WO2020082712A1 - 一种浮地稳压供电电路 - Google Patents

一种浮地稳压供电电路 Download PDF

Info

Publication number
WO2020082712A1
WO2020082712A1 PCT/CN2019/084986 CN2019084986W WO2020082712A1 WO 2020082712 A1 WO2020082712 A1 WO 2020082712A1 CN 2019084986 W CN2019084986 W CN 2019084986W WO 2020082712 A1 WO2020082712 A1 WO 2020082712A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
series circuit
buck
boost
switch
Prior art date
Application number
PCT/CN2019/084986
Other languages
English (en)
French (fr)
Inventor
卢鹏飞
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2020082712A1 publication Critical patent/WO2020082712A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters

Definitions

  • the invention relates to a floating stabilized voltage supply circuit of a switching power supply converter.
  • Figure 1 shows a prior art single-inductance four-switch Buck-Boost converter, which includes an inductor L1, four switch tubes Q1, Q2, Q3 and Q4, two diodes D1 and D2, and two capacitors C1 and C2 It also includes a control chip, the control chip includes at least four pins, boost pin BOOST1, boost pin BOOST2, switch pin SW1, switch pin SW2.
  • BOOST1 and BOOST2 provide the power supply voltage for the drive circuits of Q1 and Q4 respectively, and SW1 and SW2 are the reference ground terminals of the drive power supply circuits for Q1 and Q4, commonly known as: floating ground.
  • the circuit works in Boost mode.
  • Q1 needs to maintain the on state
  • Q2 maintains the off state
  • Q3 and Q4 perform switching operations to achieve the purpose of boosting.
  • Q2 does not switch
  • the bootstrap circuit formed by C1 and D1 cannot work, resulting in the voltage of C1 being zero volts (when the Vin voltage is greater than VCC), causing Q1 to be cut off due to the lack of power supply from the driving circuit.
  • the disconnection of the Vout path stops the circuit.
  • the commonly used method in the industry is that Q1 and Q2 still perform switching operations.
  • the bootstrap circuit formed by C1 and D1 maintains the voltage of C1, just to reduce the switching frequency of Q1 and Q2 in order to improve the power supply efficiency. This method still brings Q1 And Q2's switching loss, driving loss, output ripple increase, at the same time, lower driving frequency brings more control difficulty and other issues.
  • the common method is the same as that in Boost mode: Q3 and Q4 still perform switching operations, and the voltage of C2 is maintained by the bootstrap circuit formed by C2 and D2, just to improve the power supply efficiency and appropriately reduce the switching frequency of Q3 and Q4. It brings about the increase of switching loss, driving loss and output ripple of Q3 and Q4. At the same time, the decrease of driving frequency brings about the increase of control difficulty and other problems.
  • Another solution is to use an independent power supply for the floating ground drive of Q1 and Q4. However, it is rarely used because of its complex circuit, high cost, and large board area.
  • the current bootstrap circuit in the four-switch Buck-Boost converter has application limitations, and it can realize the floating drive power supply of Q1 or Q4 at the expense of performance such as efficiency and control difficulty.
  • the present invention proposes a floating power supply circuit with a simple structure, which can solve the problem of no power for the upper tube drive in Buck mode and Boost mode.
  • a floating stabilized power supply circuit is applied between two boost pins of a four-switch Buck-Boost converter.
  • the four-switch Buck-Boost converter also includes two switch pins.
  • the floating stabilized power supply circuit includes At least two series circuits, the input of the first series circuit is connected to the first boost pin of the four-switch Buck-Boost converter, and the output of the first series circuit is connected to the first of the four-switch Buck-Boost converter Two boost pins, the reference ground of the first series circuit is connected to the second switch pin of the four-switch Buck-Boost converter; the input terminal of the second series circuit is connected to the second switch of the four-switch Buck-Boost converter Boost pin, the output of the second series circuit is connected to the first boost pin of the four-switch Buck-Boost converter, and the reference ground of the second series circuit is connected to the first of the four-switch Buck-Boost converter Switch pin; the current flow of the first series circuit is opposite to that of the second series circuit, in a single Buck working state or
  • the series circuit includes a diode and a linear buck regulator circuit
  • connection relationship between the diode and the linear buck regulator circuit is one of the following two ways:
  • Method 1 The anode of the diode is used as the input terminal of the series circuit, the cathode of the diode is connected to the input terminal of the linear buck regulator circuit, and the output terminal of the linear buck regulator circuit is used as the output terminal of the series circuit;
  • Method 2 The input terminal of the linear buck regulator circuit is used as the input terminal of the series circuit, the output terminal of the linear buck regulator circuit is connected to the anode of the diode, and the cathode of the diode is used as the output terminal of the series circuit;
  • the reference ground terminal of the linear buck regulator circuit serves as the reference ground terminal of the series circuit.
  • the series circuit further includes a resistor
  • one end of the resistor serves as an input end of the series circuit, and the other end of the resistor is connected to the anode of the diode;
  • the resistor is connected between the cathode of the diode and the input of the linear buck regulator circuit;
  • one end of the resistor is connected to the output of the linear buck regulator circuit, and the other end of the resistor is used as the output of the series circuit;
  • one end of the resistor is used as the input terminal of the series circuit, and the other end of the resistor is connected to the input terminal of the linear buck regulator circuit;
  • the resistor is connected between the output of the linear buck regulator circuit and the anode of the diode;
  • one end of the resistor is connected to the cathode of the diode, and the other end of the resistor is used as the output end of the series circuit.
  • the series circuit further includes a capacitor, and the capacitor is connected between the input terminal of the linear buck regulator circuit and the reference ground terminal of the linear buck regulator circuit.
  • the linear buck voltage stabilizing circuit is a circuit composed of discrete devices, or an integrated chip capable of realizing a linear buck voltage stabilizing function.
  • the floating stabilized power supply circuit may be integrated into the integrated circuit.
  • the driving power supply current that keeps Q1 or Q4 on is in the microampere level
  • the circulating current of D3, D4, and LDO is also in the microampere level, so the losses added by introducing circuits D3, D4, and LDO are also very small, which is convenient for the IC integrated.
  • the present invention uses Boost mode when the output voltage is higher than the input voltage, so the bootstrap voltage of the Boost circuit can easily charge the bootstrap capacitor of the Buck circuit through a linear voltage regulator circuit;
  • the working principle of the ground power supply circuit is the same as that in Boost mode, so this circuit has the following beneficial effects:
  • the circuit added by the present invention is easy to control the internal integration of IC and the construction of external discrete devices. Since the driving loss for maintaining MOS conduction is small, the circuit added by the present invention has the characteristics of low loss, easy implementation, high efficiency and integration, and avoids All the disadvantages of traditional solutions.
  • Figure 1 is a schematic diagram of a traditional bootstrap boost circuit
  • FIG. 2 is a schematic diagram of the application of the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the application of the second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the application of the third embodiment of the present invention.
  • FIG. 2 shows a principle diagram of the first embodiment of the present invention.
  • the linear buck voltage regulator circuits LDO1 and LDO2 can be composed of discrete devices or ready-made LDO chips).
  • One end of the resistor R1 is connected to the boost pin BOOST2 of the four-switch Buck-Boost converter, the other end of the resistor R1 is connected to the anode of the diode D3, and the cathode of the diode D3 is connected to the input terminal of the linear buck regulator circuit LD01.
  • the output terminal of the voltage stabilizing circuit LD01 is connected to the boost pin BOOST1 of the four-switch Buck-Boost converter;
  • One end of the resistor R2 is connected to the boost pin BOOST1 of the four-switch Buck-Boost converter, the other end of the resistor R2 is connected to the anode of the diode D4, and the cathode of the diode D4 is connected to the input end of the linear buck regulator circuit LD02, linear buck
  • the output terminal of the voltage stabilizing circuit LD02 is connected to the boost pin BOOST2 of the four-switch Buck-Boost converter;
  • the reference ground of the linear buck regulator circuit LD01 is connected to the switch pin SW1 of the four-switch Buck-Boost converter, and the reference ground of the linear buck regulator circuit LD02 is connected to the switch pin SW2 of the four-switch Buck-Boost converter;
  • the capacitor C3 is connected between the input terminal of the linear buck regulator circuit LD01 and the reference ground terminal, and the capacitor C4 is connected between the input terminal of the linear buck regulator circuit LD02 and the reference ground terminal.
  • R2, D4, C4 and LDO2 work in exactly the same way as the above R1, D3, C3 and LDO1, and finally achieve continuous conduction of Q4.
  • the beneficial effect is that it can realize the continuous conduction power supply of Q1 and Q4.
  • This solution has the characteristics of low cost, simple circuit, low loss, easy implementation, and easy IC integration, while avoiding all the disadvantages brought by the traditional solution.
  • C3 and C4 are removed, and the connection relationship of other components remains unchanged. Because the outputs of LDO1 and LDO2 are only used to maintain the conduction of Q1 and Q4, the load is very small. When the load is very small, the two filter capacitors C3 and C4 can be removed to simplify the circuit and reduce the cost.
  • the beneficial effect is that compared with the first embodiment, the cost is lower, the circuit is simplified, and the IC integration is easy.
  • the beneficial effect is that compared with the second embodiment, the cost is further reduced, the circuit is further simplified, and IC integration is easy.
  • R1, D3 and LDO1 are in a series relationship, and the connection order can be adjusted back and forth. Adjusting the connection relationship of this series circuit belongs to the conventional means in the art, and can also achieve the purpose of the present invention, within the scope of protection of the present invention; the same reason R2 , D4 and LDO2 are the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种浮地稳压供电电路,应用于四开关Buck-Boost变换器的两个升压引脚之间,可以解决四开关Buck-Boost变换器Buck模式和Boost模式上管驱动电路无供电的问题。本发明利用Boost模式时输出电压高于输入电压,因此Boost电路的自举电压可以很容易的通过该浮地稳压供电电路给Buck电路的自举电容充电;Buck模式时,Buck电路的自举电压可以很容易的通过该浮地稳压供电电路给Boost电路的自举电容充电,实现了变换器中开关管持续导通供电的功能,本发明具有低成本,电路简单,低损耗,易实现,易于IC集成的特性,同时规避了传统解决方案带来的所有弊端。

Description

一种浮地稳压供电电路 技术领域
本发明涉及一种开关电源变换器的浮地稳压供电电路。
背景技术
图1所示的为现有技术的单电感四开关Buck-Boost变换器,包括一个电感L1,四个开关管Q1、Q2、Q3和Q4,两个二极管D1和D2,两个电容C1和C2,还包括一个控制芯片,控制芯片至少包括四个引脚,升压引脚BOOST1、升压引脚BOOST2、开关引脚SW1、开关引脚SW2。BOOST1和BOOST2分别为Q1和Q4的驱动电路提供供电电压,SW1和SW2分别为Q1和Q4的驱动供电电路的参考地端,俗称:浮地。
从两个方面进行分析该变换器的工作原理:
1.当输入电压低于输出电压时,电路工作在Boost模式,这时需要Q1维持导通状态,Q2维持截止状态,Q3和Q4进行开关动作实现升压的目的。由于Q2没有进行开关动作,所以C1和D1构成的自举电路无法工作,导致C1的电压为零伏(当Vin电压大于VCC时),使Q1因驱动电路没有供电而截止,Q1截止造成Vin到Vout的路径断开使电路停止工作。业界常用的方法是Q1和Q2仍然进行开关动作,通过C1和D1构成的自举电路维持C1的电压,只是为了提高电源工作效率适当降低Q1和Q2的开关频率,这种方法依然带来了Q1和Q2的开关损耗,驱动损耗,输出纹波的增大,同时驱动频率降低带来控制的难度增加等问题。
2.同理当输入电压高于输出电压时,电路工作在Buck模式,这时需要Q4维持导通状态,Q3维持截止状态,Q1和Q2进行开关动作实现降压的目的。由于Q3没有进行开关动作,所以C2和D2构成的自举电路无法工作,导致C2的电压为零伏(当Vout电压大于VCC时),最终使Q4因驱动电路没有供电而截止,输出电流只能通过Q4的体二极管流通,由于体二极管产生的损耗大于Q4导通阻抗(Rdson)产生的损耗,所以导致电源效率降低。常用的方法和Boost模式的相同:Q3和Q4仍然进行开关动作,通过C2和D2构成的自举电路维持C2的电压,只是为了提高电源工作效率适当降低Q3和Q4的开关频率,这种方法依然带来了Q3和Q4的开关损耗,驱动损耗,输出纹波的增大,同时驱动频率降低带来控制 的难度增加等问题。
另一种解决方法就是采用独立的电源给Q1和Q4的浮地驱动供电,但是由于电路复杂,成本高,占板面积大等缺点而少有采用。
综上所述,目前四开关Buck-Boost变换器里的自举电路存在应用的局限性,以牺牲效率和控制的难度等性能为代价实现Q1或Q4的浮地驱动供电。
发明内容
鉴于上述电路所存在的技术缺陷,本发明提出一种结构简单的浮地稳压供电电路,可以解决Buck模式和Boost模式上管驱动无电的问题。
为了实现上述发明目的,本发明采用以下技术方案:
一种浮地稳压供电电路,应用于四开关Buck-Boost变换器的两个升压引脚之间,四开关Buck-Boost变换器还包括两个开关引脚,浮地稳压供电电路包括至少两路串联电路,第一路串联电路的输入端连接到四开关Buck-Boost变换器的第一升压引脚,第一路串联电路的输出端连接到四开关Buck-Boost变换器的第二升压引脚,第一路串联电路的参考地端连接四开关Buck-Boost变换器的第二开关引脚;第二路串联电路的输入端连接到四开关Buck-Boost变换器的第二升压引脚,第二路串联电路的输出端连接到四开关Buck-Boost变换器的第一升压引脚,第二路串联电路的参考地端连接四开关Buck-Boost变换器的第一开关引脚;所述的第一路串联电路与所述的第二路串联电路的电流流向相反,在单一的Buck工作状态下或在单一的Boost工作状态下,只有其中一路串联电路工作输出,另一路串联电路无输出。
优选的,所述的串联电路包括一个二极管和一个线性降压稳压电路;
所述的二极管与所述的线性降压稳压电路的连接关系为以下两种方式之一:
方式一:二极管的阳极作为串联电路的输入端,二极管的阴极连接线性降压稳压电路的输入端,线性降压稳压电路的输出端作为串联电路的输出端;
方式二:线性降压稳压电路的输入端作为串联电路的输入端,线性降压稳压电路的输出端连接二极管的阳极,二极管的阴极作为串联电路的输出端;
所述的线性降压稳压电路的参考地端作为串联电路的参考地端。
优选的,所述的串联电路还包括一个电阻;
依据所述的方式一:所述的电阻的一端作为串联电路的输入端,所述的电阻的另一端连接所述的二极管的阳极;
或者所述的电阻连接在所述的二极管的阴极与所述的线性降压稳压电路的输入端之间;
或者所述的电阻的一端连接所述的线性降压稳压电路的输出端,所述的电阻的另一端作为串联电路的输出端;
依据所述的方式二:所述的电阻的一端作为串联电路的输入端,所述的电阻的另一端连接所述的线性降压稳压电路的输入端;
或者所述的电阻连接在所述的线性降压稳压电路的输出端与所述的二极管的阳极之间;
或者所述的电阻的一端连接所述的二极管的阴极,所述的电阻的另一端作为串联电路的输出端。
优选的,所述的串联电路还包括一个电容,所述的电容连接在所述的线性降压稳压电路的输入端和所述的线性降压稳压电路的参考地端之间。
优选的,所述的线性降压稳压电路是用分立器件构成的电路,或者是集成的能实现线性降压稳压功能的芯片。
所述浮地稳压供电电路可以集成到集成电路内部。
本发明的具体工作过程分为两种工作状态,两种状态的工作方式是相同的,现在分别进行说明。首先要求Vo<VCC-Vf(本文的二极管导通压降均用Vf表示,且VCC远大于Vf)
工作状态一:当Vin低于Vout,电路工作在Boost模式时,Q3和Q4进行开关动作,当Q3开通时,VCC通过D2给C2充电至VCC-Vf,然后Q3关断Q4导通,BOOST2点的电压为VCC-Vf+Vout,由于Vin<VCC-Vf+Vout,所以电流从BOOST2经过R1,D3,LDO1流向BOOST1,使得C1两端的电压为LDO1的输出Vo。当Q3再次导通时BOOST2点的电压为VCC-Vf大于LDO2的输出电压Vo,所以电流不会从BOOST1经过R2,D4,LDO2流向BOOST2。至此在一个开关周期里电流只会从BOOST2流向BOOST1使C1两端的电压稳定在Vo,而不会对C1进行放电动作。
工作状态二:当Vin高于Vout,电路工作在Buck模式时,Q1和Q2进行开关动作,当Q2开通时,VCC通过D1给C1充电至VCC-Vf,然后Q2关断Q1导通, BOOST1点的电压为VCC-Vf+Vin,由于Vout<VCC-Vf+Vin,所以电流从BOOST1经过R2,D4,LDO2流向BOOST2,使得C2两端的电压为LDO2的输出Vo。当Q2再次导通时BOOST1点的电压为VCC-Vf大于LDO1的输出电压Vo,所以电流不会从BOOST2经过R1,D3,LDO1流向BOOST1。至此在一个开关周期里电流只会从BOOST1流向BOOST2使C2两端的电压稳定在Vo,而不会对C2进行放电动作。
由于维持Q1或Q4导通的驱动供电电流为微安级,所以D3,D4和LDO的流通电流也是微安级,因此引入电路D3,D4和LDO所增加的损耗也很小,便于在IC内部集成。
与现有技术相比,本发明利用Boost模式时输出电压高于输入电压,因此Boost电路的自举电压可以很容易的通过一个线性稳压电路给Buck电路的自举电容充电;Buck模式的浮地供电电路工作原理与Boost模式的相同,所以此电路具有如下的有益效果:
本发明所增加电路易于控制IC内部集成和外部分立器件搭建,由于维持MOS导通的驱动损耗很小,所以本发明所增加电路具有低损耗,易实现,高效率可集成的特性,同时规避了传统解决方案带来的所有弊端。
附图说明
图1为传统的自举升压电路原理图;
图2为本发明第一实施例应用原理图;
图3为本发明第二实施例应用原理图;
图4为本发明第三实施例应用原理图。
具体实施方式
第一实施例
图2示出了本发明的第一实施例的原理图。包括输入电源正(Vin)、输出电源正(Vout),辅助源(VCC)和电源公共地(GND),包括二极管D3、二极管D4、滤波电容C3、滤波电容C4、电阻R1和电阻R2,公知的线性降压稳压电路LDO1和LDO2(可以用分立器件构成或现成的LDO芯片)。
电阻R1的一端连接到四开关Buck-Boost变换器的升压引脚BOOST2,电阻R1的另一端连接二极管D3的阳极,二极管D3的阴极连接线性降压稳压电路LD01的输入端,线性降压稳压电路LD01的输出端连接四开关Buck-Boost变换器的升 压引脚BOOST1;
电阻R2的一端连接到四开关Buck-Boost变换器的升压引脚BOOST1,电阻R2的另一端连接二极管D4的阳极,二极管D4的阴极连接线性降压稳压电路LD02的输入端,线性降压稳压电路LD02的输出端连接四开关Buck-Boost变换器的升压引脚BOOST2;
线性降压稳压电路LD01的参考地端连接四开关Buck-Boost变换器的开关引脚SW1,线性降压稳压电路LD02的参考地端连接四开关Buck-Boost变换器的开关引脚SW2;电容C3连接在线性降压稳压电路LD01的输入端和参考地端之间,电容C4连接在线性降压稳压电路LD02的输入端和参考地端之间。
其工作原理是这样的,当Vin低于Vout,电路工作在Boost模式时,Q3和Q4进行开关动作,当Q3开通时,VCC通过D2给C2充电至VCC-Vf,然后Q3关断Q4导通,BOOST2点的电压为VCC-Vf+Vout,由于Vin<VCC-Vf+Vout,所以电流从BOOST2经过R1,D3,LDO1流向BOOST1,使得C1两端的电压为LDO1的输出Vo。当Q3再次导通时BOOST2点的电压为VCC-Vf大于LDO2的输出电压Vo,所以电流不会从BOOST1经过R2,D4,LDO2流向BOOST2。至此在一个开关周期里电流只会从BOOST2流向BOOST1使C1两端的电压稳定在Vo,而不会对C1进行放电动作,从而实现Q1的持续导通。
当Vin高于Vout,R2,D4,C4和LDO2的工作方式与上述R1,D3,C3和LDO1的工作方式完全相同,最终实现Q4的持续导通。
其有益效果是,可以实现Q1和Q4的持续导通供电,此方案具有低成本,电路简单,低损耗,易实现,易于IC集成的特性,同时规避了传统解决方案带来的所有弊端。
第二实施例
在第一实施例的基础上,去掉C3和C4,其他元器件的连接关系不变。由于LDO1和LDO2的输出仅仅用来维持Q1和Q4的导通,所以负载很小,在负载很小时可以去掉C3和C4这两个滤波电容,实现电路的简化,成本的降低。
其有益效果是,对比第一实施例成本更低,电路简化,易于IC集成。
第三实施例
在第二实施例的基础上去掉R1和R2,二极管D3的阳极直接连接到四开关 Buck-Boost变换器的升压引脚BOOST2,二极管D4的阳极直接连接到四开关Buck-Boost变换器的升压引脚BOOST1,其他元器件的连接关系不变。在LDO1和LDO2的输出负载很小的工况下,由LDO1和LDO2分别承担R1和R2的限流作用,实现电路的进一步简化,成本的降低。
其有益效果是,对比第二实施例成本进一步降低,电路进一步简化,易于IC集成。
第二实施例、第三实施例的具体工作原理,本技术领域的普通技术人员可以根据第一实施例的工作过程及原理进行简单的推导即可得出,此处不详述。
R1、D3和LDO1是串联关系,其连接顺序可以前后调整,调整此串联电路的连接关系,属于本领域的惯用手段,同样能实现本发明的目的,在本发明的保护范围内;同理R2,D4和LDO2也是一样。
上述实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,如根据应用场合的不同,通过器件的简单串并联等手段对电路微调,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

  1. 一种浮地稳压供电电路,应用于四开关Buck-Boost变换器的两个升压引脚之间,四开关Buck-Boost变换器还包括两个开关引脚,其特征在于:包括至少两路串联电路,第一路串联电路的输入端连接到四开关Buck-Boost变换器的第一升压引脚,第一路串联电路的输出端连接到四开关Buck-Boost变换器的第二升压引脚,第一路串联电路的参考地端连接四开关Buck-Boost变换器的第二开关引脚;第二路串联电路的输入端连接到四开关Buck-Boost变换器的第二升压引脚,第二路串联电路的输出端连接到四开关Buck-Boost变换器的第一升压引脚,第二路串联电路的参考地端连接四开关Buck-Boost变换器的第一开关引脚;所述的第一路串联电路与所述的第二路串联电路的电流流向相反,在单一的Buck工作状态下或在单一的Boost工作状态下,只有其中一路串联电路工作输出,另一路串联电路无输出。
  2. 根据权利要求1所述的一种浮地稳压供电电路,其特征在于:所述的串联电路包括一个二极管和一个线性降压稳压电路;
    所述的二极管与所述的线性降压稳压电路的连接关系为以下两种方式之一:
    方式一:二极管的阳极作为串联电路的输入端,二极管的阴极连接线性降压稳压电路的输入端,线性降压稳压电路的输出端作为串联电路的输出端;
    方式二:线性降压稳压电路的输入端作为串联电路的输入端,线性降压稳压电路的输出端连接二极管的阳极,二极管的阴极作为串联电路的输出端;
    所述的线性降压稳压电路的参考地端作为串联电路的参考地端。
  3. 根据权利要求1所述的一种浮地稳压供电电路,其特征在于:所述的串联电路还包括一个电阻;
    依据所述的方式一:所述的电阻的一端作为串联电路的输入端,所述的电阻的另一端连接所述的二极管的阳极;
    或者所述的电阻连接在所述的二极管的阴极与所述的线性降压稳压电路的输入端之间;
    或者所述的电阻的一端连接所述的线性降压稳压电路的输出端,所述的电阻的另一端作为串联电路的输出端;
    依据所述的方式二:所述的电阻的一端作为串联电路的输入端,所述的电阻的另一端连接所述的线性降压稳压电路的输入端;
    或者所述的电阻连接在所述的线性降压稳压电路的输出端与所述的二极管的阳极之间;
    或者所述的电阻的一端连接所述的二极管的阴极,所述的电阻的另一端作为串联电路的输出端。
  4. 根据权利要求3所述的一种浮地稳压供电电路,其特征在于:所述的串联电路还包括一个电容,所述的电容连接在所述的线性降压稳压电路的输入端和所述的线性降压稳压电路的参考地端之间。
  5. 根据权利要求4所述的一种浮地稳压供电电路,其特征在于:所述的线性降压稳压电路是用分立器件构成的电路,或者是集成的能实现线性降压稳压功能的芯片。
PCT/CN2019/084986 2018-10-23 2019-04-29 一种浮地稳压供电电路 WO2020082712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811239508.1A CN109217671B (zh) 2018-10-23 2018-10-23 一种浮地稳压供电电路
CN201811239508.1 2018-10-23

Publications (1)

Publication Number Publication Date
WO2020082712A1 true WO2020082712A1 (zh) 2020-04-30

Family

ID=64979896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084986 WO2020082712A1 (zh) 2018-10-23 2019-04-29 一种浮地稳压供电电路

Country Status (2)

Country Link
CN (1) CN109217671B (zh)
WO (1) WO2020082712A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217671B (zh) * 2018-10-23 2020-04-21 广州金升阳科技有限公司 一种浮地稳压供电电路
CN113572352B (zh) * 2021-07-12 2023-04-14 昂宝电子(上海)有限公司 用于升降压变换器的电荷共享自举充电控制***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156685A1 (en) * 2009-12-29 2011-06-30 Richtek Technology Corporation, R.O.C. Constant time buck-boost switching regulator and control circuit and method for the same
US8022746B1 (en) * 2008-02-07 2011-09-20 National Semiconductor Corporation Bootstrap circuit for H-bridge structure utilizing N-channel high-side fets
CN204103759U (zh) * 2014-09-18 2015-01-14 矽力杰半导体技术(杭州)有限公司 适用于桥式电路中上开关管驱动的供电电路以及桥式电路
CN108616210A (zh) * 2018-04-20 2018-10-02 成都芯源***有限公司 开关变换器的驱动电路、控制电路及自举电压刷新方法
CN109217671A (zh) * 2018-10-23 2019-01-15 广州金升阳科技有限公司 一种浮地稳压供电电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209030092U (zh) * 2018-10-23 2019-06-25 广州金升阳科技有限公司 一种浮地稳压供电电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022746B1 (en) * 2008-02-07 2011-09-20 National Semiconductor Corporation Bootstrap circuit for H-bridge structure utilizing N-channel high-side fets
US20110156685A1 (en) * 2009-12-29 2011-06-30 Richtek Technology Corporation, R.O.C. Constant time buck-boost switching regulator and control circuit and method for the same
CN204103759U (zh) * 2014-09-18 2015-01-14 矽力杰半导体技术(杭州)有限公司 适用于桥式电路中上开关管驱动的供电电路以及桥式电路
CN108616210A (zh) * 2018-04-20 2018-10-02 成都芯源***有限公司 开关变换器的驱动电路、控制电路及自举电压刷新方法
CN109217671A (zh) * 2018-10-23 2019-01-15 广州金升阳科技有限公司 一种浮地稳压供电电路

Also Published As

Publication number Publication date
CN109217671B (zh) 2020-04-21
CN109217671A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
US6756772B2 (en) Dual-output direct current voltage converter
US9595871B1 (en) High efficiency inductive capacitive DC-DC converter
US9479072B2 (en) Flyback converter
CN203368326U (zh) 升压电路和led驱动电源
WO2020082712A1 (zh) 一种浮地稳压供电电路
CN111464027A (zh) 融合开关电源和线性电源的可编程数字电源***及方法
CN110071630A (zh) 一种无缝切换降压和直通工作模式的转换电路及实现方法
WO2018188132A1 (zh) 一种变压器电路以及降低空载功耗的方法
CN104578772A (zh) 一种升压电路
TWI605673B (zh) 切換式電容直流對直流電源轉換器電路及使用其輸出電壓之方法
CN105101572B (zh) 一种高功率因数led驱动集成电路
CN108390557B (zh) 提高轻载频率的开关电源
WO2023098199A1 (zh) 基于自激式降压变换器的高功率密度辅助电源
WO2022033507A1 (zh) 电压转换电路及方法、电源管理芯片和移动终端
TWI710202B (zh) 開關調節器
CN209030092U (zh) 一种浮地稳压供电电路
CN109274270A (zh) 一种新型可扩展Sepic DC-DC变换器
CN109510464A (zh) 一种具备高增益升压能力的Buck-Boost DC-DC变换器
CN211377896U (zh) 一种基于nmos管的宽电压输入的直流降压电路
CN114825928A (zh) 一种高压Buck电路
CN210380662U (zh) 一种二级辅助电源电路
CN210405094U (zh) 双向直流变换电路、双向直流变换器和电器设备
WO2022027744A1 (zh) 一种他激式微功率模块
US20190044454A1 (en) Rectifying element and voltage converter comprising such a rectifying element
CN220492853U (zh) 一种级联变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19875675

Country of ref document: EP

Kind code of ref document: A1