WO2020083345A1 - 一种电机定子及电机 - Google Patents

一种电机定子及电机 Download PDF

Info

Publication number
WO2020083345A1
WO2020083345A1 PCT/CN2019/113074 CN2019113074W WO2020083345A1 WO 2020083345 A1 WO2020083345 A1 WO 2020083345A1 CN 2019113074 W CN2019113074 W CN 2019113074W WO 2020083345 A1 WO2020083345 A1 WO 2020083345A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
coil unit
layer
outer end
conductor
Prior art date
Application number
PCT/CN2019/113074
Other languages
English (en)
French (fr)
Inventor
刘延海
柏荣键
Original Assignee
天津市松正电动汽车技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津市松正电动汽车技术股份有限公司 filed Critical 天津市松正电动汽车技术股份有限公司
Priority to EP19875956.5A priority Critical patent/EP3872966A4/en
Publication of WO2020083345A1 publication Critical patent/WO2020083345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to the field of motors, in particular to a motor stator and a motor.
  • bus bars and bus bars are used to connect the outer ends of the slots in the A, B and C phases, and the insulation of the bus bars and bus bars is continuously improved, but the bus bars and bus bars are in The manufacturing process of the stator winding of the motor will bring the complexity of the process, increase the production cost and reduce the production efficiency.
  • the purpose of the present invention is to provide a motor stator and a motor, which can simplify the connection between the outer ends of a plurality of slots in each phase of the motor stator winding, simplify the processing technology, reduce the production cost, and improve the production efficiency.
  • the present invention adopts the following technical solutions:
  • a motor stator includes a stator iron core, on which are provided a plurality of slots penetrating along the axial direction of the stator iron core, and the plurality of slots are distributed along the circumferential direction of the stator iron core; and further include: a stator winding, which It includes a first coil unit and a third coil unit nested in order from inside to outside.
  • Each coil unit includes multiple conductors, and each conductor includes two slots inside for inserting into different slots;
  • the number of slots inside the core that can be accommodated in the radial direction of the core divides each slot into M layers, where M is an integer greater than or equal to 3, and the two slots of each conductor in the inner coil unit are located in the same layer;
  • the pitch of the first coil unit is smaller than the pole pitch of the stator winding and the pitch of the other coil units is equal to the pole pitch of the stator winding.
  • each coil unit includes a plurality of windings, at least two conductors arranged adjacently form a group of phase conductors, each of the windings includes three groups of the phase conductors, and the two slots of each conductor are respectively It is the inside of the inlet slot and the inside of the outlet slot; each of the conductors further includes an out-of-slot turning part connected inside the two slots and forming a U-shaped structure with the inside of the two slots, and respectively connected to two The outer end of the slot inside the slot; each outer end of the slot extends generally along the circumferential direction of the stator core.
  • the inside of the inlet slot and the inside of the outlet slot of each conductor are distributed along the circumferential direction of the stator core and inside the inlet slot of the conductor adjacent thereto It is opposite to the distribution direction inside the outlet slot along the circumferential direction of the stator core.
  • it also includes a second coil unit located between the first coil unit and the third coil unit.
  • the inner slot of each conductor and The distribution direction of the interior of the outlet slot along the circumferential direction of the stator core is the same.
  • each slot of each conductor is on the same layer as the inside of the slot adjacent thereto.
  • outer end portions of the slots at the same layer are distributed in the same direction along the circumferential direction of the stator core, and the outer end portions of the slots located at two adjacent layers are distributed in the opposite direction along the circumferential direction of the stator core.
  • the two slots of each conductor in the second coil unit are located in two adjacent layers.
  • the distribution directions of the inner and outer slots of the adjacent two sets of phase conductors in each phase winding along the circumferential direction of the stator core are opposite or the same
  • M is an odd number in the third coil unit, the distribution directions of the inner and outer slots of the adjacent two sets of phase conductors in each phase winding along the circumferential direction of the stator core are the same.
  • the two slots of each conductor in the third coil unit are located in the same layer; when M is an odd number, the two slots of each conductor in the point coil unit are located in adjacent two Floor.
  • the outer end of the slot of each conductor in the outer coil unit is on the same layer as the interior of the adjacent slot; when M is an odd number, the third coil unit is closer to the second The outer end of the slot adjacent to the inside of the slot of the coil unit is on the same layer as the inside of the slot; when the third coil unit is an outer coil unit, a part of the outer end of the slot adjacent to the inside of the slot located at the outermost layer is The inside of the slot is on the same layer, and the outer end of the other slot connected to the inside of the outermost slot extends from the layer inside the slot to the side away from the center axis of the stator core; when the third coil unit is the inner coil unit, The outer end of a part of the slot adjacent to the inside of the slot in the innermost layer is in the same layer as the inside of the slot, and the outer end of the other slot adjacent to the inside of the slot in the innermost layer approaches the stator from the layer edge of the slot One side of the central axis of the
  • the outer end of the slot of the third coil unit is distributed along the circumferential direction of the stator core in the same direction; when M is an odd number, the third coil unit is located on the same layer
  • the outer end of the slot is distributed along the circumferential direction of the stator core in the same direction, and the outer end of the slot located on the adjacent two layers is distributed in the opposite direction along the circumferential direction of the stator core; when the third coil unit is an outer coil unit ,
  • the outer end of the slot extending from the outermost layer to the side away from the center axis of the stator core has the same distribution direction along the circumferential direction of the stator core, and is the same as the outer end of the slot located at the outermost layer along the circumferential direction of the stator core
  • the distribution direction is opposite; when the third coil unit is an inner coil unit, in the third coil unit, the outer end of the slot extending from the innermost layer to the side close to the central axis of the stator core is distributed along the circumferential direction of
  • the two slot outer ends of each conductor are the outer end of the inlet slot and the outer end of the outlet slot respectively;
  • the third coil unit is an outer coil unit, for conductors of the same phase, multiple conductors are connected in sequence and along The outer end of the outlet slot of one conductor and the outer end of the entry slot of the other conductor in the two conductors adjacent in the connection direction are welded, and the outer end of the entry slot located on the outermost side in the connection direction is connected to the phase terminal and is located The outer end of the outlet groove on the outermost side in the connection direction is the neutral point of the phase. Except for the neutral point and the outer end of the inlet groove connecting the phase terminal, the outer end of each of the grooves is located in the same radial direction as the neutral point. Direction and adjacent to each other and the outer end of the slot is located on a different layer of another conductor of the outer end of the welding;
  • the third coil unit is an inner coil unit, for conductors of the same phase, a plurality of conductors are connected in sequence and the outer end of the outlet slot of one conductor and the outer end of the inlet slot of the other conductor in two conductors adjacent in the connection direction Part is welded, the outer end of the inlet slot located at the innermost side of the connection direction is connected to the phase terminal, and the outer end of the outlet slot located at the innermost side of the connection direction is the neutral point of the phase, except for the neutral point and the inlet of the connecting phase terminal Outside the outer end of the wire slot, each of the other outer end of the slot is welded to the outer end of another conductor located in the same radial direction and adjacent to the outer end of the slot and at another layer.
  • the present invention also provides a motor, including the above-mentioned motor stator.
  • Beneficial effect of the present invention by using a coil unit with a pitch equal to the pole pitch and a coil unit with a pitch smaller than the pole pitch, the outer end of each slot can be directly connected by welding, eliminating the use of busbars and realizing the stator
  • the simplification of the winding process of the winding improves the production efficiency and reduces the production cost.
  • FIG. 1 is a schematic structural diagram of a motor stator according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of the stator core according to Embodiment 1 of the present invention.
  • Figure 3 is a bottom view of Figure 1;
  • FIG. 4 is a schematic structural view of the stator winding according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of an inner coil unit according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural view of the first conductor forming A11 in forming the inner coil unit according to Embodiment 1 of the present invention.
  • FIG. 7 is a positional diagram of a single group of A-phase conductors forming an inner coil unit and a stator core according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic structural diagram of an intermediate-side coil unit according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic structural view of a second conductor forming an intermediate coil unit according to Embodiment 1 of the present invention.
  • FIG. 10 is a position diagram of a single group of A-phase conductors forming an intermediate coil unit and a stator core according to Embodiment 1 of the present invention
  • FIG. 11 is a schematic structural diagram of an outer coil unit according to Embodiment 1 of the present invention.
  • FIG. 12 is a schematic structural view of a third conductor forming an outer coil unit according to Embodiment 1 of the present invention.
  • FIG. 13 is a positional diagram of a type of winding forming an outer coil unit and a stator core in Embodiment 1 of the present invention
  • FIG. 14 is a positional relationship diagram of another type of winding forming an outer coil unit and a stator core in Embodiment 1 of the present invention.
  • FIG. 16 is a schematic structural view of a stator winding according to Embodiment 2 of the present invention.
  • FIG. 17 is a schematic structural diagram of an outer coil unit according to Embodiment 2 of the present invention.
  • Embodiment 19 is a positional relationship diagram of all A-phase conductors in Embodiment 2 of the present invention.
  • FIG. 20 is a schematic structural diagram of a stator winding of an odd-numbered motor in Embodiment 3 of the present invention.
  • this embodiment provides a motor stator including a stator core 1 of a cylindrical structure.
  • a plurality of slots are provided through the stator core 1 in the axial direction.
  • the multiple slots are evenly distributed along the circumferential direction of the stator core 1.
  • the stator core 1 has an annular portion and a plurality of tooth portions 11 circumferentially uniformly distributed on the inner wall of the annular portion, each tooth portion 11 is penetrated along the axial direction of the stator core 1, and two adjacent teeth The portion 11 forms a groove.
  • the number of grooves is 48.
  • the motor stator further includes a stator winding 2, which includes a first coil unit and a third coil unit which are sequentially distributed along the radial direction of the stator core 1, each coil unit includes a plurality of inner parts with two slots Conductor.
  • each coil unit includes multiple windings, at least two conductors arranged adjacently form a group of phase conductors, and each winding includes three groups of phase conductors.
  • each group of phase conductors includes two windings Conductors, three sets of phase conductors are two A-phase conductors, two B-phase conductors and two C-phase conductors.
  • the inside of the two slots of each conductor is the inside of the inlet slot 211 and the inside of the outlet slot 212, which are connected to the two
  • Each slot has a U-shaped out-of-slot turning portion 214 formed inside the two slots, and the slot outer ends 213 connected to the two slots respectively.
  • each conductor is located in the stator iron At one end of the core 1 in the axial direction, the out-of-slot turning portion 214 is located at the other end in the axial direction of the stator core 1; each outer end of the slot 213 extends substantially along the circumferential direction of the stator core 1.
  • A-phase, B-phase and C-phase only represent different phases, and do not indicate the direction of current.
  • A-phase, B-phase and C-phase all refer to any one of U-phase, V-phase and W-phase, and represent respectively Different phases.
  • Pole pitch number of phases per winding ⁇ number of magnetic poles per group of phase conductors, coil units with a pitch less than the pole pitch are short pitch coil units, coil units with a pitch equal to the pole pitch are full pitch coil units; this implementation
  • the inner coil unit 21 is a short-pitch coil unit and the other coil units are full-pitch coil units.
  • the outer end 213 of each slot can be directly connected by welding, eliminating the use of the bus bar, and realizing the winding of the stator winding 2
  • the simplification of the process improves production efficiency and reduces production costs.
  • Each slot is divided into M layers according to the number of slots that can be accommodated in the radial direction of the stator core 1 in each slot, M is an integer greater than or equal to 3, and there may be between the inner coil unit 21 and the outer coil unit 23
  • M 4 as an example, and a corresponding intermediate coil unit 22 is provided to describe the winding method of the stator winding 2 in detail.
  • each slot is divided into four layers in the radial direction of the stator core 1 and away from its central axis, namely a first layer, a second layer, a third layer, and a fourth layer.
  • the two slots of each conductor in the inner coil unit are located in the same layer, that is, they are both on the first layer. Since the stator core 1 has 48 slots, the inner coil unit 21 is wound by 24 conductors The inner coil unit 21 includes four windings, namely a first winding, a second winding, a third winding, and a fourth winding. The four windings are evenly distributed along the circumferential direction of the stator core, and each winding includes a sequential distribution The two A-phase conductors, two B-phase conductors and two C-phase conductors, in which the inner slot 211 of each group of phase conductors is located in two adjacent slots.
  • the stator winding is formed by winding a plurality of first conductors, a plurality of second conductors, and a plurality of third conductors.
  • the inner coil unit 21 is formed by winding a plurality of first conductors, each The slot outer ends 213 extend substantially along the circumferential direction of the stator core 1.
  • each slot outer end of the first conductor is located on the same side of the slot as the adjacent one, specifically, the slot
  • the outer end of the slot adjacent to the inner 211 is located on the right side inside the inlet slot
  • the outer end of the slot adjacent to the inner 212 of the outlet slot is also located on the right side inside the outlet slot
  • the outer end 213 of the inner coil unit 21 is along the stator iron
  • the distribution direction of the core 1 in the circumferential direction is the same, that is, it is distributed in a clockwise direction (refer to the clockwise direction shown in FIG. 5) with respect to the inside of the groove adjacent thereto.
  • each group of phase conductors of the inner coil unit 21 the distribution directions of the inner slot 211 and the inner slot 212 of each conductor along the circumferential direction of the stator core 1 are opposite.
  • A11 in the A-phase conductor The inside of the inlet slot 211 and the inside of the outlet slot 212 are distributed in a clockwise direction (refer to the clockwise direction shown in FIG. 7), and the inside of the inlet slot 211 and the inside of the outlet slot 212 of A12 in the A-phase conductor are in a counterclockwise direction (and (The direction opposite to the clockwise direction shown in Fig. 7) is distributed.
  • the inside of the two slots of each conductor in the inner coil unit and the slot outer end portion 213 adjacent to the inside of each slot are on the same layer, and both are on the first layer.
  • the inner slots 211 of the multiple conductors of each winding are sequentially accommodated in adjacent slots; along the circumferential distribution direction of the stator core 1, the two adjacent windings of the inner coil unit 21
  • the number of slots between two adjacent incoming slots 211 is six, for example: the slot inside the C12 conductor slot of the first winding and the A13 conductor of the A phase conductor of the second winding There are six slots between the slots inside the inlet slot.
  • the inside 211 of the inlet slot of A11 is located at the first layer of the first slot 311, and the inside 212 of the outlet slot of A11 is located at the first layer of the forty-fourth slot 354;
  • the inside 211 of the inlet slot is located at the first layer of the second slot 312, the inside 212 of the outlet slot of A12 is located at the first layer of the seventh slot 317;
  • the inside 211 of the entry slot of B11 is located at the first layer of the third slot 313, B11
  • the interior 212 of the outlet slot is located at the first layer of the forty-sixth slot 356;
  • the interior 211 of the entry slot of B12 is located at the first layer of the fourth slot 314, and the interior 212 of the outlet slot of B12 is located at the first layer of the
  • the internal slot 211 of A13 is located at the first layer of the thirteenth slot 323, the internal slot 212 of A13 is located at the first layer of the eighth slot 318; the internal slot 211 of A14 is located at the fourteenth In the first layer of the slot 324, the inside 212 of the outlet slot of A14 is located in the first layer of the nineteenth slot 329; the inside 211 of the inlet slot of B13 is located in the first layer of the fifteenth slot 325, and the inside 212 of the outlet slot of B13 is located in the first The first layer of the ten slot 320; the inside 211 of the B14 inlet slot is located at the first layer of the sixteenth slot 326, the inside 212 of the outlet slot B14 is located at the first layer of the twenty-first slot 331; the inside of the inlet slot C13 211 is located in the first layer of the seventeenth slot 327, the inside of the C13 outlet slot 212 is located in the first layer of the twelfth slot 322; the inside of
  • the out-of-slot turning portion 214 includes a first extending portion 2141, a turning portion 2142, a second extending portion 2143, and a turning portion 2144 that are sequentially connected.
  • the first extending portion 2141 and the turning portion 2144 are respectively connected inside the two slots; the inner coil unit 21 In each conductor, the first extension 2141 and the adjacent slot are located in the same layer and are located in the first layer; the second extension 2143 of each conductor of the inner coil unit 21 is located near the layer where the first extension 2141 is located On the side of the central axis of the stator core 1, the turning portion 2142 and the turning portion 2144 are both partially located on the side where the first extension 2141 is located near the central axis of the stator core 1, and partially located on the layer where the first extension 2141 is located.
  • the inside of the two grooves is located in the first layer.
  • the part of the whole out-of-slot turning portion 214 is located on the first layer, and the other parts are convex toward the side near the center axis of the stator core 1, and this position is called an imaginary zero layer.
  • each out-of-slot turn in each phase winding of the inner coil unit is the same as the corresponding out-of-slot turn in other windings, its position can be determined according to the inside of the corresponding slot.
  • the inside of the slot 211 of A11 is located at the first layer of the first slot 311, the first extension 2141 connected to the inside of the slot of A11 is located at the first layer, and the turning part 2142 crosses the virtual zero layer from the first layer
  • the second extending portion 2143 is located on the imaginary zero layer, and the turning portion 2144 is crossed into the first layer from the imaginary zero layer, and then connected to the inside 212 of the outlet groove of A11.
  • the inner slot 211 of A12 is located at the first layer of the first slot 311, and the bend 2144 connected to the inside of the slot of A12 is crossed from the first layer into the virtual zero layer, and the second extension 2143 connected to the bend 2144 is located at In the imaginary zero layer, the turning portion 2142 connected to the second extending portion 2143 crosses into the first layer from the imaginary zero layer, and the first extending portion 2141 connected to the turning portion 2142 is located in the first layer, and then connects to the inside 212 of the wire groove.
  • the projections of the bent portion 2144 and the second extension portion 2143 connected thereto on the axial section of the stator core 1 parallel to the second extension portion 2143 are located on the same straight line, and are perpendicular to the second In the projection on the axial section of the stator core 1 of the extension, the length of the bend 2144 is twice the width of a single conductor.
  • the bent portion 2144 of the inner coil unit 21 may be protruded from the layer where the second extension portion 2143 is located toward the side away from the central axis of the stator core 1.
  • the following describes only the distribution of the out-of-slot corners corresponding to A11 in detail.
  • the second extending portion 2143 is located on the second layer, and the bending portion 2144 is straddled into the first layer from the second layer, and then connected to the inside 212 of the outlet groove of A11.
  • each conductor of the intermediate coil unit 22 includes two slots inside and the two slots inside are located on two adjacent layers, specifically occupying the second and third layers of the stator core 1, respectively, and each slot The outer end 213 of the slot adjacent to the inside is on the same layer as the inside of the slot; the stator core 1 has 48 slots, then the inner coil unit 21 is wound by 48 conductors, which are divided into eight windings, respectively A winding, a second winding, ..., an eighth winding, eight windings are evenly distributed along the circumference of the stator core.
  • the intermediate coil unit 22 is formed by winding a plurality of second conductors. Referring to FIG. 9, each slot outer end of the second conductor extends along the circumferential direction of the stator core and away from the other slot outer end. As shown in FIG. 10, in each group of phase conductors of the intermediate coil unit 22, the inner slot 211 and the inner slot 212 of each conductor are distributed along the circumferential direction of the stator core 1 in the same direction. The inside of the wire groove 211 and the inside of the wire groove 212 are distributed in a counterclockwise direction (refer to the counterclockwise direction shown in FIG.
  • the slot outer ends 213 located in the same layer are distributed in the same direction along the circumferential direction of the stator core 1, and the slot outer ends 213 located in two layers adjacent to the stator core 1 in the radial direction are along the stator iron
  • the distribution direction of the core 1 in the circumferential direction is reversed, that is, the outer end portions 213 of the grooves located in the second layer are curved counterclockwise (refer to the counterclockwise direction shown in FIG. 8), and the outer end portions 213 of the grooves located in the third layer
  • the distribution is curved in a clockwise direction (a direction opposite to the counterclockwise direction shown in FIG. 8).
  • the inner slots 211 of the multiple conductors of each winding are sequentially accommodated in adjacent slots; along the circumferential distribution direction of the stator core 1, the two adjacent windings of the inner coil unit 21 211 of the two adjacent wire entry slots are located adjacent to each other.
  • the slot of the C22 entry slot of the first winding and the A23 entry slot of the second winding are adjacent slots.
  • the first extension portion 2141 and the second extension portion 2143 are located on the same layer as the adjacent slot, the bend portion 2144 and the second extension portion 2143 are located on the same layer, and the portion of the bend portion 2142 Located in the layer where the first extension 2141 is located, and partly in the layer where the second extension 2143 is located, the two grooves of each conductor are located inside the second layer and the third layer through the turning portion 2142 respectively.
  • Each out-of-slot turning portion of the intermediate coil unit 22 is partially located in the second layer and partially in the third layer. Since the structure of each out-of-slot turning portion of the intermediate coil unit 22 is the same, its position can be determined according to the inside of the corresponding slot In the following, only the distribution of the out-of-slot turns corresponding to A21 will be described in detail.
  • the first extension 2141, the second extension 2143, Both the turning part 2142 and the turning part 2144 can be confirmed according to the distribution rule inside the two slots of each conductor, so the following only takes the specific rule inside the slot of two adjacent windings (first winding and second winding) as an example Detailed Description.
  • the inner slot 211 of A21 is located at the second layer of the first slot 311, and the inner slot 212 of A21 is located at the third layer of the seventh slot 317; the incoming wire of A22
  • the inside 211 of the slot is located at the second layer of the second slot 312, the inside 212 of the outlet slot of A22 is located at the third layer of the eighth slot 318; the inside 211 of the entry slot of B21 is located at the second layer of the third slot 313, and the outlet slot of B21
  • the inner 212 is located in the third layer of the ninth slot 319; the inner slot 211 of B22 is located in the second layer of the fourth slot 314, the inner 212 of the outlet slot of B22 is located in the third layer of the tenth slot 320; the incoming slot of C21
  • the interior 211 is located in the second layer of the fifth slot 315, the interior 212 of the outlet slot C21 is located in the third layer of the eleventh slot 321; the interior 211 of the
  • the internal slot 211 of A23 is located in the second layer of the seventh slot 317, the internal slot 212 of A23 is located in the third layer of the thirteenth slot 323; the internal slot 211 of A24 is located in the eighth slot In the second layer of 318, the inside of the outlet slot 212 of A24 is located in the third layer of the fourteenth slot 324;
  • the second layer of the eleven slot 321, the inner 212 of the C24 outlet slot is located in the third layer of the seventeenth slot 327; the inner 211 of the C25 inlet slot is located on the second layer of the twelfth slot 322, the inner 212 of the outlet slot of C25 Located on the third floor of the eighteenth slot 328.
  • each conductor of the outer coil unit 23 includes two slots and the two slots are located in the same layer of the stator core 1, that is, in the fourth layer of the stator core 1, adjacent to each slot
  • the outer ends 213 of the slots are also located in the fourth layer;
  • the stator core 1 has 48 slots, then the inner coil unit 21 is wound by 24 conductors and is divided into four windings, namely the first winding, the first The second winding, the third winding and the fourth winding, the four windings are evenly distributed along the circumference of the stator core.
  • the outer coil unit 23 is formed by winding a plurality of third conductors. Referring to FIG. 12, the outer end of each slot of the third conductor is on the same layer as the adjacent slot. The outer end of the slot of the outer coil unit 23 is 213
  • the distribution direction along the circumferential direction of the stator core 1 is the same, that is, it is distributed in a clockwise direction (refer to the clockwise direction shown in FIG. 13) relative to the inside of the slot.
  • the second extension portion 2143 of each conductor of the outer coil unit 23 is located on the side of the layer where the first extension portion 2141 is located away from the central axis of the stator core 1, and the turning portion 2142 and the turning portion 2144 are partially located on the layer where the first extension portion 2141
  • each out-of-slot turning portion of the outer coil unit 23 Since the structure of each out-of-slot turning portion of the outer coil unit 23 is the same, its position can be determined according to the inside of the corresponding slot. The following describes only the distribution of the out-of-slot turning portions corresponding to A31.
  • the second extension portion 2143 is located on the virtual fifth layer, and the turning portion 2144 crosses the virtual fifth layer into the fourth layer, and then is connected to the interior 212 of the outlet groove of A31.
  • the projections of the bent portion 2144 and the second extension portion 2143 connected thereto on the axial section of the stator core 1 parallel to the second extension portion 2143 are located on the same straight line, and are perpendicular to the second extension
  • the length of the bent portion 2144 is twice the width of a single conductor.
  • the distribution direction of the inner slot 211 and the inner slot 212 of each conductor along the circumferential direction of the stator core 1 is the same, as shown in FIGS. 12 and 13 It is shown that the inside 211 of the inlet slot and the inside 212 of the outlet slot of the A31 in the A-phase conductor are distributed in a counterclockwise direction (refer to the counterclockwise direction shown in FIG. 13), and the inside 211 and outlet slot of the A32 in the A-phase conductor The interior 212 is also distributed in a counterclockwise direction (a direction opposite to the counterclockwise direction shown in FIG. 13).
  • the inner coil unit 21 is wound by a plurality of first conductors
  • the middle coil unit 22 is wound by a plurality of second conductors
  • the outer coil unit 23 is wound by a plurality of third conductors
  • Each coil unit is wound with conductors of the same structure, which simplifies the winding method and improves the winding efficiency.
  • a plurality of inner slots 211 of each winding are sequentially accommodated in adjacently arranged slots, and adjacent two incoming wires of two adjacent sets of phase conductors of each winding
  • There are six slots between the slots inside the slot for example: the inside of the slot of the first winding A31 is located in the first slot, the inside of the slot of the first winding A32 is located in the second slot, C32 of the first winding
  • the inside of the slot is located in the sixth slot, then the inside of the slot of A33 of the second winding is located in the thirteenth slot.
  • the distribution directions of the inner and outer slots of the adjacent two sets of phase conductors in each phase winding along the circumferential direction of the stator core are opposite, for example: the inner and outer slots of A31 and A32 are clockwise (Refer to the clockwise direction shown in FIG. 13) distribution, while the inside of the cable entry and exit slots of B31 and B32 are distributed in a counterclockwise direction (the direction opposite to the clockwise direction shown in FIG. 13), C31 The inside of the cable entry and exit slots of the C32 are distributed clockwise (refer to the clockwise direction shown in Figure 13).
  • each slot outer end 213 of the outer coil unit 23 is curved and distributed clockwise (refer to the clockwise direction shown in FIG. 13) so that the stator winding is not used
  • the reflow row can realize the welding between the outer ends of each groove.
  • the distribution directions of the inner and outer slots of the adjacent two sets of phase conductors in each phase winding along the circumferential direction of the stator core may also be the same, for example: A31 and A32
  • the inside of the inlet slot and the outlet slot are distributed clockwise (refer to the clockwise direction shown in FIG. 14), while the inside of the inlet slot and the outlet slot of B31 and B32 are both clockwise (see FIG. 14) (Clockwise direction shown) distribution, the inside of the cable entry slot and the cable outlet slot of C31 and C32 are distributed in the clockwise direction (refer to the clockwise direction shown in FIG. 14).
  • the outer coil unit with the above structure, together with the above-mentioned middle coil unit and inner coil unit, can also achieve the effect of reducing the use of the bus bar.
  • the distribution rules of the four windings of the outer coil unit 23 are the same, and the outer end portion 213 of each slot is on the same layer as the adjacent slot interior, the first extension portion 2141, the second extension portion 2143, the turning portion 2142 and The turning part 2144 can be confirmed by referring to the distribution rules of the turning parts inside and outside the slot. Therefore, the specific rules inside the slot of two adjacent windings (the first winding and the second winding) will be described in detail below as an example.
  • the inner slot 211 of A31 is located at the fourth layer of the first slot 311, and the inner slot 212 of A31 is located at the fourth layer of the seventh slot 317; the incoming wire of A32
  • the inside 211 of the slot is located at the fourth layer of the second slot 312, the inside 212 of the outlet slot of A32 is located at the fourth layer of the eighth slot 318; the inside 211 of the inlet slot of B31 is located at the fourth layer of the third slot 313, and the outlet slot of B31
  • the inner 212 is located at the fourth layer of the forty-fifth slot 355; the inner 211 of the inlet slot of B32 is located at the fourth layer of the fourth slot 314, and the inner 212 of the outlet slot of B32 is located at the fourth layer of the forty-sixth slot 356;
  • the inside 211 of the cable entry slot is located at the fourth level of the fifth slot 315, the inside 212 of the outlet slot C31 is located at the fourth level of the
  • the inner slot 211 of A33 is located at the fourth layer of the thirteenth slot 323, the inner slot 212 of A33 is located at the fourth layer of the nineteenth slot 329; the inner slot 211 of A34 is located at the tenth In the fourth layer of the four slots 324, the inside 212 of the outlet slot of A34 is located at the twentieth layer of the eighth slot 318; the inside 211 of the inlet slot of B33 is located in the fourth layer of the fifteenth slot 325, and the inside 212 of the outlet slot of B33 is located The fourth layer of the ninth slot 319; the inner 211 of the B34 inlet slot is located at the fourth layer of the sixteenth slot 326, the inner 212 of the B34 outlet slot is located at the fourth layer of the tenth slot 320; the inner 211 of the inlet slot C33 Located in the fourth layer of the seventeenth slot 327, the inner 212 of the C33 outlet slot is located in the fourth layer of the eighteenth slot 328; the inner 211 of the
  • the two slot outer ends of each conductor are the outer end of the inlet slot and the outer end of the outlet slot; for conductors of the same phase, multiple conductors are connected in sequence And the outer end of the outlet slot of one conductor and the outer end of the inlet slot of the other conductor in the two conductors adjacent in the connection direction are welded, and the outer end of the inlet slot located on the outermost side in the connection direction is connected to the phase terminal, And the outer end of the outlet slot located at the outermost side in the connection direction is the neutral point of the phase, except for the neutral point and the outer end of the inlet slot connecting the phase terminal, each of the other slot end 213 and its They are arranged adjacent to each other in the same radial direction and welded to the slot outer end 213 of another conductor of the slot outer end 213 at a different layer.
  • Ai, i 1, 2, 3, ..., 32
  • Ai-1 as Ai-2 is the outer end of the inlet slot of a single conductor
  • Ai-2 is the outer end of the outlet slot of a single conductor.
  • A32-2 and B32-2 and C32-2 are connected by a connecting body 44. Sex point connection, that is, the series welding of even-numbered motors is completed.
  • the above welding method may be ultrasonic welding, laser welding or friction stir welding.
  • the outer ends 213 of the slots are connected by welding and the neutral point connection is made by the connecting body 44 without using a bus bar, which greatly simplifies the connection between the outer ends 213 of the slots of the motor stator and simplifies The processing technology is reduced, the production cost is reduced, and the production efficiency is improved.
  • the inside of the two slots of each conductor in the inner coil unit and the outer end of the slot adjacent to the corresponding slot are on the same layer, so that the rotor can be inserted from the end of the inner coil unit of the stator winding where the outer end of the slot is provided.
  • the part of the end that does not project toward the center of the stator core will not interfere with the installation of the rotor, and it will not increase the length of the teeth of the stator core, improve the utilization of the slot, increase the power density, and reduce the motor stator.
  • the volume reduces the cost of the motor.
  • This embodiment also provides a motor including the above-mentioned motor stator.
  • a motor using the above-mentioned motor stator can reduce production costs and improve production efficiency.
  • M is an odd number, and this type of motor is called an odd-numbered motor.
  • M 5 that is, each slot is along the stator core 1
  • the number of grooves that can be accommodated in the radial direction divides each groove into five layers, namely a first layer, a second layer, a third layer, a fourth layer, and a fifth layer.
  • the distribution of the inner coil unit 21 and the middle coil unit 22 is the same as that of the first embodiment, and only the specific distribution rule of the outer coil unit 23 will be described in detail below.
  • the two slots of each conductor in the outer coil unit 23 are located in two adjacent layers, and the slot outer end 213 adjacent to the slot inside the middle coil unit 22 is located in the same layer as the slot, ie Located on the fourth floor, part of the groove outer end 213 adjacent to the inside of the outermost groove is on the same layer as the inside of the groove, that is, on the fifth floor, and other groove outer ends adjacent to the innermost groove 213 extends from the layer inside the slot to the side away from the center axis of the stator core, that is, from the fifth layer to the outside of the fifth layer.
  • the portion outside the fifth layer is referred to as a virtual six-layer.
  • the outer coil unit 23 is formed by winding a plurality of first conductors and a plurality of second conductors, that is, the outer coil unit 23 is composed of two types of conductors, and the inner coil unit 21 and the middle coil unit 22 are respectively Multiple first conductors and multiple second conductors are wound.
  • the outer end portions 213 of the slots on the same layer are distributed along the circumferential direction of the stator core 1 in the same direction, and the outer end portions 213 of the slots on two adjacent layers are along the stator
  • the distribution direction of the core 1 in the circumferential direction is opposite;
  • the outer end of the slot extending from the outermost layer to the side away from the central axis of the stator core has the same distribution direction along the circumferential direction of the stator core, and is the same as the outer end of the slot on the outermost side
  • the distribution direction of the parts along the circumferential direction of the stator core is opposite.
  • each slot outer end 213 located in the fourth layer is counterclockwise (and (Clockwise direction shown in FIG. 17)
  • the curved distribution, and the outer end 213 of the slot located in the fifth layer are distributed along the clockwise direction of the stator core 1, and from the fifth layer toward the center axis of the stator core
  • the slot outer end portions 213 extending sideward are distributed in the counterclockwise direction of the stator core 1.
  • the distribution law of the out-of-slot turns 214 of the outer coil unit 23 is the same as the distribution law of the out-of-slot turns 214 of the middle coil unit 22, and will not be described in detail here. Since the distribution law of the A-phase conductor, B-phase conductor, and C-phase conductor in the outer coil unit 23 is the same, and the distribution rule of the slot occupation and layer occupation inside the slot of the outer coil unit 23 and the slot occupation and occupation inside the slot of the intermediate coil unit 22
  • the layer distribution rule is the same, except that the two slots of each conductor of the outer coil unit 23 are located in the fourth layer and the fifth layer.
  • the following uses only the A-phase conductor in the outer coil unit 23 as an example.
  • the distribution rule of the outer end 213 of the middle groove is specifically described.
  • each conductor of the outer coil unit 23 is denoted as A3j
  • the outer end 213 of the inlet slot of A3j is denoted as A3j-1
  • the outer end 213 of the outlet slot is denoted as A3j-2
  • j 1, 2 , 3, ..., 16.
  • A31-1 is located from the fifth layer to the virtual sixth layer and is drawn out along the axial direction of the stator core, A31-2 is located on the fourth layer and extends in the counterclockwise direction (the direction opposite to the clockwise direction shown in FIG. 18), A32-1 extends from the fifth layer to the virtual sixth layer and extends counterclockwise. A32-2 is located at the fourth layer and extends the counterclockwise direction. A33-1 extends from the fifth layer to the virtual sixth layer and extends counterclockwise.
  • A33-2 is located on the fourth floor and extends in a counterclockwise direction;
  • A34-1 is located on the fifth floor and extends in a clockwise direction;
  • A34-2 is located on the fourth floor and extends in a counterclockwise direction;
  • A35-1 extends from the fifth floor to The virtual sixth layer extends in the counterclockwise direction,
  • A35-2 is located in the fourth layer and extends in the counterclockwise direction;
  • A36-1 extends from the fifth layer to the virtual sixth layer and extends in the counterclockwise direction,
  • A36-2 is located in the fourth layer and Extend in a counterclockwise direction;
  • A37-1 is located in the fifth layer and extends in a clockwise direction (refer to the clockwise direction shown in FIG.
  • A37-2 is located in the fourth layer and extends in a counterclockwise direction;
  • A38-1 is located in The fifth layer extends in a clockwise direction,
  • A38-2 is located in the fourth layer and extends in a counterclockwise direction;
  • A39-1 extends from the fifth layer to the virtual sixth layer and extends in a counterclockwise direction ,
  • A39-2 is located in the fourth layer and extends in the counterclockwise direction;
  • A310-1 is located in the fourth layer and extends in the counterclockwise direction from the fifth layer to the virtual sixth layer,
  • A310-2 is located in the fourth layer and extends in the counterclockwise direction;
  • A311-1 Located on the fifth floor and extending in the clockwise direction, A311-2 is located on the fourth layer and extending in the counterclockwise direction;
  • A312-1 is located on the fifth layer and extending in the clockwise direction,
  • A312-2 is located on the fourth layer and counterclockwise Direction extending;
  • A313-1 extends from the fifth layer to
  • A10-2 connects to A11-1, A11-1 to A11-2, A11-2 connects to A12-1, A12-1 to A12-2, A12-2 connects to A13-1, A13-1 to A13-2, A13-2 connects to A14-1, A14-1 to A14-2, A14-2 connects to A15-1, A15-1 to A15-2, A15-2 connects to A16-1, A16-1 to A17-2, A17- 2 Connect A18-1, A1-18 to A18-2, A18-2 connect A19-1, A19-1 to A19-2, A19-2 connect A20-1, A20-1 to A20-2, A20-2 connect A21-1, A21-1 to A21-2, A21-2 connect A22-1, A22-1 to A22-2, A22-2 connect A23-1, A23-1 to A23-2, A23-2 connect A24- 1, A24-1 to A24-2, A24-2 connect to A25-1, A25-1 to A25-2, A25-2 connect to A26-1, A26-1 to A26-2
  • A40-2 and B40-2 and C40-2 are connected by a connector 44. Sex point connection, that is, the series welding of odd-numbered motors is completed.
  • the first coil unit, the second coil unit, and the third coil unit are the outer coil unit, the middle coil unit, and the inner coil unit, that is, the pitch of the outermost coil unit is smaller than the pole pitch of the stator winding and other The pitch of the coil unit is equal to the pole pitch of the stator winding.
  • the inner coil unit, the middle coil unit, and the outer coil unit are wound in the same manner as the outer coil unit, the middle coil unit, and the inner coil unit of the first embodiment, and are not repeated here. Repeat the details.
  • the structure of the intermediate coil unit and the intermediate coil unit in the second embodiment are the same, while the structure of the outer coil unit and the inner coil unit in the second embodiment are substantially the same, the difference is that: outside the slot
  • the distribution rule of the occupied layer in the turning part is different.
  • the second extension portion 2143 of each conductor is located on the side of the layer where the first extension portion 2141 is located away from the central axis of the stator core 1, and the turning portion 2142 and the turning portion 2144 are partially located
  • the layer where the first extension 2141 is located is away from the center axis of the stator core 1 and is partly located on the layer where the first extension 2141 is located, so that the whole out-of-slot turning portion 214 is located on the fifth layer, and the other part is away from the stator iron
  • One side of the central axis of the core 1 is convex, and this position is called a virtual six-layer.
  • each out-of-slot turning portion of the outer coil unit 23 Since the structure of each out-of-slot turning portion of the outer coil unit 23 is the same, its position can be determined according to the inside of the corresponding slot. The following describes only the distribution of the out-of-slot turning portions corresponding to A31.
  • the second extending portion 2143 is located on the virtual sixth layer, and the turning portion 2144 spans from the virtual sixth layer into the fifth layer, and is then connected to the inside 212 of the outlet groove of A31.
  • the structure of the inner coil unit in this embodiment is substantially the same as that of the outer coil unit in Embodiment 2, except that the outer end of part of the slots extends from the first layer toward the side closer to the central axis of the stator core.
  • the two slots of each conductor in the outer coil unit 23 are located in two adjacent layers, and the slot outer end 213 connected to the slot near the middle coil unit 22 is located in the same layer as the slot, that is, in the second Layer, part of the outer end 213 of the groove connected to the inside of the innermost layer is in the same layer as the inside of the groove, that is, on the first layer, and the outer end 213 of the other groove connected to the inner of the innermost layer is formed by the
  • the layer inside the slot extends along the side close to the central axis of the stator core.
  • the portion located inside the first layer is referred to as the imaginary zero layer.
  • the distribution rule is the same as the outer ends of the slots selected from the outer coil unit in the second embodiment that extend from the fifth layer to the virtual sixth layer. The parts are the same and will not be repeated here.
  • the number of slots per phase per pole the number of stator slots / number of motor poles / phases
  • the number of slots is not limited to 48 slots, but can also be other numbers of slots, for example: the number of slots per phase per pole is 2, corresponding to Three-phase motor slot poles are equipped with 6-pole 36-slot, 8-pole 48-slot, 10-pole 60-slot, 12-pole 72-slot, 16-pole 96-slot, etc., with a pole pitch of 6; each pole has 3 slots per phase, corresponding to the three
  • the slot poles of the phase motor are equipped with 6-pole 54-slot, 8-pole 72-slot, 10-pole 90-slot, 12-pole 108-slot, 16-pole 144-slot, etc., which are no longer restricted

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

一种电机定子及电机,该电机定子包括定子铁芯(1),其上设有沿所述定子铁芯(1)轴向贯穿设置的多个槽,多个槽沿所述定子铁芯(1)的周向分布;还包括定子绕组(2),其包括由内到外依次套设的第一线圈单元和第三线圈单元,每个线圈单元包括多根导体,每根导体包括用于***不同槽内的两个槽内部(211,213);根据每个槽沿定子铁芯径向所能容纳的槽内部(211,213)的个数将每个槽划分为M层,M为大于等于3的整数,所述第一线圈单元中每根导体的两个槽内部(211,213)位于同层;所述第一线圈单元的节距小于所述定子绕组(2)的极距且其他线圈单元的节距等于所述定子绕组(2)的极距。通过采用节距等于极距的线圈单元和节距小于极距的线圈单元配合的方式,可以直接采用焊接的方式连接各个槽外端部(213),取消汇流排的使用,实现了定子绕组(2)绕制过程的简单化,提高了生产效率,降低了生产成本。

Description

一种电机定子及电机 技术领域
本发明涉及电机领域,尤其涉及一种电机定子及电机。
背景技术
电机的定子绕组在构建过程中,采用汇流排、汇流条连接A相、B相及C相内各个槽外端部,并不断提高汇流排、汇流条的绝缘性,但汇流排、汇流条在电机定子绕组的制作过程中会带来工艺的复杂性,加大了生产成本和降低了生产效率。
发明内容
本发明的目的在于提供一种电机定子及电机,能够简化电机定子绕组的各相内的多个槽外端部之间的连接,简化加工工艺,降低生产成本,提高生产效率。
为达此目的,本发明采用以下技术方案:
一种电机定子,包括定子铁芯,其上设有沿所述定子铁芯轴向贯穿设置的多个槽,多个槽沿所述定子铁芯的周向分布;还包括:定子绕组,其包括由内到外依次套设的第一线圈单元和第三线圈单元,每个线圈单元包括多根导体,每根导体包括用于***不同槽内的两个槽内部;根据每个槽沿定子铁芯径向所能容纳的槽内部的个数将每个槽划分为M层,M为大于等于3的整数,所述内侧线圈单元中每根导体的两个槽内部位于同层;所述第一线圈单元的节距小于所述定子绕组的极距且其他线圈单元的节距等于所述定子绕组的极距。
进一步地,每个线圈单元包括多个绕组,相邻设置的至少两根导体形成一组相导体,每个所述绕组包括三组所述相导体,每根所述导体的两个槽内部分别为进线槽内部和出线槽内部;;每根所述导体还包括连接于两个所述槽内部并与两个所述槽内部形成U型结构的槽外转弯部,及分别连接于两个所述槽内部的槽外端部;每个所述槽外端部大致沿所述定子铁芯周向延伸。
进一步地,所述第一线圈单元的每组相导体中,每根导体的进线槽内部和出线槽内部沿所述定子铁芯周向的分布方向和与其相邻的导体的进线槽内部和出线槽内部沿所述定子铁芯周向的分布方向相反。
进一步地,还包括位于所述第一线圈单元和所述第三线圈单元之间的第二线圈单元,所述第二线圈单元的每个组相导体中,每根导体的进线槽内部和出线槽内部沿所述定子铁芯周向的分布方向相同。
进一步地,除所述第三线圈单元外的其他线圈单元中,每根导体的每个槽外端部均和与其邻接的槽内部位于同层。
进一步地,位于同层的槽外端部沿所述定子铁芯周向的分布方向相同,位于相邻两层的槽外端部沿所述定子铁芯周向的分布方向相反。
进一步地,所述第二线圈单元中每根导体的两个槽内部位于相邻两层。
进一步地,M为偶数时,所述第三线圈单元中,每个相绕组中相邻两组相导体的进线槽内部和出线槽内部沿所述定子铁芯周向的分布方向相反或相同;M为奇数时,所述第三线圈单元中,每个相绕组中相邻两组相导体的进线槽内部和出线槽内部沿所述定子铁芯周向的分布方向相同。
进一步地,M为偶数时,所述第三线圈单元中每根导体的两个槽内部位于同层;M为奇数时,所述点线圈单元中每根导体的两个槽内部位于相邻两层。
进一步地,M为偶数时,所述外侧线圈单元中每根导体的槽外端部均和与其邻接的槽内部位于同层;M为奇数时,第三线圈单元中,与靠近所述第二线圈单元的所述槽内部邻接的槽外端部与该槽内部位于同层;第三线圈单元为外侧线圈单元时,与位于最外层的所述槽内部邻接的部分槽外端部与该槽内部位于同层,与位于最外层的槽内部连接的其他槽外端部由该槽内部所在层向沿远离定子铁芯中心轴线的一侧延伸;第三线圈单元为内侧线圈单元时,与位于最内层的所述槽内部邻接的部分槽外端部与该槽内部位于同层,与位于最内层的槽内部邻接的其他槽外端部由该槽内部所在层向沿靠近定子铁芯中心轴线的一侧延伸。
进一步地,M为偶数时,所述第三线圈单元的所述槽外端部沿所述定子铁芯周向的分布方向相同;M为奇数时,所述第三线圈单元中,位于同层的槽外端部沿所述定子铁芯周向的分布方向相同,位于相邻两层的槽外端部沿所述定子铁芯周向的分布方向相反;第三线圈单元为外侧线圈单元时,由最外层向远离定子铁芯中心轴线的一侧延伸的槽外端部沿定子铁芯周向的分布方向相同,且与位于最外层的槽外端部沿定子铁芯周向的分布方向相反;第三线圈单元为内侧线圈单元时,所述第三线圈单元中,由最内层向靠近定子铁芯中心轴线的一侧延伸的槽外端部沿定子铁芯周向的分布方向相同,且与位于最内层的槽外端部沿定子铁芯周向的分布方向相反。
进一步地,每根导体的两个槽外端部分别为进线槽外端部和出线槽外端部;第三线圈单元为外侧线圈单元时,对于同相的导体,多根导体依次连接且沿连接方向相邻的两根导体中一根导体的出线槽外端部和另一导体的进线槽外端部焊接,位于连接方向最外侧的进线槽外端部连接于相端子,且位于连接方向最外侧的出线槽外端部为该相的中性点,除中性点和连接相端子的进线槽外端部外,其他每个所述槽外端部和与其位于同一径向方向且相邻设置且与该槽外端部位于不同层的另一导体的槽外端部焊接;
第三线圈单元为内侧线圈单元时,对于同相的导体,多根导体依次连接且沿连接方向相邻的两根导体中一根导体的出线槽外端部和另一导体的进线槽外端部焊接,位于连接方向最内侧的进线槽外端部连接于相端子,且位于连接方向最内侧的出线槽外端部为该相的中性点,除中性点和连接相端子的进线槽外端部外,其他每个所述槽外端部和与其位于同一径向方向且相邻设置且与该槽外端部位于不同层的另一导体的槽外端部焊接。
为了实现上述目的,本发明还提供了一种电机,包括上述的电机定子。
本发明的有益效果:通过采用节距等于极距的线圈单元和节距小于极距线圈单元配合的方式,可以直接采用焊接的方式连接各个槽外端部,取消汇流排的使用,实现了定子绕组绕制过程的简单化,提高了生产效率,降低了生产成本。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例一所述电机定子的结构示意图;
图2是本发明实施例一所述定子铁芯的结构示意图;
图3是图1的仰视图;
图4是本发明实施例一所述定子绕组的结构示意图;
图5是本发明实施例一所述内侧线圈单元的结构示意图;
图6是本发明实施例一所述形成内侧线圈单元中形成A11的第一导体的结构示意图;
图7是本发明实施例一所述形成内侧线圈单元的单组A相导体与定子铁芯的位置关系图;
图8是本发明实施例一所述中间侧线圈单元的结构示意图;
图9是本发明实施例一所述形成中间线圈单元的第二导体的结构示意图;
图10是本发明实施例一所述形成中间线圈单元的单组A相导体与定子铁芯的位置关系图;
图11是本发明实施例一所述外侧线圈单元的结构示意图;
图12是本发明实施例一所述形成外侧线圈单元的第三导体的结构示意图;
图13是本发明实施例一中形成外侧线圈单元的一种类型的绕组与定子铁芯的位置关系图;
图14是本发明实施例一中形成外侧线圈单元的另一类型的绕组与定子铁芯的位置关系图;
图15是本发明实施例一中所有A相导体的位置关系图;
图16是本发明实施例二所述定子绕组的结构示意图;
图17是本发明实施例二所述外侧线圈单元的结构示意图;
图18是本发明实施例二所述外侧线圈单元中所有A相导体的位置关系图;
图19是本发明实施例二中所有A相导体的位置关系图;
图20是本发明实施例三中奇数层电机的定子绕组的结构示意图。
其中,上述附图包括以下附图标记:
1、定子铁芯;11、齿部;
2、定子绕组;21、内侧线圈单元;211、进线槽内部;212、出线槽内部;213、槽外端部;214、槽外转弯部;2141、第一延伸部;2142、转弯部;2143、第二延伸部;2144、拐弯部;
22、中间线圈单元;23、外侧线圈单元;
311、第一槽;312、第二槽;313、第三槽;314、第四槽;315、第五槽;316、第六槽;317、第七槽;318、第八槽;319、第九槽;320、第十槽;321、第十一槽;322、第十二槽;323、第十三槽;324、第十四槽;325、第十五槽;326、第十六槽;327、第十七槽;328、第十八槽;329、第十九槽;330、第二十槽;331、第二十一槽;332、第二十二槽;333、第二十三槽;334、第二十四槽;335、第二十五槽;336、第二十六槽;337、第二十七槽;338、第二十八槽;339、第二十九槽;340、第三十槽;341、第三十一槽;342、第三十二槽;343、第三十三槽;344、第三十四槽;345、第三十五槽;346、第三十六槽;347、第三十七槽;348、第三十八槽;349、第三十九槽;350、第四十槽;351、第四十一槽;352、第四十二槽;353、第四十三槽;354、第四十四槽;355、第四十五槽;356、第四十六槽;357、第四十七槽;358、第四十八槽;
41、A相端子;42、B相端子;43、C相端子;44、连接体。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
如图1所示,本实施例提供了一种电机定子,包括筒状结构的定子铁芯1,如图2所示,其上设有沿定子铁芯1轴向贯穿设置的多个槽,多个槽沿定子铁芯1的周向均匀分布。具体的,定子铁芯1具有环状部和多个周向均匀分布在环状部内壁的齿部11,每个齿部11均沿定子铁芯1的轴向贯通设置,相邻两个齿部11形成一个槽,本实施例中,槽的数量为48个。
如图3所示,电机定子还包括定子绕组2,其包括沿定子铁芯1径向依次套设分布的第一线圈单元和第三线圈单元,每个线圈单元包括多根具有两个槽内部的导体。
如图4所示,每个线圈单元包括多个绕组,相邻设置的至少两根导体形成一组相导体,每个绕组包括三组相导体,本实施例中,每组相导体包括两根导体,三组相导体分别为两根A相导体、两根B相导体和两根C相导体,每根导体的两个槽内部分别为进线槽内部211和出线槽内部212,连接于两个槽内部并与两个槽内部形成U型结构的槽外转弯部214,及分别连接于两个槽内部的槽外端部213,每根导体的两个槽外端部213均位于定子铁芯1轴向一端,槽外转弯部214位于定子铁芯1轴向另一端;每个槽外端部213大致沿定子铁芯1周向延伸。 上述A相、B相和C相只是代表不同的相,并不表示电流方向,其中A相、B相和C相均指的是U相、V相和W相中的任一个,且分别表示不同的相。
极距=每个绕组的相数×每组相导体的磁极数,节距小于极距的线圈单元为短节距线圈单元,节距等于极距的线圈单元为整节距线圈单元;本实施例中,内侧线圈单元21为短节距线圈单元且其他线圈单元为整节距线圈单元。具体地,每个绕组包括3组相导体,每组相导体包括两根导体,相应的每组相导体的磁极数为2,那么极距=2×3=6,即定子绕组2的极距为六,内侧线圈单元21的节距为五,其他线圈单元的节距为六。
通过采用节距小于极距的线圈单元和节距等于极距的线圈单元配合的方式,可以直接采用焊接的方式连接各个槽外端部213,取消汇流排的使用,实现了定子绕组2绕制过程的简单化,提高了生产效率,降低了生产成本。
根据每个槽沿定子铁芯1径向所能容纳的槽内部的个数将每个槽划分为M层,M为大于等于3的整数,内侧线圈单元21和外侧线圈单元23之间可以有中间线圈单元22,也可以无中间线圈单元22,具体地,对于M=3的奇数层电机,中间线圈单元的个数为零,优选地,M优选为3-12层。M为偶数时,该类型的电机称为偶数层电机,下面以M=4为例,相应的中间线圈单元22设有一个,对定子绕组2的绕制方式进行详细说明。
如图4所示,每个槽沿定子铁芯1径向且远离其中心轴线的方向被划分为四层,分别为第一层、第二层、第三层和第四层。
如图5所示,内侧线圈单元中每根导体的两个槽内部位于同层,即均位于第一层,由于定子铁芯1具有48个槽,那么内侧线圈单元21由24根导体绕制而成,即内侧线圈单元21包括四个绕组,分别为第一绕组、第二绕组、第三绕组和第四绕组,四个绕组沿定子铁芯的周向均匀分布,每个绕组包括依次分布的两根A相导体、两根B相导体和两根C相导体,其中每组相导体的进线槽内部211位于相邻两个槽内。
定子绕组由多根第一导体、多根第二导体和多根第三导体绕制而成,如图5和图6所示,内侧线圈单元21由多根第一导体绕制而成,每个槽外端部213大致沿所述定子铁芯1周向延伸,参照图6,第一导体的每个槽外端部均位于与其邻接的槽内部的同一侧,具体地,与进线槽内部211邻接的槽外端部位于进线槽内部的右侧,与出线槽内部212邻接的槽外端部也位于出线槽内部的右侧,内侧线圈单元21的槽外端部213沿定子铁芯1周向的分布方向相同,即相对于与其邻接的槽内部沿顺时针方向(参照图5中所示的顺时针方向)弯曲分布。
内侧线圈单元21的每组相导体中,每根导体的进线槽内部211和出线槽内部212沿定子铁芯1周向的分布方向相反,参照图6和图7,A相导体中A11的进线槽内部211和出线槽内部212按照顺时针方向(参照图7中所示的顺时针方向)分布,A相导体中A12的进线槽内部211和出线槽内部212按照逆时针方向(与图7中顺时针所示方向相反的方向)分布。
内侧线圈单元中每根导体的两个槽内部和与每个槽内部邻接的槽外端部213位于同层,且均位于第一层。内侧线圈单元21中,每个绕组的多根导体的进线槽内部211依次容纳于相 邻设置的槽内;沿定子铁芯1的周向分布方向,内侧线圈单元21的相邻两个绕组的相邻两个进线槽内部211所在槽之间间隔的槽数为六,例如:第一绕组的C相导体中C12的进线槽内部所在槽和第二绕组的A相导体中A13的进线槽内部所在槽之间间隔六个槽。
内侧线圈单元的四个绕组的绕线分布相同,下面仅以相邻两个绕组(第一绕组和第二绕组)的绕线分布进行详细说明。具体参照图2和图5,第一绕组中,A11的进线槽内部211位于第一槽311的第一层,A11的出线槽内部212位于第四十四槽354的第一层;A12的进线槽内部211位于第二槽312的第一层,A12的出线槽内部212位于第七槽317的第一层;B11的进线槽内部211位于第三槽313的第一层,B11的出线槽内部212位于第四十六槽356的第一层;B12的进线槽内部211位于第四槽314的第一层,B12的出线槽内部212位于第九槽319的第一层;C11的进线槽内部211位于第五槽315的第一层,C11的出线槽内部212位于第四十八槽358的第一层;C11的进线槽内部211位于第六槽316的第一层,C11的出线槽内部212位于第十一槽321的第一层。
第二绕组中,A13的进线槽内部211位于第十三槽323的第一层,A13的出线槽内部212位于第八槽318的第一层;A14的进线槽内部211位于第十四槽324的第一层,A14的出线槽内部212位于第十九槽329的第一层;B13的进线槽内部211位于第十五槽325的第一层,B13的出线槽内部212位于第十槽320的第一层;B14的进线槽内部211位于第十六槽326的第一层,B14的出线槽内部212位于第二十一槽331的第一层;C13的进线槽内部211位于第十七槽327的第一层,C13的出线槽内部212位于第十二槽322的第一层;C14的进线槽内部211位于第十八槽328的第一层,C14的出线槽内部212位于第二十三槽333的第一层。
槽外转弯部214包括依次连接的第一延伸部2141、转弯部2142、第二延伸部2143和拐弯部2144,第一延伸部2141和拐弯部2144分别连接于两个槽内部;内侧线圈单元21的每根导体中,第一延伸部2141和与其邻接的槽内部位于同层且均位于第一层;内侧线圈单元21的每根导体中第二延伸部2143位于第一延伸部2141所在层靠近定子铁芯1中心轴线的一侧,转弯部2142和拐弯部2144均部分位于第一延伸部2141所在层靠近定子铁芯1中心轴线的一侧,且部分位于第一延伸部2141所在一层。通过转弯部2142和拐弯部2144的配合使两个槽内部均位于第一层。而且使整个槽外转弯部214的部分位于第一层,其他部分向靠近定子铁芯1中心轴线的一侧凸设,该位置称之为虚零层。
由于内侧线圈单元的每个相绕组中每个槽外转弯部和其他绕组中对应的槽外转弯部的结构相同,其位置均可以根据对应的槽内部确定,下面仅以A11和A12对应的槽外转弯部的分布进行详细描述。例:A11的进线槽内部211位于第一槽311的第一层,与A11的进线槽内部连接的第一延伸部2141位于第一层,转弯部2142由第一层跨入虚零层,第二延伸部2143位于虚零层,拐弯部2144由虚零层跨入第一层,而后连接于A11的出线槽内部212。A12的进线槽内部211位于第一槽311的第一层,与A12的进线槽内部连接拐弯部2144由第一层跨入虚零层,与拐弯部2144连接的第二延伸部2143位于虚零层,与第二延伸部2143连接的转弯部2142由虚零层跨入第一层,与转弯部2142连接的第一延伸部2141位于一层,而后连接出线槽内部212。而且本实施例中,拐弯部2144和与其连接的第二延伸部2143在平行于该第 二延伸部2143的定子铁芯1轴向截面上的投影位于同一条直线上,且在垂直于第二延伸部的定子铁芯1轴向截面上的投影中,拐弯部2144的长度是单根导体宽度的两倍。
本实施例中,还可以将内侧线圈单元21的拐弯部2144由第二延伸部2143所在层向远离定子铁芯1中心轴线的一侧凸设。下面仅以A11对应的槽外转弯部的分布进行详细描述。例:A11的进线槽内部211位于第一槽311的第一层,与A11的进线槽内部连接的第一延伸部2141位于第一层,转弯部2142由第一层跨入第二层,第二延伸部2143位于第二层,拐弯部2144由第二层跨入第一层,而后连接于A11的出线槽内部212。
如图8所示,中间线圈单元22的每根导体包括两个槽内部且两个槽内部位于相邻两层,具体分别占据定子铁芯1的第二层和第三层,与每个槽内部邻接的槽外端部213和该槽内部位于同层;定子铁芯1具有48个槽,那么内侧线圈单元21由48根导体绕制而成,其被分为八个绕组,分别为第一绕组、第二绕组、...、第八绕组,八个绕组沿定子铁芯的周向均匀分布。
中间线圈单元22由多根第二导体绕制而成,参照附图9,第二导体的每个槽外端部均沿定子铁芯周向且背离另一槽外端部的方向延伸。如图10所示,中间线圈单元22的每组相导体中,每根导体的进线槽内部211和出线槽内部212沿定子铁芯1周向的分布方向相同,A相导体中A21的进线槽内部211和出线槽内部212按照逆时针方向(参照图10中所示的逆时针方向)分布,A相导体A22的进线槽内部211和出线槽内部212也按照逆时针方向(参照图10中所示的逆时针方向)分布。参照图8,中间线圈单元中,位于同层的槽外端部213沿定子铁芯1周向的分布方向相同,位于定子铁芯1径向相邻两层的槽外端部213沿定子铁芯1周向的分布方向相反,即位于第二层的若干槽外端部213沿逆时针(参照图8中所示的逆时针方向)弯曲分布,位于第三层的若干槽外端部213沿顺时针(与图8中所示的逆时针方向相反的方向)弯曲分布。
中间线圈单元22中,每个绕组的多根导体的进线槽内部211依次容纳于相邻设置的槽内;沿定子铁芯1的周向分布方向,内侧线圈单元21的相邻两个绕组的相邻两个进线槽内部211所在槽相邻设置,例如:第一绕组的C22的进线槽内部所在槽和第二绕组的A23的进线槽内部所在槽为相邻设置的槽。中间线圈单元22的每根导体中,第一延伸部2141和第二延伸部2143均和与其邻接的槽内部位于同层,拐弯部2144和第二延伸部2143位于同层,转弯部2142的部分位于第一延伸部2141所在层,且部分位于第二延伸部2143所在层,通过转弯部2142实现每根导体的两个槽内部分别位于第二层和第三层。
中间线圈单元22的每个槽外转弯部均部分位于第二层且部分位于第三层,由于中间线圈单元22的每个槽外转弯部的结构相同,其位置均可以根据对应的槽内部确定,下面仅以A21对应的槽外转弯部的分布进行详细描述。例:A21的进线槽内部211位于第一槽311的第二层,与A21的进线槽内部211连接的第一延伸部2141位于第二层,转弯部2142由第二层跨入第三层,第二延伸部2143位于第三层,拐弯部2144也位于第三层,而后连接于A21的出线槽内部212。而且本实施例中,拐弯部2144和与其连接的第二延伸部2143在平行于该第二延伸部2143的定子铁芯1轴向截面上的投影位于同一条直线上,拐弯部2144可以在第三层内存 在拐弯,但需要完全在第三层内,也可以无拐弯,即拐弯部2144和第二延伸部2143构成一个直线结构。
由于中间线圈单元22的八个绕组的分布规律相同,而且每根导体的每个槽外端部213均和与其邻接的槽内部位于同层,而第一延伸部2141、第二延伸部2143、转弯部2142和拐弯部2144均可根据每根导体两个槽内部的分布规律进行确认,因此下面仅以相邻两个绕组(第一绕组和第二绕组)的槽内部的具体规律为例进行详细描述。
具体参照图2和图10,第一绕组中,A21的进线槽内部211位于第一槽311的第二层,A21的出线槽内部212位于第七槽317的第三层;A22的进线槽内部211位于第二槽312的第二层,A22的出线槽内部212位于第八槽318的第三层;B21的进线槽内部211位于第三槽313的第二层,B21的出线槽内部212位于第九槽319的第三层;B22的进线槽内部211位于第四槽314的第二层,B22的出线槽内部212位于第十槽320的第三层;C21的进线槽内部211位于第五槽315的第二层,C21的出线槽内部212位于第十一槽321的第三层;C22的进线槽内部211位于第六槽316的第二层,C22的出线槽内部212位于第十二槽322的第三层。
第二绕组中,A23的进线槽内部211位于第七槽317的第二层,A23的出线槽内部212位于第十三槽323的第三层;A24的进线槽内部211位于第八槽318的第二层,A24的出线槽内部212位于第十四槽324的第三层;B24的进线槽内部211位于第九槽319的第二层,B24的出线槽内部212位于第十五槽325的第三层;B25的进线槽内部211位于第十槽320的第二层,B25的出线槽内部212位于第十六槽326的第三层;C24的进线槽内部211位于第十一槽321的第二层,C24的出线槽内部212位于第十七槽327的第三层;C25的进线槽内部211位于第十二槽322的第二层,C25的出线槽内部212位于第十八槽328的第三层。
如图11所示,外侧线圈单元23的每根导体包括两个槽内部且两个槽内部位于定子铁芯1的同层,即位于定子铁芯1的第四层,与每个槽内部邻接的槽外端部213也均位于第四层;定子铁芯1具有48个槽,那么内侧线圈单元21由24根导体绕制而成,被划分为四个绕组,分别为第一绕组、第二绕组、第三绕组和第四绕组,四个绕组沿定子铁芯的周向均匀分布。
外侧线圈单元23由多根第三导体绕制而成,参照图12,第三导体的每个槽外端部均和与其邻接的槽内部位于同层,外侧线圈单元23的槽外端部213沿定子铁芯1周向的分布方向相同,即相对于槽内部沿顺时针方向(参照图13中所示的顺时针方向)弯曲分布。
外侧线圈单元23的每根导体中第二延伸部2143位于第一延伸部2141所在层远离定子铁芯1中心轴线的一侧,转弯部2142和拐弯部2144均部分位于第一延伸部2141所在层远离定子铁芯1中心轴线的一侧,且部分位于第一延伸部2141所在一层,使整个槽外转弯部214的部分位于第四层,其他部分向远离定子铁芯1中心轴线的一侧凸设,该位置称之为虚五层。
由于外侧线圈单元23的每个槽外转弯部的结构相同,其位置均可以根据对应的槽内部确定,下面仅以A31对应的槽外转弯部的分布进行详细描述。例:A31的进线槽内部211位于第一槽311的第四层,与A31的进线槽内部连接的第一延伸部2141位于第四层,转弯部2142由第四层跨入虚五层,第二延伸部2143位于虚五层,拐弯部2144由虚五层跨入第四层,而 后连接于A31的出线槽内部212。而且本实施例中,拐弯部2144和与其连接的第二延伸部2143在平行于该第二延伸部2143的定子铁芯1轴向截面上的投影位于同一条直线上,在垂直于第二延伸部的定子铁芯1轴向截面上的投影中,拐弯部2144的长度是单根导体宽度的两倍。
如图11所示,外侧线圈单元23的每组相导体中,每根导体的进线槽内部211和出线槽内部212沿定子铁芯1周向的分布方向相同,如图12和图13所示,A相导体中A31的进线槽内部211和出线槽内部212按照逆时针方向(参照图13中所示的逆时针方向)分布,A相导体中A32的进线槽内部211和出线槽内部212也按照逆时针方向(与图13中所示的逆时针方向相反的方向)分布。
本实施例中,内侧线圈单元21是由多根第一导体绕制而成,而中间线圈单元22由多根第二导体绕制而成,外侧线圈单元23由多根第三导体绕制而成,每个线圈单元采用结构相同的导体绕制而成,简化了绕线方式,提高了绕线效率。
如图13所示,外侧线圈单元23中,每个绕组的多个进线槽内部211依次容纳于相邻设置的槽内,每个绕组的相邻两组相导体的相邻两个进线槽内部所在槽之间间隔六个槽,例:第一绕组的A31的进线槽内部位于第一槽内,第一绕组的A32的进线槽内部位于第二槽内,第一绕组的C32的进线槽内部位于第六槽内,那么第二绕组的A33的进线槽内部位于第十三槽内。
每个相绕组中相邻两组相导体的进线槽内部和出线槽内部沿定子铁芯周向的分布方向相反,例如:A31和A32的进线槽内部和出线槽内部均沿顺时针方向(参照图13中所示的顺时针方向)分布,而B31和B32的进线槽内部和出线槽内部均沿逆时针方向(与图13中所示的顺时针方向相反的方向)分布,C31和C32的进线槽内部和出线槽内部均沿顺时针方向(参照图13中所示的顺时针方向)分布。通过上述对槽内部、槽外端部的限定使外侧线圈单元23的每个槽外端部213沿顺时针方向(参照图13中所示的顺时针方向)弯曲分布,以便于定子绕组不使用回流排即可实现各个槽外端部之间的焊接。
本实施例中,外侧线圈单元23中,每个相绕组中相邻两组相导体的进线槽内部和出线槽内部沿定子铁芯周向的分布方向也可以相同,例如:A31和A32的进线槽内部和出线槽内部均沿顺时针方向(参照图14中所示的顺时针方向)分布,而B31和B32的进线槽内部和出线槽内部均沿顺时针方向(参照图14中所示的顺时针方向)分布,C31和C32的进线槽内部和出线槽内部均沿顺时针方向(参照图14中所示的顺时针方向)分布。采用上述结构的外侧线圈单元,配合上述的中间线圈单元和内侧线圈单元也能实现减少汇流排使用的效果。
由于外侧线圈单元23的四个绕组的分布规律相同,而且每个槽外端部213均和与其邻接的槽内部位于同层,而第一延伸部2141、第二延伸部2143、转弯部2142和拐弯部2144均可参照槽内部和槽外转弯部的分布规律进行确认,因此下面仅以相邻两个绕组(第一绕组和第二绕组)的槽内部的具体规律为例进行详细描述。
具体参照图2和图13,第一绕组中,A31的进线槽内部211位于第一槽311的第四层,A31的出线槽内部212位于第七槽317的第四层;A32的进线槽内部211位于第二槽312的第 四层,A32的出线槽内部212位于第八槽318的第四层;B31的进线槽内部211位于第三槽313的第四层,B31的出线槽内部212位于第四十五槽355的第四层;B32的进线槽内部211位于第四槽314的第四层,B32的出线槽内部212位于第四十六槽356的第四层;C31的进线槽内部211位于第五槽315的第四层,C31的出线槽内部212位于第十一槽321的第四层;C32的进线槽内部211位于第六槽316的第四层,C32的出线槽内部212位于第十二槽322的第四层。
第二绕组中,A33的进线槽内部211位于第十三槽323的第四层,A33的出线槽内部212位于第十九槽329的第四层;A34的进线槽内部211位于第十四槽324的第四层,A34的出线槽内部212位于第八槽318的第二十层;B33的进线槽内部211位于第十五槽325的第四层,B33的出线槽内部212位于第九槽319的第四层;B34的进线槽内部211位于第十六槽326的第四层,B34的出线槽内部212位于第十槽320的第四层;C33的进线槽内部211位于第十七槽327的第四层,C33的出线槽内部212位于第十八槽328的第四层;C34的进线槽内部211位于第二十三槽333的第四层,C34的出线槽内部212位于第二十四槽334的第四层。
在偶数层电机的槽外端部213进行串联焊接时,每根导体的两个槽外端部分别为进线槽外端部和出线槽外端部;对于同相的导体,多根导体依次连接且沿连接方向相邻的两根导体中一根导体的出线槽外端部和另一导体的进线槽外端部焊接,位于连接方向最外侧的进线槽外端部连接于相端子,且位于连接方向最外侧的出线槽外端部为该相的中性点,除中性点和连接相端子的进线槽外端部外,其他每个所述槽外端部213和与其位于同一径向方向且相邻设置且与该槽外端部213位于不同层的另一导体的槽外端部213焊接。
由于所有A相导体的串联的方式、所有B相导体的串联方式以及所有C相导体的串联方式均相同,下面仅以所有A相导体的串联方式为例进行详细说明。参照图15,所有A相导体的串联焊接过程如下:
由A相端子41连接其中一根导体的进线槽外端部,按照焊接顺序对所有A相导体进行排序,以Ai,i=1,2,3,...,32,Ai-1为单根导体的进线槽外端部,Ai-2为单个导体的出线槽外端部。
A1-1至A1-2,A1-2焊接于A2-1,A2-1至A2-2,A2-2焊接于A3-1,A3-1至A3-2,A3-2焊接于A4-1,A4-1至A4-2,A4-2焊接于A5-1,A5-1至A5-2,A5-2焊接于A6-1,A6-1至A6-2,A6-2焊接于A7-1,A7-1至A7-2,A7-2焊接于A8-1,A8-1至A8-2,A8-2焊接于A9-1,A9-1至A9-2,A9-2焊接于A10-1,A10-1至A10-2,A10-2焊接于A11-1,A11-1至A11-2,A11-2焊接于A12-1,A12-1至A12-2,A12-2焊接于A13-1,A13-1至A13-2,A13-2焊接于A14-1,A14-1至A14-2,A14-2焊接于A15-1,A15-1至A15-2,A15-2焊接于A16-1,A16-1至A17-2,A17-2焊接于A18-1,A1-18至A18-2,A18-2焊接于A19-1,A19-1至A19-2,A19-2焊接于A20-1,A20-1至A20-2,A20-2焊接于A21-1,A21-1至A21-2,A21-2焊接于A22-1,A22-1至A22-2,A22-2焊接于A23-1,A23-1至A23-2,A23-2焊接于A24-1,A24-1至A24-2,A24-2焊接于A25-1,A25-1至A25-2,A25-2焊接于A26-1,A26-1至A26-2,A26-2焊接于A27-1,A27-1至A27-2,A27-2焊接于A28-1,A28-1至A28-2,A282焊接于A29-1,A29-1 至A29-2,A29-2焊接于A30-1,A30-1至A30-2,A30-2焊接于A31-1,A31-1至A31-2,A31-2焊接于A32-1,A32-1至A32-2。
所有B相导体引出有B相端子42和B32-2,所有C相导体引出有C相端子43和C32-2,将A32-2与B32-2与C32-2三点采用连接体44进行中性点连接,即完成偶数层电机的串联焊接。上述焊接方式可以是超声波焊接、激光焊或摩擦搅拌焊接。
本实施例采用焊接的方式连接各个槽外端部213并采用连接体44进行中性点连接,无需采用汇流排,大大的简化了电机定子的多个槽外端部213之间的连接,简化了加工工艺,降低了生产成本,提高了生产效率。
内侧线圈单元中每根导体的两个槽内部和与对应槽内部邻接的槽外端部均位于同层,使转子可以从定子绕组内侧线圈单元中设置槽外端部的一端***,定子绕组该端无向定子铁芯中心凸出的部分,不会对转子的安装造成干涉,而且不会增加定子铁芯齿部的长度,提高槽的利用率,增大功率密度,减小了电机定子的体积,降低了电机的成本。
本实施例还提供了一种电机,包括上述的电机定子,采用上述电机定子的电机,能够降低生产成本,提高生产效率。
实施例二
本实施例与实施例一的区别在于,如图16所示,M为奇数,将该类型的电机称为奇数层电机,本实施例中,M=5,即每个槽沿定子铁芯1径向所能容纳的槽内部的个数将每个槽划分为五层,分别为第一层、第二层、第三层、第四层和第五层。内侧线圈单元21和中间线圈单元22的分布情况和实施例一相同,下面仅详细介绍外侧线圈单元23的具体分布规律。
如图17所示,外侧线圈单元23中每根导体的两个槽内部位于相邻两层,与靠近中间线圈单元22的槽内部邻接的槽外端部213与该槽内部位于同层,即位于第四层,与位于最外层的槽内部邻接的部分槽外端部213与该槽内部位于同层,即位于第五层,与位于最外层的槽内部邻接的其他槽外端部213由该槽内部所在层向沿远离定子铁芯中心轴线的一侧延伸,即由第五层延伸至第五层外侧,本实施例将位于第五层外侧的部分记为虚六层。
本实施例中,外侧线圈单元23由多根第一导体和多根第二导体绕制而成,即外侧线圈单元23由两种类型的导体构成,内侧线圈单元21和中间线圈单元22分别由多根第一导体和多根第二导体绕制而成。
如图17所示,外侧线圈单元23中,位于同层的槽外端部213沿所述定子铁芯1周向的分布方向相同,位于相邻两层的槽外端部213沿所述定子铁芯1周向的分布方向相反;由最外层向远离定子铁芯中心轴线的一侧延伸的槽外端部沿定子铁芯周向的分布方向相同,且与位于最外侧的槽外端部沿定子铁芯周向的分布方向相反。具体地,与靠近中间线圈单元22的槽内部邻接的槽外端部213沿定子铁芯1的周向分布方向相同,即位于第四层的每个槽外端部213均沿逆时针(与图17中所示顺时针方向相反的方向)弯曲分布,与位于第五层的槽外 端部213沿定子铁芯1的顺时针方向分布,且由第五层向远离定子铁芯中心轴线一侧延伸的槽外端部213沿定子铁芯1的逆时针方向分布。
外侧线圈单元23的槽外转弯部214的分布规律和中间线圈单元22的槽外转弯部214的分布规律相同,在此不再具体介绍。由于外侧线圈单元23中的A相导体、B相导体和C相导体的分布规律相同,而且外侧线圈单元23的槽内部占槽和占层分布规律和中间线圈单元22的槽内部占槽和占层分布规律相同,只不过外侧线圈单元23的每根导体的两个槽内部分别位于第四层和第五层,下面仅以外侧线圈单元23中的A相导体为例,对外侧线圈单元23中槽外端部213的分布规律进行具体描述。
如图18所示,将每根导体的两个槽外端部213分别作为进线槽外端部213和出线槽外端部213,选取位于最外层的槽外端部213作为进线槽外端部213,将外侧线圈单元23的每根导体记为A3j,A3j的进线槽外端部213记为A3j-1,出线槽外端部213记为A3j-2,j=1,2,3,...,16。
A31-1位于从第五层至虚六层且沿定子铁芯的轴向引出,A31-2位于第四层且沿逆时针方向(与图18中所示顺时针方向相反的方向)延伸,A32-1从第五层至虚六层且沿逆时针方向延伸,A32-2位于第四层且沿逆时针方向延伸;A33-1从第五层至虚六层且沿逆时针方向延伸,A33-2位于第四层且沿逆时针方向延伸;A34-1位于第五层且沿顺时针方向延伸,A34-2位于第四层且沿逆时针方向延伸;A35-1从第五层至虚六层且沿逆时针方向延伸,A35-2位于第四层且沿逆时针方向延伸;A36-1从第五层至虚六层且沿逆时针方向延伸,A36-2位于第四层且沿逆时针方向延伸;A37-1位于第五层且沿顺时针方向(参照图18中所示的顺时针方向)延伸,A37-2位于第四层且沿逆时针方向延伸;A38-1位于第五层且沿顺时针方向延伸,A38-2位于第四层且沿逆时针方向延伸;A39-1从第五层至虚六层且沿逆时针方向延伸,A39-2位于第四层且沿逆时针方向延伸;A310-1从第五层至虚六层且沿逆时针方向延伸,A310-2位于第四层且沿逆时针方向延伸;A311-1位于第五层且沿顺时针方向延伸,A311-2位于第四层且沿逆时针方向延伸;A312-1位于第五层且沿顺时针方向延伸,A312-2位于第四层且沿逆时针方向延伸;A313-1从第五层至虚六层且沿逆时针方向延伸,A313-2位于第四层且沿逆时针方向延伸;A314-1从第五层至虚六层且沿逆时针方向延伸,A314-2位于第四层且沿逆时针方向延伸;A315-1位于第五层且沿顺时针方向延伸,A315-2位于第四层且沿逆时针方向延伸;A316-1位于第五层且沿顺时针方向延伸,A316-2位于第四层且沿逆时针方向延伸。
在奇数层电机的槽外端部213进行串联焊接时,其焊接规律和偶数层电机的槽外端部213的焊接规律相同,所有A相导体的串联焊接过程如下:
如图19所示,由A相端子41连接其中一根导体的进线槽外端部,按照焊接顺序对所有A相导体进行排序,以Aa,a=1,2,3,...,40,Aa-1为单根导体的进线槽外端部,Aa-2为单个导体的出线槽外端部。
A1-1至A1-2,A1-2连接A2-1,A2-1至A2-2,A2-2连接A3-1,A3-1至A3-2,A3-2连接A4-1,A4-1至A4-2,A4-2连接A5-1,A5-1至A5-2,A5-2连接A6-1,A6-1至A6-2,A6-2 连接A7-1,A7-1至A7-2,A7-2连接A8-1,A8-1至A8-2,A8-2连接A9-1,A9-1至A9-2,A9-2连接A10-1,A10-1至A10-2,A10-2连接A11-1,A11-1至A11-2,A11-2连接A12-1,A12-1至A12-2,A12-2连接A13-1,A13-1至A13-2,A13-2连接A14-1,A14-1至A14-2,A14-2连接A15-1,A15-1至A15-2,A15-2连接A16-1,A16-1至A17-2,A17-2连接A18-1,A1-18至A18-2,A18-2连接A19-1,A19-1至A19-2,A19-2连接A20-1,A20-1至A20-2,A20-2连接A21-1,A21-1至A21-2,A21-2连接A22-1,A22-1至A22-2,A22-2连接A23-1,A23-1至A23-2,A23-2连接A24-1,A24-1至A24-2,A24-2连接A25-1,A25-1至A25-2,A25-2连接A26-1,A26-1至A26-2,A26-2连接A27-1,A27-1至A27-2,A27-2连接A28-1,A28-1至A28-2,A282连接A29-1,A29-1至A29-2,A29-2连接A30-1,A30-1至A30-2,A30-2连接A31-1,A31-1至A31-2,A31-2连接A32-1,A32-1至A32-2,A32-2连接A33-1,A33-1至A33-2,A33-2连接A34-1,A34-1至A34-2,A34-2连接A35-1,A35-1至A35-2,A35-2连接A36-1,A36-1至A36-2,A36-2连接A37-1,A37-1至A37-2,A37-2连接A38-1,A38-1至A38-2,A38-2连接A39-1,A39-1至A39-2,A39-2连接A40-1,A40-1至A40-2。
所有B相导体引出有B相端子42和B40-2,所有C相导体引出有C相端子43和C40-2,将A40-2与B40-2与C40-2三点采用连接体44进行中性点连接,即完成奇数层电机的串联焊接。
实施例三
本实施例中,第一线圈单元、第二线圈单元和第三线圈单元分别为外侧线圈单元、中间线圈单元和内侧线圈单元,即最外侧线圈单元的节距小于定子绕组的极距且其他所述线圈单元的节距等于定子绕组的极距。此时,对于偶数层电机,内侧线圈单元、中间线圈单元和外侧线圈单元的绕线方式分别和实施例一的外侧线圈单元、中间线圈单元和内侧线圈单元的绕线方式相同,在此不再重复赘叙。
对于奇数层电机,如图20所示,中间线圈单元和实施例二中的中间线圈单元的结构相同,而外侧线圈单元和实施例二中的内侧线圈单元的结构大体相同,区别在于:槽外转弯部的占层分布规律不同。
具体地,本实施例中外侧线圈单元中,每根导体的第二延伸部2143位于第一延伸部2141所在层远离定子铁芯1中心轴线的一侧,转弯部2142和拐弯部2144均部分位于第一延伸部2141所在层远离定子铁芯1中心轴线的一侧,且部分位于第一延伸部2141所在一层,使整个槽外转弯部214的部分位于第五层,其他部分向远离定子铁芯1中心轴线的一侧凸设,该位置称之为虚六层。
由于外侧线圈单元23的每个槽外转弯部的结构相同,其位置均可以根据对应的槽内部确定,下面仅以A31对应的槽外转弯部的分布进行详细描述。例:A31的进线槽内部211位于第一槽311的第五层,与A31的进线槽内部连接的第一延伸部2141位于第五层,转弯部2142由第五层跨入虚六层,第二延伸部2143位于虚六层,拐弯部2144由虚六层跨入第五层,而后连接于A31的出线槽内部212。
本实施例中的内侧线圈单元和实施例二中的外侧线圈单元的结构大体相同,区别在于:部分槽外端部由第一层向靠近定子铁芯中心轴线的一侧延伸。
具体地,外侧线圈单元23中每根导体的两个槽内部位于相邻两层,与靠近中间线圈单元22的槽内部连接的槽外端部213与该槽内部位于同层,即位于第二层,与位于最内层的槽内部连接的部分槽外端部213与该槽内部位于同层,即位于第一层,与位于最内层的槽内部连接的其他槽外端部213由该槽内部所在层向沿靠近定子铁芯中心轴线的一侧延伸,本实施例将位于第一层内侧的部分记为虚零层。
对于将与位于第一层的哪些槽外端部由第一层向虚零层延伸,其分布规律与实施例二中外侧线圈单元所选择的由第五层向虚六层延伸的槽外端部相同,在此不再重复限定。
上述两种方案均能够实现仅采用焊接的方式连接各个槽外端部并采用连接体进行中性点连接,无需采用汇流排,大大的简化了电机定子的多个槽外端部之间的连接,简化了加工工艺,降低了生产成本,提高了生产效率。
本发明具体实施方式中提到的顺时针方向和逆时针方向均是参照具体附图所示的方向,本发明中每极每相槽数=定子槽数/电机极数/相数,极距=定子槽数/电机极数=每极每相槽数*相数,槽的数量并不仅限于48个槽,还可以是其他数量的槽,例如:每极每相槽数为2,对应的三相电机槽极配合有6极36槽、8极48槽、10极60槽、12极72槽、16极96槽等,极距为6;每极每相槽数为3,对应的三相电机槽极配合有6极54槽、8极72槽、10极90槽、12极108槽、16极144槽等,在此不再一一限定。本发明中出线的进线槽内部和出线槽内部均不代表电流方向,仅是为了区别每根导体的两个槽内部。
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (13)

  1. 一种电机定子,包括定子铁芯(1),所述定子铁芯(1)上设有沿轴向贯穿设置的多个槽,多个槽沿所述定子铁芯(1)的周向分布;其特征在于,还包括:
    定子绕组(2),其包括沿所述定子铁芯(1)径向依次分布的第一线圈单元和第三线圈单元,每个线圈单元包括多根导体,每根导体包括用于***不同槽内的两个槽内部;
    根据每个槽沿定子铁芯(1)径向所能容纳的槽内部的个数将每个槽划分为M层,M为大于等于3的整数,所述第一线圈单元中每根导体的两个槽内部位于同层;
    所述第一线圈单元的节距小于定子绕组(2)的极距且其他线圈单元的节距等于定子绕组(2)的极距。
  2. 根据权利要求1所述的电机定子,其特征在于,每个线圈单元包括多个绕组,相邻设置的至少两根导体形成一组相导体,每个所述绕组包括三组所述相导体,每根所述导体的两个槽内部分别为进线槽内部(211)和出线槽内部(212);每根所述导体还包括连接于两个所述槽内部并与两个所述槽内部形成U型结构的槽外转弯部(214),及分别连接于两个所述槽内部的槽外端部(213);每个所述槽外端部(213)大致沿所述定子铁芯(1)周向延伸。
  3. 根据权利要求2所述的电机定子,其特征在于,所述第一线圈单元的每组相导体中,每根导体的进线槽内部和出线槽内部沿所述定子铁芯(1)周向的分布方向和与其相邻的导体的进线槽内部和出线槽内部沿所述定子铁芯(1)周向的分布方向相反。
  4. 根据权利要求2所述的电机定子,其特征在于,还包括位于所述第一线圈单元和所述第三线圈单元之间的第二线圈单元,所述第二线圈单元的每个绕组中,每根导体的进线槽内部(211)和出线槽内部(212)沿所述定子铁芯(1)周向的分布方向相同。
  5. 根据权利要求2所述的电机定子,其特征在于,除所述第三线圈单元外的其他线圈单元中,每根导体的每个槽外端部(213)均和与其邻接的槽内部位于同层。
  6. 根据权利要求2所述的电机定子,其特征在于,位于同层的槽外端部(213)沿所述定子铁芯(1)周向的分布方向相同,位于相邻两层的槽外端部(213)沿所述定子铁芯(1)周向的分布方向相反。
  7. 根据权利要求4所述的电机定子,其特征在于,所述第二线圈单元中每根导体的两个槽内部位于相邻两层。
  8. 根据权利要求2所述的电机定子,其特征在于,M为偶数时,所述第三线圈单元中,每个绕组中相邻两组相导体的进线槽内部(211)和出线槽内部(212)沿所述定子铁芯(1)周向的分布方向相反或相同;
    M为奇数时,所述第三线圈单元中,每个绕组中相邻两组相导体的进线槽内部(211)和出线槽内部(212)沿所述定子铁芯(1)周向的分布方向相同。
  9. 根据权利要求4所述的电机定子,其特征在于,M为偶数时,所述第三线圈单元中每根导体的两个槽内部位于同层;
    M为奇数时,所述第三线圈单元中每根导体的两个槽内部位于相邻两层。
  10. 根据权利要求9所述的电机定子,其特征在于,M为偶数时,所述第三线圈单元中每根导体的槽外端部(213)均和与其邻接的槽内部位于同层;
    M为奇数时,所述第三线圈单元中,与靠近所述第二线圈单元的所述槽内部邻接的槽外端部(213)与该槽内部位于同层;第三线圈单元为外侧线圈单元时,与位于最外层的所述槽内部邻接的部分槽外端部(213)与该槽内部位于同层,与位于最外层的槽内部邻接的其他槽外端部(213)由该槽内部所在层向沿远离定子铁芯中心轴线的一侧延伸;第三线圈单元为内侧线圈单元时,与位于最内层的所述槽内部邻接的部分槽外端部(213)与该槽内部位于同层,与位于最内层的槽内部邻接的其他槽外端部(213)由该槽内部所在层向沿靠近定子铁芯中心轴线的一侧延伸。
  11. 根据权利要求10所述的电机定子,其特征在于,M为偶数时,所述第三线圈单元的所述槽外端部(213)沿所述定子铁芯(1)周向的分布方向相同;
    M为奇数时,所述第三线圈单元中,位于同层的槽外端部(213)沿所述定子铁芯(1)周向的分布方向相同,位于相邻两层的槽外端部(213)沿所述定子铁芯(1)周向的分布方向相反;第三线圈单元为外侧线圈单元时,由最外层向远离定子铁芯中心轴线的一侧延伸的槽外端部沿定子铁芯周向的分布方向相同,且与位于最外层的槽外端部沿定子铁芯周向的分布方向相反;第三线圈单元为内侧线圈单元时,所述第三线圈单元中,由最内层向靠近定子铁芯中心轴线的一侧延伸的槽外端部沿定子铁芯周向的分布方向相同,且与位于最内层的槽外端部沿定子铁芯周向的分布方向相反。
  12. 根据权利要求2至11任一所述的电机定子,其特征在于,每根导体的两个槽外端部分别为进线槽外端部和出线槽外端部;
    第三线圈单元为外侧线圈单元时,对于同相的导体,多根导体依次连接且沿连接方向相邻的两根导体中一根导体的出线槽外端部和另一导体的进线槽外端部焊接,位于连接方向最外侧的进线槽外端部连接于相端子,且位于连接方向最外侧的出线槽外端部为该相的中性点,除中性点和连接相端子的进线槽外端部外,其他每个所述槽外端部(213)和与其位于同一径向方向且相邻设置且与该槽外端部(213)位于不同层的另一导体的槽外端部(213)焊接;
    第三线圈单元为内侧线圈单元时,对于同相的导体,多根导体依次连接且沿连接方向相邻的两根导体中一根导体的出线槽外端部和另一导体的进线槽外端部焊接,位于连接方向最内侧的进线槽外端部连接于相端子,且位于连接方向最内侧的出线槽外端部为该相的中性点,除中性点和连接相端子的进线槽外端部外,其他每个所述槽外端部(213)和与其位于同一径向方向且相邻设置且与该槽外端部(213)位于不同层的另一导体的槽 外端部(213)焊接。
  13. 一种电机,其特征在于,包括权利要求1至12任一项所述的电机定子。
PCT/CN2019/113074 2018-10-24 2019-10-24 一种电机定子及电机 WO2020083345A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19875956.5A EP3872966A4 (en) 2018-10-24 2019-10-24 MOTOR STATOR AND MOTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811244094.1 2018-10-24
CN201811244094.1A CN110417152A (zh) 2018-10-24 2018-10-24 一种电机定子及电机

Publications (1)

Publication Number Publication Date
WO2020083345A1 true WO2020083345A1 (zh) 2020-04-30

Family

ID=68358080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113074 WO2020083345A1 (zh) 2018-10-24 2019-10-24 一种电机定子及电机

Country Status (3)

Country Link
EP (1) EP3872966A4 (zh)
CN (1) CN110417152A (zh)
WO (1) WO2020083345A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4087096A4 (en) * 2019-12-31 2023-09-06 SAIC MOTOR Corporation Limited STATOR WINDING STRUCTURE AND MOTOR CONTAINING SAME
CN114552811B (zh) * 2022-03-29 2024-03-01 浙江极氪智能科技有限公司 一种电机定子及其应用的电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180059A (ja) * 2001-12-10 2003-06-27 Denso Corp 車両用交流回転電機
CN1499694A (zh) * 2002-09-18 2004-05-26 ��ʽ�����װ 顺序段联接电枢以及采用这种电枢的交流电机
CN103190058A (zh) * 2010-10-27 2013-07-03 日立汽车***株式会社 旋转电机
CN103475121A (zh) * 2012-06-06 2013-12-25 北京三一电机***有限责任公司 转子、双馈发电机和绕线方法
CN106602767A (zh) * 2017-02-27 2017-04-26 中国核动力研究设计院 一种核电站控制棒驱动机构电源发电机及其定子绕组
CN208835872U (zh) * 2018-10-24 2019-05-07 天津市松正电动汽车技术股份有限公司 一种电机定子及电机
CN208862653U (zh) * 2018-10-24 2019-05-14 天津市松正电动汽车技术股份有限公司 一种电机定子及电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005772B1 (en) * 2005-04-06 2006-02-28 Visteon Global Technologies, Inc. Stator winding having two slots per phase per pole
CN101515741B (zh) * 2008-02-21 2011-06-29 高强 一种电机转子的线圈缠绕方法
EP2696475B1 (en) * 2011-04-05 2016-12-28 Toyota Jidosha Kabushiki Kaisha Stator and method of manufacturing stator
WO2013145976A1 (ja) * 2012-03-29 2013-10-03 本田技研工業株式会社 回転電機のステータ構造
JP6330656B2 (ja) * 2014-12-26 2018-05-30 株式会社デンソー 回転電機の固定子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180059A (ja) * 2001-12-10 2003-06-27 Denso Corp 車両用交流回転電機
CN1499694A (zh) * 2002-09-18 2004-05-26 ��ʽ�����װ 顺序段联接电枢以及采用这种电枢的交流电机
CN103190058A (zh) * 2010-10-27 2013-07-03 日立汽车***株式会社 旋转电机
CN103475121A (zh) * 2012-06-06 2013-12-25 北京三一电机***有限责任公司 转子、双馈发电机和绕线方法
CN106602767A (zh) * 2017-02-27 2017-04-26 中国核动力研究设计院 一种核电站控制棒驱动机构电源发电机及其定子绕组
CN208835872U (zh) * 2018-10-24 2019-05-07 天津市松正电动汽车技术股份有限公司 一种电机定子及电机
CN208862653U (zh) * 2018-10-24 2019-05-14 天津市松正电动汽车技术股份有限公司 一种电机定子及电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872966A4 *

Also Published As

Publication number Publication date
EP3872966A4 (en) 2022-08-03
EP3872966A1 (en) 2021-09-01
CN110417152A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
CN110417151A (zh) 一种电机定子及电机
CN111934462B (zh) 一种电机定子绕组、定子及电机
WO2020083345A1 (zh) 一种电机定子及电机
CN217486256U (zh) 一种电机定子及电机
CN208835872U (zh) 一种电机定子及电机
CN210608720U (zh) 电机定子及电机
CN213585303U (zh) 一种电机定子及电机
CN113675965A (zh) 一种电机定子及电机
CN111478480A (zh) 一种电机定子及电机
CN112332565A (zh) 一种电机定子及电机
CN111478477A (zh) 一种电机定子及电机
CN213990307U (zh) 一种电机定子及电机
CN211880197U (zh) 一种电机定子及电机
CN214412445U (zh) 一种电机定子绕组、电机定子及电机
CN211908498U (zh) 一种电机定子及电机
CN208862653U (zh) 一种电机定子及电机
CN112583168A (zh) 一种电机定子绕组、定子及电机
CN111478485A (zh) 一种电机定子及电机
CN112332564A (zh) 一种电机定子及电机
CN111478479A (zh) 一种电机定子及电机
CN212033857U (zh) 一种电机定子及电机
CN211908497U (zh) 一种电机定子及电机
CN214124964U (zh) 一种电机定子及电机
CN214543854U (zh) 一种电机定子绕组、定子及电机
CN213637231U (zh) 一种电机定子及电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019875956

Country of ref document: EP

Effective date: 20210525