WO2020083186A1 - 电子设备、通信方法以及介质 - Google Patents

电子设备、通信方法以及介质 Download PDF

Info

Publication number
WO2020083186A1
WO2020083186A1 PCT/CN2019/112207 CN2019112207W WO2020083186A1 WO 2020083186 A1 WO2020083186 A1 WO 2020083186A1 CN 2019112207 W CN2019112207 W CN 2019112207W WO 2020083186 A1 WO2020083186 A1 WO 2020083186A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminals
precoding
base station
electronic device
channel information
Prior art date
Application number
PCT/CN2019/112207
Other languages
English (en)
French (fr)
Inventor
刘文东
王昭诚
曹建飞
Original Assignee
索尼公司
刘文东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 刘文东 filed Critical 索尼公司
Priority to US17/284,793 priority Critical patent/US11496188B2/en
Priority to JP2021522424A priority patent/JP7452540B2/ja
Priority to EP19877098.4A priority patent/EP3872999A4/en
Priority to CN201980068776.8A priority patent/CN112868188A/zh
Publication of WO2020083186A1 publication Critical patent/WO2020083186A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present disclosure relates to electronic devices, communication methods, and media. More specifically, the present disclosure relates to an electronic device, communication method, and medium for hybrid precoding in a full-dimensional multi-input multiple-output (FD-MIMO) system.
  • FD-MIMO full-dimensional multi-input multiple-output
  • ML precoding Linear Precoding
  • NLP Non-Linear Precoding
  • Traditional linear precoding includes matched filtering (MF) precoding, zero forcing (ZF) precoding, and minimum mean square error (MMSE) precoding.
  • Traditional non-linear precoding includes Tomlinson-Harashima precoding (Tomlinson-Harashima precoding, THP) and Vector Perturb (VP).
  • linear precoding can achieve better performance with lower complexity in weakly correlated channels, it cannot suppress noise while effectively eliminating interference between users in strongly correlated channels.
  • traditional non-linear precoding can reduce inter-user interference, its computational complexity is high when there are many users and the base station antenna is large, and accurate channel state information is High reference signal overhead.
  • FD-MIMO is a typical implementation of large-scale multi-antenna systems.
  • the angle of arrival in the vertical direction is distributed in a small interval, and the channel correlation is strong.
  • it has a large number of users and a large antenna on the base station side. Therefore, it is necessary to study a precoding scheme suitable for FD-MIMO for use in next-generation communication systems such as 5G.
  • the present disclosure provides an electronic device that operates on the base station side.
  • the electronic device includes a processing circuit configured to perform control so that the electronic device: estimate channel correlation in a first direction of a plurality of terminals communicating with a base station; and respond to the estimated The channel correlation of the terminals in the first direction satisfies a predetermined condition, and sends a first indication signal to indicate that after performing the first measurement process to determine the channel information in the first direction, the second measurement process is performed to determine the second direction.
  • Channel information and based on the channel information in the second direction, sending a second indication signal to indicate a precoding scheme for data sent from the base station to the multiple terminals, the precoding scheme including linear precoding or non-linear Precoding.
  • the present disclosure provides an electronic device that runs on the terminal side.
  • the electronic device includes a processing circuit configured to perform control so that the electronic device: sends a first reference signal to the base station for the base station to estimate the channel correlation of the terminal with other terminals in the first direction
  • the electronic device performs the first measurement during the first measurement process and feeds back channel information in the first direction
  • electronic The device performs the second measurement during the second measurement process and feeds back channel information in the second direction; and in response to receiving the second indication signal, according to the precoding scheme indicated therein, correspondingly demodulates the data sent from the base station
  • the precoding scheme includes linear precoding or non-linear precoding, where the first indication signal is sent by the base station in response to determining that the channel correlation between the terminal and other terminals in the first direction satisfies a predetermined condition.
  • the second indication signal is sent by the base station based on the channel information in the second direction fed back by
  • the present disclosure provides an electronic device that operates on the base station side.
  • the electronic device includes a processing circuit configured to perform control so that the electronic device: estimate channel correlation in a first direction of a plurality of terminals communicating with a base station; in response to the estimated The channel correlation of the terminal in the first direction satisfies a predetermined condition, and based on the channel information in the first direction fed back by the multiple terminals, the common precoding parameters of the multiple terminals in the first direction are determined; based on Channel information in the second direction fed back by the multiple terminals to determine the precoding parameters of the multiple terminals in the second direction; and based on the common precoding parameters in the first direction and the second direction
  • the Kronecker product of the precoding parameters of determines the precoding parameters used for non-linear precoding of the data sent from the base station to the multiple terminals.
  • the present disclosure provides a communication method performed on the base station side.
  • the method includes: estimating channel correlations of a plurality of terminals communicating with a base station in a first direction; and in response to the estimated channel correlations of the plurality of terminals in the first direction satisfying a predetermined condition, sending a first indication A signal to instruct to perform a second measurement process to determine channel information in the second direction after performing the first measurement process to determine channel information in the first direction, and to send a second indication based on the channel information in the second direction A signal to indicate a precoding scheme for data sent from the base station to the multiple terminals, the precoding scheme including linear precoding or non-linear precoding.
  • the present disclosure provides a communication method performed on the terminal side.
  • the method includes: sending a first reference signal to the base station for the base station to estimate the channel correlation between the terminal and other terminals in the first direction; Perform a second measurement process, in which the first measurement is performed during the first measurement process and feed back channel information in the first direction, the second measurement is performed during the second measurement process and feed back channel information in the second direction, and the response Upon receiving the second indication signal, the data sent from the base station is demodulated accordingly according to the precoding scheme indicated therein.
  • the precoding scheme includes linear precoding or non-linear precoding, where the first indication signal is The base station sends in response to determining that the channel correlation between the terminal and other terminals in the first direction satisfies a predetermined condition, and the second indication signal is sent by the base station based on the channel information in the second direction fed back by the terminal.
  • the present disclosure provides a communication method performed on the base station side.
  • the method includes: estimating channel correlations of a plurality of terminals communicating with a base station in a first direction; in response to the estimated channel correlations of the plurality of terminals in the first direction satisfying a predetermined condition, based on the plurality of Determine the common precoding parameters of the multiple terminals in the first direction by the channel information of the terminals in the first direction; determine the multiple terminals based on the channel information of the multiple terminals in the second direction The respective precoding parameters in the second direction; and based on the Kronecker product of the common precoding parameters in the first direction and the precoding parameters in the second direction, determining the data used to transmit Precoding parameters for non-linear precoding.
  • the present disclosure provides a non-transitory computer-readable storage medium having instructions stored thereon, which when executed by a processor causes the processor to perform the method of the present disclosure.
  • FIG. 1 is a schematic diagram illustrating a communication system according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram showing the structure of a base station according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram illustrating the structure of a terminal according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram showing a processing flow of a communication system according to some embodiments of the present disclosure.
  • FIG. 5A is a schematic diagram showing a first measurement process of a communication system according to some embodiments of the present disclosure.
  • FIG. 5B is a schematic diagram illustrating the transmission of the second reference signal in the first direction through the antenna according to some embodiments of the present disclosure.
  • FIG. 6A is a schematic diagram illustrating a second measurement process of a communication system according to some embodiments of the present disclosure.
  • FIG. 6B is a schematic diagram illustrating transmitting a third reference signal in the second direction through an antenna according to some embodiments of the present disclosure.
  • FIG. 6C is a schematic diagram illustrating that a third reference signal that is linearly preprocessed with a common precoding parameter in the first direction is transmitted through an antenna according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating non-linear precoding and demodulation of a communication system according to some embodiments of the present disclosure, which conforms to the THP precoding structure.
  • FIG. 8 is a flowchart illustrating a communication method performed on the base station side according to some embodiments of the present disclosure.
  • FIG. 9 is a flowchart illustrating a communication method performed on the terminal side according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram showing a processing flow of a communication system according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic diagram showing a processing flow of a communication system according to some embodiments of the present disclosure.
  • FIG. 12 is a flowchart illustrating a communication method performed on the base station side according to some embodiments of the present disclosure.
  • FIGS. 13A to 13C are schematic diagrams showing the processing flow of a communication system according to some embodiments of the present disclosure.
  • FIG. 14A is a simulation result showing the average spectrum efficiency of scenario 1 under different scenarios.
  • FIG. 14B is a simulation result showing the average spectrum efficiency of scenario 2 under different scenarios.
  • 15 is a block diagram showing an example of a schematic configuration of a computing device to which the technology of the present disclosure can be applied.
  • 16 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • 17 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • 19 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 1 is a schematic diagram illustrating a communication system according to some embodiments of the present disclosure.
  • the communication system includes a base station 100, terminals 200A, 200B.
  • the communication system performs types of communication such as LTE, LTE-Advanced, machine type communication (MTC), ad hoc networks, or cognitive radio (for example, IEEE P802.19.1a and Spectrum Access System (SAS)).
  • LTE Long Term Evolution
  • MTC machine type communication
  • SAS Spectrum Access System
  • the base station 100 communicates with the terminals 200A and 200B wirelessly.
  • the base station 100 also communicates with core network nodes (eg, mobility management entity (MME), serving gateway (S-GW), packet data network gateway (P-GW), etc.).
  • MME mobility management entity
  • S-GW serving gateway
  • P-GW packet data network gateway
  • the terminals 200A and 200B communicate with the base station 100 wirelessly.
  • the terminals 200A, 200B also communicate with other devices (eg, core network nodes and external devices) through the base station 100.
  • the terminals 200A, 200B may also perform, for example, machine type communication (MTC).
  • MTC machine type communication
  • the base station 100 can communicate with the terminals 200A and 200B using the same time-frequency resources to achieve spatial multiplexing.
  • the base station 100 uses MIMO antennas to communicate with multiple terminals (users) on the same time-frequency resources.
  • Multiple terminals communicating with the base station using the same time-frequency resources may have spatial correlation with each other.
  • the base station 100 may reduce the spatial correlation between the terminals 200A and 200B through precoding technology, thereby reducing the mutual interference between the terminals 200A and 200B.
  • terminals 200A and 200B are shown in FIG. 1, the communication system 100 may actually include more terminals.
  • the terminals 200A and 200B are collectively indicated by the mark 200.
  • FIG. 2 is a schematic diagram showing the structure of the base station 100 according to some embodiments of the present disclosure.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • the antenna unit 110 receives the radio signal, and outputs the received radio signal to the wireless communication unit 120.
  • the antenna unit 110 also transmits the transmission signal output from the wireless communication unit 120.
  • the antenna unit 110 may include multiple antennas. In some embodiments of the present disclosure, multiple antennas send pre-coded data signals to the terminals 200A, 200B on the same transmission resources (eg, time-frequency resources).
  • the wireless communication unit 120 wirelessly communicates with the terminals 200A, 200B.
  • the network communication unit 130 communicates with other communication nodes. For example, the network communication unit 130 communicates with other base stations 100. In addition, for example, the network communication unit 130 communicates with the core network node.
  • the storage unit 140 stores programs and data for operating the base station 100.
  • the processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes a channel measurement unit 151, a precoding unit 152, and a signaling unit 153.
  • the channel measurement unit 151 performs a channel measurement function
  • the precoding unit 152 controls the precoding operation
  • the signaling unit 153 performs a signaling interaction function.
  • the channel measurement unit 151, the precoding unit 152, and the signaling unit 153 may be hardware circuits or software modules.
  • the base station 100 further includes a digital precoder, and the base station 100 is configured to perform baseband digital precoding on the transmitted signal.
  • the digital precoder is configured to adjust the amplitude and phase of the baseband data signal for each terminal according to the selected precoding scheme.
  • FIG. 3 is a schematic diagram showing the structure of the terminal 200 according to some embodiments of the present disclosure.
  • the terminal 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, an input unit 240, a display unit 250, and a processing unit 260.
  • the antenna unit 210 receives a radio signal, and outputs the received radio signal to the wireless communication unit 220.
  • the antenna unit 210 may receive a pre-coded signal sent by the base station 100 to the terminals 200A, 200B on the same transmission resource.
  • the antenna unit 210 also transmits the transmission signal output from the wireless communication unit 220.
  • the wireless communication unit 220 communicates with the base station 100 in a wireless manner.
  • the storage unit 230 stores programs and data for operating the terminal 200.
  • the input unit 240 receives input performed by the user of the terminal 200. Then, the input unit 240 provides the input result to the processing unit 260.
  • the display unit 250 displays the output screen (ie, output image) from the terminal 200. For example, the display unit 250 displays the output screen under the control of the processing unit 260.
  • the processing unit 260 provides various functions of the terminal 200.
  • the processing unit 260 includes a channel measurement unit 261, a demodulation unit 262, and a signaling unit 263.
  • the channel measurement unit 151 performs a channel measurement function
  • the demodulation unit 262 controls the demodulation operation
  • the signaling unit 153 performs a signaling interaction function.
  • the channel measurement unit 261, the demodulation unit 262, and the signaling unit 263 may be hardware circuits or software modules.
  • the processing circuit may be configured to directly perform or control other components and / or external components of the base station 100 or the terminal 200 to perform the functions of the base station 100 or the terminal 200.
  • the processing circuit is in the form of a general-purpose processor, or a dedicated processing circuit, such as an ASIC.
  • the processing circuit can be constructed by a circuit (hardware) or a central processing device (such as a central processing unit (CPU)).
  • Part or all of the processing circuit may be provided in the electronic device inside the base station 100 or the terminal 200. Part or all of the processing circuit may be provided in an electronic device external to the base station 100, which may be remotely arranged relative to the base station 100. For example, a part of the processing circuit may be implemented as a remote control end of the base station 100 or a component of the remote control end.
  • the electronic device may be configured as a chip (such as an integrated circuit module including a single wafer), a hardware component, or a complete product.
  • the electronic device may be configured to include one or more other components of the base station 100 or the terminal 200.
  • the electronic device may be configured to include one or more antennas.
  • the electronic device may be configured as the base station 100 or the terminal 200 itself.
  • the base station and the terminal can communicate according to the FDD communication mechanism or according to the TDD communication mechanism.
  • One of the differences between the FDD communication mechanism and the TDD communication mechanism is whether the reciprocity of the uplink and downlink channels can be used in the channel estimation process.
  • the uplink channel and the downlink channel use the same frequency band to have reciprocity.
  • the upstream channel and the downstream channel use different frequency bands and thus do not have reciprocity.
  • the following will mainly describe the processing flow under the FDD communication mechanism.
  • some embodiments of the present disclosure can be used not only for TDD communication mechanisms but also for FDD communication mechanisms.
  • some modified examples under the FDD communication mechanism are also described.
  • FIG. 4 is a schematic diagram showing a processing flow 400 of a communication system according to some embodiments of the present disclosure.
  • the base station 100, the terminals 200A, 200B perform a channel estimation process to estimate the channel between the base station 100 and the terminals 200A, 200B.
  • the base station 100 estimates the channel correlation of the terminals 200A, 200B based on the estimated channel (preferably, estimates the downlink channel correlation).
  • the terminals 200A, 200B transmit the first reference signal to the base station 100.
  • the base station 100 estimates the channel correlation of the terminals 200A, 200B based on the first reference signals received from the terminals 200A, 200B. For example, the base station 100 estimates the uplink channels of the terminals 200A, 200B based on the received first reference signal, and then estimates the channel correlation of the terminals 200A, 200B based on the estimated uplink channels.
  • the upstream channel and the downstream channel have reciprocity. Therefore, the downlink channel correlation of the terminals 200A, 200B can be estimated by the base station 100 based on the first reference signals received from the terminals 200A, 200B.
  • the upstream channel and the downstream channel do not have reciprocity.
  • the inventor of the present disclosure found that although the uplink channel and the downlink channel do not have reciprocity and cannot obtain accurate downlink channel information according to the uplink channel, the spatial correlation of the uplink channel between the two terminals and the downlink between them The spatial correlation of the channels remains consistent. Therefore, the inventor of the present disclosure proposes that, under the FDD communication mechanism, the technical solution of the present disclosure can also use the first reference signal received from the terminals 200A, 200B to estimate the downlink channel correlation of the terminals 200A, 200B.
  • the base station 100 sends the first reference signal to the terminals 200A, 200B.
  • the terminals 200A, 200B estimate the downlink channel based on the first reference signal received from the base station 100, and feed back the estimated downlink channel to the base station 100.
  • the base station 100 estimates the downlink channel correlation of the terminals 200A, 200B based on the downlink channels fed back from the terminals 200A, 200B.
  • the base station 100 may determine the channel correlation of the terminals 200A, 200B according to the signal quality received from the terminals 200A, 200B.
  • the channel correlation of the terminals 200A, 200B is considered high, and when the signal quality received from the terminals 200A, 200B is high, the terminal 200A, The channel correlation of 200B is low.
  • the base station 100 judges the channel correlation by evaluating the singularity of the channel matrix.
  • the conditional number cond (H) of the channel H can be calculated
  • the uplink / downlink channel is split into two directions in three-dimensional space (for example, the first direction and the second direction) to seek a precoding scheme that compromises performance, complexity, and signaling overhead .
  • the base station 100 uses, for example, an antenna in the first direction to receive the uplink reference signal sent by the terminals 200A, 200B to estimate the channel correlation of the terminals 200A, 200B in the first direction.
  • the base station 100 determines whether the channel correlation in the first direction satisfies a predetermined condition, and if the predetermined condition is satisfied, determines that the channel correlation in the first direction is sufficiently high.
  • the channel may be calculated in the first direction H e number of conditions (Matrix norm calculation can use different norm calculation methods).
  • the predetermined condition includes that the channel correlation in the first direction is higher than the first correlation threshold.
  • the base station 100 also uses, for example, an antenna in the second direction to receive the uplink reference signal sent by the terminals 200A, 200B to estimate the channel correlation of the terminals 200A, 200B in the second direction, and the predetermined The condition includes that the channel correlation in the first direction is higher than the channel correlation in the second direction.
  • the vertical channel correlation of these multiple terminals is usually significantly greater than the horizontal channel correlation. Therefore, for this usage scenario, only the channel correlation in the vertical direction can be estimated.
  • the first direction is the vertical direction and the second direction is the horizontal direction.
  • the embodiments of the present disclosure are not limited to use scenarios of this kind, but can also be used in scenarios where the channel correlation in the horizontal direction is greater than the channel correlation in the vertical direction, for example, end users at different floors in a building simultaneously request service Scenarios, or used in scenarios where it is not possible to determine in advance which direction has strong channel correlation. Therefore, in the following discussion, we use the first direction and the second direction to refer to two directions orthogonal to each other, without specifically limiting it to a vertical direction or a horizontal direction.
  • first direction and the second direction are not limited to the vertical direction and the horizontal direction, and they may also refer to other directions perpendicular to each other.
  • the base station 100 may send a first indication signal to instruct to perform the second after performing the first measurement process to determine the channel information in the first direction if it is determined that the channel correlation in the first direction satisfies a predetermined condition
  • the measurement process determines the channel information in the second direction.
  • the terminals 200A, 200B determine to perform the second measurement process after performing the first measurement process.
  • the terminals 200A, 200B perform the first measurement during the first measurement process and feed back the channel information in the first direction.
  • the terminals 200A, 200B perform the second measurement during the second measurement process and feed back the channel information in the second direction.
  • the first indication signal may be, for example, one bit in control signaling (for example, RRC signaling).
  • the execution order of the first measurement process and the second measurement process may be indicated by giving different values to the first indication signal so that the terminal selects a corresponding codebook for measurement result feedback.
  • the first indication signal can be set to 0 to indicate that the first measurement process is performed first and then the second measurement process is set, and the first indication signal is set to 1 to indicate that the second measurement process is performed first and then the first measurement process, and vice versa The same is true.
  • more bits may be allocated to the first indication signal, so that the first indication signal can carry more information.
  • step 408 the base station 100, the terminals 200A, 200B perform a first measurement process to determine channel information in the first direction.
  • step 410 the base station 100, the terminals 200A, 200B perform a second measurement process to determine channel information in the second direction.
  • the first measurement process and the second measurement process will be described with reference to FIGS. 5-6.
  • FIG. 5A is a schematic diagram illustrating a first measurement process 600 of a communication system according to some embodiments of the present disclosure.
  • the base station 100 transmits the second reference signal in the first direction to the terminals 200A, 200B.
  • the terminals 200A, 200B receive the second reference signal sent by the base station 100 in the first direction to perform the first measurement.
  • FIG. 5B is a schematic diagram illustrating the transmission of the second reference signal in the first direction through the antenna according to some embodiments of the present disclosure.
  • the base station 100 selects a column of antennas in the first direction, and sends the second reference signal through the selected column of antennas. Note that although a 4 ⁇ 4 antenna is shown in FIG. 5B, the base station 100 may use antennas of other sizes.
  • the terminals 200A, 200B estimate channel information in the first direction based on the second reference signal. For example, the terminals 200A, 200B may select a precoding matrix that matches the result of the first measurement from the channel codebook in the first direction.
  • the terminals 200A and 200B feed back the channel information in the first direction to the base station 100.
  • the terminals 200A and 200B include the indicator of the matched precoding matrix in the channel information in the first direction that is fed back.
  • FIG. 6A is a schematic diagram illustrating a second measurement process 600 of a communication system according to some embodiments of the present disclosure.
  • the base station 100 transmits the third reference signal in the second direction to the terminals 200A, 200B.
  • the terminals 200A, 200B receive the third reference signal sent by the base station 100 in the second direction to perform the second measurement.
  • FIG. 6B is a schematic diagram illustrating transmitting a third reference signal in the second direction through an antenna according to some embodiments of the present disclosure. As shown in FIG. 6B, the base station 100 selects a row of antennas in the second direction, and sends a third reference signal through the selected row of antennas. Note that although a 4 ⁇ 4 antenna is shown in FIG. 6B, the base station 100 may use antennas of other sizes.
  • the terminals 200A, 200B estimate channel information in the second direction based on the third reference signal. For example, the terminals 200A, 200B may select a precoding matrix that matches the result of the second measurement from the channel codebook in the second direction.
  • the terminals 200A and 200B feed back the channel information in the second direction to the base station 100.
  • the terminals 200A and 200B include the indicator of the matched precoding matrix in the channel information in the second direction that is fed back.
  • the base station 100 determines the common precoding parameters of the terminals 200A, 200B in the first direction based on the respective channel information in the first direction fed back by the terminals 200A, 200B during the first measurement process.
  • the channels in the first direction with strong correlation are preprocessed. Pre-processing channels in the first direction with strong correlation can reduce the complexity of subsequent solutions.
  • the base station 100 generates the precoding parameters of the terminals 200A and 200B in the first direction based on the channel information in the first direction fed back by the terminals 200A and 200B.
  • the base station 100 uses the constant multiple of the weighted average of the precoding parameters of the terminals 200A and 200B in the first direction as the common precoding parameters in the first direction.
  • the base station 100 in the second measurement process, sends to the terminals 200A, 200B a third reference signal that has been linearly preprocessed with the common precoding parameters in the first direction.
  • FIG. 6C is a schematic diagram illustrating that a third reference signal that is linearly preprocessed with a common precoding parameter in the first direction is transmitted through an antenna according to some embodiments of the present disclosure. Different from FIG. 6B, in FIG. 6C, the base station 100 transmits the third reference signal on each row of antennas in the second direction, and inside each column of antennas in the first direction, the common The precoding parameters perform linear preprocessing on the signal sent through the column of antennas. Note that although a 4 ⁇ 4 antenna is shown in FIG.
  • the base station 100 may use antennas of other sizes.
  • the terminals 200A, 200B receive from the base station 100 a third reference signal that has been linearly preprocessed with the common precoding parameters in the first direction.
  • the terminals 200A, 200B determine the respective channel information in the second direction based on the third reference signal received from the base station 100 and subjected to linear pre-processing with common precoding parameters.
  • the channels estimated by the terminals 200A and 200B are equivalent channels in the second direction.
  • the channel information in the second direction fed back by the terminals 200A, 200B indicates the equivalent channel in the second direction.
  • the base station 100 determines the precoding parameters of the terminals 200A, 200B in the second direction based on the channel information in the second direction fed back by the terminals 200A, 200B.
  • H k H k
  • h e, k is the approximate channel steering vector in the first direction, Is the channel steering vector in the second direction of the pth path, Is the corresponding large-scale fading coefficient, It is a KP operator. Therefore, in this scenario, the approximate he , k can be obtained first to perform linear preprocessing in the first direction.
  • p e, k and p a, k are the precoding vectors in the first direction and the second direction for the kth terminal , respectively.
  • the precoding matrix in the second direction The k, k′th element t kk ′ of T can be expressed as follows:
  • p a, k ′, i is the i-th element of p a, k ′ , h k, i is the i-th column of H k , h eq, k, i is the k-th row and i-th column of H eq element.
  • the precoding matrix in the first direction can be selected as In some embodiments of the present disclosure, May represent the pseudo inverse H e of the channel in the first direction is calculated. In some embodiments of the present disclosure, It may represent the channel in the first direction H e for QR decomposition, QR decomposition and the unitary matrix as the precoding matrix in a first direction P e.
  • the channels estimated by the terminals 200A and 200B are equivalent channels in the second direction.
  • the equivalent channel H eq in the second direction can be expressed as follows:
  • the terminals 200A, 200B send the second reference signal in the first direction to the base station 100 during the first measurement process.
  • the base station 100 estimates channel information in the first direction based on the second reference signal in the first direction received from the terminals 200A, 200B.
  • the terminals 200A and 200B transmit the third reference signal in the second direction to the base station 100 during the second measurement process.
  • the base station 100 estimates channel information in the second direction based on the third reference signal in the second direction received from the terminals 200A, 200B.
  • the equivalent channel Heq in the second direction is calculated as follows:
  • the precoding matrix in the second direction ie, In some embodiments of the present disclosure, It may represent the equivalent channel H eq second direction QR decomposition, QR decomposition and the unitary matrix as the precoding matrix in the second direction P e.
  • QR decomposition of H eq Where the matrix Is a lower triangular matrix, and the precoding matrix Pa in the second direction is a unitary matrix.
  • the total precoding matrix can be selected as That is, the common precoding vector p e in the first direction and a second pre-coding matrix in the direction P a Kronecker product. Therefore, the equivalent channel after precoding is:
  • the base station 100 determines the precoding scheme of the data sent from the base station 100 to the terminals 200A, 200B based on the channel information in the second direction, and sends a second indication signal to indicate the determined precoding Program.
  • the precoding scheme includes linear precoding or non-linear precoding.
  • the terminals 200A and 200B demodulate the data sent from the base station 100 according to the precoding scheme indicated therein.
  • the second indication signal may be, for example, one bit in control signaling (for example, RRC signaling). Different precoding schemes can be indicated by giving different values to the second indication signal. For example, the second indication signal may be set to 0 to indicate linear precoding, and the second indication signal to 1 to indicate non-linear precoding, and vice versa. In some embodiments of the present disclosure, more bits may be allocated to the second indication signal, so that the second indication signal can carry more information.
  • the final precoding scheme of the present disclosure is actually a two-dimensional mixed precoding scheme, which may be nonlinear precoding in the first direction and linear precoding in the second direction, or may be performed in the first direction Linear precoding and non-linear precoding in the second direction, and the final precoding scheme indicated by the second indication signal depends on the type of precoding performed in the second direction.
  • the purpose of the indication is to enable the terminal to judge whether Receive signal to perform modulo operation.
  • the base station 100 estimates the equivalent channel correlation of the terminals 200A, 200B in the second direction based on the channel information in the second direction fed back by the terminals 200A, 200B in the second measurement process. In response to the estimated equivalent channel correlation of the terminals 200A, 200B in the second direction being higher than the second correlation threshold, the base station 100 sends a second indication signal to indicate the pre-processing of the data sent from the base station 100 to the terminals 200A, 200B
  • the coding scheme is non-linear precoding.
  • the base station 100 In response to the estimated equivalent channel correlation of the terminals 200A, 200B in the second direction being lower than the second correlation threshold, the base station 100 sends a second indication signal to indicate the pre-processing of data sent from the base station 100 to the terminals 200A, 200B
  • the coding scheme is linear precoding.
  • the equivalent channel correlation in the second direction can be calculated by the conditional number cond (H eq ) of the equivalent channel in the second direction.
  • cond (H eq ) is greater than the second correlation threshold, nonlinear precoding is used, otherwise linear precoding is used. It may also be assumed in advance that linear precoding is used to calculate the SINR of the terminal at this time. If the SINR is less than the set threshold, non-linear precoding is used, otherwise linear precoding is used.
  • the base station 100 sends a second reference signal to the terminals 200A, 200B at a first interval during the first measurement process, and from the base station 100 to the terminals 200A, 200B at a second interval during the second measurement process Send a third reference signal.
  • the terminals 200A, 200B receive the second reference signal transmitted at the first interval from the base station 100 during the first measurement process.
  • the terminals 200A, 200B receive the third reference signal transmitted at the second interval from the base station during the second measurement process.
  • the base station 100 after the base station 100 determines to use nonlinear precoding, the base station 100 shortens the transmission period of the third reference signal transmitted in the second measurement process so that the second interval is shorter than the first interval, thereby Obtain more accurate channel information in the second direction.
  • the base station 100 pre-codes the data with the determined pre-coding scheme, and sends the pre-coded data to the terminals 200A, 200B.
  • the terminals 200A, 200B demodulate the data based on the precoding scheme indicated in the second indication signal.
  • the terminals 200A, 200B in response to the second indication signal indicating that the precoding scheme is a non-linear precoding scheme, perform a modulo operation on the received data signal to demodulate the data.
  • Linear precoding that can be used includes matched filtering (MF) precoding, zero forcing (ZF) precoding, and minimum mean square error (MMSE) precoding.
  • the non-linear precoding that can be used includes Tomlinson-Harashima precoding (Tomlinson-Harashima precoding (THP) and Vector Perturb (VP), etc.
  • THP Tomlinson-Harashima precoding
  • VP Vector Perturb
  • the traditional THP precoding structure is in C. Windpassinger, RFHFischer, T. Vencel, and JB Huber, "Precoding in multiantenna and multiuser communications", IEEE Trans.Wirel.Commun., Vol.3, no.4, pp.1305-- 1316, July 2004. The entire content is incorporated by reference.
  • the present disclosure makes corresponding improvements to the traditional THP precoding structure.
  • the base station 100 includes an adder 771, a sending MOD module 772, a feedback filter 773, and a forward filter 774, and the terminal 200 includes a receiving MOD module 775.
  • the transmitting MOD module 772 receives the output of the adder 771 and performs a modulo operation on the output of the adder 771 to limit its power.
  • the feedback filter 773 receives the output of the sending MOD module 772 And use the lower triangular matrix L pair Perform interference cancellation.
  • the adder 771 adds the input signal s and the output of the feedback filter 773.
  • the forward filter 774 receives and sends the output of the MOD module 772 Then, it performs forward filtering on the precoding parameters to obtain the transmission signal x.
  • the base station 100 determines the data sent to the terminals 200A, 200B based on the Kronecker product of the common precoding parameters in the first direction and the precoding parameters of the terminals 200A, 200B in the second direction. Precoding parameters. For example, for data sent to the terminals 200A and 200B, the total precoding matrix is set in the forward filter 774 Performs forward filtering on the data as a precoding parameter.
  • the transmission signal x reaches the terminal 200 via the channel H.
  • the base station 100 determines demodulation parameters for nonlinear demodulation at the terminal 200 based on the channel information in the second direction.
  • the reception matrix as a demodulation parameter is made among them It is the element on the diagonal of the lower triangular matrix L.
  • the received signal y can be obtained after receiving matrix G processing
  • the base station 100 may include the reception matrix G as a demodulation parameter in the second instruction signal and send it to the terminal 200.
  • the terminal receives demodulation parameters for non-linear demodulation from the base station 100.
  • the base station 100 may transmit a demodulation reference signal (DMRS) so that the terminal 200 estimates the reception matrix G as a demodulation parameter according to the DMRS.
  • DMRS demodulation reference signal
  • the base station 100 transmits to the terminal 200 a DMRS without nonlinear precoding for determining demodulation parameters.
  • the terminal 200 receives the DMRS without nonlinear precoding from the base station 100 to determine demodulation parameters for nonlinear demodulation.
  • the base station 100 sends the DMRS vector Then the equivalent channel coefficient of the k-th terminal after precoding is y ZF, k / ⁇ k , where y ZF, k is the received signal of the k-th user.
  • the base station 100 transmits DMRS including K orthogonal sequences, where K is the number of terminals 200.
  • K is the number of terminals 200.
  • G is the received signal vector.
  • the length of the DMRS sequence is K ⁇ K
  • the length of the DMRS sequence longer than ZF is K ⁇ 1. Therefore, the DMRS sequence length information under the non-linear precoding scheme may be included in the second signal and sent to the terminal 200.
  • precoding includes baseband digital precoding and radio frequency analog precoding.
  • the precoding scheme in some embodiments of the present disclosure can be applied to baseband digital precoding to further reduce inter-terminal interference of strongly correlated channels after analog precoding / beamforming.
  • Precoding matrices for the digital and analog terminals, respectively where N y and N x are the number of radio frequency links in the first direction and the second direction, respectively, and the signal transmission model is as follows:
  • G is the receiving matrix.
  • the HF RF equivalent baseband channel after analog precoding may still be a strongly correlated channel, for example, when several terminals are located in the same beam, and the precoding scheme in some embodiments of the present disclosure may be applied to HF RF to further reduce interference between terminals.
  • FIG. 8 is a flowchart illustrating a communication method 880 performed on the base station side according to some embodiments of the present disclosure.
  • the channel correlation of the plurality of terminals communicating with the base station in the first direction is estimated.
  • a first indication signal is sent to instruct to perform the second after performing the first measurement process to determine the channel information in the first direction
  • the measurement process determines the channel information in the second direction.
  • a second indication signal is sent to indicate a precoding scheme for data sent from the base station to multiple terminals, the precoding scheme including linear precoding or non-linear precoding.
  • FIG 9 is a flowchart illustrating a communication method 990 performed on the terminal side according to some embodiments of the present disclosure.
  • a first reference signal is sent to the base station for the base station to estimate the channel correlation between the terminal and other terminals in the first direction.
  • step 994 in response to receiving the first indication signal, it is determined that the second measurement process is performed after the first measurement process is performed, wherein the first measurement is performed during the first measurement process and the channel information in the first direction is fed back, in During the second measurement process, the second measurement is performed and the channel information in the second direction is fed back.
  • the data sent from the base station is demodulated accordingly according to the precoding scheme indicated therein, the precoding scheme including linear precoding or non-linear precoding.
  • the first indication signal is sent by the base station in response to determining that the channel correlation between the terminal and other terminals in the first direction satisfies a predetermined condition, and the second indication signal is sent by the base station in the second direction based on the terminal feedback Channel information.
  • FIG. 10 is a schematic diagram showing a processing flow 1000 of a communication system according to some embodiments of the present disclosure. Steps 1002 and 1004 of the process flow 1000 in FIG. 10 are the same as steps 402 and 404 of the process flow 400 in FIG. 4, so details are not described here.
  • step 1006 the base station 100, in the case of determining that the channel correlation in the first direction does not satisfy the predetermined condition, sends a first indication signal to instruct to perform the first after performing the second measurement process to determine the channel information in the second direction The measurement process determines the channel information in the first direction.
  • the base station 100, the terminals 200A, 200B perform a second measurement process to determine channel information in the second direction.
  • the base station 100 determines the common precoding parameters of the terminals 200A, 200B in the second direction based on the channel information in the second direction fed back by the terminals 200A, 200B in the second measurement process.
  • the base station 100 generates the precoding parameters of the terminals 200A and 200B in the second direction based on the channel information in the second direction fed back by the terminals 200A and 200B.
  • the base station 100 uses the constant multiple of the weighted average of the precoding parameters of the terminals 200A and 200B in the second direction as the common precoding parameters in the second direction.
  • the base station 100, the terminals 200A, 200B perform a first measurement process to determine channel information in the first direction.
  • the base station 100 transmits to the terminals 200A, 200B a second reference signal that is linearly preprocessed with the common precoding parameters in the second direction.
  • the terminals 200A, 200B determine the respective channel information in the first direction based on the second reference signal received from the base station 100 and subjected to linear preprocessing with common precoding parameters.
  • the channels estimated by the terminals 200A, 200B are equivalent channels in the first direction.
  • the channel information in the first direction fed back by the terminals 200A, 200B indicates the equivalent channel in the first direction.
  • the terminals 200A, 200B transmit the third reference signal in the second direction to the base station 100 during the second measurement process.
  • the base station 100 estimates channel information in the second direction based on the third reference signal in the second direction received from the terminals 200A, 200B.
  • the terminals 200A, 200B transmit the second reference signal in the first direction to the base station 100 during the first measurement process.
  • the base station 100 estimates channel information in the first direction based on the second reference signal in the first direction received from the terminals 200A, 200B.
  • the base station 100 calculates the equivalent channel in the first direction based on the common precoding parameter in the second direction and the channel information in the first direction.
  • the base station 100 determines the precoding scheme of the data sent from the base station 100 to the terminals 200A, 200B based on the channel information in the first direction, and sends a second instruction signal to indicate the determined precoding scheme.
  • the precoding scheme includes linear precoding or non-linear precoding.
  • the base station 100 estimates the equivalent channel correlation of the terminals 200A, 200B in the first direction based on the channel information in the first direction fed back by the terminals 200A, 200B in the first measurement process. In response to the estimated equivalent channel correlation of the terminals 200A, 200B in the first direction being higher than the second correlation threshold, the base station 100 sends a second indication signal to indicate the pre-processing of data sent from the base station 100 to the terminals 200A, 200B
  • the coding scheme is non-linear precoding.
  • the base station 100 In response to the estimated equivalent channel correlation of the terminals 200A, 200B in the first direction being lower than the second correlation threshold, the base station 100 sends a second indication signal to indicate the pre-processing of the data sent from the base station 100 to the terminals 200A, 200B
  • the coding scheme is linear precoding.
  • the correlation of the equivalent channel in the first direction can be calculated by the condition number of the equivalent channel in the first direction.
  • condition number of the equivalent channel in the first direction is greater than the second correlation threshold, nonlinear precoding is used, otherwise linear precoding is used. It may also be assumed in advance that linear precoding is used to calculate the SINR of the terminal at this time. If the SINR is less than the set threshold, non-linear precoding is used, otherwise linear precoding is used.
  • the base station 100 sends a second reference signal to the terminals 200A, 200B at a first interval during the first measurement process, and from the base station 100 to the terminals 200A, 200B at a second interval during the second measurement process Send a third reference signal.
  • the base station 100 after the base station 100 determines to use nonlinear precoding, the base station 100 shortens the transmission period of the second reference signal transmitted in the first measurement process to obtain a more accurate channel in the first direction information.
  • step 1014 the base station 100 pre-codes the data with the determined pre-coding scheme, and sends the pre-coded data to the terminals 200A, 200B.
  • step 1016 the terminals 200A, 200B demodulate the data based on the precoding scheme indicated in the second indication signal.
  • the base station 100 determines the data sent to the terminals 200A, 200B based on the Kronecker product of the common precoding parameters in the second direction and the respective precoding parameters of the terminals 200A, 200B in the first direction. Precoding parameters.
  • the base station 100 determines the demodulation parameters for nonlinear demodulation at the terminals 200A, 200B based on the channel information in the first direction, and includes the demodulation parameters in the second indication signal and sends To terminals 200A, 200B.
  • the base station 100 and the terminals 200A, 200B sequentially perform the first measurement process and the second measurement process to estimate the downlink channel in the first direction and the downlink channel in the second direction, and then the base station 100 determines whether Non-linear precoding and corresponding precoding parameters need to be performed.
  • the base station 100 and the terminals 200A, 200B may estimate both the downlink channel in the first direction and the downlink channel in the second direction in a single measurement process, and then the base station 100 determines whether it is necessary to perform nonlinearity Precoding and corresponding precoding parameters.
  • the processing flow in these embodiments will be described in detail below with reference to FIG. 11.
  • FIG. 11 is a schematic diagram showing a processing flow 1100 of a communication system according to some embodiments of the present disclosure.
  • the base station 100, the terminals 200A, 200B perform a channel estimation process.
  • the base station 100 transmits the first reference signal on both the first direction and the second direction antennas, and the terminals 200A, 200B receive the first reference signal from the base station 100 and convert the estimated first direction And the downlink channel in the second direction are fed back to the base station 100.
  • the terminals 200A, 200B transmit the first reference signal to the base station 100.
  • the base station 100 uses the reciprocity of the uplink and downlink channels to estimate the downlink channel of the terminal 200A, 200B in the first direction and the second direction based on the first reference signal received from the terminals 200A, 200B by the antennas in the first direction and the second direction Downstream channel.
  • step 1106 the base station 100 determines a precoding scheme based on the estimated downlink channel in the first direction and the downlink channel in the second direction of the terminals 200A, 200B.
  • the base station 100 estimates the channel correlation of the terminals 200A, 200B in the first direction based on the estimated downlink channel in the first direction of the terminals 200A, 200B, and judges the channel in the first direction Whether the relevance meets predetermined conditions.
  • the predetermined condition includes that the channel correlation in the first direction is higher than the first correlation threshold.
  • the base station 100 estimates the channel correlation of the terminal 200A, 200B in the second direction based on the estimated downlink channel in the second direction of the terminal 200A, 200B, and the predetermined condition includes the first The channel correlation in the direction is higher than the channel correlation in the second direction.
  • the base station 100 determines the common precoding parameters of the terminals 200A, 200B in the first direction based on the estimated downlink channels in the first direction of the terminals 200A, 200B.
  • functions are used To calculate the precoding matrix in the first direction And, using P e (:, k) and weighted as a common pre-encoding parameters p e, namely:
  • the base station 100 determines the precoding parameters of the terminals 200A, 200B in the second direction based on the common precoding parameters in the first direction and the estimated downlink channels of the terminals 200A, 200B in the second direction.
  • the equivalent channel Heq in the second direction can be calculated as follows:
  • steps 1108, 1110, and 1112 is the same as the processing of steps 412, 414, and 416 in FIG. 4 and will not be repeated here.
  • steps 1108, 1110, and 1112 are the same as the processing of steps 412, 414, and 416 in FIG. 4 and will not be repeated here.
  • the specific implementation manners of the above steps have been described in detail above with reference to FIG. 4, and will not be repeated here.
  • FIG. 12 is a flowchart illustrating a communication method 1200 performed on the base station side according to some embodiments of the present disclosure.
  • the channel correlation of the plurality of terminals communicating with the base station in the first direction is estimated.
  • a common precoding parameter of the plurality of terminals in the first direction is determined.
  • step 1208 based on the channel information of each of the plurality of terminals in the second direction, determine the precoding parameters of each of the plurality of terminals in the second direction.
  • step 1210 based on the Kronecker product of the common precoding parameters in the first direction and the precoding parameters in the second direction, a precoding for non-linear precoding of data sent from the base station to the multiple terminals is determined parameter.
  • a precoding for non-linear precoding of data sent from the base station to the multiple terminals is determined parameter.
  • the base station 100 determines whether to perform nonlinear precoding.
  • the terminals 200A, 200B may also determine whether to perform nonlinear precoding. Next, the processing flow in these embodiments will be described in detail with reference to FIG. 13A.
  • FIG. 13A is a schematic diagram illustrating a processing flow 1300 of a communication system according to some embodiments of the present disclosure.
  • the base station 100 and the terminals 200A and 200B perform the first measurement process and the second measurement process.
  • the terminals 200A and 200B estimate the respective channel conditions according to the reference signal last received in step 1302, and determine whether non-linear precoding is required at the base station 100 according to the estimated channel conditions. For example, the terminals 200A, 200B detect SINR or RSRP based on the reference signal last received in step 1302.
  • the terminals 200A, 200B send a third indication signal to the base station 100 to indicate that nonlinear precoding is required at the base station 100.
  • the base station 100 determines that non-linear precoding is required in response to receiving the third indication signal, and determines precoding parameters for performing non-linear precoding.
  • the base station 100 may determine whether non-linear precoding is required in combination with other conditions at step 1308. For example, the base station 100 may determine whether non-linear precoding is required according to the number of terminals that send the third indication signal.
  • the base station 100 determines that non-linear precoding is required, and when the number of terminals transmitting the third indication signal is less than a certain threshold number, the base station 100 determines not Perform nonlinear precoding.
  • the processing of steps 1310 and 1312 is the same as the processing of steps 414 and 416 in FIG. 4 and will not be repeated here.
  • the specific implementation manners of the above steps have been described in detail above with reference to FIG. 4, and will not be repeated here.
  • processing flow of the communication system may also be implemented in a more specific manner as shown in FIGS. 13B and 13C.
  • FIG. 13B is a schematic diagram showing a processing flow 1320 of a communication system according to some embodiments of the present disclosure.
  • the base station 100 determines whether a non-linear precoding scheme needs to be used.
  • the terminals 200A and 200B transmit an uplink SRS (demodulation reference signal) to the base station 100 for the base station 100 to estimate the uplink channel of the terminals 200A and 200B.
  • the base station 100 estimates the uplink channels of the terminals 200A and 200B based on the received uplink SRS.
  • the base station 100 determines the correlation in the vertical direction and the correlation in the horizontal direction of the channels of the terminals 200A, 200B based on the channel estimation result.
  • the base station 100 sends a first indication signal to indicate that the vertical / horizontal channel correlation process satisfies the predetermined condition and then executes the vertical / horizontal channel measurement process to determine the vertical / horizontal channel information.
  • the horizontal / vertical channel measurement process determines the channel information in the horizontal / vertical direction.
  • the terminals 200A, 200B determine to select the vertical / horizontal codebook to perform the vertical / horizontal channel measurement process first, and then select the horizontal / vertical codebook to perform the horizontal / vertical channel measurement process.
  • the base station 100 transmits a vertical / horizontal CSI-RS (channel state indication reference signal) to the terminals 200A, 200B for the terminals 200A, 200B to estimate the vertical / horizontal channel.
  • the terminals 200A, 200B estimate the vertical / horizontal channel using the vertical / horizontal codebook.
  • the terminals 200A, 200B feed back the vertical / horizontal CSI (channel state information) to the base station 100.
  • the base station 100 calculates a vertical / horizontal common precoding factor based on the received vertical / horizontal CSI.
  • the base station 100 transmits the horizontal / vertical CSI-RS pre-processed with the vertical / horizontal common precoding factor to the terminals 200A, 200B for the terminals 200A, 200B to estimate the equivalent horizontal / vertical channel.
  • the terminals 200A, 200B estimate the equivalent horizontal / vertical channel using the horizontal / vertical codebook.
  • the terminals 200A, 200B feed back the equivalent horizontal / vertical CSI (channel state information) to the base station 100.
  • step 1344 the base station 100 determines the precoding scheme and the total precoding matrix based on the received equivalent horizontal / vertical CSI.
  • the processing of steps 1346, 1348, and 1350 is the same as the processing of steps 412, 414, and 416 in FIG. 4 and will not be repeated here.
  • the specific implementation manners of the above steps have been described in detail above with reference to FIG. 4, and will not be repeated here.
  • FIG. 13C is a schematic diagram showing a processing flow 1360 of a communication system according to some embodiments of the present disclosure.
  • the terminals 200A, 200B determine whether a non-linear precoding scheme needs to be used.
  • steps 1362 to 1382, 1388, and 1390 is the same as the processing of steps 1322 to 1342, 1348, and 1350 in FIG. 13B, and details are not described herein.
  • the terminals 200A, 200B determine whether non-linear precoding is required at the base station 100 based on the equivalent horizontal / vertical channel estimated in step 1380. For example, the terminals 200A, 200B detect SINR or RSRP based on the received pre-processed horizontal / vertical CSI-RS. When the SINR or RSRP is low (e.g., below a certain threshold), the terminals 200A, 200B send a third indication signal to the base station 100 to indicate the need for nonlinear precoding at the base station 100. In step 1386, the base station 100 determines that non-linear precoding is required in response to receiving the third indication signal, and determines precoding parameters for performing non-linear precoding. The specific implementation of the above steps has been described in detail above with reference to FIG. 13A, and will not be repeated here.
  • Scenario 1 is a weakly correlated channel (for example, the user is far away), and Scenario 2 is a strongly correlated channel (for example, the user is closer).
  • the basic simulation parameters are as follows:
  • linear precoding linear precoding or non-linear precoding
  • pseudo-inverse operation the final realization is ZF precoding
  • selection for QR decomposition and pre-interference cancellation and modulus operation on the transmitted signal, THP precoding is finally achieved.
  • FIG. 14A is a simulation result showing the average spectrum efficiency of scenario 1 under different scenarios.
  • FIG. 14B is a simulation result showing the average spectrum efficiency of scenario 2 under different scenarios.
  • the base station 100 has acquired complete CSI information.
  • traditional ZF and traditional THP refer to the direct application of ZF and THP without KP decomposition. Therefore, the precoding needs to operate on a large matrix of K ⁇ M y M x dimensions, and the calculation complexity is high.
  • Some embodiments of the present disclosure decompose a large matrix of K ⁇ M y M x dimensions into two small matrices of K ⁇ M y and K ⁇ M x based on KP decomposition, so the calculation complexity is low.
  • the base station 100 and the terminal 200 may be implemented as various types of computing devices.
  • the base station 100 may be implemented as any type of evolved Node B (eNB), gNB, or TRP (Transmit Receive Point), such as macro eNB / gNB and small eNB / gNB.
  • the small eNB / gNB may be an eNB / gNB covering a cell smaller than a macro cell, such as a pico eNB / gNB, a micro eNB / gNB, and a home (femto) eNB / gNB.
  • the base station 100 may be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station 100 may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless head ends (RRHs) provided at different places from the main body.
  • a main body also referred to as a base station device
  • RRHs remote wireless head ends
  • various types of terminals that will be described below can all operate as the base station 100 by temporarily or semi-permanently performing base station functions.
  • the terminal 200 may be implemented as a mobile terminal (such as a smart phone, tablet personal computer (PC), notebook PC, portable game terminal, portable / dongle-type mobile router, and digital camera) or a vehicle-mounted terminal (such as a car navigation device ).
  • the terminal device 300 may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the terminal 200 may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • the computing device 700 includes a processor 701, a memory 702, a storage device 703, a network interface 704, and a bus 706.
  • the processor 701 may be, for example, a central processing unit (CPU) or a digital signal processor (DSP), and controls the functions of the server 700.
  • the memory 702 includes random access memory (RAM) and read-only memory (ROM), and stores data and programs executed by the processor 701.
  • the storage device 703 may include a storage medium such as a semiconductor memory and a hard disk.
  • the network interface 704 is a wired communication interface for connecting the server 700 to the wired communication network 705.
  • the wired communication network 705 may be a core network such as an evolved packet core network (EPC) or a packet data network (PDN) such as the Internet.
  • EPC evolved packet core network
  • PDN packet data network
  • the bus 706 connects the processor 701, the memory 702, the storage device 703, and the network interface 704 to each other.
  • the bus 706 may include two or more buses (such as a high-speed bus and a low-speed bus) each having a different speed.
  • the eNB 800 includes one or more antennas 810 and base station equipment 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station apparatus 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 16 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, the controller 821 generates a data packet based on the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may bundle data from multiple baseband processors to generate a bundle packet, and deliver the generated bundle packet. The controller 821 may have a logical function of performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as terminal lists, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs can be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 823 is a wireless communication interface, the network interface 823 can use a higher frequency band for wireless communication compared to the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme (such as Long Term Evolution (LTE) and LTE-Advanced), and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform layers (such as L1, media access control (MAC), radio link control (RLC), and packet data aggregation protocol (PDCP)) various types of signal processing.
  • layers such as L1, media access control (MAC), radio link control (RLC), and packet data aggregation protocol (PDCP)
  • the BB processor 826 may have some or all of the above-mentioned logic functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor configured to execute the program and related circuits.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or blade inserted into the slot of the base station device 820. Alternatively, the module may also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include multiple BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include multiple RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 825 includes multiple BB processors 826 and multiple RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 17 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-advanced), and provides wireless communication to terminals located in the sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 16 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by the eNB 830.
  • FIG. 17 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line that connects the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may include multiple RF circuits 864.
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on chip (SoC), and controls functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives operation or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 may include multiple BB processors 913 and multiple RF circuits 914. Although FIG. 18 shows an example in which the wireless communication interface 912 includes multiple BB processors 913 and multiple RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smartphone 900 may include multiple antennas 916.
  • FIG. 18 shows an example in which the smartphone 900 includes multiple antennas 916, the smartphone 900 may also include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage device 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other connection.
  • the battery 918 supplies power to various blocks of the smartphone 900 shown in FIG. 18 via a feeder, which is partially shown as a dotted line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless A communication interface 933, one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or an SoC, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 920.
  • the sensor 925 may include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces the content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image or reproduced content of a navigation function.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-advanced), and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include multiple BB processors 934 and multiple RF circuits 935. Although FIG. 19 shows an example in which the wireless communication interface 933 includes multiple BB processors 934 and multiple RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933 (such as circuits for different wireless communication schemes).
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 19 shows an example in which the car navigation device 920 includes multiple antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to various blocks of the car navigation device 920 shown in FIG. 19 via a feeder, which is partially shown as a dotted line in the figure.
  • the battery 938 accumulates power supplied from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in a car navigation device 920, an in-vehicle network 941, and a vehicle module 942.
  • vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the vehicle-mounted network 941.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field-programmable gate arrays
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, and / or state machine.
  • a processor may also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors incorporating DSP cores, and / or any other such configuration.
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on a non-transitory computer-readable medium or transmitted as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of this disclosure and the appended claims. For example, in view of the nature of software, the functions described above may be performed using software executed by a processor, hardware, firmware, hard-wired, or any combination of these. Features implementing functions can also be physically placed at various locations, including being distributed so that parts of the functions are implemented at different physical locations.
  • the non-transitory computer-readable medium may be any available non-transitory medium that can be accessed by a general-purpose computer or a special-purpose computer.
  • non-transitory computer readable media can include RAM, ROM, EEPROM, flash memory, CD-ROM, DVD or other optical disk storage, magnetic disk storage or other magnetic storage devices, or can be used
  • the desired program code components in the form of instructions or data structures that carry or store and any other media that can be accessed by a general purpose or special purpose computer or general purpose or special purpose processor.
  • the processing circuit is configured to perform control so that the electronic device:
  • a second indication signal is sent to indicate a precoding scheme for data sent from the base station to the multiple terminals, the precoding scheme including linear precoding or non-linear precoding.
  • Estimating the channel correlation of the plurality of terminals in the second direction wherein the predetermined condition includes that the channel correlation of the plurality of terminals in the first direction is higher than that of the plurality of terminals in the second direction Channel correlation,
  • the precoding parameters of the data sent to the multiple terminals are determined.
  • determining the common precoding parameters of the multiple terminals in the first direction includes:
  • a constant multiple of the weighted average of the precoding parameters of the plurality of terminals in the first direction is used as the common precoding parameter.
  • the channel information in the second direction fed back by the plurality of terminals is determined by the plurality of terminals based on the third reference signal received from the base station and subjected to linear preprocessing with the common precoding parameter.
  • the demodulation reference signal includes K orthogonal sequences, and K is the multiple The number of terminals.
  • the second interval is shorter than the first interval.
  • sending the second indication signal to indicate the data sent from the base station to the plurality of terminals The precoding scheme is non-linear precoding, and / or in response to the estimated equivalent channel correlation of the plurality of terminals in the second direction being lower than a second correlation threshold, sending the second indication signal to indicate from The precoding scheme of the data sent by the base station to the multiple terminals is linear precoding.
  • the electronic device according to any one of items 1 to 12 (particularly 1 to 11), wherein the electronic device is implemented as a base station, and the electronic device further includes multiple antennas, and the multiple antennas It is used to send a data signal pre-encoded by the pre-coding scheme to the multiple terminals on the same transmission resource.
  • the processing circuit further includes a digital precoder.
  • the digital precoder is configured to adjust the amplitude and phase of the baseband data signal for each terminal according to the precoding scheme.
  • An electronic device running on the terminal side including:
  • the processing circuit is configured to perform control so that the electronic device:
  • the electronic device In response to receiving the first indication signal, it is determined that the second measurement process is performed after the first measurement process is performed, wherein the electronic device performs the first measurement during the first measurement process and feeds back channel information in the first direction, and the electronic device performs Performing the second measurement during the second measurement process and feeding back channel information in the second direction;
  • the precoding scheme including linear precoding or non-linear precoding
  • the first indication signal is sent by the base station in response to determining that the channel correlation between the terminal and other terminals in the first direction satisfies a predetermined condition, and the second indication signal is sent by the base station based on the second direction fed back by the terminal On the channel information.
  • processing circuit is further configured to perform control so that the electronic device:
  • a precoding matrix matching the result of the first measurement is selected from the channel codebook in the first direction, and an indicator of the precoding matrix is included in the channel information in the first direction that is fed back.
  • channel information in the first direction is sent to the base station, which is used to determine common precoding parameters of the downlink data of the terminal and the other terminal in the first direction;
  • channel information in the second direction is sent to the base station, which is used to determine the precoding parameters of the downlink data of the terminal and the other terminal in the second direction;
  • the Kronecker product of the common precoding parameter in the first direction and the precoding parameter in the second direction is used to determine the precoding parameter of the precoding scheme.
  • the channel information in the second direction is determined based on the third reference signal received from the base station and linearly preprocessed with the common precoding parameter.
  • Receive demodulation parameters for nonlinear demodulation from the base station where the demodulation parameters are determined by the base station based on channel information in the second direction.
  • the demodulation reference signal includes K orthogonal sequences, and K is the multiple The number of terminals.
  • the second interval is shorter than the first interval.
  • the electronic device according to any one of items 15 to 22 (especially 15 to 21), wherein the electronic device is implemented as a terminal, and the electronic device further includes an antenna, and the antenna is used to receive a base station A data signal that is pre-encoded using the pre-coding scheme and sent to multiple terminals including the terminal on the same transmission resource, and
  • the processing circuit is also configured to perform control so that:
  • a modulo operation is performed on the received data signal to perform data demodulation.
  • the processing circuit is configured to perform control so that the electronic device:
  • the precoding parameters used to perform nonlinear precoding on the data sent from the base station to the multiple terminals are determined.
  • determining the common precoding parameters of the multiple terminals in the first direction includes:
  • a constant multiple of the weighted average of the precoding parameters of the plurality of terminals in the first direction is used as the common precoding parameter.
  • the channel information in the second direction fed back by the plurality of terminals is determined by the plurality of terminals based on the third reference signal received from the base station and subjected to linear preprocessing with the common precoding parameter.
  • the electronic device according to items 24 to 29 (especially 24 to 28), wherein the electronic device is implemented as a base station, and the electronic device further includes multiple antennas, the multiple antennas are used in the same Sending data signals pre-encoded using the pre-coding scheme to the plurality of terminals on the transmission resources of.
  • a communication method performed on the base station side including:
  • a second indication signal is sent to indicate a precoding scheme for data sent from the base station to the multiple terminals, the precoding scheme including linear precoding or non-linear precoding.
  • a communication method executed on the terminal side including:
  • the second measurement process is performed after the first measurement process is performed, wherein the first measurement is performed during the first measurement process and the channel information in the first direction is fed back, during the second measurement process Performs a second measurement and feeds back channel information in the second direction, and
  • the precoding scheme including linear precoding or non-linear precoding
  • the first indication signal is sent by the base station in response to determining that the channel correlation between the terminal and other terminals in the first direction satisfies a predetermined condition, and the second indication signal is sent by the base station based on the second direction fed back by the terminal On the channel information.
  • a communication method performed on the base station side including:
  • the precoding parameters used to perform nonlinear precoding on the data sent from the base station to the multiple terminals are determined.
  • a non-transitory computer-readable storage medium having instructions stored thereon, which when executed by a processor causes the processor to perform the method according to any one of items 31 to 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开涉及电子设备、通信方法以及介质。提供了一种在基站侧运行的电子设备。所述电子设备包括处理电路,所述处理电路被配置为执行控制以使得所述电子设备:估计与基站通信的多个终端在第一方向上的信道相关性;以及响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,发送第一指示信号以指示在执行第一测量过程以确定第一方向上的信道信息之后执行第二测量过程以确定第二方向上的信道信息,以及基于所述第二方向上的信道信息,发送第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案,所述预编码方案包括线性预编码或者非线性预编码。

Description

电子设备、通信方法以及介质
优先权声明
本申请要求于2018年10月26日递交、申请号为201811256542.X、发明名称为“电子设备、通信方法以及介质”的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及电子设备、通信方法以及介质。更具体而言,本公开涉及用于全维多输入多输出(Full-Dimension MIMO,FD-MIMO)***中的混合预编码的电子设备、通信方法以及介质。
背景技术
大规模多输入多输出(Massive MIMO)***采用预编码技术实现空间复用,提升频谱效率。已知的预编码技术包括线性预编码(Linear Precoding,LP)和非线性预编码(Non-Linear Precoding,NLP)。传统线性预编码包括匹配滤波(Matched Filter,MF)预编码、迫零(Zero Forcing,ZF)预编码和最小均方误差(Minimum Mean Square Error,MMSE)预编码等。传统非线性预编码包括Tomlinson-Harashima预编码(Tomlinson-Harashima precoding,THP)和Vector Perturb(VP)等。
发明内容
本公开的发明人发现,虽然线性预编码在弱相关信道下可以较低的复杂度实现较好的性能,然而在强相关信道下无法在有效消除用户间干扰的同时抑制噪声。本公开的发明人还发现,传统非线性预编码虽然能够降低用户间干扰,但是其在用户数较多、基站端天线规模较大时,计算复杂度高,且需要精确的信道状态信息,有很高的参考信号开销。
FD-MIMO是大规模多天线***的典型实现方式。一方面,其垂直方向到达角分布在较小的区间内,信道相关性强。另一方面,其用户数较多、基站端天线规模较大。因此,需要研究适用于FD-MIMO的预编码方案以用于5G等下一代通信***。
本公开提供了一种在基站侧运行的电子设备。所述电子设备包括处理电路,所述处 理电路被配置为执行控制以使得所述电子设备:估计与基站通信的多个终端在第一方向上的信道相关性;以及响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,发送第一指示信号以指示在执行第一测量过程以确定第一方向上的信道信息之后执行第二测量过程以确定第二方向上的信道信息,以及基于所述第二方向上的信道信息,发送第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案,所述预编码方案包括线性预编码或者非线性预编码。
本公开提供了一种在终端侧运行的电子设备。所述电子设备包括处理电路,所述处理电路被配置为执行控制以使得所述电子设备:向基站发送第一参考信号,以用于基站估计该终端与其它终端在第一方向上的信道相关性;响应于接收到第一指示信号,确定在执行第一测量过程之后执行第二测量过程,其中,电子设备在第一测量过程中执行第一测量并反馈第一方向上的信道信息,电子设备在第二测量过程中执行第二测量并反馈第二方向上的信道信息;以及响应于接收到第二指示信号,根据其中指示的预编码方案,对从基站发送的数据进行相应解调,所述预编码方案包括线性预编码或者非线性预编码,其中,第一指示信号是由基站响应于确定所述终端与其它终端在第一方向上的信道相关性满足预定条件而发送的,第二指示信号是由基站基于所述终端反馈的第二方向上的信道信息而发送的。
本公开提供了一种在基站侧运行的电子设备。所述电子设备包括处理电路,所述处理电路被配置为执行控制以使得所述电子设备:估计与基站通信的多个终端在第一方向上的信道相关性;响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,基于所述多个终端反馈的各自在第一方向上的信道信息,确定所述多个终端在第一方向上的公共预编码参数;基于所述多个终端反馈的各自在第二方向上的信道信息,确定所述多个终端各自在第二方向上的预编码参数;以及基于第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积,确定用于对从基站向所述多个终端发送的数据进行非线性预编码的预编码参数。
本公开提供了一种在基站侧执行的通信方法。所述方法包括:估计与基站通信的多个终端在第一方向上的信道相关性;以及响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,发送第一指示信号以指示在执行第一测量过程以确定第一方向上的信道信息之后执行第二测量过程以确定第二方向上的信道信息,以及基于所述第二方向上的信道信息,发送第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案,所述预编码方案包括线性预编码或者非线性预编码。
本公开提供了一种在终端侧执行的通信方法。所述方法包括:向基站发送第一参考信号,以用于基站估计该终端与其它终端在第一方向上的信道相关性;响应于接收到第一指示信号,确定在执行第一测量过程之后执行第二测量过程,其中,在第一测量过程中执行第一测量并反馈第一方向上的信道信息,在第二测量过程中执行第二测量并反馈第二方向上的信道信息,以及响应于接收到第二指示信号,根据其中指示的预编码方案,对从基站发送的数据进行相应解调,所述预编码方案包括线性预编码或者非线性预编码,其中,第一指示信号是由基站响应于确定所述终端与其它终端在第一方向上的信道相关性满足预定条件而发送的,第二指示信号是由基站基于所述终端反馈的第二方向上的信道信息而发送的。
本公开提供了一种在基站侧执行的通信方法。所述方法包括:估计与基站通信的多个终端在第一方向上的信道相关性;响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,基于所述多个终端各自在第一方向上的信道信息,确定所述多个终端在第一方向上的公共预编码参数;基于所述多个终端各自在第二方向上的信道信息,确定所述多个终端各自在第二方向上的预编码参数;以及基于第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积,确定用于对从基站向所述多个终端发送的数据进行非线性预编码的预编码参数。
本公开提供了一种非暂态计算机可读存储介质,其上存储有指令,所述指令在由处理器执行时使得处理器执行本公开的方法。
附图说明
当结合附图考虑实施例的以下具体描述时,获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。
图1是示出根据本公开的一些实施例的通信***的示意图。
图2是示出根据本公开的一些实施例的基站的结构的示意图。
图3是示出根据本公开的一些实施例的终端的结构的示意图。
图4是示出根据本公开的一些实施例的通信***的处理流程的示意图。
图5A是示出根据本公开的一些实施例的通信***的第一测量过程的示意图。图5B是示出根据本公开的一些实施例的通过天线发送第一方向上的第二参考信号的示意图。
图6A是示出根据本公开的一些实施例的通信***的第二测量过程的示意图。图6B是示出根据本公开的一些实施例的通过天线发送第二方向上的第三参考信号的示意图。图6C是示出根据本公开的一些实施例的通过天线发送用第一方向上的公共预编码参数进行了线性预处理的第三参考信号的示意图。
图7是示出根据本公开的一些实施例的通信***的非线性预编码和解调的示意图,其符合THP预编码结构。
图8是示出根据本公开的一些实施例的在基站侧执行的通信方法的流程图。
图9是示出根据本公开的一些实施例的在终端侧执行的通信方法的流程图。
图10是示出根据本公开的一些实施例的通信***的处理流程的示意图。
图11是示出根据本公开的一些实施例的通信***的处理流程的示意图。
图12是示出根据本公开的一些实施例的在基站侧执行的通信方法的流程图。
图13A~13C是示出根据本公开的一些实施例的通信***的处理流程的示意图。
图14A是示出不同方案在场景1下的平均频谱效率的仿真结果。图14B是示出不同方案在场景2下的平均频谱效率的仿真结果。
图15是示出可以应用本公开内容的技术的计算设备的示意性配置的示例的框图。
图16是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。
图17是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。
图18是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图。
图19是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图。
具体实施方式
在下文中,将参照附图详细地描述本公开内容的优选实施例。注意,在本说明书和附图中,用相同的附图标记来表示具有基本上相同的功能和结构的结构元件,并且省略对这些结构元件的重复说明。
将按照以下顺序进行描述:
1.***概述
2.处理流程
3.仿真结果
4.应用示例
<1.***概述>
首先,将参照图1描述根据本公开的一些实施例的通信***的示意性结构。图1是示出根据本公开的一些实施例的通信***的示意图。参照图1,通信***包括基站100、终端200A、200B。通信***执行诸如LTE、LTE-Advanced、机器类型通信(MTC)、自组织网络或者认知无线电(例如,IEEE P802.19.1a和频谱访问***(Spectrum Access System,SAS))等类型的通信。
基站100以无线方式与终端200A、200B通信。基站100也与核心网络节点(例如,移动性管理实体(MME)、服务网关(S-GW)、分组数据网络网关(P-GW)等)通信。
终端200A、200B以无线方式与基站100通信。终端200A、200B也通过基站100与其它设备(例如,核心网络节点和外部设备)通信。此外,终端200A、200B还可以执行例如机器类型通信(MTC)。
基站100可以利用相同的时频资源与终端200A、200B通信,以实现空间复用。例如,在多用户MIMO的情况下,基站100利用MIMO天线实现与多个终端(用户)在相同的时频资源上通信。
利用相同的时频资源与基站通信的多个终端互相之间可能存在空间相关性。基站100可以通过预编码技术来降低终端200A、200B之间的空间相关性,从而减小终端200A、200B之间的相互干扰。
注意,虽然在图1中示出了两个终端200A、200B,但是实际上通信***100还可以包括更多的终端。在下面的描述中,当不需要区分终端200A、200B时,以标记200来统一表示终端200A、200B。
接下来,将参照图2描述根据本公开的一些实施例的基站100的结构的例子。图2是示出根据本公开的一些实施例的基站100的结构的示意图。参照图2,基站100包括天线单元110、无线通信单元120、网络通信单元130、存储单元140和处理单元150。
天线单元110接收无线电信号,并且将接收的无线电信号输出给无线通信单元120。天线单元110也发送从无线通信单元120输出的发送信号。天线单元110可以包括多个天线。在本公开的一些实施例中,多个天线在相同的传输资源(例如,时频资源)上向终端200A、200B发送预编码的数据信号。
无线通信单元120以无线方式与终端200A、200B通信。网络通信单元130与其它 通信节点通信。例如,网络通信单元130与其它基站100通信。此外,例如,网络通信单元130与核心网络节点通信。存储单元140存储用于操作基站100的程序和数据。
处理单元150提供基站100的各种功能。在本公开的一些实施例中,处理单元150包括信道测量单元151、预编码单元152和信令单元153。信道测量单元151执行信道测量功能,预编码单元152控制预编码操作,信令单元153执行信令交互功能。信道测量单元151、预编码单元152和信令单元153可以是硬件电路,也可以是软件模块。
在本公开的一些实施例中,基站100还包括数字预编码器,并且基站100被配置为对发送的信号进行基带数字预编码。数字预编码器被配置为根据所选择的预编码方案调整用于每个终端的基带数据信号的幅度和相位。
接下来,将参照图3描述根据本公开的一些实施例的终端200的结构的例子。图3是示出根据本公开的一些实施例的终端200的结构的示意图。参照图3,终端200包括天线单元210、无线通信单元220、存储单元230、输入单元240、显示单元250和处理单元260。
天线单元210接收无线电信号,并且将接收的无线电信号输出给无线通信单元220。在本公开的一些实施例中,天线单元210可以接收基站100在相同的传输资源上向终端200A、200B发送的预编码的信号。
天线单元210也发送从无线通信单元220输出的发送信号。无线通信单元220以无线方式与基站100通信。存储单元230存储用于操作终端200的程序和数据。输入单元240接收由终端200的用户执行的输入。然后,输入单元240将输入结果提供给处理单元260。显示单元250显示来自终端200的输出画面(即,输出图像)。例如,显示单元250在处理单元260的控制下显示输出画面。
处理单元260提供终端200的各种功能。处理单元260包括信道测量单元261、解调单元262和信令单元263。信道测量单元151执行信道测量功能,解调单元262控制解调操作,信令单元153执行信令交互功能。信道测量单元261、解调单元262和信令单元263可以是硬件电路,也可以是软件模块。
基站100或终端200的一个或多个功能可以由处理电路实现。该处理电路可以被配置为直接执行或者控制基站100或终端200的其它部件和/或外部部件来执行基站100或终端200的功能。在根据本公开的一些实施例中,处理电路是通用处理器的形式,或者是专用处理电路,例如ASIC。在一些实施例中,处理电路能够由电路(硬件)或中央处理设备(诸如,中央处理单元(CPU))构造。
处理电路的部分或全部可以被设置在基站100或终端200内部的电子设备中。处理电路的部分或全部可以被设置在基站100外部的电子设备中,该电子设备可以相对于基站100远程地布置。例如,处理电路的一部分可以被实现为基站100的远程控制端或者远程控制端的部件。
该电子设备可以被配置为芯片(诸如包括单个晶片的集成电路模块)、硬件部件或完整的产品。该电子设备可以被配置为包括基站100或终端200的一个或多个其它部件。例如,该电子设备可以被配置为包括一个或多个天线。在一些实施例中,该电子设备可以被配置为基站100或终端200本身。
<2.处理流程>
接下来,将参照图4-12描述根据本公开的一些实施例的通信***的处理流程。基站和终端之间可以按照FDD通信机制进行通信或者按照TDD通信机制进行通信。FDD通信机制与TDD通信机制的区别之一在于信道估计过程中是否能够利用上下行信道互易性。在TDD通信机制下,上行信道和下行信道使用相同的频带从而具有互易性。在FDD通信机制下,上行信道和下行信道使用不同的频带因而不具有互易性。下面将主要描述FDD通信机制下的处理流程。但是,本公开的一些实施例不仅能够用于TDD通信机制,也能够用于FDD通信机制。此外,在下面的描述中,也对FDD通信机制下的一些变型示例进行了描述。
图4是示出根据本公开的一些实施例的通信***的处理流程400的示意图。
在步骤402,基站100、终端200A、200B执行信道估计过程以估计基站100和终端200A、200B之间的信道。在步骤404,基站100基于估计出的信道估计终端200A、200B的信道相关性(优选地,估计下行信道相关性)。
在本公开的一些实施例中,终端200A、200B向基站100发送第一参考信号。基站100基于从终端200A、200B接收到的第一参考信号估计终端200A、200B的信道相关性。例如,基站100根据接收到的第一参考信号估计终端200A、200B的上行信道,然后基于估计出的上行信道来估计终端200A、200B的信道相关性。
在TDD通信机制下,上行信道和下行信道具有互易性。因此,终端200A、200B的下行信道相关性可以由基站100基于从终端200A、200B接收到的第一参考信号来估计。
在FDD通信机制下,上行信道和下行信道不具有互易性。但是,本公开的发明人发现虽然上行信道和下行信道不具有互易性,不能根据上行信道得到准确的下行信道信息,但是两个终端之间的上行信道的空间相关性和它们之间的下行信道的空间相关性保持一致。因此,本公开的发明人提出,在FDD通信机制下本公开的技术方案也可以利用从终端200A、200B接收到的第一参考信号来估计终端200A、200B的下行信道相关性。
在本公开的一些实施例中,基站100向终端200A、200B发送第一参考信号。终端200A、200B基于从基站100接收到的第一参考信号估计下行信道,并将所估计的下行信道反馈给基站100。基站100然后根据从终端200A、200B反馈的下行信道来估计终端200A、200B的下行信道相关性。此外,基站100可以根据从终端200A、200B接收的信号质量来确定终端200A、200B的信道相关性。例如,在某些场景中,当从终端200A、200B接收的信号质量较低时认为终端200A、200B的信道相关性较高,当从终端200A、200B接收的信号质量较高时认为终端200A、200B的信道相关性较低。
在本公开的一些实施例中,基站100通过评估信道矩阵的奇异性来判断信道相关性。例如可以计算信道H的条件数cond(H)=||H||·||H -1||(矩阵范数计算可采用不同的范数计算方法)。cond(H)越大则信道矩阵越接近于奇异或欠秩,从而信道的相关性就越高。
在本公开的实施例中,将上行/下行信道拆分为三维空间上的两个方向(例如,第一方向和第二方向)以寻求性能、复杂度与信令开销折中的预编码方案。基站100例如利用第一方向上的天线接收终端200A、200B发送的上行参考信号以估计终端200A、200B在第一方向上的信道相关性。基站100判断第一方向上的信道相关性是否满足预定条件,若满足预定条件则确定第一方向上的信道相关性足够高。具体地,可以计算第一方向上的信道H e的条件数
Figure PCTCN2019112207-appb-000001
(矩阵范数计算可采用不同的范数计算方法)。cond(H e)越大则信道矩阵越接近于奇异或欠秩,从而信道在第一方向的相关性就越高。在本公开的一些实施例中,该预定条件包括第一方向上的信道相关性高于第一相关性阈值。在本公开的一些实施例中,基站100还例如利用第二方向上的天线接收终端200A、200B发送的上行参考信号以估计终端200A、200B在第二方向上的信道相关性,并且所述预定条件包括第一方向上的信道相关性高于第二方向上的信道相关性。
在通常的使用场景中,多个终端在水平方向分布在一个较大的角度内,而在垂直方向分布在一个较小的角度内。因此,这多个终端的垂直方向的信道相关性通常明显大于水平方向的信道相关性。因此,对于这种使用场景,可以仅估计垂直方向的信道相关性。此时,第一方向为垂直方向,第二方向为水平方向。
然而,本公开的实施例不限于用于这种使用场景,其也可以用于水平方向的信道相关性大于垂直方向的信道相关性的场景中,例如楼宇内不同楼层之间终端用户同时要求服务的场景,或者用于不能提前确定哪个方向的信道相关性较强的场景中。因此,在下面的讨论中,我们用第一方向和第二方向来指代相互正交的两个方向,而不将其具体限定为垂直方向或水平方向。
此外,第一方向和第二方向不限于垂直方向和水平方向,其也可以指代相互垂直的其它方向。
在步骤406,基站100可以在确定第一方向上的信道相关性满足预定条件的情况下,发送第一指示信号以指示在执行第一测量过程以确定第一方向上的信道信息之后执行第二测量过程以确定第二方向上的信道信息。终端200A、200B响应于接收到第一指示信号,确定在执行第一测量过程之后执行第二测量过程。终端200A、200B在第一测量过程中执行第一测量并反馈第一方向上的信道信息。终端200A、200B在第二测量过程中执行第二测量并反馈第二方向上的信道信息。
第一指示信号例如可以是控制信令(例如,RRC信令)中的一个比特。可以通过赋予第一指示信号不同的值来指示第一测量过程和第二测量过程的执行次序以便终端选择对应的码本进行测量结果反馈。例如,可以将第一指示信号设置为0来表示先执行第一测量过程后执行第二测量过程,将第一指示信号设置为1来表示先执行第二测量过程后执行第一测量过程,反之亦然。在本公开的一些实施例中,可以将更多的比特分配给第一指示信号,以使得第一指示信号可以携带更多的信息。
在步骤408,基站100、终端200A、200B执行第一测量过程以确定第一方向上的信道信息。在步骤410,基站100、终端200A、200B执行第二测量过程以确定第二方向上的信道信息。接下来将参考图5-6描述第一测量过程和第二测量过程。
图5A是示出根据本公开的一些实施例的通信***的第一测量过程600的示意图。
在步骤502,基站100向终端200A、200B发送第一方向上的第二参考信号。终端200A、200B接收基站100在第一方向上发送的第二参考信号以执行第一测量。图5B是示出根据本公开的一些实施例的通过天线发送第一方向上的第二参考信号的示意图。如图5B所示,基站100在第一方向上选取一列天线,并通过选取的该列天线发送第二参考信号。注意,虽然图5B中示出的是4×4的天线,基站100也可以采用其他规模的天线。
在步骤504,终端200A、200B基于第二参考信号估计第一方向上的信道信息。例如,终端200A、200B可以从第一方向的信道码本中选择与第一测量的结果匹配的预编 码矩阵。在步骤506,终端200A、200B将第一方向上的信道信息反馈给基站100。例如,终端200A、200B将匹配的预编码矩阵的指示符包含于所反馈的第一方向上的信道信息中。
图6A是示出根据本公开的一些实施例的通信***的第二测量过程600的示意图。
在步骤602,基站100向终端200A、200B发送第二方向上的第三参考信号。终端200A、200B接收基站100在第二方向上发送的第三参考信号以执行第二测量。图6B是示出根据本公开的一些实施例的通过天线发送第二方向上的第三参考信号的示意图。如图6B所示,基站100在第二方向上选取一行天线,并通过选取的该行天线发送第三参考信号。注意,虽然图6B中示出的是4×4的天线,基站100也可以采用其他规模的天线。
在步骤604,终端200A、200B基于第三参考信号估计第二方向上的信道信息。例如,终端200A、200B可以从第二方向的信道码本中选择与第二测量的结果匹配的预编码矩阵。在步骤606,终端200A、200B将第二方向上的信道信息反馈给基站100。例如,终端200A、200B将匹配的预编码矩阵的指示符包含于所反馈的第二方向上的信道信息中。
在本公开的一些实施例中,基站100基于第一测量过程中终端200A、200B反馈的各自在第一方向上的信道信息,确定终端200A、200B在第一方向上的公共预编码参数以对相关性较强的第一方向上的信道进行预处理。对相关性较强的第一方向上的信道进行预处理能够降低后续方案的复杂度。例如,基站100基于终端200A、200B反馈的各自在第一方向上的信道信息,生成终端200A、200B各自在第一方向上的预编码参数。基站100将终端200A、200B各自在第一方向上的预编码参数的加权平均的常数倍作为第一方向上的公共预编码参数。
在本公开的一些实施例中,在第二测量过程中,基站100向终端200A、200B发送用第一方向上的公共预编码参数进行了线性预处理的第三参考信号。图6C是示出根据本公开的一些实施例的通过天线发送用第一方向上的公共预编码参数进行了线性预处理的第三参考信号的示意图。与图6B不同的是,在图6C中,基站100在第二方向上的每一行天线上都发送第三参考信号,并且在第一方向上的每一列天线内部,用第一方向上的公共预编码参数对通过该列天线发送的信号进行线性预处理。注意,虽然图6B中示出的是4×4的天线,基站100也可以采用其他规模的天线。终端200A、200B从基站100接收用第一方向上的公共预编码参数进行了线性预处理的第三参考信号。终端200A、200B基于从基站100接收的用公共预编码参数进行了线性预处理的第三参考信号确定各自在 第二方向上的信道信息。在用第一方向上的公共预编码参数对第三参考信号进行线性预处理的情况下,终端200A、200B所估计出的信道为第二方向上的等效信道。此时,终端200A、200B反馈的第二方向上的信道信息指示第二方向上的等效信道。
在本公开的一些实施例中,基站100基于终端200A、200B反馈的各自在第二方向上的信道信息,确定终端200A、200B各自在第二方向上的预编码参数。
以通常的室外用户分布下的FD-MIMO***为例,记
Figure PCTCN2019112207-appb-000002
为基站100与第k个终端间的信道,其中M y,M x分别为基站100在第一方向和第二方向上的天线数量。在第一方向上的角度扩展较小的情况下(例如,通常的室外用户分布下的FD-MIMO***中垂直方向的角度扩展较小),H k可近似表示为:
Figure PCTCN2019112207-appb-000003
其中,h e,k为近似的第一方向上的信道导向向量,
Figure PCTCN2019112207-appb-000004
为第p条径的第二方向上的信道导向向量,
Figure PCTCN2019112207-appb-000005
为对应的大尺度衰落系数,
Figure PCTCN2019112207-appb-000006
为KP操作符。因此,在该场景下,可先获取近似的h e,k,以进行第一方向的线性预处理。
首先推导NLP在第一方向线性预处理应满足的条件。记
Figure PCTCN2019112207-appb-000007
Figure PCTCN2019112207-appb-000008
为K个终端的下行信道,cvec(·)为列向量化。
Figure PCTCN2019112207-appb-000009
Figure PCTCN2019112207-appb-000010
为总预编码矩阵,其应该具有KP结构如下:
Figure PCTCN2019112207-appb-000011
其中,p e,k与p a,k分别为对第k个终端的第一方向与第二方向上的预编码向量。用第一方向上的预编码向量p e,k在第一方向上进行线性预处理后,得到第二方向上的等效信道
Figure PCTCN2019112207-appb-000012
并用第二方向上的预编码矩阵P a进行第二方向上的预编码如下:
HP=T=H eqP a
其中,第二方向上的预编码矩阵
Figure PCTCN2019112207-appb-000013
T的第k,k′个元素t kk′可表示为如下:
Figure PCTCN2019112207-appb-000014
其中,p a,k′,i为p a,k′的第i个元素,h k,i为H k的第i列,h eq,k,i为H eq的第k行第i列的元素。为使得
Figure PCTCN2019112207-appb-000015
应有p e,k′独立于k′,即p e,k′=p e。这表明需使得针对K个终端在第一方向上采用相同的预编码向量,即,公共预编码向量或者公共预编码参数。
记第一方向上的信道为
Figure PCTCN2019112207-appb-000016
可以将第一方向上的预编码 矩阵选择为
Figure PCTCN2019112207-appb-000017
在本公开的一些实施例中,
Figure PCTCN2019112207-appb-000018
可以表示计算第一方向上的信道H e的伪逆。在本公开的一些实施例中,
Figure PCTCN2019112207-appb-000019
可以表示对第一方向上的信道H e进行QR分解,并且将QR分解得到的酉矩阵作为第一方向上的预编码矩阵P e
在本公开的一些实施例中,用P e(:,k)的加权和作为公共预编码参数p e,即:
Figure PCTCN2019112207-appb-000020
其中,α k为加权系数,且
Figure PCTCN2019112207-appb-000021
在α k=1/K的情况下,公共预编码参数p e为P e(:,k)的均值。公共预编码参数的计算方法会影响***最终性能,因此可根据不同的FD-MIMO***特别设计。
在用第一方向上的公共预编码参数对第二参考信号进行线性预处理的情况下,终端200A、200B所估计出的信道为第二方向上的等效信道。第二方向上的等效信道H eq可以按如下方式表示:
Figure PCTCN2019112207-appb-000022
在TDD***中,终端200A、200B在第一测量过程中向基站100发送第一方向上的第二参考信号。基站100基于从终端200A、200B接收到的第一方向上的第二参考信号估计第一方向上的信道信息。终端200A、200B在第二测量过程中向基站100发送第二方向上的第三参考信号。基站100基于从终端200A、200B接收到的第二方向上的第三参考信号估计第二方向上的信道信息。并且利用第一方向上的公共预编码参数和第二方向上的信道信息按如下方式计算第二方向上的等效信道H eq
Figure PCTCN2019112207-appb-000023
可通过函数
Figure PCTCN2019112207-appb-000024
来计算第二方向上的预编码矩阵,即,
Figure PCTCN2019112207-appb-000025
在本公开的一些实施例中,
Figure PCTCN2019112207-appb-000026
可以表示对第二方向上的等效信道H eq进行QR分解,并且将QR分解得到的酉矩阵作为第二方向上的预编码矩阵P e。例如,将H eq进行QR分解
Figure PCTCN2019112207-appb-000027
其中矩阵
Figure PCTCN2019112207-appb-000028
为下三角阵,第二方向上的预编码矩阵P a为酉矩阵。
总预编码矩阵可以被选取为
Figure PCTCN2019112207-appb-000029
即,第一方向上的公共预编码向量p e和第二方向上的预编码矩阵P a的Kronecker积。因此,预编码后的等效信道为:
HP=T=H eqP a=L。
通过选择不同的
Figure PCTCN2019112207-appb-000030
Figure PCTCN2019112207-appb-000031
可以设计具有不同性能的NLP算法。
回到图4,在步骤412,基站100基于第二方向上的信道信息,确定从基站100向终端200A、200B发送的数据的预编码方案,并发送第二指示信号以指示所确定的 预编码方案。预编码方案包括线性预编码或者非线性预编码。终端200A、200B响应于接收到第二指示信号,根据其中指示的预编码方案,对从基站100发送的数据进行相应解调。
第二指示信号例如可以是控制信令(例如,RRC信令)中的一个比特。可以通过赋予第二指示信号不同的值来指示不同的预编码方案。例如,可以将第二指示信号设置为0来表示线性预编码,将第二指示信号设置为1来表示非线性预编码,反之亦然。在本公开的一些实施例中,可以将更多的比特分配给第二指示信号,以使得第二指示信号可以携带更多的信息。需要说明的是,本公开最终的预编码方案实际上是二维混合的预编码方案,可能在第一方向进行非线性预编码而在第二方向进行线性预编码,也可能在第一方向进行线性预编码而在第二方向进行非线性预编码,而第二指示信号所指示的最终预编码方案取决于在第二方向上所进行的预编码类型,指示的目的在于使得终端可以判断是否对接收信号执行取模操作。
在本公开的一些实施例中,基站100基于第二测量过程中终端200A、200B反馈的各自在第二方向上的信道信息,估计终端200A、200B在第二方向上的等效信道相关性。响应于所估计的终端200A、200B在第二方向上的等效信道相关性高于第二相关性阈值,基站100发送第二指示信号以指示从基站100向终端200A、200B发送的数据的预编码方案是非线性预编码。响应于所估计的终端200A、200B在第二方向上的等效信道相关性低于第二相关性阈值,基站100发送第二指示信号以指示从基站100向终端200A、200B发送的数据的预编码方案是线性预编码。
第二方向上的等效信道相关性可以通过第二方向上的等效信道的条件数cond(H eq)来计算。当cond(H eq)大于第二相关性阈值时采用非线性预编码,否则采用线性预编码。也可预先假设使用线性预编码,计算终端此时的SINR。若SINR小于设定阈值,则采用非线性预编码,否则采用线性预编码。
在本公开的一些实施例中,基站100在第一测量过程中以第一间隔向终端200A、200B发送第二参考信号,在第二测量过程中以第二间隔从基站100向终端200A、200B发送第三参考信号。终端200A、200B在第一测量过程中从基站100接收以第一间隔发送的第二参考信号。终端200A、200B在第二测量过程中从基站接收以第二间隔发送的第三参考信号。
在本公开的一些实施例中,在基站100确定使用非线性预编码之后,基站100将第二测量过程中发送的第三参考信号的发送周期缩短,使得第二间隔短于第一间隔,从而 获得更精确的第二方向上的信道信息。
在步骤414,基站100用所确定的预编码方案对数据进行预编码,并将预编码的数据发送给终端200A、200B。在步骤416,终端200A、200B基于第二指示信号中所指示的预编码方案对数据进行解调。在本公开的一些实施例中,终端200A、200B响应于所述第二指示信号指示预编码方案是非线性预编码方案,对接收的数据信号进行取模操作以解调数据。
可以使用的线性预编码包括匹配滤波(Matched Filter,MF)预编码、迫零(Zero Forcing,ZF)预编码和最小均方误差(Minimum Mean Square Error,MMSE)预编码等。可以使用的非线性预编码包括Tomlinson-Harashima预编码(Tomlinson-Harashima precoding,THP)和Vector Perturb(VP)等。传统THP预编码结构在C.Windpassinger,R.F.H.Fischer,T.Vencel,and J.B.Huber,“Precoding in multiantenna and multiuser communications,”IEEE Trans.Wirel.Commun.,vol.3,no.4,pp.1305–1316,July 2004.中进行了描述,其全部内容通过引用并入本文。本公开对传统THP预编码结构进行了相应的改进。
图7是示出根据本公开的一些实施例的通信***的非线性预编码和解调的示意图,其符合THP预编码结构。如图7所示,基站100包括加法器771、发送MOD模块772、反馈过滤器773、前向过滤器774,终端200包括接收MOD模块775。
发送MOD模块772接收加法器771的输出并且对加法器771的输出进行取模操作以限制其功率。反馈过滤器773接收发送MOD模块772的输出
Figure PCTCN2019112207-appb-000032
并且用下三角矩阵L对
Figure PCTCN2019112207-appb-000033
进行干扰消除操作。加法器771将输入信号s和反馈过滤器773的输出相加。前向过滤器774接收发送MOD模块772的输出
Figure PCTCN2019112207-appb-000034
并对其用预编码参数进行前向过滤从而得到发送信号x。
在本公开的一些实施例中,基站100基于第一方向上的公共预编码参数与终端200A、200B各自在第二方向上的预编码参数的Kronecker积,确定向终端200A、200B发送的数据的预编码参数。例如,对向终端200A、200B发送的数据,在前向过滤器774中将总预编码矩阵
Figure PCTCN2019112207-appb-000035
作为预编码参数对数据进行前向过滤。
以M-QAM调制方式为例,记
Figure PCTCN2019112207-appb-000036
待发送信号向量为
Figure PCTCN2019112207-appb-000037
则发送MOD模块772的输出
Figure PCTCN2019112207-appb-000038
表示如下:
Figure PCTCN2019112207-appb-000039
其中取模操作为
Figure PCTCN2019112207-appb-000040
Figure PCTCN2019112207-appb-000041
为向下取整。
发送信号x经过信道H到达终端200。终端200用接收矩阵G=[g 1,…,g K]作为解调参数对接收信号y进行解调,并在接收MOD模块775中对处理后的信号进行取模操作。
在本公开的一些实施例中,基站100基于第二方向上的信道信息确定用于在终端200进行非线性解调的解调参数。在本公开的一些实施例中,使得作为解调参数的接收矩阵
Figure PCTCN2019112207-appb-000042
其中
Figure PCTCN2019112207-appb-000043
为下三角矩阵L对角线上的元素。接收信号y经过接收矩阵G处理后可以得到
Figure PCTCN2019112207-appb-000044
最终的接收符号可在接收端作同样的取模操作进行恢复,即s k=mod A(y′ k)。
当采用非线性预编码时,第k个接收端需提前知道作为解调参数的接收矩阵G。基站100可以将作为解调参数的接收矩阵G包括在第二指示信号中发送给终端200。终端从基站100接收用于进行非线性解调的解调参数。
替代地,基站100可以发送解调参考信号(DMRS),使得终端200根据DMRS估计作为解调参数的接收矩阵G。由于DMRS需用来估计接收端的接收矩阵G,因此DMRS不能进行非线性预编码。因此,在本公开的一些实施例中,基站100向终端200发送用于确定解调参数的未经非线性预编码的DMRS。终端200从基站100接收未经非线性预编码的DMRS以确定用于进行非线性解调的解调参数。
若采用ZF预编码,基站100发送DMRS向量
Figure PCTCN2019112207-appb-000045
则经预编码后的第k个终端的等效信道系数为y ZF,kk,其中y ZF,k为第k个用户的接收信号。
在非线性预编码方案下,基站100发送包括K个正交序列的DMRS,K为终端200的数量。记
Figure PCTCN2019112207-appb-000046
为正交DMRS序列,即
Figure PCTCN2019112207-appb-000047
此时可通过
Figure PCTCN2019112207-appb-000048
估计得到G,其中Y为接收信号向量。在这种情况下,DMRS序列长度为K×K,长于ZF的长度为K×1的DMRS序列。因此,非线性预编码方案下DMRS序列长度信息可被包括在第二信号中发送给终端200。
在毫米波混合预编码架构下,预编码包含基带数字预编码和射频模拟预编码。本公开的一些实施例中的预编码方案可以应用于基带数字预编码,以进一步降低经模拟预编 码/波束赋形后的强相关信道的终端间干扰。特别地,记
Figure PCTCN2019112207-appb-000049
Figure PCTCN2019112207-appb-000050
Figure PCTCN2019112207-appb-000051
分别为数字和模拟端预编码矩阵,其中N y,N x分别为第一方向和第二方向的射频链路数,则信号传输模型如下:
Figure PCTCN2019112207-appb-000052
其中,
Figure PCTCN2019112207-appb-000053
为经THP取模运算后的发送信号,G为接收矩阵。经模拟预编码后的等效基带信道HF RF可能仍为强相关信道,例如某几个终端位于同一个波束内的情况,此时可将本公开的一些实施例中的预编码方案应用于HF RF以进一步降低终端间干扰。
图8是示出根据本公开的一些实施例的在基站侧执行的通信方法880的流程图。
在步骤882,估计与基站通信的多个终端在第一方向上的信道相关性。在步骤884,判断多个终端在第一方向上的信道相关性是否满足预定条件。在步骤886,响应于估计的多个终端在第一方向上的信道相关性满足预定条件,发送第一指示信号以指示在执行第一测量过程以确定第一方向上的信道信息之后执行第二测量过程以确定第二方向上的信道信息。在步骤886,基于第二方向上的信道信息,发送第二指示信号以指示从基站向多个终端发送的数据的预编码方案,所述预编码方案包括线性预编码或者非线性预编码。
上述步骤的具体实现方式已经在前面参照图4进行了详细描述,这里不再赘述。
图9是示出根据本公开的一些实施例的在终端侧执行的通信方法990的流程图。
在步骤992,向基站发送第一参考信号,以用于基站估计该终端与其它终端在第一方向上的信道相关性。在步骤994,响应于接收到第一指示信号,确定在执行第一测量过程之后执行第二测量过程,其中,在第一测量过程中执行第一测量并反馈第一方向上的信道信息,在第二测量过程中执行第二测量并反馈第二方向上的信道信息。在步骤996,响应于接收到第二指示信号,根据其中指示的预编码方案,对从基站发送的数据进行相应解调,所述预编码方案包括线性预编码或者非线性预编码。第一指示信号是由基站响应于确定所述终端与其它终端在第一方向上的信道相关性满足预定条件而发送的,第二指示信号是由基站基于所述终端反馈的第二方向上的信道信息而发送的。
上述步骤的具体实现方式已经在前面参照图4进行了详细描述,这里不再赘述。
图10是示出根据本公开的一些实施例的通信***的处理流程1000的示意图。图10中的处理流程1000的步骤1002、1004与图4中的处理流程400的步骤402、404相同,因此不再赘述。
在步骤1006,基站100在确定第一方向上的信道相关性不满足预定条件的情况下,发送第一指示信号以指示在执行第二测量过程以确定第二方向上的信道信息之后执 行第一测量过程以确定第一方向上的信道信息。
在步骤1008,基站100、终端200A、200B执行第二测量过程以确定第二方向上的信道信息。在本公开的一些实施例中,基站100基于第二测量过程中终端200A、200B反馈的各自在第二方向上的信道信息,确定终端200A、200B在第二方向上的公共预编码参数。例如,基站100基于终端200A、200B反馈的各自在第二方向上的信道信息,生成终端200A、200B各自在第二方向上的预编码参数。基站100将终端200A、200B各自在第二方向上的预编码参数的加权平均的常数倍作为第二方向上的公共预编码参数。
在步骤1010,基站100、终端200A、200B执行第一测量过程以确定第一方向上的信道信息。在本公开的一些实施例中,在第一测量过程中,基站100向终端200A、200B发送用第二方向上的公共预编码参数进行了线性预处理的第二参考信号。终端200A、200B基于从基站100接收的用公共预编码参数进行了线性预处理的第二参考信号确定各自在第一方向上的信道信息。在用第二方向上的公共预编码参数对第二参考信号进行线性预处理的情况下,终端200A、200B估计出的信道为第一方向上的等效信道。此时,终端200A、200B反馈的第一方向上的信道信息指示第一方向上的等效信道。
在TDD***中,终端200A、200B在第二测量过程中向基站100发送第二方向上的第三参考信号。基站100基于从终端200A、200B接收到的第二方向上的第三参考信号估计第二方向上的信道信息。终端200A、200B在第一测量过程中向基站100发送第一方向上的第二参考信号。基站100基于从终端200A、200B接收到的第一方向上的第二参考信号估计第一方向上的信道信息。基站100基于第二方向上的公共预编码参数和第一方向上的信道信息计算第一方向上的等效信道。
在步骤1012,基站100基于第一方向上的信道信息,确定从基站100向终端200A、200B发送的数据的预编码方案,并发送第二指示信号以指示所确定的预编码方案。预编码方案包括线性预编码或者非线性预编码。
在本公开的一些实施例中,基站100基于第一测量过程中终端200A、200B反馈的各自在第一方向上的信道信息,估计终端200A、200B在第一方向上的等效信道相关性。响应于所估计的终端200A、200B在第一方向上的等效信道相关性高于第二相关性阈值,基站100发送第二指示信号以指示从基站100向终端200A、200B发送的数据的预编码方案是非线性预编码。响应于所估计的终端200A、200B在第一方向上的等效信道相关性低于第二相关性阈值,基站100发送第二指示信号以指示从基站100向终端200A、 200B发送的数据的预编码方案是线性预编码。
第一方向上的等效信道相关性可以通过第一方向上的等效信道的条件数来计算。当第一方向上的等效信道的条件数大于第二相关性阈值时采用非线性预编码,否则采用线性预编码。也可预先假设使用线性预编码,计算终端此时的SINR。若SINR小于设定阈值,则采用非线性预编码,否则采用线性预编码。
在本公开的一些实施例中,基站100在第一测量过程中以第一间隔向终端200A、200B发送第二参考信号,在第二测量过程中以第二间隔从基站100向终端200A、200B发送第三参考信号。在本公开的一些实施例中,在基站100确定使用非线性预编码之后,基站100将第一测量过程中发送的第二参考信号的发送周期缩短,以获得更精确的第一方向上的信道信息。
在步骤1014,基站100用所确定的预编码方案对数据进行预编码,并将预编码的数据发送给终端200A、200B。在步骤1016,终端200A、200B基于第二指示信号中所指示的预编码方案对数据进行解调。
在本公开的一些实施例中,基站100基于第二方向上的公共预编码参数与终端200A、200B各自在第一方向上的预编码参数的Kronecker积,确定向终端200A、200B发送的数据的预编码参数。
在本公开的一些实施例中,基站100基于第一方向上的信道信息确定用于在终端200A、200B进行非线性解调的解调参数,并且将解调参数包括在第二指示信号中发送给终端200A、200B。
上述步骤的具体实现方式已经在前面参照图4进行了详细描述,这里不再赘述。
在以上描述的实施例中,基站100和终端200A、200B按顺序执行第一测量过程和第二测量过程以估计第一方向上的下行信道和第二方向上的下行信道,然后基站100确定是否需要执行非线性预编码以及相应的预编码参数。在本公开的一些实施例中,基站100和终端200A、200B可以在单个测量过程中估计第一方向上的下行信道和第二方向上的下行信道二者,然后基站100确定是否需要执行非线性预编码以及相应的预编码参数。下面将参照图11对这些实施例中的处理流程进行详细说明。
图11是示出根据本公开的一些实施例的通信***的处理流程1100的示意图。在步骤1104,基站100、终端200A、200B执行信道估计过程。在本公开的一些实施例中,基站100在第一方向和第二方向的天线上均发送第一参考信号,终端200A、200B从基站100接收第一参考信号并且将所估计的第一方向上的下行信道和第二方向上的下行信道反 馈给基站100。
在TDD通信机制下,上行信道和下行信道具有互易性。因此,在本公开的一些实施例中,终端200A、200B向基站100发送第一参考信号。基站100利用上下行信道互易性基于由第一方向和第二方向的天线从终端200A、200B接收到的第一参考信号估计终端200A、200B在第一方向上的下行信道和第二方向上的下行信道。
在步骤1106,基站100基于估计出的终端200A、200B的第一方向上的下行信道和第二方向上的下行信道确定预编码方案。
在本公开的一些实施例中,基站100基于估计出的终端200A、200B的第一方向上的下行信道估计终端200A、200B在第一方向上的信道相关性,并且判断第一方向上的信道相关性是否满足预定条件。在本公开的一些实施例中,该预定条件包括第一方向上的信道相关性高于第一相关性阈值。在本公开的一些实施例中,基站100基于估计出的终端200A、200B的第二方向上的下行信道估计终端200A、200B在第二方向上的信道相关性,并且所述预定条件包括第一方向上的信道相关性高于第二方向上的信道相关性。
在第一方向上的信道相关性满足预定条件的情况下,基站100基于估计出的终端200A、200B的第一方向上的下行信道确定终端200A、200B在第一方向上的公共预编码参数。在本公开的一些实施例中,用函数
Figure PCTCN2019112207-appb-000054
来计算第一方向上的预编码矩阵
Figure PCTCN2019112207-appb-000055
Figure PCTCN2019112207-appb-000056
并且,用P e(:,k)的加权和作为公共预编码参数p e,即:
Figure PCTCN2019112207-appb-000057
其中,α k为加权系数,且
Figure PCTCN2019112207-appb-000058
在α k=1/K的情况下,公共预编码参数p e为P e(:,k)的平均值。
然后,基站100基于第一方向上的公共预编码参数和估计出的终端200A、200B在第二方向上的下行信道确定终端200A、200B各自在第二方向上的预编码参数。可以按如下方式计算第二方向上的等效信道H eq
Figure PCTCN2019112207-appb-000059
然后,用函数
Figure PCTCN2019112207-appb-000060
来计算第二方向上的预编码矩阵
Figure PCTCN2019112207-appb-000061
并将
Figure PCTCN2019112207-appb-000062
Figure PCTCN2019112207-appb-000063
作为总预编码矩阵。
步骤1108、1110、1112的处理与图4中步骤412、414、416的处理相同,在此不再赘述。此外,上述步骤的具体实现方式已经在前面参照图4进行了详细描述,这里不再赘述。
图12是示出根据本公开的一些实施例的在基站侧执行的通信方法1200的流程图。
在步骤1202,估计与基站通信的多个终端在第一方向上的信道相关性。在步骤1204,判断估计的多个终端在第一方向上的信道相关性是否满足预定条件。在步骤1206,基于所述多个终端各自在第一方向上的信道信息,确定所述多个终端在第一方向上的公共预编码参数。在步骤1208,基于所述多个终端各自在第二方向上的信道信息,确定所述多个终端各自在第二方向上的预编码参数。在步骤1210,基于第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积,确定用于对从基站向所述多个终端发送的数据进行非线性预编码的预编码参数。上述步骤的具体实现方式已经在前面参照图4进行了详细描述,这里不再赘述。
在以上描述的实施例中,由基站100确定是否进行非线性预编码。在本公开的一些实施例中,也可以由终端200A、200B确定是否进行非线性预编码。接下来将参照图13A对这些实施例中的处理流程进行详细说明。
图13A是示出根据本公开的一些实施例的通信***的处理流程1300的示意图。在步骤1302,基站100和终端200A、200B进行第一测量过程和第二测量过程。在步骤1304,终端200A、200B根据步骤1302中最后接收到的参考信号估计各自的信道状况,并根据估计的信道状况确定是否需要在基站100进行非线性预编码。例如,终端200A、200B根据步骤1302中最后接收到的参考信号检测SINR或RSRP。当SINR或RSRP较低时(例如低于某个阈值),终端200A、200B向基站100发送第三指示信号以指示需要在基站100进行非线性预编码。在步骤1308,基站100响应于接收到第三指示信号确定需要进行非线性预编码,并确定用于进行非线性预编码的预编码参数。在本公开的一些实施例中,基站100在步骤1308可以结合其它条件确定是否需要进行非线性预编码。例如,基站100可以根据发送第三指示信号的终端的数量确定是否需要进行非线性预编码。例如,当发送第三指示信号的终端的数量大于某个阈值数量时,基站100确定需要进行非线性预编码,当发送第三指示信号的终端的数量小于某个阈值数量时,基站100确定不进行非线性预编码。步骤1310、1312的处理与图4中步骤414、416的处理相同,在此不再赘述。此外,上述步骤的具体实现方式已经在前面参照图4进行了详细描述,这里不再赘述。
此外,根据本公开的一些实施例的通信***的处理流程还可以按照图13B和13C中所示的更具体的方式实现。
图13B是示出根据本公开的一些实施例的通信***的处理流程1320的示意图。在 图13B中,由基站100确定是否需要使用非线性预编码方案。
如图13B所示,在步骤1322,终端200A、200B向基站100发送上行SRS(解调参考信号),以供基站100估计终端200A、200B的上行信道。在步骤1324,基站100基于接收到的上行SRS估计终端200A、200B的上行信道。在步骤1326,基站100基于信道估计结果,确定终端200A、200B的信道在垂直方向的相关性和在水平方向的相关性。在步骤1326,基站100在确定垂直/水平方向的信道相关性满足预定条件的情况下,发送第一指示信号以指示在执行垂直/水平信道测量过程以确定垂直/水平方向上的信道信息之后执行水平/垂直信道测量过程以确定水平/垂直方向上的信道信息。在步骤1328,终端200A、200B响应于接收到第一指示信号,确定先选择垂直/水平码本执行垂直/水平信道测量过程,然后选择水平/垂直码本执行水平/垂直信道测量过程。
在步骤1330,基站100向终端200A、200B发送垂直/水平CSI-RS(信道状态指示参考信号),以供终端200A、200B估计垂直/水平信道。在步骤1332,终端200A、200B用垂直/水平码本估计垂直/水平信道。在步骤1334,终端200A、200B将垂直/水平CSI(信道状态信息)反馈给基站100。在步骤1336,基站100基于接收到的垂直/水平CSI计算垂直/水平公共预编码因子。
在步骤1338,基站100向终端200A、200B发送用垂直/水平公共预编码因子进行了预处理的水平/垂直CSI-RS,以供终端200A、200B估计等效水平/垂直信道。在步骤1340,终端200A、200B用水平/垂直码本估计等效水平/垂直信道。在步骤1342,终端200A、200B将等效水平/垂直CSI(信道状态信息)反馈给基站100。
在步骤1344,基站100基于接收到的等效水平/垂直CSI确定预编码方案以及总预编码矩阵。步骤1346、1348、1350的处理与图4中步骤412、414、416的处理相同,在此不再赘述。此外,上述步骤的具体实现方式已经在前面参照图4进行了详细描述,这里不再赘述。
图13C是示出根据本公开的一些实施例的通信***的处理流程1360的示意图。在图13C中,由终端200A、200B确定是否需要使用非线性预编码方案。
在图13C中,步骤1362~1382、1388、1390的处理与图13B中步骤1322~1342、1348、1350的处理相同,在此不再赘述。
但是,在步骤1384,终端200A、200B根据步骤1380中估计的等效水平/垂直信道确定是否需要在基站100进行非线性预编码。例如,终端200A、200B根据接收到的预处理的水平/垂直CSI-RS检测SINR或RSRP。当SINR或RSRP较低时(例如低于某个 阈值),终端200A、200B向基站100发送第三指示信号以指示需要在基站100进行非线性预编码。在步骤1386,基站100响应于接收到第三指示信号确定需要进行非线性预编码,并确定用于进行非线性预编码的预编码参数。上述步骤的具体实现方式已经在前面参照图13A进行了详细描述,这里不再赘述。
<3.仿真结果>
考虑两个单小区室外多用户场景,场景1为弱相关信道(例如,用户距离较远),场景2为强相关信道(例如,用户距离较近)。基本仿真参数如下:
表1基本仿真参数
TRP天线阵列大小 8×8
终端数量 2
TRP高度 50m
多径数量 P=6
垂直方向角度扩展 δ e=5°
水平方向角度扩展 δ a=30°
用户与TRP距离 [50,100]m,[60,65]m
水平发射角区间 [-60°,60°],[-5°,5°]
通过选择不同的
Figure PCTCN2019112207-appb-000064
Figure PCTCN2019112207-appb-000065
可实现不同的预编码算法(线性预编码或者非线性预编码)。如表2所示,选择
Figure PCTCN2019112207-appb-000066
为伪逆运算或QR分解,选择
Figure PCTCN2019112207-appb-000067
为伪逆运算,则最终实现的是ZF预编码;选择
Figure PCTCN2019112207-appb-000068
为QR分解,并对发送信号进行预干扰消除和取模运算,则最终实现的是THP预编码。
表2不同方案选择对比
Figure PCTCN2019112207-appb-000069
图14A是示出不同方案在场景1下的平均频谱效率的仿真结果。图14B是示出不同方案在场景2下的平均频谱效率的仿真结果。这里假设基站100已获取完整的CSI信息。其中传统ZF与传统THP指的是直接应用ZF与THP,而不进行KP分解,因此其 预编码需对K×M yM x维度的大矩阵进行操作,计算复杂度较高。本公开的一些实施例基于KP分解将K×M yM x维度的大矩阵分解为K×M y和K×M x两个小矩阵进行处理,因此计算复杂度较低。
可以看到,在图14A中场景1的弱相关信道下,传统ZF与传统THP性能比方案1~4的平均频谱效率更高。而在方案1~4中,方案4的平均频谱效率最高。在图14B中场景2的强相关信道下,传统THP的平均频谱效率仍然最高,但是方案4的平均频谱效率高于传统ZF方法。
<4.应用示例>
本公开内容的技术能够应用于各种产品。例如,基站100和终端200可以被实现为各种类型的计算设备。
例如,基站100可以被实现为任何类型的演进型节点B(eNB)、gNB或TRP(Transmit Receive Point),诸如宏eNB/gNB和小eNB/gNB。小eNB/gNB可以为覆盖比宏小区小的小区的eNB/gNB,诸如微微eNB/gNB、微eNB/gNB和家庭(毫微微)eNB/gNB。代替地,基站100可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站100可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站100工作。
例如,终端200可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备300还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端200可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[4-1.关于计算设备的应用示例]
图15是示出可以应用本公开内容的技术的计算设备700的示意性配置的示例的框图。计算设备700包括处理器701、存储器702、存储装置703、网络接口704以及总线706。
处理器701可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器700的功能。存储器702包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器701执行的程序。存储装置703可以包括存储介质,诸如半导 体存储器和硬盘。
网络接口704为用于将服务器700连接到有线通信网络705的有线通信接口。有线通信网络705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线706将处理器701、存储器702、存储装置703和网络接口704彼此连接。总线706可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
[4-2.关于基站的应用示例]
(第一应用示例)
图16是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图16所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图16示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为***到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图16所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图16所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图16示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图17是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图17所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图17示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图16描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图16描述的BB处理器826相同。如图17所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB 处理器856可以与eNB 830使用的多个频带兼容。虽然图17示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图17所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图17示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
[4-3.关于终端设备的应用示例]
(第一应用示例)
图18是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上***(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装 置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图18所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图18示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图18所示,智能电话900可以包括多个天线916。虽然图18示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图18所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
(第二应用示例)
图19是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位***(GPS)模块 924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被***到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图19所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图19示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图19所示,汽车导航设备920可以包括多个天线937。虽然图19示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图19所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载***(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
结合本公开所述的各种示意性的块和部件可以用被设计来执行本文所述的功能的通用处理器、数字信号处理器(DSP)、ASIC、FPGA或其他可编程逻辑设备、离散门或晶体管逻辑、离散硬件部件或它们的任意组合来实现或执行。通用处理器可以是微处理器,但是可替代地,处理器可以是任何传统的处理器、控制器、微控制器和/或状态机。处理器也可以被实现为计算设备的组合,例如DSP与微处理器、多个微处理器、结合DSP核的一个或多个微处理器和/或任何其他这样的配置的组合。
本文所述的功能可以在硬件、由处理器执行的软件、固件或它们的任意组合中实现。如果在由处理器执行的软件中实现,则功能可以被存储在非暂态计算机可读介质上或者被传输作为非暂态计算机可读介质上的一个或多个指令或代码。其他示例和实现在本公开和所附权利要求的范围和精神内。例如,鉴于软件的本质,以上所述的功能可以使用由处理器执行的软件、硬件、固件、硬连线或这些中的任意的组合来执行。实现功能的特征也可以被物理地置于各种位置处,包括被分布使得功能的部分在不同物理位置处实现。
此外,包含于其他部件内的或者与其他部件分离的部件的公开应当被认为是示例性的,因为潜在地可以实现多种其他架构以达成同样的功能,包括并入全部的、大部分的、和/或一些的元件作为一个或多个单一结构或分离结构的一部分。
非暂态计算机可读介质可以是能够被通用计算机或专用计算机存取的任何可用的非暂态介质。举例而言而非限制地,非暂态计算机可读介质可以包括RAM、ROM、EEPROM、闪速存储器、CD-ROM、DVD或其他光盘存储、磁盘存储或其他磁存储设备、或能够被用来承载或存储指令或数据结构形式的期望的程序代码部件和能够被通用或专用计算机或者通用或专用处理器存取的任何其他介质。
本公开的先前描述被提供来使本领域技术人员能够制作或使用本公开。对本公开的各种修改对本领域技术人员而言是明显的,本文定义的通用原理可以在不脱离本公开的 范围的情况下应用到其他变形。因此,本公开并不限于本文所述的示例和设计,而是对应于与所公开的原理和新特征一致的最宽范围。
本公开的一些实施例还可按如下方式配置:
1、一种在基站侧运行的电子设备,所述电子设备包括:
处理电路,被配置为执行控制以使得所述电子设备:
估计与基站通信的多个终端在第一方向上的信道相关性;以及响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,
发送第一指示信号以指示在执行第一测量过程以确定第一方向上的信道信息之后执行第二测量过程以确定第二方向上的信道信息,以及
基于所述第二方向上的信道信息,发送第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案,所述预编码方案包括线性预编码或者非线性预编码。
2、如项目1所述的电子设备,其中,所述信道相关性是基于由基站从所述多个终端接收的第一参考信号估计的。
3、如项目1~2(尤其是1)所述的电子设备,其中,所述预定条件包括所述多个终端在第一方向上的信道相关性高于第一相关性阈值。
4、如项目1~3(尤其是1)所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
估计所述多个终端在第二方向上的信道相关性,其中,所述预定条件包括所述多个终端在第一方向上的信道相关性高于所述多个终端在第二方向上的信道相关性,
响应于所述多个终端在第一方向上的信道相关性不满足预定条件,
发送第一指示信号以指示在执行所述第二测量过程以确定第二方向上的信道信息之后执行所述第一测量过程以确定第一方向上的信道信息,以及
基于所述第一方向上的信道信息,发送所述第二指示信号。
5、如项目1~4(尤其是1)所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
基于所述多个终端反馈的各自在第一方向上的信道信息,确定所述多个终端在第一方向上的公共预编码参数;
基于所述多个终端反馈的各自在第二方向上的信道信息,确定所述多个终端各 自在第二方向上的预编码参数;以及
基于第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积,确定向所述多个终端发送的数据的预编码参数。
6、如项目1~5(尤其是5)所述的电子设备,其中,确定所述多个终端在第一方向上的公共预编码参数包括:
基于所述多个终端反馈的各自在第一方向上的信道信息,生成所述多个终端各自在第一方向上的预编码参数;以及
将所述多个终端各自在第一方向上的预编码参数的加权平均的常数倍作为所述公共预编码参数。
7、如项目1~6(尤其是5)所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
在第二测量过程中,向所述多个终端发送用所述公共预编码参数进行了线性预处理的第三参考信号,
其中,所述多个终端反馈的各自在第二方向上的信道信息是由所述多个终端基于从基站接收的用所述公共预编码参数进行了线性预处理的第三参考信号确定的。
8、如项目1~7(尤其是1)所述的电子设备,其中,处理电路还被配置为执行控制以使得:
基于第二方向上的信道信息,确定用于在所述多个终端侧进行非线性解调的解调参数;以及
向所述多个终端发送包含所述解调参数的第二指示信号。
9、如项目1~8(尤其是1)所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
从基站向所述多个终端发送用于确定解调参数的未经非线性预编码的解调参考信号,其中,所述解调参考信号包括K个正交的序列,K为所述多个终端的数量。
10、如项目1~9(尤其是1)所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
在第一测量过程中以第一间隔从基站向所述多个终端发送第二参考信号;以及
在第二测量过程中以第二间隔从基站向所述多个终端发送第三参考信号,
其中,第二间隔短于第一间隔。
11.如项目1~10(尤其是1)所述的电子设备,其中,处理电路还被配置为执行 控制以使得所述电子设备:
基于第二测量过程中所述多个终端反馈的各自在第二方向上的信道信息,估计所述多个终端在第二方向上的等效信道相关性;以及
响应于所估计的所述多个终端在第二方向上的等效信道相关性高于第二相关性阈值,发送所述第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案是非线性预编码,以及/或者响应于所估计的所述多个终端在第二方向上的等效信道相关性低于第二相关性阈值,发送所述第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案是线性预编码。
12、如项目1~11中任一项所述的电子设备,其中,第一方向是垂直方向,第二方向是水平方向。
13、如项目1~12(尤其是1~11)中任一项所述的电子设备,其中,所述电子设备被实现为基站,所述电子设备还包括多个天线,所述多个天线用于在相同的传输资源上向所述多个终端发送利用所述预编码方案预编码的数据信号。
14、如项目1~13(尤其是1~11)中任一项所述的电子设备,其中,所述预编码方案是基带数字预编码方案,所述处理电路还包括数字预编码器,所述数字预编码器被配置为根据所述预编码方案调整用于每个终端的基带数据信号的幅度和相位。
15、一种在终端侧运行的电子设备,包括:
处理电路,被配置为执行控制以使得所述电子设备:
向基站发送第一参考信号,以用于基站估计该终端与其它终端在第一方向上的信道相关性;
响应于接收到第一指示信号,确定在执行第一测量过程之后执行第二测量过程,其中,电子设备在第一测量过程中执行第一测量并反馈第一方向上的信道信息,电子设备在第二测量过程中执行第二测量并反馈第二方向上的信道信息;以及
响应于接收到第二指示信号,根据其中指示的预编码方案,对从基站发送的数据进行相应解调,所述预编码方案包括线性预编码或者非线性预编码,
其中,第一指示信号是由基站响应于确定所述终端与其它终端在第一方向上的信道相关性满足预定条件而发送的,第二指示信号是由基站基于所述终端反馈的第二方向上的信道信息而发送的。
16、如项目15所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
在接收到所述第一指示信号之后,首先接收所述基站在第一方向上发送的第二参考信号以执行第一测量;以及
从所述第一方向的信道码本中选择与第一测量的结果匹配的预编码矩阵,将该预编码矩阵的指示符包含于所反馈的第一方向上的信道信息中。
17、如项目15~16(尤其是15)所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
在第一测量过程中,向基站发送第一方向上的信道信息,其被用于确定所述终端与所述其它终端的下行数据在第一方向上的公共预编码参数;以及
在第二测量过程中,向基站发送第二方向上的信道信息,其被用于确定所述终端与所述其它终端各自的下行数据在第二方向上的预编码参数;
其中,第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积被用于确定所述预编码方案的预编码参数。
18、如项目15~17(尤其是17)所述的电子设备,其中,处理电路还被配置为执行控制以使得在第二测量过程中:
从基站接收用所述公共预编码参数进行了线性预处理的第三参考信号;以及
基于从基站接收的用所述公共预编码参数进行了线性预处理的第三参考信号,确定第二方向上的信道信息。
19、如项目15~18(尤其是15)所述的电子设备,其中,处理电路还被配置为执行控制以使得:
从基站接收用于进行非线性解调的解调参数,其中,所述解调参数是由基站基于第二方向上的信道信息确定的。
20、如项目15~19(尤其是15)所述的电子设备,其中,处理电路还被配置为执行控制以使得:
从基站接收未经非线性预编码的解调参考信号以确定用于进行非线性解调的解调参数,其中,所述解调参考信号包括K个正交的序列,K为所述多个终端的数量。
21、如项目15~20(尤其是15)所述的电子设备,其中,处理电路还被配置为执行控制以使得:
在第一测量过程中从基站接收以第一间隔发送的第二参考信号;以及
在第二测量过程中从基站接收以第二间隔发送的第三参考信号,
其中,第二间隔短于第一间隔。
22、如项目15~21中任一项所述的电子设备,其中,第一方向是垂直方向,第二方向是水平方向。
23、如项目15~22(尤其是15~21)中任一项所述的电子设备,其中,所述电子设备被实现为终端,所述电子设备还包括天线,所述天线用于接收基站在相同的传输资源上向包含所述终端的多个终端发送的利用所述预编码方案进行预编码的数据信号,以及
处理电路还被配置为执行控制以使得:
响应于所述第二指示信号指示预编码方案是非线性预编码方案,对接收的数据信号进行取模操作以进行数据解调。
24、一种在基站侧运行的电子设备,所述电子设备包括:
处理电路,被配置为执行控制以使得所述电子设备:
估计与基站通信的多个终端在第一方向上的信道相关性;
响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,
基于所述多个终端反馈的各自在第一方向上的信道信息,确定所述多个终端在第一方向上的公共预编码参数;
基于所述多个终端反馈的各自在第二方向上的信道信息,确定所述多个终端各自在第二方向上的预编码参数;以及
基于第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积,确定用于对从基站向所述多个终端发送的数据进行非线性预编码的预编码参数。
25、如项目24所述的电子设备,其中,所述信道相关性是基于由基站从所述多个终端接收的第一参考信号估计的。
26、如项目24~25(尤其是24)所述的电子设备,其中,确定所述多个终端在第一方向上的公共预编码参数包括:
基于所述多个终端反馈的各自在第一方向上的信道信息,生成所述多个终端各自在第一方向上的预编码参数;以及
将所述多个终端各自在第一方向上的预编码参数的加权平均的常数倍作为所述公共预编码参数。
27、如项目24~26(尤其是24)所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
向所述多个终端发送用所述公共预编码参数进行了线性预处理的第三参考信号,
其中,所述多个终端反馈的各自在第二方向上的信道信息是由所述多个终端基于从基站接收的用所述公共预编码参数进行了线性预处理的第三参考信号确定的。
28、如项目24~27(尤其是24)述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
基于第二方向上的信道信息,确定用于在所述多个终端侧进行非线性解调的解调参数;以及
向所述多个终端发送包含所述解调参数的第二指示信号。
29、如项目24~28所述的电子设备,其中,第一方向是垂直方向,第二方向是水平方向。
30、如项目24~29(尤其是24~28)所述的电子设备,其中,所述电子设备被实现为基站,所述电子设备还包括多个天线,所述多个天线用于在相同的传输资源上向所述多个终端发送利用所述预编码方案预编码的数据信号。
31、一种在基站侧执行的通信方法,包括:
估计与基站通信的多个终端在第一方向上的信道相关性;以及
响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,
发送第一指示信号以指示在执行第一测量过程以确定第一方向上的信道信息之后执行第二测量过程以确定第二方向上的信道信息,以及
基于所述第二方向上的信道信息,发送第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案,所述预编码方案包括线性预编码或者非线性预编码。
32、一种在终端侧执行的通信方法,包括:
向基站发送第一参考信号,以用于基站估计该终端与其它终端在第一方向上的信道相关性;
响应于接收到第一指示信号,确定在执行第一测量过程之后执行第二测量过程,其中,在第一测量过程中执行第一测量并反馈第一方向上的信道信息,在第二测量过程中执行第二测量并反馈第二方向上的信道信息,以及
响应于接收到第二指示信号,根据其中指示的预编码方案,对从基站发送的数据进行相应解调,所述预编码方案包括线性预编码或者非线性预编码,
其中,第一指示信号是由基站响应于确定所述终端与其它终端在第一方向上的 信道相关性满足预定条件而发送的,第二指示信号是由基站基于所述终端反馈的第二方向上的信道信息而发送的。
33、一种在基站侧执行的通信方法,包括:
估计与基站通信的多个终端在第一方向上的信道相关性;
响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,
基于所述多个终端各自在第一方向上的信道信息,确定所述多个终端在第一方向上的公共预编码参数;
基于所述多个终端各自在第二方向上的信道信息,确定所述多个终端各自在第二方向上的预编码参数;以及
基于第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积,确定用于对从基站向所述多个终端发送的数据进行非线性预编码的预编码参数。
34、一种非暂态计算机可读存储介质,其上存储有指令,所述指令在由处理器执行时使得处理器执行如项目31至33中任一项所述的方法。

Claims (34)

  1. 一种在基站侧运行的电子设备,所述电子设备包括:
    处理电路,被配置为执行控制以使得所述电子设备:
    估计与基站通信的多个终端在第一方向上的信道相关性;以及
    响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,
    发送第一指示信号以指示在执行第一测量过程以确定第一方向上的信道信息之后执行第二测量过程以确定第二方向上的信道信息,以及
    基于所述第二方向上的信道信息,发送第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案,所述预编码方案包括线性预编码或者非线性预编码。
  2. 如权利要求1所述的电子设备,其中,所述信道相关性是基于由基站从所述多个终端接收的第一参考信号估计的。
  3. 如权利要求1所述的电子设备,其中,所述预定条件包括所述多个终端在第一方向上的信道相关性高于第一相关性阈值。
  4. 如权利要求1所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
    估计所述多个终端在第二方向上的信道相关性,其中,所述预定条件包括所述多个终端在第一方向上的信道相关性高于所述多个终端在第二方向上的信道相关性,
    响应于所述多个终端在第一方向上的信道相关性不满足预定条件,
    发送第一指示信号以指示在执行所述第二测量过程以确定第二方向上的信道信息之后执行所述第一测量过程以确定第一方向上的信道信息,以及
    基于所述第一方向上的信道信息,发送所述第二指示信号。
  5. 如权利要求1所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
    基于所述多个终端反馈的各自在第一方向上的信道信息,确定所述多个终端在 第一方向上的公共预编码参数;
    基于所述多个终端反馈的各自在第二方向上的信道信息,确定所述多个终端各自在第二方向上的预编码参数;以及
    基于第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积,确定向所述多个终端发送的数据的预编码参数。
  6. 如权利要求5所述的电子设备,其中,确定所述多个终端在第一方向上的公共预编码参数包括:
    基于所述多个终端反馈的各自在第一方向上的信道信息,生成所述多个终端各自在第一方向上的预编码参数;以及
    将所述多个终端各自在第一方向上的预编码参数的加权平均的常数倍作为所述公共预编码参数。
  7. 如权利要求5所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
    在第二测量过程中,向所述多个终端发送用所述公共预编码参数进行了线性预处理的第三参考信号,
    其中,所述多个终端反馈的各自在第二方向上的信道信息是由所述多个终端基于从基站接收的用所述公共预编码参数进行了线性预处理的第三参考信号确定的。
  8. 如权利要求1所述的电子设备,其中,处理电路还被配置为执行控制以使得:
    基于第二方向上的信道信息,确定用于在所述多个终端侧进行非线性解调的解调参数;以及
    向所述多个终端发送包含所述解调参数的第二指示信号。
  9. 如权利要求1所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
    从基站向所述多个终端发送用于确定解调参数的未经非线性预编码的解调参考信号,其中,所述解调参考信号包括K个正交的序列,K为所述多个终端的数量。
  10. 如权利要求1所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
    在第一测量过程中以第一间隔从基站向所述多个终端发送第二参考信号;以及
    在第二测量过程中以第二间隔从基站向所述多个终端发送第三参考信号,
    其中,第二间隔短于第一间隔。
  11. 如权利要求1所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
    基于第二测量过程中所述多个终端反馈的各自在第二方向上的信道信息,估计所述多个终端在第二方向上的等效信道相关性;以及
    响应于所估计的所述多个终端在第二方向上的等效信道相关性高于第二相关性阈值,发送所述第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案是非线性预编码,以及/或者响应于所估计的所述多个终端在第二方向上的等效信道相关性低于第二相关性阈值,发送所述第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案是线性预编码。
  12. 如权利要求1~11中任一项所述的电子设备,其中,第一方向是垂直方向,第二方向是水平方向。
  13. 如权利要求1~11中任一项所述的电子设备,其中,所述电子设备被实现为基站,所述电子设备还包括多个天线,所述多个天线用于在相同的传输资源上向所述多个终端发送利用所述预编码方案预编码的数据信号。
  14. 如权利要求1~11中任一项所述的电子设备,其中,所述预编码方案是基带数字预编码方案,所述处理电路还包括数字预编码器,所述数字预编码器被配置为根据所述预编码方案调整用于每个终端的基带数据信号的幅度和相位。
  15. 一种在终端侧运行的电子设备,包括:
    处理电路,被配置为执行控制以使得所述电子设备:
    向基站发送第一参考信号,以用于基站估计该终端与其它终端在第一方向 上的信道相关性;
    响应于接收到第一指示信号,确定在执行第一测量过程之后执行第二测量过程,其中,电子设备在第一测量过程中执行第一测量并反馈第一方向上的信道信息,电子设备在第二测量过程中执行第二测量并反馈第二方向上的信道信息;以及
    响应于接收到第二指示信号,根据其中指示的预编码方案,对从基站发送的数据进行相应解调,所述预编码方案包括线性预编码或者非线性预编码,
    其中,第一指示信号是由基站响应于确定所述终端与其它终端在第一方向上的信道相关性满足预定条件而发送的,第二指示信号是由基站基于所述终端反馈的第二方向上的信道信息而发送的。
  16. 如权利要求15所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
    在接收到所述第一指示信号之后,首先接收所述基站在第一方向上发送的第二参考信号以执行第一测量;以及
    从所述第一方向的信道码本中选择与第一测量的结果匹配的预编码矩阵,将该预编码矩阵的指示符包含于所反馈的第一方向上的信道信息中。
  17. 如权利要求15所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
    在第一测量过程中,向基站发送第一方向上的信道信息,其被用于确定所述终端与所述其它终端的下行数据在第一方向上的公共预编码参数;以及
    在第二测量过程中,向基站发送第二方向上的信道信息,其被用于确定所述终端与所述其它终端各自的下行数据在第二方向上的预编码参数;
    其中,第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积被用于确定所述预编码方案的预编码参数。
  18. 如权利要求17所述的电子设备,其中,处理电路还被配置为执行控制以使得在第二测量过程中:
    从基站接收用所述公共预编码参数进行了线性预处理的第三参考信号;以及
    基于从基站接收的用所述公共预编码参数进行了线性预处理的第三参考信号, 确定第二方向上的信道信息。
  19. 如权利要求15所述的电子设备,其中,处理电路还被配置为执行控制以使得:
    从基站接收用于进行非线性解调的解调参数,其中,所述解调参数是由基站基于第二方向上的信道信息确定的。
  20. 如权利要求15所述的电子设备,其中,处理电路还被配置为执行控制以使得:
    从基站接收未经非线性预编码的解调参考信号以确定用于进行非线性解调的解调参数,其中,所述解调参考信号包括K个正交的序列,K为所述多个终端的数量。
  21. 如权利要求15所述的电子设备,其中,处理电路还被配置为执行控制以使得:
    在第一测量过程中从基站接收以第一间隔发送的第二参考信号;以及
    在第二测量过程中从基站接收以第二间隔发送的第三参考信号,
    其中,第二间隔短于第一间隔。
  22. 如权利要求15~21中任一项所述的电子设备,其中,第一方向是垂直方向,第二方向是水平方向。
  23. 如权利要求15~21中任一项所述的电子设备,其中,所述电子设备被实现为终端,所述电子设备还包括天线,所述天线用于接收基站在相同的传输资源上向包含所述终端的多个终端发送的利用所述预编码方案进行预编码的数据信号,以及
    处理电路还被配置为执行控制以使得:
    响应于所述第二指示信号指示预编码方案是非线性预编码方案,对接收的数据信号进行取模操作以进行数据解调。
  24. 一种在基站侧运行的电子设备,所述电子设备包括:
    处理电路,被配置为执行控制以使得所述电子设备:
    估计与基站通信的多个终端在第一方向上的信道相关性;
    响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,
    基于所述多个终端反馈的各自在第一方向上的信道信息,确定所述多个终端在第一方向上的公共预编码参数;
    基于所述多个终端反馈的各自在第二方向上的信道信息,确定所述多个终端各自在第二方向上的预编码参数;以及
    基于第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积,确定用于对从基站向所述多个终端发送的数据进行非线性预编码的预编码参数。
  25. 如权利要求24所述的电子设备,其中,所述信道相关性是基于由基站从所述多个终端接收的第一参考信号估计的。
  26. 如权利要求24所述的电子设备,其中,确定所述多个终端在第一方向上的公共预编码参数包括:
    基于所述多个终端反馈的各自在第一方向上的信道信息,生成所述多个终端各自在第一方向上的预编码参数;以及
    将所述多个终端各自在第一方向上的预编码参数的加权平均的常数倍作为所述公共预编码参数。
  27. 如权利要求24所述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
    向所述多个终端发送用所述公共预编码参数进行了线性预处理的第三参考信号,其中,所述多个终端反馈的各自在第二方向上的信道信息是由所述多个终端基于从基站接收的用所述公共预编码参数进行了线性预处理的第三参考信号确定的。
  28. 如权利要求24述的电子设备,其中,处理电路还被配置为执行控制以使得所述电子设备:
    基于第二方向上的信道信息,确定用于在所述多个终端侧进行非线性解调的解调参数;以及
    向所述多个终端发送包含所述解调参数的第二指示信号。
  29. 如权利要求24~28所述的电子设备,其中,第一方向是垂直方向,第二方向是水平方向。
  30. 如权利要求24~28所述的电子设备,其中,所述电子设备被实现为基站,所述电子设备还包括多个天线,所述多个天线用于在相同的传输资源上向所述多个终端发送利用所述预编码方案预编码的数据信号。
  31. 一种在基站侧执行的通信方法,包括:
    估计与基站通信的多个终端在第一方向上的信道相关性;以及
    响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,
    发送第一指示信号以指示在执行第一测量过程以确定第一方向上的信道信息之后执行第二测量过程以确定第二方向上的信道信息,以及
    基于所述第二方向上的信道信息,发送第二指示信号以指示从基站向所述多个终端发送的数据的预编码方案,所述预编码方案包括线性预编码或者非线性预编码。
  32. 一种在终端侧执行的通信方法,包括:
    向基站发送第一参考信号,以用于基站估计该终端与其它终端在第一方向上的信道相关性;
    响应于接收到第一指示信号,确定在执行第一测量过程之后执行第二测量过程,其中,在第一测量过程中执行第一测量并反馈第一方向上的信道信息,在第二测量过程中执行第二测量并反馈第二方向上的信道信息,以及
    响应于接收到第二指示信号,根据其中指示的预编码方案,对从基站发送的数据进行相应解调,所述预编码方案包括线性预编码或者非线性预编码,
    其中,第一指示信号是由基站响应于确定所述终端与其它终端在第一方向上的信道相关性满足预定条件而发送的,第二指示信号是由基站基于所述终端反馈的第二方向上的信道信息而发送的。
  33. 一种在基站侧执行的通信方法,包括:
    估计与基站通信的多个终端在第一方向上的信道相关性;
    响应于估计的所述多个终端在第一方向上的信道相关性满足预定条件,
    基于所述多个终端各自在第一方向上的信道信息,确定所述多个终端在第一方向上的公共预编码参数;
    基于所述多个终端各自在第二方向上的信道信息,确定所述多个终端各自在第二方向上的预编码参数;以及
    基于第一方向上的公共预编码参数与第二方向上的预编码参数的Kronecker积,确定用于对从基站向所述多个终端发送的数据进行非线性预编码的预编码参数。
  34. 一种非暂态计算机可读存储介质,其上存储有指令,所述指令在由处理器执行时使得处理器执行如权利要求31至33中任一项所述的方法。
PCT/CN2019/112207 2018-10-26 2019-10-21 电子设备、通信方法以及介质 WO2020083186A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/284,793 US11496188B2 (en) 2018-10-26 2019-10-21 Electronic device, communication method and medium
JP2021522424A JP7452540B2 (ja) 2018-10-26 2019-10-21 電子機器、通信方法、及び記憶媒体
EP19877098.4A EP3872999A4 (en) 2018-10-26 2019-10-21 ELECTRONIC DEVICE, COMMUNICATION METHOD, AND MEDIA
CN201980068776.8A CN112868188A (zh) 2018-10-26 2019-10-21 电子设备、通信方法以及介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811256542.X 2018-10-26
CN201811256542.XA CN111106862A (zh) 2018-10-26 2018-10-26 电子设备、通信方法以及介质

Publications (1)

Publication Number Publication Date
WO2020083186A1 true WO2020083186A1 (zh) 2020-04-30

Family

ID=70330398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112207 WO2020083186A1 (zh) 2018-10-26 2019-10-21 电子设备、通信方法以及介质

Country Status (5)

Country Link
US (1) US11496188B2 (zh)
EP (1) EP3872999A4 (zh)
JP (1) JP7452540B2 (zh)
CN (2) CN111106862A (zh)
WO (1) WO2020083186A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584187A (zh) * 2020-11-30 2022-06-03 华为技术有限公司 一种数据检测方法及通信装置
CN116708085A (zh) * 2022-02-24 2023-09-05 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质
US20230291612A1 (en) * 2022-03-09 2023-09-14 Qualcomm Incorporated Channel state feedback using demodulation reference signals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104221318A (zh) * 2012-04-04 2014-12-17 三星电子株式会社 在高级天线***中确定信道质量信息
CN104811231A (zh) * 2014-01-26 2015-07-29 电信科学技术研究院 一种支持fd-mimo的信道状态信息传输方法及装置
US20160065282A1 (en) * 2013-05-31 2016-03-03 Yu Zhang Linear precoding in full-dimensional mimo systems and dynamic vertical sectorization
CN105830355A (zh) * 2013-12-17 2016-08-03 三星电子株式会社 全维多输入多输出移动通信***中的通信方法和装置
CN106941367A (zh) * 2016-01-04 2017-07-11 中兴通讯股份有限公司 多输入多输出mimo的处理方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9667378B2 (en) * 2009-10-01 2017-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Multi-granular feedback reporting and feedback processing for precoding in telecommunications
ES2750869T3 (es) * 2010-04-07 2020-03-27 Ericsson Telefon Ab L M Una estructura de precodificador para precodificación MIMO
WO2012060237A1 (ja) * 2010-11-01 2012-05-10 シャープ株式会社 無線送信装置、無線受信装置、無線通信システム、制御プログラムおよび集積回路
JP5909060B2 (ja) 2011-08-15 2016-04-26 シャープ株式会社 無線送信装置、無線受信装置、プログラム、集積回路および無線通信システム
WO2013131397A1 (zh) 2012-03-06 2013-09-12 华为技术有限公司 一种预编码方法、基站及用户设备
KR101972945B1 (ko) 2012-09-18 2019-04-29 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
RU2767777C2 (ru) * 2013-03-15 2022-03-21 Риарден, Ллк Системы и способы радиочастотной калибровки с использованием принципа взаимности каналов в беспроводной связи с распределенным входом - распределенным выходом
US10142004B2 (en) * 2014-12-30 2018-11-27 Lg Electronics Inc. Method for performing pre-coding using codebook in wireless communication system and apparatus therefor
EP3281302A1 (en) * 2015-04-08 2018-02-14 NTT Docomo, Inc. Base station, user equipment, and method for determining precoding matrix
CN107017926B (zh) 2016-01-26 2021-09-07 索尼公司 非均匀天线阵列及其信号处理
KR102641746B1 (ko) 2016-10-18 2024-02-29 삼성전자주식회사 대규모 안테나를 이용하는 무선 통신 시스템에서 프리코딩을 수행하기 위한 장치 및 방법
CN108418614B (zh) * 2017-02-10 2021-04-09 上海诺基亚贝尔股份有限公司 用于非线性预编码的通信方法和设备
KR102587077B1 (ko) * 2017-12-28 2023-10-10 삼성전자 주식회사 비선형 프리코딩을 위한 기준신호 설정 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104221318A (zh) * 2012-04-04 2014-12-17 三星电子株式会社 在高级天线***中确定信道质量信息
US20160065282A1 (en) * 2013-05-31 2016-03-03 Yu Zhang Linear precoding in full-dimensional mimo systems and dynamic vertical sectorization
CN105830355A (zh) * 2013-12-17 2016-08-03 三星电子株式会社 全维多输入多输出移动通信***中的通信方法和装置
CN104811231A (zh) * 2014-01-26 2015-07-29 电信科学技术研究院 一种支持fd-mimo的信道状态信息传输方法及装置
CN106941367A (zh) * 2016-01-04 2017-07-11 中兴通讯股份有限公司 多输入多输出mimo的处理方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. WINDPASSINGERR. F. H. FISCHERT. VENCELJ. B. HUBER: "Precoding in multiantenna and multiuser communications", IEEE TRANS. WIREL. COMMUN., vol. 3, no. 4, 2004, pages 1305 - 1316, XP011114832, DOI: 10.1109/TWC.2004.830852
See also references of EP3872999A4

Also Published As

Publication number Publication date
EP3872999A1 (en) 2021-09-01
CN112868188A (zh) 2021-05-28
CN111106862A (zh) 2020-05-05
JP7452540B2 (ja) 2024-03-19
EP3872999A4 (en) 2022-03-23
US20220006495A1 (en) 2022-01-06
US11496188B2 (en) 2022-11-08
JP2022505765A (ja) 2022-01-14

Similar Documents

Publication Publication Date Title
AU2020202808B2 (en) Wireless communication system, and device and method in wireless communication system
US10826582B2 (en) Wireless communication device and wireless communication method
US10284279B2 (en) Apparatus and method in wireless communications system
WO2015186380A1 (ja) 端末装置、基地局、及びプログラム
JP6690652B2 (ja) 無線通信システムにおける電子機器及び無線通信方法
WO2020083186A1 (zh) 电子设备、通信方法以及介质
WO2017211217A1 (zh) 用于多天线通信装置的电子设备和方法
WO2018086486A1 (zh) 电子设备、无线通信方法以及介质
JP7268676B2 (ja) 電子装置
KR20180120697A (ko) 복수의 안테나를 갖춘 통신 디바이스를 위한 전자 디바이스 및 통신 방법
WO2020108367A1 (zh) 用于无线通信***的电子设备、方法和存储介质
CN105846870B (zh) 用于多输入多输出无线通信***的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522424

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019877098

Country of ref document: EP

Effective date: 20210526