WO2020080581A1 - Stretchable conductor for wearable device, connection device using said stretchable conductor, flexible electrode, electronic element, and method for manufacturing same - Google Patents

Stretchable conductor for wearable device, connection device using said stretchable conductor, flexible electrode, electronic element, and method for manufacturing same Download PDF

Info

Publication number
WO2020080581A1
WO2020080581A1 PCT/KR2018/012412 KR2018012412W WO2020080581A1 WO 2020080581 A1 WO2020080581 A1 WO 2020080581A1 KR 2018012412 W KR2018012412 W KR 2018012412W WO 2020080581 A1 WO2020080581 A1 WO 2020080581A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretchable conductor
manufacturing
wearable device
metal
stretchable
Prior art date
Application number
PCT/KR2018/012412
Other languages
French (fr)
Korean (ko)
Inventor
황희선
정수환
이예인
Original Assignee
한국로봇융합연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국로봇융합연구원 filed Critical 한국로봇융합연구원
Publication of WO2020080581A1 publication Critical patent/WO2020080581A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/008Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing extensible conductors or cables

Definitions

  • the present invention relates to a stretchable conductor for a next-generation wearable device, a connecting device using the stretchable conductor, a flexible electrode, an electronic device, and a method of manufacturing the same.
  • Nanofibers is a very fine fiber with a very small diameter of about 1um or less has many applications such as medical materials, filters, MEMS, nano devices.
  • the nanofibers have a very large surface area per unit mass, are flexible, have a lot of microcavities, and have a large number of fibers per unit area, so they can be blended with other materials and have a large dispersion of external stress.
  • Electrospinning is one of the methods for manufacturing nanofibers.
  • the electrospinning device used in the electrospinning method consists of a spinning tip from which a solution comes out, a high voltage device, and a collector in which nanofibers are collected.
  • Nanofibers are formed in the collecting plate by applying a high voltage to the spinning tip to charge the droplets from the ejecting section and ejecting the stream from the droplets by electrostatic repulsion.
  • Nanofibers can be prepared using microfluidic technology.
  • a device composed of an injection tube and a collection tube is used. If the middle fluid and the outer fluid are different and pushed under external pressure, the core shell structure is formed. Nanofibers can be made.
  • nanofibers have a very large surface area, it is possible to maximize the diversity of functions of the surface. For example, it can be used to manufacture a functional nano device, such as forming a stretchable electrode by forming a semiconductor nano wire on a nanofiber.
  • a functional nano device such as forming a stretchable electrode by forming a semiconductor nano wire on a nanofiber.
  • Functional nano devices enable stretchable electronics, wearable devices, and the like.
  • stretchable electrodes have been applied to various fields such as artificial electronic skin, curved displays, and tension sensors.
  • various tensile sensors such as health rehabilitation treatment, personal health monitoring, structural defect monitoring, and sports player performance monitoring, have been re-examined, studies on flexible, flexible, and tensile-sensitive tensile sensors have been actively conducted.
  • high elasticity and high sensitivity tensile sensors have been applied to fields such as biomechanics, physiology, and kinesiology that require relatively large deformation.
  • An object of the present invention is to provide a flexible conductor for a wearable device that can be utilized, a connecting device using the flexible conductor, a flexible electrode, and a method of manufacturing the same.
  • a one-body nanonetwork structure is formed on the surface of the Au layer through a heat treatment process, and an unnecessary portion is etched to form a one-body Au nanomesh.
  • the purpose of the invention is to provide a flexible conductor for a wearable device, a connecting device using the flexible conductor, and a flexible electrode, which is manufactured by transferring a one-body Au nanomesh to a cable-shaped polyurethane substrate.
  • the metal nanofibers are fabricated in a one-body network structure, and the metal nanofibers are connected as one, thereby minimizing the contact resistance between the fibers, thereby reducing the initial resistance of the wearable device. It is an object to provide a connection device, a flexible electrode and a manufacturing method using the same.
  • the initial resistance can be controlled according to the number of times a metal one-body nanomesh is wound on a cable-type substrate, and the maximum changeable range can be secured by measuring the storage change according to the extension of the conductor.
  • An object of the present invention is to provide a flexible conductor for a wearable device, a connecting device using the flexible conductor, a flexible electrode, and a method of manufacturing the same.
  • a first object of the present invention is a method of manufacturing a stretchable conductor, comprising: a first step of manufacturing a polymer nanoconductor web; A second step of forming a polymer one-body nanonetwork structure through a heat treatment process; And a third step of manufacturing a one-body metal nanomesh through an etching process; it can be achieved as a method of manufacturing a stretchable conductor for a wearable device.
  • the first step it may be characterized in that to manufacture a polymer nano-conductor web having a network structure using electrospinning.
  • the second step it may be characterized by forming a polymer one-body nano-network structure on the surface of the metal layer through a heat treatment process.
  • the metal may be characterized in that Au.
  • the polymer mask may be removed to produce a metal one-body nanomesh.
  • metal one-body nanomesh may be characterized in that one metal nanofiber is integrally connected.
  • the fourth step of winding the metal one-body nanomesh on a cable-shaped substrate to produce a stretchable conductor may further include a.
  • the substrate may be characterized in that the polyurethane.
  • the initial resistance is reduced and the maximum stretchable range can be increased.
  • the second object of the present invention can be achieved as a stretchable conductor characterized by being manufactured by the manufacturing method according to the first object mentioned above.
  • the third object of the present invention can be achieved as a connection device for a wearable device, characterized in that it uses a stretchable conductor according to the aforementioned second object.
  • the fourth object of the present invention can be achieved as a flexible electrode characterized by using a stretchable conductor according to the aforementioned second object.
  • the fifth object of the present invention can be achieved as an electronic device characterized by using a stretchable conductor according to the aforementioned second object.
  • the flexible conductor for a wearable device a connecting device using the flexible conductor, a flexible electrode, and a method of manufacturing the flexible electronic device having a high conductivity can be used to develop a high-performance flexible display, clothing and biosensors in the future. It has an effect that can be used to manufacture wearable devices.
  • a stretchable conductor for a wearable device, a connecting device using the stretchable conductor, a flexible electrode, and a method of manufacturing the polymer nanobody are prepared on the surface of the Au layer through a heat treatment process after preparing the polymer nanoweb ( One-body) After forming a nano-network structure and etching unnecessary parts to produce a one-body Au nanomesh, the one-body Au nanomesh can be transferred to a polyurethane substrate in the form of a cable to produce it.
  • the metal nanofiber is connected to one by using a one-body network structure It has the effect of minimizing the contact resistance between fibers, thereby lowering the initial resistance.
  • the initial resistance is determined according to the number of times a metal mesh is wound on a cable-shaped substrate. It is possible to control and measure the storage change according to the elongation of the conductor to ensure the maximum possible elongation.
  • a connecting device using the stretchable conductor, a flexible electrode, and a method of manufacturing the same it has an advantage of contributing to building an optimal base for improving the manufacturing technology of the stretchable electronic device.
  • FIG. 1 is a flowchart of a method for manufacturing a stretchable conductor according to an embodiment of the present invention
  • FIG. 2 to 7 is a schematic view showing a method of manufacturing a stretchable conductor according to an embodiment of the present invention
  • Figure 2 is a perspective view of a polymer nanoconductor web having a network structure using electrospinning
  • FIG. 3 is a perspective view of a one-body nano-network structure produced through a heat treatment process according to an embodiment of the present invention
  • FIG. 4 and 5 is a perspective view of a metal one-body nano-mesh produced by removing the polymer mask after etching according to an embodiment of the present invention
  • Figure 6 is a schematic diagram of a state of transferring a metal one-body nanomesh according to an embodiment of the present invention to a polyurethane substrate in the form of a cable,
  • FIG. 7 is a perspective view of a stretchable conductor according to an embodiment of the present invention.
  • FIG. 8 is a scanning electron micrograph of a metal elastic conductor having a one-body nanonetwork structure according to an embodiment of the present invention
  • FIG. 9 is an optical micrograph of a metal stretchable conductor having a one-body nanonetwork structure according to an embodiment of the present invention.
  • FIG. 10 is a photograph of a metal nanomesh having a one-body nanonetwork structure produced according to an embodiment of the present invention
  • FIG. 11 is a photograph of a stretchable conductor produced according to an embodiment of the present invention.
  • a component when referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them.
  • a third component may be interposed between them.
  • the thickness of the components is exaggerated for effective description of the technical content.
  • Embodiments described herein will be described with reference to cross-sectional views and / or plan views, which are ideal exemplary views of the present invention.
  • the thicknesses of the films and regions are exaggerated for effective description of technical content. Therefore, the shape of the exemplary diagram may be modified by manufacturing technology and / or tolerance. Therefore, the embodiments of the present invention are not limited to the specific shapes shown, but also include changes in shapes generated according to the manufacturing process. For example, the area illustrated at a right angle may be rounded or have a shape having a predetermined curvature. Therefore, the regions illustrated in the drawings have properties, and the shapes of the regions illustrated in the drawings are for illustrating a specific shape of the region of the device and are not intended to limit the scope of the invention.
  • terms such as first and second are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component.
  • the embodiments described and illustrated herein also include its complementary embodiments.
  • the flexible conductor according to the embodiment of the present invention can be applied to a connection device, a remnant element, a flexible electrode, a biosensor, and a high-performance flexible display applicable to a next-generation wearable device.
  • FIG. 1 is a flowchart of a method of manufacturing a stretchable conductor according to an embodiment of the present invention. As shown in FIG. 1, a polymer nanoconductor web is first manufactured.
  • FIG. 2 to 7 is a schematic diagram showing a method of manufacturing a stretchable conductor according to an embodiment of the present invention
  • Figure 2 is a perspective view of a polymer nanoconductor web 10 having a network structure using electrospinning.
  • a multi-layer thin film in which a silicon (Si) layer (1), a chromium (Cr) layer (2), and a gold (Au) layer (3) are stacked is used to have a network structure using electrospinning.
  • the polymer nanoconductor web 10 is manufactured (S1).
  • a polymer one-body nano network structure 20 is formed through a heat treatment process (S2). 3 shows a perspective view of a one-body nanonetwork structure 20 manufactured through a heat treatment process according to an embodiment of the present invention. That is, as shown in Figure 3, it can be seen that the polymer one-body nano-network structure 20 is formed on the surface of the Au metal layer through a heat treatment process.
  • a one-body metal nanomesh 30 is manufactured through an etching process.
  • 4 and 5 are perspective views of a metal one-body nanomesh 30 manufactured by removing a polymer mask after etching according to an embodiment of the present invention.
  • FIG. 8 is a scanning electron micrograph of a metal stretchable conductor having a one-body nanonetwork structure according to an embodiment of the present invention
  • FIG. 9 is a metal stretchable conductor having a one-body nanonetwork structure according to an embodiment of the present invention It shows an optical micrograph of.
  • the Au metal one-body nanomesh 30 manufactured through S1 to S4 mentioned above is connected to one Au metal nanofiber 31 as shown in FIGS. 8 and 9. Therefore, it can be seen that the initial resistance can be lowered by minimizing the contact resistance between fibers.
  • FIG. 6 is a schematic diagram showing a state in which a metal one-body nanomesh 30 according to an embodiment of the present invention is transferred to a polyurethane substrate 40 in the form of a cable
  • FIG. 7 is stretchable according to an embodiment of the present invention It is a perspective view of a conductor.
  • the metal one-body nanomesh 30 is transferred to a cable-shaped substrate 40, and the substrate 40 is made of polyurethane.
  • FIG. 10 shows a photograph of a metal nanomesh 30 having a one-body nanonetwork structure manufactured according to an embodiment of the present invention.
  • Figure 11 shows a picture of a stretchable conductor 100 produced according to an embodiment of the present invention.
  • the initial resistance is reduced and the maximum stretchable range is increased.
  • the initial resistance decreases as the number of times the metal (Au) one-body nanomesh 30 is wound around the cable-shaped substrate 40, ,
  • the initial resistance when wound on the substrate three times was measured as 1.95 ⁇ .
  • the maximum range capable of stretching can be secured by measuring a change in resistance according to the stretching of the stretchable conductor 100.

Abstract

The present invention relates to a stretchable conductor for a next-generation wearable device, a connection device using the stretchable conductor, a flexible electrode, an electronic element, and a method for manufacturing same. More specifically, the present invention relates to a method for manufacturing a stretchable conductor for a wearable device, the method being characterized by comprising: a first step for preparing a polymer nanoconductor web; a second step for forming a polymer one-body nanonetwork structure through a heat treatment process; and a third step for preparing a one-body metal nanomesh through an etching process.

Description

웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극, 전자소자 및 그 제조방법Stretchable conductor for wearable device, connecting device using the stretchable conductor, flexible electrode, electronic device, and manufacturing method thereof
본 발명은 차세대 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극, 전자소자 및 그 제조방법에 관한 것이다.The present invention relates to a stretchable conductor for a next-generation wearable device, a connecting device using the stretchable conductor, a flexible electrode, an electronic device, and a method of manufacturing the same.
나노 섬유(nano fiber)는 대략 1um 이하의 매우 작은 직경을 가진 초미세 섬유로서 의료용 소재, 필터, MEMS,나노 소자 등 많은 응용분야를 갖는다. 나노 섬유는 단위 질량당 표면적이 매우 크고, 유연하며 미세공간이 많고 단위 면적당 존재하는 섬유의 수가 많아서 다른 소재와의 혼화(blending)가 가능하며 외부의 응력에 대한 분산이 큰 특징을 나타낸다.Nanofibers (nano fiber) is a very fine fiber with a very small diameter of about 1um or less has many applications such as medical materials, filters, MEMS, nano devices. The nanofibers have a very large surface area per unit mass, are flexible, have a lot of microcavities, and have a large number of fibers per unit area, so they can be blended with other materials and have a large dispersion of external stress.
나노 섬유의 제조 방법의 하나로 전기방사법(electrospinning)이 있다. 전기방사법에 사용되는 전기방사 장치는 용액이 나오는 토출부(spinning tip)와 고전압 장치 및 나노 섬유가 모아지는 포집판(collector)로 구성된다.Electrospinning is one of the methods for manufacturing nanofibers. The electrospinning device used in the electrospinning method consists of a spinning tip from which a solution comes out, a high voltage device, and a collector in which nanofibers are collected.
토출부(spinning tip)에 고전압을 인가하여 토출부에서 나오는 액적을 대전시켜서 정전기적 반발에 의하여 액적으로부터 스트림을 분출시켜서 포집판에 나노 섬유를 형성시킨다.Nanofibers are formed in the collecting plate by applying a high voltage to the spinning tip to charge the droplets from the ejecting section and ejecting the stream from the droplets by electrostatic repulsion.
또한 나노 섬유는 미세유동(microfluidic) 기술을 이용하여 제조할 수 있다. 주입 튜브(injection tube)와 포집튜브(collection tube)로 구성된 장치를 이용하며, 중간 유체(middle fluid)와 바깥쪽 유체(outer fluid)를 다르게 하고 외부압력으로 밀어내면 코어 쉘(core shell) 구조를 갖는 나노 섬유를 만들 수 있다.In addition, nanofibers can be prepared using microfluidic technology. A device composed of an injection tube and a collection tube is used. If the middle fluid and the outer fluid are different and pushed under external pressure, the core shell structure is formed. Nanofibers can be made.
나노 섬유는 표면적이 매우 크므로 표면의 기능의 다양성을 극대화할 수 있다. 예를 들면, 나노 섬유 위에 반도체 나노 와이어(nano wire)을 형성하여 신축성 있는 전극을 형성하는 것과 같이 기능성 나노 소자를 제조하는데 사용될 수 있다. 기능성 나노 소자는 신축성 전자기기(stretchable electronics), 착용가능 소자(wearable devices) 등을 가능하게 한다.Since nanofibers have a very large surface area, it is possible to maximize the diversity of functions of the surface. For example, it can be used to manufacture a functional nano device, such as forming a stretchable electrode by forming a semiconductor nano wire on a nanofiber. Functional nano devices enable stretchable electronics, wearable devices, and the like.
또한, 신축성 유연 전극(stretchable electrode)은 인공 전자 피부, 휘는 디스플레이, 인장 센서와 같은 다양한 분야들에 적용되고 있다. 최근에 건강 재활 치료, 개인 건강 모니터링, 구조 결함 모니터링, 스포츠 선수 성능 모니터링 등 다양한 인장 센서의 잠재적 응용처가 재조명됨에 따라, 유연하면서 신축성 있고 동시에 인장에 따라 민감한 인장 센서에 관한 연구가 활발하게 진행되고 있다. 특히, 고신축성·고민감도 인장 센서는 비교적 큰 변형을 요구하는 생체역학(biomechanics), 생리학(physiology), 신체 운동학(kinesiology) 등의 분야에 응용되고 있다.In addition, stretchable electrodes have been applied to various fields such as artificial electronic skin, curved displays, and tension sensors. Recently, as the potential applications of various tensile sensors, such as health rehabilitation treatment, personal health monitoring, structural defect monitoring, and sports player performance monitoring, have been re-examined, studies on flexible, flexible, and tensile-sensitive tensile sensors have been actively conducted. . In particular, high elasticity and high sensitivity tensile sensors have been applied to fields such as biomechanics, physiology, and kinesiology that require relatively large deformation.
신축성을 가지면서 전도성을 일정하게 유지해야 하는 일반적인 유연 전극과는 달리, 인장 센서로 활용되기 위해서는 높은 신축성을 가지면서 동시에 인장에 따른 연속적인 전기적 특성 변화를 가져야 한다. 하지만 기 개발된 인장 센서의 경우, 굽힘과 인장 응력이 공존하는 비평면 구조(특히 인체)에 응용되기 어려움이 있다. 이를 해결하기 위해, 전도성 물질의 종류를 바꾸는 방법에 연구되어 왔으나, 단순히 전도성 물질의 변화만으로는 재료적인 한계로 인해 신축성과 민감도 두 가지 중요 요소를 동시에 구현하지 못하는 문제가 있었다.Unlike a general flexible electrode that has a stretch and must maintain a constant conductivity, in order to be used as a tension sensor, it must have a high stretch and have a continuous change in electrical properties due to tension. However, in the case of a previously developed tensile sensor, it is difficult to be applied to a non-planar structure (especially the human body) in which bending and tensile stress coexist. In order to solve this, a method of changing the type of the conductive material has been studied, but there is a problem in that it is not possible to simultaneously implement two important factors such as elasticity and sensitivity due to material limitations only by changing the conductive material.
신축성을 가지면서 전도성을 일정하게 유지해야 하는 일반적인 유연 전극과는 달리, 인장 센서로 활용되기 위해서는 높은 신축성을 가지면서 동시에 인장에 따른 연속적인 전기적 특성 변화를 가져야 한다. 하지만 기 개발된 인장 센서의 경우, 굽힘과 인장 응력이 공존하는 비평면 구조(특히 인체)에 응용되기 어려움이 있다. 이를 해결하기 위해, 전도성 물질의 종류를 바꾸는 방법에 연구되어 왔으나, 단순히 전도성 물질의 변화만으로는 재료적인 한계로 인해 신축성과 민감도 두 가지 중요 요소를 동시에 구현하지 못하는 문제가 있었다.Unlike a general flexible electrode that has a stretch and must maintain a constant conductivity, in order to be used as a tension sensor, it must have a high stretch and have a continuous change in electrical properties due to tension. However, in the case of a previously developed tensile sensor, it is difficult to be applied to a non-planar structure (especially the human body) in which bending and tensile stress coexist. In order to solve this, a method of changing the type of the conductive material has been studied, but there is a problem in that it is not possible to simultaneously implement two important factors such as elasticity and sensitivity due to material limitations only by changing the conductive material.
따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 실시예에 따르면, 높은 전도도를 갖는 신축성 전자소자의 개발로 고성능 유연디스플레이, 의류 및 바이오센서 등 미래 웨어러블 디바이스 제작에 활용할 수 있는 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극 및 그 제조방법을 제공하는데 그 목적이 있다. Therefore, the present invention has been devised to solve the above-described conventional problems, and according to an embodiment of the present invention, in the development of high-conductivity flexible electronic devices, high-performance flexible displays, clothing and biosensors, etc. An object of the present invention is to provide a flexible conductor for a wearable device that can be utilized, a connecting device using the flexible conductor, a flexible electrode, and a method of manufacturing the same.
본 발명의 실시예에 따르면, 고분자 나노웹을 제조한 후, 열처리 공정을 통해 Au 층 표면에 고분자 원바디(one-body) 나노네트워크 구조체를 형성하고, 불필요한 부분을 에칭하여 원바디 Au 나노메쉬를 제작한 후, 원바디 Au 나노메쉬를 케이블 형태의 폴리우레탄 기판에 전사하여 제작하는, 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극을 제공하는데 그 목적이 있다. According to an embodiment of the present invention, after preparing a polymer nanoweb, a one-body nanonetwork structure is formed on the surface of the Au layer through a heat treatment process, and an unnecessary portion is etched to form a one-body Au nanomesh. After production, the purpose of the invention is to provide a flexible conductor for a wearable device, a connecting device using the flexible conductor, and a flexible electrode, which is manufactured by transferring a one-body Au nanomesh to a cable-shaped polyurethane substrate.
그리고, 본 발명의 실시예에 따르면 원바디 네트워크 구조로 금속나노섬유를 제작하여 금속나노섬유가 하나로 연결되어 있어 섬유간 접촉저항을 최소화하여 초기저항을 낮출 수 있는 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극 및 그 제조방법을 제공하는데 그 목적이 있다. In addition, according to an embodiment of the present invention, the metal nanofibers are fabricated in a one-body network structure, and the metal nanofibers are connected as one, thereby minimizing the contact resistance between the fibers, thereby reducing the initial resistance of the wearable device. It is an object to provide a connection device, a flexible electrode and a manufacturing method using the same.
또한, 본 발명의 실시예에 따르면, 케이블 형태의 기판에 금속 원바디 나노메쉬를 감는 회수에 따라 초기저항을 제어할 수 있고 전도체 신장에 따른 저장변화를 측정하여 신장이 가능한 최대범위를 확보할 수 있는 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극 및 그 제조방법을 제공하는데 그 목적이 있다. In addition, according to an embodiment of the present invention, the initial resistance can be controlled according to the number of times a metal one-body nanomesh is wound on a cable-type substrate, and the maximum changeable range can be secured by measuring the storage change according to the extension of the conductor. An object of the present invention is to provide a flexible conductor for a wearable device, a connecting device using the flexible conductor, a flexible electrode, and a method of manufacturing the same.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned are clearly understood by those skilled in the art from the following description. Will be understandable.
본 발명의 제1목적은, 신축성 전도체의 제조방법에 있어서, 고분자 나노 전도체 웹을 제조하는 제1단계; 열처리 공정을 통해 고분자 원바디 나노네트워크 구조체를 형성하는 제2단계; 및 에칭공정을 통해 원바디 금속 나노메쉬를 제작하는 제3단계;를 포함하는 것을 특징으로 하는 웨어러블 디바이스용 신축성 전도체의 제조방법으로서 달성될 수 있다. A first object of the present invention is a method of manufacturing a stretchable conductor, comprising: a first step of manufacturing a polymer nanoconductor web; A second step of forming a polymer one-body nanonetwork structure through a heat treatment process; And a third step of manufacturing a one-body metal nanomesh through an etching process; it can be achieved as a method of manufacturing a stretchable conductor for a wearable device.
그리고 제1단계에서, 전기방사를 이용하여 네트위크구조를 가지는 고분자 나노 전도체 웹을 제조하는 것을 특징으로 할 수 있다. And in the first step, it may be characterized in that to manufacture a polymer nano-conductor web having a network structure using electrospinning.
또한, 제 2단계에서, 열처리공정을 통해 금속층 표면에 고분자 원바디 나노네트워크 구조체를 형성하는 것을 특징으로 할 수 있다. In addition, in the second step, it may be characterized by forming a polymer one-body nano-network structure on the surface of the metal layer through a heat treatment process.
그리고 금속은 Au인 것을 특징으로 할 수 있다. And the metal may be characterized in that Au.
또한, 제3단계에서, 불필요한 부분을 에칭한 후 고분자 마스크를 제거하여 금속 원바디 나노메쉬를 제작하는 것을 특징으로 할 수 있다. In addition, in the third step, after etching unnecessary portions, the polymer mask may be removed to produce a metal one-body nanomesh.
그리고 상기 금속 원바디 나노메쉬는 하나의 금속나노섬유가 일체로 연결되어진 것을 특징으로 할 수 있다. In addition, the metal one-body nanomesh may be characterized in that one metal nanofiber is integrally connected.
또한, 제3단계 후에, 금속 원바디 나노메쉬를 케이블 형태의 기판에 권취하여 신축성 전도체를 제작하는 제4단계;를 더 포함하는 것을 특징으로 할 수 있다. In addition, after the third step, the fourth step of winding the metal one-body nanomesh on a cable-shaped substrate to produce a stretchable conductor; may further include a.
그리고 금속 원바디 나노메쉬를 기판에 전사하며, 상기 기판은 폴리우레탄인 것을 특징으로 할 수 있다. And the metal one-body nano-mesh is transferred to the substrate, the substrate may be characterized in that the polyurethane.
또한, 금속 원바디 나노메쉬를 상기 기판에 감는 횟수를 증가함에 따라 초기 저항이 감소되고 신장가능 최대 범위가 증가되는 것을 특징으로 할 수 있다. In addition, as the number of times the metal one-body nanomesh is wound on the substrate, the initial resistance is reduced and the maximum stretchable range can be increased.
본 발명의 제2목적은 앞서 언급한 제1목적에 따른 제조방법에 의해 제조된 것을 특징으로 하는 신축성 전도체로서 달성될 수 있다. The second object of the present invention can be achieved as a stretchable conductor characterized by being manufactured by the manufacturing method according to the first object mentioned above.
본 발명의 제3목적은 앞서 언급한 제2목적에 따른 신축성 전도체를 이용한 것을 특징으로 하는 웨어러블 디바이스용 연결장치로서 달성될 수 있다. The third object of the present invention can be achieved as a connection device for a wearable device, characterized in that it uses a stretchable conductor according to the aforementioned second object.
본 발명의 제4목적은 앞서 언급한 제2목적에 따른 신축성 전도체를 이용한 것을 특징으로 하는 유연전극으로서 달성될 수 있다. The fourth object of the present invention can be achieved as a flexible electrode characterized by using a stretchable conductor according to the aforementioned second object.
본 발명의 제5목적은 앞서 언급한 제2목적에 따른 신축성 전도체를 이용한 것을 특징으로 하는 전자소자로서 달성될 수 있다. The fifth object of the present invention can be achieved as an electronic device characterized by using a stretchable conductor according to the aforementioned second object.
본 발명의 실시예에 따른 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극 및 그 제조방법에 따르면, 높은 전도도를 갖는 신축성 전자소자의 개발로 고성능 유연디스플레이, 의류 및 바이오센서 등 미래 웨어러블 디바이스 제작에 활용할 수 있는 효과를 갖는다. According to an embodiment of the present invention, the flexible conductor for a wearable device, a connecting device using the flexible conductor, a flexible electrode, and a method of manufacturing the flexible electronic device having a high conductivity can be used to develop a high-performance flexible display, clothing and biosensors in the future. It has an effect that can be used to manufacture wearable devices.
본 발명의 실시예에 따른 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극 및 그 제조방법에 따르면, 고분자 나노웹을 제조한 후, 열처리 공정을 통해 Au 층 표면에 고분자 원바디(one-body) 나노네트워크 구조체를 형성하고, 불필요한 부분을 에칭하여 원바디 Au 나노메쉬를 제작한 후, 원바디 Au 나노메쉬를 케이블 형태의 폴리우레탄 기판에 전사하여 제작할 수 있다. According to an embodiment of the present invention, a stretchable conductor for a wearable device, a connecting device using the stretchable conductor, a flexible electrode, and a method of manufacturing the polymer nanobody are prepared on the surface of the Au layer through a heat treatment process after preparing the polymer nanoweb ( One-body) After forming a nano-network structure and etching unnecessary parts to produce a one-body Au nanomesh, the one-body Au nanomesh can be transferred to a polyurethane substrate in the form of a cable to produce it.
그리고, 본 발명의 실시예에 따른 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극 및 그 제조방법에 따르면, 원바디 네트워크 구조로 금속나노섬유를 제작하여 금속나노섬유가 하나로 연결되어 있어 섬유간 접촉저항을 최소화하여 초기저항을 낮출 수 있는 효과를 갖는다. In addition, according to an embodiment of the present invention, according to the flexible conductor for a wearable device, a connecting device using the flexible conductor, a flexible electrode, and a method of manufacturing the metal nanofiber, the metal nanofiber is connected to one by using a one-body network structure It has the effect of minimizing the contact resistance between fibers, thereby lowering the initial resistance.
또한, 본 발명의 실시예에 따른 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극 및 그 제조방법에 따르면, 케이블 형태의 기판에 금속 원바디 나노메쉬를 감는 회수에 따라 초기저항을 제어할 수 있고 전도체 신장에 따른 저장변화를 측정하여 신장이 가능한 최대범위를 확보할 수 있는다. In addition, according to an embodiment of the present invention, according to the stretchable conductor for a wearable device, a connecting device using the stretchable conductor, a flexible electrode, and a method of manufacturing the same, the initial resistance is determined according to the number of times a metal mesh is wound on a cable-shaped substrate. It is possible to control and measure the storage change according to the elongation of the conductor to ensure the maximum possible elongation.
본 발명의 실시예에 따른 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극 및 그 제조방법에 따르면, 신축성 전자소자의 제작 기술향상을 위한 최적 기반 구축에 기여할 수 있는 장점을 갖는다. According to the stretchable conductor for a wearable device according to an embodiment of the present invention, a connecting device using the stretchable conductor, a flexible electrode, and a method of manufacturing the same, it has an advantage of contributing to building an optimal base for improving the manufacturing technology of the stretchable electronic device.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description. Will be able to.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.The following drawings attached to the present specification illustrate a preferred embodiment of the present invention, and serve to further understand the technical spirit of the present invention together with the detailed description of the present invention, and therefore the present invention is limited to those described in such drawings. It should not be construed limitedly.
도 1은 본 발명의 실시예에 따른 신축성 전도체의 제조방법의 흐름도,1 is a flowchart of a method for manufacturing a stretchable conductor according to an embodiment of the present invention,
도 2 내지 도 7은 본 발명의 실시예에 따른 신축성 전도체의 제조방법을 나타낸 모식도로, 도 2는 전기방사를 이용하여 네트워크 구조를 가지는 고분자 나노전도체 웹의 사시도, 2 to 7 is a schematic view showing a method of manufacturing a stretchable conductor according to an embodiment of the present invention, Figure 2 is a perspective view of a polymer nanoconductor web having a network structure using electrospinning,
도 3은 본 발명의 실시예에 따라 열처리 공정을 통해 제작된 원바디 나노네트워크 구조체의 사시도, 3 is a perspective view of a one-body nano-network structure produced through a heat treatment process according to an embodiment of the present invention,
도 4 및 도 5는 본 발명의 실시예에 따라 에칭 후 고분자 마스크를 제거하여 제작된 금속 원바디 나노메쉬의 사시도, 4 and 5 is a perspective view of a metal one-body nano-mesh produced by removing the polymer mask after etching according to an embodiment of the present invention,
도 6은 본 발명의 실시예에 따른 금속 원바디 나노메쉬를 케이블 형태의 폴리우레탄 기판에 전사하는 상태의 모식도, Figure 6 is a schematic diagram of a state of transferring a metal one-body nanomesh according to an embodiment of the present invention to a polyurethane substrate in the form of a cable,
도 7은 본 발명의 실시예에 따른 신축성 전도체의 사시도, 7 is a perspective view of a stretchable conductor according to an embodiment of the present invention,
도 8은 본 발명의 실시예에 따른 원바디 나노네트워크 구조를 갖는 금속 신축성 전도체의 주사전자현미경사진,8 is a scanning electron micrograph of a metal elastic conductor having a one-body nanonetwork structure according to an embodiment of the present invention,
도 9는 본 발명의 실시예에 따른 원바디 나노네트워크 구조를 갖는 금속 신축성 전도체의 광학현미경사진, 9 is an optical micrograph of a metal stretchable conductor having a one-body nanonetwork structure according to an embodiment of the present invention,
도 10은 본 발명의 실시예에 따라 제작한 원바디 나노네트워크 구조를 갖는 금속 나노메쉬의 사진,10 is a photograph of a metal nanomesh having a one-body nanonetwork structure produced according to an embodiment of the present invention,
도 11은 본 발명의 실시예에 따라 제작한 신축성 전도체의 사진,11 is a photograph of a stretchable conductor produced according to an embodiment of the present invention,
도 12는 본 발명의 실시예에 따라 1,2,3회 랩핑한 신축성 전도체 각각에 대한 신장에 따른 저항변화 그래프를 도시한 것이다. 12 is a graph showing resistance change with elongation for each of the stretched conductors wrapped 1,2,3 times according to an embodiment of the present invention.
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.The above objects, other objects, features and advantages of the present invention will be readily understood through the following preferred embodiments related to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete and that the spirit of the present invention is sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.In the present specification, when a component is referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them. In addition, in the drawings, the thickness of the components is exaggerated for effective description of the technical content.
본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 따라서 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서 본 발명의 실시예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 예를 들면, 직각으로 도시된 영역은 라운드지거나 소정 곡률을 가지는 형태일 수 있다. 따라서 도면에서 예시된 영역들은 속성을 가지며, 도면에서 예시된 영역들의 모양은 소자의 영역의 특정 형태를 예시하기 위한 것이며 발명의 범주를 제한하기 위한 것이 아니다. 본 명세서의 다양한 실시예들에서 제1, 제2 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다.Embodiments described herein will be described with reference to cross-sectional views and / or plan views, which are ideal exemplary views of the present invention. In the drawings, the thicknesses of the films and regions are exaggerated for effective description of technical content. Therefore, the shape of the exemplary diagram may be modified by manufacturing technology and / or tolerance. Therefore, the embodiments of the present invention are not limited to the specific shapes shown, but also include changes in shapes generated according to the manufacturing process. For example, the area illustrated at a right angle may be rounded or have a shape having a predetermined curvature. Therefore, the regions illustrated in the drawings have properties, and the shapes of the regions illustrated in the drawings are for illustrating a specific shape of the region of the device and are not intended to limit the scope of the invention. In various embodiments of the present specification, terms such as first and second are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. The embodiments described and illustrated herein also include its complementary embodiments.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for describing the embodiments and is not intended to limit the present invention. In this specification, the singular form also includes the plural form unless otherwise specified in the phrase. As used herein, 'comprises' and / or 'comprising' does not exclude the presence or addition of one or more other components.
아래의 특정 실시예들을 기술하는데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는데 있어 별 이유 없이 혼돈이 오는 것을 막기 위해 기술하지 않음을 미리 언급해 둔다.In describing the specific embodiments below, various specific contents have been prepared to more specifically describe and understand the invention. However, a reader who has knowledge in this field to understand the present invention can recognize that it can be used without these various specific contents. It should be noted that, in some cases, parts that are commonly known in describing the invention and that are not significantly related to the invention are not described in order to prevent chaos from coming into account in explaining the present invention.
이하에서는 본 발명의 실시예에 따른 신축성 전도체의 구성 및 제조방법에 대해 설명하도록 한다. 본 발명의 실시예에 따른 신축성 전도체는 차세대 웨어러블 디바이스에 적용가능한 연결장치, 잔자소자, 유연전극, 바이오센서, 고성능 유연 디스플레이 등에 응용되어 질 수 있다. Hereinafter, a configuration and a manufacturing method of a stretchable conductor according to an embodiment of the present invention will be described. The flexible conductor according to the embodiment of the present invention can be applied to a connection device, a remnant element, a flexible electrode, a biosensor, and a high-performance flexible display applicable to a next-generation wearable device.
도 1은 본 발명의 실시예에 따른 신축성 전도체의 제조방법의 흐름도를 도시한 것이다. 도 1에 도시된 바와 같이 먼저 고분자 나노전도체 웹을 제조하게 된다. 1 is a flowchart of a method of manufacturing a stretchable conductor according to an embodiment of the present invention. As shown in FIG. 1, a polymer nanoconductor web is first manufactured.
도 2 내지 도 7은 본 발명의 실시예에 따른 신축성 전도체의 제조방법을 나타낸 모식도로, 도 2는 전기방사를 이용하여 네트워크 구조를 가지는 고분자 나노전도체 웹(10)의 사시도를 도시한 것이다. 2 to 7 is a schematic diagram showing a method of manufacturing a stretchable conductor according to an embodiment of the present invention, Figure 2 is a perspective view of a polymer nanoconductor web 10 having a network structure using electrospinning.
도 2에 도시된 바와 같이, 실리콘(Si)층(1)과, 크롬(Cr)층(2), 금(Au)층(3)을 적층시킨 다층 박막에 전기방사를 이용하여 네트워크 구조를 가지는 고분자 나노 전도체 웹(10)을 제조하게 된다(S1). As shown in FIG. 2, a multi-layer thin film in which a silicon (Si) layer (1), a chromium (Cr) layer (2), and a gold (Au) layer (3) are stacked is used to have a network structure using electrospinning. The polymer nanoconductor web 10 is manufactured (S1).
그리고 열처리 공정을 통해 고분자 원바디(one-body) 나노네트워크 구조체(20)를 형성하게 된다(S2). 도 3은 본 발명의 실시예에 따라 열처리 공정을 통해 제작된 원바디 나노네트워크 구조체(20)의 사시도를 도시한 것이다. 즉, 도 3에 도시된 바와 같이, 열처리공정을 통해 Au 금속층 표면에 고분자 원바디 나노네트워크 구조체(20)를 형성하게 됨을 알 수 있다. Then, a polymer one-body nano network structure 20 is formed through a heat treatment process (S2). 3 shows a perspective view of a one-body nanonetwork structure 20 manufactured through a heat treatment process according to an embodiment of the present invention. That is, as shown in Figure 3, it can be seen that the polymer one-body nano-network structure 20 is formed on the surface of the Au metal layer through a heat treatment process.
다음으로 에칭공정을 통해 원바디 금속 나노메쉬(30)를 제작하게 된다. 도 4 및 도 5는 본 발명의 실시예에 따라 에칭 후 고분자 마스크를 제거하여 제작된 금속 원바디 나노메쉬(30)의 사시도를 도시한 것이다. Next, a one-body metal nanomesh 30 is manufactured through an etching process. 4 and 5 are perspective views of a metal one-body nanomesh 30 manufactured by removing a polymer mask after etching according to an embodiment of the present invention.
도 4 및 도 5에 도시된 바와 같이, 원바디 나노네트워크 구조체(20)에 대하여 에칭공정을 통해 불필요한 부분을 제거하고, 고분자 mask를 제거하여(S3), Au 금속 원바디 나노메쉬(30)를 제작하게 된다(S4). 4 and 5, by removing the unnecessary portion through the etching process for the one-body nano-network structure 20, removing the polymer mask (S3), Au metal one-body nano-mesh 30 It is produced (S4).
도 8은 본 발명의 실시예에 따른 원바디 나노네트워크 구조를 갖는 금속 신축성 전도체의 주사전자현미경사진을 도시한 것이고, 도 9는 본 발명의 실시예에 따른 원바디 나노네트워크 구조를 갖는 금속 신축성 전도체의 광학현미경사진을 도시한 것이다. 8 is a scanning electron micrograph of a metal stretchable conductor having a one-body nanonetwork structure according to an embodiment of the present invention, and FIG. 9 is a metal stretchable conductor having a one-body nanonetwork structure according to an embodiment of the present invention It shows an optical micrograph of.
앞서 언급한 S1 내지 S4를 통해 제조된 Au 금속 원바디 나노메쉬(30)는 도 8 및 도 9에 도시된 바와 같이, Au 금속 나노섬유(31)가 하나로 연결되어 있음을 알 수 있다. 따라서 섬유간 접촉저항을 최소화하여 초기저항을 낮출 수 있음을 알 수 있다. It can be seen that the Au metal one-body nanomesh 30 manufactured through S1 to S4 mentioned above is connected to one Au metal nanofiber 31 as shown in FIGS. 8 and 9. Therefore, it can be seen that the initial resistance can be lowered by minimizing the contact resistance between fibers.
그리고 금속 원바디 나노메쉬(30)를 케이블 형태의 기판(40)에 권취하여(S5) 신축성 전도체(100)를 제작하게 된다(S6). 도 6은 본 발명의 실시예에 따른 금속 원바디 나노메쉬(30)를 케이블 형태의 폴리우레탄 기판(40)에 전사하는 상태의 모식도를 도시한 것이고, 도 7은 본 발명의 실시예에 따른 신축성 전도체의 사시도를 도시한 것이다. Then, the metal one-body nanomesh 30 is wound on a cable-shaped substrate 40 (S5) to produce a stretchable conductor 100 (S6). 6 is a schematic diagram showing a state in which a metal one-body nanomesh 30 according to an embodiment of the present invention is transferred to a polyurethane substrate 40 in the form of a cable, and FIG. 7 is stretchable according to an embodiment of the present invention It is a perspective view of a conductor.
즉, 금속 원바디 나노메쉬(30)를 케이블 형태의 기판(40)에 전사하며, 이러한 기판(40)은 폴리우레탄으로 구성된다. That is, the metal one-body nanomesh 30 is transferred to a cable-shaped substrate 40, and the substrate 40 is made of polyurethane.
도 10은 본 발명의 실시예에 따라 제작한 원바디 나노네트워크 구조를 갖는 금속 나노메쉬(30)의 사진을 도시한 것이다. 그리고 도 11은 본 발명의 실시예에 따라 제작한 신축성 전도체(100)의 사진을 도시한 것이다. FIG. 10 shows a photograph of a metal nanomesh 30 having a one-body nanonetwork structure manufactured according to an embodiment of the present invention. And Figure 11 shows a picture of a stretchable conductor 100 produced according to an embodiment of the present invention.
또한, 금속 원바디 나노메쉬(30)를 케이블 형태의 기판(40)에 감는 횟수를 증가시킴에 따라 초기 저항이 감소되고 신장가능 최대 범위가 증가되게 된다. Further, as the number of times the metal one-body nanomesh 30 is wound around the cable-shaped substrate 40 is increased, the initial resistance is reduced and the maximum stretchable range is increased.
도 12는 본 발명의 실시예에 따라 1,2,3회 랩핑한 신축성 전도체(100) 각각에 대한 신장에 따른 저항변화 그래프를 도시한 것이다. 12 shows a graph of resistance change according to elongation for each of the stretchable conductors 100 wrapped 1,2 or 3 times according to an embodiment of the present invention.
도 12에 도시된 바와 같이, 도 12에 도시된 바와 같이, 케이블 형태의 기판(40)에 금속(Au) 원바디 나노메쉬(30)를 감는 횟수가 증가함에 따라 초기저항이 감소됨을 알 수 있고, 기판에 3회 감았을 때의 초기저항은 1.95Ω으로 측정되었다. As shown in FIG. 12, as shown in FIG. 12, it can be seen that the initial resistance decreases as the number of times the metal (Au) one-body nanomesh 30 is wound around the cable-shaped substrate 40, , The initial resistance when wound on the substrate three times was measured as 1.95 Ω.
또한, 신축성 전도체(100)의 신장에 따른 저항변화를 측정하여 신장이 가능한 최대범위를 확보할 수 있음을 알 수 있다. In addition, it can be seen that the maximum range capable of stretching can be secured by measuring a change in resistance according to the stretching of the stretchable conductor 100.
또한, 상기와 같이 설명된 장치 및 방법은 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.In addition, the apparatus and method described above are not limited to the configuration and method of the above-described embodiments, and the above-described embodiments are selectively combined in all or part of each embodiment so that various modifications can be made. It may be configured.

Claims (13)

  1. 신축성 전도체의 제조방법에 있어서, In the manufacturing method of the stretchable conductor,
    고분자 나노 전도체 웹을 제조하는 제1단계; A first step of manufacturing a polymer nanoconductor web;
    열처리 공정을 통해 고분자 원바디 나노네트워크 구조체를 형성하는 제2단계; 및 A second step of forming a polymer one-body nanonetwork structure through a heat treatment process; And
    에칭공정을 통해 원바디 금속 나노메쉬를 제작하는 제3단계;를 포함하는 것을 특징으로 하는 웨어러블 디바이스용 신축성 전도체의 제조방법.The third step of manufacturing a one-body metal nano-mesh through the etching process; Method of manufacturing a stretchable conductor for a wearable device comprising a.
  2. 제 1항에 있어서, According to claim 1,
    상기 제1단계에서, 전기방사를 이용하여 네트위크구조를 가지는 고분자 나노 전도체 웹을 제조하는 것을 특징으로 하는 웨어러블 디바이스용 신축성 전도체의 제조방법.In the first step, a method for manufacturing a stretchable conductor for a wearable device, characterized in that a polymer nanoconductor web having a network structure is manufactured using electrospinning.
  3. 제 2항에 있어서, According to claim 2,
    상기 제 2단계에서, 열처리공정을 통해 금속층 표면에 고분자 원바디 나노네트워크 구조체를 형성하는 것을 특징으로 하는 웨어러블 디바이스용 신축성 전도체의 제조방법.In the second step, a method for manufacturing a stretchable conductor for a wearable device, characterized in that a polymer one-body nano-network structure is formed on the surface of the metal layer through a heat treatment process.
  4. 제 3항에 있어서, According to claim 3,
    상기 금속은 Au인 것을 특징으로 하는 웨어러블 디바이스용 신축성 전도체의 제조방법.The metal is a method of manufacturing a stretchable conductor for a wearable device, characterized in that Au.
  5. 제 4항에 있어서, The method of claim 4,
    상기 제3단계에서, In the third step,
    불필요한 부분을 에칭한 후 고분자 마스크를 제거하여 금속 원바디 나노메쉬를 제작하는 것을 특징으로 하는 웨어러블 디바이스용 신축성 전도체의 제조방법.A method of manufacturing a stretchable conductor for a wearable device, characterized by producing a metal one-body nanomesh by removing a polymer mask after etching unnecessary portions.
  6. 제 5항에 있어서, The method of claim 5,
    상기 금속 원바디 나노메쉬는 하나의 금속나노섬유가 일체로 연결되어진 것을 특징으로 하는 웨어러블 디바이스용 신축성 전도체의 제조방법.The metal one-body nano mesh is a method of manufacturing a stretchable conductor for a wearable device, characterized in that one metal nanofiber is integrally connected.
  7. 제 6항에 있어서, The method of claim 6,
    상기 제3단계 후에, After the third step,
    상기 금속 원바디 나노메쉬를 케이블 형태의 기판에 권취하여 신축성 전도체를 제작하는 제4단계;를 더 포함하는 것을 특징으로 하는 웨어러블 디바이스용 신축성 전도체의 제조방법.Method of manufacturing a stretchable conductor for a wearable device further comprising; a fourth step of winding the metal one-body nanomesh on a cable-shaped substrate to produce a stretchable conductor.
  8. 제 7항에 있어서, The method of claim 7,
    상기 금속 원바디 나노메쉬를 기판에 전사하며, 상기 기판은 폴리우레탄인 것을 특징으로 하는 웨어러블 디바이스용 신축성 전도체의 제조방법.A method of manufacturing a stretchable conductor for a wearable device, wherein the metal one-body nanomesh is transferred to a substrate, and the substrate is polyurethane.
  9. 제 7항에 있어서, The method of claim 7,
    상기 금속 원바디 나노메쉬를 상기 기판에 감는 횟수를 증가함에 따라 초기 저항이 감소되고 신장가능 최대 범위가 증가되는 것을 특징으로 하는 웨어러블 디바이스용 신축성 전도체의 제조방법.A method of manufacturing a stretchable conductor for a wearable device, characterized in that as the number of times the metal one-body nanomesh is wound around the substrate is increased, an initial resistance is reduced and a maximum stretchable range is increased.
  10. 제 1항 내지 제 9항 중 어느 한 항에 따른 제조방법에 의해 제조된 것을 특징으로 하는 신축성 전도체.A stretchable conductor characterized by being produced by the manufacturing method according to any one of claims 1 to 9.
  11. 제 10항에 따른 신축성 전도체를 이용한 것을 특징으로 하는 웨어러블 디바이스용 연결장치.A connection device for a wearable device, characterized in that the stretchable conductor according to claim 10 is used.
  12. 제 10항에 따른 신축성 전도체를 이용한 것을 특징으로 하는 유연전극.A flexible electrode using the stretchable conductor according to claim 10.
  13. 제 10항에 따른 신축성 전도체를 이용한 것을 특징으로 하는 전자소자.An electronic device characterized by using the stretchable conductor according to claim 10.
PCT/KR2018/012412 2018-10-15 2018-10-22 Stretchable conductor for wearable device, connection device using said stretchable conductor, flexible electrode, electronic element, and method for manufacturing same WO2020080581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180122717A KR102137805B1 (en) 2018-10-15 2018-10-15 Stretchable Conductor, Electric device and Flexible electrode for wearable device
KR10-2018-0122717 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020080581A1 true WO2020080581A1 (en) 2020-04-23

Family

ID=70282948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012412 WO2020080581A1 (en) 2018-10-15 2018-10-22 Stretchable conductor for wearable device, connection device using said stretchable conductor, flexible electrode, electronic element, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102137805B1 (en)
WO (1) WO2020080581A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102414928B1 (en) 2022-03-16 2022-07-01 최신영 Desk with built-in droplet blocking screen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192396A (en) * 2010-03-11 2011-09-29 Panasonic Electric Works Co Ltd Substrate for forming transparent conductive film, substrate with transparent conductive film, and manufacturing method of transparent conductive film
KR20160044325A (en) * 2014-10-15 2016-04-25 에스케이이노베이션 주식회사 Method of manufacturing stretchable conductor
KR101630817B1 (en) * 2014-12-10 2016-06-15 한국과학기술연구원 Wavy metal nanowire network, flexible transparent electrode comprising the same, and the preparation method thereof
WO2016175458A1 (en) * 2015-04-28 2016-11-03 고려대학교 산학협력단 Method for forming metal mesh and semiconductor device having metal mesh
KR20170058895A (en) * 2017-05-18 2017-05-29 인트리 주식회사 Light transmitting conductor comprising nano-fiber pattern and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101732178B1 (en) 2010-01-15 2017-05-04 삼성전자주식회사 Nanofiber-nanowire composite and fabrication method thereof
KR101982282B1 (en) 2012-07-31 2019-05-24 삼성전자주식회사 Stretchable and conductive composite fiber yarn, manufacturing method thereof, and stretchable and conductive composite spun yarn including the same
KR20140030975A (en) 2012-09-04 2014-03-12 삼성전자주식회사 Strechable conductive nano fiber and method for producing the same
KR101887481B1 (en) 2016-09-19 2018-08-10 한국과학기술원 Highly stretchable three-dimensional percolated conductive nano-network structure, method of manufacturing the same, strain sensor including the same and wearable device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192396A (en) * 2010-03-11 2011-09-29 Panasonic Electric Works Co Ltd Substrate for forming transparent conductive film, substrate with transparent conductive film, and manufacturing method of transparent conductive film
KR20160044325A (en) * 2014-10-15 2016-04-25 에스케이이노베이션 주식회사 Method of manufacturing stretchable conductor
KR101630817B1 (en) * 2014-12-10 2016-06-15 한국과학기술연구원 Wavy metal nanowire network, flexible transparent electrode comprising the same, and the preparation method thereof
WO2016175458A1 (en) * 2015-04-28 2016-11-03 고려대학교 산학협력단 Method for forming metal mesh and semiconductor device having metal mesh
KR20170058895A (en) * 2017-05-18 2017-05-29 인트리 주식회사 Light transmitting conductor comprising nano-fiber pattern and method of manufacturing the same

Also Published As

Publication number Publication date
KR20200042576A (en) 2020-04-24
KR102137805B1 (en) 2020-07-27

Similar Documents

Publication Publication Date Title
Liu et al. Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics
Zhou et al. Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human–machine interaction
Li et al. Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation
WO2016153155A1 (en) Biomimetic based pressure sensor manufacturing method and pressure sensor manufactured thereby
WO2017034257A1 (en) Wearable flexible printed circuit board, manufacturing method therefor and wearable smart device using same
Li et al. Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats
Zhang et al. Carbonized cotton fabric-based multilayer piezoresistive pressure sensors
CN112900080B (en) Preparation method of composite nanofiber membrane and flexible strain sensor
CN107881768B (en) Stretchable strain sensor based on polyurethane fibers and preparation method thereof
WO2020036253A1 (en) Pixel-type pressure sensor and manufacturing method therefor
WO2018052168A1 (en) Highly stretchable three-dimensional conductive nano-network structure, method for manufacturing same, tensile sensor comprising same, and wearable device
Jun et al. A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor
WO2020080581A1 (en) Stretchable conductor for wearable device, connection device using said stretchable conductor, flexible electrode, electronic element, and method for manufacturing same
WO2017204514A1 (en) Pressure detection sensor and pressure detection insole including same
Zhou et al. Flexible and self-adhesive strain sensor based on GNSs/MWCNTs coated stretchable fabric for gesture monitoring and recognition
WO2015137532A1 (en) Triboelectric energy harvesting device and method for manufacturing same
CN111766001A (en) Micro-wrinkle gold thin film flexible crack sensor with controllable scale
CN113916416A (en) High-permeability strain non-sensitive electronic skin and preparation method thereof
KR20200029432A (en) Adhesive transparent electrode and method for manufacturing thereof
WO2017082613A1 (en) Pressure sensing insole
Luo et al. Preparation and tensile conductivity of carbon nanotube/polyurethane nanofiber conductive films based on the centrifugal spinning method
Zhu et al. A high-performance textile pressure sensor based on carbon black/carbon nanotube-polyurethane coated fabrics with porous structure for monitoring human motion
CN113008124B (en) Multimode sensor and preparation method thereof
WO2018004313A1 (en) Surface electromyogram sensor having multi-channel
Yang et al. Merkel cell-like artificial mechanoreceptor with high sensitivity and high resolution over a wide linear range

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937301

Country of ref document: EP

Kind code of ref document: A1