the rod 11 includes a tubular first rod 20 and a tubular second rod 21 to which the core 3 is attached on the outer periphery and which is screwed onto the inner periphery of the first rod 20.
  • the first rod 20 is cylindrical and has a rod body 22 having screw portions 22a and 22b on the outer periphery at the left end in FIG. 1 and the inner periphery at the right end in FIG. 1, and a bracket 23a for attaching the cylindrical linear motor 1 to a device.
  • the rod body 22 is provided with an end cap 23 that is screwed to a screw portion 22a at the left end in FIG. 1 to close the left end of the rod body 22.
  • An annular slider 25 is fitted around the right end of the rod body 22 in FIG.
  • a flange 25a is provided on the inner circumference of the right end of the slider 25.
  • the inner diameter of the flange 25a is not less than the inner diameter of the rod body 22 and not more than the outer diameter of the rod body 22, and when the slider 25 is fitted into the rod body 22, the flange 25a is brought to the right end surface of the rod body 22 in FIG. Abut.
  • a cylindrical cover 17 that fits a flange 18 provided on the left end side of the rod 11 in FIG. 1 and the slider 25 to cover the outer periphery of the rod 11 is provided, and a space between the cover 17 and the rod 11 is provided. An annular space is formed in.
  • the second rod 21 includes a cylindrical core holding cylinder 21a on which the core 3 is mounted, and an annular slider 21b provided on the outer circumference of the tip of the core holding cylinder 21a which is the right end in FIG. Further, a screw portion 21c is provided on the outer periphery of the base end that is the left end in FIG. 1 of the core holding cylinder 21a, and the inner diameter of the core holding cylinder 21a on the base end side is larger than the inner diameter of other parts. A large diameter portion 21d is provided. Then, the base end of the core holding cylinder 21a is inserted into the inner periphery of the rod body 22 of the first rod 20 at the right end in FIG. 1 and the screw portion 21c is screwed into the screw portion 22b. The rod 21 is connected.
  • the rod 11 is composed of the first rod 20 and the second rod 21, and the sensor body 30 of the stroke sensor S is housed in the first rod 20.
  • the core 3 is fitted and mounted on the outer periphery of the core holding cylinder 21a of the second rod 21. Since the outer diameter of the core holding cylinder 21a is smaller than the outer diameter of the rod body 22 of the first rod 20, the second rod 21 having the armature 2 mounted thereon is attached to the first rod 20 having the slider 25 mounted thereon.
  • the armature 2 and the slider 25 are sandwiched and fixed by the right end of the first rod 20 in FIG. 1 and the slider 21b of the second rod 21.
  • the armature 2 is mounted on the rod 11 in this way, the core 3 is fixed to the rod 11 in a state of being sandwiched between the slider 21b and the slider 25.
  • the field magnet 6 is configured to include a cylindrical laminated magnet body M and a back yoke 8 formed of a cylindrical magnetic body mounted on the outer periphery of the laminated magnet body M. It is housed in an annular gap between an outer tube 7 formed of a cylindrical non-magnetic material and a cylindrical inner tube 9 of a non-magnetic material inserted into the outer tube 7.
  • the permanent magnets 10a of the main magnetic poles and the permanent magnets 10b of the auxiliary magnetic poles are arranged in a Halbach array, and on the inner peripheral side of the field magnet 6, the S poles and the N poles are arranged alternately in the axial direction. .
  • the axial length L1 of the permanent magnet 10a of the main magnetic pole is longer than the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole. If the axial length L1 of the permanent magnet 10a of the main pole is made longer than the axial length L2 of the permanent magnet 10b of the auxiliary pole, the magnetic resistance between the core 3 and the permanent magnet 10a of the main pole is increased. Since the magnetic field acting on the core 3 can be reduced and the magnetic field applied to the core 3 can be increased, the thrust of the cylindrical linear motor 1 can be improved.
  • the axial length L1 of the permanent magnet 10a of the main magnetic pole and the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole there is an optimal relationship between the axial length L1 of the permanent magnet 10a of the main magnetic pole and the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole, and the axial length L1 of the permanent magnet 10a of the main magnetic pole and the permanent magnet of the auxiliary magnetic pole. If the axial length L2 of 10b is set to satisfy 0.2 ⁇ L2 / L1 ⁇ 0.5, 98% or more of the thrust when the value of L2 / L1 is set to an ideal value The thrust of can be secured. However, the relationship between the axial length L1 of the permanent magnet 10a of the main magnetic pole and the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole is not limited to the above setting.
  • the field magnet 6 is provided with the cylindrical back yoke 8 on the outer circumference of the permanent magnets 10a and 10b constituting the laminated magnet body M.
  • the back yoke 8 is not provided, when the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole is shortened, the magnetic resistance outside the magnet in the axial center portion of the permanent magnet 10a of the main magnetic pole is increased, and the magnetic field flux is reduced. Therefore, the degree of improvement in thrust of the cylindrical linear motor 1 when the axial length L1 of the permanent magnet 10a of the main pole is increased is reduced.
  • the back yoke 8 when the back yoke 8 is provided on the outer circumference of the permanent magnets 10a and 10b, a magnetic path having a low magnetic resistance can be secured, so that the magnetic resistance due to the reduction in the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole is reduced. Growth is suppressed. Therefore, when the axial length L1 of the permanent magnet 10a of the main magnetic pole is made longer than the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole, and the cylindrical back yoke 8 is provided on the outer circumference of the permanent magnets 10a and 10b, the cylinder is formed. The thrust of the die linear motor 1 can be greatly improved.
  • the thickness of the back yoke 8 may be set to a thickness suitable for suppressing an increase in external magnetic resistance of the permanent magnet 10a of the main pole.
  • the permanent magnet 10b of the auxiliary magnetic pole is a permanent magnet having a higher coercive force than the permanent magnet 10a of the main magnetic pole.
  • the residual magnetic flux density and the coercive force of a permanent magnet are closely related to each other. Generally, increasing the residual magnetic flux density decreases the coercive force, and increasing the coercive force decreases the residual magnetic flux density, which are contrary to each other. Have a relationship. In the Halbach array, since a large magnetic field is applied to the permanent magnet 10b of the auxiliary magnetic pole in the demagnetizing direction, the coercive force of the permanent magnet 10b of the auxiliary magnetic pole is increased to suppress demagnetization, and a large magnetic field is applied to the core 3. I am trying to make it possible.
  • the strength of the magnetic field acting on the core 3 depends on the number of magnetic lines of force of the permanent magnet 10a of the main pole. Therefore, a permanent magnet having a high residual magnetic flux density is used as the permanent magnet 10a of the main magnetic pole so that a large magnetic field acts on the core 3.
  • the material of the auxiliary magnetic pole permanent magnet 10b is set to be higher than that of the main magnetic pole permanent magnet 10a. Is a high material. Therefore, the combination of the permanent magnet 10a of the main magnetic pole and the permanent magnet 10b of the auxiliary magnetic pole can be easily realized by selecting the material.
  • the main pole permanent magnet 10a is made of a material having a high residual magnetic flux density, which contains neodymium, iron, and boron as main components
  • the sub-pole permanent magnet 10b is made of dysprosium or terribium. It is composed of a magnet that is hard to demagnetize with an increased amount of heavy rare earth elements such as.
  • the core 3 is inserted on the inner circumferential side of the field 6, and the field 6 applies a magnetic field to the core 3.
  • the magnetic field 6 may be applied to the movable range of the core 3 so that the installation range of the permanent magnets 10a and 10b may be determined according to the movable range of the core 3. Therefore, in the annular gap between the outer tube 7 and the inner tube 9, the permanent magnets 10a and 10b do not have to be installed in a range that cannot face the core 3.
  • the length of the back yoke 8 is equal to the length in which the permanent magnets 10a and 10b are laminated, and the permanent magnets 10a and 10b do not act on the magnetic field outside the stroke range of the core 3 to reduce the thrust. Is considered as.
  • the left ends of the outer tube 7, the back yoke 8 and the inner tube 9 in FIG. 1 are closed by an annular head cap 15 into which a rod 11 is inserted on the inner circumference.
  • the outer tube 7 is reduced in diameter on the right end side in FIG. 1 and is provided with a bottom portion 7a.
  • the outer tube 7 is provided with a bracket 7b that allows the cylindrical linear motor 1 to be attached to a device at the right end of the bottom portion 7a.
  • the field 6 and the inner tube 9 are fixed to the outer tube 7 by being sandwiched between the head cap 15 and the bottom portion 7 a of the outer tube 7.
  • a guide rod 16 is attached to the inner periphery of the bottom portion 7a of the outer tube 7.
  • the guide rod 16 includes a base end portion 16a fixed to the inner circumference of the bottom portion 7a and a guide portion 16b extending from the base end portion 16a toward the rod 11 and slidably inserted into the rod 11. Even when the cylindrical linear motor 1 expands and contracts, it is always in sliding contact with the inner circumference of the rod 11. More specifically, the guide portion 16b of the guide rod 16 is slidably inserted to the tip side of the inner diameter large diameter portion 21d of the second rod 21.
  • the sliders 21b and 25 are in sliding contact with the inner circumference of the inner tube 9, the guide rod 16 is in sliding contact with the inner circumference of the rod 11, and the sliders 21b and 25 are in sliding contact with the inner tube 9.
  • the child 2 can move smoothly in the axial direction together with the rod 11 without being eccentric with respect to the field 6.
  • the inner tube 9 forms a gap between the outer circumference of the core 3 and the inner circumference of each of the permanent magnets 10a and 10b, and plays a role of guiding the axial movement of the core 3 in cooperation with the sliders 21b and 25.
  • the inner tube 9 may be made of a non-magnetic material, but if it is made of a synthetic resin, the effect of improving the thrust density of the cylindrical linear motor 1 is enhanced.
  • the inner tube 9 is made of a non-magnetic metal, an eddy current is generated inside the inner tube 9 when the armature 2 moves in the axial direction, and a force that hinders the movement of the armature 2 is generated.
  • the inner tube 9 is made of synthetic resin, eddy current is not generated, so that the thrust of the cylindrical linear motor 1 can be more effectively improved and the mass of the cylindrical linear motor 1 can be reduced.
  • the inner tube 9 may be made of another synthetic resin, or the inner circumference of the inner tube 9 made of another synthetic resin may be coated with a fluororesin to reduce friction and wear.
  • the stroke sensor S is a linear variable differential transformer in the present embodiment, and although not shown in detail, a cylindrical sensor main body 30 containing a primary coil and two secondary coils,
  • the probe 32 is inserted in the sensor body 30 so as to be movable in the axial direction, and has a probe 32 having a sensor core 31 which is a detected element at its tip.
  • the linear variable differential transformer detects the position of the sensor core 31 from the difference between the induced voltages of the two secondary coils that are induced when the AC voltage is applied to the primary coil.
  • the sensor body 30 When the sensor body 30 is inserted into the first rod 20 in advance, the slider 25 is fitted to the end portion of the first rod 20, and the second rod 21 is screwed to the first rod 20, the sensor body 30 becomes The stepped portion formed at the right end of the large inner diameter portion 21 d of the second rod 21 and the end cap 23 of the first rod 20 are sandwiched and fixed in the first rod 20.
  • the sensor body 30 is housed in the first rod 20 in which the armature 2 is not mounted on the outer circumference, and is housed in a range that does not face the armature 2 in the radial direction of the rod 11.
  • the probe 32 of the stroke sensor S is rod-shaped and is attached to the tip of the guide portion 16b of the guide rod 16. Therefore, the sensor core 31 as the detected element is fixedly connected to the field 6 via the probe 32, the guide rod 16 and the outer tube 7. As described above, the probe 32 is provided with the sensor core 31 at the tip, and the tip side is inserted into the sensor body 30. Therefore, as the armature 2 moves in the axial direction with respect to the field 6, the probe 32 moves in the axial direction relative to the sensor body 30, and the sensor core 31 moves in the sensor body 30. .
  • the wiring for energizing the primary coil of the sensor main body 30 and the wiring connected to the secondary coil are drawn out from a hole provided in the end cap 23 and connected to a controller (not shown) although not shown.
  • the cable C connected to the winding 5 is housed in the space between the rod 11 and the cylindrical cover 17 that covers the outer periphery of the rod 11, and is drawn out to the outside of the cylindrical linear motor 1.
  • the outer tube 7, the back yoke 8 and the inner tube 9 have an axial length longer than the axial length of the core 3, and the core 3 is left and right in FIG. You can stroke to.
  • a controller (not shown) senses the electrical angle of the winding 5 with respect to the field 6 by the stroke sensor S, switches the energization phase based on the electrical angle, and controls the amount of current in each winding 5 by PWM control. Then, the thrust in the cylindrical linear motor 1 and the moving direction of the armature 2 are controlled.
  • the control method in the controller described above is an example, and the present invention is not limited to this.
  • the armature 2 is the mover and the field 6 behaves as the stator.
  • a thrust force that suppresses the relative displacement by energizing the winding 5 or by an induced electromotive force generated in the winding 5. Can be generated to cause the cylindrical linear motor 1 to damp vibrations and movements of the device due to the external force, and energy can be regenerated to generate electric power from the external force.
  • the cylindrical linear motor 1 of the present invention includes the cylindrical rod 11, the core 3 which is cylindrical and is attached to the outer circumference of the tip of the rod 11, and the slot 4 provided on the outer circumference of the core 3.
  • a field magnet 6 and a stroke sensor S which is inserted into the rod 11 to detect the position of the rod 11 with respect to the field magnet 6 are provided.
  • the stroke sensor S is fixed to the field magnet 6 and inserted into the rod 11.
  • the stroke sensor S is housed in the rod 11 having the armature 2 on the outer circumference, and the stroke sensor S is accommodated to the armature 2 that generates heat by energization and the field 6 that generates a magnetic field.
  • the stroke sensor S is not directly exposed. Therefore, the stroke sensor S is protected from the heat of the armature 2 and is not exposed to the magnetic field of the field 6, so that the detected position of the armature 2 can be accurately detected.
  • the tubular linear motor 1 of the present invention the reliability of the detected position of the armature 2 can be improved.
  • the sensor body 30 is housed in a range that does not face the armature 2 in the rod 11 in the radial direction. According to the tubular linear motor 1 configured as described above, the sensor body 30 and the armature 2 do not radially overlap with each other during the stroke of the tubular linear motor 1, so that the heat of the armature 2 is further reduced. It becomes difficult to be affected, and the reliability of the detected position of the armature 2 can be improved more effectively.
  • the tubular linear motor 1 of the present embodiment is provided with a guide rod 16 which is connected to the field 6 and slidably inserted into the rod 11, and the core (detection target) 31 is attached to the guide rod 16. It is installed.
  • the sensor core (detection target) 31 that moves with respect to the sensor body 30 is attached to the guide rod 16 that guides the axial movement of the rod 11. Therefore, the eccentricity of the sensor core (detected element) 31 with respect to the sensor body 30 is prevented, and the stroke sensor S can accurately detect the position of the armature 2.
  • the rod 11 in the tubular linear motor 1 of the present embodiment is a tubular first rod 20, is tubular and has the core 3 mounted on the outer periphery, and is screwed onto the inner periphery of the first rod 20.
  • the sensor main body 30 is sandwiched between the first rod 20 and the second rod 21 and fixed in the rod 11. According to the tubular linear motor 1 configured as described above, it becomes very easy to fix the stroke sensor S in the rod 11 and to attach the armature 2 to the rod 11, so that a good assembling property can be obtained.
  • the stroke sensor S may be a magnetostrictive stroke sensor or a linear potentiometer instead of the linear variable differential transformer. In any case, the stroke sensor S is fixed to the field 6. The position of the detected element to be detected may be detected by the sensor body fixed to the rod 11 side.
  • the teeth 3b have a trapezoidal shape in which the width of the outer peripheral edge is narrower than the width of the inner peripheral edge.
  • the magnetic path cross-sectional area at the inner peripheral edge becomes wider than in the case of a rectangular shape. Therefore, in the cylindrical linear motor 1 configured as described above, it is easy to secure a large magnetic path cross-sectional area, it is possible to suppress magnetic saturation when the winding 5 is energized, and it is possible to generate a larger magnetic field. Can occur.
  • the tooth 3b may have a trapezoidal cross-sectional shape, but may have a rectangular cross-sectional shape or another shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Linear Motors (AREA)

Abstract

This cylindrical linear motor (1) comprises: a cylindrical rod (11); a cylindrical armature (2) that has a core (3) mounted on the tip end outer circumference of the rod (11) and windings (5) that are mounted in slots (4) provided on the outer circumference of the core (3); a cylindrical field (6) into which the armature (2) is inserted so as to be capable of axial movement, and in which N poles and S poles are placed alternatingly in the axial direction; and a stroke sensor (S) that is inserted inside the rod (11) and detects the position of the rod (11) with respect to the field (6), wherein the stroke sensor (S) has a detection element (31) that is fixed in the field (6) and is inserted inside the rod (11), and a sensor body (30) that is housed inside the rod (11) and detects the position of the detection element (31).

Description

筒型リニアモータCylindrical linear motor
 本発明は、筒型リニアモータに関する。 The present invention relates to a cylindrical linear motor.
 筒型リニアモータは、たとえば、軸方向に並べて配置される複数のティースを外周に持つ筒型のコアとティース間のスロットに装着されるU相、V相およびW相の巻線を有する電機子と、電機子の外周に設けられた有底円筒形のヨークとヨークの内周に軸方向にS極とN極とが交互に並ぶように取付けられた複数の永久磁石とでなる固定子とを備えるものがある。 A cylindrical linear motor is, for example, an armature having U-phase, V-phase, and W-phase windings that are mounted in slots between a cylindrical core having a plurality of teeth arranged side by side in the axial direction on the outer periphery and teeth. And a stator including a bottomed cylindrical yoke provided on the outer circumference of the armature and a plurality of permanent magnets mounted on the inner circumference of the yoke so that the S poles and the N poles are alternately arranged in the axial direction. Some are equipped with.
 このように構成された筒型リニアモータでは、たとえば、JP2013-251992Aに開示されているように、電機子のU相、V相およびW相の各相巻線へ120度位相をずらした正弦波電圧を印加する120度通電制御を行って電機子が永久磁石に吸引されるように通電し、電機子が可動子として固定子に対して軸方向へ駆動される。 In the cylindrical linear motor configured as described above, for example, as disclosed in JP2013-251992A, a sinusoidal wave with a phase difference of 120 degrees is applied to each of the U-phase, V-phase and W-phase windings of the armature. The armature is energized so as to be attracted by the permanent magnets by performing 120-degree energization control for applying a voltage, and the armature is axially driven as a mover with respect to the stator.
 前記筒型リニアモータでは、磁極に対する電機子の位置によって各相の巻線への通電タイミングを決する必要があるので、固定子に対する電機子の電気角或いは機械角をセンサで検知している。 In the tubular linear motor, since it is necessary to determine the energization timing to the winding of each phase depending on the position of the armature with respect to the magnetic pole, a sensor detects the electrical angle or mechanical angle of the armature with respect to the stator.
 具体的には、従来の筒型リニアモータでは、ヨーク側に固定した磁気センサで機械角を検知するだけでなく、電機子側に設けた磁気センサで電気角を検知しており、二つの磁気センサを利用して精度よく電機子の位置を得ようとしている。 Specifically, in the conventional cylindrical linear motor, not only the magnetic sensor fixed to the yoke side detects the mechanical angle, but also the magnetic sensor provided on the armature side detects the electrical angle. We are trying to obtain the position of the armature with high accuracy using the sensor.
 しかしながら、従来の筒型リニアモータでは、磁気センサが電子回路でなるホールセンサを含んで構成されており、通電時に加熱する電機子の近傍に設置されているので、磁気センサが熱に曝される。よって、従来の筒型リニアモータでは、磁気センサが検知した電機子の位置についての信頼性が低下する恐れがある。 However, in the conventional cylindrical linear motor, the magnetic sensor is configured to include the Hall sensor made of an electronic circuit and is installed near the armature that heats when energized, so the magnetic sensor is exposed to heat. . Therefore, in the conventional cylindrical linear motor, the reliability of the position of the armature detected by the magnetic sensor may decrease.
 そこで、本発明は、検知した電機子の位置の信頼性を向上できる筒型リニアモータの提供を目的としている。 Therefore, an object of the present invention is to provide a cylindrical linear motor that can improve the reliability of the detected position of the armature.
 上記の目的を達成するため、本発明の筒型リニアモータは、筒状のロッドと、筒状であってロッドの先端外周に装着されるコアとコアの外周に設けられたスロットに装着される巻線とを有する電機子と、筒状であって内方に電機子が軸方向へ移動自在に挿入されて軸方向にN極とS極とが交互に配置される界磁と、ロッド内に挿通されて界磁に対するロッドの位置を検知するストロークセンサとを備え、ストロークセンサは、界磁に対して固定されてロッド内に挿入される被検出子と、ロッド内に収容されて被検出子の位置を検知するセンサ本体とを有している。 In order to achieve the above object, a cylindrical linear motor of the present invention is mounted on a cylindrical rod, a cylindrical core mounted on the outer circumference of the tip of the rod, and a slot provided on the outer circumference of the core. An armature having windings, a field magnet having a cylindrical shape, in which the armature is axially movably inserted so that N poles and S poles are alternately arranged in the axial direction, and a rod And a stroke sensor that is inserted into the rod and detects the position of the rod with respect to the field. The stroke sensor is fixed to the field and is inserted into the rod. The stroke sensor is housed in the rod and is detected. And a sensor body for detecting the position of the child.
図1は、一実施の形態における筒型リニアモータの縦断面図である。FIG. 1 is a vertical cross-sectional view of a cylindrical linear motor according to an embodiment.
 以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態における筒型リニアモータ1は、図1に示すように、筒状のロッド11と、筒状であってロッド11の先端外周に装着されるコア3とコア3の外周に設けられたスロット4に装着される巻線5とを有する電機子2と、筒状であって内方に電機子2が軸方向へ移動自在に挿入されて軸方向にN極とS極とが交互に配置される界磁6と、ロッド11内に挿通されて界磁6に対するロッド11の位置を検知するストロークセンサSとを備えて構成されている。 The present invention will be described below based on the embodiment shown in the drawings. As shown in FIG. 1, a cylindrical linear motor 1 according to an embodiment is provided with a cylindrical rod 11, a core 3 having a cylindrical shape and attached to the outer periphery of the distal end of the rod 11, and an outer periphery of the core 3. And an armature 2 having a winding 5 mounted in the slot 4, and a cylindrical and inwardly movably inserted armature 2 that alternates between the north and south poles in the axial direction. And a stroke sensor S that is inserted into the rod 11 and detects the position of the rod 11 with respect to the field 6.
 以下、筒型リニアモータ1の各部について詳細に説明する。電機子2は、コア3と巻線5とを備えて構成されている。コア3は、円筒状のコア本体3aと、環状であってコア本体3aの外周に軸方向に間隔を空けて設けられる複数のティース3bとを備えて構成されて可動子とされている。 Below, each part of the tubular linear motor 1 will be described in detail. The armature 2 includes a core 3 and a winding wire 5. The core 3 is configured to include a cylindrical core body 3a and a plurality of teeth 3b that are annular and are provided on the outer periphery of the core body 3a at intervals in the axial direction, and serve as a mover.
 コア3は、前述の通り筒状であって、図1に示すように、コア本体3aの外周に軸方向に等間隔に並べて設けられた10個のティース3bを備えており、ティース3b,3b間には、巻線5が装着される空隙でなるスロット4が形成されている。また、各ティース3bは、環状であって、コア3の両端に配置されたティース3bを除いて、軸方向において内周端の幅より外周端の幅が狭い等脚台形状とされており、軸方向で両側の側面が外周端に対して等角度で傾斜するテーパ面とされている。なお、末端のティース3bは、末端のティース3b以外の他のティース3bをコア3の軸線に直交する面で半分に切り落とした断面形状とされている。このように、各ティース3bの断面形状は、内周端の幅より外周端の幅が狭い台形状とされている。 As described above, the core 3 has a tubular shape, and as shown in FIG. 1, is provided with ten teeth 3b arranged on the outer periphery of the core body 3a at equal intervals in the axial direction. A slot 4 which is an air gap in which the winding 5 is mounted is formed therebetween. Further, each tooth 3b has an annular shape, and except for the teeth 3b arranged at both ends of the core 3, each tooth 3b has an isosceles trapezoid shape in which the width of the outer peripheral end is narrower than the width of the inner peripheral end in the axial direction, Side surfaces on both sides in the axial direction are tapered surfaces that are inclined at an equal angle with respect to the outer peripheral end. The teeth 3b at the ends have a cross-sectional shape in which the teeth 3b other than the teeth 3b at the ends are cut in half in a plane orthogonal to the axis of the core 3. In this way, the cross-sectional shape of each tooth 3b is a trapezoid whose width at the outer peripheral edge is narrower than that at the inner peripheral edge.
 また、本実施の形態では、図1中で隣り合うティース3b,3b同士の間には、空隙でなるスロット4が合計で9個設けられている。そして、このスロット4には、巻線5が巻き回されて装着されている。巻線5は、U相、V相およびW相の三相巻線とされている。9個のスロット4には、図1中左側から順に、W相、W相、W相およびV相、V相、V相、V相およびU相、U相、U相、U相およびW相の巻線5が装着されている。 In addition, in the present embodiment, a total of nine slots 4 which are voids are provided between the teeth 3b, 3b adjacent to each other in FIG. A winding 5 is wound around and attached to the slot 4. The winding 5 is a U-phase, V-phase, and W-phase three-phase winding. In the nine slots 4, W phase, W phase, W phase and V phase, V phase, V phase, V phase and U phase, U phase, U phase, U phase and W phase are arranged in order from the left side in FIG. The winding 5 is attached.
 そして、このように構成された電機子2は、出力軸である非磁性体で形成されたロッド11の外周に装着されている。ロッド11は、筒状の第一ロッド20と、筒状であって外周にコア3が装着されるとともに第一ロッド20の内周に螺合される第二ロッド21とを備えている。 The armature 2 configured in this way is attached to the outer circumference of the rod 11, which is the output shaft and is made of a non-magnetic material. The rod 11 includes a tubular first rod 20 and a tubular second rod 21 to which the core 3 is attached on the outer periphery and which is screwed onto the inner periphery of the first rod 20.
 第一ロッド20は、筒状であって図1中左端外周と図1中右端内周にそれぞれ螺子部22a,22bを有するロッド本体22と、筒型リニアモータ1を機器へ取り付けるブラケット23aを有してロッド本体22の図1中左端の螺子部22aに螺着されてロッド本体22の左端を閉塞するエンドキャップ23とを備えている。また、ロッド本体22の図1中右端外周には、環状のスライダ25が嵌合されている。スライダ25の右端内周には、フランジ25aが設けられている。フランジ25aの内径は、ロッド本体22の内径以上であってロッド本体22の外径以下となっており、スライダ25をロッド本体22に嵌合するとフランジ25aがロッド本体22の図1中右端面に当接する。また、ロッド11の図1中左端側に設けられたフランジ18とスライダ25とに嵌合してロッド11の外周を覆う筒状のカバー17が設けられており、カバー17とロッド11との間には環状の空間が形成されている。 The first rod 20 is cylindrical and has a rod body 22 having screw portions 22a and 22b on the outer periphery at the left end in FIG. 1 and the inner periphery at the right end in FIG. 1, and a bracket 23a for attaching the cylindrical linear motor 1 to a device. The rod body 22 is provided with an end cap 23 that is screwed to a screw portion 22a at the left end in FIG. 1 to close the left end of the rod body 22. An annular slider 25 is fitted around the right end of the rod body 22 in FIG. A flange 25a is provided on the inner circumference of the right end of the slider 25. The inner diameter of the flange 25a is not less than the inner diameter of the rod body 22 and not more than the outer diameter of the rod body 22, and when the slider 25 is fitted into the rod body 22, the flange 25a is brought to the right end surface of the rod body 22 in FIG. Abut. In addition, a cylindrical cover 17 that fits a flange 18 provided on the left end side of the rod 11 in FIG. 1 and the slider 25 to cover the outer periphery of the rod 11 is provided, and a space between the cover 17 and the rod 11 is provided. An annular space is formed in.
 第二ロッド21は、外周にコア3が装着される筒状のコア保持筒21aと、コア保持筒21aの図1中右端となる先端の外周に設けられる環状のスライダ21bとを備えている。また、コア保持筒21aの図1中左端となる基端の外周には、螺子部21cが設けられており、コア保持筒21aの基端側内周には内径が他の部位よりも大きな内径大径部21dが設けられている。そして、コア保持筒21aの基端を第一ロッド20におけるロッド本体22の図1中右端の内周に挿入しつつ螺子部21cを螺子部22bに捩じ込むと、第一ロッド20と第二ロッド21とが連結される。 The second rod 21 includes a cylindrical core holding cylinder 21a on which the core 3 is mounted, and an annular slider 21b provided on the outer circumference of the tip of the core holding cylinder 21a which is the right end in FIG. Further, a screw portion 21c is provided on the outer periphery of the base end that is the left end in FIG. 1 of the core holding cylinder 21a, and the inner diameter of the core holding cylinder 21a on the base end side is larger than the inner diameter of other parts. A large diameter portion 21d is provided. Then, the base end of the core holding cylinder 21a is inserted into the inner periphery of the rod body 22 of the first rod 20 at the right end in FIG. 1 and the screw portion 21c is screwed into the screw portion 22b. The rod 21 is connected.
 このようにロッド11は、第一ロッド20と第二ロッド21とで構成されており、第一ロッド20内には、ストロークセンサSにおけるセンサ本体30が収容される。 Thus, the rod 11 is composed of the first rod 20 and the second rod 21, and the sensor body 30 of the stroke sensor S is housed in the first rod 20.
 また、第二ロッド21におけるコア保持筒21aの外周には、コア3が嵌合されて装着されている。コア保持筒21aの外径は、第一ロッド20におけるロッド本体22の外径よりも小径となっているので、スライダ25を装着した第一ロッド20に電機子2を装着した第二ロッド21を前記した要領で連結すると、電機子2およびスライダ25が第一ロッド20の図1中右端と第二ロッド21のスライダ21bとで挟み込まれて固定される。このようにロッド11に電機子2を装着すると、コア3がスライダ21bおよびスライダ25に挟まれる格好でロッド11に固定される。 The core 3 is fitted and mounted on the outer periphery of the core holding cylinder 21a of the second rod 21. Since the outer diameter of the core holding cylinder 21a is smaller than the outer diameter of the rod body 22 of the first rod 20, the second rod 21 having the armature 2 mounted thereon is attached to the first rod 20 having the slider 25 mounted thereon. When connected in the manner described above, the armature 2 and the slider 25 are sandwiched and fixed by the right end of the first rod 20 in FIG. 1 and the slider 21b of the second rod 21. When the armature 2 is mounted on the rod 11 in this way, the core 3 is fixed to the rod 11 in a state of being sandwiched between the slider 21b and the slider 25.
 本実施の形態では、界磁6は、筒状の積層磁石体Mと、積層磁石体Mの外周に装着される円筒状の磁性体で形成されるバックヨーク8とを備えて構成されており、円筒状の非磁性体で形成されるアウターチューブ7と、アウターチューブ7内に挿入される円筒状の非磁性体のインナーチューブ9との間の環状隙間内に収容されている。 In the present embodiment, the field magnet 6 is configured to include a cylindrical laminated magnet body M and a back yoke 8 formed of a cylindrical magnetic body mounted on the outer periphery of the laminated magnet body M. It is housed in an annular gap between an outer tube 7 formed of a cylindrical non-magnetic material and a cylindrical inner tube 9 of a non-magnetic material inserted into the outer tube 7.
 積層磁石体Mは、筒状のバックヨーク8の内周に軸方向に交互に積層されて挿入される複数の環状の主磁極となる永久磁石10aと複数の環状の副磁極となる永久磁石10bとを備えて構成されている。なお、図1中で主磁極の永久磁石10aと副磁極の永久磁石10bに記載されている三角の印は、着磁方向を示しており、主磁極の永久磁石10aの着磁方向は径方向となっており、副磁極の永久磁石10bの着磁方向は軸方向となっている。主磁極の永久磁石10aと副磁極の永久磁石10bは、ハルバッハ配列で配置されており、界磁6の内周側では、軸方向にS極とN極が交互に現れるように配置されている。 The laminated magnet body M has a plurality of annular main magnetic poles 10a that are axially alternately stacked and inserted into the inner periphery of the tubular back yoke 8 and that are permanent magnets 10a that are a plurality of annular auxiliary magnetic poles. And is configured. In FIG. 1, the triangular marks on the permanent magnet 10a of the main magnetic pole and the permanent magnet 10b of the auxiliary magnetic pole indicate the magnetizing direction, and the magnetizing direction of the permanent magnet 10a of the main magnetic pole is the radial direction. The magnetizing direction of the permanent magnet 10b of the auxiliary magnetic pole is the axial direction. The permanent magnets 10a of the main magnetic poles and the permanent magnets 10b of the auxiliary magnetic poles are arranged in a Halbach array, and on the inner peripheral side of the field magnet 6, the S poles and the N poles are arranged alternately in the axial direction. .
 また、本実施の形態の筒型リニアモータ1では、主磁極の永久磁石10aの軸方向長さL1は、副磁極の永久磁石10bの軸方向長さL2よりも長くなっている。主磁極の永久磁石10aの軸方向長さL1を副磁極の永久磁石10bの軸方向長さL2よりも長くすれば、コア3との間の主磁極の永久磁石10aとの間の磁気抵抗を小さくできコア3へ作用させる磁界を大きくできるので筒型リニアモータ1の推力を向上できる。主磁極の永久磁石10aの軸方向長さL1と副磁極の永久磁石10bの軸方向長さL2に最適な関係があり、主磁極の永久磁石10aの軸方向長さL1と副磁極の永久磁石10bの軸方向長さL2が0.2≦L2/L1≦0.5を満たすように設定されれば、L2/L1の値を理想的な値に設定した際の推力に対して98%以上の推力を確保できる。ただし、主磁極の永久磁石10aの軸方向長さL1と副磁極の永久磁石10bの軸方向長さL2との関係は、前述の設定に限られない。 Further, in the cylindrical linear motor 1 of the present embodiment, the axial length L1 of the permanent magnet 10a of the main magnetic pole is longer than the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole. If the axial length L1 of the permanent magnet 10a of the main pole is made longer than the axial length L2 of the permanent magnet 10b of the auxiliary pole, the magnetic resistance between the core 3 and the permanent magnet 10a of the main pole is increased. Since the magnetic field acting on the core 3 can be reduced and the magnetic field applied to the core 3 can be increased, the thrust of the cylindrical linear motor 1 can be improved. There is an optimal relationship between the axial length L1 of the permanent magnet 10a of the main magnetic pole and the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole, and the axial length L1 of the permanent magnet 10a of the main magnetic pole and the permanent magnet of the auxiliary magnetic pole. If the axial length L2 of 10b is set to satisfy 0.2 ≦ L2 / L1 ≦ 0.5, 98% or more of the thrust when the value of L2 / L1 is set to an ideal value The thrust of can be secured. However, the relationship between the axial length L1 of the permanent magnet 10a of the main magnetic pole and the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole is not limited to the above setting.
 また、本実施の形態の筒型リニアモータ1では、界磁6が積層磁石体Mを構成する永久磁石10a,10bの外周に筒状のバックヨーク8を備えている。バックヨーク8を設けない場合、副磁極の永久磁石10bの軸方向長さL2が短くなると主磁極の永久磁石10aの軸方向中央部分における磁石外部の磁気抵抗が増大し、界磁磁束が小さくなるため、主磁極の永久磁石10aの軸方向長さL1を長くする際の筒型リニアモータ1の推力向上度合が小さくなる。これに対して、永久磁石10a,10bの外周にバックヨーク8を設けると、磁気抵抗の低い磁路を確保できるので副磁極の永久磁石10bの軸方向長さL2の短縮に起因する磁気抵抗の増大が抑制される。よって、主磁極の永久磁石10aの軸方向長さL1を副磁極の永久磁石10bの軸方向長さL2よりも長くするとともに永久磁石10a,10bの外周に筒状のバックヨーク8を設けると筒型リニアモータ1の推力を大きく向上させ得る。バックヨーク8の肉厚は、主磁極の永久磁石10aの外部磁気抵抗の増大を抑制に適する肉厚に設定されればよい。 Further, in the cylindrical linear motor 1 of the present embodiment, the field magnet 6 is provided with the cylindrical back yoke 8 on the outer circumference of the permanent magnets 10a and 10b constituting the laminated magnet body M. When the back yoke 8 is not provided, when the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole is shortened, the magnetic resistance outside the magnet in the axial center portion of the permanent magnet 10a of the main magnetic pole is increased, and the magnetic field flux is reduced. Therefore, the degree of improvement in thrust of the cylindrical linear motor 1 when the axial length L1 of the permanent magnet 10a of the main pole is increased is reduced. On the other hand, when the back yoke 8 is provided on the outer circumference of the permanent magnets 10a and 10b, a magnetic path having a low magnetic resistance can be secured, so that the magnetic resistance due to the reduction in the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole is reduced. Growth is suppressed. Therefore, when the axial length L1 of the permanent magnet 10a of the main magnetic pole is made longer than the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole, and the cylindrical back yoke 8 is provided on the outer circumference of the permanent magnets 10a and 10b, the cylinder is formed. The thrust of the die linear motor 1 can be greatly improved. The thickness of the back yoke 8 may be set to a thickness suitable for suppressing an increase in external magnetic resistance of the permanent magnet 10a of the main pole.
 なお、副磁極の永久磁石10bは、主磁極の永久磁石10aより高い保磁力を有する永久磁石とされている。永久磁石における残留磁束密度と保磁力は、互いに密接に関係しており、一般的に残留磁束密度を高めると保磁力は低くなり、保磁力を高めると残留磁束密度が低くなるという、互いに背反する関係にある。ハルバッハ配列では、副磁極の永久磁石10bには減磁方向に大きな磁界が印加されるため、副磁極の永久磁石10bの保磁力を高くして減磁を抑制し、大きな磁界をコア3に作用させ得るようにしている。対して、コア3に対して作用する磁界の強さは、主磁極の永久磁石10aの磁力線数に左右される。そのため、主磁極の永久磁石10aに高い残留磁束密度の永久磁石を使用して大きな磁界をコア3に作用させるようにしている。本実施の形態では、副磁極の永久磁石10bを主磁極の永久磁石10aよりも保磁力を高くするのに際して、副磁極の永久磁石10bの材料を主磁極の永久磁石10aの材料よりも保磁力が高い材料としている。よって、材料の選定によって、主磁極の永久磁石10aと副磁極の永久磁石10bの組合せを簡単に実現できる。なお、本実施の形態では、主磁極の永久磁石10aは、ネオジム、鉄、ボロンを主成分とする残留磁束密度が高い材料で構成され、副磁極の永久磁石10bは、前記材料にジスプロシウムやテリビウム等の重希土類元素の添加量を増やした減磁しにくい磁石で構成されている。 The permanent magnet 10b of the auxiliary magnetic pole is a permanent magnet having a higher coercive force than the permanent magnet 10a of the main magnetic pole. The residual magnetic flux density and the coercive force of a permanent magnet are closely related to each other. Generally, increasing the residual magnetic flux density decreases the coercive force, and increasing the coercive force decreases the residual magnetic flux density, which are contrary to each other. Have a relationship. In the Halbach array, since a large magnetic field is applied to the permanent magnet 10b of the auxiliary magnetic pole in the demagnetizing direction, the coercive force of the permanent magnet 10b of the auxiliary magnetic pole is increased to suppress demagnetization, and a large magnetic field is applied to the core 3. I am trying to make it possible. On the other hand, the strength of the magnetic field acting on the core 3 depends on the number of magnetic lines of force of the permanent magnet 10a of the main pole. Therefore, a permanent magnet having a high residual magnetic flux density is used as the permanent magnet 10a of the main magnetic pole so that a large magnetic field acts on the core 3. In the present embodiment, when the coercive force of the auxiliary magnetic pole permanent magnet 10b is made higher than that of the main magnetic pole permanent magnet 10a, the material of the auxiliary magnetic pole permanent magnet 10b is set to be higher than that of the main magnetic pole permanent magnet 10a. Is a high material. Therefore, the combination of the permanent magnet 10a of the main magnetic pole and the permanent magnet 10b of the auxiliary magnetic pole can be easily realized by selecting the material. In the present embodiment, the main pole permanent magnet 10a is made of a material having a high residual magnetic flux density, which contains neodymium, iron, and boron as main components, and the sub-pole permanent magnet 10b is made of dysprosium or terribium. It is composed of a magnet that is hard to demagnetize with an increased amount of heavy rare earth elements such as.
 また、界磁6の内周側には、コア3が挿入されており、界磁6は、コア3に磁界を作用させている。なお、界磁6は、コア3の可動範囲に対して磁界を作用させればよいので、コア3の可動範囲に応じて永久磁石10a,10bの設置範囲を決定すればよい。したがって、アウターチューブ7とインナーチューブ9との環状隙間のうち、コア3に対向し得ない範囲には、永久磁石10a,10bを設置しなくともよい。なお、バックヨーク8の長さは、永久磁石10a,10bを積層した長さと等しい長さとされており、永久磁石10a,10bがコア3のストローク範囲外に磁界を作用させて推力低下を招かないように配慮されている。 Also, the core 3 is inserted on the inner circumferential side of the field 6, and the field 6 applies a magnetic field to the core 3. The magnetic field 6 may be applied to the movable range of the core 3 so that the installation range of the permanent magnets 10a and 10b may be determined according to the movable range of the core 3. Therefore, in the annular gap between the outer tube 7 and the inner tube 9, the permanent magnets 10a and 10b do not have to be installed in a range that cannot face the core 3. The length of the back yoke 8 is equal to the length in which the permanent magnets 10a and 10b are laminated, and the permanent magnets 10a and 10b do not act on the magnetic field outside the stroke range of the core 3 to reduce the thrust. Is considered as.
 また、アウターチューブ7、バックヨーク8およびインナーチューブ9の図1中左端は内周にロッド11が挿入される環状のヘッドキャップ15によって閉塞されている。アウターチューブ7は、図1中右端側が縮径されていて底部7aが設けられており、底部7aの右端に筒型リニアモータ1の機器への取り付けを可能とするブラケット7bを備えている。そして、界磁6、インナーチューブ9は、ヘッドキャップ15とアウターチューブ7の底部7aとで挟み込まれてアウターチューブ7に固定されている。ヘッドキャップ15の内周には、第一ロッド20の外周を覆うカバー17の外周に摺接する環状のシール部材28が設けられており、筒型リニアモータ1内への塵や水などの侵入が防止されている。 The left ends of the outer tube 7, the back yoke 8 and the inner tube 9 in FIG. 1 are closed by an annular head cap 15 into which a rod 11 is inserted on the inner circumference. The outer tube 7 is reduced in diameter on the right end side in FIG. 1 and is provided with a bottom portion 7a. The outer tube 7 is provided with a bracket 7b that allows the cylindrical linear motor 1 to be attached to a device at the right end of the bottom portion 7a. The field 6 and the inner tube 9 are fixed to the outer tube 7 by being sandwiched between the head cap 15 and the bottom portion 7 a of the outer tube 7. An annular seal member 28, which is in sliding contact with the outer periphery of the cover 17 that covers the outer periphery of the first rod 20, is provided on the inner periphery of the head cap 15, so that dust, water, etc. can enter the cylindrical linear motor 1. It is prevented.
 アウターチューブ7の底部7aの内周には、ガイドロッド16が取り付けられている。ガイドロッド16は、底部7aの内周に固定される基端部16aと、基端部16aからロッド11側へ延びてロッド11内に摺動自在に挿入されるガイド部16bとを備えており、筒型リニアモータ1が伸縮しても常にロッド11の内周に摺接している。より詳細には、ガイドロッド16のガイド部16bは、第二ロッド21の内径大径部21dよりも先端側に摺動自在に挿入されている。また、インナーチューブ9の内周には、スライダ21b,25が摺接しており、ガイドロッド16がロッド11の内周に摺接し、スライダ21b,25がインナーチューブ9に摺接しているので、電機子2はロッド11とともに界磁6に対して偏心せずに軸方向へスムーズに移動できる。インナーチューブ9は、コア3の外周と各永久磁石10a,10bの内周との間のギャップを形成するとともに、スライダ21b,25と協働してコア3の軸方向移動を案内する役割を果たしている。なお、インナーチューブ9は、非磁性体で形成されればよいが、合成樹脂で形成されると筒型リニアモータ1の推力密度向上効果が高くなる。インナーチューブ9を非磁性体の金属で製造すると、電機子2が軸方向へ移動する際にインナーチューブ9の内部に渦電流が生じて、電機子2の移動を妨げる力が発生してしまう。これに対して、インナーチューブ9を合成樹脂とすれば渦電流が生じないので筒型リニアモータ1の推力をより効果的に向上できるとともに、筒型リニアモータ1の質量を低減できる。なお、インナーチューブ9を合成樹脂とする場合、フッ素樹脂で製造すればスライダ21b,25との間の摩擦および摩耗を低減できる。また、インナーチューブ9を他の合成樹脂で形成してもよく、また、摩擦および摩耗を低減するべく他の合成樹脂で形成されたインナーチューブ9の内周をフッ素樹脂でコーティングしてもよい。 A guide rod 16 is attached to the inner periphery of the bottom portion 7a of the outer tube 7. The guide rod 16 includes a base end portion 16a fixed to the inner circumference of the bottom portion 7a and a guide portion 16b extending from the base end portion 16a toward the rod 11 and slidably inserted into the rod 11. Even when the cylindrical linear motor 1 expands and contracts, it is always in sliding contact with the inner circumference of the rod 11. More specifically, the guide portion 16b of the guide rod 16 is slidably inserted to the tip side of the inner diameter large diameter portion 21d of the second rod 21. The sliders 21b and 25 are in sliding contact with the inner circumference of the inner tube 9, the guide rod 16 is in sliding contact with the inner circumference of the rod 11, and the sliders 21b and 25 are in sliding contact with the inner tube 9. The child 2 can move smoothly in the axial direction together with the rod 11 without being eccentric with respect to the field 6. The inner tube 9 forms a gap between the outer circumference of the core 3 and the inner circumference of each of the permanent magnets 10a and 10b, and plays a role of guiding the axial movement of the core 3 in cooperation with the sliders 21b and 25. There is. The inner tube 9 may be made of a non-magnetic material, but if it is made of a synthetic resin, the effect of improving the thrust density of the cylindrical linear motor 1 is enhanced. If the inner tube 9 is made of a non-magnetic metal, an eddy current is generated inside the inner tube 9 when the armature 2 moves in the axial direction, and a force that hinders the movement of the armature 2 is generated. On the other hand, if the inner tube 9 is made of synthetic resin, eddy current is not generated, so that the thrust of the cylindrical linear motor 1 can be more effectively improved and the mass of the cylindrical linear motor 1 can be reduced. When the inner tube 9 is made of synthetic resin, if it is made of fluororesin, friction and wear between the sliders 21b and 25 can be reduced. The inner tube 9 may be made of another synthetic resin, or the inner circumference of the inner tube 9 made of another synthetic resin may be coated with a fluororesin to reduce friction and wear.
 つづいて、ストロークセンサSは、本実施の形態では、線形可変差動変圧器とされており、詳しくは図示しないが、プライマリコイルと二つのセカンダリコイルとを収容した筒状のセンサ本体30と、センサ本体30内に軸方向へ移動可能に挿入されるとともに先端に被検出子であるセンサ用コア31を有するプローブ32とを備えて構成されている。なお、線形可変差動変圧器は、プライマリコイルへ交流電圧を印加した際に誘導される二つのセカンダリコイルの誘導電圧の差からセンサ用コア31の位置を検知する。 Subsequently, the stroke sensor S is a linear variable differential transformer in the present embodiment, and although not shown in detail, a cylindrical sensor main body 30 containing a primary coil and two secondary coils, The probe 32 is inserted in the sensor body 30 so as to be movable in the axial direction, and has a probe 32 having a sensor core 31 which is a detected element at its tip. The linear variable differential transformer detects the position of the sensor core 31 from the difference between the induced voltages of the two secondary coils that are induced when the AC voltage is applied to the primary coil.
 センサ本体30を予め第一ロッド20内に挿入しておき、スライダ25を第一ロッド20の端部に嵌合して、第二ロッド21を第一ロッド20に螺着すると、センサ本体30は、第二ロッド21における内径大径部21dの右端に形成される段部と第一ロッド20のエンドキャップ23とで挟持されて第一ロッド20内に固定される。このように、センサ本体30は、外周に電機子2が装着されない第一ロッド20内に収容されており、ロッド11の径方向で電機子2と対向しない範囲に収容されている。 When the sensor body 30 is inserted into the first rod 20 in advance, the slider 25 is fitted to the end portion of the first rod 20, and the second rod 21 is screwed to the first rod 20, the sensor body 30 becomes The stepped portion formed at the right end of the large inner diameter portion 21 d of the second rod 21 and the end cap 23 of the first rod 20 are sandwiched and fixed in the first rod 20. As described above, the sensor body 30 is housed in the first rod 20 in which the armature 2 is not mounted on the outer circumference, and is housed in a range that does not face the armature 2 in the radial direction of the rod 11.
 また、ストロークセンサSにおけるプローブ32は、ロッド状であってガイドロッド16におけるガイド部16bの先端に取り付けられている。よって、被検出子としてのセンサ用コア31は、プローブ32、ガイドロッド16およびアウターチューブ7を介して界磁6に対して固定的に連結されている。プローブ32は、前述したとおり、先端にセンサ用コア31を備えていて、先端側をセンサ本体30内に挿入している。よって、電機子2が界磁6に対して軸方向へ移動するのに伴ってプローブ32がセンサ本体30に対して軸方向へ相対移動して、センサ用コア31がセンサ本体30内で移動する。 The probe 32 of the stroke sensor S is rod-shaped and is attached to the tip of the guide portion 16b of the guide rod 16. Therefore, the sensor core 31 as the detected element is fixedly connected to the field 6 via the probe 32, the guide rod 16 and the outer tube 7. As described above, the probe 32 is provided with the sensor core 31 at the tip, and the tip side is inserted into the sensor body 30. Therefore, as the armature 2 moves in the axial direction with respect to the field 6, the probe 32 moves in the axial direction relative to the sensor body 30, and the sensor core 31 moves in the sensor body 30. .
 センサ本体30を収容するロッド11内にはプローブ32を保持するガイドロッド16が摺動自在に挿入されているので、センサ本体30に対するセンサ用コア31の径方向への偏心が防止される。なお、センサ本体30のプライマリコイルへの通電用の配線およびセカンダリコイルに接続される配線は、図示はしないがエンドキャップ23に設けた孔から外部へ引き出されて図外のコントローラに接続される。 Since the guide rod 16 holding the probe 32 is slidably inserted into the rod 11 accommodating the sensor main body 30, radial eccentricity of the sensor core 31 with respect to the sensor main body 30 is prevented. The wiring for energizing the primary coil of the sensor main body 30 and the wiring connected to the secondary coil are drawn out from a hole provided in the end cap 23 and connected to a controller (not shown) although not shown.
 なお、巻線5に接続されるケーブルCは、ロッド11とロッド11の外周を覆う筒状のカバー17との間の空間に収容されて、筒型リニアモータ1の外方へ引き出されており、前記コントローラによって制御される図外の駆動回路に接続されている。よって、外部の駆動回路から巻線5へ通電できるようになっている。また、アウターチューブ7、バックヨーク8およびインナーチューブ9の軸方向長さは、コア3の軸方向長さよりも長く、コア3は、界磁6内の軸方向長さの範囲で図1中左右へストロークできる。 The cable C connected to the winding 5 is housed in the space between the rod 11 and the cylindrical cover 17 that covers the outer periphery of the rod 11, and is drawn out to the outside of the cylindrical linear motor 1. , Is connected to a drive circuit (not shown) controlled by the controller. Therefore, the winding 5 can be energized from an external drive circuit. Further, the outer tube 7, the back yoke 8 and the inner tube 9 have an axial length longer than the axial length of the core 3, and the core 3 is left and right in FIG. You can stroke to.
 そして、図外のコントローラは、巻線5の界磁6に対する電気角をストロークセンサSでセンシングし、前記電気角に基づいて通電位相切換を行うとともにPWM制御により、各巻線5の電流量を制御して、筒型リニアモータ1における推力と電機子2の移動方向とを制御する。なお、前述のコントローラにおける制御方法は、一例でありこれに限られない。このように、本実施の形態の筒型リニアモータ1では、電機子2が可動子であり、界磁6は固定子として振る舞う。また、電機子2と界磁6とを軸方向に相対変位させる外力が作用する場合、巻線5への通電、あるいは、巻線5に発生する誘導起電力によって、前記相対変位を抑制する推力を発生させて筒型リニアモータ1に前記外力による機器の振動や運動をダンピングさせ得るし、外力から電力を生むエネルギ回生も可能である。 Then, a controller (not shown) senses the electrical angle of the winding 5 with respect to the field 6 by the stroke sensor S, switches the energization phase based on the electrical angle, and controls the amount of current in each winding 5 by PWM control. Then, the thrust in the cylindrical linear motor 1 and the moving direction of the armature 2 are controlled. The control method in the controller described above is an example, and the present invention is not limited to this. Thus, in the cylindrical linear motor 1 of the present embodiment, the armature 2 is the mover and the field 6 behaves as the stator. Further, when an external force that relatively displaces the armature 2 and the field 6 in the axial direction acts, a thrust force that suppresses the relative displacement by energizing the winding 5 or by an induced electromotive force generated in the winding 5. Can be generated to cause the cylindrical linear motor 1 to damp vibrations and movements of the device due to the external force, and energy can be regenerated to generate electric power from the external force.
 以上のように、本発明の筒型リニアモータ1は、筒状のロッド11と、筒状であってロッド11の先端外周に装着されるコア3とコア3の外周に設けられたスロット4に装着される巻線5とを有する電機子2と、筒状であって内方に電機子2が軸方向へ移動自在に挿入されて軸方向にN極とS極とが交互に配置される界磁6と、ロッド11内に挿通されて界磁6に対するロッド11の位置を検知するストロークセンサSとを備え、ストロークセンサSは、界磁6に対して固定されてロッド11内に挿入されるコア(被検出子)31と、ロッド11内に収容されてコア(被検出子)31の位置を検知するセンサ本体30とを有している。このように構成された筒型リニアモータ1では、電機子2を外周に備えるロッド11内にストロークセンサSが収容されており、通電によって発熱する電機子2および磁界を発生する界磁6に対してストロークセンサSが直接曝露されていない。したがって、ストロークセンサSは、電機子2の熱から保護されるとともに、界磁6の磁界にも曝されないので、検知した電機子2の位置を精度よく検知できる。以上より、本発明の筒型リニアモータ1によれば、検知した電機子2の位置の信頼性を向上できる。 As described above, the cylindrical linear motor 1 of the present invention includes the cylindrical rod 11, the core 3 which is cylindrical and is attached to the outer circumference of the tip of the rod 11, and the slot 4 provided on the outer circumference of the core 3. An armature 2 having a winding 5 to be mounted, and a cylindrical armature 2 is inserted inwardly so as to be movable in the axial direction, and N poles and S poles are alternately arranged in the axial direction. A field magnet 6 and a stroke sensor S which is inserted into the rod 11 to detect the position of the rod 11 with respect to the field magnet 6 are provided. The stroke sensor S is fixed to the field magnet 6 and inserted into the rod 11. A core (detected element) 31 and a sensor body 30 that is housed in the rod 11 and detects the position of the core (detected element) 31. In the cylindrical linear motor 1 configured as described above, the stroke sensor S is housed in the rod 11 having the armature 2 on the outer circumference, and the stroke sensor S is accommodated to the armature 2 that generates heat by energization and the field 6 that generates a magnetic field. The stroke sensor S is not directly exposed. Therefore, the stroke sensor S is protected from the heat of the armature 2 and is not exposed to the magnetic field of the field 6, so that the detected position of the armature 2 can be accurately detected. As described above, according to the tubular linear motor 1 of the present invention, the reliability of the detected position of the armature 2 can be improved.
 さらに、本実施の形態の筒型リニアモータ1では、センサ本体30がロッド11内の電機子2と径方向で対向しない範囲に収容されている。このように構成された筒型リニアモータ1によれば、センサ本体30と電機子2とが筒型リニアモータ1のストローク中に径方向へ重なることが無いので、より、電機子2の熱の影響を受け辛くなり、検知した電機子2の位置の信頼性をより効果的に向上できる。 Further, in the cylindrical linear motor 1 of the present embodiment, the sensor body 30 is housed in a range that does not face the armature 2 in the rod 11 in the radial direction. According to the tubular linear motor 1 configured as described above, the sensor body 30 and the armature 2 do not radially overlap with each other during the stroke of the tubular linear motor 1, so that the heat of the armature 2 is further reduced. It becomes difficult to be affected, and the reliability of the detected position of the armature 2 can be improved more effectively.
 また、本実施の形態の筒型リニアモータ1は、界磁6に連結されてロッド11内に摺動自在に挿入されるガイドロッド16を備え、コア(被検出子)31がガイドロッド16に装着されている。このように構成された筒型リニアモータ1によれば、センサ本体30に対して移動するセンサ用コア(被検出子)31がロッド11の軸方向への移動を案内するガイドロッド16に装着されているので、センサ本体30に対するセンサ用コア(被検出子)31の偏心が防止されて、ストロークセンサSは精度よく電機子2の位置を検知できる。 Further, the tubular linear motor 1 of the present embodiment is provided with a guide rod 16 which is connected to the field 6 and slidably inserted into the rod 11, and the core (detection target) 31 is attached to the guide rod 16. It is installed. According to the tubular linear motor 1 configured as described above, the sensor core (detection target) 31 that moves with respect to the sensor body 30 is attached to the guide rod 16 that guides the axial movement of the rod 11. Therefore, the eccentricity of the sensor core (detected element) 31 with respect to the sensor body 30 is prevented, and the stroke sensor S can accurately detect the position of the armature 2.
 さらに、本実施の形態の筒型リニアモータ1におけるロッド11は、筒状の第一ロッド20と、筒状であって外周にコア3が装着されるとともに第一ロッド20の内周に螺合される第二ロッド21とを有し、センサ本体30が第一ロッド20と第二ロッド21とで挟持されてロッド11内に固定されている。このように構成された筒型リニアモータ1によれば、ストロークセンサSをロッド11内への固定と電機子2のロッド11への装着が非常に容易となるので、良好な組付性が得られる。 Further, the rod 11 in the tubular linear motor 1 of the present embodiment is a tubular first rod 20, is tubular and has the core 3 mounted on the outer periphery, and is screwed onto the inner periphery of the first rod 20. The sensor main body 30 is sandwiched between the first rod 20 and the second rod 21 and fixed in the rod 11. According to the tubular linear motor 1 configured as described above, it becomes very easy to fix the stroke sensor S in the rod 11 and to attach the armature 2 to the rod 11, so that a good assembling property can be obtained. To be
 なお、ストロークセンサSは、線形可変差動変圧器に代えて、磁歪式のストロークセンサとされてもよいし、リニア型のポテンショメーターとされてもよく、いずれにしても、界磁6に固定される被検出子の位置をロッド11側に固定されるセンサ本体で検知するようにすればよい。 The stroke sensor S may be a magnetostrictive stroke sensor or a linear potentiometer instead of the linear variable differential transformer. In any case, the stroke sensor S is fixed to the field 6. The position of the detected element to be detected may be detected by the sensor body fixed to the rod 11 side.
 また、本実施の形態の筒型リニアモータ1にあっては、ティース3bの断面形状は、内周端の幅より外周端の幅が狭い台形状とされているので、ティース3bの断面形状を矩形とする場合に比較して、内周端における磁路断面積が広くなる。よって、このように構成された筒型リニアモータ1では、大きな磁路断面積を確保しやすくなり、巻線5を通電した際の磁気飽和を抑制でき、より大きな磁場を発生できるからより大きな推力を発生できる。なお、推力の向上のためには、ティース3bの断面形状を台形とするとよいが、断面形状を矩形としてもよいし、他の形状としてもよい。 Further, in the tubular linear motor 1 of the present embodiment, the teeth 3b have a trapezoidal shape in which the width of the outer peripheral edge is narrower than the width of the inner peripheral edge. The magnetic path cross-sectional area at the inner peripheral edge becomes wider than in the case of a rectangular shape. Therefore, in the cylindrical linear motor 1 configured as described above, it is easy to secure a large magnetic path cross-sectional area, it is possible to suppress magnetic saturation when the winding 5 is energized, and it is possible to generate a larger magnetic field. Can occur. In addition, in order to improve the thrust, the tooth 3b may have a trapezoidal cross-sectional shape, but may have a rectangular cross-sectional shape or another shape.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 The preferred embodiments of the present invention have been described above in detail, but modifications, variations, and changes can be made without departing from the scope of the claims.
 本願は、2018年10月26日に日本国特許庁に出願された特願2018-201761に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2018-201761 filed with the Japan Patent Office on October 26, 2018, the entire contents of which are incorporated herein by reference.

Claims (4)

  1.  筒型リニアモータであって、
     筒状のロッドと、
     筒状であって前記ロッドの先端外周に装着されるコアと、前記コアの外周に設けられたスロットに装着される巻線とを有する電機子と、
     筒状であって内方に前記電機子が軸方向へ移動自在に挿入されて軸方向にN極とS極とが交互に配置される界磁と、
     前記ロッド内に挿通されて前記界磁に対する前記ロッドの位置を検知するストロークセンサとを備え、
     前記ストロークセンサは、前記界磁に対して固定されて前記ロッド内に挿入される被検出子と、前記ロッド内に収容されて前記被検出子の位置を検知するセンサ本体とを有する
     筒型リニアモータ。
    A cylindrical linear motor,
    A cylindrical rod,
    An armature having a tubular shape and mounted on the outer periphery of the tip of the rod, and an armature having windings mounted on slots provided on the outer periphery of the core,
    A field magnet, which is cylindrical and in which the armature is axially movably inserted so that N poles and S poles are alternately arranged in the axial direction,
    A stroke sensor inserted into the rod to detect the position of the rod with respect to the field,
    The stroke sensor has a detection target fixed to the field and inserted into the rod, and a sensor main body housed in the rod to detect the position of the detection target. motor.
  2.  請求項1に記載の筒型リニアモータであって、
     前記センサ本体は、前記ロッド内の前記電機子と径方向で対向しない範囲に収容される
     筒型リニアモータ。
    The tubular linear motor according to claim 1,
    A tubular linear motor in which the sensor body is housed in a range that does not face the armature in the rod in the radial direction.
  3.  請求項1に記載の筒型リニアモータであって、
     前記界磁に連結されて前記ロッド内に摺動自在に挿入されるガイドロッドを備え、
     前記被検出子は、前記ガイドロッドに装着されている
     筒型リニアモータ。
    The tubular linear motor according to claim 1,
    A guide rod connected to the field and slidably inserted into the rod;
    The detected element is a cylindrical linear motor mounted on the guide rod.
  4.  請求項1に記載の筒型リニアモータであって、
     前記ロッドは、筒状の第一ロッドと、筒状であって外周に前記コアが装着されるとともに第一ロッドの内周に螺合される第二ロッドとを有し、
     前記センサ本体は、前記第一ロッドと前記第二ロッドとで挟持されて前記ロッド内に固定されている
     筒型リニアモータ。
    The tubular linear motor according to claim 1,
    The rod has a tubular first rod and a tubular second rod having the core mounted on the outer periphery and screwed to the inner periphery of the first rod.
    A tubular linear motor in which the sensor body is sandwiched between the first rod and the second rod and fixed in the rod.
PCT/JP2019/012439 2018-10-26 2019-03-25 Cylindrical linear motor WO2020084810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018201761A JP7274852B2 (en) 2018-10-26 2018-10-26 Cylindrical linear motor
JP2018-201761 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020084810A1 true WO2020084810A1 (en) 2020-04-30

Family

ID=70331559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012439 WO2020084810A1 (en) 2018-10-26 2019-03-25 Cylindrical linear motor

Country Status (2)

Country Link
JP (1) JP7274852B2 (en)
WO (1) WO2020084810A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117674509A (en) * 2023-08-24 2024-03-08 比亚迪股份有限公司 Primary assembly, linear motor, electromagnetic suspension and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290152A (en) * 1989-04-28 1990-11-30 Toyota Auto Body Co Ltd Brushless dc linear motor
JP2008236832A (en) * 2007-03-16 2008-10-02 Hitachi Ltd Tubular linear motor
JP2013251992A (en) * 2012-05-31 2013-12-12 Hitachi Automotive Systems Ltd Electromagnetic suspension
JP2014167320A (en) * 2013-02-28 2014-09-11 Hitachi Automotive Systems Ltd Electromagnetic suspension device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187079A (en) * 2004-12-27 2006-07-13 Hitachi Ltd Cylindrical linear motor, electromagnetic suspension and vehicle employing it
JP5743785B2 (en) * 2011-07-28 2015-07-01 日立オートモティブシステムズ株式会社 Electromagnetic suspension

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290152A (en) * 1989-04-28 1990-11-30 Toyota Auto Body Co Ltd Brushless dc linear motor
JP2008236832A (en) * 2007-03-16 2008-10-02 Hitachi Ltd Tubular linear motor
JP2013251992A (en) * 2012-05-31 2013-12-12 Hitachi Automotive Systems Ltd Electromagnetic suspension
JP2014167320A (en) * 2013-02-28 2014-09-11 Hitachi Automotive Systems Ltd Electromagnetic suspension device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117674509A (en) * 2023-08-24 2024-03-08 比亚迪股份有限公司 Primary assembly, linear motor, electromagnetic suspension and vehicle

Also Published As

Publication number Publication date
JP7274852B2 (en) 2023-05-17
JP2020068623A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
WO2020079869A1 (en) Cylindrical linear motor
WO2020084810A1 (en) Cylindrical linear motor
JP2019187218A (en) Cylindrical linear motor
JP7482480B2 (en) Cylindrical Linear Motor
JP2019187226A (en) Cylindrical linear motor
JP7064426B2 (en) Cylindrical linear motor
JP2019187215A (en) Cylindrical linear motor
JP2022007249A (en) Tubular linear motor
JP7157628B2 (en) Cylindrical linear motor
WO2019202920A1 (en) Cylindrical linear motor
JP7185595B2 (en) Cylindrical linear motor
WO2019202765A1 (en) Cylindrical linear motor
US11245321B2 (en) Cylindrical linear motor
JP7252834B2 (en) Cylindrical linear motor
JP7025533B2 (en) Cylindrical linear motor
JP7228179B2 (en) Cylindrical linear motor
JP7186956B2 (en) Cylindrical linear motor and method for manufacturing annular magnet
JP7036317B2 (en) Cylindrical linear motor
JP2021083163A (en) Tubular linear motor
JP2023142751A (en) Cylindrical linear motor
JP2022135362A (en) Cylindrical linear motor
JP2019187216A (en) Cylindrical linear motor
WO2015136761A1 (en) Linear motor
JP2022135254A (en) Cylindrical linear motor
JP2019187212A (en) Cylindrical linear motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875316

Country of ref document: EP

Kind code of ref document: A1