WO2020082857A1 - 一种抗振型双涡街传感器流体测量装置及测量方法 - Google Patents

一种抗振型双涡街传感器流体测量装置及测量方法 Download PDF

Info

Publication number
WO2020082857A1
WO2020082857A1 PCT/CN2019/099946 CN2019099946W WO2020082857A1 WO 2020082857 A1 WO2020082857 A1 WO 2020082857A1 CN 2019099946 W CN2019099946 W CN 2019099946W WO 2020082857 A1 WO2020082857 A1 WO 2020082857A1
Authority
WO
WIPO (PCT)
Prior art keywords
main sensor
vortex
sensor
controller
main
Prior art date
Application number
PCT/CN2019/099946
Other languages
English (en)
French (fr)
Inventor
王宝兴
周航
蒋晓辉
王成奎
丁晓轩
陈克英
侯绪苓
Original Assignee
山东科尔自动化仪表股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科尔自动化仪表股份有限公司 filed Critical 山东科尔自动化仪表股份有限公司
Publication of WO2020082857A1 publication Critical patent/WO2020082857A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl

Definitions

  • the invention relates to the field of flowmeters, in particular, to an anti-vibration type double vortex sensor fluid measurement device and measurement method.
  • Vortex flowmeter is an instrument for measuring fluid flow.
  • industrial flowmeters used at home and abroad include throttle flowmeters, plug-in turbine flowmeters, electromagnetic flowmeters, tachometers, and vortex flowmeters.
  • the measurement range of the throttle type flowmeter is narrow, the pressure loss is large, and the energy consumption is high; the large-diameter throttle device is expensive to construct, difficult to install, and requires insulation and antifreeze measures in winter.
  • the plug-in turbine flowmeter has high calibration accuracy, it has strict requirements on the cleanliness of the medium and requires frequent calibration, and the operation reliability is not high.
  • the electromagnetic flowmeter is only suitable for the measurement of conductive liquid medium, and the large-diameter products are expensive to manufacture and difficult to promote.
  • the speed measuring tube is low in cost and energy-saving, the range ratio is small and there is freezing phenomenon, which is not suitable for long-term work in sewage and dust-containing gas.
  • the first generation of vortex flowmeters introduced by Eeastech Corporation of America and Yokogawa Electric Corporation of Japan have wide range ratio, small pressure loss, high precision, good reproducibility, simple structure, reliable operation, universal gas and liquid, temperature Outstanding advantages such as good adaptability.
  • West Germany E-H company, British Kent company, American Foxboro company, Fischer & Por-ter company, etc. have unique products. However, according to public reports, most of these companies currently only have products with a diameter of less than 200 mm, which cannot be used for large flow measurement.
  • the technical problem to be solved by the present invention is to provide an anti-vibration dual-vortex sensor fluid measurement device and measurement method to avoid the influence of the vibration signal of the pipeline on the sensor and improve the measurement accuracy of the vortex flowmeter.
  • a is preferably 0.
  • a groove (6) is provided on the upper side of the pipe (4), the support plate (1) is fixed in the groove (6), and the upper side of the pipe (4)
  • Two round holes (7) are provided on the side, the main sensor one (3) and the main sensor two (2) pass through the two round holes (7), the diameter of the round hole (7) is larger than that of the main sensor one (3) and the main sensor two (2) diameter.
  • the vortex generating body (5) is provided at a position in the middle of the liquid inlet end of the pipe (4), and the vortex generating body (5) divides the end of the pipe (4) into symmetric Two parts.
  • the negative end of the main sensor one (3) is connected to the negative end of the main sensor two (2), and the positive end of the main sensor one (3) and the main sensor two (2)
  • the signal processing device is connected to both ends, and the signal processing device is connected to the controller.
  • the controller uses a microprocessor.
  • the signal processing device includes a charge amplifier connected to the positive ends of the main sensor one (3) and the main sensor two (2), and the charge amplifier is connected to a low-pass filter,
  • the low-pass filter is connected to a high-pass filter
  • the high-pass filter is connected to a variable gain amplifier
  • the variable gain amplifier is connected to pins 2 and 3 of the controller
  • the variable gain amplifier is also connected to A frequency selective amplifier
  • the controllable frequency selective amplifier is connected to a main amplifier
  • the main amplifier is connected to a limiting amplifier
  • the limiting amplifier is connected to a Schmitt trigger
  • the Schmitt trigger is connected to a pin of a controller 85
  • the controller pin 67 is also connected to a frequency isolation output module
  • the controller pin 78 is also connected to a low-pass + V / I converter
  • the controller pin 75 is also connected to a digital communication interface
  • the control Pin 1 and pin 99 are connected to the power supply through the isolation module
  • pins 83, 84 and 87 of the controller are
  • An anti-vibration dual-vortex sensor fluid measurement method which is characterized by the following steps:
  • Step 1 Install the main sensor one (3) and main sensor two (2) at intervals (1/2 + a) ⁇ , where a is 0, 1, 2, 3, 4 ...); ⁇ is the vortex generator (5) The wavelength of the vortex signal that cuts the liquid to form a vortex, and the main sensor one (3) is fixed at a position close to the vortex generator (5).
  • Step 2 The delivered liquid flows through the pipeline (4), and the vortex generating body (5) cuts the liquid to form a vortex;
  • Step 3 After the main sensor one (3) and the main sensor two (2) detect the vortex signal, the main sensor one (3) and the main sensor two (2) are connected in reverse series, and the signals detected by the two are combined and superimposed.
  • the signal processing device is sent to the controller.
  • the frequency and amplitude of the two vortex signals detected by the main sensor one (3) and the main sensor two (2) are the same, but the phase difference is equal to half a cycle, because the main sensor one (3 ) And the main sensor two (2) are connected in reverse series, so the output amplitude signals of the main sensor one (3) and the main sensor two (2) are stacked, and the amplitude is equal to 2 times the amplitude of the single main sensor;
  • Step 4 When the pipeline (4) where the main sensor one (3) and the main sensor two (2) are located vibrates, the frequency and amplitude of the generated signal on the main sensor one (3) and the main sensor two (2) are the same , Because of the reverse series connection, the vibration signals output by the main sensor one (3) and the main sensor two (2) cancel each other, and no vibration signal is output after the vibration signals of the main sensor one (3) and the main sensor two (2) are superimposed and canceled
  • the controller calculates the instantaneous liquid flow and cumulative flow based on the superimposed vortex signal of the received sensor one (3) and the main sensor two (2), and the calculation result is not affected by the vibration signal of the pipeline (4), so it is an anti- Vibration type double vortex street sensor, the calculation accuracy is higher.
  • step 1 the calculation process of ⁇ in step 1 is as follows:
  • the frequency of vortexes is:
  • U--the average velocity of the measured medium inflow is the fluid velocity
  • the present invention installs the main sensor 1 and the main sensor 2 at a certain distance, the conveyed liquid flows through the pipeline, the vortex generator cuts the liquid to form a vortex, the main sensor 1 After detecting the vortex signal with the main sensor two, since the main sensor one and the main sensor two are connected in reverse series, the vortex signal detected by the two are combined and transmitted to the processor after being amplified by the charge amplifier.
  • the vibration signals detected by the main sensor 1 and the main sensor 2 cancel each other because the main sensor 1 and the main sensor 2 have the same height and are reversely connected in series.
  • the vibration signals of the main sensor 1 and the main sensor 2 No vibration signal is output after superimposed cancellation.
  • the controller calculates the instantaneous liquid flow and accumulated flow based on the superimposed vortex signal of the received sensor one and the main sensor two, and the calculation result is not affected by the vibration signal of the vertical pipe, and the calculation accuracy is more high.
  • FIG. 1 is a first schematic view of the three-dimensional structure of the present invention.
  • FIG. 2 is a schematic diagram 1 of a partial three-dimensional structure of the present invention.
  • FIG. 3 is a schematic diagram 2 of a partial three-dimensional structure of the present invention.
  • FIG. 4 is a schematic diagram of the vortex signal measured by the main sensor 2 and the main sensor 1 of the present invention.
  • FIG. 5 is a plan view of the main sensor one 3 and the main sensor two 2 of the present invention.
  • FIG. 6 is a functional block diagram of the present invention.
  • FIG. 7 is a schematic view of the structure of the vortex generator of the present invention.
  • FIG. 8 is a schematic diagram illustrating the diameter of the pipeline and the frontal width of the vortex generating body of the present invention.
  • the present invention includes a pipe 4, a vortex generating body 5 is fixed on an upper side inside one end of the pipe 4, a support plate 1 is fixed on the pipe 4, and a support plate 1 is fixed on the support plate 1
  • a is preferably 0, and the main sensor one 3 and the main sensor two 2 both use piezoelectric ceramic sensors, and the structures and heights of the two sensors are the same.
  • a groove 6 is provided on the upper side of the pipe 4, the support plate 1 is fixed in the groove 6, two round holes 7 are provided on the upper side of the pipe 4, the main sensor 1 and the main sensor Two 2 pass through the two round holes 7 respectively.
  • the vortex generating body 5 is disposed at a position in the middle of the liquid inlet end of the pipe 4, and the vortex generating body 5 divides the end of the pipe 4 into two symmetrical parts.
  • the negative end of the main sensor one 3 is connected to the negative end of the main sensor two 2, the positive ends of the main sensor one 3 and the main sensor two 2 are both connected to a signal processing device, and the signal processing device is connected to a controller, The output signals of the main sensor one 3 and the main sensor two 2 are superimposed and sent to the controller through the signal processing device.
  • the controller uses a microprocessor, preferably a single-chip microcomputer MSP430F449IPZ.
  • the signal processing device includes a charge amplifier connected to the positive ends of the main sensor one 3 and the main sensor two 2, the charge amplifier is connected to a low-pass filter, and the low-pass filter is connected to a high-pass filter.
  • the high-pass filter is connected to a variable gain amplifier, the variable gain amplifier is connected to pins 2 and 3 of the controller, and the variable gain amplifier is also connected to a controllable frequency selection amplifier, which is also controllable Connected to the main amplifier, the main amplifier is connected to the limiting amplifier, the limiting amplifier is connected to the Schmitt trigger, the Schmitt trigger is connected to the pin 85 of the controller, and the pin 67 of the controller is also connected to the frequency
  • An isolated output module the controller pin 78 is also connected to a low-pass + V / I converter, the controller pin 75 is also connected to a digital communication interface, and the controller pin 1 and pin 99 are connected through an isolation module Power supply, pins 83, 84 and 87 of the controller are also connected to the keyboard input module, 12-35
  • the charge amplifier of the signal processing device amplifies the charge signal superimposed by the main sensor one 3 and the main sensor two 2 and converts it into a voltage signal;
  • the low-pass filter acts to allow low-frequency components of the signal to pass , The function of not allowing the high-frequency components of the signal to pass; the function of allowing the high-frequency components of the signal to pass, not allowing the low-frequency components of the signal to pass, the highest frequency of the low-pass filter is greater than the lowest frequency of the high-pass filter, they The difference is the bandwidth of the signal;
  • the variable gain amplifier is an amplifier with a variable amplification factor.
  • the controller adjusts the amplifier amplification factor at any time to stabilize the output signal; the controllable selection In the case of different flow rates, the controller controls the frequency selection function of the controllable frequency selection amplifier to further filter the superimposed signal; the main amplifier is the amplification factor of the superimposed signal of the main sensor one 3 and the main sensor two 2 The amplifier with the largest contribution has the largest amplification factor; the limiting amplifier is the maximum output amplitude of the superimposed signal An amplifier limited to a certain range; the Schmitt trigger is a trigger that converts an input analog signal into a square wave signal; the frequency isolation output module separates the output frequency signal from the internal controller and amplifier The device with electrical isolation ensures that the external interference signal will not interfere with the normal operation of the internal controller and amplifier; the low-pass + V / I converter is a combination of low-pass filter + V / I conversion device , Where the V / I conversion device is a device that converts a voltage signal into a current output signal.
  • An anti-vibration vortex sensor fluid measurement method characterized by the following steps:
  • Step 1 Install the main sensor one 3 and the main sensor two 2 at intervals (1/2 + a) ⁇ , a is 0, 1, 2, 3, 4 ..., ⁇ is the vortex generator 5 Cut the liquid to form a vortex The wavelength of the main sensor 1-3 is fixed close to the vortex generating body 5.
  • Step 2 The transported liquid flows through the pipeline 4, and the vortex generating body 5 cuts the liquid to form a vortex;
  • Step 3 After the main sensor one (3) and the main sensor two (2) detect the vortex signal, the main sensor one (3) and the main sensor two (2) are connected in reverse series, and the signals detected by the two are combined and superimposed.
  • the signal processing device is sent to the controller.
  • the frequency and amplitude of the two vortex signals detected by the main sensor one (3) and the main sensor two (2) are the same, but the phase difference is equal to half a cycle, because the main sensor one (3 ) And the main sensor two (2) are connected in reverse series, so the output amplitude signals of the main sensor one (3) and the main sensor two (2) are stacked, and the amplitude is equal to 2 times the amplitude of the single main sensor;
  • Step 4 When the pipeline (4) where the main sensor one (3) and the main sensor two (2) are located vibrates, the frequency and amplitude of the generated signal on the main sensor one (3) and the main sensor two (2) are the same , Because of the reverse series connection, the vibration signals output by the main sensor one (3) and the main sensor two (2) cancel each other, and no vibration signal is output after the vibration signals of the main sensor one (3) and the main sensor two (2) are superimposed and canceled
  • the controller calculates the instantaneous liquid flow and cumulative flow based on the superimposed vortex signal of the received sensor one (3) and the main sensor two (2), and the calculation result is not affected by the vibration signal of the pipeline (4), so it is an anti- Vibration type double vortex street sensor, the calculation accuracy is higher.
  • the frequency of vortexes is:
  • U--the average velocity of the measured medium inflow is the fluid velocity

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种抗振型双涡街传感器流体测量装置及测量方法,测量装置包括管道(4),管道(4)的一端内部上侧固定有旋涡发生体(5),管道(4)的上侧设置有凹槽(6),凹槽(6)内固定有支撑板(1),管道(4)的上侧设置有两个圆孔(7),支撑板(1)上固定有主传感器一(3)和主传感器二(2),主传感器一(3)和主传感器二(2)分别设置在两个圆孔(7)内。测量装置能够完全排除振动信号的干扰,更加精确的测量流体流量。

Description

一种抗振型双涡街传感器流体测量装置及测量方法 技术领域
本发明涉及流量计领域,具体地讲,涉及一种抗振型双涡街传感器流体测量装置及测量方法。
背景技术
涡街流量计是一种测量流体流量的仪器。目前国内外使用的工业流量计有节流式流量计、***式涡轮流量计、电磁流量计、测速管以及涡街流量计。节流式流量计的测量范围窄,压力损失大,能耗高;大直径节流装置的造价高、安装困难、冬季需加保温防冻措施。***式涡轮流量计虽标定精度较高,但对介质清洁度要求苛刻,并要求经常标定,运行可靠性不高。电磁流量计仅适用于导电液体介质的测量,且大管径产品造价昂贵,难以推广。测速管虽造价低且节能,但量程比小,有结冻现象,不适于在污水和含尘气体中长期工作。美国Eeastech公司和日本横河电机公司分别推出的第一代涡街流量计,目前已具有量程比宽、压损小、精度高、复现性好、构造简单、运行可靠、气液通用、温度适应性好等突出优点。西德E-H公司、英国Kent公司、美国Foxboro公司、Fischer&Por-ter公司等都有独具特色的产品。但据公开报导所悉,这些公司目前大都只有管径小于200毫米的产品,不能用于大流量测量。随着科学技术的进步,已经具有了可以实现温压补偿以及各种集流量信号、温度和压力信号于一体的流量计,但目前的涡街流量计抗振性普遍较差,特别是在小流量时更是无法使用,且安装涡街流量计的工厂工况,都有不同程度的振动干扰存在,严重影响了涡街流量计的推广应用。目前缺少一种能够精准测量涡街信号,排除振动信号干扰的涡街流量计,此为现有技术的不足之处。
发明内容
本发明要解决的技术问题是提供一种抗振型双涡街传感器流体测量装置及测量方法,避免管道的振动信号对传感器的影响,提高涡街流量计测量的精度。
本发明采用如下技术方案实现发明目的:
一种抗振型双涡街传感器流体测量装置,包括管道(4),其特征是:所述管道(4)的一端内部上侧固定有旋涡发生体(5),所述管道(4)上固定有支撑板(1),所述支撑板(1)上固定有反向串接的主传感器一(3)和主传感器 二(2),所述主传感器一(3)和主传感器二(2)之间的间距为S=(1/2+a)λ;a为0、1、2、3、4……,λ为旋涡发生体(5)切割液体形成涡街信号的波长。
作为对本技术方案的进一步限定,a优选为0。
作为对本技术方案的进一步限定,所述管道(4)的上侧设置有凹槽(6),所述凹槽(6)内固定所述支撑板(1),所述管道(4)的上侧设置有两个圆孔(7),所述主传感器一(3)和主传感器二(2)分别穿过两个所述圆孔(7),圆孔(7)的直径大于主传感器一(3)和主传感器二(2)直径。
作为对本技术方案的进一步限定,所述旋涡发生体(5)设置在所述管道(4)的液体入口一端正中间位置,所述旋涡发生体(5)将管道(4)一端分割成对称的两部分。
作为对本技术方案的进一步限定,所述主传感器一(3)负端连接所述主传感器二(2)的负端,所述主传感器一(3)和所述主传感器二(2)的正端均连信号处理装置,所述信号处理装置连接控制器,所述主传感器一(3)和所述主传感器二(2)的输出信号叠加后通过所述信号处理装置输送给控制器,所述控制器采用微处理器。
作为对本技术方案的进一步限定,所述信号处理装置包括与所述主传感器一(3)和所述主传感器二(2)的正端连接的电荷放大器,所述电荷放大器连接低通滤波器,所述低通滤波器连接高通滤波器,所述高通滤波器连接可变增益放大器,所述可变增益放大器连接控制器的引脚2和引脚3,所述可变增益放大器还同时连接可控选频放大器,所述可控选频放大器连接主放大器,所述主放大器连接限幅放大器,所述限幅放大器连接施密特触发器,所述施密特触发器连接控制器的引脚85,所述控制器引脚67还连接频率隔离输出模块,所述控制器引脚78还连接低通+V/I转换器,所述控制器引脚75还连接数字通信接口,所述控制器引脚1和引脚99通过隔离模块连接电源,所述控制器的引脚83、84和87还连接键盘输入模块,所述控制器的12-35、引脚52-55、引脚55-59还连接显示模块,所述控制器的引脚95和引脚97连接可控选频放大器,所述主放大器的输出还连接所述控制器的引脚96。
一种抗振型双涡街传感器流体测量方法,其特征是:包括如下步骤:
步骤1:将所述主传感器一(3)和主传感器二(2)间隔(1/2+a)λ安装,a为 0、1、2、3、4……);λ为旋涡发生体(5)切割液体形成旋涡的涡街信号的波长,主传感器一(3)固定靠近所述旋涡发生体(5)的位置。
步骤2:输送的液体流经所述管道(4),所述旋涡发生体(5)切割液体,形成旋涡;
步骤3:主传感器一(3)和主传感器二(2)检测到涡街信号后,主传感器一(3)和主传感器二(2)反向串联,两者检测到的信号合并叠加后经过信号处理装置输送给控制器,主传感器一(3)和主传感器二(2)检测到的两个涡街信号的频率、幅度均相同,但是相位差等于半个周期,因为主传感器一(3)和主传感器二(2)反向串联,因此主传感器一(3)和主传感器二(2)的输出幅度信号是叠的,其幅值等于单个主传感器幅值的2倍;
步骤4:当主传感器一(3)和主传感器二(2)所在的管道(4)振动时,所产生的信号在主传感器一(3)和主传感器二(2)上的频率、幅度均相同,因反向串接,所以主传感器一(3)和主传感器二(2)输出的振动信号相互抵消,主传感器一(3)和主传感器二(2)振动信号叠加抵消后无振动信号输出,控制器根据接收的传感器一(3)和主传感器二(2)叠加后涡街信号计算液体瞬时流量和累加流量,且计算结果没有受到管道(4)振动信号的影响,故是一种抗振型双涡街传感器,计算的精确度更高。
作为对本技术方案的进一步限定,所述步骤1的λ的计算过程如下:
首先根据m、D、d、f和Sr之间的函数关系计算λ的值,具体步骤如下:
Figure PCTCN2019099946-appb-000001
m--旋涡发生体两侧弓形面积与管道横截面面积之比;
D--管道表体通径;
d--旋涡发生体迎面宽度;
旋涡发生的频率为:
Figure PCTCN2019099946-appb-000002
f--旋涡的发生频率;
U1--旋涡发生体两侧平均流速;
U--被测介质来流的平均速度即流体速度;
Sr--斯特劳哈尔数,斯特劳哈尔数是无量纲参数,它与旋涡发生体的形状及雷诺数有关,它由下式给出Sr=f*m*d/U;
f=k·Q
k--涡街流量计的仪表系数
Figure PCTCN2019099946-appb-000003
Q--管道内体积流量
Figure PCTCN2019099946-appb-000004
Figure PCTCN2019099946-appb-000005
Figure PCTCN2019099946-appb-000006
Figure PCTCN2019099946-appb-000007
Figure PCTCN2019099946-appb-000008
Figure PCTCN2019099946-appb-000009
T--漩涡的周期;
Figure PCTCN2019099946-appb-000010
λ--漩涡的波长
Figure PCTCN2019099946-appb-000011
Figure PCTCN2019099946-appb-000012
当斯特劳哈尔数Sr在雷诺数=2×10 4~7×10 6范围内,Sr可视为常数,故对具体涡街流量计,管道表体通径D和旋涡发生体迎面宽度d确定后,其流体的波长λ为恒定值。
与现有技术相比,本发明的优点和积极效果是:本发明将主传感器一和主传感器二间隔一定距离安装,输送的液体流经管道,旋涡发生体切割液体,形成旋 涡,主传感器一和主传感器二检测到涡街信号后,由于主传感器一和主传感器二反向串联,两者检测到的涡街信号合并后经过电荷放大器放大后传输到处理器,当主传感器一和主传感器二受到垂直于管道的振动信号时,因为主传感器一和主传感器二高度相同且反向串接,因此主传感器一和主传感器二检测到的振动信号相互抵消,主传感器一和主传感器二振动信号叠加抵消后无振动信号输出,控制器根据接收的传感器一和主传感器二叠加后涡街信号计算液体瞬时流量和累加流量,且计算结果没有受到垂直管道的振动信号的影响,计算的精确度更高。
附图说明
图1为本发明的立体结构示意图一。
图2为本发明的局部立体结构示意图一。
图3为本发明的局部立体结构示意图二。
图4为本发明的主传感器二和主传感器一测量的涡街信号演示示意图。
图5为本发明的主传感器一3和主传感器二2的平面视图。
图6为本发明的原理框图。
图7为本发明的旋涡发生体的结构示意图。
图8为本发明的管道直径和旋涡发生体的迎面宽度标注示意图。
图中:1、支撑板,2、主传感器二,3、主传感器一,4、管道,5、旋涡发生体,6、凹槽,7、圆孔。
具体实施方式
下面结合附图,对本发明的一个具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
如图1-图8所示,本发明包括管道4,所述管道4的一端内部上侧固定有旋涡发生体5,所述管道4上固定有支撑板1,所述支撑板1上固定有反向串接的主传感器一3和主传感器二2,所述主传感器一3和主传感器二2之间的间距为S=(1/2+a)λ;a为0、1、2、3、4……,λ为旋涡发生体5切割液体形成旋涡的涡街信号波长。
a优选为0,所述主传感器一3和主传感器二2均采用压电陶瓷传感器,两个传感器的结构和高度均相同。
所述管道4的上侧设置有凹槽6,所述凹槽6内固定所述支撑板1,所述管 道4的上侧设置有两个圆孔7,所述主传感器一3和主传感器二2分别穿过两个所述圆孔7。
所述旋涡发生体5设置在所述管道4的液体入口一端正中间位置,所述旋涡发生体5将管道4一端分割成对称的两部分。
所述主传感器一3负端连接所述主传感器二2的负端,所述主传感器一3和所述主传感器二2的正端均连信号处理装置,所述信号处理装置连接控制器,所述主传感器一3和所述主传感器二2的输出信号叠加后通过所述信号处理装置输送给控制器,所述控制器采用微处理器,优选为单片机MSP430F449IPZ。
所述信号处理装置包括与所述主传感器一3和所述主传感器二2的正端连接的电荷放大器,所述电荷放大器连接低通滤波器,所述低通滤波器连接高通滤波器,所述高通滤波器连接可变增益放大器,所述可变增益放大器连接控制器的引脚2和引脚3,所述可变增益放大器还同时连接可控选频放大器,所述可控选频放大器连接主放大器,所述主放大器连接限幅放大器,所述限幅放大器连接施密特触发器,所述施密特触发器连接控制器的引脚85,所述控制器引脚67还连接频率隔离输出模块,所述控制器引脚78还连接低通+V/I转换器,所述控制器引脚75还连接数字通信接口,所述控制器引脚1和引脚99通过隔离模块连接电源,所述控制器的引脚83、84和87还连接键盘输入模块,所述控制器的12-35、引脚52-55、引脚55-59还连接显示模块,所述控制器的引脚95和引脚97连接可控选频放大器,所述主放大器的输出还连接所述控制器的引脚96。信号处理装置对主传感器一3和主传感器二2叠加后的涡街信号进行放大、滤波处理后,再经过一系列放大处理后通过施密特触发器发送给控制器。
所述信号处理装置的所述电荷放大器对主传感器一3和主传感器二2叠加后的电荷信号进行放大,并将其转化成电压信号;所述低通滤波器起着允许信号的低频分量通过,不允许信号的高频分量通过的作用;所述起着允许信号的高频分量通过,不允许信号的低频分量通过的作用,低通滤波器的最高频率大于高通滤波器的最低频率,它们的差就是信号的带宽;所述可变增益放大器是一种放大倍数可变的放大器,根据信号的变化,控制器随时调整放大器放大倍数,可起到稳定输出信号的作用;所述可控选频放大器在不同流量情况下,控制器控制可控选频放大器选频作用,起到对叠加信号进一步滤波的作用;所述主放大器是对主传 感器一3和主传感器二2叠加信号的放大倍数贡献最大的放大器,它的放大倍数最大;所述限幅放大器是对叠加信号的最大输出幅度限制在一定范围内的一种放大器;所述施密特触发器是将输入的模拟信号转换为方波信号的触发器;所述频率隔离输出模块将输出频率信号与内部的控制器和放大器起着电隔离作用的器件,保证外部的干扰信号,扰乱不到内部的控制器和放大器的正常工作;所述低通+V/I转换器是一个低通滤波器+V/I转换器件的组合,其中V/I转换器件是将电压信号转换为电流输出信号的器件。
一种抗振涡街传感器流体测量方法,其特征是:包括如下步骤:
步骤1:将所述主传感器一3和主传感器二2间隔(1/2+a)λ安装,a为0、1、2、3、4……,λ为旋涡发生体5切割液体形成旋涡的波长,主传感器一3固定靠近所述旋涡发生体5的位置。
步骤2:输送的液体流经所述管道4,所述旋涡发生体5切割液体,形成旋涡;
步骤3:主传感器一(3)和主传感器二(2)检测到涡街信号后,主传感器一(3)和主传感器二(2)反向串联,两者检测到的信号合并叠加后经过信号处理装置输送给控制器,主传感器一(3)和主传感器二(2)检测到的两个涡街信号的频率、幅度均相同,但是相位差等于半个周期,因为主传感器一(3)和主传感器二(2)反向串联,因此主传感器一(3)和主传感器二(2)的输出幅度信号是叠的,其幅值等于单个主传感器幅值的2倍;
步骤4:当主传感器一(3)和主传感器二(2)所在的管道(4)振动时,所产生的信号在主传感器一(3)和主传感器二(2)上的频率、幅度均相同,因反向串接,所以主传感器一(3)和主传感器二(2)输出的振动信号相互抵消,主传感器一(3)和主传感器二(2)振动信号叠加抵消后无振动信号输出,控制器根据接收的传感器一(3)和主传感器二(2)叠加后涡街信号计算液体瞬时流量和累加流量,且计算结果没有受到管道(4)振动信号的影响,故是一种抗振型双涡街传感器,计算的精确度更高。
所述步骤1的λ的计算过程如下:
首先根据m、D、d、f和Sr之间的函数关系计算λ的值,具体步骤如下:
Figure PCTCN2019099946-appb-000013
m--旋涡发生体两侧弓形面积与管道横截面面积之比;
D--管道表体通径;
d--旋涡发生体迎面宽度;
旋涡发生的频率为:
Figure PCTCN2019099946-appb-000014
f--旋涡的发生频率;
U1--旋涡发生体两侧平均流速;
U--被测介质来流的平均速度即流体速度;
Sr--斯特劳哈尔数,斯特劳哈尔数是具有特征尺寸d的某物体所产生的旋涡分离频率f与流体流速相联系的无量纲参数,它由下式给出Sr=f*m*d/U;
f=k·Q
k--涡街流量计的仪表系数
Figure PCTCN2019099946-appb-000015
Q--管道内体积流量
Figure PCTCN2019099946-appb-000016
Figure PCTCN2019099946-appb-000017
Figure PCTCN2019099946-appb-000018
Figure PCTCN2019099946-appb-000019
Figure PCTCN2019099946-appb-000020
Figure PCTCN2019099946-appb-000021
T--漩涡的周期;
Figure PCTCN2019099946-appb-000022
λ--漩涡的波长
Figure PCTCN2019099946-appb-000023
Figure PCTCN2019099946-appb-000024
当斯特劳哈尔数Sr在雷诺数=2×10 4~7×10 6范围内,Sr可视为常数,故对具体涡街流量计,管道表体通径D和旋涡发生体迎面宽度d确定后,其流体的波长λ为恒定值。
以上公开的仅为本发明的一个具体实施例,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (8)

  1. 一种抗振型双涡街传感器流体测量装置,包括管道(4),其特征是:所述管道(4)的一端内部上侧固定有旋涡发生体(5),所述管道(4)上固定有支撑板(1),所述支撑板(1)上固定有反向串接的主传感器一(3)和主传感器二(2),所述主传感器一(3)和主传感器二(2)之间的间距为S=(1/2+a)λ;a为0、1、2、3、4……,λ为旋涡发生体(5)切割液体形成涡街信号的波长。
  2. 根据权利要求1所述的抗振型双涡街传感器流体测量装置,其特征是:a优选为0。
  3. 根据权利要求1所述的抗振型双涡街传感器流体测量装置,其特征是:所述管道(4)的上侧设置有凹槽(6),所述凹槽(6)内固定所述支撑板(1),所述管道(4)的上侧设置有两个圆孔(7),所述主传感器一(3)和主传感器二(2)分别穿过两个所述圆孔(7),圆孔(7)的直径大于主传感器一(3)和主传感器二(2)直径。
  4. 根据权利要求1所述的抗振型双涡街传感器流体测量装置,其特征是:所述旋涡发生体(5)设置在所述管道(4)的液体入口一端正中间位置,所述旋涡发生体(5)将管道(4)一端分割成对称的两部分。
  5. 根据权利要求1所述的抗振型双涡街传感器流体测量装置,其特征是:所述主传感器一(3)负端连接所述主传感器二(2)的负端,所述主传感器一(3)和所述主传感器二(2)的正端均连信号处理装置,所述信号处理装置连接控制器,所述主传感器一(3)和所述主传感器二(2)的输出信号叠加后通过所述信号处理装置输送给控制器,所述控制器采用微处理器。
  6. 根据权利要求5所述的抗振型双涡街传感器流体测量装置,其特征是:所述信号处理装置包括与所述主传感器一(3)和所述主传感器二(2)的正端连接的电荷放大器,所述电荷放大器连接低通滤波器,所述低通滤波器连接高通滤波器,所述高通滤波器连接可变增益放大器,所述可变增益放大器连接控制器的引脚2和引脚3,所述可变增益放大器还同时连接可控选频放大器,所述可控选频放大器连接主放大器,所述主放大器连接限幅放大器,所述限幅放大器连接施密特触发器,所述施密特触发器连接控制器的引脚85,所述控制器引脚67还连接频率隔离输出模块,所述控制器引脚78还连接低通+V/I转换器,所述控制器引脚75还连接数字通信接口,所述控制器引脚1和引脚99通过隔离模块连接电源,所 述控制器的引脚83、84和87还连接键盘输入模块,所述控制器的12-35、引脚52-55、引脚55-59还连接显示模块,所述控制器的引脚95和引脚97连接可控选频放大器,所述主放大器的输出还连接所述控制器的引脚96。
  7. 一种抗振型双涡街传感器流体测量方法,其特征是:包括如下步骤:
    步骤1:将所述主传感器一(3)和主传感器二(2)间隔(1/2+a)λ安装,a为0、1、2、3、4……);λ为旋涡发生体(5)切割液体形成旋涡的涡街信号的波长,主传感器一(3)固定靠近所述旋涡发生体(5)的位置。
    步骤2:输送的液体流经所述管道(4),所述旋涡发生体(5)切割液体,形成旋涡;
    步骤3:主传感器一(3)和主传感器二(2)检测到涡街信号后,主传感器一(3)和主传感器二(2)反向串联,两者检测到的信号合并叠加后经过信号处理装置输送给控制器,主传感器一(3)和主传感器二(2)检测到的两个涡街信号的频率、幅度均相同,但是相位差等于半个周期,因为主传感器一(3)和主传感器二(2)反向串联,因此主传感器一(3)和主传感器二(2)的输出幅度信号是叠的,其幅值等于单个主传感器幅值的2倍;
    步骤4:当主传感器一(3)和主传感器二(2)所在的管道(4)振动时,所产生的信号在主传感器一(3)和主传感器二(2)上的频率、幅度均相同,因反向串接,所以主传感器一(3)和主传感器二(2)输出的振动信号相互抵消,主传感器一(3)和主传感器二(2)振动信号叠加抵消后无振动信号输出,控制器根据接收的传感器一(3)和主传感器二(2)叠加后涡街信号计算液体瞬时流量和累加流量,且计算结果没有受到管道(4)振动信号的影响,故是一种抗振型双涡街传感器,计算的精确度更高。
  8. 根据权利要求7所述的抗振型双涡街传感器流体测量方法,其特征是:所述步骤1的λ的计算过程如下:
    首先根据m、D、d、f和Sr之间的函数关系计算λ的值,具体步骤如下:
    Figure PCTCN2019099946-appb-100001
    m--旋涡发生体两侧弓形面积与管道横截面面积之比;
    D--管道表体通径;
    d--旋涡发生体迎面宽度;
    旋涡发生的频率为:
    Figure PCTCN2019099946-appb-100002
    f--旋涡的发生频率;
    U1--旋涡发生体两侧平均流速;
    U--被测介质来流的平均速度即流体速度;
    Sr--斯特劳哈尔数,斯特劳哈尔数是无量纲参数,它与旋涡发生体的形状及雷诺数有关,它由下式给出Sr=f*m*d/U;
    f=k·Q
    k--涡街流量计的仪表系数
    Figure PCTCN2019099946-appb-100003
    Q--管道内体积流量
    Figure PCTCN2019099946-appb-100004
    Figure PCTCN2019099946-appb-100005
    Figure PCTCN2019099946-appb-100006
    Figure PCTCN2019099946-appb-100007
    Figure PCTCN2019099946-appb-100008
    Figure PCTCN2019099946-appb-100009
    T--漩涡的周期;
    Figure PCTCN2019099946-appb-100010
    λ--漩涡的波长
    Figure PCTCN2019099946-appb-100011
    Figure PCTCN2019099946-appb-100012
    当斯特劳哈尔数Sr在雷诺数=2×10 4~7×10 6范围内,Sr可视为常数,故对具体涡街流量计,管道表体通径D和旋涡发生体迎面宽度d确定后,其流体的波长λ为恒定值。
PCT/CN2019/099946 2018-10-22 2019-08-09 一种抗振型双涡街传感器流体测量装置及测量方法 WO2020082857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811230705.7A CN109282862B (zh) 2018-10-22 2018-10-22 一种抗振型双涡街传感器流体测量装置及测量方法
CN201811230705.7 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020082857A1 true WO2020082857A1 (zh) 2020-04-30

Family

ID=65178306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099946 WO2020082857A1 (zh) 2018-10-22 2019-08-09 一种抗振型双涡街传感器流体测量装置及测量方法

Country Status (2)

Country Link
CN (1) CN109282862B (zh)
WO (1) WO2020082857A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378498A (zh) * 2020-10-19 2021-02-19 姚宁 抗震型高灵敏度感应检测传感器测量装置
CN112964323A (zh) * 2021-02-10 2021-06-15 河北大学 一种饱和湿蒸汽质量流量及干度测量装置以及测量方法
CN113188624A (zh) * 2021-04-21 2021-07-30 河北大学 基于涡街流量计和均速管流量计的湿蒸汽测量装置及方法
CN113551719A (zh) * 2021-07-16 2021-10-26 三川智慧科技股份有限公司 一种自发电的智能水表
CN113670392A (zh) * 2021-07-28 2021-11-19 余姚市银环流量仪表有限公司 一种涡街流量计
CN114166291A (zh) * 2021-11-30 2022-03-11 合肥科迈捷智能传感技术有限公司 一种小口径涡街流量计抗振动干扰方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282862B (zh) * 2018-10-22 2024-01-09 山东科尔自动化仪表股份有限公司 一种抗振型双涡街传感器流体测量装置及测量方法
CN109282863A (zh) * 2018-10-22 2019-01-29 山东科尔自动化仪表股份有限公司 一种抗振型双涡街传感器流体控制装置及控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095760A (en) * 1989-05-08 1992-03-17 Lew Hyok S Vortex flowmeter with dual sensors
CN2205540Y (zh) * 1994-10-25 1995-08-16 徐秋刚 涡街流量计的抗震装置
JPH11248500A (ja) * 1998-03-05 1999-09-17 Yokogawa Electric Corp 渦流量計
CN1230686A (zh) * 1999-01-08 1999-10-06 合肥工业大学 涡街流量计数字信号处理***
CN2502238Y (zh) * 2001-01-01 2002-07-24 吴仁基 涡街流量计
CN2715117Y (zh) * 2004-05-13 2005-08-03 浙江富马仪表有限公司 双检测漩涡流量计
CN102261935A (zh) * 2011-05-05 2011-11-30 浙江迪元仪表有限公司 膜盒型双探头涡街流量计
CN109282863A (zh) * 2018-10-22 2019-01-29 山东科尔自动化仪表股份有限公司 一种抗振型双涡街传感器流体控制装置及控制方法
CN109282862A (zh) * 2018-10-22 2019-01-29 山东科尔自动化仪表股份有限公司 一种抗振型双涡街传感器流体测量装置及测量方法
CN208805238U (zh) * 2018-10-22 2019-04-30 山东科尔自动化仪表股份有限公司 一种抗振型双涡街传感器流体控制装置
CN208805237U (zh) * 2018-10-22 2019-04-30 山东科尔自动化仪表股份有限公司 一种抗振型双涡街传感器流体测量装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201203446Y (zh) * 2008-05-12 2009-03-04 姚贤卿 复合式质量流量计
CN101701834B (zh) * 2009-11-10 2013-01-23 合肥工业大学 基于双传感器的抗强干扰的数字涡街流量计
CN102135440B (zh) * 2011-01-11 2012-10-03 华澳富通(天津)科技发展有限公司 一种可同时测量温度的光纤涡街流量计
US9016138B2 (en) * 2013-03-13 2015-04-28 Rosemount Inc. Flanged reducer vortex flowmeter
CN105973317A (zh) * 2016-03-23 2016-09-28 合肥精大仪表股份有限公司 一种双向计量的涡街流量计

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095760A (en) * 1989-05-08 1992-03-17 Lew Hyok S Vortex flowmeter with dual sensors
CN2205540Y (zh) * 1994-10-25 1995-08-16 徐秋刚 涡街流量计的抗震装置
JPH11248500A (ja) * 1998-03-05 1999-09-17 Yokogawa Electric Corp 渦流量計
CN1230686A (zh) * 1999-01-08 1999-10-06 合肥工业大学 涡街流量计数字信号处理***
CN2502238Y (zh) * 2001-01-01 2002-07-24 吴仁基 涡街流量计
CN2715117Y (zh) * 2004-05-13 2005-08-03 浙江富马仪表有限公司 双检测漩涡流量计
CN102261935A (zh) * 2011-05-05 2011-11-30 浙江迪元仪表有限公司 膜盒型双探头涡街流量计
CN109282863A (zh) * 2018-10-22 2019-01-29 山东科尔自动化仪表股份有限公司 一种抗振型双涡街传感器流体控制装置及控制方法
CN109282862A (zh) * 2018-10-22 2019-01-29 山东科尔自动化仪表股份有限公司 一种抗振型双涡街传感器流体测量装置及测量方法
CN208805238U (zh) * 2018-10-22 2019-04-30 山东科尔自动化仪表股份有限公司 一种抗振型双涡街传感器流体控制装置
CN208805237U (zh) * 2018-10-22 2019-04-30 山东科尔自动化仪表股份有限公司 一种抗振型双涡街传感器流体测量装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378498A (zh) * 2020-10-19 2021-02-19 姚宁 抗震型高灵敏度感应检测传感器测量装置
CN112964323A (zh) * 2021-02-10 2021-06-15 河北大学 一种饱和湿蒸汽质量流量及干度测量装置以及测量方法
CN113188624A (zh) * 2021-04-21 2021-07-30 河北大学 基于涡街流量计和均速管流量计的湿蒸汽测量装置及方法
CN113188624B (zh) * 2021-04-21 2023-10-03 河北大学 基于涡街流量计和均速管流量计的湿蒸汽测量装置及方法
CN113551719A (zh) * 2021-07-16 2021-10-26 三川智慧科技股份有限公司 一种自发电的智能水表
CN113670392A (zh) * 2021-07-28 2021-11-19 余姚市银环流量仪表有限公司 一种涡街流量计
CN113670392B (zh) * 2021-07-28 2024-05-14 余姚市银环流量仪表有限公司 一种涡街流量计
CN114166291A (zh) * 2021-11-30 2022-03-11 合肥科迈捷智能传感技术有限公司 一种小口径涡街流量计抗振动干扰方法

Also Published As

Publication number Publication date
CN109282862B (zh) 2024-01-09
CN109282862A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
WO2020082857A1 (zh) 一种抗振型双涡街传感器流体测量装置及测量方法
CN106768103B (zh) 一种超声波流量计自动校准时间偏差的方法
CN203657865U (zh) 一种科里奥利质量流量计
CN112212926B (zh) 一种基于多孔节流与mems压力传感器的流量测量方法
CN201828300U (zh) 法兰卡装式温压补偿涡街流量计
CN101539444A (zh) 一种可实现直接取压双向测量的差压式流量传感器
CN208805237U (zh) 一种抗振型双涡街传感器流体测量装置
CN208805238U (zh) 一种抗振型双涡街传感器流体控制装置
EP3063508A1 (en) A flow meter for ultrasonically measuring the flow velocity of fluids
CN107576361A (zh) 一种基于激光多普勒测速的大口径管路流量测量装置
CN204255414U (zh) 气体流量测量装置以及气体流量测量仪
CN103674146A (zh) 一种基于超声流量计的质量流量计
CN201251461Y (zh) 带温度压力自动补偿的高精度平衡式蒸汽流量计
CN202770855U (zh) 一种基于声学的锅炉炉膛烟气流速监测***
CN109282863A (zh) 一种抗振型双涡街传感器流体控制装置及控制方法
CN110186523B (zh) 差压式流量计测量液体动态流量方法
CN203231775U (zh) 一种导电液体的电容式孔板流量测量装置
CN211904246U (zh) 一种自带温压补偿的平衡流量计
CN105158503B (zh) 热线式风速传感器
CN210071019U (zh) 一种智能气体超声波流量计
CN201463944U (zh) 内置式v型锥流量计
CN200986450Y (zh) 差压式涡街质量流量测量信号处理装置
CN203772325U (zh) 一体化孔板流量计
CN208269986U (zh) 一种用于低压管道***中的超声波流量计
CN204165597U (zh) 用于流量检测***的回波信号调理电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875806

Country of ref document: EP

Kind code of ref document: A1