WO2020083109A1 - 交通行驶飞行工具和遥控交通玩具及其使用的气垫装置 - Google Patents

交通行驶飞行工具和遥控交通玩具及其使用的气垫装置 Download PDF

Info

Publication number
WO2020083109A1
WO2020083109A1 PCT/CN2019/111896 CN2019111896W WO2020083109A1 WO 2020083109 A1 WO2020083109 A1 WO 2020083109A1 CN 2019111896 W CN2019111896 W CN 2019111896W WO 2020083109 A1 WO2020083109 A1 WO 2020083109A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
air
lift
horizontal
fuselage
Prior art date
Application number
PCT/CN2019/111896
Other languages
English (en)
French (fr)
Inventor
罗睿轩
Original Assignee
罗睿轩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811246025.4A external-priority patent/CN109291744A/zh
Priority claimed from CN201821730026.1U external-priority patent/CN209191615U/zh
Application filed by 罗睿轩 filed Critical 罗睿轩
Publication of WO2020083109A1 publication Critical patent/WO2020083109A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F3/00Amphibious vehicles, i.e. vehicles capable of travelling both on land and on water; Land vehicles capable of travelling under water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft

Definitions

  • the present disclosure relates to the field of hovercrafts and aircrafts, and in particular, to traffic driving flying tools and remote control traffic toy traffic driving flying equipment and air cushion devices used therefor. .
  • Propeller helicopters are light in weight, easy to take off and land, and are favored by users. They have also become a popular toy and transportation flying tool, and are used in many industries. Propeller helicopters can't land on land or on the water. The lift propeller rotation only produces a single lift function. Propeller helicopter flight requires a lot of power to overcome gravity to fly in the air, so the operating time is relatively short, and the power supply capacity is increased. In addition, the increase in weight causes a small increase in use time. Some helicopters have exposed propellers, which have the risk of hurting people when rotating at high speed, which affects the safe use of the helicopter.
  • the hovercraft is a ship that uses high-pressure air to form an air cushion between the bottom of the ship and the water surface (or ground), so that the hull can be fully or partially raised to achieve high-speed navigation.
  • the air cushion is formed by using a high-power blower to press the air under the ship's bottom, and the escape is formed by the air sealing device such as a flexible apron around the bottom of the ship.
  • the hull of hovercraft is generally made of aluminum alloy, high-strength steel or fiberglass; the bottom apron is made of high-strength nylon rubber cloth, which can be replaced after being worn.
  • the advantage of the hovercraft is that it can travel amphibiously, but due to the weight of the hull, it cannot fly straight.
  • the blower or blower fan of the hovercraft only acts as a downward blower.
  • the reduction in weight relative to the entire fuselage is almost negligible.
  • the main function is to blow air into the lower air-sealed cavity.
  • the purpose of the present disclosure is to provide a traffic driving flight tool and a remote control traffic toy type traffic driving flight device and an air cushion device used therefor to solve at least one of the above problems.
  • the present disclosure provides an hovercraft including a fuselage frame, a lift propeller structure, and an air-sealed cavity; wherein the lift propeller structure is installed on the fuselage frame, and the fuselage frame also The air-sealing cavity is installed, and the bottom of the air-sealing cavity is located at the lowest end of the entire fuselage frame and can also serve as a landing support structure for the entire fuselage in water or on the ground.
  • the air-sealing cavity may be directly composed of a flexible air curtain apron, an inflatable air ring, or a foam material, etc., or may be combined into the air-sealing cavity by the light-weight and buoyant structures or materials mentioned above; the air-sealing cavity may directly replace the hovercraft Heavy hull and bottom.
  • the air seal cavity is ring-shaped and forms a gas channel penetrating through the upper and lower ends.
  • the air seal cavity is located on the downward blowing path of the lift propeller structure, and the rotation axis of the lift propeller in the lift propeller structure and the The central axis of the air seal cavity is coincident, parallel or inclined horizontal propeller;
  • the horizontal propeller structure includes: horizontal propeller and horizontal propeller motor, the rotation axis of the horizontal propeller is parallel to the longitudinal central axis of the air seal cavity And it is outside the air seal cavity.
  • the present disclosure provides an air cushion device used in a propeller helicopter, which includes a fuselage frame, a lift propeller structure, an air-sealed cavity, and a horizontal propulsion propeller structure; wherein the lift propeller structure is mounted on the fuselage frame, and The fuselage frame is also installed with the air seal cavity, the bottom of the air seal cavity is located at the bottom end of the entire fuselage frame, and can be used as a landing support structure for the entire fuselage on the water surface or the ground.
  • the air-sealing cavity is ring-shaped, surrounding the upper and lower ends of the gas passage, and the air-sealing cavity is located on the downward blowing path of the lift propeller structure.
  • the air seal cavity can be directly composed of a lightweight air buoyant structural component such as a flexible air curtain apron, an inflatable air ring, or a foam material, or a light and buoyant material, respectively, to form an air seal
  • a lightweight air buoyant structural component such as a flexible air curtain apron, an inflatable air ring, or a foam material, or a light and buoyant material, respectively, to form an air seal
  • the air seal cavity replaces the landing gear and can stay on the water; and the rotation axis of the lift propeller in the lift propeller structure coincides with, is parallel or inclined to the central axis of the air seal cavity;
  • the horizontal propulsion propeller structure includes: horizontal A propeller propeller and a horizontal propeller motor, the rotation axis of the horizontal propeller propeller is parallel to the longitudinal central axis of the air seal cavity and is outside the air seal cavity.
  • the lift propeller structure includes at least one lift propeller group
  • the lift propeller group includes: a first lift propeller and a second lift propeller, the first lift propeller and the second lift propeller
  • the rotation direction of the propeller is opposite;
  • the first lift propeller and the second lift propeller are single-blade or multi-blade propellers;
  • the blade length of the first lift propeller and the blade length of the second lift propeller are equal or different Etc .;
  • the first lift propeller and the second lift propeller are each equipped with a drive motor; the torsion forces generated when the first lift propeller and the second lift propeller rotate at the same speed in the opposite direction cancel each other out.
  • the rotating shafts of the first lift propeller and the second lift propeller are coaxial and have an up-down relationship; or, the first lift propeller and the second lift propeller are on the same plane , The plane is perpendicular to the central axis of the air cushion.
  • the blades of the first lift propeller are located in or above the air seal cavity surrounded by the air cushion.
  • the blades of the second lift propeller are located in or above the air seal cavity enclosed by the air cushion.
  • the propeller structure includes a lift propeller, and the rotation axis of the lift propeller is coaxial with the central axis of the air cushion.
  • the propeller helicopter further includes a tail rotor, the tail rotor is disposed on the air cushion, and the tail rotor and the horizontal propeller are centered on the air cushion
  • the shafts are symmetrical and mutually symmetrical, and the tail rotor is equipped with a tail rotor motor.
  • the horizontal propulsion propeller structure further includes: a horizontal propulsion propeller retainer and a deflector, the outer ring of the horizontal propulsion propeller is provided with the horizontal propulsion propeller retainer; the deflector The movable type is arranged in parallel on the flow path of the swirling airflow of the horizontal propeller; the deflector is vertical.
  • the propeller helicopter further includes: a protective bracket covering at least one rotation plane of the propeller, and the protective bracket is installed in the airtight cavity or the fuselage Frame.
  • the air seal cavity is composed of a lightweight buoyant material, such materials include: inflatable gas ring, plastic, nylon or rubber ring, foam ring (hollow or solid), flexible Air curtain apron ring, lightweight metal or non-metallic tube, etc., individually or separately in various combinations of sealed connection or integrally formed combined structure.
  • the hovercraft and the propeller helicopter further include: a passenger cabin, the passenger cabin is disposed on the air cushion or the fuselage frame; the air seal cavity is located in the entire fuselage The outer and lower parts of the frame play a role of anti-collision and anti-fall for the entire fuselage.
  • the circular area where the lift propeller rotates accounts for at least twenty percent of the total vertical projection area of the entire fuselage frame.
  • the lifting force of the lifting propeller when rotating is at least twenty percent of the weight of the entire fuselage.
  • At least three wheels are installed in the lower part of the fuselage, at least one of which is a steerable wheel, and the bottom of the grounding surface of the wheels is slightly lower than the bottom of the air seal cavity end.
  • the present disclosure also provides a traffic driving flight device provided with the above-mentioned air cushion device; and the traffic driving flight device includes a traffic driving flight tool and a remote control traffic toy.
  • the present disclosure also provides an air-cushion boat including the above-mentioned air cushion device.
  • the present disclosure also provides a propeller helicopter, which includes the above-mentioned air cushion device.
  • the present disclosure also provides a land vehicle including the air cushion device.
  • the present disclosure also provides a ship including the air cushion device.
  • the lift propeller structure is placed in the air seal cavity or immediately above the air seal cavity.
  • the air seal cavity can be used not only as a high-pressure air chamber, but also as a buoyant fuselage, or as the entire fuselage. For landing support.
  • the structural principle of this invention can be used, that is, the rotation of the lift propeller generates lift to reduce the weight of the overall fuselage frame by at least 20%
  • the lift propeller and the bottom of the air seal cavity generate an air cushion to lift the entire fuselage.
  • the distribution ratio between the lift of the propeller and the air cushion of the propeller can be considered at the discretion of the manufacturer, but it should be based on the principle of optimal power saving;
  • the air-sealed cavity uses a light-weight and buoyant structure or material, which greatly reduces the weight of the entire fuselage. If the entire fuselage cannot be lifted, it is only used to hover on the water or the ground. It is used in the field of hovercraft. It is a unique and novel amphibious traveling aircraft realized in the field of propeller helicopters.
  • FIG. 1 is a perspective schematic view of a ship, a land vehicle, an unmanned double-propeller coaxial hovercraft or a propeller helicopter in Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic structural diagram of a manned boat, a land vehicle, a double-propeller coaxial hovercraft, or a propeller helicopter in Embodiment 2 of the present disclosure
  • FIG. 3 is a perspective schematic view of a ship, a land vehicle, a twin-screw tandem hovercraft or a propeller helicopter in Embodiment 3 of the present disclosure
  • FIG. 4 is a perspective schematic view of a ship, a land vehicle, a twin-screw tandem hovercraft or a propeller helicopter in Embodiment 4 of the present disclosure
  • FIG. 5 is a perspective schematic view of a ship, land vehicle, single-hovercraft hovercraft, or propeller helicopter in Embodiment 5 of the present disclosure
  • FIG. 6 is a perspective schematic view of a ship, a land vehicle, an unmanned remote control multi-axis propeller hovercraft or a propeller helicopter in Embodiment 6 of the present disclosure
  • FIG. 7 is a perspective schematic view of a ship, a land vehicle, a multi-axis propeller hovercraft or a propeller helicopter in Embodiment 7 of the present disclosure
  • Embodiment 8 is a perspective schematic view of a manned boat, land vehicle, multi-axis propeller hovercraft, or propeller helicopter in Embodiment 8 of the present disclosure.
  • FIG. 9 is a perspective schematic view of a remote control boat, a land vehicle, a three-axis propeller hovercraft or a remote control three-axis propeller helicopter in Embodiment 9 of the present disclosure.
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • First”, “Second”, “Third”, and “Fourth” do not represent any sequence relationship, just for the convenience of description.
  • the present disclosure provides air cushion devices for hovercraft and propeller helicopters.
  • An air cushion device for ships, land vehicles, hovercrafts and propeller helicopters which includes a fuselage frame, a propeller structure, an air-sealed cavity, and a horizontal propulsion propeller structure; wherein the lift propeller structure is mounted on the fuselage frame, and the fuselage
  • the frame is also equipped with an air seal cavity.
  • the bottom of the air seal cavity is located at the bottom of the entire fuselage frame. It can be used as a landing support structure for the entire fuselage on the water surface or ground; the air seal cavity can be directly made of light weight and have a buoyancy structure (such as The inflatable air ring is made of plastic, and the plastic material does not have much buoyancy, but the hollow air ring structure generates buoyancy.
  • the air-sealed cavity is made of lightweight and buoyant material (if the foam board or ring is hollow, it also has Buoyant material and structure) or composed of the above two structures; the air seal cavity can directly replace the hull and the bottom of the ship; the air seal cavity is ring-shaped, forming a gas channel that penetrates up and down at both ends, the air seal cavity Located on the downward blowing path of the propeller structure, the lift propeller structure is installed in the air seal cavity or close to the upper pressure plate opening of the air seal cavity, and the lift propeller structure
  • the rotation axis of the lift propeller coincides with or is parallel to the central axis of the air seal cavity;
  • the structure of the horizontal propulsion propeller includes: a horizontal propulsion propeller, and the rotation axis of the horizontal propeller is parallel to the longitudinal center axis of the air seal cavity and is outside the air seal cavity .
  • the ship, land vehicle, hovercraft and propeller helicopter are suitable for high-altitude flight, water and land driving for a long time, increasing the operating time of the fuselage and increasing the safety of the fuselage frame protection. It relies on the rotation of the lift propeller at a medium speed to push part of the high-pressure air flow to the air seal cavity of the air cushion.
  • a gas support layer is formed between the bottom of the air seal cavity of the aircraft and the ground / water surface. It can float on the water or the ground, and can be used as a hovercraft.
  • the lift propeller of the hovercraft is rotating at high speed or even at full speed, the propeller helicopter lifts off and flies against its own gravity.
  • the lift propeller blows high-pressure air into the air seal cavity below while generating lift force, forming an air cushion between the bottom of the air seal cavity and the water surface (or ground), which can make the air cushion boat and the propeller helicopter fuselage lift and float to achieve navigation.
  • the air-sealed cavity mentioned here is the main component of the hovercraft and the propeller helicopter, and takes up a large proportion of the weight of the fuselage frame.
  • the light weight of the air-sealed cavity makes the hovercraft and propeller helicopters lighter in weight, which is a considerable weight reduction compared to the existing hovercraft and helicopters.
  • the air-sealed cavity is preferably a light-weight and buoyant structure or a light-weight buoyant material, such as: plastic, air-filling ring, foam ring (solid or hollow), flexible air curtain apron, light metal / non-metal cylinder Etc., individually or separately in various combinations of sealed connections or integrally formed combined structures.
  • the bottom end of the air-sealed cavity can be directly surrounded by an inflatable air ring, a foam ring (solid or hollow), a flexible air curtain apron, etc. In some embodiments, it can be filled with an air ring, a foam plate ring, or a lightweight tube
  • the propeller can exert the same advantages as the ducted fan, and it is not easy to affect the efficiency of the propeller.
  • the air-sealed cavity in the water can have greater buoyancy and the material is lighter, so that the entire fuselage can be landed in the water and can be driven in the water.
  • the structure or material used can also act as a cushion when
  • the upper segment of the air-sealing cavity is a inflatable air ring
  • the lower segment of the air-sealing cavity is a flexible air curtain apron ring.
  • the two are integrally formed or hermetically connected, and there is no air leakage at the connection.
  • the segmented upper layer of the air-sealed cavity is a foam board ring
  • the segmented lower layer of the air-sealed cavity is a refillable air ring or a flexible air curtain apron ring, and the two are hermetically connected or integrally formed.
  • the segmented upper layer of the gas seal cavity is an inflatable gas ring
  • the segmented lower layer is also an inflatable gas ring.
  • the segmented upper layer of this structure exerts the buoyancy effect of the inflatable air ring or foam board ring (hollow or solid) in the water. It can be used as the fuselage frame or hovercraft bottom, and it has the effect of raising the fuselage frame to reduce the center of gravity, which can be improved. Helicopter flight stability.
  • the segmented lower layer flexible air curtain apron can run on uneven land.
  • the upper pressure plate of the air-sealed cavity adopts a foam plate ring, and the upper surface of the foam plate ring is sealed and covered with a pressure plate (preferably a foam plate), and the openings on the pressure plate are the same as or different from the number of propellers, just suitable for lift Propeller installation.
  • a pressure plate preferably a foam plate
  • the air seal cavity of the fuselage frame of the ship, land vehicle, hovercraft and amphibious helicopter where the device of the present disclosure is installed can also be used as a landing device to allow the amphibious helicopter to land and stay on the ground and water, while the air seal cavity is installed on the fuselage
  • the outside of the frame also has a protective effect on collisions. Due to the use of lift propellers, that is, the lift generated by the rotation of the propeller is used, and the lift force of the propeller blast is used to press the air into the bottom of the fuselage frame, which can improve the use efficiency of the lift propeller.
  • the fuselage be driven on the water surface and the ground, but also the air cushion device of the present disclosure is light in weight, it can also enable the propeller helicopter using the present disclosure to fly in the air to achieve amphibious driving flight, increasing the use range of the propeller helicopter at the same time It can also reduce energy loss and increase usage time.
  • the forward and backward flight in the air relies on the change of the lift force of the lift propeller, which causes the horizontal plane of the fuselage frame of the entire propeller helicopter to change, so that the inclined lift propeller generates forward force, which drives the propeller helicopter forward.
  • the propeller helicopter proposed by this technology adopts horizontally installed forward and backward propellers, does not rely on the propeller helicopter to change the horizontal front and back movement of the fuselage frame, and directly uses the horizontal propeller structure to promote forward and backward movement, making it not only in the air but on the ground or water Can also move back and forth.
  • the existing propeller helicopters use two ways to steer in the air.
  • the first is that the two propellers with rising force rely on the differential rotation between different propellers to form different propeller torsion torque inconsistencies, causing the entire propeller helicopter fuselage frame to turn left and right;
  • the wind from the horizontal propeller propelled to the tail surface of the control direction to drive the entire propeller helicopter fuselage frame to turn left and right; the hovercraft and propeller helicopter proposed by this technology can adopt the above three left and right steering methods.
  • the rotating shaft coincides with or is parallel to the central axis of the air seal cavity to form a balanced layout.
  • the hovercraft and the propeller helicopter can also be equipped with a passenger cabin, the air seal cavity shell is installed on the air cushion or the fuselage frame, and the installation position of the horizontal propeller structure can be placed The entire air seal cavity is located on the horizontal central axis front and back and is located outside the air seal cavity, so as to achieve a balanced overall force of the aircraft, maintain a horizontal attitude, and be safe and stable.
  • the propeller structure includes at least one propeller group that has formed a twin-screw or multi-axis propeller helicopter.
  • the propeller group includes: the first lift propeller and the second lift propeller. The rotation directions of the first lift propeller and the second lift propeller are opposite, and the helicopter is steered to the left and right depending on the differential speed of rotation.
  • the first lift propeller and the second lift propeller are single-blade propellers or multi-blade propellers.
  • the blade length of the first lift propeller and the blade length of the second lift propeller are equal or unequal, the lengths of the two lift propellers are unequal, and under the same rotation speed, the two lift propellers form the same torque to maintain the stability of the direction of the aircraft.
  • the first lift propeller and the second lift propeller are equipped with drive motors respectively.
  • the drive motors respectively drive the corresponding lift propellers under the control panel.
  • the aircraft obtains different torsional forces under the differential rotation of the two lift propellers to achieve the left and right directions. Change.
  • control direction of the controllable installed rear wing is rotated horizontally to change the direction.
  • first lift propeller groups can be arranged in a matrix, uniformly distributed on the circumference, etc.
  • it includes a first lift propeller and a second lift propeller.
  • the first lift propeller and the second lift propeller are coaxial up and down, the rotation axes are parallel or the central axis of the coaxial air-sealed cavity, the first lift propeller
  • the respective drive motors of the second lift propeller can be arranged on the same axis at the same time, or can be arranged symmetrically with respect to the central axis of the air-sealed cavity, and transmitted to the rotating shafts of the first lift propeller and the second lift propeller through gears or chains.
  • the two are arranged in the same plane, and the plane is perpendicular to the central axis of the air seal cavity.
  • the blades of the first lift propeller are located in or above the air seal cavity.
  • the blades of the second lift propeller are located in or above the air seal cavity.
  • both the first lift propeller and the second lift propeller are located in the air-sealed cavity to protect their rotation and prevent rotation damage.
  • the upper lift propeller may be above the air seal cavity.
  • the propeller structure includes only one lift propeller, and the rotation axis of the lift propeller is coaxial with the central axis of the air seal cavity.
  • Lift propellers produce upward lift. And blast into the air seal cavity. And rely on the horizontal propeller structure to achieve forward and backward.
  • the propeller helicopter uses a tail rotor to achieve left and right movement.
  • the tail rotor is arranged on the air-sealed cavity, and the tail rotor and the horizontal propeller are symmetrical with each other about the central axis of the air-sealed cavity to form a stable structure to improve the stability of the aircraft.
  • the tail rotor is equipped with a rotating motor and a rotating motor Under the action of the control panel, different rotation driving forces are generated.
  • Control can choose manual or remote control.
  • manual control can be used. If the passenger cabin is not provided, a control device and a hand-held remote control can be established.
  • the horizontal propulsion propeller structure is also provided with a horizontal propulsion propeller retainer and a deflector, and the outer ring of the horizontal propulsion propeller is provided with a horizontal propulsion propeller retainer, which can protect the horizontal propulsion propeller from being hit by foreign objects and harming the human body.
  • the deflectors are fixedly arranged in parallel on the flow path of the swirling airflow of the horizontal propeller; the deflectors are vertical, and the jet flow generated by the horizontal propeller propels the gas through the deflectors, so that the airflow can maintain a straight line so that the entire The horizontal movement of the aircraft keeps straight.
  • the propeller helicopter also includes: a protective bracket that covers at least one rotation plane of the propeller, and the protective bracket is installed in the air-sealed cavity to protect The purpose of the bracket is to include the propeller to avoid damage caused by touching other objects.
  • the present disclosure also provides an hovercraft using the above-mentioned air cushion device, which is suspended on the ground or water surface in a suspended state.
  • the present disclosure also provides a propeller helicopter using the above air cushion device.
  • FIG. 1 is a preferred scheme for unmanned remote-control coaxial propeller helicopters.
  • the present disclosure of this embodiment combined with a twin-screw coaxial helicopter, provides an optimal three-dimensional structural schematic diagram of an unmanned remote control coaxial counter-propeller helicopter;
  • FIG. 1 is the first embodiment of the present disclosure, a hovercraft and a propeller helicopter.
  • main body frame frame 6 upper reverse lift propeller 12, upper reverse lift propeller motor 16, lower forward lift propeller 11, lower forward lift propeller motor 15, battery 3, remote control receiving control circuit board 2, diversion Piece 5, horizontal propeller 21, horizontal propeller motor 25, horizontal propeller retainer 28, protective bracket 7, fuselage frame 6 and air cushion connection hook 30, rechargeable air deflator 1, steering wheel 29;
  • the lower forward rotation propeller 11 and the lower forward rotation propeller motor 15 are installed at the lower center of the entire inner fuselage frame 6, and the lower forward rotation lift propeller 11 is just wrapped by a refillable air bubble 1 to form an air cushion device ,
  • the inflatable bladder 1 is the air seal cavity; the inflatable bladder 1 can be easily replaced after being damaged, and the aircraft without the inflatable bladder 1 does not affect the flight function of the aircraft; the upper reverse lift propeller 12 and the upper reverse
  • the lifting propeller motor 16 is installed at the upper center of the entire inner fuselage frame 6;
  • the horizontal propeller 21 and the horizontal propeller motor 25 are horizontally installed on the central axis of the fuselage frame 6 near the edge of the fuselage frame and toward the fuselage frame 6
  • a propeller retainer 28 at the outer ring of the horizontal propeller 21, which can protect the horizontal propeller 21 from being hit by foreign objects;
  • a deflector 5 is also installed vertically at the same level as the horizontal propeller motor 25;
  • the lower part of the body frame 6 is also installed with
  • the protection bracket 7 can protect the upper reverse lift propeller 12, and also makes the upper reverse lift propeller 12 hard to hit the human body, especially children, when rotating at high speed.
  • the air cushion connection hook 30 When the lower part can be filled with the air ring 1 enough gas, it can be caught by the air cushion connection hook 30 of the fuselage frame 6, the air cushion connection hook 30 has a round hole to insert the steering wheel 29, the four steering wheels 29 can be ten thousand The steering wheel, the bottom of the wheel is slightly lower than the air seal cavity.
  • the rotary wheel When the propeller is not working when the ground is supported, and the propeller is horizontally propelled, the rotary wheel can be driven on the ground when working. When the steering is needed, the propeller can be turned at a low speed.
  • the rechargeable air bladder 1 can support the weight of the entire remote control propeller helicopter, and can land on the ground or on the water; after the rechargeable air bladder 1 is deflated, it can be easily removed and replaced.
  • the remote control receiving control circuit board 2 receives the control signal and controls the upper reverse lift propeller motor 16 and the lower forward rotation propeller motor 15 to drive the upper reverse lift propeller 12 and the lower forward propeller
  • the rotating propeller 11 is not rotating in the opposite direction to each other at full speed
  • the two propellers rotating at the same speed in the opposite direction at the same axis can lift a part of the weight of the helicopter and inflate the air to the lower part of the air ring 1 because of the remote control of the propeller.
  • the aircraft has few parts, the overall lightness and no weight, plus the two propellers rotating at medium speed has lifted a part of the weight of the helicopter.
  • the squeeze ring 1 is sprayed out between the water surface or the ground, and the high-pressure air blown by the lower forward-rotating propeller 11 is continuously squeezed out from under the inflatable slack ring 1 to form an air cushion and be lifted by the cushion.
  • the height of the air cushion The wheels slightly below the air-sealed cavity are also separated from the ground, so that the entire helicopter is suspended on the water surface or the ground.
  • the remote control receiving control circuit board 2 controls the rotation of the horizontal propulsion motor 25 to drive the horizontal propulsion propeller 21 forward and backward, and pushes forward and backward movement of the suspended helicopter; the jet flow generated by the horizontal propulsion propeller 21 guides the gas through the deflector 5, The airflow can keep straight running so that the horizontal movement of the entire aircraft keeps straight; when the two positive and negative lift propellers make a differential rotation under the control of the remote control receiving control circuit board 2, the reverse rotation torque generated by the two positive and negative lift propellers for the entire aircraft is inconsistent Thus driving the aircraft to turn and turn, if you are only driving on the water or the ground, you can use this invention as a hovercraft; when you need to fly in the air, the remote control receiving control circuit board 2 controls the two forward and reverse lift propellers to rotate at full speed, because the two forward and reverse lift propellers The counter-rotation torque generated by the constant speed rotation of the entire aircraft cancels each other out, so only enough lifting force is generated to drive the aircraft into the air; the remote control receiving control circuit board
  • FIG. 2 is the first loading embodiment of the present disclosure, a hovercraft and a propeller helicopter.
  • main body frame frame 6 multi-blade lift propeller motor 26, multi-blade lift propeller 24, lower forward rotation propeller 11, lower forward rotation propeller motor 15, battery 3, fuel tank 18, deflector 5, horizontal propeller 21.
  • the second embodiment is a schematic diagram of a three-dimensional structure of a manned hovercraft and a propeller helicopter provided by the present disclosure in combination with twin oars;
  • FIG. 2 is a second embodiment of the present disclosure, a manned controlled hovercraft and a propeller helicopter.
  • the main body fuselage frame 6 the upper part forward propeller 11 and the lower forward propeller propeller motor 15 installed at the center of the main body fuselage frame 6, and the multi-blade lift propeller motor 26 installed side by side, close to the multi-blade lift propeller motor 26 is equipped with a multi-blade lift propeller 24, the two lift propellers are coaxial, the motor can be directly connected to the propeller or can be connected to the above two drive motors through gears or chains and other transmission mechanisms, and is also installed at the lower part of the main body frame 6
  • Fuel tank 18 and battery 3 four wheels are extended outside the fuselage frame 6, two wheels along the longitudinal center axis are steering wheels 29, the other two vertical longitudinal axes are straight wheels 27, and the grounding ends of the four wheels Slightly lower than the air-sealed cavity, it can be driven by wheels on the ground, steering can be turned by manual control of steering wheels 29, and the four wheels can be
  • the difference between the helicopter of FIG. 2 and FIG. 1 is mainly in the following aspects: if the diameter and the number of blades of the two lift propellers are different, but the two lift spirals rotate at the same speed and in opposite directions respectively The generated reverse torques cancel each other out; as a passenger cabin 17 is installed on the edge of the same level of the inflatable bladder 1, because the lower position of the passenger cabin 17 is lower, if only the inflatable bladder 1 is the one If the air cushion is used, the lower part of the passenger cabin 17 can easily hit the ground horizontal protrusions when driving on the ground. To this end, a flexible air curtain apron 4 is added below the inflatable air ring 1 to solve the problem of driving on uneven ground on the land.
  • the upper flexible air curtain apron 4 can not only ensure the role of high-pressure gas, but also make the fuselage higher to lower the center of gravity of the fuselage. It can maintain the horizontal stability of the aircraft when flying in the air, and also protect the fuselage from collision;
  • the deflation ring 1 and the flexible air curtain apron 4 can be made as one or glued together and ensure air tightness, so that the fuselage frame 6, the inflatable deflation ring 1, the flexible air curtain apron 4 and the multi-leaf
  • the air cushion device composed of the force propeller motor 26, the air seal cavity is composed of the inflatable air ring 1, the flexible air curtain apron 4; the high pressure air formed in the air seal cavity can only be extruded from the lower part of the flexible air curtain apron 4 to form the air cushion .
  • the horizontal propeller 21 and the horizontal propeller motor 25 are installed horizontally at the uppermost part of the center of the fuselage frame.
  • the motor propeller faces the outside of the fuselage frame.
  • the outer ring of the horizontal propeller 21 has a propeller retainer 28 to protect the horizontal propeller 21 from being affected.
  • Battery 3 two upper anti-lift propeller motors are also installed on the lower fuselage frame 6; two lift propellers are connected by gears or chains.
  • the flexible air curtain apron 4 forms an air cushion when the lift propeller rotates. It can support the entire propeller helicopter on the ground or on the water, and the lift propeller stops.
  • the buoyancy of the inflatable air ring 1 can support the entire aircraft to be parked on the water while rotating.
  • This double-layer structure not only ensures the lightness of the air seal cavity and the problem of driving on the land and water, but also solves the original flexible air curtain apron. The problem that the structure can not stand still and stay on the water surface.
  • the invention example shown in FIG. 2 is consistent with the flight control mechanism of the invention example shown in FIG. 1 above, except that the remote control is changed to be controlled by the person in the passenger cabin 17 directly on the fuselage through the control mechanism.
  • the upper lift propeller can be used as an unpowered drive or power can be added at any time, and power can be added during in-situ helicopter or air flight failure ,
  • the upper lift propeller can be unpowered when flying on the surface, ground and air, and the upper propeller can be operated like an unpowered gyroplane without power.
  • the direction of the tail wing 19 is used to control the direction of the aircraft.
  • This unpowered rotor is straight
  • the variant of the lift aircraft has many advantages: reducing the rotation of the lift propeller saves energy, and at the same time, power can be added at any time during failure to increase safety.
  • the third embodiment is a schematic diagram of a three-dimensional structure of a remote control hovercraft and a propeller helicopter provided by a combination of front and rear tandem twin-screw helicopters of the present disclosure
  • FIG. 3 is a third embodiment of the present disclosure, an hovercraft and a propeller helicopter.
  • main body frame frame 6 reverse lift propeller 12, reverse lift propeller motor 16, forward rotation propeller 11, forward rotation lift propeller motor 15, battery 3, remote control receiving control circuit board 2, deflector 5, horizontal Propeller propeller 21, horizontal propeller motor 25, horizontal propeller retainer 28, protection bracket 7, upper pressure plate 9 of the air-sealed cavity, foam plate ring 20;
  • the difference between the helicopter of FIG. 3 and FIG. 2 and FIG. 1 is mainly in the following aspects: two lift propellers are installed on the same axis from top to bottom, and are installed on the same horizontal plane front and back, two lifts
  • the propeller is located outside the upper part of the inflatable air ring and close to the upper pressure plate 9 of the air seal cavity with only a slight gap.
  • the upper pressure plate 9 of the air seal cavity can be made of plastic thin plate and pressed on the lower foam plate ring 20 to ensure air tightness or air seal
  • the upper pressure plate 9 of the cavity and the lower foam plate ring 20 are made of a foam material, and the upper pressure plate 9 of the air-sealed cavity has two circular openings.
  • the diameter of the circular opening is consistent with the diameter of the two lifting propellers and is consistent with the lower foam plate
  • the ring 20 together constitutes an air cushion device.
  • the air seal cavity is composed of the upper pressure plate 9 of the air seal cavity and the lower foam plate ring 20; the horizontal propeller 21 and the horizontal propeller motor 25 are installed horizontally above the center point of the upper pressure plate 9 of the air seal cavity, and the horizontal motor
  • the propeller 21 and the horizontal motor 25 are aligned with the longitudinal and axial directions of the fuselage frame 6.
  • a propeller retainer 28 is provided at the outer ring of the horizontal propeller 21 to protect the horizontal propeller 21 from foreign objects.
  • a deflector 5 is vertically installed on the upper side of the upper pressure plate 9 of the air seal cavity, and a deflector 5 is vertically installed at the installation position of the horizontal propeller motor;
  • a battery 3 and a remote control receiving control circuit board 2 On both sides of the lower part are also installed a battery 3 and a remote control receiving control circuit board 2, the installation position of the battery 3 and the remote control receiving control circuit board 2 needs to be adjusted so that the center of gravity of the entire helicopter is kept at the center point of the fuselage frame 6 and as low as possible;
  • the propeller retaining ring 28 also serves to protect the horizontal propeller 21.
  • the remote control receiving control circuit board 2 controls the front forward rotation reverse lift propeller motor 16 and the rear reverse forward rotation forward propeller motor 15 to drive the forward rotation reverse lift propeller 12 and the reverse forward rotation forward propeller 11 at high speed.
  • the two propellers rotating in the same horizontal plane at the same speed and opposite direction raise the part of the weight of the helicopter while blowing air into the lower foam plate ring 20. Due to the few parts of this hovercraft and propeller helicopter, the overall lightness has no weight In addition, the two propellers rotate at a medium speed to lift a part of the weight of the helicopter.
  • the lower foam plate ring 20 forms a closed space with the water surface or the ground.
  • the high-pressure air blown into the air ring can be squeezed from the foam plate ring 20 with the water surface or the ground.
  • the high-pressure air blown by the forward and reverse propellers is continuously ejected from the foam board ring 20 so that the foam board ring 20 forms an air cushion and is lifted up, so that the entire helicopter is suspended on the water surface or the ground.
  • the remote control receiving control circuit board 2 controls the horizontal motor 25 to rotate the horizontal propulsion propeller 21 forward and backward when it receives the signal from the transmitter of the remote control, and pushes forward and backward movement of the suspended helicopter; the jet flow generated by the horizontal propeller 21 passes through the guide
  • the flow sheet 5 guides the gas, so that the airflow can keep straight and the horizontal movement of the entire aircraft remains straight; when the two positive and negative lift propellers make a differential rotation under the control of the remote control receiving control circuit board 2, due to the two positive and negative lift propellers
  • the anti-rotation torque generated by the entire aircraft is inconsistent and drives the aircraft to turn and turn; when this propeller helicopter is required to fly in the air, the remote control receiving control circuit board 2 controls the two positive and negative lift propellers to rotate at the same speed at full speed.
  • the constant rotation of the propeller counteracts the anti-rotation torque generated by the entire aircraft, so only enough lifting force is generated to drive the aircraft into the air; the left-right steering and front-to-back control flight are consistent
  • the fourth embodiment is a three-dimensional structural schematic diagram of another remote control helicopter provided by the present disclosure in combination with a tandem twin-screw helicopter;
  • a hovercraft and propeller helicopter Including helicopter body fuselage frame 6, reverse lift propeller 12, reverse lift propeller motor 16, forward rotation lift propeller 11, forward rotation lift propeller motor 15, battery 3, remote control receiving control circuit board 2, deflector 5, horizontal Propeller propeller 21, horizontal propeller motor 25, horizontal propeller retainer 28, foam sheet ring 20, flexible air curtain apron 4;
  • the difference between the helicopter of FIG. 4 and FIG. 3 is mainly in the following aspects: the two lift propellers are installed from upward to downward, so that it is not easy for the two lift propellers to be wrapped inside the fuselage frame Damaged by touch, the lower part is equipped with a flexible air curtain apron 4 and a foam board ring 20.
  • An air cushion device is composed of two lift propellers, a flexible air curtain apron 4 and a foam board ring 20.
  • the air seal cavity is composed of a flexible air curtain apron 4 and a foam board ring 20.
  • the high-pressure air from the two propellers rotating at medium speed enters the air-sealed cavity, and the high-pressure gas is continuously ejected from the flexible air curtain apron 4 so that the fuselage is lifted and suspended on the water or the ground; except for the foam board ring 20 added above
  • the role of ensuring high-pressure gas also causes the fuselage to be raised to lower the center of gravity of the fuselage, which can maintain the horizontal stability of the aircraft when flying in the air. It also protects the propeller and the fuselage frame from collision and provides the entire aircraft. Buoyancy in water.
  • this hovercraft and propeller helicopter are consistent with the driving flight control described in FIG.
  • the fifth embodiment is a schematic diagram of a three-dimensional structure of a hovercraft and a propeller helicopter of the present disclosure
  • a hovercraft and propeller helicopter Including main fuselage frame 6, tail rotor 13, tail rotor motor 14, multi-blade lift propeller 24, multi-blade lift propeller motor 26, battery 3, remote control receiving control circuit board 2, deflector 5, horizontal propeller 21, horizontal Propeller propeller motor 25, horizontal propeller propeller retainer 28, light weight cylinder 8, upper pressure plate 9 of air seal cavity, rechargeable air vent 1, tail rotor retainer 22;
  • the multi-blade lift propeller 24 and the multi-blade lift propeller motor 26 are installed at the upper center of the entire inner fuselage frame 6, and the diameter of the externally mounted lightweight barrel 8 is slightly larger than the multi-blade lift propeller 24 The diameter of the multi-blade lift propeller 24 will not hit the light barrel 8 when rotating.
  • the multi-blade lift propeller 24 and the light barrel 8 form a ducted propeller.
  • the light barrel 8 can be made of light metal or non-metallic materials
  • the multi-blade lift propeller 24, the inflatable air ring 1, the upper pressure plate 9 of the air seal cavity and the lightweight cylinder 8 together constitute an air cushion device, the air seal cavity is composed of the inflatable air ring 1, the upper pressure plate 9 of the air seal cavity and the light
  • the mass cylinder 8 is composed of; the horizontal propeller 21 and the horizontal propeller motor 25 are installed on the upper pressure plate 9 of the air seal cavity, and the installation axis is horizontally parallel to the deflector 5; the upper pressure plate 9 and the light weight cylinder 8 are on the other side of the air seal cavity.
  • a tail rotor motor 14 and a tail rotor 13 are installed symmetrically at one end; a deflector 5 is vertically installed between the tail rotor 13 and the horizontal propeller 21; a battery 3 and a remote control receiver are also installed at the lower part of the entire inner fuselage frame 6 Control circuit board 2 installation position The center of gravity of the entire helicopter is maintained at the center point of the fuselage frame 6; the lightweight barrel 8 and the upper pressure plate 9 of the air seal chamber can be made of lightweight materials such as plastic or foam.
  • the only multi-blade lift propeller 24 in FIG. 5 is driven by the multi-blade lift propeller motor 26 to rotate at a medium speed. While lifting a part of the weight of the helicopter, the air can be filled into the lower deflation ring 1 to blow in the air.
  • the high-pressure air of the charging and discharging air ring 1 can be sprayed out from between the charging and discharging air ring 1 and the water surface or the ground to form an air cushion and be lifted up, so that the entire fuselage is suspended on the water surface or the ground. Since only one multi-blade lift propeller 24 rotates, it will produce a counter-rotation torque to the entire aircraft to drive the aircraft to rotate in reverse.
  • the tail rotor motor 14 and tail rotor 13 are installed at the upper edge of the upper pressure plate 9 of the air seal cavity.
  • the forward rotation force generated by the rotation of the tail rotor 13 counteracts the previous reverse rotation, so that the fuselage maintains the stability of the direction, while controlling the rotation speed of the tail rotor, which can cause the helicopter to change the left and right directions;
  • the propeller and the horizontal propeller motor are provided with a propeller retainer 28 at the outer ring of the horizontal propeller 21 to protect the horizontal propeller 21 from collision with foreign objects;
  • the deflector 5 keeps the horizontal propeller propelled in a straight line;
  • the lower part of the frame 6 is also equipped with a battery 3 and a remote control receiving circuit board 2.
  • the battery 3 needs to be adjusted in installation position to be adjusted so that the center of gravity of the entire helicopter is maintained at the center point of the fuselage frame 6; the propeller retainer 28 is pushed horizontally to protect The propeller 21 is pushed horizontally, and the tail rotor guard 22 serves to protect the tail rotor 13.
  • FIGS. 1 and 2 there are two changes in this hovercraft and propeller helicopter: 1.
  • the guide vane 5 and the horizontal propeller and horizontal propeller motor can be rotated 90 degrees horizontally; 2.
  • There can also be a remote control coaxial An example of a change in a reverse twin-screw helicopter, a reverse propeller and motor are added coaxially at the lower part, and the control circuits of the horizontal propeller and motor, tail rotor and motor are changed to parallel connection, while forward propulsion or simultaneous Reverse the backward movement, and the steering is consistent with the control of the coaxial propeller aircraft described in FIGS. 1 and 2.
  • the sixth embodiment is a three-dimensional structural schematic diagram of a remote control hovercraft and a propeller helicopter of the present disclosure
  • a remote control hovercraft and propeller helicopter Including main body fuselage frame 6, forward rotation propeller 11, forward rotation propeller motor 15, reverse lift propeller 12, reverse lift propeller motor 16, battery 3, remote control receiving control circuit board 2, deflector 5, horizontal propulsion Propeller 21, horizontal propeller motor 25, horizontal propeller retainer 28, horizontal propeller mounting bracket 23, flexible air curtain apron 4, foam plate ring 20, control direction tail 19, straight wheel 27, steering wheel 29;
  • FIG. 6 there is a ring-shaped approximately elliptical foam board ring 20 around the outside of the main body fuselage frame 6, a flexible air curtain apron 4 of similar shape is wrapped outside the foam board ring 20, and the main body fuselage frame 6 inside
  • the adjacent propellers are forward rotation propeller 11 and reverse lift propeller 12
  • four circular openings are formed on the foam plate ring 20, the circular opening is slightly larger than the diameter of the lift propeller, by Four lift propellers, foam board ring 20 and flexible air curtain apron 4 together constitute an air cushion device.
  • the air seal cavity is composed of foam board ring 20 and flexible air curtain apron 4; one end along the longitudinal axis of foam board ring 20 is provided with a horizontal propeller 21 and Horizontal propeller motor 25, horizontal propeller motor 25 is axially inward, horizontal propeller retainer 28 and horizontal propeller mounting bracket 23 serve to protect and support horizontal propeller 21 and horizontal propeller motor 25.
  • One end of the foam board ring 20 is vertically installed with a deflector 5, and another guide is vertically installed at the position of the horizontal propeller motor 25 Sheet 5, a battery 3 and a remote control receiving control circuit board 2 are hung and mounted on the lower central axis of the foam board ring 20; three wheels are installed in the lower part of the foam board ring 20 inside the air seal cavity, and the steering is near the horizontal propeller 21 The wheels 29, and the other two at the other end are straight wheels 27. The steering is driven by the steering wing 19 to steer the steering wheel 29 on the ground.
  • the hovercraft and propeller helicopter of the present disclosure form an air cushion at the lower part of the air seal cavity.
  • This type of hovercraft and propeller helicopter is to increase the number of lift propellers and motors, so the flight control of the hovercraft and propeller helicopter of the present disclosure is basically the same as that of the previous hovercraft and propeller helicopter, the only difference is the previous invention example when turning It is to control the rotation of the twin propellers to produce a differential speed to drive the fuselage to turn and turn.
  • a hovercraft and a propeller helicopter are steered and controlled.
  • the gas propelled by the propeller horizontally passes through the directional tail 19
  • the rotating surface drives the entire fuselage to turn; the foam rim 20 not only serves as a ducted shell in Figure 6, but also provides buoyancy support for the entire fuselage in the water; lift propeller, foam rim 20 and flexibility
  • the air curtain apron 4 is combined together to form an air seal cavity.
  • the seventh embodiment is a schematic diagram of a three-dimensional structure of a hovercraft and a propeller helicopter according to the present disclosure
  • a hovercraft and propeller helicopter Including main body fuselage frame 6, forward rotation propeller 11, forward rotation propeller motor 15, reverse lift propeller 12, reverse lift propeller motor 16, battery 3, remote control receiving control circuit board 2, deflector 5, horizontal propulsion Propeller 21, horizontal propeller propeller motor 25, horizontal propeller propeller retainer 28, foam disc ring 20, upper platen of air-sealed cavity 9, lightweight barrel 8, lift propeller bracket 10, horizontal propeller propeller mounting bracket 23;
  • FIG. 7 there is a ring-shaped approximately elliptical foam plate ring 20 around the main body fuselage frame 6, an upper pressure plate 9 of an air-sealing cavity is pressed and bonded above the foam plate ring 20, and an upper portion of the upper pressure plate 9 of the air-sealing cavity is opened.
  • the light barrel can be made of lighter metal or non-metallic materials, for example
  • the upper pressure plate 9 of the air-sealed cavity and the lightweight cylinder 8 can be made of plastic in one piece; a lifting propeller is installed on the lifting propeller support 10 of each lightweight cylinder 8 to form a ducted propeller, each adjacent lift
  • the propeller is a different forward and reverse propeller. It consists of a fuselage frame 6, a lift propeller bracket 10, all light weight barrels 8, all lift propellers, a foam plate ring 20 and an upper pressure plate 9 of the air seal cavity.
  • the air seal device is composed of The mass cylinder 8, the foam plate ring 20 and the upper pressure plate 9 of the air seal cavity are combined together; one end along the longitudinal axis of the upper pressure plate 9 of the air seal cavity is provided with a horizontal propeller 21 and a horizontal propeller motor 25, and the horizontal propeller motor 25 shaft Towards the fuselage frame, the horizontal propeller retainer 28 and the horizontal propeller mounting bracket 23 protect and support the horizontal propeller 21 and the horizontal propeller motor 25.
  • the upper pressure plate 9 is vertical and the upper part is vertical.
  • a deflector 5 is installed, another deflector 5 is vertically installed at the position of the horizontal propeller motor 25, and a battery 3 and a remote control receiving control circuit board 2 are suspended and mounted on the lower central axis of the upper pressure plate 9 of the air seal chamber;
  • FIG. 7 it can be seen that the disclosed hovercraft and propeller helicopter are different from FIG. 6 in that the biggest difference is that the distance between the multiple propellers and the motor from the bottom of the air seal cavity below is increased, and the increased light weight cylinder 8 makes the fuselage higher The center of gravity of the fuselage is lowered, and the horizontal stability of the aircraft can be more maintained when flying in the air.
  • the foam rim 20 installed below also protects the propeller and the fuselage against collision; while floating on the ground or water surface and flying in the air Steering control drives the fuselage to turn by controlling the inconsistent torsional forces generated during the differential rotation of the four propellers, and other maneuvering motions are the same as the embodiment of FIG. 6.
  • the eighth embodiment is a schematic perspective view of another manned hovercraft and propeller helicopter of the present disclosure.
  • a manned controlled hovercraft and propeller helicopter Including main fuselage frame 6, forward rotation propeller 11, forward rotation propeller motor 15, reverse lift propeller 12, reverse lift propeller motor 16, battery 3, control direction tail 19, horizontal propeller 21, horizontal propeller motor 25.
  • FIG. 8 there is a round lift propeller bracket 10 at the six corners of a horizontal and hexagonal fuselage frame 6.
  • a lift propeller and a motor are respectively installed vertically downward in the axial direction of the center of the lift propeller bracket 10, each Adjacent lift propellers on the horizontal hexagonal angle are different forward and forward forward propellers 11 and reverse and reverse lift propellers 12, and a rechargeable air release ring 1 is glued to the lower part of each propeller support 10, each of which can be charged and placed
  • the air ring 1 just wraps a lift propeller to form an air seal device.
  • the air seal cavity is the refillable air ring 1.
  • the internal diameter of the air ring 1 is slightly larger than the diameter of the lift propeller.
  • the lower part of the center frame of the frame 6 is vertically hung with a battery 3, a remote control receiving control circuit board 2, a deflector 5, a horizontal propeller 21, a horizontal propeller motor 25, a horizontal propeller retainer 28,
  • a horizontal six-sided fuselage frame 6 is equipped with a wheel in the middle of each side. Only the straight frame 27 is installed under the loaded frame, and the other five are steering wheels 29. The steering is the same as that in Figure 6 when driving on the ground wheel. .
  • FIG. 8 the biggest difference between the manned hovercraft and the propeller helicopter shown in Figs. 6 and 7 is that the air-sealed cavity is not a whole.
  • Each lift motor and the propeller driven in the manned helicopter A refillable air ring forms an air-sealed cavity, all six air-sealed cavities together hold the entire manned hovercraft and propeller helicopter fuselage; each of the six propellers has the same speed as the adjacent propeller at one forward and one reverse When rotating, the torques cancel each other out; and two batteries 3 are installed in the airtight chamber housing 27 at the lower part of the fuselage frame 6, and a horizontal propeller 21 is installed at the other end of the lower part of the fuselage frame 6 behind the airtight chamber housing 27.
  • the horizontal propulsion propeller motor 25 and the horizontal propeller propeller retainer 28 are provided with a control direction tail 19 behind the horizontal propulsion propeller 21 and the horizontal propeller motor 25, and the wind propelled by the horizontal propeller 21 rotating to the rear passes the control direction tail 19 Will give a thrust to the rear wing 19 with a certain angle of control direction to drive the whole fuselage to change the driving direction.
  • the part is installed at the lower part of the fuselage frame 6 to reduce the center of gravity of the entire manned helicopter, so that the manned helicopter can maintain the stability of horizontal flight when flying in the air; from the figure shown in FIG. 8, it only needs to be in the passenger cabin 17 It can be a manned hovercraft and propeller-driven helicopter flying on the ground or on the surface and flying in the air by loading a real person and adding the corresponding control mechanism.
  • the ninth embodiment is a three-dimensional structural schematic diagram of a three-lift propeller hovercraft and a propeller helicopter of the present disclosure.
  • hovercraft and propeller helicopter described in FIG. 9 including the main body fuselage frame 6, forward rotation propeller 11, forward rotation lift propeller motor 15, multi-blade lift propeller 24, multi-blade lift propeller 26, remote control receiving control circuit board 2 , Battery 3, control direction tail 19, horizontal propeller 21, horizontal propeller motor 25, horizontal propeller retainer 28, flexible air curtain apron 4, lift propeller bracket 10, passenger cabin 17, control direction tail 19, hollow plastic circle
  • each of the two lift propeller brackets 10 a forward rotation propeller 11 and a forward lift propeller 11 are installed vertically in the center Motor 15, install a reverse multi-blade lift propeller 24 and multi-blade lift propeller 26 vertically on the axis of the center of the remaining third triangular lift propeller bracket 10, connect and install hollow plastic on each lift propeller bracket 10 Round sleeve 31, each hollow plastic round sleeve 31 just wraps a lift propeller to form an air cushion device, the air seal cavity is composed of a hollow plastic round sleeve 31 and a flexible air curtain apron 4, a total of three air seal cavity, each hollow plastic circle
  • the inner diameter of the sleeve 31 is slightly larger than the diameter of the lift propeller.
  • the hollow plastic round sleeve 31 can be used as the duct shell of the lift propeller.
  • the hollow plastic round sleeve 31 itself is hollow to provide buoyancy for the entire fuselage, while being at the center of the fuselage frame 6
  • a battery 3, a remote control receiving control circuit board 2, a control direction tail 19 and a steering gear 32 for controlling the tail are installed on the frame respectively in the axial direction, and the center frame of the fuselage frame 6 is Install the horizontal propeller 21, horizontal propeller motor 25, horizontal propeller retainer 28 at the end; install the steering wheel 29 in the middle of the three sides of the fuselage frame 6 of the horizontal triangle.
  • the three steering wheels 29 can be universal wheels. Of wheeled straight and steering on the ground.
  • the air seal cavity of the remote control hovercraft or propeller helicopter shown is not a whole.
  • the remote control receiving control circuit board 2 controls two forward rotation propellers and one reverse multi-blade lift propeller at the same speed Rotate, the torsion force generated at the same speed rotates in the same direction and cancels each other, which can ensure that the direction of the fuselage does not change when rotating at the same speed; each hollow plastic round sleeve 31 and the lower flexible air curtain apron 4 form an air seal cavity, each When a lift propeller rotates, it generates lift force while blowing high-pressure air support into the air-sealing cavity to lift the air-sealing cavity.
  • the horizontal propeller 21 installed at the rear end of the center frame of frame 6 moves forward and backward to drive the fuselage forward and backward; in front of the horizontal propeller 21, there is also a control direction tail 19, and the wind flow passing through the horizontal propeller 21 in rotation passes the control direction tail
  • the wing surface of 19 will give a thrust to the tail wing of the control direction rotated at a certain angle to drive the entire fuselage frame to change the driving direction.
  • Surface or ground travel can become a remote control hovercraft; and lifted off the ground or water in the air becomes a remote control helicopter propeller aircraft.
  • the hovercraft and propeller helicopter of Fig. 9 can also have a variant.
  • the two corners of the triangle can be installed with forward and reverse propellers respectively.
  • the reverse rotation torque of the two propellers can cancel each other; the other corner can be installed with a total of up and down
  • the traffic driving flight tool or the remote control vehicle using the present disclosure also has the underwater driving function.
  • the lift propeller does not rotate or rotates at a low speed, there is no lift or the lift is too small, and the low-speed rotation
  • the high-pressure gas generated in the air-sealed cavity is not enough to form an air cushion in the lower part of the fuselage, and the air cushion device of the present disclosure can make the entire fuselage float and stay in the water.
  • Driving forward and backward in the water, and the low-speed rotating propeller can change the direction of the fuselage when rotating at a differential speed, so that the present disclosure can also travel in the water like a water boat.
  • wheels can be conveniently added to all the embodiments, and the wheel installation can be fixed, detachable, or telescopic up and down.
  • the transportation vehicles or toys have the ability to exercise in five types of terrain (ground, ground, water, water, air) all-terrain space environment, you can use the most economical and most suitable way when exercising, such as using wheels on a flat ground and only pushing horizontally Propeller working driving, medium speed lift propeller working hovercraft can be added when encountering small obstacles, high speed propeller working helicopter flight can be added when encountering large obstacles, and the ship can only be horizontal when it is slow in water Propelling the propeller to work, and adding high-speed propeller working hovercraft when high speed is needed on the water.
  • the wheels and the air seal cavity are detachable, so you can produce traffic vehicles in different working states according to your needs.
  • Amphibious vehicles such as helicopters that can travel on land (land vehicles that can fly), hovercrafts with wheels removed (helicopters that can travel on hovercraft), or hovercrafts that can travel on land (hovercraft that can travel on hovercraft), etc.
  • the present disclosure has the characteristics of simple structure, compact size, light weight, and multiple use functions.
  • the above-mentioned embodiments only express the nine embodiments of the present disclosure, and their descriptions are more specific and detailed.
  • the above functional components (different blade shape propellers, different air cushion structures, unmanned remote control, battery fuel tank, Combining air cushions, etc.) There are different variations of different combinations, but not all of them are therefore understood to limit the scope of the patent of the present disclosure.
  • the following points need to be fully considered in the application of various helicopters in the present disclosure: 1.
  • Various fuselage frame structures need to be adjusted when installing parts so that the center of gravity of the entire fuselage is maintained at the center point of the fuselage, and as far as possible The center of gravity of the helicopter is lower.
  • the advantage of this arrangement is that the attitude of the entire aircraft in the air can be kept horizontally stable.
  • the helicopter of this disclosure will be used in the water environment when it is used, so the waterproofing of each component needs to be considered.
  • the whole fuselage needs to be tested in a 360-degree direction.
  • the shape, size, quantity, installation position of the deflector, and the shape of the fuselage frame and the position of the parts should be adjusted to ensure that the aircraft is in the external environment and the wind direction environment.
  • the body will not be rotated by the wind, making the helicopter difficult to operate in the field; 4.
  • the lift propeller can also be multi-blade.
  • the multi-blade lift propeller has a large lift and blows downward
  • the advantages are strong and the propeller diameter is smaller, but the biggest disadvantage is that correspondingly increasing the weight of the entire helicopter will increase the power consumption, so when manufacturing the propeller of the present disclosure, it is necessary to comprehensively consider the number of blades and focus on saving energy consumption; 5.
  • the gap between the lift propeller and the casing in the present disclosure keeps a minimum gap; 6.
  • the motor described in the present disclosure can use an electronic motor and a fuel motor 7.
  • the air-sealed cavity is not integrally manufactured and the airtightness of the connection needs to be ensured for the combined connection Prevent air leakage from forming air cushion suspension;
  • the remote control described in this disclosure can use infrared or wireless remote control forms for remote control; 9. Convenient and simple, the lift motor and propeller Videos direct drive, the actual product can be made like a gear or chain drive mode.
  • the air cushion device of the present disclosure can also be used.
  • the same product embodiment can It can be seen as a flying and running ship (including a hovercraft). It can also be seen as a land-wheeled vehicle that can fly and travel, and can also be seen as a helicopter that can travel and run.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

本公开涉及交通行驶飞行工具和遥控交通玩具领域尤其交通行驶飞行工具和遥控交通玩具及其使用的气垫装置。该气垫装置的升力螺旋桨结构安装在机身框架上,机身框架还安装气封腔,气封腔呈环状,围成两端上下贯通气体通道,气封腔处于升力螺旋桨结构向下鼓风路径上,气封腔和升力螺旋桨结构组成气垫装置。升力螺旋桨转动产生升力且向气封腔鼓入高压空气在底部形成气垫,使得悬浮行驶。当升力螺旋桨高速转动可升空飞行,机身下部稍低于气封腔安装轮子使得成为三栖(五种地形空间环境)行驶飞行交通工具或遥控玩具,成为"飞的气垫船、会跑的船、会游的直升机、会游的陆地车、会飞的陆地车和会跑的直升机等各种交通行驶飞行工具或遥控交通玩具"。。

Description

交通行驶飞行工具和遥控交通玩具及其使用的气垫装置
相关申请的交叉引用
本申请要求于2018年10月24日提交的申请号为201811246025.4,名称为“交通行驶飞行工具和遥控交通玩具及其使用的气垫装置”以及于2018年10月24日提交的申请号为201821730026.1,名称为“交通行驶飞行工具和遥控交通玩具及其使用的气垫装置”的中国专利申请的优先权,其通过引用方式全部并入本公开。
技术领域
本公开涉及气垫船和飞行器领域,特别是涉及交通行驶飞行工具和遥控交通玩具类交通行驶飞行设备及其使用的气垫装置。。
背景技术
螺旋桨直升飞行器以质轻,起落方便收到用户的青睐,也成为一种广受欢迎的玩具和交通行驶飞行工具,并应用到多种行业中。螺旋桨直升飞行器具有的不能在陆地或水面降落行驶,升力螺旋桨旋转只产生升力功能单一,螺旋桨直升飞行器飞行需花费大量电力克服重力在空中飞行,所以可操作使用时间比较短,加大电源容量又加大重量造成使用时间增加不了多少,有些直升机的螺旋桨裸露在外,高速旋转时具有伤人的危险性等方面的问题,这影响了直升机的安全使用范围。
气垫船是利用高压空气在船底和水面(或地面)间形成气垫,使船体全部或部分垫升而实现高速航行的船。气垫是用大功率鼓风机将空气压入船底下,由船底周围的柔性围裙等气封装置限制其逸出而形成的。气垫船船身一般用铝合金、高强度钢或玻璃钢制造;船底围裙用高强度尼龙橡胶布制成,磨损后可以更换。
气垫船的优势是能两栖行驶,但由于船身的重量不能直升飞行。气垫船的鼓风机或鼓风风扇只是作为向下鼓风作用,也有个别的鼓风风扇向下吹风的风扇产生一部分向上的升力,相对于整个机身重量的减少几乎可以忽略不计,该鼓风风扇最主要的功能还是向下部气封腔鼓风。
发明内容
(一)要解决的技术问题
本公开的目的是提供交通行驶飞行工具和遥控交通玩具类交通行驶飞行设备及其使用的气垫装置,解决上述的至少一个问题。
(二)技术方案
为了解决上述技术问题,本公开提供一种气垫船,其包括机身框架、升力螺旋桨结构、气封腔;其中,所述升力螺旋桨结构安装于所述机身框架上,且所述机身框架还安装有所述气封腔,所述气封腔的底部位于整个机身框架的最底端还可作为整个机身在水中或地面的降落支撑架构。所述气封腔可直接由柔性气帘围裙、可充放气圈或泡沫材料等构成或由上述轻质并具有浮力的结构或材质分别组合成气封腔;所述气封腔可直接代替气垫船的沉重的船身和船底。所述气封腔呈环状,围成上下两端贯通的气体通道,所述气封腔处于所述升力螺旋桨结构向下的鼓风路径上,且升力螺旋桨结构中升力螺旋桨的转轴与所述气封腔的中心轴重合、平行或倾斜水平推进螺旋桨;所述水平推进螺旋桨结构包括:水平推进螺旋桨和水平推进螺旋桨马达,所述水平推进螺旋桨的转轴与所述气封腔的纵向中心轴平行并处于所述气封腔的外部。
本公开提供一种螺旋桨直升飞行器使用的气垫装置,其包括机身框架、升力螺旋桨结构、气封腔,以及水平推进螺旋桨结构;其中,所述升力螺旋桨结构安装于所述机身框架,且所述机身框架还安装有所述气封腔,所述气封腔的底部位于整个机身框架的最底端,可作为整个机身在水面或地面的降落支撑架构。所述气封腔呈环状,围成上下两端贯通气体通道,所述气封腔处于所述升力螺旋桨结构向下的鼓风路径上。
在一些实施例中,优选为,所述气封腔可直接由柔性气帘围裙、可充放气圈或泡沫材料等轻质具有浮力的结构组件或由轻质并具有浮力材质分别组合成气封腔;所述气封腔代替降落架并能停留在水面上;且升力螺旋桨结构中升力螺旋桨的转轴与所述气封腔的中心轴重合、平行或倾斜;所述水平推进螺旋桨结构包括:水平推进螺旋桨和水平推进螺旋桨马达,所述水平推进螺旋桨的转轴与所述气封腔的纵向中心轴平行并处于所述气封腔的外部。
在一些实施例中,优选为,所述升力螺旋桨结构包括至少一个升力螺旋桨组,所述升力螺旋桨组包括:第一升力螺旋桨和第二升力螺旋桨,所述第一升力螺旋桨和所述第二升力螺旋桨的转动方向相反;所述第一升力螺旋桨、所述第二升力螺旋桨为单叶桨或多叶桨;所述第一升力螺旋桨的叶片长度、所述第二升力螺旋桨的叶片长度相等或不等;所述第一升力螺旋桨和所述第二升力螺旋桨各自配有驱动马达;所述第一升力螺旋桨和所述第二升力螺旋桨在同速反向旋转时产生的扭转力相同互相抵消。
在一些实施例中,优选为,所述第一升力螺旋桨和所述第二升力螺旋桨的转轴共轴,呈上下关系;或,所述第一升力螺旋桨和所述第二升力螺旋桨处于同一平面上,所述平面垂直于所述气垫的中心轴。
在一些实施例中,优选为,第一升力螺旋桨的叶片处于所述气垫围成的气封腔内或气封腔上方。
在一些实施例中,优选为,第二升力螺旋桨的叶片处于所述气垫围成的气封腔内或气封腔上方。
在一些实施例中,优选为,所述螺旋桨结构包括一个升力螺旋桨,所述升力螺旋桨的转轴与所述气垫的中心轴共轴。
在一些实施例中,优选为,所述的螺旋桨直升飞行器还包括:尾桨,所述尾桨设置于所述气垫上,且所述尾桨和所述水平推进螺旋桨以所述气垫的中心轴为对称轴相互对称,所述尾桨配有尾桨马达。
在一些实施例中,优选为,所述水平推进螺旋桨结构还包括:水平推进螺旋桨护圈和导流片,所述水平推进螺旋桨的外圈设置所述水平推进螺旋桨护圈;所述导流片活动式平行设置于所述水平推进螺旋桨旋动气流的流动路径上;所述导流片呈竖向。
在一些实施例中,优选为,所述的螺旋桨直升飞行器还包括:保护支架,所述保护支架覆盖至少一个所述螺旋桨的转动平面,所述保护支架安装于所述气封腔或机身框架上。
在一些实施例中,优选为,所述气封腔由轻质有浮力材质组成,此种材质包括:可充放气气圈、塑料、尼龙或橡胶圈、泡沫圈(空心或实心)、柔性气帘围裙圈、轻质金属或非金属筒等,单独或分别各种组合的密封连接或一体成型的组合结构。在一些实施例中,优选为,所述的气垫船和螺 旋桨直升飞行器还包括:乘人机舱,所述乘人机舱设置于所述气垫或机身框架上;所述气封腔处于整个机身框架外部和下部,对整个机身起到防撞和防摔作用。
在一些实施例中,优选为,所述升力螺旋桨旋转的圆面积占整个机身框架垂直投影总面积至少百分之二十。
在一些实施例中,优选为,所述升力螺旋桨旋转时的升力为整个机身重量至少百分之二十。
在一些实施例中,优选为,所述机身下部安装有至少三个轮子,其中至少一个轮子是可转向轮,所述轮子的接地面的轮底稍低于所述气封腔的最底端。
本公开还提供了一种交通行驶飞行设备,其设置上述的气垫装置;且该交通行驶飞行设备包括交通行驶飞行工具和遥控交通玩具。
本公开还提供了一种气垫船,其包括上述的气垫装置。
本公开还提供了一种螺旋桨直升飞行器,其包括上述的气垫装置。
本公开还提供了一种陆地车,其包括所述的气垫装置。
本公开还提供了一种船,其包括所述的气垫装置。
(三)有益效果
本公开提供的技术方案中升力螺旋桨结构置于气封腔内或紧贴气封腔上方,气封腔既可作为高压气室用,又可作为浮力机身用,还可作为整个机身的降落支撑用。
综合下面所有实施例,可以看出从一个升力螺旋桨到任意数量螺旋桨气垫船或直升飞行器都可采用此发明的结构原理,即升力螺旋桨旋转产生升力减轻整体机身框架至少百分之二十以上重量的同时升力螺旋桨与气封腔底部产生气垫垫升整个机身,螺旋桨的升力和螺旋桨的鼓气的垫升力之间的分配比例,可在制造时酌情考虑但要以最佳省电为原则;再有气封腔使用轻质并具有浮力的结构或材质,极大减少了整个机身重量,如整个机身不能升空只在水面或地面悬浮行驶就是应用在气垫船领域,能飞行在空中则是在螺旋桨直升飞行器领域实现的独特新颖的三栖行驶飞行器。
附图说明
图1为本公开实施例1中船、陆地车、无人双桨共轴气垫船或螺旋桨 直升飞行器的立体示意图;
图2为本公开实施例2中有人船、陆地车、双桨共轴气垫船或螺旋桨直升飞行器的结构示意图;
图3为本公开实施例3中船、陆地车、双桨前后串列气垫船或螺旋桨直升飞行器的立体示意图;
图4为本公开实施例4中船、陆地车、双桨前后串列气垫船或螺旋桨直升飞行器的立体示意图;
图5为本公开实施例5中船、陆地车、单桨气垫船或螺旋桨直升飞行器的立体示意图;
图6为本公开实施例6中船、陆地车、无人遥控多轴螺旋桨气垫船或螺旋桨直升飞行器的立体示意图;
图7为本公开实施例7中船、陆地车、多轴螺旋桨气垫船或螺旋桨直升飞行器的立体示意图;
图8为本公开实施例8中有人操控船、陆地车、多轴螺旋桨气垫船或螺旋桨直升飞行器的立体示意图。
图9为本公开实施例9中遥控船、陆地车、三轴螺旋桨气垫船或遥控三轴螺旋桨直升飞行器的立体示意图。
注:1、可充放气圈;2、遥控接收控制电路板;3、电池;4、柔性气帘围裙;5、导流片;6、机身框架;7、保护支架;8、轻质筒;9、气封腔上部压板;10、升力螺旋桨支架;11、正转升力螺旋桨;12、反转升力螺旋桨;13、尾桨;14、尾桨马达;15、正转升力螺旋桨马达;16、反转升力螺旋桨马达;17、乘人机舱;18、油箱;19、控制方向尾翼;20、泡沫板圈;21、水平推进螺旋桨;22、尾桨护圈;23、水平推进螺旋桨安装支架;24、多叶升力螺旋桨;25、水平推进螺旋桨马达;26、多叶升力螺旋桨马达;27、直行轮28、水平推进螺旋桨护圈;29、转向轮30、气垫连接钩;31、空心塑料圆套;32、舵机。
具体实施方式
下面结合附图和实施例,对本公开的具体实施方式作进一步详细描述。以下实例用于说明本公开,但不用来限制本公开的范围。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。“第一”“第二”“第三”“第四”不代表任何的序列关系,仅是为了方便描述进行的区分。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。“当前”在执行某动作之时的时刻,文中出现多个当前,均为随时间流逝中实时记录。
由于目前气垫船和直升飞行器应用中存在的各种问题,本公开给出气垫船和螺旋桨直升飞行器用的气垫装置。
下面将通过基础设计、扩展设计及替换设计对产品、方法等进行详细描述。
一种船、陆地车、在气垫船和螺旋桨直升飞行器的气垫装置,其包括机体框架、螺旋桨结构、气封腔,以及水平推进螺旋桨结构;其中,升力螺旋桨结构安装于机身框架,且机身框架还安装有气封腔,气封腔的底部位于整个机身框架的最底端可作为整个机身在水面或地面的降落支撑架构;气封腔可直接由轻质并具有浮力结构(如可充放气圈如用塑料制成,塑料材质没有多少浮力,而是空心气圈结构产生浮力)的气封腔构成、由轻质并具有浮力材质(泡沫板或圈如果是空心则同时具有浮力材质和结构)的气封腔构成或由上述两种结构组合构成;气封腔可直接代替船身和船底;气封腔呈环状,围成两端上下贯通的气体通道,气封腔处于螺旋桨结构向下的鼓风路径上,升力螺旋桨结构安装于气封腔内或贴近气封腔的气封腔上部压板开口处,且升力螺旋桨结构中升力螺旋桨的转轴与气封腔的中心轴重合或平行;水平推进螺旋桨结构包括:水平推进螺旋桨,水平推进螺旋桨的转轴与所述气封腔的纵向中心轴平行并处于所述气封腔的外部。
该船、陆地车、气垫船和螺旋桨直升飞行器适用于高空飞行、水面和陆地长时间行驶,增加机身运行时间的同时还能增加机身框架防护安全。其依靠升力螺旋桨中速转动,将部分高压气流推至气垫的气封腔,当飞行器距离地面或水面较近时,在飞行器的气封腔底部和地面/水面之间形成气体支撑层,机身可以悬浮行驶在水面或地面上,可以当成气垫船。当气垫船 飞行器的升力螺旋桨高速,甚至全速旋转时,螺旋桨直升飞行器克服自身重力升空、飞行。
升力螺旋桨在产生升力的同时向下面的气封腔鼓入高压空气,在气封腔底和水面(或地面)间形成气垫,可使气垫船和螺旋桨直升飞行器机身垫升悬浮而实现航行。
此处提到的气封腔,其为气垫船和螺旋桨直升飞行器较为主要的部件,且占用了机身框架重量的较大比例。气封腔的质量轻使得气垫船和螺旋桨直升飞行器本身重量较轻,相对于现有的气垫船和直升飞行器的重量来说减重可观。
该气封腔优选应用轻质并具有浮力的结构或轻质具有浮力的材料,比如:塑料、充放气圈、泡沫圈(实心或空心)、柔性气帘围裙圈、轻质金属/非金属筒等,单独或分别各种组合的密封连接或一体成型的组合结构。气封腔底端可使用可充放气圈、泡沫圈(实心或空心)、柔性气帘围裙等直接围成环状,在一些实施例中可充放气圈、泡沫板圈或轻质筒包裹螺旋桨能发挥涵道风扇一样的优势,不易影响螺旋桨的效率,水中气封腔又能具有较大浮力同时还材质比较轻可使整个机身停降在水中并能在水中行驶,气封腔所使用的结构或材质还能在飞行故障坠落时起到缓冲垫作用。
一些实施例中,气封腔的分段上层为可充放气圈,气封腔的分段下层为柔性气帘围裙圈,二者一体成型或密封连接,连接处不漏气。一些实施例中,气封腔的分段上层为泡沫板圈,气封腔的分段下层为可充放气圈或柔性气帘围裙圈,二者密封连接或一体成型。一些实施例中,气封腔的分段上层是可充放气圈,分段下层也是可充放气圈。这种结构的分段上层发挥可充放气圈或者泡沫板圈(空心或实心)在水中的浮力作用可作为机身框架或气垫船船底,又有加高机身框架降低重心的作用,可提高直升飞行器飞行的稳定性。分段下层柔性气帘围裙能在凹凸不平的陆地行驶功能。
还有些实施例中,气封腔上部压板采用泡沫板圈,泡沫板圈的上表面密封覆盖压片(优选为泡沫板),在压板上开出与螺旋桨数目相同或不同的开口,正好适合升力螺旋桨的安装。后文实施例中会给出具体的实现形式。
安装本公开装置的船、陆地车、气垫船和三栖直升飞行器的机身框架 的气封腔还可作为降落装置使得三栖直升飞行器降落和停留在地面和水中,同时气封腔安装在机身框架外部对碰撞也具有保护作用,由于采用升力螺旋桨,即利用了螺旋桨旋转产生的升力,又利用了升力螺旋桨鼓风将空气压入机身框架底部的托升力,可提高升力螺旋桨的使用效率,既能使机身在水面和地面行驶,而且本公开的气垫装置重量轻,还可使采用本公开的螺旋桨直升飞行器在空中飞行实现三栖行驶飞行,增加了螺旋桨直升飞行器的使用范围的同时还能减少能量的损耗增加使用时间。
基于现有螺旋桨直升飞行器空中前后飞行依靠的是升力螺旋桨改变升力造成整个螺旋桨直升飞行器机身框架水平面改变,从而使得倾斜的升力螺旋桨产生前进力,带动螺旋桨直升飞行器前进。本技术提出的螺旋桨直升飞行器采用水平安装的前后推进螺旋桨,不依靠螺旋桨直升飞行器改变机身框架的水平面前后运动,直接用水平推进螺旋桨结构推动前后运动,使得不仅在空中而且在地面或水面也能前后运动。
现有螺旋桨直升飞行器空中左右飞行转向是采用两种方式,一是两个以上升力螺旋桨时依靠不同螺旋桨之间的差速旋转形成不同螺旋桨扭力不一致造成整个螺旋桨直升飞行器机身框架左右转向;二是一个升力螺旋桨时采用侧面尾桨旋转带动整个螺旋桨直升飞行器机身框架左右转向;现有气垫船左右飞行转向是采用安装在机身框架尾端的水平推进螺旋桨前后的控制方向尾翼水平转动时,水平推进螺旋桨吹出的风气吹到控制方向尾翼面带动整个螺旋桨直升飞行器机身框架左右转向;本技术提出的气垫船和螺旋桨直升飞行器可采用上述三种左右转向方法。
螺旋桨结构在气封腔内或贴近气封腔上开口处安装后,通过转轴与气封腔的中心轴重合或平行,形成均衡布局。
为了增加人工驾驶的功能,在一些实施例中,气垫船和螺旋桨直升飞行器还可以设置乘人机舱,气封腔外壳安装于气垫或机身框架上,水平推进螺旋桨结构等的安装位置可置于整个气封腔前后水平中心轴面上并位于气封腔外部,以达到飞行器整体受力均衡,保持水平姿态,且安全、稳定。
在一些实施例中,优选为,螺旋桨结构包括至少一个螺旋桨组,已形成双桨或多轴螺旋桨直升飞行器。螺旋桨组包括:第一升力螺旋桨和第二 升力螺旋桨,第一升力螺旋桨和第二升力螺旋桨的转动方向相反,依靠旋转的差速调整直升飞行器左右转向。第一升力螺旋桨、第二升力螺旋桨为单叶桨或多叶桨。且第一升力螺旋桨的叶片长度、第二升力螺旋桨的叶片长度相等或不等,两个升力螺旋桨的长度不等,转速相同的情况下两个升力螺旋桨形成相同的扭矩保持飞行器方向的稳定。第一升力螺旋桨和第二升力螺旋桨各自配有驱动马达,驱动马达在控制面板的作用下分别带动对应的升力螺旋桨转动,飞行器在两个升力螺旋桨差速转动作用下得到扭转力不一样实现左右方向的改变。
在一些实施例中,可控制安装的控制方向尾翼水平转动改变方向。
多个螺旋桨组可以按照矩阵、圆周均布等方式布置。对于每一组升力螺旋桨,其包括第一升力螺旋桨、第二升力螺旋桨。针对第一升力螺旋桨、第二升力螺旋桨的位置关系,在一些实施例中,第一升力螺旋桨和第二升力螺旋桨上下共轴,转轴都平行或共轴气封腔的中心轴,第一升力螺旋桨和第二升力螺旋桨各自的驱动马达可以同时设置在该共轴上,也可以相对气封腔中心轴对称设置,通过齿轮或链条传动到第一升力螺旋桨、第二升力螺旋桨的转轴。在一些实施例中,二者同平面布置,平面垂直于气封腔的中心轴。
针对第一升力螺旋桨、第二升力螺旋桨相对气封腔的位置关系,在一些实施例中,第一升力螺旋桨的叶片处于气封腔内或气封腔上方。同理,在一些实施例中第二升力螺旋桨的叶片处于气封腔内或气封腔上方。在一些实施例中,第一升力螺旋桨、第二升力螺旋桨均处于气封腔内,保护其转动,避免旋转损伤。在一些实施例中,第一升力螺旋桨、第二升力螺旋桨为上下层关系时,上层的升力螺旋桨可处于气封腔的上方。当升力螺旋桨处于气封腔上方时,所有飞行器可以安装遥控装置实行遥控飞行,同时在安装乘员气封腔外壳的情况下可以人工控制转动该升力螺旋桨转动,实现工启动控制。
在另一些实施例中,螺旋桨结构仅包括一个升力螺旋桨,升力螺旋桨的转轴与气封腔的中心轴共轴。升力螺旋桨产生向上的升力。且向气封腔内鼓风。并依靠水平推进螺旋桨结构实现前进、后退。
基于一个螺旋桨飞行器,在一些实施例中,螺旋桨直升飞行器采用尾 桨实现左右运动。该尾桨设置于气封腔上,且尾桨和水平推进螺旋桨以气封腔的中心轴为对称轴相互对称,形成稳定的结构,提高飞行器行驶稳定性,尾桨配有转动马达,转动马达在控制面板的作用下产生不同的旋转驱动力。
控制可选择手动或遥控方式。当飞行器设置乘人机舱时,可采用手动控制,如果不设置乘人机舱,可以建立控制装置和手持的遥控器。
基于上述各实施例,水平推进螺旋桨结构还设置水平推进螺旋桨护圈和导流片,水平推进螺旋桨的外圈设置水平推进螺旋桨护圈,可保护水平推进螺旋桨不受外物碰撞伤害人体。导流片固定平行设置于水平推进螺旋桨旋动气流的流动路径上;导流片呈竖向,水平推进螺旋桨产生的喷射气流通过导流片对气体导流,使得气流能保持直线运行从而使整个飞行器水平运动保持直线。
在一些实施例中,优选为,为了避免螺旋桨在转动中发生碰撞等损伤,的螺旋桨直升飞行器还包括:保护支架,保护支架覆盖至少一个螺旋桨的转动平面,保护支架安装于气封腔,保护支架目的在于包括螺旋桨,避免碰触其他物体造成损坏。
本公开还提供了应用上述气垫装置的气垫船,其通过悬浮状态悬浮于地面或水面上。
本公开还提供了应用上述气垫装置的螺旋桨直升飞行器。
接下来,结合上文提到的各种实施方式,组建不同形式的螺旋桨直升飞行器,以不同的实施例呈现。实施例请参阅图1、图3、图4、图5、图6、图7,为本公开的四种无人遥控实施例。实施例图2、图8为有人螺旋桨直升机和有人多轴螺旋桨直升机的方案,图1作为无人遥控共轴反桨直升机的优选方案。
实施例1
本实施例的本公开结合双桨共轴直升机提供最优的一种无人遥控共轴反桨直升机的立体结构示意图;
请参阅图1,为本公开的第一种实施例,一种气垫船和螺旋桨直升飞行器。包括主体机身框架框架6、上部反转升力螺旋桨12、上部反转升力螺旋桨马达16、下部正转升力螺旋桨11、下部正转升力螺旋桨马达15、 电池3、遥控接收控制电路板2、导流片5、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28、保护支架7、机身框架6与气垫连接钩30、可充放气圈1、转向轮29;
请参阅图1,下部正转升力螺旋桨11和下部正转升力螺旋桨马达15安装在整个内部机身框架6的下部中心处,下部正转升力螺旋桨11正好被可充放气圈1包裹组成气垫装置,可充放气圈1就是气封腔;可充放气圈1损坏后能很方便替换,不安装可充放气圈1的飞行器不影响飞行器飞行功能;上部反转升力螺旋桨12和上部反转升力螺旋桨马达16安装在整个内部机身框架6的上部中心处;水平推进螺旋桨21和水平推进螺旋桨马达25水平安装在机身框架6中轴线上并靠近机身框架边缘上并朝向机身框架6内部,水平推进螺旋桨21外圈处有一螺旋桨护圈28,可保护水平推进螺旋桨21不会受到外物碰撞;与水平推进螺旋桨马达25同一水平面还垂直安装有导流片5;在整个内部机身框架6的下部还安装有电池3和遥控接收控制电路板2,安装位置需使得整个直升机的重心保持在机身框架6的中心点上;在内部机身框架6的外部上面还有保护支架7,
保护支架7可起到保护上部反转升力螺旋桨12作用,还可使上部反转升力螺旋桨12高速旋转时不易碰到伤害人体,特别是小孩。
当下部可充放气圈1充足气体时,可被机身框架6气垫连接钩30钩入卡住,气垫连接钩30上有圆孔可***转向轮29,此四个转向轮29可为万向轮,轮底比气封腔稍低,在地面支撑时升力螺旋桨不工作时而水平推进螺旋桨旋转工作时可以以旋转轮在地面行驶,需要转向时可使升力螺旋桨低速差速旋转转向;充足气的可充放气圈1可支撑整个这遥控螺旋桨直升飞行器重量,能降落停留在地面上或水面上;在可充放气圈1放气后可方便拆卸替换。在图1这种遥控螺旋桨直升飞行器使用时,遥控接收控制电路板2接收到控制信号后控制上部反转升力螺旋桨马达16和下部正转升力螺旋桨马达15带动上部反转升力螺旋桨12和下部正转升力螺旋桨11非全速相互反方向旋转时,两个在同一轴心上反向同速旋转螺旋桨在提起直升机一部分重量的同时向下部可充放气圈1鼓入空气,由于这遥控螺旋桨直升飞行器零件少、整体轻巧没什么重量,加上两个螺旋桨中速旋转已提起直升机一部分重量,下部可充放气圈1与水面或地面形成封闭空间, 被鼓入气圈的高压空气能从可充放气圈1与水面或地面之间喷挤出,下部正转升力螺旋桨11鼓入的高压空气不断从可充放气圈1下面喷射挤出从而使形成气垫并被垫升抬起,气垫高度使得稍低于气封腔的轮子也脱离地面,使得整个直升机悬浮在水面或地面上。遥控接收控制电路板2控制水平推进马达25旋转带动水平推进螺旋桨21正、反旋转时,推动悬浮的直升机前、后运动;水平推进螺旋桨21产生的喷射气流通过导流片5对气体导流,使得气流能保持直线运行从而使得整个飞行器水平运动保持直线;两正反升力螺旋桨在遥控接收控制电路板2控制下做差速旋转时,由于两正反升力螺旋桨对整个飞行器产生的反旋转扭力不一致从而带动飞行器旋转转向,如果只是在水面或地面行驶可把这个发明当做气垫船;当需要在空中飞行时,遥控接收控制电路板2控制两正反升力螺旋桨做全速旋转,由于两正反转升力螺旋桨等速旋转对整个飞行器产生的反旋转扭力一致相互抵消,所以只产生足够的提升力带动该飞行器升空;遥控接收控制电路板2控制两正反转升力螺旋桨差速旋转带动图1直升机左右转向;遥控接收控制电路板2控制水平推进螺旋桨带动机身前后飞行,可把此发明当成遥控螺旋桨直升飞行器。
请参阅图2,为本公开的第一种载入实施例,一种气垫船和螺旋桨直升飞行器。包括主体机身框架框架6、多叶升力螺旋桨马达26、多叶升力螺旋桨24、下部正转升力螺旋桨11、下部正转升力螺旋桨马达15、电池3、油箱18、导流片5、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28、保护支架7、乘人机舱17、可充放气圈1、柔性气帘围裙4、保护支架7、转向轮29、直行轮27;
实施例2
第二种实施例为本公开结合双桨提供的一种有人驾驶气垫船和螺旋桨直升飞行器的立体结构示意图;
请参阅图2,为本公开的第二种实施例,一种有人控制气垫船和螺旋桨直升飞行器。包括主体机身框架6、在主体机身框架6中心安装有上部的正转升力螺旋桨11和下面安装的正转升力螺旋桨马达15以及并排安装的多叶升力螺旋桨马达26,靠近多叶升力螺旋桨马达26上面安有多叶升力螺旋桨24,这两个升力螺旋桨共轴,马达可直接连接螺旋桨也可通过齿 轮或链条等传动机构和上述两个驱动马达连接,在主体机身框架6下部还安装有油箱18和电池3,在机身框架6外部延长安装四个轮子,沿纵向中心轴的两个轮子为转向轮29,其它两个垂直纵向轴的都为直行轮27,四个轮子的接地端稍低于气封腔,在地面时可依靠轮子行驶,转向可依靠人工控制转向轮29转向,四个轮子可设计成可上下收缩结构;在机身框架6上部连接有保护支架7沿直径方向安装导流片5、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28,在水平推进螺旋桨安装的直径对面保护支架7处安装一乘人机舱17;保护支架7整个外部包裹住可充放气圈1,在可充放气圈1下面胶结或一体制作等方式连接一柔性气帘围裙4;
请参阅图2,图2的直升飞行器与图1的区别主要在下面几个方面:如果两个升力螺旋桨直径大小和桨叶数量都不一样,但两个升力螺旋同速反向旋转时分别产生的反向扭力一样相互抵消;由于在可充放气圈1同一水平面上的边缘安装有一乘人机舱17,由于乘人机舱17的下面位置比较低,如果只有可充放气圈1这一个气垫的话,在地面行驶时乘人机舱17下部易碰撞地面的水平凸起物,为此在可充放气圈1下面增加一柔性气帘围裙4,从而解决在陆地不平地面上行驶问题,同时加上柔性气帘围裙4除了可保证高压气体的作用还使机身拉高使得机身重心下降,在空中飞行时更能保持飞行器的水平稳定性,同时还有保护机身防撞的作用;可充放气圈1与柔性气帘围裙4可制作为一体或两个之间胶粘在一起并保证气密性,使得由机身框架6、可充放气圈1、柔性气帘围裙4和多叶升力螺旋桨马达26共同组成的气垫装置,气封腔由可充放气圈1、柔性气帘围裙4组成;气封腔内形成的高压空气只能从柔性气帘围裙4的下部喷挤出去形成气垫。水平推进螺旋桨21和水平推进螺旋桨马达25水平安装在机身框架中心最上部,马达螺旋桨朝向机身框架外部,水平推进螺旋桨21外圈处有一螺旋桨护圈28,可保护水平推进螺旋桨21不会受到外物碰撞;与水平推进螺旋桨马达25同一水平直径面上,在水平推进螺旋桨21和水平推进螺旋桨马达25两边还垂直安装有导流片5;在整个内部机身框架6的下部还安装有油箱18、电池3,两个上部反升力螺旋桨马达也安装在下部机身框架6上;通过齿轮或链条连接两个升力螺旋桨。
可充放气圈1充足气体时,可被保护支架7卡住,柔性气帘围裙4在升力螺旋桨旋转时形成气垫可支撑整个这种螺旋桨直升飞行器在地面上或水面上行驶,在升力螺旋桨停止旋转时可充放气圈1的浮力可支持整个飞行器静止停泊在水面上,这种双层结构既保证了气封腔的轻质性和水陆面上行驶问题,又解决了原有柔性气帘围裙结构不能静止浮停留在水面问题。图2所示的发明例与上面图1所述的发明例行驶飞行控制机制一致,只是改遥控变为在乘人机舱17的人员通过控制机构直接在机身上操控。
请参阅图2,还可有无动力旋翼直升飞行器的一例变化,上部的升力螺旋桨可作为为无动力驱动或动力可随时加上,在原地直升时或空中飞行出故障时可加上动力,在水面、地面和空中飞行时上部升力螺旋桨可不加动力,空中飞行上部螺旋桨可不加动力就如无动力旋翼机一样工作,用控制方向尾翼19水平旋转控制飞行器的转向,这种无动力旋翼直升飞行器变例具有很多优点:减少升力螺旋桨旋转节约能源,同时在故障时随时可加上动力增加安全性。
实施例3
第三种实施例为本公开结合前后串列双桨直升机提供的一种遥控气垫船和螺旋桨直升飞行器的立体结构示意图;
请参阅图3,为本公开的第三种实施例,一种气垫船和螺旋桨直升飞行器。包括主体机身框架框架6、反转升力螺旋桨12、反转升力螺旋桨马达16、正转升力螺旋桨11、正转升力螺旋桨马达15、电池3、遥控接收控制电路板2、导流片5、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28、保护支架7、气封腔上部压板9、泡沫板圈20;
请参阅图3,图3的直升飞行器与图2和图1的区别主要在下面几个方面:两个升力螺旋桨由上下安装在一个轴心上改为前后安装在同一水平面上,两个升力螺旋桨位于可充放气圈上部外面并紧贴气封腔上部压板9只有微小间隙,气封腔上部压板9可用塑料薄板制成压粘在下部泡沫板圈20上并保证气密性或气封腔上部压板9与下部泡沫板圈20都用泡沫材料一体制成,气封腔上部压板9上开有两个圆开口,圆开口直径大小与两个升力螺旋桨的直径相一致并与下部泡沫板圈20共同组成气垫装置,气封腔由气封腔上部压板9与下部泡沫板圈20组成;水平推进螺旋桨21和水 平推进螺旋桨马达25水平安装在气封腔上部压板9中心点上部,水平马达螺旋桨21和水平马达25与机身框架6纵向轴向一致,水平推进螺旋桨21外圈处有一螺旋桨护圈28,可保护水平推进螺旋桨21不会受到外物碰撞;与机身框架轴向平行在气封腔上部压板9上部两边还垂直安装有导流片5,在水平推进螺旋桨马达安装处还垂直安装一导流片5;在气封腔上部压板9下部两边还分别安装有电池3和遥控接收控制电路板2,电池3和遥控接收控制电路板2安装位置需调整使得整个直升机的重心保持在机身框架6的中心点上并尽量靠下;水平推进螺旋桨护圈28也起保护水平推进螺旋桨21作用。
当下部泡沫板圈20可支撑整个直升飞行器重量稳定的停留在地面上或水面上。在遥控接收控制电路板2接收到信号后控制前面正转反转升力螺旋桨马达16和后面反转正转升力螺旋桨马达15带动正转反转升力螺旋桨12和反转正转升力螺旋桨11非高速相互反方向旋转时,两个在同水平面上反向同速旋转螺旋桨在提起直升机一部分重量的同时向下部泡沫板圈20鼓入空气,由于这种气垫船和螺旋桨直升飞行器零件少、整体轻巧没什么重量,加上两个螺旋桨中速旋转已提起直升机一部分重量,下部泡沫板圈20与水面或地面形成封闭空间,被鼓入气圈的高压空气能从泡沫板圈20与水面或地面之间喷挤出,正、反转螺旋桨鼓入的高压空气不断从泡沫板圈20喷射挤出从而使泡沫板圈20形成气垫并被抬起,使得整个直升机悬浮在水面或地面上。遥控接收控制电路板2在接到遥控器发射器的信号控制水平马达25旋转带动水平推进螺旋桨21正、反旋转时,推动悬浮的直升机前、后运动;水平推进螺旋桨21产生的喷射气流通过导流片5对气体导流,使得气流能保持直线运行从而使得整个飞行器水平运动保持直线;两正反升力螺旋桨在遥控接收控制电路板2控制下做差速旋转时,由于两正反升力螺旋桨对整个飞行器产生的反旋转扭力不一致从而带动飞行器旋转转向;当需要这种螺旋桨直升飞行器在空中飞行时,遥控接收控制电路板2控制两正反升力螺旋桨做全速同速旋转,由于两正反升力螺旋桨等速旋转对整个飞行器产生的反旋转扭力一致相互抵消,所以只产生足够的提升力带动该飞行器升空;左右转向和前后控制飞行则与前面几例所述的行驶飞行控制一致。
实施例4
第四种实施例为本公开结合前后串列双桨直升机提供的另一种遥控直升机的立体结构示意图;
请参阅图4,一种气垫船和螺旋桨直升飞行器。包括直升机主体机身框架6、反转升力螺旋桨12、反转升力螺旋桨马达16、正转升力螺旋桨11、正转升力螺旋桨马达15、电池3、遥控接收控制电路板2、导流片5、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28、泡沫板圈20、柔性气帘围裙4;
请参阅图4,图4的直升飞行器与图3的区别主要在下面几个方面:两个升力螺旋桨由朝上安装改为朝下安装,这样两个升力螺旋桨被包裹在机身框架内部不易触碰损坏,下部安装柔性气帘围裙4和泡沫板圈20,由两个升力螺旋桨、柔性气帘围裙4和泡沫板圈20组成气垫装置,气封腔由柔性气帘围裙4和泡沫板圈20组成,两个螺旋桨中速旋转鼓入的高压空气进入气封腔,高压气体不断从柔性气帘围裙4喷射挤出从而使机身被抬起悬浮在水面或地面上;上面增加的泡沫板圈20除了可保证高压气体的作用还使机身拉高使得机身重心下降,在空中飞行时更能保持飞行器的水平稳定性,同时还有保护螺旋桨和机身框架防撞的作用并兼有给整个飞行器提供水中浮力。
由于下部空心柔性气帘围裙4,这种气垫船和螺旋桨直升飞行器与图3所述的行驶飞行控制一致。
实施例5
第五种实施例为本公开一种桨气垫船和螺旋桨直升飞行器的立体结构示意图;
请参阅图5,一种气垫船和螺旋桨直升飞行器。包括主体机身框架6、尾桨13、尾桨马达14、多叶升力螺旋桨24、多叶升力螺旋桨马达26、电池3、遥控接收控制电路板2、导流片5、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28、轻质筒8、气封腔上部压板9、可充放气圈1、尾桨护圈22;
请参阅图5,请参阅图1,多叶升力螺旋桨24和多叶升力螺旋桨马达26安装在整个内部机身框架6的上部中心处,外部安装轻质筒8的直径稍 大于多叶升力螺旋桨24的直径,使得多叶升力螺旋桨24旋转时不会碰撞到轻质筒8,此多叶升力螺旋桨24和轻质筒8形成涵道式螺旋桨,轻质筒8可用轻质金属或非金属材质制成;多叶升力螺旋桨24、可充放气圈1、气封腔上部压板9和轻质筒8共同组成气垫装置,气封腔由可充放气圈1、气封腔上部压板9和轻质筒8共同组成;水平推进螺旋桨21和水平推进螺旋桨马达25安装在气封腔上部压板9上,安装轴向与导流片5水平平行;在气封腔上部压板9和轻质筒8另一端对称安装朝向一样的尾桨马达14和尾桨13;在尾桨13与水平推进螺旋桨21中间垂直安装一导流片5;在整个内部机身框架6的下部还安装有电池3和遥控接收控制电路板2安装位置需使得整个直升机的重心保持在机身框架6的中心点上;轻质筒8和气封腔上部压板9可用塑料或泡沫等轻质材质。
请参阅图5,图5的唯一多叶升力螺旋桨24由多叶升力螺旋桨马达26带动中速旋转,在提起直升机一部分重量的同时向下部可充放气圈1鼓入空气,被鼓入可充放气圈1的高压空气能从可充放气圈1与水面或地面之间喷挤出形成气垫并被抬起,使得整个机身悬浮在水面或地面上。由于只有一个多叶升力螺旋桨24旋转会对整个飞行器产生反旋转扭力从而带动飞行器反向旋转,尾桨马达14和尾桨13安装在气封腔上部压板9的上部边缘处,当尾桨马达14带动尾桨13旋转产生的正向旋转力抵消前面的反向旋转,使得机身保持方向的稳定,同时控制尾桨旋转速度,可使得直升机进行左右方向的改变;对面另一端边缘处的水平推进螺旋桨与水平推进螺旋桨马达,水平推进螺旋桨21外圈处有一螺旋桨护圈28,可保护水平推进螺旋桨21不会受到外物碰撞;导流片5可使水平推进螺旋桨推进时保持直线;在机身框架6下部两边还分别安装有电池3和遥控接收控制电路板2,电池3需调节安装位置需调整使得整个直升机的重心保持在机身框架6的中心点上;水平推进螺旋桨护圈28起保护水平推进螺旋桨21作用,尾桨护圈22起保护尾桨13作用。
请参阅图5,这种气垫船和螺旋桨直升飞行器有两例变化:1、可把导流片5和水平推进螺旋桨与水平推进螺旋桨马达都水平旋转90度,;2、还可有一遥控共轴反向双螺旋桨直升飞行器的一例变化,在下部共轴增加一反向螺旋桨和马达,再把水平推进螺旋桨和马达、尾桨和马达的控制电 路改为并接,同时正转前进推进或同时反转退后运动,转向与图1和图2所述共轴螺旋桨飞行器控制一致。
实施例6
第六种实施例为本公开一种遥控气垫船和螺旋桨直升飞行器的立体结构示意图;
请参阅图6,一种遥控气垫船和螺旋桨直升飞行器。包括主体机身框架6、正转升力螺旋桨11、正转升力螺旋桨马达15、反转升力螺旋桨12、反转升力螺旋桨马达16、电池3、遥控接收控制电路板2、导流片5、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28、水平推进螺旋桨安装支架23、柔性气帘围裙4、泡沫板圈20、控制方向尾翼19、直行轮27、转向轮29;
请参阅图6,围绕在主体机身框架6的外部下方有一环状近似椭圆的泡沫板圈20,在泡沫板圈20外部包裹一形状近似的柔性气帘围裙4,在内部的主体机身框架6垂直安装有四个升力螺旋桨,相邻的螺旋桨分别是正转升力螺旋桨11和反转升力螺旋桨12,在泡沫板圈20上开有4个圆形开口,圆形开口稍大于升力螺旋桨的直径,由四个升力螺旋桨、泡沫板圈20和柔性气帘围裙4共同组成气垫装置,气封腔由泡沫板圈20和柔性气帘围裙4组成;沿泡沫板圈20纵向轴线的一端安装有水平推进螺旋桨21和水平推进螺旋桨马达25,水平推进螺旋桨马达25轴向朝里,水平推进螺旋桨护圈28和水平推进螺旋桨安装支架23起保护和支持水平推进螺旋桨21和水平推进螺旋桨马达25作用,在这中轴线的另一端泡沫板圈20上部垂直安装有一导流片5,在水平推进螺旋桨马达25位置垂直安装有另一导流片5,在泡沫板圈20的下部中轴线上吊挂安装有电池3和遥控接收控制电路板2;在气封腔内部泡沫板圈20的下部安装有三个轮子,靠近水平推进螺旋桨21处为转向轮29,另一端两个为直行轮27,转向行驶是依靠控制方向尾翼19带动转向轮29在地面转向行驶。
根据图6可以看出本公开的气垫船和螺旋桨直升飞行器在气封腔下部形成气垫。这种气垫船和螺旋桨直升飞行器就是增加了升力螺旋桨和马达数量,所以本公开的气垫船和螺旋桨直升飞行器飞行操控与前面气垫船和螺旋桨直升飞行器操控基本一致,不同的只是转向时前面的发明例是控制 双桨旋转产生差速带动机身旋转转向,而在本图6发明一种气垫船和螺旋桨直升飞行器转向操控是控制方向尾翼19水平旋转时,水平推进螺旋桨吹出的气体通过控制方向尾翼19旋转面带动整个机身转向;泡沫板圈20在图6中既起到涵道外壳的作用,同时还能在提供整个机身在水里的浮力支持作用;升力螺旋桨、泡沫板圈20和柔性气帘围裙4一起组合成气封腔。
实施例7
第七种实施例为本公开结一种气垫船和螺旋桨直升飞行器的立体结构示意图;
请参阅图7,一种气垫船和螺旋桨直升飞行器。包括主体机身框架6、正转升力螺旋桨11、正转升力螺旋桨马达15、反转升力螺旋桨12、反转升力螺旋桨马达16、电池3、遥控接收控制电路板2、导流片5、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28、泡沫板圈20、气封腔上部压板9、轻质筒8、升力螺旋桨支架10、水平推进螺旋桨安装支架23;
请参阅图7,围绕在主体机身框架6的下方有一环状近似椭圆的泡沫板圈20,在泡沫板圈20上方压粘一气封腔上部压板9,在气封腔上部压板9的上部开有4个圆口,圆口上垂直安装有四个圆筒轻质筒8,轻质筒8直径稍大于升力螺旋桨直径,所述的轻质筒可用较轻的金属或非金属材质做成,例如可把气封腔上部压板9和轻质筒8用塑料一体成型制作;在每个轻质筒8上部的升力螺旋桨支架10上分别安装一升力螺旋桨组成涵道式螺旋桨,每个相邻的升力螺旋桨是不同的正反转螺旋桨,由机身框架6、升力螺旋桨支架10、所有轻质筒8、所有升力螺旋桨、泡沫板圈20和气封腔上部压板9共同组成气垫装置,气封腔由轻质筒8、泡沫板圈20和气封腔上部压板9共同组成;沿气封腔上部压板9纵向轴线的一端安装有水平推进螺旋桨21和水平推进螺旋桨马达25,水平推进螺旋桨马达25轴向朝向机身框架,水平推进螺旋桨护圈28和水平推进螺旋桨安装支架23起保护和支持水平推进螺旋桨21和水平推进螺旋桨马达25作用,在这中轴线的另一端气封腔上部压板9上部垂直安装有一导流片5,在水平推进螺旋桨马达25位置垂直安装有另一导流片5,在气封腔上部压板9的下 部中轴线上吊挂安装有电池3和遥控接收控制电路板2;
根据图7可以看出本公开气垫船和螺旋桨直升飞行器与图6,最大的不同就是加高了多个螺旋桨和马达离下面气封腔底部的距离,增加的轻质筒8使机身拉高使得机身重心下降,在空中飞行时更能保持飞行器的水平稳定性,同时下面安装的泡沫板圈20还有保护螺旋桨和机身防撞的作用;而在地面或水面悬浮行驶和空中飞行时转向控制是通过控制四个螺旋桨的差速旋转时产生的扭转力不一致带动机身转向,其它操控运动方式则和图6实施例一样。
实施例8
第八种实施例为本公开另一种有人驾驶气垫船和螺旋桨直升飞行器的立体结构示意图。
请参阅图8,一种有人控制气垫船和螺旋桨直升飞行器。包括主体机身框架6、正转升力螺旋桨11、正转升力螺旋桨马达15、反转升力螺旋桨12、反转升力螺旋桨马达16、电池3、控制方向尾翼19、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28、可充放气圈1、升力螺旋桨支架10、乘人机舱17、直行轮27、转向轮29。
请参阅图8,在一水平六方的机身框架6的六个角上有一圆形升力螺旋桨支架10,在升力螺旋桨支架10中心的轴向垂直向下分别安装1个升力螺旋桨和马达,每个水平六方角上相邻的升力螺旋桨是不同的正转正转升力螺旋桨11和反转反转升力螺旋桨12,在每个升力螺旋桨支架10下部胶接一可充放气圈1,每个可充放气圈1正好包裹住一个升力螺旋桨组成一个气封装置,气封腔就是可充放气圈1,共有六个气封腔,可充放气圈1内部直径稍大于升力螺旋桨直径,在机身框架6的中心架下部分别沿轴向向下垂直挂装有电池3、遥控接收控制电路板2、导流片5、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28,在一水平六方的机身框架6每边中部都安装有一轮子,只有载入的框架下安装的是直行轮27,其它5个都是转向轮29,在地面轮式行驶时转向和图6一致。
根据图8可以看出所示有人驾驶气垫船和螺旋桨直升飞行器与图6和图7最大的不同就是气封腔不是一个整体,有人驾驶直升飞行器中的每个升力马达及所带动的螺旋桨与一个可充放气圈组成一个气封腔,所有共六 个气封腔一起托举整个有人驾驶气垫船和螺旋桨直升飞行器机身;六个螺旋桨每个螺旋桨与相邻螺旋桨一正一反同速旋转时扭力互相抵消;而且在机身框架6下部的气封腔外壳27中安装两个电池3,在气封腔外壳27后面的机身框架6下部的另一端还安有水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28,在水平推进螺旋桨21、水平推进螺旋桨马达25后面还安有一控制方向尾翼19,在水平推进螺旋桨21旋转吹向后面的风在经过控制方向尾翼19时会给转动了一定角度的控制方向尾翼19一个推力从而带动整个机身旋转改变行驶方向,由于许多部件是在机身框架6下部安装降低整个有人驾驶直升飞行器重心,使得有人驾驶直升飞行器在空中飞行时能保持水平飞行的稳定性;从图8所示图只需在乘人机舱17中装载真人,加上相应的操纵机构就能成为一款有人操控气垫船和螺旋桨直升飞行器在地面或水面悬浮行驶和空中飞行。
实施例9
第9种实施例为本公开三个升力螺旋桨的气垫船和螺旋桨直升飞行器的立体结构示意图。
请参阅图9所述气垫船和螺旋桨直升飞行器包括主体机身框架6、正转升力螺旋桨11、正转升力螺旋桨马达15、多叶升力螺旋桨24、多叶升力螺旋桨26、遥控接收控制电路板2、电池3、控制方向尾翼19、水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28、柔性气帘围裙4、升力螺旋桨支架10、乘人机舱17、控制方向尾翼19、空心塑料圆套31、舵机32、水平推进螺旋桨支架10、转向轮29。
请参阅图9,在一水平三角的机身框架6的三个角上各有升力螺旋桨支架10,在其中两个升力螺旋桨支架10中心的轴向垂直向上分别安装1个正转升力螺旋桨11和马达15,在剩下的第三个三角升力螺旋桨支架10中心的轴向垂直向上安装1个反转多叶升力螺旋桨24和多叶升力螺旋桨26,在每个升力螺旋桨支架10上连接安装空心塑料圆套31,每个空心塑料圆套31正好包裹住一个升力螺旋桨组成一个气垫装置,气封腔由空心塑料圆套31和柔性气帘围裙4组成,共三个气封腔,每个空心塑料圆套31内部直径稍大于升力螺旋桨直径,空心塑料圆套31可作为升力螺旋桨的涵道外壳,空心塑料圆套31本身内部是空心的可为整个机身提供浮力, 同时在机身框架6的中心架上分别沿轴向向下安装有电池3、遥控接收控制电路板2、控制方向尾翼19和控制尾翼的舵机32,机身框架6的中心架的尾端安装水平推进螺旋桨21、水平推进螺旋桨马达25、水平推进螺旋桨护圈28;在水平三角的机身框架6的三个边中部安装转向轮29,三个转向轮29可为万向轮可方便的在地面轮式直行和转向行驶。
根据图9可以看出所示的遥控气垫船或螺旋桨直升飞行器的气封腔不是一个整体,遥控接收控制电路板2接收到信号后控制两个正转螺旋桨与一个反转多叶升力螺旋桨同速旋转,同速旋转时产生的扭转力大小相同方向相反互相抵消,能保证在同速旋转时机身方向不变;每个空心塑料圆套31与下部柔性气帘围裙4组成一个气封腔,每个升力螺旋桨旋转时产生升力的同时向气封腔中鼓入高压空气托举起气封腔,所有共三个气封腔一起使整个机身框架悬浮在水面或地面上;而在机身框架框架6中心架尾端安装的水平推进螺旋桨21正反转带动机身前后运动;在水平推进螺旋桨21前面还安有一控制方向尾翼19,在水平推进螺旋桨21旋转吹过的风流在经过控制方向尾翼19的翼面时会给转动了一定角度的控制方向尾翼19一个推力从而带动整个机身框架旋转改变行驶方向,在水面或地面行驶就能成为一款遥控气垫船;而飞离地面或水面在空中飞行就成为一款遥控螺旋桨直升飞行器。
图9的气垫船和螺旋桨直升飞行器还能有一种变例,三角中的两角可分别安装正反转螺旋桨,这两个螺旋桨反向旋转扭力可相互抵消;剩下另一角可安装一上下共轴双反桨,这两个双反桨本身形成的旋转扭力相互抵消;这个变例所需考虑的是整个机身重心需调整到整体机身中心部位,以保证机身在空中飞行的水平稳定。
从图9这几种例子可看出如果螺旋桨的数目是单数时利用本公开时的解决方案,从而可以保证任何数量的螺旋桨在本公开中都可得到解决方案。
从上述的有人控制和无人遥控的气垫船和螺旋桨直升飞行器可以看出只需把遥控接收控制电路板换成油箱或电池;再增加乘人机舱17,就可改造从无人遥控控制改成有人乘坐控制;反之也可从有人控制改成无人遥控控制。
从上述的所有实施例可以看出,从一个升力螺旋桨到多个任意数量升 力螺旋桨的结构都能在本公开的方案得到实行。
从上述的所有实施例还可以看出,使用本公开的交通行驶飞行工具或遥控交通工具还具有水中行驶功能,当升力螺旋桨不转动或低速转动时,由于没有升力或升力太小,而低速旋转在气封腔里产生的高压气体不够在机身下部形成气垫,而依靠本公开气垫装置就能使整个机身漂浮停留在水中,这些发明例可依靠水平推进螺旋桨正反旋转时产生的推力在水中前后行驶,而低速旋转的升力螺旋桨在差速旋转时可带动机身方向改变,从而使得本公开还能像水中船一样在水里行驶。
从上述的1、2、6、8、9实施例可以看出,在所有的实施例上都可以方便加上轮子,轮子安装可为固定、可拆卸或可上下伸缩等形式,使得使用本公开的交通行驶工具或玩具具有在五种(地面、地上、水中、水上、空中)全地形空间环境运动能力,可以在运动时使用最经济和最适合的方式,比如在平地使用轮子只需水平推进螺旋桨工作行驶、在遇到小障碍时可再加上中速升力螺旋桨工作气垫船行驶、在遇到大障碍时加上高速升力螺旋桨工作直升飞行、在水中慢速时可如船样只需水平推进螺旋桨工作行驶、在水上需高速时再加上中速升力螺旋桨工作气垫船行驶。由于一些例子中的轮子和气封腔都为可拆卸,所以就可根据需要产生不同工作状态的交通行驶飞行工具,既有完全状态的五种地形空间环境下的三栖交通工具,还有可拆除气垫腔的会在陆地行驶的直升机(会飞行的陆地车)、拆除轮子的会直升飞行气垫船(会气垫船行驶的直升机)或会陆地行驶气垫船(会气垫船行驶陆地车)等等两栖交通工具。
本公开具备结构简单、体积小巧、重量轻和使用功能多的特点。以上所述实施例仅表达了本公开的九种实施方式,其描述较为具体和详细,还能用上述各功能部件(不同桨叶形状螺旋桨、不同的气垫结构、有人无人遥控、电池油箱、组合气垫等等)有不同的多种分别组合变例,但并不是全部因此而理解为对本公开专利范围的限制。本公开在各直升飞行器应用时需要充分考虑下面几点:1、各种机身框架结构在安装零件位置时需调整使得整个机身的重心保持在机身的中心点上,并尽量使得直升飞行器的重心靠下,这样布置的优点是使整个飞行器在空中飞行姿态能保持水平稳定;2、本公开直升飞行器使用时由于会在水中环境行驶,所以需考虑各 部件的防水问题。3、机身整体需做360度方向吹风测试,需调整导流片形状、大小、数量、安装位置,以及机身框架形状、零部件位置等以保证飞行器在外部环境各风向环境下,整体机身不会被风吹转动,使得直升飞行器在野外不好操作;4、如图2、图5所示升力螺旋桨也可是多叶的,多桨叶的升力螺旋桨具有升力大,向下鼓风强以及螺旋桨直径更小等优点,但最大缺点是相应增加整个直升飞行器的重量又会增加电量消耗,所以制造本公开的螺旋桨时需综合考虑桨叶数量并以节约能源消耗为主;5、本公开中升力螺旋桨与外壳之间的空隙保持最小间隙;6、本公开中所述马达可使用电子马达和燃料马达7、气封腔为非一体制造而为组合连接时需保证连接的气密性防止漏气形成不了气垫悬浮;8、本公开中所述遥控可使用红外或无线等遥控形式进行远距离遥控;9、由于为了制图方便简单,所述的升力螺旋桨和马达画为直接驱动,实际制作产品可用齿轮或链条等方式传动。
从上述主要是结合螺旋桨直升机和气垫船为主的各种实施例论述,而只要换个角度从水中船和陆地轮式车来看,也一样可使用本公开的气垫装置,同样一个产品实施例,可以看做会飞、会跑的船(包括气垫船),也可把它看作会飞、会游的陆地轮式车,还可看作会游、会跑的直升机。
对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,比如各种上述实例中不同气封腔结构的组合(如加高气封腔、气垫材料、形状、位置等不同)、增加音效和灯效等,这些都属于本公开的保护范围。因此本公开的保护范围应以所附权利要求为准。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种在交通行驶飞行工具和遥控交通玩具上使用的气垫装置,其特征在于,包括机身框架、升力螺旋桨结构、气封腔;交通行驶飞行工具和遥控交通玩具包括:气垫船、水里的船、陆地车和直升机;
    升力螺旋桨结构安装于所述机身框架上,且所述机身框架还安装有所述气封腔;
    所述气封腔呈环状,围成上下两端贯通的气体通道,所述气封腔处于所述螺旋桨结构向下的鼓风路径上。
  2. 如权利要求1所述的气垫装置,其特征在于,所述升力螺旋桨结构包括至少一个升力螺旋桨和升力螺旋桨马达;所述升力螺旋桨马达驱动所述升力螺旋桨转动;至少一个所述升力螺旋桨处于所述气封腔内或紧靠所述气封腔上方开口处。
  3. 如权利要求1所述的气垫装置,其特征在于,所述气垫装置由所述机身框架、所述升力螺旋桨结构和所述气封腔共同组合构成,并且能在整个机身底部形成气垫,所述升力螺旋桨结构旋转,以使得整个机身悬浮在水面或地面上。
  4. 如权利要求1-3任一项所述的气垫装置,其特征在于,还包括水平推进螺旋桨结构,所述水平推进螺旋桨结构包括至少一个螺旋桨和马达;所述马达驱动所述螺旋桨转动;所述螺旋桨的转轴平行于整个机身的纵向中心轴并安装在所述气封腔外部。
  5. 如权利要求4所述的气垫装置,其特征在于,所述水平推进螺旋桨结构还包括:导流片,所述导流片平行设置于所述水平推进螺旋桨结构旋动气流的流动路径上;所述导流片呈竖向。
  6. 如权利要求1-3任一项所述的气垫装置,其特征在于,所述气封腔由塑料、柔性气帘围裙、可充放气圈或泡沫材料轻质并具有浮力结构或材质独立构成或由上述轻质并具有浮力的结构或材质分别组合成闭气腔体;所述气封腔连接安装在整个机身框架上,对整个机身起到防撞、防摔和水中漂浮支撑作用。
  7. 如权利要求1-3任一项所述的气垫装置,其特征在于,所述机身框架下部安装有至少三个轮子,其中至少一个轮子是可转向轮,
    所述轮子的接地面的轮底稍低于所述气封腔的最底端。
  8. 如权利要求1-3任一项所述的气垫装置,其特征在于,所述升力螺旋桨旋转的圆面积占整个机身框架垂直投影总面积至少百分之二十。
  9. 如权利要求1-3任一项所述的气垫装置,其特征在于,所述升力螺旋桨旋转时的升力为整个机身重量至少百分之二十。
  10. 一种交通行驶飞行设备,其特征在于,其设置权利要求1-9任一项所述的气垫装置;且其包括交通行驶飞行工具和遥控交通玩具。
PCT/CN2019/111896 2018-10-24 2019-10-18 交通行驶飞行工具和遥控交通玩具及其使用的气垫装置 WO2020083109A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811246025.4A CN109291744A (zh) 2018-10-24 2018-10-24 交通行驶飞行工具和遥控交通玩具及其使用的气垫装置
CN201821730026.1 2018-10-24
CN201821730026.1U CN209191615U (zh) 2018-10-24 2018-10-24 交通行驶飞行工具和遥控交通玩具及其使用的气垫装置
CN201811246025.4 2018-10-24

Publications (1)

Publication Number Publication Date
WO2020083109A1 true WO2020083109A1 (zh) 2020-04-30

Family

ID=70331202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111896 WO2020083109A1 (zh) 2018-10-24 2019-10-18 交通行驶飞行工具和遥控交通玩具及其使用的气垫装置

Country Status (1)

Country Link
WO (1) WO2020083109A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2845260A1 (de) * 1978-10-18 1980-05-14 Sach Lothar Bodenluftfahrzeug, ein fahrzeug zum betrieb auf dem boden und in der luft
CN101559702A (zh) * 2009-03-27 2009-10-21 谢雁洲 纵列式双涵道垂直起降陆空交通工具
CN101961974A (zh) * 2010-09-15 2011-02-02 北京理工大学 水陆空多域机动载运车辆
CN202528786U (zh) * 2012-05-03 2012-11-14 张瑞钧 地效式超低空两用飞行汽车
CN202593200U (zh) * 2012-01-13 2012-12-12 唐山 车-船-飞机一体能用器
CN202593856U (zh) * 2012-01-14 2012-12-12 河南科技大学 一种水陆空三栖碟形无人飞行器
CN103419924A (zh) * 2013-08-28 2013-12-04 哈尔滨市奇正水稻种植专业合作社 海陆空全能羽翼式气流定向飞行器
CN103692873A (zh) * 2013-12-20 2014-04-02 胡新如 一种水陆飞行汽车
CN209191615U (zh) * 2018-10-24 2019-08-02 罗睿轩 交通行驶飞行工具和遥控交通玩具及其使用的气垫装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2845260A1 (de) * 1978-10-18 1980-05-14 Sach Lothar Bodenluftfahrzeug, ein fahrzeug zum betrieb auf dem boden und in der luft
CN101559702A (zh) * 2009-03-27 2009-10-21 谢雁洲 纵列式双涵道垂直起降陆空交通工具
CN101961974A (zh) * 2010-09-15 2011-02-02 北京理工大学 水陆空多域机动载运车辆
CN202593200U (zh) * 2012-01-13 2012-12-12 唐山 车-船-飞机一体能用器
CN202593856U (zh) * 2012-01-14 2012-12-12 河南科技大学 一种水陆空三栖碟形无人飞行器
CN202528786U (zh) * 2012-05-03 2012-11-14 张瑞钧 地效式超低空两用飞行汽车
CN103419924A (zh) * 2013-08-28 2013-12-04 哈尔滨市奇正水稻种植专业合作社 海陆空全能羽翼式气流定向飞行器
CN103692873A (zh) * 2013-12-20 2014-04-02 胡新如 一种水陆飞行汽车
CN209191615U (zh) * 2018-10-24 2019-08-02 罗睿轩 交通行驶飞行工具和遥控交通玩具及其使用的气垫装置

Similar Documents

Publication Publication Date Title
US10144509B2 (en) High performance VTOL aircraft
US3774865A (en) Flying saucer
US4366936A (en) Aircraft having buoyant gas balloon
CA2716123C (en) Acrobatic rotary-wing toy helicopter
US11440654B2 (en) Amphibious aerial vehicle
US11535372B2 (en) Method of navigating an amphibious aerial vehicle on water
WO2016028358A2 (en) High Performance VTOL Aircraft
KR102054161B1 (ko) 다목적 비행체
CN109291744A (zh) 交通行驶飞行工具和遥控交通玩具及其使用的气垫装置
US7581608B2 (en) Levitating platform
CN209191615U (zh) 交通行驶飞行工具和遥控交通玩具及其使用的气垫装置
CN111301676A (zh) 具有递升的重叠螺旋桨的垂直起降飞行器
US20220388646A1 (en) Method of Flight Control in a Fixed-Wing Drone
CN106005394A (zh) 一种救援飞行器
CN112549885A (zh) 一种可垂直起降的折叠翼潜空跨域海洋机器人
US20180272856A1 (en) Ducted Fan Propulsion System
WO2020083109A1 (zh) 交通行驶飞行工具和遥控交通玩具及其使用的气垫装置
US6719079B2 (en) Ground effect vehicle using a frontal ram air stream and aerodynamic lift
CN211139665U (zh) 一种可垂直起降的固定翼飞机
CN114644112B (zh) 一种水空两用无人机
CN104443343A (zh) 矢量推进悬浮式飞行装置
CN113636073B (zh) 陆海空三栖飞机
WO2014174401A1 (en) Hovercraft with multiple, independently-operable lift chambers.
US6511017B2 (en) Method of steering aircraft, and aircraft
JP4586189B2 (ja) 飛行船

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875091

Country of ref document: EP

Kind code of ref document: A1