WO2020083550A1 - Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve - Google Patents

Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve Download PDF

Info

Publication number
WO2020083550A1
WO2020083550A1 PCT/EP2019/073585 EP2019073585W WO2020083550A1 WO 2020083550 A1 WO2020083550 A1 WO 2020083550A1 EP 2019073585 W EP2019073585 W EP 2019073585W WO 2020083550 A1 WO2020083550 A1 WO 2020083550A1
Authority
WO
WIPO (PCT)
Prior art keywords
inlet valve
housing
pump
valve member
valve
Prior art date
Application number
PCT/EP2019/073585
Other languages
German (de)
French (fr)
Inventor
Gabriel CICHON
Frank LAEMMLE
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2020083550A1 publication Critical patent/WO2020083550A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/48Assembling; Disassembling; Replacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/05Fuel-injection apparatus having means for preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/16Sealing of fuel injection apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8046Fuel injection apparatus manufacture, repair or assembly the manufacture involving injection moulding, e.g. of plastic or metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9015Elastomeric or plastic materials

Definitions

  • the invention relates to an electromagnetically actuated inlet valve for a high-pressure pump, in particular a fuel injection system, according to the preamble of claim 1. Furthermore, the invention relates to a high-pressure pump with such an inlet valve.
  • An electromagnetically actuated inlet valve for a high-pressure pump of a fuel injection system is known from DE 10 2015 212 390 A1.
  • the high-pressure pump has at least one pump element with a pump piston which is driven in a lifting movement and delimits a pump working space.
  • the pump work space can be connected to an inlet for the fuel via the inlet valve.
  • the inlet valve comprises a valve member which interacts with a valve seat for control purposes and which is movable between an open position and a closed position. In its closed position, the valve member comes to rest on the valve seat.
  • the inlet valve comprises an electromagnetic actuator, through which the valve member can be moved.
  • the electromagnetic actuator has a magnet coil, a magnet core and a magnet armature which acts at least indirectly on the valve member.
  • the magnet armature is slidably guided in a receptacle in a carrier element.
  • the solenoid When the solenoid is energized, the magnet armature can be moved against the force of a return spring.
  • the carrier element and the magnetic core are connected to one another via a sleeve-shaped connecting element, wherein the connecting element can be welded to the carrier element and / or the magnetic core.
  • the magnetic core, the carrier element and the connecting element are surrounded by a housing. An interior space which is filled with air is present between the magnetic core, the carrier element and the connecting element on the one hand and the housing on the other hand.
  • the inlet valve according to the invention with the features of claim 1 has the advantage that the pressure compensation element prevents the formation of a negative pressure in the interior, so that the magnetic core and / or the carrier element are better protected against corrosion.
  • An advantageous embodiment of the pressure compensation element is specified in claim 2. Due to the design according to claim 3, the pressure compensation element does not have to be connected to the housing as a separate part. The design according to claim 4 enables easy handling of the pressure compensation element when it is connected to the housing as a separate element.
  • FIG. 1 shows a schematic longitudinal section through a high-pressure pump
  • FIG. 2 shows an enlarged view of an in FIG. 1 shows a section with the inlet valve of the high-pressure pump with a pressure compensation element
  • FIG. 3 shows the pressure compensation element in a further enlarged view.
  • FIG. 1 A section of a high-pressure pump is shown in FIG. 1, which is provided for fuel delivery in a fuel injection system of an internal combustion engine.
  • the high-pressure pump has at least one pump element 10, which in turn has a pump piston 12, which is driven by a drive in a lifting movement, is guided in a cylinder bore 14 of a housing part 16 of the high-pressure pump and delimits a pump work chamber 18 in the cylinder bore 14.
  • a drive shaft 20 with a cam 22 or eccentric can be provided as the drive for the pump piston 12, on which the pump piston 12 is supported directly or via a tappet, for example a roller tappet.
  • the pump work chamber 18 can be connected to a fuel inlet 26 via an inlet valve 24 and to a reservoir 30 via an outlet valve 28.
  • the pump work chamber 18 can be filled with fuel when the inlet valve 24 is open.
  • fuel is displaced from the pump working chamber 18 and is fed into the reservoir 30 when the inlet valve 24 is closed.
  • the cylinder bore 14 is adjoined on the side facing away from the pump piston 12 by a through bore 32 with a smaller diameter than the cylinder bore 14, which opens on the outside of the housing part 16.
  • the inlet valve 24 has a piston-shaped valve member 34 which has a shaft 36 which is displaceably guided in the through bore 32 and a head 38 which is larger in diameter than the shaft 36 and which is arranged in the pump work chamber 18.
  • a valve seat 40 is formed on the housing part 16, with which the valve member 34 cooperates with a sealing surface 42 formed on its head 38.
  • the through bore 32 has a larger diameter than in the shaft 36 thereof Section leading valve member 34, so that an annular space 44 is formed surrounding the shaft 36 of the valve member 34.
  • One or more inlet bores 46 which on the other hand open on the outside of the housing part 16, open into the annular space 44.
  • valve member 34 protrudes out of the through hole 32 on the side of the housing part 16 facing away from the pump working space 18 and a support element 48 is fastened thereon.
  • a valve spring 50 is supported on the support element 48, which on the other hand is supported on a region of the housing part 16 surrounding the shaft 36 of the valve member 34. Through the valve spring 50, the valve member 34 is acted upon in an adjusting direction A in its closing direction, the valve member 34 resting in its closed position with its sealing surface 42 on the valve seat 40.
  • the valve spring 50 is designed, for example, as a helical compression spring.
  • the inlet valve 24 can be actuated by an electromagnetic actuator 60, which is shown in particular in FIGS. 2 and 3.
  • the actuator 60 is controlled by an electronic control device 62 as a function of the operating parameters of the internal combustion engine to be supplied.
  • the electromagnetic actuator 60 has a magnet coil 64, a magnet core 66 and a magnet armature 68.
  • the electromagnetic actuator 60 is arranged on the side of the inlet valve 24 facing away from the pump working space 18.
  • the magnetic core 66 and the magnetic coil 64 are surrounded by an actuator housing 70 which can be fastened to the housing part 16 of the high-pressure pump.
  • the actuator housing 70 is made of plastic and the magnetic coil 64 is accommodated in it.
  • the actuator housing 70 can be fastened, for example, to the housing part 16 by means of a screw ring 72 which overlaps it and which is screwed onto a collar 74 of the housing part 16 provided with an external thread.
  • the magnet armature 68 is at least essentially cylindrical and is displaceably guided in the direction of its longitudinal axis 69 via its outer jacket in a receptacle in the form of a bore 76 in a carrier element 78.
  • the bore 76 in the carrier element 78 extends at least approximately coaxially to the through bore 32 in the housing part 16 of the high-pressure pump and thus to the valve member 34. let valve 24 out to another bore 77 with a smaller diameter than the bore 76.
  • the magnet armature 68 has a central blind bore 81, which is arranged at least approximately coaxially to the longitudinal axis 69 of the magnet armature 68 and into which a return spring 82, which is arranged on the side of the magnet armature 68 facing away from the valve member 34 and which is supported on the magnet armature 68, projects.
  • the return spring 82 is supported at its other end at least indirectly on the magnetic core 66, which has a central blind hole 84 into which the return spring 82 projects.
  • a support element 85 for the return spring 82 can be inserted, for example pressed in, in the bore 84 of the magnet armature 66.
  • the magnetic armature 68 has one or more through openings 91 to allow fuel to pass through when the magnetic armature 68 moves.
  • An annular shoulder 88 is formed in the bore 76 through the reduction in diameter to the further bore 77.
  • a stop element 90 can be arranged between the annular shoulder 88 and the magnet armature 68, by means of which the movement of the magnet armature 68 towards the inlet valve 24 is limited.
  • the stop element 90 is sleeve-shaped and through this the magnetic armature 68 projects through to the inlet valve 24 and comes to bear at least indirectly on the valve member 34.
  • the magnetic core 66 and the carrier element 78 are connected to one another via a sleeve-shaped connecting element 92, which on the magnetic core 66 and on the carrier element 78 by means of one each
  • An interior 94 is present between the carrier element 78, the magnetic core 66 and the connecting element 92 on the one hand and the actuator housing 70 surrounding them on the other.
  • the interior 94 extends in the radial direction with respect to the longitudinal axis 69 of the magnet armature 68 between the carrier element 78, the connecting element 92 and the magnetic core 66 on the one hand and the actuator housing 70 on the other hand.
  • the interior 94 extends along the carrier element 78, the connecting element 92 and the magnet core 66 to the end of the magnet core 66 facing away from the carrier element 78.
  • the interior 94 extends in the direction of the Longitudinal axis 68 between the magnetic core 66 and the actuator housing 70.
  • at least one pressure compensation element 96 is arranged on the actuator housing 70, by means of which the interior 94 is delimited.
  • the pressure compensation element 96 is arranged, for example, in a region of a wall of the actuator housing 70 lying in the direction of the longitudinal axis 69 of the magnet armature 68 next to the magnet core 66.
  • the pressure compensation element 96 has a membrane 98 which is permeable to air and steam, but is liquid-tight.
  • the membrane 98 can be designed, for example, as a flat disk with a round or any other cross-section.
  • the pressure compensation element 96 can have a frame 99 which receives the membrane 98 and which is inserted, for example glued in, tightly into an opening 71 in the actuator housing 70.
  • the pressure compensation element 96 can also be pressed into the opening 71 of the actuator housing 70, screwed in, caulked in this or directly encapsulated by the plastic material of the actuator housing 70.
  • the pressure compensation element 96 can also be connected to the housing 70 by a snap-in connection or a positive connection.
  • the membrane 98 of the pressure compensation element 96 enables pressure compensation and air exchange between the interior 94 and the surroundings, but prevents water, other liquids or dirt from entering the interior 94 from the surroundings.
  • the inlet valve 24 is opened in that the valve member 34 is in its open position, in which the sealing surface 42 is arranged away from the valve seat 40.
  • the movement of the valve member 34 into its open position is brought about by the pressure difference between the fuel inlet 26 and the pump working chamber 18 against the force of the valve spring 50.
  • the solenoid 64 of the actuator 60 can be energized or de-energized. When the magnet coil 64 is energized, the magnet armature 68 is pulled towards the magnet core 66 against the force of the return spring 82 by the resulting magnetic field.
  • the magnet armature 68 is pressed toward the inlet valve 24 by the force of the return spring 82.
  • the magnet armature 68 lies at least indirectly on the end face of the shaft 36 of the valve member 34.
  • the actuator 60 determines whether the valve member 34 of the inlet valve 24 is in its open position or closed position.
  • the solenoid 64 is not energized, the magnetic armature 68 is pressed by the return spring 82 in the actuating direction according to arrow B in FIG. 2, the valve member 34 being pressed by the magnet armature 68 against the valve spring 50 in the actuating direction B into its open position.
  • the force of the return spring 82 acting on the armature 68 is greater than the force of the valve spring 50 acting on the valve member 34.
  • the magnet armature 68 acts on the valve member 34 and the magnet armature 68 and the valve member 34 together in the setting direction B. emotional. As long as the magnet coil 64 is not energized, no fuel can thus be conveyed into the accumulator 30 by the pump piston 12, but fuel displaced by the pump piston 12 is conveyed back into the fuel inlet 26.
  • the magnet coil 64 is energized, so that the magnet armature 68 is pulled towards the magnet core 66 in an opposite direction to the direction of movement B according to arrow A in FIG. 2 becomes.
  • the armature 68 therefore no longer exerts any force on the valve member 34, the magnet armature 68 being moved in the actuating direction A by the magnetic field and the valve member 34 being independent of the magnet armature 68 due to the valve spring 50 and between the pump working chamber 18 and the fuel inlet 26 prevailing pressure difference in the setting direction A is moved into its closed position.
  • the delivery rate of the high-pressure pump into the accumulator 30 can be set variably. If a small amount of fuel delivery is required, the inlet valve 24 is kept open by the actuator 60 during a large part of the delivery stroke of the pump piston 12, and if a large amount of fuel delivery is required, the inlet valve 24 will be only during a small part or not at all of the delivery stroke of the pump piston 12 is kept open.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to an electromagnetically actuatable inlet valve (24) for a high-pressure pump, in particular of a fuel injection system. The inlet valve (24) has a valve member (34) which is movable between an open position and a closed position. An electromagnetic actuator (60) is provided, by means of which the valve member (34) can be moved, wherein the electromagnetic actuator (60) comprises a solenoid coil (64), a magnetic core (66) and an armature (68) which acts at least indirectly on the valve member (34) and is displaceably guided in a receptacle (76) of a support element (78) in the direction of its longitudinal axis (69). The magnetic core (66), the armature (68) and the support element (78) are arranged in an interior space (94) of a housing (70). The interior space (94) of the housing (70) is connected to the surroundings via a pressure compensation element (96) arranged on the housing (70). The pressure compensation element (96) allows pressure compensation and an air exchange between the interior space (94) and the surroundings. As a result, an entry of moisture into the interior space during heating and cooling of the components of the inlet valve can be avoided.

Description

Beschreibung  description
Titel: Title:
Elektromagnetisch betätiqbares Einlassventil und Hochdruckpumpe mit Einlass- ventil  Electromagnetically actuated inlet valve and high pressure pump with inlet valve
Die Erfindung betrifft ein elektromagnetisch betätigbares Einlassventil für eine Hochdruckpumpe, insbesondere eines Kraftstoffeinspritzsystems, gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung eine Hochdruckpumpe mit einem solchen Einlassventil. The invention relates to an electromagnetically actuated inlet valve for a high-pressure pump, in particular a fuel injection system, according to the preamble of claim 1. Furthermore, the invention relates to a high-pressure pump with such an inlet valve.
Stand der Technik State of the art
Ein elektromagnetisch betätigbares Einlassventil für eine Hochdruckpumpe eines Kraftstoffeinspritzsystems, ist durch die DE 10 2015 212 390 A1 bekannt. Die Hochdruckpumpe weist wenigstens ein Pumpenelement auf mit einem in einer Hubbewegung angetriebenen Pumpenkolben, der einen Pumpenarbeitsraum be- grenzt. Der Pumpenarbeitsraum ist über das Einlassventil mit einem Zulauf für den Kraftstoff verbindbar. Das Einlassventil umfasst ein Ventilglied, das mit ei- nem Ventilsitz zur Steuerung zusammenwirkt und das zwischen einer Öffnungs- Stellung und einer Schließstellung bewegbar ist. In seiner Schließstellung kommt das Ventilglied am Ventilsitz zur Anlage. Ferner umfasst das Einlassventil einen elektromagnetischen Aktor, durch den das Ventilglied bewegbar ist. Der elektro- magnetische Aktor weist eine Magnetspule, einen Magnetkern und einen zumin- dest mittelbar auf das Ventilglied wirkenden Magnetanker auf. Der Magnetanker ist in einer Aufnahme in einem Trägerelement verschiebbar geführt. Bei Bestro- mung der Magnetspule ist der Magnetanker gegen die Kraft einer Rückstellfeder bewegbar. Das Trägerelement und der Magnetkern sind über ein hülsenförmiges Verbindungselement miteinander verbunden, wobei das Verbindungselement mit dem Trägerelement und/oder dem Magnetkern verschweißt sein kann. Der Mag- netkern, das Trägerelement und das Verbindungselement sind von einem Ge- häuse umgeben. Zwischen dem Magnetkern, dem Trägerelement und dem Verbindungselement einerseits und dem Gehäuse andererseits ist ein Innenraum vorhanden, der mit Luft gefüllt ist. Bei Erwärmung und Abkühlung des Aktors kommt es zu Druckän- derungen im Innenraum, wobei es insbesondere bei Abkühlung des Aktors durch die erfolgende Druckabsenkung im Innenraum zu einem Eintritt von Feuchtigkeit aus der Umgebung des Aktors in den Innenraum kommen kann. Dies kann zu Korrosion des Trägerelements, Magnetankers und Verbindungselements führen, wobei insbesondere die Schweißverbindung des Verbindungselements geschä- digt werden kann, so dass keine sichere Verbindung des Magnetkerns mit dem Trägerelement mehr vorhanden ist. Auch wenn Abdichtungsmaßnahmen am Gehäuse vorgesehen sind kann keine zuverlässige hermetische Abdichtung si- chergestellt werden, so dass Korrosion nicht ausgeschlossen werden kann. An electromagnetically actuated inlet valve for a high-pressure pump of a fuel injection system is known from DE 10 2015 212 390 A1. The high-pressure pump has at least one pump element with a pump piston which is driven in a lifting movement and delimits a pump working space. The pump work space can be connected to an inlet for the fuel via the inlet valve. The inlet valve comprises a valve member which interacts with a valve seat for control purposes and which is movable between an open position and a closed position. In its closed position, the valve member comes to rest on the valve seat. Furthermore, the inlet valve comprises an electromagnetic actuator, through which the valve member can be moved. The electromagnetic actuator has a magnet coil, a magnet core and a magnet armature which acts at least indirectly on the valve member. The magnet armature is slidably guided in a receptacle in a carrier element. When the solenoid is energized, the magnet armature can be moved against the force of a return spring. The carrier element and the magnetic core are connected to one another via a sleeve-shaped connecting element, wherein the connecting element can be welded to the carrier element and / or the magnetic core. The magnetic core, the carrier element and the connecting element are surrounded by a housing. An interior space which is filled with air is present between the magnetic core, the carrier element and the connecting element on the one hand and the housing on the other hand. When the actuator heats up and cools down, there are pressure changes in the interior, and in particular when the actuator cools down, the pressure drop in the interior can lead to moisture entering the interior from the surroundings of the actuator. This can lead to corrosion of the carrier element, magnet armature and connecting element, wherein in particular the welded connection of the connecting element can be damaged, so that there is no longer a secure connection of the magnetic core to the carrier element. Even if sealing measures are provided on the housing, no reliable hermetic sealing can be ensured, so that corrosion cannot be ruled out.
Offenbarung der Erfindung Disclosure of the invention
Vorteile der Erfindung Advantages of the invention
Das erfindungsgemäße Einlassventil mit den Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, dass durch das Druckausgleichselement vermieden wird, dass sich im Innenraum ein Unterdrück bildet, so dass der Magnetkern und/oder das Trägerelement vor Korrosion besser geschützt sind. In contrast, the inlet valve according to the invention with the features of claim 1 has the advantage that the pressure compensation element prevents the formation of a negative pressure in the interior, so that the magnetic core and / or the carrier element are better protected against corrosion.
In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbil- dungen des erfindungsgemäßen Einlassventils angegeben. Im Anspruch 2 ist ei- ne vorteilhafte Ausführung des Druckausgleichselements angegeben. Durch die Ausbildung gemäß Anspruch 3 muss das Druckausgleichselement nicht als se- parates Teil mit dem Gehäuse verbunden werden. Die Ausbildung gemäß An- spruch 4 ermöglicht eine einfache Handhabung des Druckausgleichselements wenn dieses als separates Element mit dem Gehäuse verbunden wird. Advantageous refinements and developments of the inlet valve according to the invention are specified in the dependent claims. An advantageous embodiment of the pressure compensation element is specified in claim 2. Due to the design according to claim 3, the pressure compensation element does not have to be connected to the housing as a separate part. The design according to claim 4 enables easy handling of the pressure compensation element when it is connected to the housing as a separate element.
Zeichnung drawing
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der beigefügten Zeichnung näher beschrieben. Es zeigen Figur 1 einen schematischen Längs- schnitt durch eine Hochdruckpumpe, Figur 2 in vergrößerter Darstellung einen in Figur 1 mit II bezeichneten Ausschnitt mit dem Einlassventil der Hochdruckpum- pe mit einem Druckausgleichselement und Figur 3 in weiter vergrößerter Darstel- lung das Druckausgleichselement. An embodiment of the invention is described below with reference to the accompanying drawings. FIG. 1 shows a schematic longitudinal section through a high-pressure pump, FIG. 2 shows an enlarged view of an in FIG. 1 shows a section with the inlet valve of the high-pressure pump with a pressure compensation element, and FIG. 3 shows the pressure compensation element in a further enlarged view.
Beschreibung des Ausführungsbeispiels Description of the embodiment
In Figur 1 ist ausschnittsweise eine Hochdruckpumpe dargestellt, die zur Kraft- stoffförderung in einem Kraftstoffeinspritzsystem einer Brennkraftmaschine vor- gesehen ist. Die Hochdruckpumpe weist wenigstens ein Pumpenelement 10 auf, das wiederum einen Pumpenkolben 12 aufweist, der durch einen Antrieb in einer Hubbewegung angetrieben wird, in einer Zylinderbohrung 14 eines Gehäuseteils 16 der Hochdruckpumpe geführt ist und in der Zylinderbohrung 14 einen Pum- penarbeitsraum 18 begrenzt. Als Antrieb für den Pumpenkolben 12 kann eine Antriebswelle 20 mit einem Nocken 22 oder Exzenter vorgesehen sein, an dem sich der Pumpenkolben 12 direkt oder über einen Stößel, beispielsweise einen Rollenstößel, abstützt. Der Pumpenarbeitsraum 18 ist über ein Einlassventil 24 mit einem Kraftstoffzulauf 26 verbindbar und über ein Auslassventil 28 mit einem Speicher 30. Beim Saughub des Pumpenkolbens 12 kann der Pumpenarbeits- raum 18 bei geöffnetem Einlassventil 24 mit Kraftstoff befüllt werden. Beim För- derhub des Pumpenkolbens 12 wird durch diesen bei geschlossenem Einlass- ventil 24 Kraftstoff aus dem Pumpenarbeitsraum 18 verdrängt und in den Spei- cher 30 gefördert. A section of a high-pressure pump is shown in FIG. 1, which is provided for fuel delivery in a fuel injection system of an internal combustion engine. The high-pressure pump has at least one pump element 10, which in turn has a pump piston 12, which is driven by a drive in a lifting movement, is guided in a cylinder bore 14 of a housing part 16 of the high-pressure pump and delimits a pump work chamber 18 in the cylinder bore 14. A drive shaft 20 with a cam 22 or eccentric can be provided as the drive for the pump piston 12, on which the pump piston 12 is supported directly or via a tappet, for example a roller tappet. The pump work chamber 18 can be connected to a fuel inlet 26 via an inlet valve 24 and to a reservoir 30 via an outlet valve 28. During the suction stroke of the pump piston 12, the pump work chamber 18 can be filled with fuel when the inlet valve 24 is open. During the delivery stroke of the pump piston 12, fuel is displaced from the pump working chamber 18 and is fed into the reservoir 30 when the inlet valve 24 is closed.
Im Gehäuseteil 16 der Hochdruckpumpe schließt sich wie in Figur 2 dargestellt an die Zylinderbohrung 14 auf deren dem Pumpenkolben 12 abgewandter Seite eine Durchgangsbohrung 32 mit kleinerem Durchmesser als die Zylinderbohrung 14 an, die auf der Außenseite der Gehäuseteils 16 mündet. Das Einlassventil 24 weist ein kolbenförmiges Ventilglied 34 auf, das einen in der Durchgangsbohrung 32 verschiebbar geführten Schaft 36 und einen im Durchmesser gegenüber dem Schaft 36 größeren Kopf 38 aufweist, der im Pumpenarbeitsraum 18 angeordnet ist. Am Übergang von der Zylinderbohrung 14 zur Durchgangsbohrung 32 ist am Gehäuseteil 16 ein Ventilsitz 40 gebildet, mit dem das Ventilglied 34 mit einer an seinem Kopf 38 ausgebildeten Dichtfläche 42 zusammenwirkt. In the housing part 16 of the high-pressure pump, as shown in FIG. 2, the cylinder bore 14 is adjoined on the side facing away from the pump piston 12 by a through bore 32 with a smaller diameter than the cylinder bore 14, which opens on the outside of the housing part 16. The inlet valve 24 has a piston-shaped valve member 34 which has a shaft 36 which is displaceably guided in the through bore 32 and a head 38 which is larger in diameter than the shaft 36 and which is arranged in the pump work chamber 18. At the transition from the cylinder bore 14 to the through bore 32, a valve seat 40 is formed on the housing part 16, with which the valve member 34 cooperates with a sealing surface 42 formed on its head 38.
In einem an den Ventilsitz 40 anschließenden Abschnitt weist die Durchgangs- bohrung 32 einen größeren Durchmesser auf als in deren den Schaft 36 des Ventilglieds 34 führendem Abschnitt, so dass ein den Schaft 36 des Ventilglieds 34 umgebender Ringraum 44 gebildet ist. In den Ringraum 44 münden eine oder mehrere Zulaufbohrungen 46, die andererseits auf der Außenseite des Gehäuse- teils 16 münden. In a section adjoining the valve seat 40, the through bore 32 has a larger diameter than in the shaft 36 thereof Section leading valve member 34, so that an annular space 44 is formed surrounding the shaft 36 of the valve member 34. One or more inlet bores 46, which on the other hand open on the outside of the housing part 16, open into the annular space 44.
Der Schaft 36 des Ventilglieds 34 ragt auf der dem Pumpenarbeitsraum 18 ab- gewandten Seite des Gehäuseteils 16 aus der Durchgangsbohrung 32 heraus und auf diesem ist ein Stützelement 48 befestigt. Am Stützelement 48 stützt sich eine Ventilfeder 50 ab, die sich andererseits an einem den Schaft 36 des Ven- tilglieds 34 umgebenden Bereich des Gehäuseteils 16 abstützt. Durch die Ventil feder 50 wird das Ventilglied 34 in einer Stellrichtung A in dessen Schließrichtung beaufschlagt, wobei das Ventilglied 34 in seiner Schließstellung mit seiner Dicht- fläche 42 am Ventilsitz 40 anliegt. Die Ventilfeder 50 ist beispielsweise als Schraubendruckfeder ausgebildet. The stem 36 of the valve member 34 protrudes out of the through hole 32 on the side of the housing part 16 facing away from the pump working space 18 and a support element 48 is fastened thereon. A valve spring 50 is supported on the support element 48, which on the other hand is supported on a region of the housing part 16 surrounding the shaft 36 of the valve member 34. Through the valve spring 50, the valve member 34 is acted upon in an adjusting direction A in its closing direction, the valve member 34 resting in its closed position with its sealing surface 42 on the valve seat 40. The valve spring 50 is designed, for example, as a helical compression spring.
Das Einlassventil 24 ist durch einen elektromagnetischen Aktor 60 betätigbar, der insbesondere in den Figuren 2 und 3 dargestellt ist. Der Aktor 60 wird durch eine elektronische Steuereinrichtung 62 in Abhängigkeit von Betriebsparametern der zu versorgenden Brennkraftmaschine angesteuert. Der elektromagnetische Aktor 60 weist eine Magnetspule 64, einen Magnetkern 66 und einen Magnetanker 68 auf. Der elektromagnetische Aktor 60 ist auf der dem Pumpenarbeitsraum 18 ab- gewandten Seite des Einlassventils 24 angeordnet. Der Magnetkern 66 und die Magnetspule 64 sind von einem Aktorgehäuse 70 umgeben, das am Gehäuseteil 16 der Hochdruckpumpe befestigbar ist. Das Aktorgehäuse 70 ist aus Kunststoff hergestellt und in diesem ist die Magnetspule 64 aufgenommen. Das Aktorge- häuse 70 ist beispielsweise mittels eines dieses übergreifenden Schraubrings 72 am Gehäuseteil 16 befestigbar, der auf einem mit einem Außengewinde verse- henen Kragen 74 des Gehäuseteils 16 aufgeschraubt ist. The inlet valve 24 can be actuated by an electromagnetic actuator 60, which is shown in particular in FIGS. 2 and 3. The actuator 60 is controlled by an electronic control device 62 as a function of the operating parameters of the internal combustion engine to be supplied. The electromagnetic actuator 60 has a magnet coil 64, a magnet core 66 and a magnet armature 68. The electromagnetic actuator 60 is arranged on the side of the inlet valve 24 facing away from the pump working space 18. The magnetic core 66 and the magnetic coil 64 are surrounded by an actuator housing 70 which can be fastened to the housing part 16 of the high-pressure pump. The actuator housing 70 is made of plastic and the magnetic coil 64 is accommodated in it. The actuator housing 70 can be fastened, for example, to the housing part 16 by means of a screw ring 72 which overlaps it and which is screwed onto a collar 74 of the housing part 16 provided with an external thread.
Der Magnetanker 68 ist zumindest im Wesentlichen zylinderförmig ausgebildet und über seinen Außenmantel in einer Aufnahme in Form einer Bohrung 76 in einem Trägerelement 78 in Richtung seiner Längsachse 69 verschiebbar geführt. Die Bohrung 76 im Trägerelement 78 verläuft zumindest annähernd koaxial zur Durchgangsbohrung 32 im Gehäuseteil 16 der Hochdruckpumpe und somit zum Ventilglied 34. An die Bohrung 76 schließt sich im Trägerelement 78 zum Ein- lassventil 24 hin eine weitere Bohrung 77 mit kleinerem Durchmesser als die Bohrung 76 an. The magnet armature 68 is at least essentially cylindrical and is displaceably guided in the direction of its longitudinal axis 69 via its outer jacket in a receptacle in the form of a bore 76 in a carrier element 78. The bore 76 in the carrier element 78 extends at least approximately coaxially to the through bore 32 in the housing part 16 of the high-pressure pump and thus to the valve member 34. let valve 24 out to another bore 77 with a smaller diameter than the bore 76.
Der Magnetanker 68 weist eine zumindest annähernd koaxial zur Längsachse 69 des Magnetankers 68 angeordnete zentrale Sackbohrung 81 auf, in die eine auf der dem Ventilglied 34 abgewandten Seite des Magnetankers 68 angeordnete Rückstellfeder 82 hineinragt, die sich am Magnetanker 68 abstützt. Die Rückstell- feder 82 ist an ihrem anderen Ende zumindest mittelbar am Magnetkern 66 ab- gestützt, der eine zentrale Sackbohrung 84 aufweist, in die die Rückstellfeder 82 hineinragt. In der Bohrung 84 des Magnetankers 66 kann ein Abstützelement 85 für die Rückstellfeder 82 eingefügt, beispielsweise eingepresst sein. Der Mag- netanker 68 weist eine oder mehrere Durchgangsöffnungen 91 auf um einen Durchtritt von Kraftstoff bei der Bewegung des Magnetankers 68 zu ermöglichen. The magnet armature 68 has a central blind bore 81, which is arranged at least approximately coaxially to the longitudinal axis 69 of the magnet armature 68 and into which a return spring 82, which is arranged on the side of the magnet armature 68 facing away from the valve member 34 and which is supported on the magnet armature 68, projects. The return spring 82 is supported at its other end at least indirectly on the magnetic core 66, which has a central blind hole 84 into which the return spring 82 projects. A support element 85 for the return spring 82 can be inserted, for example pressed in, in the bore 84 of the magnet armature 66. The magnetic armature 68 has one or more through openings 91 to allow fuel to pass through when the magnetic armature 68 moves.
In der Bohrung 76 ist durch die Durchmesserverringerung zur weiteren Bohrung 77 hin eine Ringschulter 88 gebildet. Zwischen der Ringschulter 88 und dem Magnetanker 68 kann ein Anschlagelement 90 angeordnet sein, durch das die Bewegung des Magnetankers 68 zum Einlassventil 24 hin begrenzt ist. Das An- schlagelement 90 ist hülsenförmig ausgebildet und durch dieses ragt der Mag- netanker 68 zum Einlassventil 24 hindurch und kommt zumindest mittelbar am Ventilglied 34 zur Anlage. Der Magnetkern 66 und das Trägerelement 78 sind über ein hülsenförmiges Verbindungselement 92 miteinander verbunden, das auf dem Magnetkern 66 und auf dem Trägerelement 78 mittels jeweils einer An annular shoulder 88 is formed in the bore 76 through the reduction in diameter to the further bore 77. A stop element 90 can be arranged between the annular shoulder 88 and the magnet armature 68, by means of which the movement of the magnet armature 68 towards the inlet valve 24 is limited. The stop element 90 is sleeve-shaped and through this the magnetic armature 68 projects through to the inlet valve 24 and comes to bear at least indirectly on the valve member 34. The magnetic core 66 and the carrier element 78 are connected to one another via a sleeve-shaped connecting element 92, which on the magnetic core 66 and on the carrier element 78 by means of one each
Schweißverbindung 93 befestigt ist. Welded connection 93 is attached.
Zwischen dem Trägerelement 78, dem Magnetkern 66 und dem Verbindungs- element 92 einerseits und dem diese umgebenden Aktorgehäuse 70 anderer- seits ist ein Innenraum 94 vorhanden. Der Innenraum 94 erstreckt sich in radialer Richtung bezüglich der Längsachse 69 des Magnetankers 68 zwischen dem Trägerelement 78, dem Verbindungselement 92 und dem Magnetkern 66 einer- seits und dem Aktorgehäuse 70 andererseits. In Richtung der Längsachse 69 des Magnetankers 68 erstreckt sich der Innenraum 94 entlang des Trägerele- ments 78, des Verbindungselements 92 und des Magnetkerns 66 bis zu dem dem Trägerelement 78 abgewandten Ende des Magnetkerns 66. Außerdem er- streckt sich der Innenraum 94 in Richtung der Längsachse 68 zwischen dem Magnetkern 66 und dem Aktorgehäuse 70. Erfindungsgemäß ist am Aktorgehäuse 70 wenigstens ein Druckausgleichsele- ment 96 angeordnet, durch das der Innenraum 94 begrenzt wird. Das Druckaus- gleichselement 96 ist beispielsweise in einem in Richtung der Längsachse 69 des Magnetankers 68 neben dem Magnetkern 66 liegenden Bereich einer Wan- dung des Aktorgehäuses 70 angeordnet. Das Druckausgleichselement 96 weist eine Membran 98 auf, die luft- und dampfdurchlässig ist, jedoch flüssigkeitsdicht ist. Die Membran 98 kann beispielsweise als flache Scheibe mit rundem oder be- liebig anders geformtem Querschnitt ausgebildet sein. Das Druckausgleichsele- ment 96 kann einen die Membran 98 aufnehmenden Rahmen 99 aufweisen, der dicht in eine Öffnung 71 des Aktorgehäuses 70 eingefügt, beispielsweise einge- klebt ist. Alternativ kann das Druckausgleichselement 96 auch in die Öffnung 71 des Aktorgehäuses 70 eingepresst, eingeschraubt, in dieser verstemmt oder di- rekt vom Kunststoffmaterial des Aktorgehäuses 70 umspritzt sein. Alternativ kann das Druckausgleichselement 96 auch durch eine Rastverbindung oder eine formschlüssige Verbindung mit dem Gehäuse 70 verbunden sein. Durch die Membran 98 des Druckausgleichselements 96 ist ein Druckausgleich und Luft- austausch zwischen dem Innenraum 94 und der Umgebung ermöglicht, jedoch ein Eintritt von Wasser, anderer Flüssigkeit oder Schmutz aus der Umgebung in den Innenraum 94 vermieden. An interior 94 is present between the carrier element 78, the magnetic core 66 and the connecting element 92 on the one hand and the actuator housing 70 surrounding them on the other. The interior 94 extends in the radial direction with respect to the longitudinal axis 69 of the magnet armature 68 between the carrier element 78, the connecting element 92 and the magnetic core 66 on the one hand and the actuator housing 70 on the other hand. In the direction of the longitudinal axis 69 of the magnet armature 68, the interior 94 extends along the carrier element 78, the connecting element 92 and the magnet core 66 to the end of the magnet core 66 facing away from the carrier element 78. In addition, the interior 94 extends in the direction of the Longitudinal axis 68 between the magnetic core 66 and the actuator housing 70. According to the invention, at least one pressure compensation element 96 is arranged on the actuator housing 70, by means of which the interior 94 is delimited. The pressure compensation element 96 is arranged, for example, in a region of a wall of the actuator housing 70 lying in the direction of the longitudinal axis 69 of the magnet armature 68 next to the magnet core 66. The pressure compensation element 96 has a membrane 98 which is permeable to air and steam, but is liquid-tight. The membrane 98 can be designed, for example, as a flat disk with a round or any other cross-section. The pressure compensation element 96 can have a frame 99 which receives the membrane 98 and which is inserted, for example glued in, tightly into an opening 71 in the actuator housing 70. Alternatively, the pressure compensation element 96 can also be pressed into the opening 71 of the actuator housing 70, screwed in, caulked in this or directly encapsulated by the plastic material of the actuator housing 70. Alternatively, the pressure compensation element 96 can also be connected to the housing 70 by a snap-in connection or a positive connection. The membrane 98 of the pressure compensation element 96 enables pressure compensation and air exchange between the interior 94 and the surroundings, but prevents water, other liquids or dirt from entering the interior 94 from the surroundings.
Nachfolgend wird die Funktion des elektromagnetisch betätigten Einlassventils 24 erläutert. Während des Saughubs des Pumpenkolbens 12 ist das Einlassven- til 24 geöffnet, indem sich dessen Ventilglied 34 in seiner Öffnungsstellung befin- det, in der dieses mit seiner Dichtfläche 42 vom Ventilsitz 40 entfernt angeordnet ist. Die Bewegung des Ventilglieds 34 in seine Öffnungsstellung wird durch die zwischen dem Kraftstoffzulauf 26 und dem Pumpenarbeitsraum 18 herrschende Druckdifferenz gegen die Kraft der Ventilfeder 50 bewirkt. Die Magnetspule 64 des Aktors 60 kann dabei bestromt oder unbestromt sein. Wenn die Magnetspule 64 bestromt ist so wird der Magnetanker 68 durch das entstehende Magnetfeld gegen die Kraft der Rückstellfeder 82 zum Magnetkern 66 hin gezogen. Wenn die Magnetspule 64 nicht bestromt ist so wird der Magnetanker 68 durch die Kraft der Rückstellfeder 82 zum Einlassventil 24 hin gedrückt. Der Magnetanker 68 liegt zumindest mittelbar an der Stirnseite des Schafts 36 des Ventilglieds 34 an. Während des Förderhubs des Pumpenkolbens 12 wird durch den Aktor 60 be- stimmt ob sich das Ventilglied 34 des Einlassventils 24 in seiner Öffnungsstellung oder Schließstellung befindet. Bei unbestromter Magnetspule 64 wird der Mag- netanker 68 durch die Rückstellfeder 82 in der Stellrichtung gemäß Pfeil B in Fi- gur 2 gedrückt, wobei das Ventilglied 34 durch den Magnetanker 68 gegen die Ventilfeder 50 in der Stellrichtung B in seine Öffnungsstellung gedrückt wird. Die Kraft der auf den Magnetanker 68 wirkenden Rückstellfeder 82 ist größer als die Kraft der auf das Ventilglied 34 wirkenden Ventilfeder 50. In die Stellrichtung B wirkt der Magnetanker 68 auf das Ventilglied 34 und der Magnetanker 68 und das Ventilglied 34 werden gemeinsam in die Stellrichtung B bewegt. Solange die Magnetspule 64 nicht bestromt ist kann somit durch den Pumpenkolben 12 kein Kraftstoff in den Speicher 30 gefördert werden sondern vom Pumpenkolben 12 verdrängter Kraftstoff wird in den Kraftstoffzulauf 26 zurückgefördert. Wenn wäh- rend des Förderhubs des Pumpenkolbens 12 Kraftstoff in den Speicher 30 geför- dert werden soll so wird die Magnetspule 64 bestromt, so dass der Magnetanker 68 zum Magnetkern 66 hin in einer zur Stellrichtung B entgegengesetzten Stell richtung gemäß Pfeil A in Figur 2 gezogen wird. Durch den Magnetanker 68 wird somit keine Kraft mehr auf das Ventilglied 34 ausgeübt, wobei der Magnetanker 68 durch das Magnetfeld in die Stellrichtung A bewegt wird und das Ventilglied 34 unabhängig vom Magnetanker 68 bedingt durch die Ventilfeder 50 und die zwischen dem Pumpenarbeitsraum 18 und dem Kraftstoffzulauf 26 herrschende Druckdifferenz in der Stellrichtung A in seine Schließstellung bewegt wird. The function of the electromagnetically actuated inlet valve 24 is explained below. During the suction stroke of the pump piston 12, the inlet valve 24 is opened in that the valve member 34 is in its open position, in which the sealing surface 42 is arranged away from the valve seat 40. The movement of the valve member 34 into its open position is brought about by the pressure difference between the fuel inlet 26 and the pump working chamber 18 against the force of the valve spring 50. The solenoid 64 of the actuator 60 can be energized or de-energized. When the magnet coil 64 is energized, the magnet armature 68 is pulled towards the magnet core 66 against the force of the return spring 82 by the resulting magnetic field. If the magnet coil 64 is not energized, the magnet armature 68 is pressed toward the inlet valve 24 by the force of the return spring 82. The magnet armature 68 lies at least indirectly on the end face of the shaft 36 of the valve member 34. During the delivery stroke of the pump piston 12, the actuator 60 determines whether the valve member 34 of the inlet valve 24 is in its open position or closed position. When the solenoid 64 is not energized, the magnetic armature 68 is pressed by the return spring 82 in the actuating direction according to arrow B in FIG. 2, the valve member 34 being pressed by the magnet armature 68 against the valve spring 50 in the actuating direction B into its open position. The force of the return spring 82 acting on the armature 68 is greater than the force of the valve spring 50 acting on the valve member 34. In the setting direction B, the magnet armature 68 acts on the valve member 34 and the magnet armature 68 and the valve member 34 together in the setting direction B. emotional. As long as the magnet coil 64 is not energized, no fuel can thus be conveyed into the accumulator 30 by the pump piston 12, but fuel displaced by the pump piston 12 is conveyed back into the fuel inlet 26. If fuel is to be conveyed into the accumulator 30 during the delivery stroke of the pump piston 12, the magnet coil 64 is energized, so that the magnet armature 68 is pulled towards the magnet core 66 in an opposite direction to the direction of movement B according to arrow A in FIG. 2 becomes. The armature 68 therefore no longer exerts any force on the valve member 34, the magnet armature 68 being moved in the actuating direction A by the magnetic field and the valve member 34 being independent of the magnet armature 68 due to the valve spring 50 and between the pump working chamber 18 and the fuel inlet 26 prevailing pressure difference in the setting direction A is moved into its closed position.
Durch das Öffnen des Einlassventils 24 beim Förderhub des Pumpenkolbens 12 mittels des elektromagnetischen Aktors 60 kann die Fördermenge der Hoch- druckpumpe in den Speicher 30 variabel eingestellt werden. Wenn eine geringe Kraftstofffördermenge erforderlich ist so wird das Einlassventil 24 durch den Ak- tor 60 während eines großen Teils des Förderhubs des Pumpenkolbens 12 offen gehalten und wenn eine große Kraftstofffördermenge erforderlich ist, so wird das Einlassventil 24 nur während eines kleinen Teils oder gar nicht während des För- derhubs des Pumpenkolbens 12 offen gehalten. By opening the inlet valve 24 during the delivery stroke of the pump piston 12 by means of the electromagnetic actuator 60, the delivery rate of the high-pressure pump into the accumulator 30 can be set variably. If a small amount of fuel delivery is required, the inlet valve 24 is kept open by the actuator 60 during a large part of the delivery stroke of the pump piston 12, and if a large amount of fuel delivery is required, the inlet valve 24 will be only during a small part or not at all of the delivery stroke of the pump piston 12 is kept open.

Claims

Ansprüche  Expectations
1. Elektromagnetisch betätigbares Einlassventil (24) für eine Hochdruckpumpe, insbesondere eines Kraftstoffeinspritzsystems, mit einem Ventilglied (34), das zwischen einer Öffnungsstellung und einer Schließstellung bewegbar ist, mit einem elektromagnetischen Aktor (60), durch den das Ventilglied (34) bewegbar ist, wobei der elektromagnetische Aktor (60) eine Magnetspule (64), einen Magnetkern (66) und einen zumindest mittelbar auf das Ven- tilglied (34) wirkenden Magnetanker (68) aufweist, der in einer Aufnahme (76) eines Trägerelements (78) in Richtung seiner Längsachse (69) ver- schiebbar geführt ist, wobei der Magnetkern (66), der Magnetanker (68) und das Trägerelement (78) in einem Innenraum (94) eines Gehäuses (70) an- geordnet sind, dadurch gekennzeichnet, dass der Innenraum (94) des Ge- häuses (70) über ein am Gehäuse (70) angeordnetes Druckausgleichsele- ment (96) mit der Umgebung verbunden ist. 1. Electromagnetically actuated inlet valve (24) for a high pressure pump, in particular a fuel injection system, with a valve member (34) which can be moved between an open position and a closed position, with an electromagnetic actuator (60) through which the valve member (34) can be moved The electromagnetic actuator (60) has a magnet coil (64), a magnet core (66) and a magnet armature (68) which acts at least indirectly on the valve member (34) and which is located in a receptacle (76) of a carrier element (78). is displaceably guided in the direction of its longitudinal axis (69), the magnetic core (66), the magnet armature (68) and the carrier element (78) being arranged in an interior (94) of a housing (70), characterized in that that the interior (94) of the housing (70) is connected to the surroundings via a pressure compensation element (96) arranged on the housing (70).
2. Einlassventil nach Anspruch 1 , dadurch gekennzeichnet, dass das Druckaus- gleichselement (96) eine Membran (98) aufweist, die luftdurchlässig jedoch flüssigkeitsdicht ist. 2. Inlet valve according to claim 1, characterized in that the pressure compensation element (96) has a membrane (98) which is permeable to air but is liquid-tight.
3. Einlassventil nach Anspruch 2, dadurch gekennzeichnet, dass das Gehäuse (70) aus Kunststoff besteht und dass die Membran (98) vom Kunststoff des Gehäuses (70) umspritzt ist. 3. Inlet valve according to claim 2, characterized in that the housing (70) consists of plastic and that the membrane (98) is encapsulated by the plastic of the housing (70).
4. Einlassventil nach Anspruch 2, dadurch gekennzeichnet, dass die Membran4. Inlet valve according to claim 2, characterized in that the membrane
(98) in einem Rahmen (99) gehalten ist, der mit dem Gehäuse (70) verbun- den ist. (98) is held in a frame (99) which is connected to the housing (70).
5. Einlassventil nach Anspruch 4, dadurch gekennzeichnet, dass der Rahmen5. Inlet valve according to claim 4, characterized in that the frame
(99) mit dem Gehäuse (70) durch eine Klebeverbindung, eine Schraubver- bindung, eine Pressverbindung, eine Rastverbindung oder eine formschlüs- sige Verbindung verbunden ist. (99) is connected to the housing (70) by an adhesive connection, a screw connection, a press connection, a snap-in connection or a positive connection.
6. Einlassventil nach einem der vorstehenden Ansprüche, dadurch gekenn- zeichnet, dass der Magnetkern (66) und das Trägerelement (78) über ein im Innenraum (94) angeordnetes hülsenförmiges Verbindungselement (92) mit- einander verbunden sind. 6. Inlet valve according to one of the preceding claims, characterized in that the magnetic core (66) and the carrier element (78) are connected to one another via a sleeve-shaped connecting element (92) arranged in the interior (94).
7. Pumpe, insbesondere Kraftstoffh och d ruckpumpe, mit wenigstens einem 7. Pump, in particular fuel high pressure pump, with at least one
Pumpenelement (10), das einen einen Pumpenarbeitsraum (18) begrenzen- den Pumpenkolben (12) aufweist, wobei der Pumpenarbeitsraum (18) über ein Einlassventil (24) mit einem Zulauf (26) verbindbar ist, dadurch gekenn- zeichnet, dass das Einlassventil (24) gemäß einem der vorstehenden An- sprüche ausgebildet ist.  Pump element (10) which has a pump piston (12) delimiting a pump work chamber (18), the pump work chamber (18) being connectable to an inlet (26) via an inlet valve (24), characterized in that the inlet valve (24) is designed according to one of the preceding claims.
PCT/EP2019/073585 2018-10-26 2019-09-04 Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve WO2020083550A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018218379.1 2018-10-26
DE102018218379.1A DE102018218379A1 (en) 2018-10-26 2018-10-26 Electromagnetically actuated inlet valve and high pressure pump with inlet valve

Publications (1)

Publication Number Publication Date
WO2020083550A1 true WO2020083550A1 (en) 2020-04-30

Family

ID=67902506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/073585 WO2020083550A1 (en) 2018-10-26 2019-09-04 Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve

Country Status (2)

Country Link
DE (1) DE102018218379A1 (en)
WO (1) WO2020083550A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224439A1 (en) * 2012-12-27 2014-07-03 Robert Bosch Gmbh High pressure pump for common rail fuel injection system, has low-pressure connection module including annular portion formed with radial or sloping bore for connection of hydraulic annular space with low-pressure port
DE102015212390A1 (en) 2015-07-02 2017-01-05 Robert Bosch Gmbh Electromagnetically operated suction valve for a high-pressure pump and high-pressure pump
DE102015220677A1 (en) * 2015-10-22 2017-04-27 Robert Bosch Gmbh Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102016215304A1 (en) * 2016-08-17 2018-02-22 Robert Bosch Gmbh Electromagnetically operated suction valve and high-pressure fuel pump
DE102016220364A1 (en) * 2016-10-18 2018-04-19 Robert Bosch Gmbh Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102016224722A1 (en) * 2016-12-12 2018-06-14 Robert Bosch Gmbh Electromagnetically actuated inlet valve and high-pressure pump with inlet valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224439A1 (en) * 2012-12-27 2014-07-03 Robert Bosch Gmbh High pressure pump for common rail fuel injection system, has low-pressure connection module including annular portion formed with radial or sloping bore for connection of hydraulic annular space with low-pressure port
DE102015212390A1 (en) 2015-07-02 2017-01-05 Robert Bosch Gmbh Electromagnetically operated suction valve for a high-pressure pump and high-pressure pump
WO2017001093A1 (en) * 2015-07-02 2017-01-05 Robert Bosch Gmbh Electromagnetically actuated suction valve for a high-pressure pump, and high-pressure pump
DE102015220677A1 (en) * 2015-10-22 2017-04-27 Robert Bosch Gmbh Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102016215304A1 (en) * 2016-08-17 2018-02-22 Robert Bosch Gmbh Electromagnetically operated suction valve and high-pressure fuel pump
DE102016220364A1 (en) * 2016-10-18 2018-04-19 Robert Bosch Gmbh Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102016224722A1 (en) * 2016-12-12 2018-06-14 Robert Bosch Gmbh Electromagnetically actuated inlet valve and high-pressure pump with inlet valve

Also Published As

Publication number Publication date
DE102018218379A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
WO2005080785A1 (en) Fuel injection valve for internal combustion engines
WO2017144185A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
WO2016058805A1 (en) Electromagnetically operable inlet valve and high-pressure pump with an inlet valve
WO2018001626A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
DE102014217441A1 (en) Electromagnetically actuated proportional valve
DE102016224722A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
WO2020083550A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
EP3387247B1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
EP3365551B1 (en) Electromagnetically operable inlet valve and high-pressure pump having an inlet valve
EP3423717B1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
WO2017108343A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
WO2017050463A1 (en) Electromagnetically actuable inlet valve and high-pressure pump having an inlet valve
WO2016134930A1 (en) Partial pressure balanced pressure control valve for a high pressure accumulator
WO2019197067A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
DE102016219722A1 (en) Controllable suction valve for a high pressure pump, high pressure pump
WO2018197152A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
DE102020209574A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102017206490A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
WO2019115057A1 (en) Electromagnetically actuatable intake valve and high-pressure fuel pump
DE102018208086A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102014211469A1 (en) Nozzle assembly for a fuel injector and fuel injector
DE102017203572A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102017206492A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102017202307A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
WO2019115056A1 (en) Electromagnetically actuable inlet valve and high pressure fuel pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19765681

Country of ref document: EP

Kind code of ref document: A1