WO2020082821A1 - 一种基于导向缆的无人船回收自主水下航行器装置及方法 - Google Patents

一种基于导向缆的无人船回收自主水下航行器装置及方法 Download PDF

Info

Publication number
WO2020082821A1
WO2020082821A1 PCT/CN2019/095929 CN2019095929W WO2020082821A1 WO 2020082821 A1 WO2020082821 A1 WO 2020082821A1 CN 2019095929 W CN2019095929 W CN 2019095929W WO 2020082821 A1 WO2020082821 A1 WO 2020082821A1
Authority
WO
WIPO (PCT)
Prior art keywords
autonomous underwater
underwater vehicle
recovery
guide
unmanned ship
Prior art date
Application number
PCT/CN2019/095929
Other languages
English (en)
French (fr)
Inventor
徐鹏飞
丁延旭
沈雅琳
程文斌
程红霞
张弛
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河海大学 filed Critical 河海大学
Priority to GB2006065.3A priority Critical patent/GB2581091B/en
Publication of WO2020082821A1 publication Critical patent/WO2020082821A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/36Arrangement of ship-based loading or unloading equipment for floating cargo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B23/00Equipment for handling lifeboats or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating

Definitions

  • the invention relates to a device and method for recovering an autonomous underwater vehicle based on a guidance cable, which belongs to the technical field of marine unmanned systems.
  • Unmanned Surface Vehicle USV
  • Autonomous Underwater Vehicle AUV
  • USV Unmanned Surface Vehicle
  • AUV Autonomous Underwater Vehicle
  • USV and AUV As an unmanned platform, USV and AUV have their own strengths and weaknesses, and they cannot replace each other. AUV is constrained by technical bottlenecks such as underwater communication, navigation and endurance, which is difficult to solve independently and seriously affects its engineering application prospects.
  • the USV's scope of work is on the water, and its ability to move in deep water and underwater detection are limited.
  • the two platforms of USV and AUV are systematically integrated to perform a series of tasks that cannot be achieved independently by a single system, especially in some occasions where the connection between the underwater AUV and the surface USV needs to be established.
  • Prospects can also be further developed into a maritime unmanned formation system composed of USV and AUV to fully play the role of a cluster. Among them, how to self-recover AUV is an important key technology for USV and AUV to work together.
  • AUVs need to be recovered on the water surface after completing their tasks, supplementing power and exchanging data .
  • the problem of AUV recycling has always been a worldwide problem and has become a technical bottleneck restricting the development of AUVs.
  • personnel are required to take a motor boat close to the AUV to suspend the docking point.
  • the mother ship has a large heave range, which can easily damage the equipment and seriously threaten the safety of personnel.
  • AUVs that automatically throw out the ropes on the surface of the water, and the mother ship personnel capture the ropes and then recycle them.
  • the water-captured cables are greatly affected by wind and waves, and cannot be deployed again in a short time, and the cables thrown by the autonomous underwater vehicle float on the water surface and are not fixed, which is easy to drift away due to the influence of the sea surface wind and waves.
  • the mother ship is unstable, and the cable catching work is difficult to achieve.
  • the AUV rope throwing device is a disposable item, and it needs to be replaced after recycling before it can be deployed again.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art, and to provide a device and method that uses USV as a water platform and uses guide cables to autonomously recover AUVs, so as to solve the current technical means that water surface deployment and recovery are greatly affected by sea surface wind 1. There are defects in personnel and equipment safety risks.
  • a guidance cable-based unmanned ship recycling autonomous underwater vehicle device including a surface unmanned boat, a recovery device mounted on the surface unmanned boat, an autonomous underwater vehicle being recovered or deployed, and a guided recovery control system;
  • a hydroacoustic transducer is provided at the bottom of the surface unmanned ship for hydroacoustic communication between the surface unmanned ship and the autonomous underwater vehicle, and the cabin of the surface unmanned ship is provided with a hydraulic extension connected to the recovery device Rod, the hydraulic telescopic rod can realize the movement of the recovery device in the vertical direction;
  • the deck of the unmanned boat on the water surface is provided with a matched electric winch and A-frame, and the electric winch is used in conjunction with the A-frame for Retractable guide cable;
  • the casing of the recovery device is a semi-enclosed cylindrical structure with an open bottom, and the casing is provided with a hole on the top of one side of the A-frame for guiding the guide cable downward, and the guide cable can freely move up and down in the hole , A pair of recycling nets are installed inside the casing;
  • the top of the bow of the autonomous underwater vehicle is provided with an arc-shaped guide arm and a tether pliers.
  • the arc-shaped guide arm is connected to the tether pliers.
  • the tether pliers are also opened and the guide arm
  • the tether pliers are closed when retracted; the tether pliers are used to cover the guide cable;
  • the guided recovery control system includes an autonomous underwater vehicle control system, an unmanned ship control system, and a positioning guidance system integrated in the autonomous underwater vehicle.
  • the autonomous underwater vehicle control system receives The data information measured by the pilot system is used to carry out recovery path planning and motion control, and constantly adjust its position and attitude to close to the recovery device; the unmanned ship control system receives the position, sailing speed, heading, and attitude from the autonomous underwater vehicle. Information, plan recycling operations, and control the movement of unmanned boats on the surface.
  • the above-mentioned unmanned ship-based autonomous underwater vehicle device based on a guide cable is provided with a guide light on the guide cable, and a weight is hung at the bottom end for tensioning the guide cable, above the weight A sleeve is fixedly arranged for pulling the autonomous underwater vehicle.
  • an ultrasonic distance meter is provided inside the top of the shell of the recovery device to determine the relative position of the autonomous underwater vehicle in the recovery device,
  • Two sealing cylinders are provided at both ends of the casing, and the sealing cylinder is provided with a motor and ancillary equipment.
  • the sealing cylinder and the ancillary settings are used to ensure the normal operation of the motor under water;
  • the pair of recovery net mechanisms are shell-shaped grips Bucket-shaped mechanism, the two ends of the recovery net mechanism are fan-shaped, the bottom is equipped with a flexible metal mesh in the shape of an arc curved surface, each recovery net mechanism is connected to the rotating shaft fixed on the shell at one end, and the other end is connected to the motor shaft ,
  • the motor drives the recovery net mechanism through the motor shaft to rotate, the top of the rotating shaft is provided with gears, the gears on the shaft mesh with each other, a pair of recovery net mechanism, rotating shaft, motor, motor shaft, gear are arranged in the recovery device Vertically opposed, the pair of recovery net mechanisms are opened and closed by the rotation of the motor.
  • the autonomous underwater vehicle can be enclosed in the recovery device, and the autonomous underwater navigation
  • the walker is placed on a flexible metal net, and the autonomous underwater vehicle can freely enter and exit the recovery device when opened.
  • the curved guide arm is retracted and hidden in the body of the autonomous underwater vehicle during normal navigation.
  • the machine rotates to the open position in the horizontal direction to form a V-shaped guiding area at the front of the autonomous underwater vehicle; a mechanical sensor is provided on the tether pliers. The mechanical sensor is used when the guide cable is sheathed in the tether pliers.
  • the mechanical sensor When the tether pliers generate a force, the mechanical sensor generates a pulse signal and transmits the pulse signal to the guided recovery control system; the autonomous underwater vehicle is equipped with a USBL ultra-short baseline array, a camera, an optical sensor, and an attitude sensor.
  • the USBL The ultra-short baseline array is used for underwater positioning of autonomous underwater vehicles.
  • the autonomous underwater vehicle calculates its plane position and depth relative to the surface unmanned boat , The camera is used when the autonomous underwater vehicle approaches the guide cable, the autonomous underwater vehicle transmits the recovery picture to the unmanned boat on the water surface, and the unmanned boat on the water surface will draw Passed to the shore station for staff to monitor.
  • the optical sensor is used when the autonomous underwater vehicle approaches the guide cable guide light.
  • the optical sensor can obtain light intensity information and transmit the light intensity information to the guided recovery control system.
  • the attitude sensor is used to acquire attitude information during the running of the autonomous underwater vehicle.
  • the autonomous underwater vehicle adjusts the propulsion device according to its own attitude and the relative position with the unmanned ship on the water surface to realize remote navigation. It is set inside the autonomous underwater vehicle
  • There is a power receiving coil and a matching battery The power receiving coil and the matching battery are used for the autonomous underwater vehicle to enter the recovery drum, and magnetically couple with the power receiving coil in the recovery drum to realize wireless non-contact of the autonomous underwater vehicle. Charge.
  • the above-mentioned guidance cable-based unmanned ship recovers autonomous underwater vehicle devices.
  • the autonomous underwater vehicle control system receives position and sensor data from USBL ultra-short baseline array, optical sensors and attitude sensors , Carry out recovery path planning and motion control, and constantly adjust its position and posture to approach the guide cable; the mechanical sensor on the mooring tongs transmits the sensing information to the autonomous underwater vehicle control system, which controls the steering gear to realize the mooring tongs and guidance The opening and closing of the boom; the autonomous underwater vehicle control system transmits its position, sailing speed, course, and attitude information to the unmanned ship control system through underwater acoustic communication; the unmanned ship control system is set on the surface and unmanned Inside the ship, it is connected to an electric winch, which controls the winch to realize the retracting of the guide cable and the switch of the guiding light; at the same time, the unmanned ship control system realizes the retracting and retracting of the recovery device by controlling the expansion and contraction of the hydraulic telescopic rod.
  • the ultrasonic rangefinder transmits the distance information to the unmanned ship control system, which determines whether the autonomous underwater vehicle enters the recovery
  • the device realizes the switch of the recovery network mechanism by controlling the motor; the unmanned ship control system receives the position, sailing speed, heading, and attitude information from the autonomous underwater vehicle through underwater acoustic communication, plans the recovery operation path, and controls the unmanned ship motion.
  • the positioning guidance system includes an acoustic guidance positioning unit and an optical guidance positioning unit
  • the acoustic guidance positioning unit includes autonomous underwater navigation
  • the autonomous underwater vehicle communicates its own navigation state at a rate of 2 ⁇ 4kbit / s through underwater acoustic communication Information interaction with unmanned ships on the water surface to realize long-distance and short-range navigation before recovery
  • the optical guidance and positioning unit includes guidance lights, cameras and visual sensors installed on the guidance cable for autonomous underwater vehicles Accurate navigation at close range within 5 ⁇ 20m.
  • the guide light is a waterproof LED light strip; two sides of the bottom of the shell are respectively wrapped with a cushion made of flexible material to prevent During the recovery process, the autonomous underwater vehicle collided with the outer shell and was damaged; the arc-shaped guide arm and the tether pliers are connected by a gear mechanism.
  • a method for recovering autonomous underwater vehicles based on guide cables, using any one of claims 1 to 7, the recovery process includes the following steps:
  • Step 1 The autonomous underwater vehicle communicates with the surface unmanned ship after completing the task, requires the recovery procedure to start, and begins to float at the same time. It interacts with the surface unmanned ship through the acoustic guidance positioning unit to exchange its position, The navigation speed, course, and attitude information are transmitted to the surface unmanned ship; after receiving the request, the surface unmanned ship plans a recovery operation path by comparing its relative position with the autonomous underwater vehicle.
  • the recovery operation path is a straight line, and the water surface has no
  • the manned ship will follow the recovery path at the planned speed (recovery cruising speed) and heading angle, and transmit the information of the recovery path, the speed of the unmanned boat on the surface, and the heading angle to the autonomous underwater vehicle through underwater acoustic communication;
  • the electric winch lowers the guide cable, turns on the guide light on the guide cable, puts the recovery device into the water through the hydraulic telescopic rod, and prepares to recover the autonomous underwater vehicle;
  • the autonomous underwater vehicle receives the recovery operation from the unmanned ship on the surface Set a fixed depth after the path and sail under water 0-10m, and enter the mooring area according to the track plan;
  • Step 2 After the autonomous underwater vehicle enters the waiting position, the relative position of the unmanned ship on the water surface and the autonomous underwater vehicle is determined again through the acoustic guidance and positioning unit, the position is corrected, the tethering route is re-planned, and the The steering gear opens the arc-shaped guide arm and the tether pliers; the guide arm forms a V shape at the front of the autonomous underwater vehicle, and the tether pliers are opened; after the completion, it begins to approach the guide cable and remotely navigate and navigate through the acoustic guidance and positioning unit The optical guidance and positioning unit accurately navigates in the short range.
  • the autonomous underwater vehicle drives the guide cable and continuously adjusts its attitude so that the guide cable enters the V-shaped opening of the guide arm.
  • the optical sensor in the autonomous underwater vehicle is based on the guide light
  • the light intensity and the line of sight angle determine the distance and orientation of the guide cable; when the line of sight angle is in the middle, it is judged that the guide cable has entered the tether pliers. At this time, the guide arm is retracted, and the tether pliers are also clamped.
  • the mechanical sensor When the guide cable is sheathed When a force is applied to the tether pliers in the tether pliers, the mechanical sensor generates a pulse signal to guide the recovery control system to turn off the propulsion of the autonomous underwater vehicle, and at the same time send it to the unmanned ship on the water surface Signal that has been completed mooring; surface unmanned boat after the start signal received by the cable, AUV is directed downward pulling cable sleeve, moving toward the surface;
  • Step 3 After the autonomous underwater vehicle is brought near the water surface, the autonomous underwater vehicle enters the recovery device under the drag of the guide cable, and the ultrasonic rangefinder on the top of the shell of the recovery device continuously measures the distance until it reaches the recovery device Judging that the autonomous underwater vehicle has entered the recovery device, the motors provided at both ends of the recovery device drive the recovery net mechanism to close the autonomous underwater vehicle in the recovery device, and then the hydraulic telescopic rod is recovered to lift the recovery device out of the water Recycling is completed in the unmanned cabin on the water surface.
  • a method for recovering an autonomous underwater vehicle based on a guide cable-based unmanned boat described above includes the following steps: the surface unmanned boat puts the recovery device into the water, and at the same time, the electric winch lowers the guide cable and the device is to be recovered After entering the water, the recovery net mechanism is opened, the autonomous underwater vehicle leaves the recovery device under the action of gravity, and then the mooring pliers are opened to separate from the guide cable and the deployment is completed.
  • a method for recovering an autonomous underwater vehicle based on a guideline for an unmanned ship is characterized in that the trajectory planning of the unmanned ship on the water surface at a long distance in the planning of the recovery operation path in the first step is as follows: At the beginning of the re-recovery process, each sensor system is used to obtain the initial state of motion of the surface unmanned boat and the target position and constraints are initialized. The information is imported into a simplified model, the trajectory parameters are expressed, and the node is calculated using the A * algorithm.
  • the present invention solves the technical defect that the AUV deployed on the water surface is greatly affected by the wind and waves on the sea surface, and there is a safety risk.
  • the AUV is first docked with the guide cable underwater, the guide cable drives the AUV into the recovery device, and the AUV recovery operation depth (5m)
  • the wave height of the sea state is greater than level 5, which avoids the impact of the sea surface wind and waves on the motion state of the underwater vehicle.
  • the cable recovery improves the docking fault tolerance rate and can realize the recovery operation under complex sea conditions;
  • the present invention uses USV as the deployment and recovery platform for AUV, which can realize autonomous maneuvering and active deployment and recovery, which greatly improves the operating range of AUV;
  • the present invention replaces the traditional manned deployment and recovery method with USV, avoids personnel from entering the water, reduces the risk in the deployment and recovery process, eliminates the need for manual decoupling operations, improves work efficiency, and makes recovery and deployment operations more efficient, Safe and convenient;
  • the AUV uses a curved guide arm to form a V-shaped guide area, which improves the success rate of the AUV mooring cable.
  • the next task can be carried out without replacing parts, and the continuous deployment capability of repeatable retractable operations is realized;
  • the present invention is different from the traditional pure mechanical deployment and recovery device.
  • the present invention uses the USV and AUV acoustic and communication and optical guidance docking, through long-distance correction of the aircraft route through acoustic communication, the use of guide lights at close range is accurate Guide the docking and improve the success rate of docking recovery;
  • the present invention has good compatibility with most autonomous underwater vehicles, and can realize the deployment and recovery of multiple underwater vehicles by the same system through simple modification, and has the characteristics of wide application range.
  • FIG. 1 is a schematic diagram of the overall structure of the present invention.
  • FIG. 2 is a schematic structural view of the recovery device 6 in FIG. 1;
  • FIG. 3 is a schematic diagram of a middle longitudinal section of the recovery device 6 in FIG. 2;
  • FIG. 4 is a schematic horizontal cross-sectional view of the recovery device 6 in FIG. 2
  • FIG. 5 is a schematic structural diagram of an autonomous underwater vehicle of the present invention.
  • FIG. 6 is a schematic diagram of the docking guide cable 4 of the autonomous underwater vehicle
  • FIG. 7 is a schematic diagram of a guide cable 4 towing an autonomous underwater vehicle
  • FIG. 8 is a schematic diagram of an autonomous underwater vehicle with cable recovery on the surface unmanned ship 1;
  • FIG. 9 is a schematic diagram of an autonomous underwater vehicle deployed on the surface unmanned boat 1;
  • FIG. 10 is a partial enlarged view of the left end of FIG. 4.
  • the unmanned ship-based autonomous underwater vehicle recovery device of the present invention includes a surface unmanned ship 1, a recovery device 6 mounted on the surface unmanned ship 1, recovered or deployed Autonomous underwater vehicle 7 and guided recovery control system; the surface of the unmanned boat 1 is provided with a hydroacoustic transducer at the bottom, which is used for the underwater acoustic communication between the unmanned boat 1 and the autonomous underwater vehicle 7, and the unmanned boat
  • the cabin of 1 is provided with a hydraulic telescopic rod 5 connected to the recovery device 6, the hydraulic telescopic rod 5 can realize the vertical movement of the recovery device 6;
  • the deck of the unmanned ship 1 on the water surface is provided with electric winches 3 and A used in conjunction
  • the frame 2, the electric winch 3 and the A-frame 2 are used together to retract the guide cable 4; the guide cable 4 is provided with a guide light, and a weight 42 is hung on the bottom end for tensioning the guide cable 4, heavy A sleeve 41 is fixedly arranged above the block 42 for lifting the autonomous
  • the casing 61 of the recovery device 6 is a semi-enclosed cylindrical structure with an open bottom.
  • the casing 61 is provided with a hole on the top of the A-frame 2 side for guiding the guide cable 4 downward, and the guide cable 4 can be free in the hole Moving up and down;
  • the inner side of the top of the casing 61 of the recovery device 6 is provided with an ultrasonic distance meter 610 to determine the relative position of the autonomous underwater vehicle 7 in the recovery device 6, and two sealing cylinders 62 are provided at both ends of the shell 61.
  • the sealing cylinder 62 is provided with a motor 64 and supporting equipment.
  • the sealing cylinder 62 and supporting equipment are used to ensure the normal operation of the motor 64 under water; a pair of recycling net mechanisms 65 are installed inside the casing 61, and a pair of recycling net mechanisms 65 are shell-shaped grabs
  • the two ends of the recovery net mechanism 65 are fan-shaped, and the bottom is equipped with a flexible metal net 66 with an arc-shaped curved surface.
  • Each recovery net mechanism 65 has one end connected to a rotating shaft 67 fixed on the housing 61 and the other end connected to a motor
  • the shaft 68 is connected, and the motor 64 drives the recycling net mechanism 65 to rotate through the motor shaft 68.
  • the top of the rotating shaft 67 is provided with gears 69.
  • the gears 69 on the shaft mesh with each other.
  • a pair of recovery net mechanisms 65 are opened and closed by the rotation of the motor 64. When closed, the autonomous underwater vehicle 7 can be enclosed in the recovery device 6, the autonomous underwater vehicle 7 Placed on the flexible metal net 66, the autonomous underwater vehicle 7 can freely enter and exit the recovery device 6 when opened.
  • the top of the bow of the autonomous underwater vehicle 7 is provided with an arc-shaped guide arm 71 and a tether pliers 72.
  • the arc-shaped guide arm 71 is connected to the tether pliers 72.
  • the tether pliers 72 are also opened to guide
  • the tether pliers 72 are closed; the tether pliers 72 are used to cover the guide cable 4; the arc-shaped guide arm 71 is retracted and hidden in the body of the autonomous underwater vehicle 7 during the normal navigation process, during the recovery process ,
  • a V-shaped guiding area is formed in the front of the autonomous underwater vehicle 7;
  • a mechanical sensor is provided on the tether 72, the mechanical sensor is used when the guiding cable 4 is sheathed
  • the mechanical sensor generates a pulse signal and transmits the pulse signal to the guided recovery control system; the autonomous
  • the autonomous underwater vehicle 7 adjusts the propulsion device according to its own attitude and the relative position with the unmanned ship 1 on the surface to realize remote navigation.
  • the autonomous underwater vehicle 7 is provided with The power receiving coil and supporting battery are used for the autonomous underwater vehicle 7 to enter the recovery drum and magnetically couple with the power receiving coil in the recovery drum to realize wireless non-contact charging of the autonomous underwater vehicle 7 .
  • the guided recovery control system includes an autonomous underwater vehicle control system 78, an unmanned ship control system and a positioning guidance system integrated in the autonomous underwater vehicle 7; the autonomous underwater vehicle control system 78 receives ultra-short from USBL
  • the position and sensing data from the baseline array 77, optical sensor 75 and attitude sensor are used for recovery path planning and motion control, constantly adjusting their position and attitude close to the guide cable 4; the mechanical sensor on the tether clamp 72 will sense the information It is transmitted to the autonomous underwater vehicle control system 78, which controls the steering gear 73 to realize the opening and closing of the tether 72 and the guide arm;
  • the autonomous underwater vehicle control system 78 communicates its position, navigation speed, The heading and attitude information is transmitted to the unmanned boat control system; the unmanned boat control system is set inside the unmanned boat 1 on the water surface, and is connected to the electric winch 3, which controls the winch to realize the retracting of the guide cable 4 and the switch of the guiding light; ,
  • the unmanned ship control system realizes the retracting and releasing of the recovery
  • the positioning guidance system includes an acoustic guidance positioning unit and an optical guidance positioning unit.
  • the acoustic guidance positioning unit includes an ultra-short baseline acoustic beacon carried by the autonomous underwater vehicle 7, a navigation attitude sensor, and a Underwater acoustic transducer, autonomous underwater vehicle 7 uses underwater acoustic communication to exchange information of its own navigation status with unmanned ship 1 on the water surface at a rate of 2 to 4 kbit / s to realize long-distance and short-range navigation before recovery ;
  • the optical guidance and positioning unit includes a guide light, a camera 76 and a visual sensor installed on the guide cable 4, which is used for the precise navigation of the autonomous underwater vehicle 7 at a short distance within 5-20m.
  • the guide light is a waterproof LED light strip; the bottom of the shell 61 is wrapped with a cushion 63 made of flexible material to prevent the autonomous underwater vehicle 7 from colliding with the shell 61 during the recovery process: arc guide
  • the arm 71 and the tether clamp 72 are connected by a gear mechanism 74.
  • the method for recovering an autonomous underwater vehicle of an unmanned ship based on guide cables of the present invention includes the following steps:
  • Step 1 After the autonomous underwater vehicle 7 completes the task, it communicates with the surface unmanned vessel 1 and requests to start the recovery procedure, and at the same time, it starts to float. It interacts with the surface unmanned vessel 1 through the acoustic guidance and positioning unit to exchange its own position.
  • the speed, course, attitude information is transmitted to the surface unmanned ship 1; after receiving the request, the surface unmanned ship 1 plans a recovery operation path by comparing its relative position with the autonomous underwater vehicle 7, the recovery operation path is one Straight line, surface unmanned boat 1 will follow the recovery path at the planned speed (recovery cruising speed) and heading angle, and the information of the recovery path, surface unmanned boat 1 speed and heading angle will be transmitted to autonomous underwater navigation through underwater acoustic communication
  • the electric winch 3 on the deck will lower the guide cable 4, turn on the guide light on the guide cable 4, and place the recovery device 6 into the water through the hydraulic telescopic rod 5, ready to recover the autonomous underwater vehicle 7; autonomous water
  • the lower craft 7 receives the recovery operation path sent by the unmanned vessel 1 on the water surface, and then navigates at a depth of 0 to 10m under water. The optimal depth is 5m under water. Mooring waiting area.
  • the trajectory planning of the surface unmanned ship 1 at a long distance is as follows: at the beginning of the recovery process or the start of the heavy recovery process, the motion state of the surface unmanned ship 1 at the initial time is obtained through each sensor system and the target position And constraint initialization, import information into a simplified model, express trajectory parameters, use A * algorithm to perform node search, conduct airworthiness judgment on the path that meets the energy and time constraints, and calculate the route cost, thus forming
  • the trajectory planning parameter equation according to the determined criteria, the shortest trajectory is used to solve the optimization problem, and finally the obtained route is smoothed to obtain the desired motion state.
  • the current flow field information and obstacle conditions need to be updated in real time. Ensure the safety of unmanned boat 1 on the surface.
  • Step 2 After the autonomous underwater vehicle 7 enters the waiting position, the relative position of the unmanned vessel 1 on the surface and the autonomous underwater vehicle 7 is determined again through the acoustic guidance and positioning unit, the position is corrected, and the mooring route is re-planned. Open the curved guide arm 71 and the tether pliers 72 through the steering gear 73; the guide arm forms a V shape in front of the autonomous underwater vehicle 7 and the tether pliers 72 open; Guided positioning unit remote navigation and optical guided positioning unit short-range precise navigation.
  • the autonomous underwater vehicle 7 drives the guide cable 4 and continuously adjusts its attitude so that the guide cable 4 enters the V-shaped opening of the guide arm.
  • the optical sensor 75 in the aircraft 7 judges the distance and orientation of the guide cable 4 according to the light intensity of the guide light and the line of sight angle; when the line of sight angle is in the middle, it is judged that the guide cable 4 has entered the tether 72, and the guide is retracted at this time
  • the arm and the tether pliers 72 are also clamped accordingly.
  • the mechanical sensor When the guide cable 4 is sheathed in the tether pliers 72 and exerts a force on the tether pliers 72, the mechanical sensor generates a pulse signal to guide the recovery control system to control the autonomous underwater vehicle 7
  • the propeller is closed, same as At the time, a signal is sent to the unmanned boat 1 on the water surface, indicating that the mooring line has been completed. After receiving the signal, the unmanned boat 1 starts to retract the cable.
  • the autonomous underwater vehicle 7 is pulled up by the sleeve 41 under the guide cable 4 and moves toward the water surface.
  • Step 3 After the autonomous underwater vehicle 7 is brought close to the surface of the water, the autonomous underwater vehicle 7 enters the recovery device 6 under the drag of the guide cable 4, and the ultrasonic distance meter 610 on the top of the casing 61 of the recovery device 6 continuously measures the distance Until the recovery device 6 determines that the autonomous underwater vehicle 7 has entered the recovery device 6, the motors 64 provided at both ends of the recovery device 6 drive the recovery net mechanism 65 to rotate, and the autonomous underwater vehicle 7 is enclosed in the recovery device 6 After that, the hydraulic telescopic rod 5 is recovered, and the recovery device 6 is lifted out of the water and received in the cabin of the unmanned vessel on the surface, and the recovery is completed.
  • the deployment process of the present invention includes the following steps: the unmanned boat 1 on the water surface puts the recovery device 6 into the water, and at the same time, the electric winch 3 lowers the guide cable 4; after the recovery device 6 enters the water, the recovery net mechanism 65 is opened to autonomous the underwater vehicle 7 Leave the recovery device 6 under the action of gravity, and then open the tether pliers 72, disengage the guide cable 4, and complete the deployment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于导向缆的无人船回收自主水下航行器装置,其特征在于:包括水面无人船、搭载于水面无人船上的回收装置、被回收或布放的自主水下航行器以及设置在自主水下航行器上的引导回收控制***;所述水面无人船底部设置有水声换能器,用于水面无人船与自主水下航行器进行水声通讯,所述水面无人船的船舱中设置有与回收装置连接的液压伸缩杆,所述液压伸缩杆能够实现回收装置垂直方向上的运动;所述自主水下航行器的艏部顶端设置有弧形导引臂与系缆钳。本发明的有益效果为:提供一种以USV为水面平台,采用导向缆自主回收AUV的装置及方法,以解决目前技术手段中水面布放回收受海面风浪影响大、存在人员及设备安全风险的缺陷。

Description

一种基于导向缆的无人船回收自主水下航行器装置及方法 技术领域
本发明涉及一种基于导向缆的无人船回收自主水下航行器装置及方法,属于海上无人***技术领域。
背景技术
水面无人船(Unmanned Surface Vehicle,简称USV)和自主水下航行器(Autonomous Underwater Vehicle,简称AUV)作为海上无人***的主要组成部分,近年来受到国内外越来越多的关注。作为研究热点,其在军事和民用方面都有广阔的应用前景。随着各国对海洋战略的重视及海洋开发力度的加大,USV和AUV都将扮演越来越重要的角色,对人类水上工程应用、海洋军事活动及海洋开发利用等产生深远影响。
作为无人平台,USV和AUV各有所长,也各有所短,无法相互替代。AUV受到水下通讯、导航和续航能力等技术瓶颈制约,很难独立的很好解决,严重影响了其工程应用前景。而USV的工作范围位于水上,深水活动能力和水下探测能力又受到一定的限制。将USV和AUV两种平台进行***融合,来执行一系列不能由其中单个***独立实现的任务,特别是需要建立水下的AUV和水面USV之间联系的某些场合,在海洋领域具有光明的前景,也可进一步发展成由USV和AUV组成的海上无人编队***,充分发挥集群作用。其中,如何自主回收AUV是USV和AUV协同作业的重要关键技术。
事实上,由于AUV的续航能力有限,无论其应用在海洋军事、海洋调查、海底资源勘探、管线巡检等领域,绝大多数情况下AUV完成任务后都需要在水面回收,补充电力并交换数据。但由于海洋环境复杂,受海面的风、浪、流影 响,AUV的回收问题一直是世界性的难题,成为限制AUV发展的技术瓶颈。尤其是有人辅助回收,需要人员乘坐机动艇靠近AUV进行吊点对接,当海况恶劣时母船升沉幅度较大,极易损害设备并严重威胁人员安全。
此外,也有AUV在水面通过自动抛出缆绳,由母船人员捕获缆绳后进行回收的操作。但水面捕获缆绳受风浪影响大,且无法在短时间内再次部署,且自主水下航行器抛出的缆绳浮于水面不固定,受海面风浪影响容易漂走。在海况恶劣情况下,母船不稳定,捕缆工作难以实现。同时,AUV抛绳装置属于一次性用品,回收之后需进行更换才可再次部署。
因此,在水面以无人的方式自主引导对接并回收AUV技术成为近年来研究的热点。过去十多年内,以美国为首的西方国家先后提出多种无人布放和回收AUV的方式,以喇叭孔式和吊杆式对接为主。其中,喇叭孔式对平台的水动力影响非常严重,适合海底对接而不是水面回收;吊杆式的水动力影响较小,但动态对接难度较大,要求较高的引导精度。
基于上述考虑,迫切需要一种能够减小海面风浪影响、可进行重复收放作业、具有自主机动性且安全可靠的自主回收AUV的装置及方法。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种以USV为水面平台,采用导向缆自主回收AUV的装置及方法,以解决目前技术手段中水面布放回收受海面风浪影响大、存在人员及设备安全风险的缺陷。
为了实现上述目标,本发明采用如下的技术方案:
一种基于导向缆的无人船回收自主水下航行器装置,包括水面无人船、搭载于水面无人船上的回收装置、被回收或布放的自主水下航行器以及引导回收 控制***;
所述水面无人船底部设置有水声换能器,用于水面无人船与自主水下航行器进行水声通讯,所述水面无人船的船舱中设置有与回收装置连接的液压伸缩杆,所述液压伸缩杆能够实现回收装置垂直方向上的运动;所述水面无人船的甲板上设置有配合使用的电动绞车与A型架,所述电动绞车与A型架配合使用用于收放导向缆;
所述回收装置的外壳为底部开口的半包围筒状结构,所述外壳位于A型架一侧的顶部开设有孔,用于向下穿出导向缆,且导向缆在孔中能够自由上下运动,外壳内部安装有一对回收网机构;
所述自主水下航行器的艏部顶端设置有弧形导引臂与系缆钳,所述弧形导引臂与系缆钳连接,当导引臂张开时系缆钳也打开,导引臂收回时系缆钳关闭;所述系缆钳用于套住导向缆;
所述引导回收控制***包括集成在自主水下航行器内的自治式水下航行器控制***、无人船控制***以及定位导引***,所述自治式水下航行器控制***接收来自定位导引***测得的数据信息,进行回收路径规划与运动控制,不断调整自身位置与姿态靠近回收装置;所述无人船控制***接收自主水下航行器传来的位置、航行速度、航向、姿态信息,规划回收作业路径,控制水面无人船运动。
上述的一种基于导向缆的无人船回收自主水下航行器装置,所述导向缆上设置有导引灯,且底端挂有重块,用于张紧导向缆,所述重块上方固定设置有套筒,用于提拉自主水下航行器。
上述的一种基于导向缆的无人船回收自主水下航行器装置,所述回收装置 的外壳顶部内侧设置有超声波测距仪,用以判断自主水下航行器在回收装置内的相对位置,外壳两端设置有两个密封筒,所述密封筒内设置有电机及配套设备,所述密封筒与配套设置用于保证电机在水下正常工作;所述一对回收网机构为贝形抓斗形机构,所述回收网机构的两端面呈扇形,底部装有形状为弧形曲面的柔性金属网,每个回收网机构一端与固定在外壳上的旋转轴连接,另一端与电机轴连接,所述电机通过电机轴带动回收网机构旋转,所述旋转轴顶端都设置有齿轮,轴上齿轮相互啮合,一对回收网机构、旋转轴、电机、电机轴、齿轮的布置以回收装置中纵面反对称,一对回收网机构通过电机转动实现开合,关闭时能够将自主水下航行器封闭在回收装置内,自主水下航行器放置在柔性金属网上,开启时自主水下航行器能够自由进出回收装置。
上述的一种基于导向缆的无人船回收自主水下航行器装置,所述弧形导引臂在正常航行过程中,是收缩隐藏在自主水下航行器体内的,回收过程中,通过舵机在水平面方向转动到张开位置,在自主水下航行器前部形成V形导引区域;系缆钳上设置有力学传感器,所述力学传感器用于当导向缆被套在系缆钳中对系缆钳产生作用力时,力学传感器产生脉冲信号,将脉冲信号传输至引导回收控制***;在自主水下航行器中装有USBL超短基线阵列、摄像头、光学传感器和姿态传感器,所述USBL超短基线阵列用于自主水下航行器的水下定位,通过水面无人船的声学换能器发出的声脉冲,自主水下航行器计算出自身相对于水面无人船的平面位置与深度,所述摄像头用于当自主水下航行器靠近导向缆时,自主水下航行器将回收画面传输给水面无人船,水面无人船将画面传给岸站,供工作人员监控,所述光学传感器用于自主水下航行器靠近导向缆导引灯时,光学传感器能够获取光强信息,将光强信息传输至引导回收控制系 统,所述姿态传感器用于自主水下航行器行驶过程中的姿态信息获取,自主水下航行器根据自身姿态和与水面无人船的相对位置调整推进装置,实现远程导航,在自主水下航行器内部设置有受电线圈及配套电池,所述受电线圈及配套电池用于自主水下航行器进入回收筒后,与回收筒内的受电线圈发生磁耦合,实现自主水下航行器的无线非接触充电。
上述的一种基于导向缆的无人船回收自主水下航行器装置,所述自治式水下航行器控制***接收来自USBL超短基线阵列、光学传感器和姿态传感器传来的位置、传感数据,进行回收路径规划与运动控制,不断调整自身位置与姿态靠近导向缆;系缆钳上的力学传感器将传感信息传至自治式水下航行器控制***,控制舵机实现系缆钳与导引臂的张合;自治式水下航行器控制***通过水声通讯,将自身位置、航行速度、航向、姿态信息传输给无人船控制***;所述无人船控制***设置在水面无人船内部,与电动绞车相连接,控制绞车实现导向缆的收放与导引灯的开关;同时,所述无人船控制***通过控制液压伸缩杆的伸缩实现回收装置的收放,回收装置内的超声波测距仪将距离信息传递给无人船控制***,无人船控制***确定自主水下航行器是否进入回收装置,通过控制电机实现回收网机构的开关;无人船控制***通过水声通讯,接收自主水下航行器传来的位置、航行速度、航向、姿态信息,规划回收作业路径,控制无人船运动。
上述的一种基于导向缆的无人船回收自主水下航行器装置,所述定位导引***包括声学导引定位单元和光学导引定位单元,所述声学导引定位单元包括自主水下航行器携带的超短基线声信标、航行姿态传感器以及水面无人船底部设置的水声换能器,自主水下航行器通过水声通讯,以2~4kbit/s的速率,将自 身航行状态与水面无人船进行信息交互,实现回收前的远程和中近程导航;所述光学导引定位单元包括安装在导向缆上的导引灯、摄像头和视觉传感器,用于自主水下航行器在5~20m之内的近距离精确导航。
上述的一种基于导向缆的无人船回收自主水下航行器装置,所述导引灯为防水LED灯条带;所述外壳底部两侧分别包裹有一条柔性材料制成的缓冲垫,防止回收过程中自主水下航行器与外壳碰撞受损;:所述弧形导引臂与系缆钳通过齿轮机构连接。
一种基于导向缆的无人船回收自主水下航行器方法,利用权利要求1至7所述的任意一项装置,回收过程包括以下步骤:
步骤一:所述自主水下航行器完成任务后与水面无人船进行通讯,要求开始回收程序,同时开始上浮,通过声学导引定位单元与水面无人船进行航行信息交互,将自身位置、航行速度、航向、姿态信息传递给水面无人船;水面无人船收到请求后通过比较自己与自主水下航行器的相对位置规划出一条回收作业路径,回收作业路径为一条直线,水面无人船将按照回收路径以规划速度(回收巡航速度)和航向角航行,并将回收路径、水面无人船行驶速度、航向角信息通过水声通讯传给自主水下航行器;同时甲板上的电动绞车将导向缆放下,打开导向缆上的导引灯,通过液压伸缩杆将回收装置放入水中,准备回收自主水下航行器;自主水下航行器收到水面无人船发出的回收作业路径后定深在水下0~10m航行,根据航迹规划安排进入系缆待泊区域;
步骤二:所述自主水下航行器进入待泊位置后,通过声学导引定位单元再次确定水面无人船与自主水下航行器的相对位置,进行位置修正,重新规划系缆航线,同时通过舵机打开弧形导引臂与系缆钳;导引臂在自主水下航行器前 部形成V形,系缆钳张开;完成后开始靠近导向缆,通过声学导引定位单元远程导航及光学导引定位单元近程精确导航,自主水下航行器驶向导向缆,并不断调整姿态,使得导向缆进入导引臂V形开口内,自主水下航行器中的光学传感器根据导引灯的光强大小和视线角判断导向缆的距离方位;当视线角处于中间时判断导向缆已进入系缆钳内,此时收回导引臂,系缆钳也随之夹紧,当导向缆被套在系缆钳中对系缆钳产生作用力时,力学传感器产生脉冲信号,引导回收控制***将自主水下航行器的推进器关闭,同时向水面无人船发送信号,表示系缆已完成;水面无人船受到信号后开始收缆,自主水下航行器被导向缆下方的套筒提拉,向水面运动;
步骤三:所述自主水下航行器被提到近水面后,自主水下航行器在导向缆的拖曳下进入回收装置,回收装置外壳顶部的超声波测距仪不断进行测距,直到达回收装置判断自主水下航行器已经进入回收装置,设置于回收装置两端部的电机带动回收网机构转动,将自主水下航行器封闭在回收装置内,之后液压伸缩杆回收,将回收装置抬出水面收入水面无人船舱内,回收完成。
上述的一种基于导向缆的无人船回收自主水下航行器方法,布放过程包括以下步骤:所述水面无人船将回收装置放入水中,同时电动绞车将导向缆放下,待回收装置入水后打开回收网机构,所述自主水下航行器在重力作用下离开回收装置,再打开系缆钳,脱离导向缆,完成布放。
上述的一种基于导向缆的无人船回收自主水下航行器方法,其特征在于,所述步骤一中回收作业路径的规划中远距离时的水面无人船的轨迹规划为:在回收过程开始或重回收过程开始时,通过各传感器***获取水面无人船初始时刻的运动状态并且进行目标位置和约束条件初始化,将信息导入简化的模型中, 对轨迹参数进行表示,利用A*算法进行节点搜索,对满足能量和时间约束条件的路径进行适航性判断,以及航路代价的计算,从而形成轨迹规划参数方程,并根据所定判别标准,航行轨迹最短进行最优化问题求解,最后对所得航路进行平滑处理,得到期望的运动状态,在这个过程中需要实时更新当前流场信息以及障碍物情况,保证水面无人船航行的安全。
本发明所达到的有益效果:
(1)本发明解决了水面布放回收AUV受海面风浪影响大、存在安全风险的技术缺陷,AUV在水下先与导向缆对接,导向缆带动AUV进入回收装置,AUV回收作业深度(5m)大于5级海况波高,避免了海面风浪对水下航行器运动状态的影响,同时有缆回收提高了对接容错率,可实现了复杂海况下的回收作业;
(2)本发明相比于水下固定回收布放装置,以USV作为AUV的布放回收平台,可实现自主机动,进行主动布放回收,极大地提升了AUV的作业范围;
(3)本发明以USV替代传统有人布放回收方式,避免人员下水,降低了布放和回收过程中的危险性,无需人工脱挂钩作业,提高了工作效率,使得回收布放作业更高效、安全、便捷;
(4)本发明中AUV通过弧形导引臂形成V形导引区域,提高了AUV系缆成功率,系缆钳通过转动进行系脱缆动作,相较于采用抛绳装置的自治式水下航行器,无需更换零部件即可进行下一次任务,实现了可重复收放作业的连续部署能力;
(5)本发明区别于传统纯机械式布放回收装置,本发明采用USV与AUV的声学与通讯与光学导引对接,长距离上通过声学通讯修正航行器航线,近距离利用导引灯精确导引对接,提高对接回收成功率;
(6)本发明对大部分自主水下航行器兼容性较好,通过简单改造即可能够实现同一套***对多种水下航行器的布放回收,具有应用范围广的特点。
附图说明
图1为本发明整体结构示意图;
图2为图1中回收装置6的结构示意图;
图3为图2中回收装置6的中纵剖面示意图;
图4为图2中回收装置6的水平剖面示意图
图5为本发明的自主水下航行器结构示意图;
图6为自主水下航行器对接导向缆4的示意图;
图7为导向缆4拖带自主水下航行器的示意图;
图8为水面无人船1有缆回收自主水下航行器的示意图;
图9为水面无人船1布放自主水下航行器的示意图;
图10为图4的左端局部放大图。
图中附图标记的含义:
1、水面无人船,2、A型架,3、电动绞车,4、导向缆,41、套筒,42、重块,5、液压伸缩杆,6、回收装置,61、外壳,62、密封筒,63、缓冲垫,64、电机,65、回收网机构,66、柔性金属网,67、旋转轴,68、电机轴,69、齿轮,610、超声波测距仪,7、自主水下航行器,71、弧形导引臂,72、系缆钳,73、舵机,74、齿轮机构,75、光学传感器,76、摄像头,77、USBL超短基线阵列,78、自治式水下航行器控制***。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明 本发明的技术方案,而不能以此来限制本发明的保护范围。
参见图1至图10,本发明的基于导向缆的无人船回收自主水下航行器装置,包括水面无人船1、搭载于水面无人船1上的回收装置6、被回收或布放的自主水下航行器7以及引导回收控制***;水面无人船1底部设置有水声换能器,用于水面无人船1与自主水下航行器7进行水声通讯,水面无人船1的船舱中设置有与回收装置6连接的液压伸缩杆5,液压伸缩杆5能够实现回收装置6垂直方向上的运动;水面无人船1的甲板上设置有配合使用的电动绞车3与A型架2,电动绞车3与A型架2配合使用用于收放导向缆4;导向缆4上设置有导引灯,且底端挂有重块42,用于张紧导向缆4,重块42上方固定设置有套筒41,用于提拉自主水下航行器7。
回收装置6的外壳61为底部开口的半包围筒状结构,外壳61位于A型架2一侧的顶部开设有孔,用于向下穿出导向缆4,且导向缆4在孔中能够自由上下运动;回收装置6的外壳61顶部内侧设置有超声波测距仪610,用以判断自主水下航行器7在回收装置6内的相对位置,外壳61两端设置有两个密封筒62,密封筒62内设置有电机64及配套设备,密封筒62与配套设置用于保证电机64在水下正常工作;外壳61内部安装有一对回收网机构65,一对回收网机构65为贝形抓斗形机构,回收网机构65的两端面呈扇形,底部装有形状为弧形曲面的柔性金属网66,每个回收网机构65一端与固定在外壳61上的旋转轴67连接,另一端与电机轴68连接,电机64通过电机轴68带动回收网机构65旋转,旋转轴67顶端都设置有齿轮69,轴上齿轮69相互啮合,一对回收网机构65、旋转轴67、电机64、电机轴68、齿轮69的布置以回收装置6中纵面反对称,一对回收网机构65通过电机64转动实现开合,关闭时能够将自主水下航行器7 封闭在回收装置6内,自主水下航行器7放置在柔性金属网66上,开启时自主水下航行器7能够自由进出回收装置6。
自主水下航行器7的艏部顶端设置有弧形导引臂71与系缆钳72,弧形导引臂71与系缆钳72连接,当导引臂张开时系缆钳72也打开,导引臂收回时系缆钳72关闭;系缆钳72用于套住导向缆4;弧形导引臂71在正常航行过程中,是收缩隐藏在自主水下航行器7体内的,回收过程中,通过舵机73在水平面方向转动到张开位置,在自主水下航行器7前部形成V形导引区域;系缆钳72上设置有力学传感器,力学传感器用于当导向缆4被套在系缆钳72中对系缆钳72产生作用力时,力学传感器产生脉冲信号,将脉冲信号传输至引导回收控制***;在自主水下航行器7中装有USBL超短基线阵列77、摄像头76、光学传感器75和姿态传感器,USBL超短基线阵列77用于自主水下航行器7的水下定位,通过水面无人船1的声学换能器发出的声脉冲,自主水下航行器7计算出自身相对于水面无人船1的平面位置与深度,摄像头76用于当自主水下航行器7靠近导向缆4时,自主水下航行器7将回收画面传输给水面无人船1,水面无人船1将画面传给岸站,供工作人员监控,光学传感器75用于自主水下航行器7靠近导向缆4导引灯时,光学传感器75能够获取光强信息,将光强信息传输至引导回收控制***,姿态传感器用于自主水下航行器7行驶过程中的姿态信息获取,自主水下航行器7根据自身姿态和与水面无人船1的相对位置调整推进装置,实现远程导航,在自主水下航行器7内部设置有受电线圈及配套电池,受电线圈及配套电池用于自主水下航行器7进入回收筒后,与回收筒内的受电线圈发生磁耦合,实现自主水下航行器7的无线非接触充电。
引导回收控制***包括集成在自主水下航行器7内的自治式水下航行器控 制***78、无人船控制***以及定位导引***;自治式水下航行器控制***78接收来自USBL超短基线阵列77、光学传感器75和姿态传感器传来的位置、传感数据,进行回收路径规划与运动控制,不断调整自身位置与姿态靠近导向缆4;系缆钳72上的力学传感器将传感信息传至自治式水下航行器控制***78,控制舵机73实现系缆钳72与导引臂的张合;自治式水下航行器控制***78通过水声通讯,将自身位置、航行速度、航向、姿态信息传输给无人船控制***;无人船控制***设置在水面无人船1内部,与电动绞车3相连接,控制绞车实现导向缆4的收放与导引灯的开关;同时,无人船控制***通过控制液压伸缩杆5的伸缩实现回收装置6的收放,回收装置6内的超声波测距仪610将距离信息传递给无人船控制***,无人船控制***确定自主水下航行器7是否进入回收装置6,通过控制电机64实现回收网机构65的开关;无人船控制***通过水声通讯,接收自主水下航行器7传来的位置、航行速度、航向、姿态信息,规划回收作业路径,控制无人船运动。
定位导引***包括声学导引定位单元和光学导引定位单元,声学导引定位单元包括自主水下航行器7携带的超短基线声信标、航行姿态传感器以及水面无人船1底部设置的水声换能器,自主水下航行器7通过水声通讯,以2~4kbit/s的速率,将自身航行状态与水面无人船1进行信息交互,实现回收前的远程和中近程导航;光学导引定位单元包括安装在导向缆4上的导引灯、摄像头76和视觉传感器,用于自主水下航行器7在5~20m之内的近距离精确导航。
导引灯为防水LED灯条带;外壳61底部两侧分别包裹有一条柔性材料制成的缓冲垫63,防止回收过程中自主水下航行器7与外壳61碰撞受损;:弧形导引臂71与系缆钳72通过齿轮机构74连接。
本发明的基于导向缆的无人船回收自主水下航行器方法,其回收过程包括以下步骤:
步骤一:自主水下航行器7完成任务后与水面无人船1进行通讯,要求开始回收程序,同时开始上浮,通过声学导引定位单元与水面无人船1进行航行信息交互,将自身位置、航行速度、航向、姿态信息传递给水面无人船1;水面无人船1收到请求后通过比较自己与自主水下航行器7的相对位置规划出一条回收作业路径,回收作业路径为一条直线,水面无人船1将按照回收路径以规划速度(回收巡航速度)和航向角航行,并将回收路径、水面无人船1行驶速度、航向角信息通过水声通讯传给自主水下航行器7;同时甲板上的电动绞车3将导向缆4放下,打开导向缆4上的导引灯,通过液压伸缩杆5将回收装置6放入水中,准备回收自主水下航行器7;自主水下航行器7收到水面无人船1发出的回收作业路径后定深在水下0~10m航行,最佳定深为在水下5m,根据航迹规划安排进入系缆待泊区域。
对于回收作业路径的规划中远距离时的水面无人船1的轨迹规划为:在回收过程开始或重回收过程开始时,通过各传感器***获取水面无人船1初始时刻的运动状态并且进行目标位置和约束条件初始化,将信息导入简化的模型中,对轨迹参数进行表示,利用A*算法进行节点搜索,对满足能量和时间约束条件的路径进行适航性判断,以及航路代价的计算,从而形成轨迹规划参数方程,并根据所定判别标准,航行轨迹最短进行最优化问题求解,最后对所得航路进行平滑处理,得到期望的运动状态,在这个过程中需要实时更新当前流场信息以及障碍物情况,保证水面无人船1航行的安全。
步骤二:自主水下航行器7进入待泊位置后,通过声学导引定位单元再次 确定水面无人船1与自主水下航行器7的相对位置,进行位置修正,重新规划系缆航线,同时通过舵机73打开弧形导引臂71与系缆钳72;导引臂在自主水下航行器7前部形成V形,系缆钳72张开;完成后开始靠近导向缆4,通过声学导引定位单元远程导航及光学导引定位单元近程精确导航,自主水下航行器7驶向导向缆4,并不断调整姿态,使得导向缆4进入导引臂V形开口内,自主水下航行器7中的光学传感器75根据导引灯的光强大小和视线角判断导向缆4的距离方位;当视线角处于中间时判断导向缆4已进入系缆钳72内,此时收回导引臂,系缆钳72也随之夹紧,当导向缆4被套在系缆钳72中对系缆钳72产生作用力时,力学传感器产生脉冲信号,引导回收控制***将自主水下航行器7的推进器关闭,同时向水面无人船1发送信号,表示系缆已完成;水面无人船1受到信号后开始收缆,自主水下航行器7被导向缆4下方的套筒41提拉,向水面运动。
步骤三:自主水下航行器7被提到近水面后,自主水下航行器7在导向缆4的拖曳下进入回收装置6,回收装置6外壳61顶部的超声波测距仪610不断进行测距,直到达回收装置6判断自主水下航行器7已经进入回收装置6,设置于回收装置6两端部的电机64带动回收网机构65转动,将自主水下航行器7封闭在回收装置6内,之后液压伸缩杆5回收,将回收装置6抬出水面收入水面无人船1舱内,回收完成。
本发明的布放过程包括以下步骤:水面无人船1将回收装置6放入水中,同时电动绞车3将导向缆4放下,待回收装置6入水后打开回收网机构65,自主水下航行器7在重力作用下离开回收装置6,再打开系缆钳72,脱离导向缆4,完成布放。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

  1. 一种基于导向缆的无人船回收自主水下航行器装置,其特征在于:包括水面无人船、搭载于水面无人船上的回收装置、被回收或布放的自主水下航行器以及引导回收控制***;
    所述水面无人船底部设置有水声换能器,用于水面无人船与自主水下航行器进行水声通讯,所述水面无人船的船舱中设置有与回收装置连接的液压伸缩杆,所述液压伸缩杆能够实现回收装置垂直方向上的运动;所述水面无人船的甲板上设置有配合使用的电动绞车与A型架,所述电动绞车与A型架配合使用用于收放导向缆;
    所述回收装置的外壳为底部开口的半包围筒状结构,所述外壳位于A型架一侧的顶部开设有孔,用于向下穿出导向缆,且导向缆在孔中能够自由上下运动,外壳内部安装有一对回收网机构;
    所述自主水下航行器的艏部顶端设置有弧形导引臂与系缆钳,所述弧形导引臂与系缆钳连接,当导引臂张开时系缆钳也打开,导引臂收回时系缆钳关闭;所述系缆钳用于套住导向缆;
    所述引导回收控制***包括集成在自主水下航行器内的自治式水下航行器控制***、无人船控制***以及定位导引***,所述自治式水下航行器控制***接收来自定位导引***测得的数据信息,进行回收路径规划与运动控制,不断调整自身位置与姿态靠近回收装置;所述无人船控制***接收自主水下航行器传来的位置、航行速度、航向、姿态信息,规划回收作业路径,控制水面无人船运动。
  2. 根据权利要求1所述的一种基于导向缆的无人船回收自主水下航行器装置,其特征在于:所述导向缆上设置有导引灯,且底端挂有重块,用于张紧导 向缆,所述重块上方固定设置有套筒,用于提拉自主水下航行器。
  3. 根据权利要求2所述的一种基于导向缆的无人船回收自主水下航行器装置,其特征在于:所述回收装置的外壳顶部内侧设置有超声波测距仪,用以判断自主水下航行器在回收装置内的相对位置,外壳两端设置有两个密封筒,所述密封筒内设置有电机及配套设备,所述密封筒与配套设置用于保证电机在水下正常工作;所述一对回收网机构为贝形抓斗形机构,所述回收网机构的两端面呈扇形,底部装有形状为弧形曲面的柔性金属网,每个回收网机构一端与固定在外壳上的旋转轴连接,另一端与电机轴连接,所述电机通过电机轴带动回收网机构旋转,所述旋转轴顶端都设置有齿轮,轴上齿轮相互啮合,一对回收网机构、旋转轴、电机、电机轴、齿轮的布置以回收装置中纵面反对称,一对回收网机构通过电机转动实现开合,关闭时能够将自主水下航行器封闭在回收装置内,自主水下航行器放置在柔性金属网上,开启时自主水下航行器能够自由进出回收装置。
  4. 根据权利要求3所述的一种基于导向缆的无人船回收自主水下航行器装置,其特征在于:所述弧形导引臂在正常航行过程中,是收缩隐藏在自主水下航行器体内的,回收过程中,通过舵机在水平面方向转动到张开位置,在自主水下航行器前部形成V形导引区域;系缆钳上设置有力学传感器,所述力学传感器用于当导向缆被套在系缆钳中对系缆钳产生作用力时,力学传感器产生脉冲信号,将脉冲信号传输至引导回收控制***;在自主水下航行器中装有USBL超短基线阵列、摄像头、光学传感器和姿态传感器,所述USBL超短基线阵列用于自主水下航行器的水下定位,通过水面无人船的声学换能器发出的声脉冲,自主水下航行器计算出自身相对于水面无人船的平面位置与深度,所述摄像头 用于当自主水下航行器靠近导向缆时,自主水下航行器将回收画面传输给水面无人船,水面无人船将画面传给岸站,供工作人员监控,所述光学传感器用于自主水下航行器靠近导向缆导引灯时,光学传感器能够获取光强信息,将光强信息传输至引导回收控制***,所述姿态传感器用于自主水下航行器行驶过程中的姿态信息获取,自主水下航行器根据自身姿态和与水面无人船的相对位置调整推进装置,实现远程导航,在自主水下航行器内部设置有受电线圈及配套电池,所述受电线圈及配套电池用于自主水下航行器进入回收筒后,与回收筒内的受电线圈发生磁耦合,实现自主水下航行器的无线非接触充电。
  5. 根据权利要求4所述的一种基于导向缆的无人船回收自主水下航行器装置,其特征在于:所述自治式水下航行器控制***接收来自USBL超短基线阵列、光学传感器和姿态传感器传来的位置、传感数据,进行回收路径规划与运动控制,不断调整自身位置与姿态靠近导向缆;系缆钳上的力学传感器将传感信息传至自治式水下航行器控制***,控制舵机实现系缆钳与导引臂的张合;自治式水下航行器控制***通过水声通讯,将自身位置、航行速度、航向、姿态信息传输给无人船控制***;所述无人船控制***设置在水面无人船内部,与电动绞车相连接,控制绞车实现导向缆的收放与导引灯的开关;同时,所述无人船控制***通过控制液压伸缩杆的伸缩实现回收装置的收放,回收装置内的超声波测距仪将距离信息传递给无人船控制***,无人船控制***确定自主水下航行器是否进入回收装置,通过控制电机实现回收网机构的开关;无人船控制***通过水声通讯,接收自主水下航行器传来的位置、航行速度、航向、姿态信息,规划回收作业路径,控制无人船运动。
  6. 根据权利要求5所述的一种基于导向缆的无人船回收自主水下航行器装 置,其特征在于:所述定位导引***包括声学导引定位单元和光学导引定位单元,所述声学导引定位单元包括自主水下航行器携带的超短基线声信标、航行姿态传感器以及水面无人船底部设置的水声换能器,自主水下航行器通过水声通讯,以2~4kbit/s的速率,将自身航行状态与水面无人船进行信息交互,实现回收前的远程和中近程导航;所述光学导引定位单元包括安装在导向缆上的导引灯、摄像头和视觉传感器,用于自主水下航行器在5~20m之内的近距离精确导航。
  7. 根据权利要求3所述的一种基于导向缆的无人船回收自主水下航行器装置,其特征在于:所述导引灯为防水LED灯条带;所述外壳底部两侧分别包裹有一条柔性材料制成的缓冲垫,防止回收过程中自主水下航行器与外壳碰撞受损;所述弧形导引臂与系缆钳通过齿轮机构连接。
  8. 一种基于导向缆的无人船回收自主水下航行器方法,利用权利要求6所述的任意一项装置,其特征在于,回收过程包括以下步骤:
    步骤一:所述自主水下航行器完成任务后与水面无人船进行通讯,要求开始回收程序,同时开始上浮,通过声学导引定位单元与水面无人船进行航行信息交互,将自身位置、航行速度、航向、姿态信息传递给水面无人船;水面无人船收到请求后通过比较自己与自主水下航行器的相对位置规划出一条回收作业路径,回收作业路径为一条直线,水面无人船将按照回收路径以规划速度(回收巡航速度)和航向角航行,并将回收路径、水面无人船行驶速度、航向角信息通过水声通讯传给自主水下航行器;同时甲板上的电动绞车将导向缆放下,打开导向缆上的导引灯,通过液压伸缩杆将回收装置放入水中,准备回收自主水下航行器;自主水下航行器收到水面无人船发出的回收作业路径后定深在水 下0~10m航行,根据航迹规划安排进入系缆待泊区域;
    步骤二:所述自主水下航行器进入待泊位置后,通过声学导引定位单元再次确定水面无人船与自主水下航行器的相对位置,进行位置修正,重新规划系缆航线,同时通过舵机打开弧形导引臂与系缆钳;导引臂在自主水下航行器前部形成V形,系缆钳张开;完成后开始靠近导向缆,通过声学导引定位单元远程导航及光学导引定位单元近程精确导航,自主水下航行器驶向导向缆,并不断调整姿态,使得导向缆进入导引臂V形开口内,自主水下航行器中的光学传感器根据导引灯的光强大小和视线角判断导向缆的距离方位;当视线角处于中间时判断导向缆已进入系缆钳内,此时收回导引臂,系缆钳也随之夹紧,当导向缆被套在系缆钳中对系缆钳产生作用力时,力学传感器产生脉冲信号,引导回收控制***将自主水下航行器的推进器关闭,同时向水面无人船发送信号,表示系缆已完成;水面无人船受到信号后开始收缆,自主水下航行器被导向缆下方的套筒提拉,向水面运动;
    步骤三:所述自主水下航行器被提到近水面后,自主水下航行器在导向缆的拖曳下进入回收装置,回收装置外壳顶部的超声波测距仪不断进行测距,直到达回收装置判断自主水下航行器已经进入回收装置,设置于回收装置两端部的电机带动回收网机构转动,将自主水下航行器封闭在回收装置内,之后液压伸缩杆回收,将回收装置抬出水面收入水面无人船舱内,回收完成。
  9. 根据权利要求8所述的一种基于导向缆的无人船回收自主水下航行器方法,其特征在于,布放过程包括以下步骤:所述水面无人船将回收装置放入水中,同时电动绞车将导向缆放下,待回收装置入水后打开回收网机构,所述自主水下航行器在重力作用下离开回收装置,再打开系缆钳,脱离导向缆,完成 布放。
  10. 根据权利要求8所述的一种基于导向缆的无人船回收自主水下航行器方法,其特征在于,所述步骤一中回收作业路径的规划中远距离时的水面无人船的轨迹规划为:在回收过程开始或重回收过程开始时,通过各传感器***获取水面无人船初始时刻的运动状态并且进行目标位置和约束条件初始化,将信息导入简化的模型中,对轨迹参数进行表示,利用A*算法进行节点搜索,对满足能量和时间约束条件的路径进行适航性判断,以及航路代价的计算,从而形成轨迹规划参数方程,并根据所定判别标准,航行轨迹最短进行最优化问题求解,最后对所得航路进行平滑处理,得到期望的运动状态,在这个过程中需要实时更新当前流场信息以及障碍物情况,保证水面无人船航行的安全。
PCT/CN2019/095929 2018-10-26 2019-07-15 一种基于导向缆的无人船回收自主水下航行器装置及方法 WO2020082821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2006065.3A GB2581091B (en) 2018-10-26 2019-07-15 Apparatuses and methods for recovering autonomous underwater vehicle by steering cable-based unmanned vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811258227.0A CN109367707B (zh) 2018-10-26 2018-10-26 一种基于导向缆的无人船回收自主水下航行器装置及方法
CN201811258227.0 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020082821A1 true WO2020082821A1 (zh) 2020-04-30

Family

ID=65389918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095929 WO2020082821A1 (zh) 2018-10-26 2019-07-15 一种基于导向缆的无人船回收自主水下航行器装置及方法

Country Status (3)

Country Link
CN (1) CN109367707B (zh)
GB (1) GB2581091B (zh)
WO (1) WO2020082821A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110956337A (zh) * 2019-12-16 2020-04-03 深圳中科保泰科技有限公司 无人机常态化智能作业前的勘探方法和装置
CN111498068A (zh) * 2020-05-28 2020-08-07 大连海事大学 一种小型auv集群水下回收装置用吊装***
CN111516805A (zh) * 2020-05-28 2020-08-11 大连海事大学 一种小型auv集群水下布放/回收***
CN111846287A (zh) * 2020-07-21 2020-10-30 南京航空航天大学 一种超声电机驱动的超稳卫星平台及其控制方法
CN112393878A (zh) * 2020-11-22 2021-02-23 西北工业大学 一种水下载荷释放初始扰动测试装置及测试方法
CN112631305A (zh) * 2020-12-28 2021-04-09 大连海事大学 一种多无人船编队防碰撞抗干扰控制***
CN113697041A (zh) * 2021-07-20 2021-11-26 国网山东省电力公司烟台供电公司 一种水压驱动的水下潜器回收装置及其作业方法
CN113721639A (zh) * 2021-08-31 2021-11-30 哈尔滨工程大学 一种用于小型水下机器人入坞的路径规划方法及控制方法
CN113772022A (zh) * 2021-08-13 2021-12-10 鹏城实验室 水下机器人回收装置与母船
CN114194337A (zh) * 2021-12-13 2022-03-18 大连海事大学 一种可抑制rov摆动的布放回收装置
CN114554508A (zh) * 2022-04-27 2022-05-27 汕头大学 一种异构水下声学传感器网络的自主部署方法及***
CN114620188A (zh) * 2022-03-31 2022-06-14 上海大学 一种基于双体无人船的无人潜航器自主回收机构及回收方法
CN114919716A (zh) * 2022-05-16 2022-08-19 青岛海洋科学与技术国家实验室发展中心 一种用于回收水下滑翔机的对接抱紧***
CN114995470A (zh) * 2022-06-23 2022-09-02 国家深海基地管理中心 一种基于无人船的有人和无人潜水器协同作业***及方法
CN115009473A (zh) * 2022-05-10 2022-09-06 哈尔滨工程大学 一种基于缆绳捕捉的欠驱动auv水下自动回收装置
CN115009447A (zh) * 2022-06-07 2022-09-06 河海大学 一种漂浮式水下测量智能平台
CN116280035A (zh) * 2023-05-12 2023-06-23 山东科技大学 一种海洋移动捕获装置及其工作方法
CN116654191A (zh) * 2023-08-02 2023-08-29 自然资源部第一海洋研究所 一种auv动态对接装置及其方法
CN116788473A (zh) * 2023-06-25 2023-09-22 浙江大学 一种水下运动负载的柔性动态捕获***
CN117657374A (zh) * 2024-01-31 2024-03-08 青岛鹏晟海洋装备有限公司 一种自适应水面水下航行器

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109367707B (zh) * 2018-10-26 2019-07-12 河海大学 一种基于导向缆的无人船回收自主水下航行器装置及方法
CN110001895B (zh) * 2019-03-22 2020-11-06 天津大学 一种潜器收放装置
CN110289917B (zh) * 2019-06-10 2020-08-14 华中科技大学 一种水下光通信网络的锚节点位置获取方法
CN110683000B (zh) * 2019-09-29 2021-10-01 哈尔滨工程大学 一种自主限位和收放海洋航行器的***
CN110824482B (zh) * 2019-12-13 2024-03-12 江苏科技大学 一种基于声呐和led阵列的潜器入舱引导装置和方法
CN112987798A (zh) * 2019-12-17 2021-06-18 中国科学院沈阳自动化研究所 基于声光联合导引重型auv动/静态目标自主对接方法
CN110991929B (zh) * 2019-12-18 2020-12-08 深圳大学 一种基于管道胶囊进行城市管网协同检测的方法及***
CN111332411B (zh) * 2020-03-25 2021-11-16 中国科学院沈阳自动化研究所 一种水下机器人海上回收方法
CN111874167A (zh) * 2020-07-06 2020-11-03 镇江元理创新科技有限公司 水面水下装备远程回收与释放无人艇平台
CN112550571B (zh) * 2020-12-15 2022-01-14 中国科学院沈阳自动化研究所 一种高海况下可长期驻守的小型无人水面航行器
CN113044172A (zh) * 2021-03-09 2021-06-29 大连海事大学 一种蜂窝状的auv集群布放回收***
CN112947504B (zh) * 2021-03-15 2022-09-16 王曰英 一种无人潜航器自主回收控制***及其控制方法
CN113233355B (zh) * 2021-04-15 2024-06-07 大连海事大学 安装在船用起重机上的绳驱式auv回收装置的控制***
CN113342014B (zh) * 2021-06-14 2022-08-16 西北工业大学 一种用于滩头破障的水下航行器编队、***及方法
CN113697045A (zh) * 2021-07-20 2021-11-26 国网山东省电力公司烟台供电公司 一种水下潜器布放回收无人船及其作业方法
CN113581382A (zh) * 2021-08-31 2021-11-02 江苏科技大学 一种auv回收对接平台及其对接方法
CN113895594B (zh) * 2021-09-22 2023-04-07 中国船舶重工集团公司第七0七研究所九江分部 一种基于水下动态回收平台的auv回收方法
CN113844308A (zh) * 2021-09-27 2021-12-28 中国人民解放军92609部队 基于同位素电源的无人充电***
CN114032753A (zh) * 2021-11-29 2022-02-11 南京理工大学 用于架设浮桥的浮桥块自动对接控制***及方法
CN114248874B (zh) * 2021-12-28 2023-06-09 哈尔滨工程大学 一种水下无人航行器的水下布放回收装置和方法
CN114228959B (zh) * 2021-12-29 2023-03-21 中国科学院沈阳自动化研究所 一种基于声学路标与光学路标组合辅助导航的水下机器人极地冰下回收方法
CN114074747B (zh) * 2021-12-30 2022-09-30 上海大学 一种新型无人潜航器的布放回收***及方法
CN114655400B (zh) * 2022-03-26 2023-11-21 西北工业大学 用于翼身融合水下滑翔机的auv电磁引导式回收装置及方法
CN114801793A (zh) * 2022-04-12 2022-07-29 株洲中车时代电气股份有限公司 一种水下机器人的能源补给装置及方法、无人船
CN114771741A (zh) * 2022-04-12 2022-07-22 株洲中车时代电气股份有限公司 水下机器人布放回收装置、布放方法、回收方法、无人船
CN114872841A (zh) * 2022-04-12 2022-08-09 株洲中车时代电气股份有限公司 自主水下探测***、方法及自动回收和布放auv的方法
CN114771778A (zh) * 2022-04-12 2022-07-22 株洲中车时代电气股份有限公司 一种用于水下机器人的回收方法、回收装置及水下机器人
CN114932565B (zh) * 2022-05-16 2024-04-26 青岛海洋科学与技术国家实验室发展中心 一种基于机器人作业平台的水下滑翔机布放回收***
CN115571308B (zh) * 2022-11-17 2023-03-07 自然资源部第一海洋研究所 一种基于水下飞行运载器的垂直线列阵及其使用方法
CN115709785B (zh) * 2022-11-18 2023-10-20 深海技术科学太湖实验室 一种无动力大型潜水器水下试验保障方法
CN115723905B (zh) * 2022-12-15 2023-07-25 广东智能无人***研究院(南沙) 一种拖曳式收放装置
CN116902144B (zh) * 2023-09-11 2023-12-22 国家深海基地管理中心 一种auv释放回收用的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160176487A1 (en) * 2014-12-19 2016-06-23 William C. Stone System and Method for Automated Rendezvous, Docking and Capture of Autonomous Underwater Vehicles
CN108248765A (zh) * 2018-02-07 2018-07-06 国家***第海洋研究所 一种无人船布放回收装置
CN207607624U (zh) * 2017-12-13 2018-07-13 河海大学 无人船拖曳滑缆水下机器人立体海洋监测***
CN109367707A (zh) * 2018-10-26 2019-02-22 河海大学 一种基于导向缆的无人船回收自主水下航行器装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339991U (zh) * 1976-09-10 1978-04-07
CN106342049B (zh) * 2008-06-20 2013-09-11 中国船舶重工集团公司第七一九研究所 一种无缆潜水器的水面布放回收***
FR2986498B1 (fr) * 2012-02-03 2014-02-14 Thales Sa Ensemble de reception d'un engin navigant et systeme de recuperation et de deploiement a la mer d'un tel engin
CN106314691A (zh) * 2016-09-28 2017-01-11 青岛远创机器人自动化有限公司 无人水面航行器布放回收方法
CN107065882B (zh) * 2017-05-17 2020-04-03 哈尔滨工程大学 一种usv水面动态自主回收uuv的方法
CN108569371B (zh) * 2018-04-24 2020-02-14 西北工业大学 一种用于拖曳水池中回收auv的位置与姿态调整机构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160176487A1 (en) * 2014-12-19 2016-06-23 William C. Stone System and Method for Automated Rendezvous, Docking and Capture of Autonomous Underwater Vehicles
CN207607624U (zh) * 2017-12-13 2018-07-13 河海大学 无人船拖曳滑缆水下机器人立体海洋监测***
CN108248765A (zh) * 2018-02-07 2018-07-06 国家***第海洋研究所 一种无人船布放回收装置
CN109367707A (zh) * 2018-10-26 2019-02-22 河海大学 一种基于导向缆的无人船回收自主水下航行器装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EDOARDO I. SARDA ET AL.: "A USV-Based Automated Launch and Recovery System for AUVs.", IEEE JOURNAL OF OCEANIC ENIGINEERING., vol. 42, no. 1, 31 January 2017 (2017-01-31), XP011638740, ISSN: 1558-1691, DOI: 20190729153333X *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110956337B (zh) * 2019-12-16 2022-05-24 深圳中科保泰空天技术有限公司 无人机常态化智能作业前的勘探方法和装置
CN110956337A (zh) * 2019-12-16 2020-04-03 深圳中科保泰科技有限公司 无人机常态化智能作业前的勘探方法和装置
CN111498068A (zh) * 2020-05-28 2020-08-07 大连海事大学 一种小型auv集群水下回收装置用吊装***
CN111516805A (zh) * 2020-05-28 2020-08-11 大连海事大学 一种小型auv集群水下布放/回收***
CN111846287A (zh) * 2020-07-21 2020-10-30 南京航空航天大学 一种超声电机驱动的超稳卫星平台及其控制方法
CN112393878A (zh) * 2020-11-22 2021-02-23 西北工业大学 一种水下载荷释放初始扰动测试装置及测试方法
CN112631305A (zh) * 2020-12-28 2021-04-09 大连海事大学 一种多无人船编队防碰撞抗干扰控制***
CN112631305B (zh) * 2020-12-28 2024-04-05 大连海事大学 一种多无人船编队防碰撞抗干扰控制***
CN113697041B (zh) * 2021-07-20 2023-05-12 国网山东省电力公司烟台供电公司 一种水压驱动的水下潜器回收装置及其作业方法
CN113697041A (zh) * 2021-07-20 2021-11-26 国网山东省电力公司烟台供电公司 一种水压驱动的水下潜器回收装置及其作业方法
CN113772022A (zh) * 2021-08-13 2021-12-10 鹏城实验室 水下机器人回收装置与母船
CN113721639B (zh) * 2021-08-31 2024-03-15 哈尔滨工程大学 一种用于小型水下机器人入坞的路径规划方法及控制方法
CN113721639A (zh) * 2021-08-31 2021-11-30 哈尔滨工程大学 一种用于小型水下机器人入坞的路径规划方法及控制方法
CN114194337A (zh) * 2021-12-13 2022-03-18 大连海事大学 一种可抑制rov摆动的布放回收装置
CN114620188A (zh) * 2022-03-31 2022-06-14 上海大学 一种基于双体无人船的无人潜航器自主回收机构及回收方法
CN114620188B (zh) * 2022-03-31 2023-03-14 上海大学 一种基于双体无人船的无人潜航器自主回收机构及回收方法
CN114554508A (zh) * 2022-04-27 2022-05-27 汕头大学 一种异构水下声学传感器网络的自主部署方法及***
CN115009473B (zh) * 2022-05-10 2024-06-07 哈尔滨工程大学 一种基于缆绳捕捉的欠驱动auv水下自动回收装置
CN115009473A (zh) * 2022-05-10 2022-09-06 哈尔滨工程大学 一种基于缆绳捕捉的欠驱动auv水下自动回收装置
CN114919716A (zh) * 2022-05-16 2022-08-19 青岛海洋科学与技术国家实验室发展中心 一种用于回收水下滑翔机的对接抱紧***
CN114919716B (zh) * 2022-05-16 2024-05-07 青岛海洋科学与技术国家实验室发展中心 一种用于回收水下滑翔机的对接抱紧***
CN115009447A (zh) * 2022-06-07 2022-09-06 河海大学 一种漂浮式水下测量智能平台
CN114995470B (zh) * 2022-06-23 2023-09-22 国家深海基地管理中心 一种基于无人船的有人和无人潜水器协同作业***及方法
CN114995470A (zh) * 2022-06-23 2022-09-02 国家深海基地管理中心 一种基于无人船的有人和无人潜水器协同作业***及方法
CN116280035B (zh) * 2023-05-12 2023-08-11 山东科技大学 一种海洋移动捕获装置及其工作方法
CN116280035A (zh) * 2023-05-12 2023-06-23 山东科技大学 一种海洋移动捕获装置及其工作方法
CN116788473A (zh) * 2023-06-25 2023-09-22 浙江大学 一种水下运动负载的柔性动态捕获***
CN116788473B (zh) * 2023-06-25 2023-12-29 浙江大学 一种水下运动负载的柔性动态捕获***
CN116654191B (zh) * 2023-08-02 2023-10-10 自然资源部第一海洋研究所 一种auv动态对接装置及其方法
CN116654191A (zh) * 2023-08-02 2023-08-29 自然资源部第一海洋研究所 一种auv动态对接装置及其方法
CN117657374A (zh) * 2024-01-31 2024-03-08 青岛鹏晟海洋装备有限公司 一种自适应水面水下航行器
CN117657374B (zh) * 2024-01-31 2024-04-16 青岛鹏晟海洋装备有限公司 一种自适应水面水下航行器

Also Published As

Publication number Publication date
GB2581091B (en) 2022-10-19
GB2581091A (en) 2020-08-05
CN109367707B (zh) 2019-07-12
GB202006065D0 (zh) 2020-06-10
CN109367707A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
WO2020082821A1 (zh) 一种基于导向缆的无人船回收自主水下航行器装置及方法
CN108061577B (zh) 一种有压输水隧洞智能探测装置
CN109515661A (zh) 一种通用型水下航行器接驳充电***的工作方法
CN106737703A (zh) 基于无线通讯的水下救援机器人及其救援方法
US11845521B2 (en) Marine structure comprising a launch and recovery system
US10604218B2 (en) Manoeuvring device and method therof
CA3019449C (en) System for navigation of an autonomously navigating submersible body during entry into a docking station, method
CN106080987A (zh) 海缆水下同步放线潜航器
CN114074747B (zh) 一种新型无人潜航器的布放回收***及方法
CN109625220A (zh) 带光、声、磁设备的有缆遥控水下机器人巡检***及方法
CN111516805B (zh) 一种小型auv集群水下布放/回收***
CN108569383A (zh) 一种适用于水上智能搜救的无人艇
CN212022927U (zh) 一种应用于无人船的潜航器回收装置
CN111645833A (zh) 子母rov***
CN112278198A (zh) 一种用于水下救援的无人艇
CN114735169B (zh) 一种可适于极地auv的布放回收装置及布放回收方法
CN115891527A (zh) 一种变结构的履带式全水深推进两栖机器人及其控制方法
CN207622804U (zh) 一种有压输水隧洞智能探测装置
CN113212669A (zh) 用于rov的水上作业平台
CN208484806U (zh) 一种适用于水上智能搜救的无人艇
CN211032936U (zh) 一种飞行检测船
CN112578807B (zh) 一种用于飞行检测船的控制方法
CN113186801A (zh) 一种智能无人组合浮桥
CN112572800B (zh) 一种水域安全检测***
CN215155499U (zh) 用于rov的水上作业平台

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202006065

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190715

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874809

Country of ref document: EP

Kind code of ref document: A1