WO2020082740A1 - 两管制喷气增焓室外机及多联机*** - Google Patents

两管制喷气增焓室外机及多联机*** Download PDF

Info

Publication number
WO2020082740A1
WO2020082740A1 PCT/CN2019/089859 CN2019089859W WO2020082740A1 WO 2020082740 A1 WO2020082740 A1 WO 2020082740A1 CN 2019089859 W CN2019089859 W CN 2019089859W WO 2020082740 A1 WO2020082740 A1 WO 2020082740A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat exchange
exchange flow
interface
way valve
Prior art date
Application number
PCT/CN2019/089859
Other languages
English (en)
French (fr)
Inventor
颜利波
杨国忠
王命仁
谭志军
彭三国
Original Assignee
合肥美的暖通设备有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥美的暖通设备有限公司, 广东美的暖通设备有限公司 filed Critical 合肥美的暖通设备有限公司
Priority to US16/621,256 priority Critical patent/US11353249B2/en
Priority to CA3066275A priority patent/CA3066275C/en
Publication of WO2020082740A1 publication Critical patent/WO2020082740A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present application relates to the field of air conditioning, and more specifically, to a two-control jet enthalpy-enhanced outdoor unit and a two-control jet enthalpy-enhanced multi-connection system.
  • This application aims to solve at least one of the technical problems in the prior art.
  • One aspect of the present application provides a two-control jet enthalpy-enhancing outdoor unit.
  • One aspect of the present application provides a two-control jet enthalpy multi-online system.
  • a two-control jet enthalpy-enhanced outdoor unit includes: an outdoor heat exchanger, a first interface and a second interface, the first end and the third end Communicating with one of the fourth ends, the second end is in communication with the third end and the other of the fourth ends;
  • the jet enthalpy-increasing compressor includes an air outlet, a return air port and an injection port;
  • the reversing component includes a first end to a fourth end, the first end of the reversing component is connected to the air outlet, and the second end of the reversing component is connected to the air return port;
  • the subcooler includes the main heat exchange flow path connected Connected to the auxiliary heat exchange flow path, the main heat exchange flow path is connected to the first interface and the second interface respectively, the auxiliary heat exchange flow path is connected to the injection port;
  • the throttle component one end of the throttle component is connected to the main heat exchange flow path Is connected to the outlet of the outdoor heat exchanger, and the other end is is
  • the two-control jet enthalpy-increasing enthalpy outdoor unit includes an outdoor heat exchanger, a jet enthalpy-increasing compressor, a reversing component, a supercooler, a throttling component and a first pipeline.
  • the first end of the reversing component and the outlet The air port is connected, and the second end of the reversing component is connected to the return air port.
  • the main heat exchange flow path of the subcooler is connected to the auxiliary heat exchange flow path, and the main heat exchange flow path is connected to the first interface and the second interface, respectively.
  • the heat exchange flow path is connected to the injection port, one end of the throttling component is connected to the outlet of the main heat exchange flow path, the other end of the throttling component is connected to the inlet of the outdoor heat exchanger, and the one end of the first pipeline exchanges heat with the outdoor
  • the outlet of the heat exchanger is connected, and the other end of the first pipeline is located between the throttling component and the main heat exchange flow path.
  • the gaseous refrigerant flowing out of the air-jet enthalpy-increasing heat exchanger is directly discharged from
  • the intermediate injection port of the compressor enters the compressor for supplemental air and enthalpy compression, and at the same time increases the subcooler and throttling components, significantly increases the refrigerant circulation during low temperature heating operation, and expands the low temperature control in the two-control jet enthalpy outdoor unit Thermal operating range, while significantly improving heating Effect force; additionally increasing the first line, so that the supercooling degree may also improve the cold outdoor heat exchanger through the outlet, the exhaust gas superheat to reduce the lifting capacity of the high temperature refrigerant.
  • the two-control jet enthalpy outdoor unit has a two-control structure, and there are two connecting pipes between the external unit and the internal unit, that is, the first interface and the second interface are connected to the indoor unit, compared with the three-control multi-connection system in the related technology
  • the two-control heat recovery multi-line system provided in this application has a simple structure, saves copper pipe materials, and reduces installation costs.
  • the two-control jet enthalpy-enhanced outdoor unit provided in this application is applied to the two-control jet enthalpy-enhanced multi-connected system, and the multi-connected system is a heat recovery multi-connected.
  • the meaning of heat recovery is to recover the heat discharged from the cooling room for heating Room heating, specifically, the system absorbs heat from the cooling room through the indoor unit heat exchanger, and then releases all or part of the heat to the heating room for heating by the indoor unit heat exchanger, the system is insufficient or the remaining heat Then it is taken from the environment through the outdoor unit heat exchanger.
  • heat recovery multi-line has a significant energy saving effect.
  • cooling main cooling
  • main heating There are 4 operation modes for heat recovery multi-line: cooling, main cooling, main heating and heating.
  • cooling / heating mode When all running indoor units are in cooling / heating mode, the outdoor unit operates in cooling / heating mode; when the running indoor unit has both cooling and heating and the cooling load is greater than the heating load, the outdoor unit will Operate in the main cooling mode; when the operating indoor unit has both cooling and heating and the cooling load is less than the heating load, the outdoor unit will operate in the main heating mode. If the flow required to operate the cooling indoor unit and the heating indoor unit is exactly equal, the system operates in full heat recovery mode.
  • the two-control enthalpy-enhanced outdoor unit provided by the above technical solution of the present application also has the following additional technical features:
  • the third end of the reversing component is switchably connected to the inlet of the outdoor heat exchanger or the outlet of the outdoor heat exchanger, and the fourth end of the reversing component is switchably connected to the second interface or First interface.
  • the third end of the reversing component is switchably connected to the inlet of the outdoor heat exchanger or the outlet of the outdoor heat exchanger, and the fourth end of the reversing component is switchably connected to the second interface or the first Interface
  • the third end of the reversing component is connected to the inlet of the outdoor heat exchanger, and the fourth end of the reversing component is connected to the second interface
  • the multi-online system with controlled air injection enthalpy is heating and main heating mode
  • the third end of the reversing component is connected to the outlet of the outdoor heat exchanger
  • the fourth end of the reversing component is connected to the first interface to achieve the refrigerant Different directions.
  • the inlet of the main heat exchange flow path is connected to the first interface and the second interface
  • the inlet of the auxiliary heat exchange flow path is connected to the outlet of the main heat exchange flow path
  • the outlet of the auxiliary heat exchange flow path is The injection ports are connected.
  • a specific connection method inside the supercooler is provided, that is, the inlet of the main heat exchange flow path is connected to the first interface and the second interface, and the inlet of the auxiliary heat exchange flow path is connected to the main heat exchange flow path
  • the outlet of the auxiliary heat exchange flow path is connected to the injection port.
  • the refrigerant flowing from the second interface first enters the inlet of the main heat exchange flow path, and then the main heat exchange
  • the outlet of the flow path enters the inlet of the auxiliary heat exchange flow path, and the outlet of the auxiliary heat exchange flow path enters the injection port, so as to realize the supplementary air and enthalpy compression of the air-jet enthalpy-increasing compressor.
  • the inlet of the main heat exchange flow path and the inlet of the auxiliary heat exchange flow path are connected to the first interface and the second interface, and the outlet of the auxiliary heat exchange flow path is connected to the injection port.
  • a specific connection method inside the supercooler that is, the inlet of the main heat exchange flow path and the inlet of the auxiliary heat exchange flow path are connected to the first interface and the second interface, the auxiliary heat exchange flow
  • the outlet of the circuit is connected to the injection port.
  • the refrigerant flowing from the second interface enters the inlet of the main heat exchange channel and the inlet of the auxiliary heat exchange channel, and then passes through the main In the heat exchange flow path and the auxiliary heat exchange flow path, the refrigerant flowing out of the main heat exchange flow path enters the outdoor heat exchanger through the throttle assembly, and the refrigerant flowing out of the auxiliary heat exchange flow path enters the air injection increasing enthalpy through the injection port Compressor, in order to realize the supplementary air and enthalpy compression of the jet air enthalpy-increasing compressor.
  • the two-control air-jet enthalpy-enhancing outdoor unit includes: a first solenoid valve, which is disposed between the auxiliary heat exchange flow path and the injection port, and the conduction direction of the first solenoid valve is controlled by the auxiliary heat exchange flow path To the direction of the injection port.
  • the two-control jet enthalpy-increasing outdoor unit includes a first solenoid valve, and the first solenoid valve is energized, turned on and off, and when the first solenoid valve is turned on and off, the conduction direction of the first solenoid valve is From the auxiliary heat exchange flow path to the direction of the injection port, that is, only the refrigerant is allowed to pass from the auxiliary heat exchange flow path to the direction of the injection port to avoid the phenomenon of refrigerant backflow.
  • the two-control air-jet enthalpy-enhancing outdoor unit includes: a first one-way valve, disposed on the first pipeline, and the conduction direction of the first one-way valve is from the outlet of the outdoor heat exchanger to the throttling Component orientation.
  • the outlet of the outdoor heat exchanger is connected to the main heat exchange flow path, and a first check valve is provided on the first pipeline, and a check valve of the outlet of the outdoor heat exchanger
  • An electromagnetic valve is added between the high-pressure valve and the cross-air between the outlet of the outdoor heat exchanger and the main heat exchange flow path during heating, and only the refrigerant at the outlet of the supercooler is allowed to flow to the high-pressure valve.
  • the two-control air-jet enthalpy-enhancing outdoor unit includes: a second one-way valve, the second one-way valve connects the first interface to the main heat exchange flow path, and the conduction direction of the second one-way valve is The direction from the main heat exchange flow path to the first interface; the third check valve, the third check valve connects the second interface to the main heat exchange flow path, and the conduction direction of the third check valve is from the second interface To the direction of the main heat exchange flow path.
  • the two-control jet enthalpy-increasing outdoor unit includes a second one-way valve and a third one-way valve.
  • the second one-way valve connects the first port to the main heat exchange flow path, and the pilot of the second one-way valve
  • the communication direction is the direction from the main heat exchange flow path to the first interface
  • the third check valve connects the second interface to the main heat exchange flow path
  • the conduction direction of the third check valve is from the second interface to the main exchange
  • the two-control air-jet enthalpy-increasing outdoor unit includes: a fourth one-way valve, which connects the third end of the reversing component to the inlet of the outdoor heat exchanger, and a fourth one-way valve
  • the conduction direction of is from the third end of the reversing component to the outdoor heat exchanger
  • the fifth one-way valve connects the third end of the reversing component to the outlet of the outdoor heat exchanger.
  • the conduction direction of the five-way valve is the direction from the outlet of the outdoor heat exchanger to the third end of the reversing component.
  • the two-control jet enthalpy-enhancing outdoor unit includes: a fourth one-way valve and a fifth one-way valve.
  • the other ends of the four one-way valve and the fifth one-way valve are respectively connected to the inlet of the outdoor heat exchanger and the outlet of the outdoor heat exchanger.
  • the fourth one-way valve conducts and the fifth The one-way valve is closed, and in the heating and main heating modes, the fifth one-way valve is turned on and the fourth one-way valve is closed.
  • the two-control jet enthalpy-enhancing outdoor unit includes: a sixth check valve, the sixth check valve connects the fourth end of the reversing component to the second interface, and the conduction of the sixth check valve The direction is from the second port to the fourth end of the reversing assembly; the seventh check valve, the seventh check valve connects the fourth end of the reversing assembly to the second port, and the conduction direction of the seventh check valve It is the direction from the fourth end of the commutation component to the second interface.
  • the two-control jet enthalpy-increasing outdoor unit includes a sixth check valve and a seventh check valve.
  • the conduction direction of the sixth check valve is the direction from the second interface to the fourth end of the reversing component.
  • the conduction direction of the seventh check valve is the direction from the fourth end of the reversing assembly to the second interface.
  • the sixth check valve is turned on and the seventh check valve is closed.
  • the seventh check valve is turned on and the sixth check valve is closed.
  • the two-control jet enthalpy-enhancing outdoor unit includes: a second pipeline connecting the air outlet to the first interface; a second solenoid valve disposed on the second pipeline and the conduction of the second solenoid valve The direction is from the air outlet to the first interface.
  • the two-control jet air-enthalpy-enhancing outdoor unit includes a second pipeline and a second solenoid valve provided on the second pipeline.
  • the second solenoid valve is closed and the refrigerant discharged from the direction of the air outlet All enter the inlet of the outdoor heat exchanger through the third end of the reversing component; in the main cooling mode, the second solenoid valve opens, and the refrigerant part discharged from the air outlet enters the outdoor heat exchanger through the third end of the reversing component , The other part enters the first interface from the second solenoid valve to ensure that the two-control air-jet enthalpy multi-online system can realize two modes of cooling and main cooling.
  • the throttling assembly includes at least one throttling device and at least one eighth one-way valve connected in series, and the conduction direction of the eighth one-way valve is from the subcooler to the inlet of the outdoor heat exchanger direction.
  • the throttling assembly includes at least one throttling device and at least one eighth one-way valve connected in series.
  • the conduction direction of the eighth one-way valve is the direction from the subcooler to the inlet of the outdoor heat exchanger.
  • One eighth check valve can be connected in series for one throttle device, or multiple eighth check valves can be connected in series for one throttle device, and one eighth check valve can be connected in series for multiple throttle devices to ensure the effect of throttling and pressure reduction And, after multi-level buck, better buck effect can be achieved.
  • a two-control jet enthalpy multi-online system includes the two-control jet enthalpy outdoor unit as described in any one of the above technical solutions.
  • the enthalpy multi-online system has all the beneficial effects of the two-control jet enthalpy-enhancing outdoor unit as in any of the above technical solutions.
  • FIG. 1 shows a structural schematic diagram of a two-control jet enthalpy multi-online system provided by an embodiment of the present application
  • FIG. 2 shows another structural schematic diagram of a two-control jet enthalpy multi-online system provided by an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a two-control jet enthalpy multi-online system in cooling mode provided by an embodiment of the present application
  • FIG. 4 shows a schematic structural view of a two-control air-jet enthalpy multi-online system in an heating mode provided by an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a two-control jet multi-enthalpy multi-online system provided in an embodiment of the present application in the main cooling mode;
  • FIG. 6 shows a schematic structural view of a two-control air-jet enthalpy multi-online system provided in an embodiment of the present application in a main heating mode
  • FIG. 7 shows a pressure enthalpy diagram of a two-control air injection enthalpy multi-online system provided by an embodiment of the present application.
  • a two-control jet enthalpy-enhancing outdoor unit includes: an outdoor heat exchanger 10, a first interface 12 and a second interface 14;
  • the enthalpy compressor 16 includes an air outlet 162, a return air port 164, and an injection port 166;
  • the reversing assembly 18 includes a first end to a fourth end.
  • the second end is connected to the air return port 164;
  • the supercooler 20 includes a main heat exchange flow path and an auxiliary heat exchange flow path that are connected, the main heat exchange flow path is connected to the first interface 12 and the second interface 14, respectively,
  • the auxiliary heat exchange flow path is connected to the injection port 166;
  • the throttle assembly 22 one end of the throttle assembly 22 is connected to the outlet of the main heat exchange flow path, and the other end is connected to the inlet of the outdoor heat exchanger 10;
  • the first pipeline 24 One end of which is connected to the outlet of the outdoor heat exchanger 10, and the other end is located between the throttle assembly 22 and the main heat exchange flow path.
  • the two-control jet-enhanced enthalpy outdoor unit includes an outdoor heat exchanger 10, a jet-enhanced enthalpy compressor 16, a reversing component 18, a supercooler 20, a throttling component 22, and a first pipeline 24.
  • the first end of 18 is connected to the air outlet 162, the second end of the reversing assembly 18 is connected to the air return port 164, the main heat exchange flow path of the subcooler 20 is connected to the auxiliary heat exchange flow path, the main heat exchange flow path is respectively Connected to the first interface 12 and the second interface 14, the auxiliary heat exchange flow path is connected to the injection port 166, one end of the throttle assembly 22 is connected to the outlet of the main heat exchange flow path, and the other end of the throttle assembly 22 is replaced with the outdoor
  • the inlet of the heat exchanger 10 is connected, one end of the first pipeline 24 is connected to the outlet of the outdoor heat exchanger 10, and the other end of the first pipeline 24 is located between the throttling assembly 22 and the main heat exchange flow path.
  • the gaseous refrigerant flowing out of the jet-enhanced enthalpy heat exchanger enters the compressor directly from the intermediate injection port 166 of the compressor for supplemental air enthalpy-enhancement compression, and at the same time, the subcooler 20 and the throttle component are added 22.
  • the addition of the first pipeline 24 makes the subcooler 20 also increase the degree of supercooling at the outlet of the outdoor heat exchanger 10 to reduce the superheat of exhaust gas, Improve the ability of high temperature refrigeration.
  • the two-control jet enthalpy outdoor unit has a two-control structure.
  • the two-control jet enthalpy-enhanced outdoor unit provided in this application is applied to the two-control jet enthalpy-enhanced multi-connected system, and the multi-connected system is a heat recovery multi-connected.
  • the meaning of heat recovery is to recover the heat discharged from the cooling room for heating Room heating, specifically, the system absorbs heat from the cooling room through the indoor unit heat exchanger, and then releases all or part of the heat to the heating room for heating by the indoor unit heat exchanger, the system is insufficient or the remaining heat Then it is taken from the environment through the outdoor unit heat exchanger.
  • heat recovery multi-line has a significant energy saving effect.
  • cooling main cooling
  • main heating There are 4 operation modes for heat recovery multi-line: cooling, main cooling, main heating and heating.
  • cooling / heating mode When all running indoor units are in cooling / heating mode, the outdoor unit operates in cooling / heating mode; when the running indoor unit has both cooling and heating and the cooling load is greater than the heating load, the outdoor unit will Operate in the main cooling mode; when the operating indoor unit has both cooling and heating and the cooling load is less than the heating load, the outdoor unit will operate in the main heating mode. If the flow rates required to operate the cooling indoor unit and the heating indoor unit are exactly equal, the system operates in full heat recovery mode.
  • a throttle element is connected in series at the inlet of the auxiliary heat exchange flow path of the supercooler 20.
  • the third end of the reversing assembly 18 is reversibly connected to the inlet of the outdoor heat exchanger 10 or the outlet of the outdoor heat exchanger 10, and the fourth end of the reversing assembly 18 is reversibly Connect to the second interface 14 or the first interface 12.
  • the third end of the commutation assembly 18 is switchably connected to the inlet of the outdoor heat exchanger 10 or the outlet of the outdoor heat exchanger 10, and the fourth end of the commutation assembly 18 is switchably connected to the second The interface 14 or the first interface 12, when the two-control jet multi-entry enthalpy multi-online system is in cooling and main cooling modes, the third end of the reversing module 18 is connected to the inlet of the outdoor heat exchanger 10, and the fourth of the reversing module 18
  • the second end 14 is connected to the second interface; when the two-control air-enhanced multi-line system is heating and main heating mode, the third end of the reversing module 18 is connected to the outlet of the outdoor heat exchanger 10, the reversing module 18
  • the fourth end is connected to the first interface 12 to achieve different flow directions of the refrigerant.
  • the inlet of the main heat exchange flow path is connected to the first interface 12 and the second interface 14, the inlet of the auxiliary heat exchange flow path is connected to the outlet of the main heat exchange flow path, and the auxiliary heat exchange flow
  • the outlet of the road is connected to the injection port 166.
  • a specific connection method inside the supercooler 20 is provided, that is, the inlet of the main heat exchange flow path is connected to the first interface 12 and the second interface 14, and the inlet of the auxiliary heat exchange flow path is connected to the main exchange
  • the outlet of the heat flow path is connected, and the outlet of the auxiliary heat exchange flow path is connected to the injection port 166.
  • the refrigerant flowing in from the second interface 14 first enters the inlet of the main heat exchange flow path, Then, the outlet of the main heat exchange flow path enters the inlet of the auxiliary heat exchange flow path, and the outlet of the auxiliary heat exchange flow path enters the injection port 166, so as to realize the air supplement and enthalpy compression of the jet air enthalpy-increasing compressor 16.
  • the inlet of the main heat exchange flow path and the inlet of the auxiliary heat exchange flow path are both connected to the first interface 12 and the second interface 14, and the outlet of the auxiliary heat exchange flow path is opposite to the injection port 166 Pick up.
  • a specific connection method inside the supercooler 20 is provided, that is, the inlet of the main heat exchange flow path and the inlet of the auxiliary heat exchange flow path are connected to the first interface 12 and the second interface 14.
  • the outlet of the heat exchange channel is connected to the injection port 166.
  • the refrigerant flowing from the second interface 14 enters the inlet of the main heat exchange channel and the inlet of the auxiliary heat exchange channel, respectively .
  • the refrigerant flowing out of the main heat exchange flow path enters the inlet of the outdoor heat exchanger 10 through the throttle assembly 22, and the refrigerant flowing out of the auxiliary heat exchange flow path passes
  • the injection port 166 enters the air injection enthalpy-increasing compressor 16, so as to realize the air supplement and enthalpy compression of the air injection enthalpy-increasing compressor 16.
  • the two-control air-jet enthalpy-enhancing outdoor unit includes: a first solenoid valve 26 disposed between the auxiliary heat exchange flow path and the injection port 166, and the conduction direction of the first solenoid valve 26 is due to The auxiliary heat exchange flow path is in the direction of injection port 166.
  • the two-control jet enthalpy-increasing outdoor unit includes a first solenoid valve 26, the first solenoid valve 26 is turned on and off, and when the first solenoid valve 26 is turned on and off, the The conduction direction is from the auxiliary heat exchange flow path to the injection port 166, that is, only the refrigerant is allowed to conduct from the auxiliary heat exchange flow path to the injection port 166, so as to avoid the phenomenon of refrigerant backflow.
  • the two-control air-jet enthalpy-increasing outdoor unit includes: a first check valve 28, which is disposed on the first pipeline 24, and the conduction direction of the first check valve 28 is the outdoor heat exchange
  • the outlet of the device 10 is in the direction of the throttle assembly 22.
  • the outlet of the outdoor heat exchanger 10 is connected to the main heat exchange flow path, and a first check valve 28 is provided on the first pipeline 24 to facilitate outdoor heat exchange.
  • a solenoid valve is added between the one-way valve at the outlet of the cooler 10 and the high-pressure valve, to prevent cross-flow of air between the outlet of the outdoor heat exchanger 10 and the main heat exchange flow path during heating, and only the refrigerant at the outlet of the supercooler 20 is allowed to flow to the high-pressure valve.
  • the two-control jet enthalpy-enhancing outdoor unit includes: a second one-way valve 30, the second one-way valve 30 connects the first port 12 to the main heat exchange flow path, and the second one-way valve The conduction direction of 30 is the direction from the main heat exchange flow path to the first interface 12; the third one-way valve 32, the third one-way valve 32 connects the second interface 14 to the main heat exchange flow path, the third one-way The conduction direction of the valve 32 is the direction from the second port 14 to the main heat exchange flow path.
  • the two-control jet enthalpy-increasing outdoor unit includes a second one-way valve 30 and a third one-way valve 32.
  • the second one-way valve 30 connects the first port 12 to the main heat exchange flow path.
  • the conduction direction of the check valve 30 is the direction from the main heat exchange flow path to the first port 12
  • the third check valve 32 connects the second port 14 to the main heat exchange flow path
  • the third check valve 32 conducts The direction is the direction from the second interface 14 to the main heat exchange flow path; in the cooling and main cooling modes, the second check valve 30 is turned on, and the third check valve 32 is closed. In the thermal mode, the third check valve 32 is turned on and the second check valve 30 is closed.
  • the two-control jet air-enthalpy-enhancing outdoor unit includes: a fourth one-way valve 34 that connects the third end of the reversing assembly 18 to the inlet of the outdoor heat exchanger 10 ,
  • the conduction direction of the fourth one-way valve 34 is the direction from the third end of the reversing assembly 18 to the outdoor heat exchanger 10;
  • the fifth one-way valve 36, the fifth one-way valve 36 will The three ends are connected to the outlet of the outdoor heat exchanger 10, and the conduction direction of the fifth check valve 36 is the direction from the outlet of the outdoor heat exchanger 10 to the third end of the reversing module 18.
  • the two-control jet enthalpy-increasing outdoor unit includes: a fourth one-way valve 34 and a fifth one-way valve 36, the fourth one-way valve 34 and the fifth one-way valve 36 are both The three ends are connected, and the other ends of the fourth one-way valve 34 and the fifth one-way valve 36 are connected to the inlet of the outdoor heat exchanger 10 and the outlet of the outdoor heat exchanger 10 respectively.
  • the first The four one-way valve 34 is on and the fifth one-way valve 36 is closed.
  • the fifth one-way valve 36 is on and the fourth one-way valve 34 is closed.
  • the two-control jet enthalpy-enhancing outdoor unit includes: a sixth check valve 38, the sixth check valve 38 connects the fourth end of the reversing assembly 18 to the second interface 14, the sixth The conduction direction of the one-way valve 38 is the direction from the second port 14 to the fourth end of the reversing assembly 18; the seventh one-way valve 40, the seventh one-way valve 40 connects the fourth end of the reversing assembly 18 with the second The interface 14 is connected, and the conduction direction of the seventh check valve 40 is the direction from the fourth end of the reversing assembly 18 to the second interface 14.
  • the two-control jet enthalpy-increasing outdoor unit includes a sixth one-way valve 38 and a seventh one-way valve 40.
  • the conduction direction of the sixth one-way valve 38 is from the second interface 14 to the reversing assembly 18
  • the conduction direction of the seventh check valve 40 is the direction from the fourth end of the reversing assembly 18 to the second port 14.
  • the sixth check valve 38 conducts 7.
  • the seventh check valve 40 is closed, and in the heating and main heating modes, the seventh check valve 40 is turned on and the sixth check valve 38 is closed.
  • the two-control jet enthalpy-enhancing outdoor unit includes: a second pipeline connecting the air outlet 162 to the first interface 12; a second solenoid valve 42 disposed on the second pipeline, the second The conducting direction of the solenoid valve 42 is the direction from the air outlet 162 to the first interface 12.
  • the two-control jet enthalpy-increasing outdoor unit includes a second pipeline and a second solenoid valve 42 provided on the second pipeline.
  • the second solenoid valve 42 is closed and directed from the air outlet 162 All the discharged refrigerant enters the inlet of the outdoor heat exchanger 10 through the third end of the reversing assembly 18; in the main cooling mode, the second solenoid valve 42 is opened, and the part of the refrigerant discharged from the direction of the air outlet 162 passes through the reversing assembly 18
  • the third end enters the inlet of the outdoor heat exchanger 10, and the other part enters the first interface 12 from the second solenoid valve 42 to ensure that the two-control air-jet enthalpy multi-online system can realize both cooling and main cooling modes.
  • the throttle assembly 22 includes at least one throttle device 222 and at least one eighth one-way valve 224 connected in series.
  • the conduction direction of the eighth one-way valve 224 is determined by the supercooler 20 Direction to the entrance of the outdoor heat exchanger 10.
  • the throttling assembly 22 includes at least one throttling device 222 and at least one eighth one-way valve 224 connected in series.
  • the conduction direction of the eighth one-way valve 224 is from the subcooler 20 to outdoor heat exchange
  • the direction of the inlet of the device 10 may be a throttle device 222 in series with an eighth check valve 224, or a throttle device 222 in series with multiple eighth check valves 224, and multiple throttle devices 222 in series with an eighth valve
  • Directional valve 224 to ensure the effect of throttling and pressure reduction, and can achieve a better pressure reduction effect after multi-stage pressure reduction.
  • a two-control jet enthalpy multi-entry system includes the two-control jet enthalpy-enhanced outdoor unit according to any of the foregoing embodiments.
  • the enthalpy multi-connection system has all the beneficial effects of the two-control air-jet enthalpy-enhancing outdoor unit of any of the above embodiments.
  • the two-control air-jet enthalpy multi-online system includes a refrigerant flow switching device 46.
  • the refrigerant flow switching device 46 includes a gas-liquid separator for gas-liquid two-phase refrigerant splitting, and a plate heat exchanger is used to obtain supercooling degree of liquid refrigerant.
  • Group solenoid valves are used to switch the refrigerant flow.
  • the high-temperature and high-pressure gas refrigerant comes out of the jet enthalpy-increasing compressor 16, first passes through the reversing assembly 18, and enters the outdoor heat exchanger 10 with the fourth one-way valve 34 to condense, and the condensed high-pressure liquid refrigerant After passing through the first check valve 28, the refrigerant enters the main inlet of the subcooler 20, and the other part of the refrigerant passes through the throttling assembly 22 and then enters the subcooler 20 from the auxiliary inlet of the subcooler 20 and from the auxiliary outlet of the subcooler 20. It flows out and then enters the injection port 166 through the first solenoid valve 26.
  • the supercooler 20 condenses into supercooled high-pressure liquid refrigerant, flows out from the main path outlet of the subcooler 20, passes through the second check valve 30, passes from the high pressure valve, enters the refrigerant, and flows to the inlet of the switching device 46. After flowing from the refrigerant to the switching device 46, the liquid-side outlet of the gas-liquid separator flows through the refrigerant to the switching device 46. After the first supercooling device and the second supercooling device are supercooled, they pass through the cooling check valve and the internal electronic expansion valve.
  • the liquid pipe enters the two-control jet air-enhanced indoor unit 44 and after the two-control air jet-enhanced indoor unit 44 evaporates and exchanges heat, the formed low-pressure gaseous refrigerant returns to the two-control air jet-enhanced outdoor unit through the low-pressure valve of the air return pipe and passes through the check valve
  • the sixth check valve 38 and the reversing assembly 18 return to the low-pressure tank, and then return to the air return port 164.
  • the high-temperature and high-pressure gaseous refrigerant comes out of the jet enthalpy-increasing compressor 16 and passes through the second solenoid valve 42 and the reversing assembly 18 and the seventh check valve 40 to the high-pressure valve, and then from The high-pressure valve flows through the high-pressure pipe to the refrigerant flow to the inlet of the switching device 46, enters the gas-liquid separator, from the gas-liquid separator gas side outlet through the heating solenoid valve from the gas pipe to the two-control jet enthalpy-increasing indoor unit 44, in the two control jet
  • the enthalpy-increasing indoor unit 44 is condensed into a high-pressure liquid refrigerant, it flows through the electronic expansion valve of the two-control air-jet enthalpy-increasing indoor unit 44 to become a high-pressure two-phase refrigerant, which flows through the throttling element of the refrigerant to the
  • the third one-way valve 32 After passing through the third one-way valve 32, it enters the main circuit inlet of the subcooler 20 and exits from the main circuit outlet of the subcooler 20.
  • the low-pressure two-phase refrigerant enters the outdoor heat exchanger 10 to absorb heat, and then returns to the low-pressure tank through the reversing component 18, and then enters the air return port 164; another part of the refrigerant passes through the throttling component 22 and enters the auxiliary inlet of the subcooler 20.
  • Cooler 20 After the outlet of the auxiliary circuit comes out, the medium-pressure gaseous refrigerant enters the compressor compression chamber through the first solenoid valve 26.
  • the pressure-enthalpy diagram shown in FIG. 7 indicates that the two-control air-jet multi-enthalpy multi-online system provided by the present application can significantly increase the capacity of the internal heating unit, especially under low temperature conditions.
  • Point C in the figure shows the state of the jet port of the jet enthalpy compressor.
  • the main refrigerant enters the jet enthalpy compressor through the low-pressure chamber, is compressed to point B, and is mixed with the refrigerant injected into the jet enthalpy compressor at point C. Reach the D state, and then continue to compress.
  • the refrigerant injected from the jet port C into the compressor is a medium-pressure refrigerant, and the density is much greater than the density of the refrigerant at the point A of the return air port, so that the refrigerant circulation amount is greatly increased, and the superheat of the exhaust gas is reduced, which can increase the pressure ratio. Therefore, the heating capacity is greatly improved.
  • the system when cooling, the system can have a lower degree of supercooling, so the same cooling capacity can be achieved with a lower amount of refrigerant circulation, thereby improving energy efficiency. Due to the superheat degree of exhaust gas SH ⁇ SH ’during the enthalpy injection, the system frequency can be higher during high temperature cooling to improve the high temperature cooling capacity.
  • Figure 5 is a schematic diagram of the two-control air injection enthalpy multi-online system in the main heating mode, in which the refrigerant flow direction in the pipeline is as shown in the figure, as shown in Figure 6 is the two control air injection enthalpy multi-online system Schematic diagram in the main cooling mode, where the refrigerant flow in the pipeline is as shown in the figure.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种两管制喷气增焓室外机及多联机***,两管制喷气增焓室外机包括:室外换热器(10)、喷气增焓压缩机(16)、换向组件(18)、过冷器(20)、节流组件(22)和第一管路(24)。换向组件(18)的第一端和第二端分别与出气口(162)相连和回气口(164)相连,主换热流路分别与第一接口(12)相连和第二接口(14)相连,辅换热流路与喷射口(166)相接,节流组件(22)的两端分别与主换热流路的出口和室外换热器(10)的入口相连,第一管路(24)一端与室外换热器(10)的出口相接,另一端位于节流组件(22)与主换热流路之间。

Description

两管制喷气增焓室外机及多联机***
相关申请的交叉引用
本申请基于申请号为201811227641.5、申请日为2018年10月22日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调领域,更具体而言,涉及一种两管制喷气增焓室外机及一种两管制喷气增焓多联机***。
背景技术
常规的喷气增焓低温强热技术目前还只应用于热泵和三管制热回收***中,两管制***由于其外机侧回气管只有低压,很难在压缩机喷气口实现喷焓。这样两管制***多联机***在低温环境下,会由于环境温度低,导致低压侧压力低,回气密度小,冷媒循环量小,进而出现制热能力不足的问题,同时会出现两管制***高温环境下,排气过热度高,制冷能力不足的问题。
申请内容
本申请旨在至少解决现有技术中存在的技术问题之一。
本申请的一个方面提供了一种两管制喷气增焓室外机。
本申请的一个方面提供了一种两管制喷气增焓多联机***。
鉴于上述,本申请提供的一种两管制喷气增焓室外机,两管制喷气增焓室外机包括:室外换热器、第一接口及第二接口,所述第一端与所述第三端和所述第四端中的一个连通,所述第二端与所述第三端和所述第四端中的另一个连通;喷气增焓压缩机,包括出气口、回气口和喷射口;换向组 件,包括第一端至第四端,换向组件的第一端与出气口相连,换向组件的第二端与回气口相连;过冷器,包括相连通的主换热流路与辅换热流路,主换热流路分别与第一接口相连和第二接口相连,辅换热流路与喷射口相接;节流组件,节流组件的一端与主换热流路的出口相连,另一端与室外换热器的入口相连;第一管路,其一端与室外换热器的出口相接,另一端位于节流组件与主换热流路之间。
本申请提供的两管制喷气增焓室外机包括,室外换热器、喷气增焓压缩机、换向组件、过冷器、节流组件及第一管路,换向组件的第一端与出气口相连,换向组件的第二端与回气口相连,过冷器的主换热流路与辅换热流路相连通,主换热流路分别与第一接口和第二接口相连,辅换热流路与喷射口相接,节流组件的一端与主换热流路的出口相连,节流组件的另一端与室外换热器的入口相连,第一管路的一端与室外换热器的出口相接,第一管路的另一端位于节流组件与主换热流路之间,本申请通过使用喷气增焓压缩机,从喷气增焓换热器流出的气态制冷剂直接从压缩机的中间喷射口进入压缩机以进行补气增焓压缩,同时增加过冷器和节流组件,显著增加低温制热运行时冷媒循环量,在两管制喷气增焓室外机中扩展低温制热运行范围,同时显著提高制热能力的效果;此外增加第一管路,使得过冷器还可提高室外换热器出口的过冷度,以降低排气过热度,提升高温制冷的能力。
两管制喷气增焓室外机为两管制结构,外机与内机间有两根连接管,即第一接口及第二接口与室内机相连接,与相关技术中的三管制多联机***相比,本申请提供的两管制热回收多联机***结构简单,节约了铜管材料,降低了安装成本。
此外,本申请提供的两管制喷气增焓室外机应用于两管制喷气增焓多联机***,并且该多联机***为热回收多联机,热回收的含义就是回收制冷房间排出的热量用于制热房间制热,具体来说,***通过室内机换热器从 制冷房间吸收热量,然后通过室内机换热器将该热量全部或部分释给制热房间用于制热,***不足或剩余的热量再通过室外机换热器从环境吸取。而对于普通热泵多联机,制热室内机所需热量全部来自于室外机换热器吸热和耗电。因此,相比普通热泵,热回收多联机具有明显的节能效果。
热回收多联机存在4种运行模式:制冷、主制冷、主制热和制热。当所有运行的室内机都处于制冷/制热模式时,室外机在制冷/制热模式下运行;当运行的室内机既有制冷又有制热且制冷负荷大于制热负荷时,室外机将在主制冷模式下运行;当运行的室内机既有制冷又有制热且制冷负荷小于制热负荷时,室外机将在主制热模式下运行。如果运行制冷室内机和制热室内机的所需的流量刚好相等,则***以全热回收模式运行。
另外,根据本申请上述技术方案提供的两管制喷气增焓室外机还具有如下附加技术特征:
在上述任一技术方案中,换向组件的第三端可转换地连接至室外换热器的入口或室外换热器的出口,换向组件的第四端可转换地连接至第二接口或第一接口。
在该技术方案中,换向组件的第三端可转换地连接至室外换热器的入口或室外换热器的出口,换向组件的第四端可转换地连接至第二接口或第一接口,在两管制喷气增焓多联机***为制冷和主制冷模式时,换向组件的第三端与室外换热器的入口相连,换向组件的第四端与第二接口相连;在两管制喷气增焓多联机***为制热和主制热模式时,换向组件的第三端与室外换热器的出口相连,换向组件的第四端与第一接口相连,以实现冷媒的不同流向。
在上述任一技术方案中,主换热流路的入口与第一接口及第二接口相连,辅换热流路的入口与主换热流路的出口相连,辅换热流路的出口与喷射口相接。
在该技术方案中,提供了一种过冷器内部的具体连接方式,即将主换热 流路的入口与第一接口及第二接口相连,辅换热流路的入口与主换热流路的出口相连,辅换热流路的出口与喷射口相接,在制热或主制热模式时,由第二接口流入的冷媒首先进入到主换热流路的入口,再由主换热流路的出口进入辅换热流路的入口,由辅换热流路的出口进入到喷射口,以实现对喷气增焓压缩机进行补气增焓压缩。
在上述任一技术方案中,主换热流路的入口和辅换热流路的入口均与第一接口及第二接口相连,辅换热流路的出口与喷射口相接。
在该技术方案中,提供了一种过冷器内部的具体连接方式,即主换热流路的入口和辅换热流路的入口均与第一接口和第二接口相连,辅换热流路的出口与喷射口相接,在制热或主制热模式时,由第二接口处流入的冷媒分别进入到主换热流路的入口和辅换热流路的入口,再分别通过主换热流路和辅换热流路,由主换热流路流出的冷媒通过节流组件进入到室外换热器的入口,由辅换热流路流出的冷媒通过喷射口进入到喷气增焓压缩机,以实现对喷气增焓压缩机进行补气增焓压缩。
在上述任一技术方案中,两管制喷气增焓室外机包括:第一电磁阀,设置在辅换热流路与喷射口之间,第一电磁阀的导通方向为由辅换热流路至喷射口方向。
在该技术方案中,两管制喷气增焓室外机包括第一电磁阀,第一电磁阀通电导通断电闭合,并且在第一电磁阀通电导通时,第一电磁阀的导通方向为由辅换热流路至喷射口方向,即仅允许冷媒由辅换热流路向喷射口的方向导通,避免出现冷媒回流的现象。
在上述任一技术方案中,两管制喷气增焓室外机包括:第一单向阀,设置在第一管路上,第一单向阀的导通方向为由室外换热器的出口至节流组件方向。
在该技术方案中,通过增加第一管路,室外换热器出口与主换热流路之间连接起来,并在第一管路上设置第一单向阀,室外换热器出口单向阀与 高压阀之间加电磁阀,防止制热时室外换热器出口与主换热流路之间发生串气,仅允许过冷器出口冷媒流向高压阀。
在上述任一技术方案中,两管制喷气增焓室外机包括:第二单向阀,第二单向阀将第一接口与主换热流路相连,第二单向阀的导通方向为由主换热流路至第一接口的方向;第三单向阀,第三单向阀将第二接口与主换热流路相连,第三单向阀的导通方向为由第二接口至主换热流路的方向。
在该技术方案中,两管制喷气增焓室外机包括第二单向阀和第三单向阀,第二单向阀将第一接口与主换热流路相连,第二单向阀的导通方向为由主换热流路至第一接口的方向,第三单向阀将第二接口与主换热流路相连,第三单向阀的导通方向为由第二接口至主换热流路的方向;在进行制冷和主制冷模式时,第二单向阀导通、第三单向阀闭合,在在进行制热和主制热模式时,第三单向阀导通、第二单向阀闭合。
在上述任一技术方案中,两管制喷气增焓室外机包括:第四单向阀,第四单向阀将换向组件的第三端与室外换热器的入口相连,第四单向阀的导通方向为由换向组件的第三端至室外换热器的方向;第五单向阀,第五单向阀将换向组件的第三端与室外换热器的出口相连,第五单向阀的导通方向为由室外换热器的出口至换向组件的第三端的方向。
在该技术方案中,两管制喷气增焓室外机包括:第四单向阀和第五单向阀,第四单向阀和第五单向阀均与换向组件的第三端相连,第四单向阀和第五单向阀的另一端则分别与室外换热器的入口及室外换热器的出口相连,在进行制冷和主制冷模式时,第四单向阀导通、第五单向阀闭合,在进行制热和主制热模式时,第五单向阀导通、第四单向阀闭合。
在上述任一技术方案中,两管制喷气增焓室外机包括:第六单向阀,第六单向阀将换向组件的第四端与第二接口相连,第六单向阀的导通方向为由第二接口至换向组件的第四端的方向;第七单向阀,第七单向阀将换向组件的第四端与第二接口相连,第七单向阀的导通方向为由换向组件的第 四端至第二接口的方向。
在该技术方案中,两管制喷气增焓室外机包括第六单向阀及第七单向阀,第六单向阀的导通方向为由第二接口至换向组件的第四端的方向,第七单向阀的导通方向为由换向组件的第四端至第二接口的方向,在进行制冷和主制冷模式时,第六单向阀导通、第七单向阀闭合,在进行制热和主制热模式时,第七单向阀导通、第六单向阀闭合。
在上述任一技术方案中,两管制喷气增焓室外机包括:第二管路,将出气口与第一接口相连;第二电磁阀,设置在第二管路上,第二电磁阀的导通方向为由出气口至第一接口的方向。
在该技术方案中,两管制喷气增焓室外机包括第二管路及设在第二管路上的第二电磁阀,在进行制冷模式时,第二电磁阀闭合,由出气口方向排出的冷媒全都通过换向组件的第三端进入室外换热器的入口;在进行主制冷模式,第二电磁阀开启,由出气口方向排出的冷媒部分通过换向组件的第三端进入室外换热器的入口,另一部分由第二电磁阀进入第一接口,以保证两管制喷气增焓多联机***可以实现制冷和主制冷两种模式。
在上述任一技术方案中,节流组件包括相串联的至少一个节流装置与至少一个第八单向阀,第八单向阀的导通方向为由过冷器至室外换热器入口的方向。
在该技术方案中,节流组件包括相串联的至少一个节流装置与至少一个第八单向阀,第八单向阀的导通方向为由过冷器至室外换热器入口的方向,可以为一个节流装置串联一个第八单向阀,或者为一个节流装置串联多个第八单向阀、多个节流装置串联一个第八单向阀,以保证节流降压的效果,并且在多级降压后可以实现更好的降压效果。
根据本申请的一个方面提供了一种两管制喷气增焓多联机***,两管制喷气增焓多联机***包括如上述任一技术方案的两管制喷气增焓室外机,因此,该两管制喷气增焓多联机***具有如上述任一技术方案的两管制喷 气增焓室外机的全部有益效果。
根据本申请的附加方面和优点将在下面的描述部分中给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的一个实施例提供的两管制喷气增焓多联机***的一个结构示意图;
图2示出了本申请的一个实施例提供的两管制喷气增焓多联机***的又一结构示意图;
图3示出了本申请的一个实施例提供的两管制喷气增焓多联机***在制冷模式时的结构示意图;
图4示出了本申请的一个实施例提供的两管制喷气增焓多联机***在制热模式时的结构示意图;
图5示出了本申请的一个实施例提供的两管制喷气增焓多联机***在主制冷模式时的结构示意图;
图6示出了本申请的一个实施例提供的两管制喷气增焓多联机***在主制热模式时的结构示意图;
图7示出了本申请的一个实施例提供的两管制喷气增焓多联机***的压焓图。
附图标记:
其中,图1至图6中附图标记与部件名称之间的对应关系为:
10室外换热器,12第一接口,14第二接口,16喷气增焓压缩机,162出气口,164回气口,166喷射口,18换向组件,20过冷器,22节流组件,222节流装置,224第八单向阀,24第一管路,26第一电磁阀,28第一单 向阀,30第二单向阀,32第三单向阀,34第四单向阀,36第五单向阀,38第六单向阀,40第七单向阀,42第二电磁阀,44两管制喷气增焓室内机,46制冷剂流向切换装置。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图7来描述根据本申请的一个实施例提供两管制喷气增焓室外机及***。
如图1至图6所示,本申请提供的一种两管制喷气增焓室外机,两管制喷气增焓室外机包括:室外换热器10、第一接口12及第二接口14;喷气增焓压缩机16,包括出气口162、回气口164和喷射口166;换向组件18,包括第一端至第四端,换向组件18的第一端与出气口162相连,换向组件18的第二端与回气口164相连;过冷器20,包括相连通的主换热流路与辅换热流路,主换热流路分别与第一接口12相连和第二接口14相连,辅换热流路与喷射口166相接;节流组件22,节流组件22的一端与主换热流路的出口相连,另一端与室外换热器10的入口相连;第一管路24,其一端与室外换热器10的出口相接,另一端位于节流组件22与主换热流路之间。
本申请提供的两管制喷气增焓室外机包括,室外换热器10、喷气增焓压缩机16、换向组件18、过冷器20、节流组件22及第一管路24,换向组件18的第一端与出气口162相连,换向组件18的第二端与回气口164相连,过冷器20的主换热流路与辅换热流路相连通,主换热流路分别与第一 接口12和第二接口14相连,辅换热流路与喷射口166相接,节流组件22的一端与主换热流路的出口相连,节流组件22的另一端与室外换热器10的入口相连,第一管路24的一端与室外换热器10的出口相接,第一管路24的另一端位于节流组件22与主换热流路之间,本申请通过使用喷气增焓压缩机16,从喷气增焓换热器流出的气态制冷剂直接从压缩机的中间喷射口166进入压缩机以进行补气增焓压缩,同时增加过冷器20和节流组件22,显著增加低温制热运行时冷媒循环量,在两管制喷气增焓室外机中扩展低温制热运行范围,同时显著提高制热能力的效果;此外增加第一管路24,使得过冷器20还可提高室外换热器10出口的过冷度,以降低排气过热度,提升高温制冷的能力。
两管制喷气增焓室外机为两管制结构,外机与内机间有两根连接管,即第一接口12及第二接口14与室内机相连接,与相关技术中的三管制多联机***相比,本申请提供的两管制热回收多联机***结构简单,节约了铜管材料,降低了安装成本。
此外,本申请提供的两管制喷气增焓室外机应用于两管制喷气增焓多联机***,并且该多联机***为热回收多联机,热回收的含义就是回收制冷房间排出的热量用于制热房间制热,具体来说,***通过室内机换热器从制冷房间吸收热量,然后通过室内机换热器将该热量全部或部分释给制热房间用于制热,***不足或剩余的热量再通过室外机换热器从环境吸取。而对于普通热泵多联机,制热室内机所需热量全部来自于室外机换热器吸热和耗电。因此,相比普通热泵,热回收多联机具有明显的节能效果。
热回收多联机存在4种运行模式:制冷、主制冷、主制热和制热。当所有运行的室内机都处于制冷/制热模式时,室外机在制冷/制热模式下运行;当运行的室内机既有制冷又有制热且制冷负荷大于制热负荷时,室外机将在主制冷模式下运行;当运行的室内机既有制冷又有制热且制冷负荷小于制热负荷时,室外机将在主制热模式下运行。如果运行制冷室内机和制热 室内机的所需的流量刚好相等,则***以全热回收模式运行。
在过冷器20的辅换热流路的入口处串联一个节流元件。
在本申请提供的一个实施例中,换向组件18的第三端可转换地连接至室外换热器10的入口或室外换热器10的出口,换向组件18的第四端可转换地连接至第二接口14或第一接口12。
在该实施例中,换向组件18的第三端可转换地连接至室外换热器10的入口或室外换热器10的出口,换向组件18的第四端可转换地连接至第二接口14或第一接口12,在两管制喷气增焓多联机***为制冷和主制冷模式时,换向组件18的第三端与室外换热器10的入口相连,换向组件18的第四端与第二接口14相连;在两管制喷气增焓多联机***为制热和主制热模式时,换向组件18的第三端与室外换热器10的出口相连,换向组件18的第四端与第一接口12相连,以实现冷媒的不同流向。
在本申请提供的一个实施例中,主换热流路的入口与第一接口12及第二接口14相连,辅换热流路的入口与主换热流路的出口相连,辅换热流路的出口与喷射口166相接。
在该实施例中,提供了一种过冷器20内部的具体连接方式,即将主换热流路的入口与第一接口12及第二接口14相连,辅换热流路的入口与主换热流路的出口相连,辅换热流路的出口与喷射口166相接,在制热或主制热模式时,由第二接口14流入的冷媒首先进入到主换热流路的入口,再由主换热流路的出口进入辅换热流路的入口,由辅换热流路的出口进入到喷射口166,以实现对喷气增焓压缩机16进行补气增焓压缩。
在本申请提供的一个实施例中,主换热流路的入口和辅换热流路的入口均与第一接口12及第二接口14相连,辅换热流路的出口与喷射口166相接。
在该实施例中,提供了一种过冷器20内部的具体连接方式,即主换热流路的入口和辅换热流路的入口均与第一接口12和第二接口14相连,辅 换热流路的出口与喷射口166相接,在制热或主制热模式时,由第二接口14处流入的冷媒分别进入到主换热流路的入口和辅换热流路的入口,再分别通过主换热流路和辅换热流路,由主换热流路流出的冷媒通过节流组件22进入到室外换热器10的入口,由辅换热流路流出的冷媒通过喷射口166进入到喷气增焓压缩机16,以实现对喷气增焓压缩机16进行补气增焓压缩。
在本申请提供的一个实施例中,两管制喷气增焓室外机包括:第一电磁阀26,设置在辅换热流路与喷射口166之间,第一电磁阀26的导通方向为由辅换热流路至喷射口166方向。
在该实施例中,两管制喷气增焓室外机包括第一电磁阀26,第一电磁阀26通电导通断电闭合,并且在第一电磁阀26通电导通时,第一电磁阀26的导通方向为由辅换热流路至喷射口166方向,即仅允许冷媒由辅换热流路向喷射口166的方向导通,避免出现冷媒回流的现象。
在本申请提供的一个实施例中,两管制喷气增焓室外机包括:第一单向阀28,设置在第一管路24上,第一单向阀28的导通方向为由室外换热器10的出口至节流组件22方向。
在该实施例中,通过增加第一管路24,室外换热器10出口与主换热流路之间连接起来,并在第一管路24上设置第一单向阀28,室外换热器10出口单向阀与高压阀之间加电磁阀,防止制热时室外换热器10出口与主换热流路之间发生串气,仅允许过冷器20出口冷媒流向高压阀。
在本申请提供的一个实施例中,两管制喷气增焓室外机包括:第二单向阀30,第二单向阀30将第一接口12与主换热流路相连,第二单向阀30的导通方向为由主换热流路至第一接口12的方向;第三单向阀32,第三单向阀32将第二接口14与主换热流路相连,第三单向阀32的导通方向为由第二接口14至主换热流路的方向。
在该实施例中,两管制喷气增焓室外机包括第二单向阀30和第三单向阀32,第二单向阀30将第一接口12与主换热流路相连,第二单向阀30的 导通方向为由主换热流路至第一接口12的方向,第三单向阀32将第二接口14与主换热流路相连,第三单向阀32的导通方向为由第二接口14至主换热流路的方向;在进行制冷和主制冷模式时,第二单向阀30导通、第三单向阀32闭合,在在进行制热和主制热模式时,第三单向阀32导通、第二单向阀30闭合。
在本申请提供的一个实施例中,两管制喷气增焓室外机包括:第四单向阀34,第四单向阀34将换向组件18的第三端与室外换热器10的入口相连,第四单向阀34的导通方向为由换向组件18的第三端至室外换热器10的方向;第五单向阀36,第五单向阀36将换向组件18的第三端与室外换热器10的出口相连,第五单向阀36的导通方向为由室外换热器10的出口至换向组件18的第三端的方向。
在该实施例中,两管制喷气增焓室外机包括:第四单向阀34和第五单向阀36,第四单向阀34和第五单向阀36均与换向组件18的第三端相连,第四单向阀34和第五单向阀36的另一端则分别与室外换热器10的入口及室外换热器10的出口相连,在进行制冷和主制冷模式时,第四单向阀34导通、第五单向阀36闭合,在进行制热和主制热模式时,第五单向阀36导通、第四单向阀34闭合。
在本申请提供的一个实施例中,两管制喷气增焓室外机包括:第六单向阀38,第六单向阀38将换向组件18的第四端与第二接口14相连,第六单向阀38的导通方向为由第二接口14至换向组件18的第四端的方向;第七单向阀40,第七单向阀40将换向组件18的第四端与第二接口14相连,第七单向阀40的导通方向为由换向组件18的第四端至第二接口14的方向。
在该实施例中,两管制喷气增焓室外机包括第六单向阀38及第七单向阀40,第六单向阀38的导通方向为由第二接口14至换向组件18的第四端的方向,第七单向阀40的导通方向为由换向组件18的第四端至第二接口14的方向,在进行制冷和主制冷模式时,第六单向阀38导通、第七单向阀 40闭合,在进行制热和主制热模式时,第七单向阀40导通、第六单向阀38闭合。
在本申请提供的一个实施例中,两管制喷气增焓室外机包括:第二管路,将出气口162与第一接口12相连;第二电磁阀42,设置在第二管路上,第二电磁阀42的导通方向为由出气口162至第一接口12的方向。
在该实施例中,两管制喷气增焓室外机包括第二管路及设在第二管路上的第二电磁阀42,在进行制冷模式时,第二电磁阀42闭合,由出气口162方向排出的冷媒全都通过换向组件18的第三端进入室外换热器10的入口;在进行主制冷模式,第二电磁阀42开启,由出气口162方向排出的冷媒部分通过换向组件18的第三端进入室外换热器10的入口,另一部分由第二电磁阀42进入第一接口12,以保证两管制喷气增焓多联机***可以实现制冷和主制冷两种模式。
在本申请提供的一个实施例中,节流组件22包括相串联的至少一个节流装置222与至少一个第八单向阀224,第八单向阀224的导通方向为由过冷器20至室外换热器10入口的方向。
在该实施例中,节流组件22包括相串联的至少一个节流装置222与至少一个第八单向阀224,第八单向阀224的导通方向为由过冷器20至室外换热器10入口的方向,可以为一个节流装置222串联一个第八单向阀224,或者为一个节流装置222串联多个第八单向阀224、多个节流装置222串联一个第八单向阀224,以保证节流降压的效果,并且在多级降压后可以实现更好的降压效果。
根据本申请的一个方面提供了一种两管制喷气增焓多联机***,两管制喷气增焓多联机***包括如上述任一实施例的两管制喷气增焓室外机,因此,该两管制喷气增焓多联机***具有如上述任一实施例的两管制喷气增焓室外机的全部有益效果。
两管制喷气增焓多联机***包括制冷剂流向切换装置46,制冷剂流向 切换装置46包括气液分离器用于气液两相制冷剂分流,板式换热器用于获得液态制冷剂过冷度,多组电磁阀用于切换制冷剂流向。
如图3所示,制冷时,高温高压气态冷媒从喷气增焓压缩机16出来,首先经过换向组件18,和第四单向阀34进入室外换热器10冷凝,冷凝后的高压液态冷媒经过第一单向阀28后,冷媒进入过冷器20主路入口,另外一部分冷媒经过节流组件22节流后从过冷器20辅路入口进入过冷器20,从过冷器20辅出口流出,然后经过第一电磁阀26进入喷射口166。从过冷器20主路入口进入过冷器20冷凝成过冷的高压液态冷媒从过冷器20主路出口流出经过第二单向阀30从高压阀经过进入制冷剂流向切换装置46入口,从制冷剂流向切换装置46气液分离器液侧出口流出,经过制冷剂流向切换装置46第一过冷装置和第二过冷装置过冷后,经过制冷单向阀和内机电子膨胀阀从液管进入两管制喷气增焓室内机44,在两管制喷气增焓室内机44蒸发换热后,形成的低压气态冷媒通过回气管低压阀回到两管制喷气增焓室外机,经过单向阀第六单向阀38和换向组件18回到低压罐,再回到回气口164。
如图4所示,制热时,高温高压气态冷媒从喷气增焓压缩机16出来,分别经过第二电磁阀42和换向组件18及第七单向阀40两路到高压阀,再从高压阀通过高压管流到制冷剂流向切换装置46入口,进入气液分离器,从气液分离器气侧出口经过制热电磁阀从气管进入两管制喷气增焓室内机44,在两管制喷气增焓室内机44被冷凝成高压液态冷媒后,流过两管制喷气增焓室内机44电子膨胀阀,变成高压两相冷媒,流过制冷剂流向切换装置46的节流元件回到低压管经过低压阀进入两管制喷气增焓室外机,经过第三单向阀32后进入过冷器20主路入口,从过冷器20主路出口,出来后,冷媒一部分通过节流组件22变成低压两相态冷媒进入室外换热器10吸热,然后经过换向组件18回到低压罐,随后进入回气口164;另外一部分冷媒通过节流组件22后进入过冷器20辅路入口,从过冷器20辅路出口出来后, 中压气态冷媒经过第一电磁阀26进入压缩机压缩腔。
图7所示的压焓图表明本申请提供的两管制喷气增焓多联机***可显著增加制热内机的能力,尤其是在低温工况下。图中C点所示为喷气增焓压缩机喷气口状态,主路冷媒先通过低压腔进入喷气增焓压缩机,被压缩到B点后,与C点喷入喷气增焓压缩机的冷媒混合达到D状态,再继续压缩。从喷气口C喷入压缩机的冷媒是中压冷媒,密度比回气口A点的冷媒密度大的多,使得冷媒循环量大大增加,同时排气过热度降低,可以增大压比。从而使得制热能力得到极大提高。
如图7所示,制冷时,***可以有更低的过冷度,因此用更低的冷媒循环量可以实现相同的制冷能力,从而提高能效。由于喷焓时排气过热度SH<SH’,高温制冷时,***频率可以跑的更高而提高高温制冷能力。
如图5所示为两管制喷气增焓多联机***在主制热模式下的示意图,其中管路内的冷媒流向如图中所示,如图6所示为两管制喷气增焓多联机***在主制冷模式下的示意图,其中管路内的冷媒流向如图中所示。
在本说明书的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、 结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的具体实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    室外换热器、第一接口及第二接口;
    喷气增焓压缩机,包括出气口、回气口和喷射口;
    换向组件,包括第一端至第四端,所述换向组件的第一端与所述出气口相连,所述换向组件的第二端与所述回气口相连,所述第一端与所述第三端和所述第四端中的一个连通,所述第二端与所述第三端和所述第四端中的另一个连通;
    过冷器,包括相连通的主换热流路与辅换热流路,所述主换热流路分别与所述第一接口相连和所述第二接口相连,所述辅换热流路与所述喷射口相接;
    节流组件,所述节流组件的一端与所述主换热流路的出口相连,另一端与所述室外换热器的入口相连;
    第一管路,其一端与所述室外换热器的出口相接,另一端位于所述节流组件与所述主换热流路之间。
  2. 根据权利要求1所述的两管制喷气增焓室外机,其特征在于,
    所述换向组件的第三端可转换地连接至所述室外换热器的入口或所述室外换热器的出口,所述换向组件的第四端可转换地连接至所述第二接口或所述第一接口。
  3. 根据权利要求1或2所述的两管制喷气增焓室外机,其特征在于,
    所述主换热流路的入口与所述第一接口及所述第二接口相连,所述辅换热流路的入口与所述主换热流路的出口相连,所述辅换热流路的出口与所述喷射口相接。
  4. 根据权利要求1或2所述的两管制喷气增焓室外机,其特征在于,
    所述主换热流路的入口和所述辅换热流路的入口均与所述第一接口及第二接口相连,所述辅换热流路的出口与所述喷射口相接。
  5. 根据权利要求1至4中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第一电磁阀,设置在所述辅换热流路与所述喷射口之间,所述第一电磁阀的导通方向为由所述辅换热流路至所述喷射口方向。
  6. 根据权利要求1至5中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第一单向阀,设置在所述第一管路上,所述第一单向阀的导通方向为由所述室外换热器的出口至所述节流组件方向。
  7. 根据权利要求1至6中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第二单向阀,所述第二单向阀将所述第一接口与所述主换热流路相连,所述第二单向阀的导通方向为由所述主换热流路至所述第一接口的方向;
    第三单向阀,所述第三单向阀将所述第二接口与所述主换热流路相连,所述第三单向阀的导通方向为由所述第二接口至所述主换热流路的方向。
  8. 根据权利要求1至7中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第四单向阀,所述第四单向阀将所述换向组件的第三端与所述室外换热器的入口相连,所述第四单向阀的导通方向为由所述换向组件的第三端至所述室外换热器的方向;
    第五单向阀,所述第五单向阀将所述换向组件的第三端与所述室外换热器的出口相连,所述第五单向阀的导通方向为由所述室外换热器的出口至所述换向组件的第三端的方向。
  9. 根据权利要求1至8中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第六单向阀,所述第六单向阀将所述换向组件的第四端与所述第二接口相连,所述第六单向阀的导通方向为由所述第二接口至所述换向组件的第四端的方向;
    第七单向阀,所述第七单向阀将所述换向组件的第四端与所述第二接口相连,所述第七单向阀的导通方向为由所述换向组件的第四端至所述第二接口的方向。
  10. 根据权利要求1至9中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第二管路,将所述出气口与所述第一接口相连;
    第二电磁阀,设置在所述第二管路上,所述第二电磁阀的导通方向为由所述出气口至所述第一接口的方向。
  11. 根据权利要求1至10中任一项所述的两管制喷气增焓室外机,其特征在于,
    所述节流组件包括相串联的至少一个节流装置与至少一个第八单向阀,所述第八单向阀的导通方向为由所述过冷器至所述室外换热器入口的方向。
  12. 一种两管制喷气增焓多联机***,其特征在于,所述两管制喷气增焓多联机***包括如权利要求1至11中任一项所述的两管制喷气增焓室外机。
PCT/CN2019/089859 2018-10-22 2019-06-03 两管制喷气增焓室外机及多联机*** WO2020082740A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/621,256 US11353249B2 (en) 2018-10-22 2019-06-03 Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
CA3066275A CA3066275C (en) 2018-10-22 2019-06-03 Two-pipe enhanced-vapor-injection outdoor unit and multi-split system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811227641.5 2018-10-22
CN201811227641.5A CN109386985B (zh) 2018-10-22 2018-10-22 两管制喷气增焓室外机及多联机***

Publications (1)

Publication Number Publication Date
WO2020082740A1 true WO2020082740A1 (zh) 2020-04-30

Family

ID=65427582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089859 WO2020082740A1 (zh) 2018-10-22 2019-06-03 两管制喷气增焓室外机及多联机***

Country Status (4)

Country Link
US (1) US11353249B2 (zh)
CN (1) CN109386985B (zh)
CA (1) CA3066275C (zh)
WO (1) WO2020082740A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109386985B (zh) * 2018-10-22 2020-07-28 广东美的暖通设备有限公司 两管制喷气增焓室外机及多联机***
CN110542196B (zh) * 2019-09-16 2021-05-18 广东美的暖通设备有限公司 用于空调器的检测组件、控制方法、控制装置及空调器
CN115013996B (zh) * 2022-05-30 2023-03-24 西安交通大学 一种采用喷射器增效的低温制冷循环***
CN115419966A (zh) * 2022-09-14 2022-12-02 珠海格力电器股份有限公司 提高制冷制热设备过负荷能力的方法、装置以及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198099A (ja) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp 空気調和装置
JP2015059719A (ja) * 2013-09-19 2015-03-30 ダイキン工業株式会社 冷凍装置
CN105008820A (zh) * 2013-03-12 2015-10-28 三菱电机株式会社 空调装置
CN105240957A (zh) * 2015-10-27 2016-01-13 广东美的暖通设备有限公司 喷气增焓空调***
EP2843323A4 (en) * 2012-04-27 2016-01-13 Mitsubishi Electric Corp AIR CONDITIONING
CN105605816A (zh) * 2012-05-23 2016-05-25 大金工业株式会社 空调装置
CN109386985A (zh) * 2018-10-22 2019-02-26 广东美的暖通设备有限公司 两管制喷气增焓室外机及多联机***

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1969291B1 (en) * 2006-01-06 2018-11-21 LG Electronics Inc. Air-conditioning system and controlling method thereof
US9068766B2 (en) 2010-04-05 2015-06-30 Mitsubishi Electric Corporation Air-conditioning and hot water supply combination system
CN104053959B (zh) * 2012-01-23 2016-03-30 三菱电机株式会社 空气调节装置
KR102163859B1 (ko) * 2013-04-15 2020-10-12 엘지전자 주식회사 공기조화기 및 그 제어방법
CN106415156B (zh) * 2014-03-14 2019-05-31 三菱电机株式会社 制冷循环装置
JP6242321B2 (ja) * 2014-10-03 2017-12-06 三菱電機株式会社 空気調和機
KR101702736B1 (ko) * 2015-01-12 2017-02-03 엘지전자 주식회사 공기 조화기
JP6402661B2 (ja) * 2015-03-20 2018-10-10 ダイキン工業株式会社 冷凍装置
CN104776630B (zh) 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机***
CN105258393B (zh) * 2015-10-16 2018-02-02 珠海格力电器股份有限公司 热泵机组控制***
CN105371548B (zh) * 2015-12-11 2017-11-21 珠海格力电器股份有限公司 双级压缩机的补气增焓控制方法、设备和装置
JP6567167B2 (ja) * 2016-03-23 2019-08-28 三菱電機株式会社 空気調和装置
CN106152633B (zh) * 2016-06-28 2018-07-10 广东美的暖通设备有限公司 多联机***及其控制方法
CN106765617B (zh) 2017-02-21 2019-08-30 广东美的暖通设备有限公司 喷气增焓热泵空调***、控制方法、控制装置和空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198099A (ja) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp 空気調和装置
EP2843323A4 (en) * 2012-04-27 2016-01-13 Mitsubishi Electric Corp AIR CONDITIONING
CN105605816A (zh) * 2012-05-23 2016-05-25 大金工业株式会社 空调装置
CN105008820A (zh) * 2013-03-12 2015-10-28 三菱电机株式会社 空调装置
JP2015059719A (ja) * 2013-09-19 2015-03-30 ダイキン工業株式会社 冷凍装置
CN105240957A (zh) * 2015-10-27 2016-01-13 广东美的暖通设备有限公司 喷气增焓空调***
CN109386985A (zh) * 2018-10-22 2019-02-26 广东美的暖通设备有限公司 两管制喷气增焓室外机及多联机***

Also Published As

Publication number Publication date
CA3066275C (en) 2023-03-28
US20210293459A1 (en) 2021-09-23
CN109386985B (zh) 2020-07-28
CN109386985A (zh) 2019-02-26
CA3066275A1 (en) 2020-04-22
US11353249B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2020082740A1 (zh) 两管制喷气增焓室外机及多联机***
CN103175344B (zh) 一种寒冷地区用多联机热泵***及其控制方法
EP3553398B1 (en) Air conditioning heat pump system which uses injector, air conditioner, and air conditioner control method
WO2016188295A1 (zh) 热回收多联机的室外机及热回收多联机
WO2016000656A1 (zh) 空调***
CN107990585A (zh) 一种改进的喷气增焓空调***
WO2020082741A1 (zh) 两管制喷气增焓室外机及多联机***
EP3364128A1 (en) Heat pump unit control system
CN108800393B (zh) 空调***
WO2020082739A1 (zh) 两管制喷气增焓室外机及多联机***
CN215930176U (zh) 一种制冷***
CN213119316U (zh) 采用节流阀的空调机组
CN109579357B (zh) 一种具有高效热回收的多联机热泵***及控制方法
CN111076439A (zh) 补气结构、离心式冷水机组及空调器
CN205505516U (zh) 换热***
CN217844347U (zh) 一种制冷制热切换模块及热泵***
EP4008973A1 (en) Air conditioner
CN213020387U (zh) 空气源热泵***
CN215808984U (zh) 一种空调***
CN111964188B (zh) 一种热虹吸管-蒸汽压缩复合制冷***
CN221099026U (zh) 制冷***及冰箱
CN215930179U (zh) 三联供***
CN214469438U (zh) 一种稳定可靠的双四通阀多联机***
CN211177490U (zh) 空调器
CN214620154U (zh) 一种带自由冷却两相流空调***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19874957

Country of ref document: EP

Kind code of ref document: A1