WO2020080097A1 - Fin - Google Patents

Fin Download PDF

Info

Publication number
WO2020080097A1
WO2020080097A1 PCT/JP2019/038729 JP2019038729W WO2020080097A1 WO 2020080097 A1 WO2020080097 A1 WO 2020080097A1 JP 2019038729 W JP2019038729 W JP 2019038729W WO 2020080097 A1 WO2020080097 A1 WO 2020080097A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
width direction
flat
fins
length
Prior art date
Application number
PCT/JP2019/038729
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 紫垣
太一 浅野
翔太 寺地
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020080097A1 publication Critical patent/WO2020080097A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D13/00Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
    • B21D13/04Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form by rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • the present disclosure relates to a fin formed by bending a metal plate in a wavy shape.
  • Patent Document 1 Conventionally, there is a drone cup heat exchanger described in Patent Document 1.
  • a plurality of tubes forming the heat exchanger are formed by joining the joint portions of the pair of drone cup plates so as to face each other. Fins for increasing the contact area with the refrigerant are arranged inside the pair of Delon cup plates.
  • the fin described in Patent Document 1 has a structure in which peaks and valleys are alternately formed from one end to the other end. When the direction from one end of the fin to the other end is the width direction, flat portions parallel to the width direction are formed at both ends of the fin.
  • the fin as described in Patent Document 1 is formed by sandwiching a thin metal plate between two forming rollers.
  • a fin having flat portions at both ends as described in Patent Document 1 flat portions having no unevenness are formed at both axial end portions, and unevenness is formed on portions other than the flat portions.
  • a forming roller having an uneven portion is used. The length from one flat portion to the other flat portion of the roller is determined by the length of the fin in the width direction.
  • An object of the present disclosure is to provide a fin that can reduce manufacturing costs.
  • a fin according to one embodiment of the present disclosure is a fin formed by bending a metal plate in a wavy shape, and the direction in which the wavy shape is bent in the fin is the width direction, and the fin is formed by bending the wavy shape.
  • the bent portion is a portion in which the bent portion and the valley portion are alternately formed, first flat portions parallel to the width direction are formed at one end and the other end of the bent portion in the width direction, respectively.
  • a second flat portion parallel to the width direction is further formed in the middle part from one end to the other end.
  • this structure by cutting the fins at the second flat portion, it is possible to form a plurality of fins having different lengths in the width direction. Therefore, since it is possible to mold a plurality of types of fins having different lengths in the width direction only by preparing a forming roller for forming the fins having the above-mentioned configuration, it is not necessary to prepare a plurality of types of forming rollers. Only the manufacturing cost can be reduced.
  • FIG. 1 is a perspective view showing a schematic configuration of a drone cup heat exchanger according to an embodiment.
  • FIG. 2 is a plan view of the tube in FIG.
  • FIG. 3 is a sectional view taken along the line III-III in FIG. 2 and is an enlarged view of the vicinity of the joint portion of the tube.
  • FIG. 4 is a cross-sectional view showing a cross-sectional structure of the fin provided in the tube of the embodiment.
  • FIG. 5 is a figure which shows typically the equipment which manufactures the fin of embodiment.
  • FIG. 6 is a plan view showing a planar structure of the forming roller of the embodiment.
  • FIG. 7 is a cross-sectional view showing an example of the fin manufacturing method of the embodiment.
  • FIG. 1 is a perspective view showing a schematic configuration of a drone cup heat exchanger according to an embodiment.
  • FIG. 2 is a plan view of the tube in FIG.
  • FIG. 3 is a sectional view taken along the line III-III in FIG. 2 and is an
  • FIG. 8 is sectional drawing which shows an example of the manufacturing method of the fin of embodiment.
  • FIG. 9 is a sectional view showing a sectional structure of a fin of another embodiment.
  • FIG. 10 is a sectional view showing a sectional structure of a fin of another embodiment.
  • the Delon cup heat exchanger 1 according to the embodiment (hereinafter, also simply referred to as “heat exchanger 1”) has a configuration as shown in FIGS. 1 to 3, for example.
  • the drone cup heat exchanger 1 is configured by stacking hollow tubes 2 having a so-called draw cup type structure in multiple stages, and a fluid flowing inside the hollow portion of the tube 2 (the present embodiment In this case, heat is exchanged between the refrigerant) and the fluid (air in this embodiment) flowing on the surface of the tube 2.
  • the Delon cup heat exchanger 1 is used, for example, in an oil cooler, an evaporator, an intercooler, a radiator, or the like.
  • the Delon cup type heat exchanger 1 of the present embodiment includes a pair of Delon cup plates 2a and 2b which are joined together in the middle of the tube 2 having a flat cross section.
  • the corrugated fins 3 are laminated and disposed with the corrugated fins 3 interposed therebetween, and are integrally brazed in a vacuum brazing or an atmosphere furnace.
  • the tubes 2 and the corrugated fins 3 are stacked and arranged in the vertical direction (vertical direction in FIG. 1). Further, an air flow path FP1 through which air flowing in a direction indicated by an arrow A in FIG. 1 passes is formed in a gap between the tubes 2 where the corrugated fins 3 are provided.
  • the direction in which the tubes 2 are stacked (the vertical direction in FIGS. 1 and 3) is referred to as the “stacking direction”. Further, as shown by an arrow A in FIG. 1, which is orthogonal to the stacking direction, a direction in which air, which is one of the fluids for heat exchange, flows (vertical direction in FIG. 2, lateral direction in FIG. 3) is referred to as “air flow direction”. ".
  • the direction orthogonal to the stacking direction and the air flow direction (the left-right direction in FIG. 2) is referred to as the “refrigerant flow direction”, which is the direction in which the refrigerant that is the other fluid that performs heat exchange flows.
  • the drone cup plates 2a and 2b are press-molded with a brazing material clad on the surface of an aluminum plate or a copper plate, and are laminated so as to form a hollow portion inside. Further, as shown in FIG. 2, communication holes 2c, 2d are formed in the drone cup plates 2a, 2b so that the hollow portions serve as fluid flow passages.
  • the flow passage FP2 provided inside the tube 2 is formed in a substantially U shape.
  • the drone cup heat exchanger 1 is provided with an inflow port 5a and an outflow port 5b at positions corresponding to the communication holes 2c and 2d of the end plate 5.
  • the refrigerant flowing into the heat exchanger 1 from the inflow port 5a flows through the air passage FP1 between the tubes 2 while flowing through the communication hole 2c of each tube 2 through the substantially U-shaped flow passage FP2. Heat is exchanged with each other, flows through the communication hole 2d, and returns from the outlet 5b of the heat exchanger 1 to the circuit.
  • the pair of drone cup plates 2a, 2b are connected to one side 2f on the downstream side (the upper side in FIG. 2) in the air flow direction during assembly. Then, the pair of drone cup plates 2a and 2b are bent so as to face each other so that the one side 2f serves as the rotation axis, and as shown in FIG. 3, the opposite side of the one side 2f is the upstream side in the air flow direction.
  • the joint portions 2h and 2i of each plate provided on one side 2g contact each other.
  • the tube 2 is formed by joining the contact surfaces of the joint portions 2h and 2i by an arbitrary joining method such as brazing.
  • one of the pair of drone cup plates 2a and 2b which is arranged on the lower side in the stacking direction, has a flat plate shape and is arranged on the upper side in the stacking direction.
  • the other draw cup plate 2a has a convex shape which is processed so as to be convex outward.
  • one of the drone cup plates 2b is formed in a linear shape along the air flow direction, and the other of the drone cup plates 2a is formed in a convex shape protruding upward in the stacking direction.
  • Inner fins 4 are installed inside the tube 2.
  • the fins 4 are formed by bending a thin metal plate into a wavy shape.
  • the direction indicated by the arrow X in FIG. 3, that is, the direction in which the fin 4 is bent in a wave shape is also referred to as “width direction X”.
  • a portion in which the crests 401 and the troughs 402 are alternately formed by being bent in a wave shape is also referred to as a “bent 40”.
  • a flat portion 41 is formed at one end of each bent portion 40 in the width direction X.
  • a flat portion 41 is similarly formed on the other end of the bent portion.
  • the flat portion 41 is formed so as to extend parallel to the width direction X.
  • each flat portion 41 in the width direction X is set to "L10".
  • the fins 4 are arranged inside the tube 2, that is, in the flow path FP2.
  • the fin 4 increases the contact area with the refrigerant in the flow path FP2. As a result, heat is efficiently transferred to the refrigerant flowing through the flow path FP2.
  • the fin 4 is formed by cutting the fin 6 shown in FIG. As shown in FIG. 4, the fins 6 are formed by bending a thin metal plate into a wave shape.
  • a portion in which the ridge portions 11 and the valley portions 12 are alternately formed by being bent in a wave shape is also referred to as a “bent portion 10”.
  • Flat portions 20 and 21 are formed at one end 13 and the other end 14 of the bent portion 10 in the width direction X, respectively.
  • the flat portions 20 and 21 are formed so as to extend parallel to the width direction X.
  • the length of the flat portions 20 and 21 in the width direction X is set to "L10".
  • the flat portions 20 and 21 correspond to the first flat portion.
  • a flat portion 30 is formed in the middle of the bent portion 10 from one end 13 to the other end 14. Like the flat portions 20 and 21, the flat portion 30 is formed so as to extend parallel to the width direction X. The length of the flat portion 30 in the width direction X is set to "L11". The length L11 of the flat portion 30 is equal to the length L10 of the flat portions 20 and 21. In the present embodiment, the flat portion 30 corresponds to the second flat portion.
  • the length from one end 13 of the bent portion 10 to one end 31 of the flat portion 30 is set to "L20".
  • the length from the other end 32 of the flat portion 30 to the other end 14 of the bent portion 10 is set to "L21”.
  • the relationship of “L20> L21” is established between the length L20 and the length L21.
  • the equipment for manufacturing the fin 6 includes a material M, a supporting roller R10, forming rollers R21 and R22, and straightening rollers R31 and R32.
  • the material M is formed by winding a flat metal plate 100, which is a material of the fin 6, into a cylindrical shape.
  • the material M is arranged with its central axis m1 along the depth direction of the paper surface, and rotates around the central axis m1 in the clockwise direction in FIG. As a result, the metal plate 100 is sent to the support roller R10.
  • the supporting roller R10 rotates while supporting the metal plate 100 from the lower side, and sends the metal plate 100 to the forming rollers R21 and R22. After passing through the support roller R10, the metal plate 100 is in a substantially horizontal state. Processing oil is supplied from the oil supply units S1 and S2 to the metal plate 100 that has passed through the support roller R10. The processing oil is for reducing friction between the forming rollers R21 and R22 and the metal plate 100.
  • the forming rollers R21 and R22 are for forming the corrugated metal plate 100 into the fins 6 by sandwiching the metal plate 100 in the vertical direction.
  • the forming rollers R21 and R22 are both rollers having a substantially columnar shape, and are arranged with their central axes m21 and m22 along the depth direction of the drawing.
  • the forming roller R21 arranged above rotates around its central axis m21 in the counterclockwise direction in FIG.
  • the forming roller R22 arranged on the lower side is rotated around its central axis m22 in the clockwise direction in FIG.
  • an uneven portion 110 and flat portions 111 to 113 are formed on the outer peripheral surface of the forming roller R21.
  • the concavo-convex portion 110 is a portion in which concave portions and convex portions are alternately formed in a direction parallel to the central axis m21.
  • the plane portions 111 to 113 are flat portions in which no concave portion and convex portion are formed.
  • the plane portions 111 and 112 are formed at both ends of the forming roller R21 in the direction parallel to the central axis m21.
  • the plane portion 113 is formed in the middle of the uneven portion 110.
  • the structure of the forming roller R22 is substantially the same as that of the forming roller R21, detailed description thereof will be omitted.
  • the uneven portion 110 of the forming rollers R21 and R22 causes a portion corresponding to the bent portion 10 of the fin 6.
  • the metal plate 100 is formed, and the flat portions 111 to 113 form the portions corresponding to the flat portions 20, 21, 30 of the fin 6 on the metal plate 100.
  • the metal plate 100 passes while the portions corresponding to the flat portions 20 and 21 of the fin 6 are sandwiched by the flat portions 111 and 112 of the forming rollers R21 and R22, the metal plate 100 is less likely to warp. ing.
  • the correction rollers R31 and R32 are arranged with a predetermined gap in the vertical direction.
  • the straightening rollers R31 and R32 sandwich the metal plate 100 that has passed through the forming rollers R21 and R22, that is, the corrugated metal plate 100 in the up-down direction by the gap between them, and thereby the thickness of the fin 6 is increased. Is to be uniform throughout.
  • a cutting step of cutting the fins 6 as shown in FIG. 7 or 8 is performed.
  • a fin 60 having a length “L10 + L20 + L11” can be obtained.
  • a fin 61 having a length “L11 + L21 + L10” can be obtained.
  • two types of fins 60 and 61 having different lengths in the width direction X can be formed. If such a fin 6 is used, two types of fins 60 and 61 having different lengths in the width direction X can be obtained by simply preparing a forming roller for forming the fin 6, that is, forming rollers R21 and R22 shown in FIG. Since it is possible to mold, it is possible to reduce the manufacturing cost because it is not necessary to prepare two types of molding rollers.
  • the above-mentioned embodiment can also be implemented in the following forms.
  • the length of the flat portion 30 of the fin 6 can be appropriately changed. If the length of the flat portion 30 is equal to or longer than the length L10 of the other flat portions 20 and 21, the fin 6 is cut at the portion of the flat portion 30 to show the fin 60 shown in FIG. 7 and the fin 60 shown in FIG. It is possible to mold the fins 61 to be formed.
  • the length L11 of the flat portion 30 of the fin 6 may be set to be twice the length L10 of the other flat portions 20 and 21. According to such a configuration, by cutting the flat portion 30 along the chain double-dashed line C shown in FIG. 9, that is, by cutting the flat portion 30 at the center, not only the fin 60 shown in FIG. The fin 61 shown in FIG. 8 can be obtained. If the length L11 of the flat portion 30 is set to be twice or more the length L10 of the other flat portions 20 and 21, the same action and effect can be obtained.
  • -A plurality of flat portions 30 may be formed in the middle of the bent portion 10 of the fin 6, instead of the single flat portion 30. According to such a configuration, not only two types of fins but also three or more types of fins can be obtained from the fin 6. -As shown in FIG. 10, the flat part 41 of the fin 4 may be inclined so as to form a predetermined angle with respect to the width direction X. With such a configuration, it is possible to prevent the flat portion 41 of the fin 4 from riding on other components when the heat exchanger 1 is assembled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A fin (6) formed by bending a metal sheet into a wave shape, wherein, first flat parts (20, 21) parallel to the width direction are respectively formed at one end and the other end of a bent part (10) in the width direction, the width direction being the direction of folding into a wave shape in the fin, and the bent part being the portion where peaks (11) and valleys (12) are alternately formed by the bending into a wave shape, and a second flat part (30) parallel to the width direction is formed in a portion of the bent part partway from one end to the other end thereof.

Description

フィンfin 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年10月19日に出願された日本国特許出願2018-197149号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2018-197149 filed on October 19, 2018, and claims the benefit of its priority, and the entire contents of the patent application are Incorporated herein by reference.
 本開示は、金属板を波形状に折り曲げることにより形成されるフィンに関する。 The present disclosure relates to a fin formed by bending a metal plate in a wavy shape.
 従来、特許文献1に記載のドロンカップ式熱交換器がある。この熱交換器を構成する複数のチューブは、一対のドロンカッププレートが対向するようそれぞれの継手部の間を接合して形成される。一対のドロンカッププレートの内部には、冷媒との接触面積を増加させるためのフィンが配置されている。特許文献1に記載のフィンは、その一端部から他端部に向かって山部と谷部とが交互に形成された構造を有している。フィンの一端部から他端部に向かう方向を巾方向とするとき、フィンの両端部には、巾方向に平行な平坦部が形成されている。 Conventionally, there is a drone cup heat exchanger described in Patent Document 1. A plurality of tubes forming the heat exchanger are formed by joining the joint portions of the pair of drone cup plates so as to face each other. Fins for increasing the contact area with the refrigerant are arranged inside the pair of Delon cup plates. The fin described in Patent Document 1 has a structure in which peaks and valleys are alternately formed from one end to the other end. When the direction from one end of the fin to the other end is the width direction, flat portions parallel to the width direction are formed at both ends of the fin.
特開2018-87660号公報JP, 2008-87660, A
 特許文献1に記載されるようなフィンは、薄い金属板を2つの成形ローラの間に挟み込むことにより成形される。例えば特許文献1に記載されるような両端に平坦部を有するフィンを製造する場合、凹凸が形成されていない平坦部を軸方向の両端部に有し、且つ平坦部以外の部分に凹凸が形成されている凹凸部を有する成形ローラが用いられる。ローラにおける一方の平坦部から他方の平坦部までの長さは、フィンの巾方向の長さにより定まる。 The fin as described in Patent Document 1 is formed by sandwiching a thin metal plate between two forming rollers. For example, when manufacturing a fin having flat portions at both ends as described in Patent Document 1, flat portions having no unevenness are formed at both axial end portions, and unevenness is formed on portions other than the flat portions. A forming roller having an uneven portion is used. The length from one flat portion to the other flat portion of the roller is determined by the length of the fin in the width direction.
 このようにしてフィンが成形される関係上、巾方向の長さが異なるフィンを製造する場合、複数種類の成形ローラが必要となる。これがフィンの製造コストを増加させる要因となっている。
 本開示の目的は、製造コストを低減することの可能なフィンを提供することにある。
Due to the fact that the fins are formed in this way, a plurality of types of forming rollers are required when manufacturing fins having different lengths in the width direction. This is a factor that increases the fin manufacturing cost.
An object of the present disclosure is to provide a fin that can reduce manufacturing costs.
 本開示の一態様によるフィンは、金属板を波形状に折り曲げることにより形成されるフィンであって、当該フィンにおいて波形状に折り曲げられている方向を巾方向とし、波形状に折り曲げられることにより山部及び谷部が交互に形成されている部分を屈曲部とするとき、巾方向における屈曲部の一端部及び他端部には、巾方向に平行な第1平坦部がそれぞれ形成され、屈曲部の一端部から他端部までの途中部分には、巾方向に平行な第2平坦部が更に形成されている。 A fin according to one embodiment of the present disclosure is a fin formed by bending a metal plate in a wavy shape, and the direction in which the wavy shape is bent in the fin is the width direction, and the fin is formed by bending the wavy shape. When the bent portion is a portion in which the bent portion and the valley portion are alternately formed, first flat portions parallel to the width direction are formed at one end and the other end of the bent portion in the width direction, respectively. A second flat portion parallel to the width direction is further formed in the middle part from one end to the other end.
 この構成によれば、第2平坦部の部分でフィンを切断することにより、巾方向の長さの異なるフィンを複数成形することができる。したがって、上記構成のフィンを成形するための成形ローラを用意するだけで、巾方向の長さの異なる複数種類のフィンを成形することができるため、複数種類の成形ローラを用意する必要がない分だけ製造コストを低減することができる。 According to this structure, by cutting the fins at the second flat portion, it is possible to form a plurality of fins having different lengths in the width direction. Therefore, since it is possible to mold a plurality of types of fins having different lengths in the width direction only by preparing a forming roller for forming the fins having the above-mentioned configuration, it is not necessary to prepare a plurality of types of forming rollers. Only the manufacturing cost can be reduced.
図1は、実施形態に係るドロンカップ式熱交換器の概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a drone cup heat exchanger according to an embodiment. 図2は、図1中のチューブの平面図である。FIG. 2 is a plan view of the tube in FIG. 図3は、図2中のIII-III断面図であり、チューブの継手部の近傍を拡大視した図である。FIG. 3 is a sectional view taken along the line III-III in FIG. 2 and is an enlarged view of the vicinity of the joint portion of the tube. 図4は、実施形態のチューブ内に設けられるフィンの断面構造を示す断面図である。FIG. 4 is a cross-sectional view showing a cross-sectional structure of the fin provided in the tube of the embodiment. 図5は、実施形態のフィンを製造する設備を模式的に示す図である。FIG. 5: is a figure which shows typically the equipment which manufactures the fin of embodiment. 図6は、実施形態の成形ローラの平面構造を示す平面図である。FIG. 6 is a plan view showing a planar structure of the forming roller of the embodiment. 図7は、実施形態のフィンの製造方法の一例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of the fin manufacturing method of the embodiment. 図8は、実施形態のフィンの製造方法の一例を示す断面図である。FIG. 8: is sectional drawing which shows an example of the manufacturing method of the fin of embodiment. 図9は、他の実施形態のフィンの断面構造を示す断面図である。FIG. 9 is a sectional view showing a sectional structure of a fin of another embodiment. 図10は、他の実施形態のフィンの断面構造を示す断面図である。FIG. 10 is a sectional view showing a sectional structure of a fin of another embodiment.
 以下、フィンの一実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 はじめに、本実施形態のフィンが用いられるドロンカップ式熱交換器の概略構成について説明する。実施形態に係るドロンカップ式熱交換器1(以下では単に「熱交換器1」とも表記する場合がある)は、例えば図1~3に示すような構成をとる。一般に、ドロンカップ式熱交換器1とは、いわゆるドロンカップタイプ(Drawn Cup)構造と呼ばれる中空状のチューブ2を多段に積層して構成され、チューブ2の中空部内側を流れる流体(本実施形態では冷媒)と、チューブ2の表面を流れる流体(本実施形態では空気)との間で熱交換を行うものである。ドロンカップ式熱交換器1は、例えばオイルクーラー、エバポレータ、インタークーラー、ラジエータ等に用いられる。
An embodiment of the fin will be described below with reference to the drawings. In order to facilitate understanding of the description, the same components in the drawings are denoted by the same reference symbols as much as possible, and redundant description will be omitted.
First, the schematic configuration of the Delon cup type heat exchanger using the fins of the present embodiment will be described. The Delon cup heat exchanger 1 according to the embodiment (hereinafter, also simply referred to as “heat exchanger 1”) has a configuration as shown in FIGS. 1 to 3, for example. In general, the drone cup heat exchanger 1 is configured by stacking hollow tubes 2 having a so-called draw cup type structure in multiple stages, and a fluid flowing inside the hollow portion of the tube 2 (the present embodiment In this case, heat is exchanged between the refrigerant) and the fluid (air in this embodiment) flowing on the surface of the tube 2. The Delon cup heat exchanger 1 is used, for example, in an oil cooler, an evaporator, an intercooler, a radiator, or the like.
 図1に示すように、本実施形態のドロンカップ式熱交換器1は、一対のドロンカッププレート2a,2bを最中状に接合して構成される断面偏平状のチューブ2相互の間に、コルゲートフィン3を介在させて積層して配設して、真空ろう付け又は雰囲気炉にて一体ろう付けして製造されている。本実施形態では、チューブ2及びコルゲートフィン3は鉛直方向(図1の上下方向)に積層配置されている。また、チューブ2間のコルゲートフィン3が設けられる間隙には、図1に矢印Aで示す方向に流れる空気が通過する空気流路FP1が形成されている。 As shown in FIG. 1, the Delon cup type heat exchanger 1 of the present embodiment includes a pair of Delon cup plates 2a and 2b which are joined together in the middle of the tube 2 having a flat cross section. The corrugated fins 3 are laminated and disposed with the corrugated fins 3 interposed therebetween, and are integrally brazed in a vacuum brazing or an atmosphere furnace. In the present embodiment, the tubes 2 and the corrugated fins 3 are stacked and arranged in the vertical direction (vertical direction in FIG. 1). Further, an air flow path FP1 through which air flowing in a direction indicated by an arrow A in FIG. 1 passes is formed in a gap between the tubes 2 where the corrugated fins 3 are provided.
 なお、以下の説明では、チューブ2が積層されている方向(図1及び図3の上下方向)を「積層方向」と表記する。また、この積層方向に直交し、図1に矢印Aで示すように、熱交換を行う一方の流体である空気が流れる方向(図2の上下方向、図3の左右方向)を「空気流れ方向」と表記する。これらの積層方向及び空気流れ方向と直交する方向(図2の左右方向)を、熱交換を行う他方の流体である冷媒が流れる方向である「冷媒流れ方向」と表記する。 Note that in the following description, the direction in which the tubes 2 are stacked (the vertical direction in FIGS. 1 and 3) is referred to as the “stacking direction”. Further, as shown by an arrow A in FIG. 1, which is orthogonal to the stacking direction, a direction in which air, which is one of the fluids for heat exchange, flows (vertical direction in FIG. 2, lateral direction in FIG. 3) is referred to as “air flow direction”. ". The direction orthogonal to the stacking direction and the air flow direction (the left-right direction in FIG. 2) is referred to as the “refrigerant flow direction”, which is the direction in which the refrigerant that is the other fluid that performs heat exchange flows.
 ドロンカッププレート2a,2bは、アルミ板または銅板の表面にろう材をクラッドしたものをプレス成形し、内部に中空部を形成するよう積層している。また、図2に示すように、ドロンカッププレート2a,2bには、中空部が流体流通路となるよう連通孔2c,2dが形成されている。本実施形態では、チューブ2の内部に設けられる流通路FP2は、略U字状に形成されている。 The drone cup plates 2a and 2b are press-molded with a brazing material clad on the surface of an aluminum plate or a copper plate, and are laminated so as to form a hollow portion inside. Further, as shown in FIG. 2, communication holes 2c, 2d are formed in the drone cup plates 2a, 2b so that the hollow portions serve as fluid flow passages. In the present embodiment, the flow passage FP2 provided inside the tube 2 is formed in a substantially U shape.
 ドロンカップ式熱交換器1には、図1に示すように、エンドプレート5の連通孔2c,2dに対応する位置に流入口5a及び流出口5bが設けられている。これにより、流入口5aから熱交換器1に流入した冷媒は、各チューブ2の連通孔2cから略U字状の流通路FP2を流通しながら、チューブ2間の空気流路FP1を流通する空気と熱交換を行って、連通孔2dを流通し、熱交換器1の流出口5bから回路に戻って行く。 As shown in FIG. 1, the drone cup heat exchanger 1 is provided with an inflow port 5a and an outflow port 5b at positions corresponding to the communication holes 2c and 2d of the end plate 5. As a result, the refrigerant flowing into the heat exchanger 1 from the inflow port 5a flows through the air passage FP1 between the tubes 2 while flowing through the communication hole 2c of each tube 2 through the substantially U-shaped flow passage FP2. Heat is exchanged with each other, flows through the communication hole 2d, and returns from the outlet 5b of the heat exchanger 1 to the circuit.
 本実施形態では、一対のドロンカッププレート2a,2bは、組立時に空気流れ方向の下流側(図2では上側)の一辺2fが連結されている。そして、この一辺2fが回転軸となるよう一対のドロンカッププレート2a,2bが相互に対向するように折り曲げられて、図3に示すように、この一辺2fの対辺である空気流れ方向の上流側の一辺2gに設けられた各プレートの継手部2h,2iが当接する。そして、継手部2h,2iの当接面の間が、例えばろう付け接合などの任意の接合手法により接合されて、チューブ2が形成される。 In the present embodiment, the pair of drone cup plates 2a, 2b are connected to one side 2f on the downstream side (the upper side in FIG. 2) in the air flow direction during assembly. Then, the pair of drone cup plates 2a and 2b are bent so as to face each other so that the one side 2f serves as the rotation axis, and as shown in FIG. 3, the opposite side of the one side 2f is the upstream side in the air flow direction. The joint portions 2h and 2i of each plate provided on one side 2g contact each other. Then, the tube 2 is formed by joining the contact surfaces of the joint portions 2h and 2i by an arbitrary joining method such as brazing.
 チューブ2は、図3に示すように、一対のドロンカッププレート2a,2bのうち、積層方向の下側に配置される一方のドロンカッププレート2bが平板状であり、積層方向の上側に配置される他方のドロンカッププレート2aが外側に凸となるよう加工された凸形状である片絞り構造である。図3に示す冷媒流れ方向から視た断面形状では、一方のドロンカッププレート2bは空気流れ方向に沿った直線状で形成され、他方のドロンカッププレート2aは積層方向上側に突出する凸形状に形成されている。また、チューブ2の内部にはインナフィン4が設置されている。 As shown in FIG. 3, in the tube 2, one of the pair of drone cup plates 2a and 2b, which is arranged on the lower side in the stacking direction, has a flat plate shape and is arranged on the upper side in the stacking direction. The other draw cup plate 2a has a convex shape which is processed so as to be convex outward. In the cross-sectional shape viewed from the refrigerant flow direction shown in FIG. 3, one of the drone cup plates 2b is formed in a linear shape along the air flow direction, and the other of the drone cup plates 2a is formed in a convex shape protruding upward in the stacking direction. Has been done. Inner fins 4 are installed inside the tube 2.
 フィン4は、薄い金属板を波形状に折り曲げることにより形成されたものである。以下では、図3において矢印Xで示される方向、すなわちフィン4において波形状に折り曲げられている方向を「巾方向X」とも称する。また、フィン4において、波形状に折り曲げられることにより山部401及び谷部402が交互に形成されている部分を「屈曲部40」とも称する。巾方向Xにおける屈曲部40の一端部には、平坦部41がそれぞれ形成されている。なお、図示は省略するが、屈曲部の他端部にも、同様に平坦部41が形成されている。平坦部41は、巾方向Xに対して平行に延びるように形成されている。巾方向Xにおける平坦部41のそれぞれの長さは「L10」に設定されている。フィン4は、チューブ2の内部、すなわち流路FP2に配置されている。フィン4により、流路FP2における冷媒との接触面積が大きくなっている。これにより、流路FP2を流れる冷媒への熱伝達が効率的に行われる。 The fins 4 are formed by bending a thin metal plate into a wavy shape. Hereinafter, the direction indicated by the arrow X in FIG. 3, that is, the direction in which the fin 4 is bent in a wave shape is also referred to as “width direction X”. Further, in the fin 4, a portion in which the crests 401 and the troughs 402 are alternately formed by being bent in a wave shape is also referred to as a “bent 40”. A flat portion 41 is formed at one end of each bent portion 40 in the width direction X. Although not shown, a flat portion 41 is similarly formed on the other end of the bent portion. The flat portion 41 is formed so as to extend parallel to the width direction X. The length of each flat portion 41 in the width direction X is set to "L10". The fins 4 are arranged inside the tube 2, that is, in the flow path FP2. The fin 4 increases the contact area with the refrigerant in the flow path FP2. As a result, heat is efficiently transferred to the refrigerant flowing through the flow path FP2.
 次に、フィン4の製造方法について説明する。
 フィン4は、図4に示されるフィン6を切断することにより成形される。図4に示されるように、フィン6は、薄い金属板を波形状に折り曲げることにより形成されている。以下では、フィン6において、波形状に折り曲げられることにより山部11及び谷部12が交互に形成されている部分を「屈曲部10」とも称する。
Next, a method of manufacturing the fin 4 will be described.
The fin 4 is formed by cutting the fin 6 shown in FIG. As shown in FIG. 4, the fins 6 are formed by bending a thin metal plate into a wave shape. Hereinafter, in the fin 6, a portion in which the ridge portions 11 and the valley portions 12 are alternately formed by being bent in a wave shape is also referred to as a “bent portion 10”.
 巾方向Xにおける屈曲部10の一端部13及び他端部14には、平坦部20,21がそれぞれ形成されている。平坦部20,21は、巾方向Xに対して平行に延びるように形成されている。巾方向Xにおける平坦部20,21の長さは「L10」に設定されている。本実施形態では、平坦部20,21が第1平坦部に相当する。 Flat portions 20 and 21 are formed at one end 13 and the other end 14 of the bent portion 10 in the width direction X, respectively. The flat portions 20 and 21 are formed so as to extend parallel to the width direction X. The length of the flat portions 20 and 21 in the width direction X is set to "L10". In this embodiment, the flat portions 20 and 21 correspond to the first flat portion.
 屈曲部10の一端部13から他端部14までの途中部分には、平坦部30が形成されている。平坦部30は、平坦部20,21と同様に、巾方向Xに対して平行に延びるように形成されている。巾方向Xにおける平坦部30の長さは「L11」に設定されている。平坦部30の長さL11は平坦部20,21の長さL10に等しい。本実施形態では、平坦部30が第2平坦部に相当する。 A flat portion 30 is formed in the middle of the bent portion 10 from one end 13 to the other end 14. Like the flat portions 20 and 21, the flat portion 30 is formed so as to extend parallel to the width direction X. The length of the flat portion 30 in the width direction X is set to "L11". The length L11 of the flat portion 30 is equal to the length L10 of the flat portions 20 and 21. In the present embodiment, the flat portion 30 corresponds to the second flat portion.
 屈曲部10の一端部13から平坦部30の一端部31までの長さは「L20」に設定されている。また、平坦部30の他端部32から屈曲部10の他端部14までの長さは「L21」に設定されている。長さL20と長さL21との間には「L20>L21」なる関係が成立している。 The length from one end 13 of the bent portion 10 to one end 31 of the flat portion 30 is set to "L20". The length from the other end 32 of the flat portion 30 to the other end 14 of the bent portion 10 is set to "L21". The relationship of “L20> L21” is established between the length L20 and the length L21.
 図5に示されるように、フィン6を製造するための設備は、材料Mと、支持ローラR10と、成形ローラR21,R22と、矯正ローラR31,R32とを備えている。
 材料Mは、フィン6の材料となる平板状の金属板100を巻き取って円柱状としたものである。材料Mは、その中心軸m1を紙面奥行き方向に沿わせた状態で配置されており、当該中心軸m1周りを図5において時計回り方向に回転している。これにより、金属板100が支持ローラR10へと送り込まれている。
As shown in FIG. 5, the equipment for manufacturing the fin 6 includes a material M, a supporting roller R10, forming rollers R21 and R22, and straightening rollers R31 and R32.
The material M is formed by winding a flat metal plate 100, which is a material of the fin 6, into a cylindrical shape. The material M is arranged with its central axis m1 along the depth direction of the paper surface, and rotates around the central axis m1 in the clockwise direction in FIG. As a result, the metal plate 100 is sent to the support roller R10.
 支持ローラR10は、金属板100を下方側から支えながら回転し、金属板100を成形ローラR21,R22へと送り出すものである。支持ローラR10を通過した後は、金属板100は概ね水平に沿った状態になっている。
 支持ローラR10を通過した後の金属板100には、油供給部S1,S2から加工油が供給される。加工油は、成形ローラR21,R22と金属板100との間における摩擦を低減するためのものである。
The supporting roller R10 rotates while supporting the metal plate 100 from the lower side, and sends the metal plate 100 to the forming rollers R21 and R22. After passing through the support roller R10, the metal plate 100 is in a substantially horizontal state.
Processing oil is supplied from the oil supply units S1 and S2 to the metal plate 100 that has passed through the support roller R10. The processing oil is for reducing friction between the forming rollers R21 and R22 and the metal plate 100.
 成形ローラR21,R22は、金属板100を上下方向に挟み込むことにより、金属板100を波形状に成形してフィン6とするためのものである。成形ローラR21,R22は、いずれも概ね円柱形状のローラであって、その中心軸m21,m22を紙面奥行方向に沿わせた状態で配置されている。上方に配置された成形ローラR21は、その中心軸m21の周りを図5において反時計回り方向に回転している。下方側に配置された成形ローラR22は、その中心軸m22周りを図5において時計回り方向に回転している。 The forming rollers R21 and R22 are for forming the corrugated metal plate 100 into the fins 6 by sandwiching the metal plate 100 in the vertical direction. The forming rollers R21 and R22 are both rollers having a substantially columnar shape, and are arranged with their central axes m21 and m22 along the depth direction of the drawing. The forming roller R21 arranged above rotates around its central axis m21 in the counterclockwise direction in FIG. The forming roller R22 arranged on the lower side is rotated around its central axis m22 in the clockwise direction in FIG.
 図6に示されるように、成形ローラR21の外周面には、凹凸部110と、平面部111~113とが形成されている。凹凸部110は、凹部及び凸部が中心軸m21に平行な方向に交互に形成された部分である。平面部111~113は、凹部及び凸部が形成されていない平坦な部分である。平面部111,112は、中心軸m21に平行な方向における成形ローラR21の両端部にそれぞれ形成されている。平面部113は、凹凸部110の途中部分に形成されている。 As shown in FIG. 6, an uneven portion 110 and flat portions 111 to 113 are formed on the outer peripheral surface of the forming roller R21. The concavo-convex portion 110 is a portion in which concave portions and convex portions are alternately formed in a direction parallel to the central axis m21. The plane portions 111 to 113 are flat portions in which no concave portion and convex portion are formed. The plane portions 111 and 112 are formed at both ends of the forming roller R21 in the direction parallel to the central axis m21. The plane portion 113 is formed in the middle of the uneven portion 110.
 なお、成形ローラR22の構造は、成形ローラR21と略同一であるため、その詳細な説明は割愛する。
 図5に示されるように、このように構成された成形ローラR21,R22により金属板100が挟み込まれることにより、成形ローラR21,R22の凹凸部110によりフィン6の屈曲部10に相当する部分が金属板100に成形され、平面部111~113によりフィン6の平坦部20,21,30に相当する部分が金属板100に成形される。この際、フィン6の平坦部20,21に相当する部分が成形ローラR21,R22の平面部111,112に挟み込まれながら金属板100が通過することにより、金属板100に反り返りが発生し難くなっている。
Since the structure of the forming roller R22 is substantially the same as that of the forming roller R21, detailed description thereof will be omitted.
As shown in FIG. 5, when the metal plate 100 is sandwiched by the forming rollers R21 and R22 having the above-described structure, the uneven portion 110 of the forming rollers R21 and R22 causes a portion corresponding to the bent portion 10 of the fin 6. The metal plate 100 is formed, and the flat portions 111 to 113 form the portions corresponding to the flat portions 20, 21, 30 of the fin 6 on the metal plate 100. At this time, since the metal plate 100 passes while the portions corresponding to the flat portions 20 and 21 of the fin 6 are sandwiched by the flat portions 111 and 112 of the forming rollers R21 and R22, the metal plate 100 is less likely to warp. ing.
 矯正ローラR31,R32は、上下方向に所定の隙間を有して配置されている。矯正ローラR31,R32は、成形ローラR21,R22を通過した後の金属板100、すなわち波形状に形成された金属板100をそれらの間の隙間により上下方向に挟み込むことにより、フィン6の厚さを全体で均一にするためのものである。 The correction rollers R31 and R32 are arranged with a predetermined gap in the vertical direction. The straightening rollers R31 and R32 sandwich the metal plate 100 that has passed through the forming rollers R21 and R22, that is, the corrugated metal plate 100 in the up-down direction by the gap between them, and thereby the thickness of the fin 6 is increased. Is to be uniform throughout.
 以上のような製造工程を経て図4に示されるようなフィン6が製造された後、フィン6を図7又は図8に示されるように切断する切断工程が行われる。図7に示されるように、フィン6を平坦部30の端部32で切断した場合、長さ「L10+L20+L11」を有するフィン60を得ることができる。また、図8に示されるように、フィン6を平坦部30の端部31で切断した場合、長さ「L11+L21+L10」のフィン61を得ることができる。これらのフィン60又はフィン61が、図3に示されるフィン4として用いられることになる。 After the fins 6 as shown in FIG. 4 are manufactured through the manufacturing steps as described above, a cutting step of cutting the fins 6 as shown in FIG. 7 or 8 is performed. As shown in FIG. 7, when the fin 6 is cut at the end 32 of the flat portion 30, a fin 60 having a length “L10 + L20 + L11” can be obtained. Further, as shown in FIG. 8, when the fin 6 is cut at the end 31 of the flat portion 30, a fin 61 having a length “L11 + L21 + L10” can be obtained. These fins 60 or 61 will be used as the fins 4 shown in FIG.
 以上説明した本実施形態のフィン6を用いれば、巾方向Xの長さの異なる2種類のフィン60,61を成形することができる。このようなフィン6を用いれば、それを成形するための成形ローラ、すなわち図5に示される成形ローラR21,R22を用意するだけで、巾方向Xの長さの異なる2種類のフィン60,61を成形することができるため、2種類の成形ローラを用意する必要がない分だけ製造コストを低減することができる。 By using the fin 6 of the present embodiment described above, two types of fins 60 and 61 having different lengths in the width direction X can be formed. If such a fin 6 is used, two types of fins 60 and 61 having different lengths in the width direction X can be obtained by simply preparing a forming roller for forming the fin 6, that is, forming rollers R21 and R22 shown in FIG. Since it is possible to mold, it is possible to reduce the manufacturing cost because it is not necessary to prepare two types of molding rollers.
 なお、上記実施形態は、以下の形態にて実施することもできる。
 ・フィン6の平坦部30の長さは適宜変更可能である。平坦部30の長さが他の平坦部20,21の長さL10以上であれば、フィン6を平坦部30の部分で切断することにより、図7に示されるフィン60や、図8に示されるフィン61を成形することが可能である。
In addition, the above-mentioned embodiment can also be implemented in the following forms.
-The length of the flat portion 30 of the fin 6 can be appropriately changed. If the length of the flat portion 30 is equal to or longer than the length L10 of the other flat portions 20 and 21, the fin 6 is cut at the portion of the flat portion 30 to show the fin 60 shown in FIG. 7 and the fin 60 shown in FIG. It is possible to mold the fins 61 to be formed.
 ・図9に示されるように、フィン6の平坦部30の長さL11は、他の平坦部20,21の長さL10の2倍の長さに設定されていてもよい。このような構成によれば、図9に示される二点鎖線Cで平坦部30を切断することにより、すなわち平坦部30を中央部で切断することにより、図7に示されるフィン60だけでなく、図8に示されるフィン61を得ることができる。なお、平坦部30の長さL11が他の平坦部20,21の長さL10の2倍以上の長さに設定されていれば、同様の作用及び効果を得ることが可能である。 As shown in FIG. 9, the length L11 of the flat portion 30 of the fin 6 may be set to be twice the length L10 of the other flat portions 20 and 21. According to such a configuration, by cutting the flat portion 30 along the chain double-dashed line C shown in FIG. 9, that is, by cutting the flat portion 30 at the center, not only the fin 60 shown in FIG. The fin 61 shown in FIG. 8 can be obtained. If the length L11 of the flat portion 30 is set to be twice or more the length L10 of the other flat portions 20 and 21, the same action and effect can be obtained.
 ・フィン6の屈曲部10の途中には、単数の平坦部30に限らず、複数の平坦部30が形成されていてもよい。このような構成によれば、フィン6から2種類のフィンだけでなく、3種類以上のフィンを得ることも可能である。
 ・図10に示されるように、フィン4の平坦部41は、巾方向Xに対して所定角度をなすように傾斜していてもよい。このような構成によれば、熱交換器1の組み付け時に、フィン4の平坦部41が他の部品に乗り上げることを抑制できる。
-A plurality of flat portions 30 may be formed in the middle of the bent portion 10 of the fin 6, instead of the single flat portion 30. According to such a configuration, not only two types of fins but also three or more types of fins can be obtained from the fin 6.
-As shown in FIG. 10, the flat part 41 of the fin 4 may be inclined so as to form a predetermined angle with respect to the width direction X. With such a configuration, it is possible to prevent the flat portion 41 of the fin 4 from riding on other components when the heat exchanger 1 is assembled.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 -The present disclosure is not limited to the above specific examples. A person skilled in the art may make appropriate design changes to the above-described specific examples as long as the features of the present disclosure are included in the scope of the present disclosure. The elements included in the above-described specific examples, and the arrangement, conditions, shapes, and the like of the elements are not limited to those illustrated, but can be appropriately changed. The respective elements included in the above-described specific examples can be appropriately changed in combination as long as there is no technical contradiction.

Claims (3)

  1.  金属板を波形状に折り曲げることにより形成されるフィン(6)であって、
     当該フィンにおいて波形状に折り曲げられている方向を巾方向とし、
     波形状に折り曲げられることにより山部(11)及び谷部(12)が交互に形成されている部分を屈曲部(10)とするとき、
     前記巾方向における前記屈曲部の一端部及び他端部には、前記巾方向に平行な第1平坦部(20,21)がそれぞれ形成され、
     前記屈曲部の一端部から他端部までの途中部分には、前記巾方向に平行な第2平坦部(30)が更に形成されている
     フィン。
    A fin (6) formed by bending a metal plate into a wavy shape,
    The width direction is the direction in which the fins are bent in a wavy shape,
    When the bent portion (10) is a portion in which the peaks (11) and the valleys (12) are alternately formed by being bent in a wavy shape,
    First flat portions (20, 21) parallel to the width direction are formed at one end and the other end of the bent portion in the width direction, respectively.
    A fin, wherein a second flat portion (30) parallel to the width direction is further formed at an intermediate portion from one end to the other end of the bent portion.
  2.  前記第2平坦部は、前記巾方向に平行な前記第1平坦部の長さ以上の長さを有している
     請求項1に記載のフィン。
    The fin according to claim 1, wherein the second flat portion has a length that is equal to or greater than a length of the first flat portion that is parallel to the width direction.
  3.  前記第2平坦部は、前記巾方向に平行な前記第1平坦部の長さの2倍以上の長さを有している
     請求項1に記載のフィン。
    The fin according to claim 1, wherein the second flat portion has a length that is at least twice the length of the first flat portion that is parallel to the width direction.
PCT/JP2019/038729 2018-10-19 2019-10-01 Fin WO2020080097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018197149A JP2020062673A (en) 2018-10-19 2018-10-19 fin
JP2018-197149 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020080097A1 true WO2020080097A1 (en) 2020-04-23

Family

ID=70283065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038729 WO2020080097A1 (en) 2018-10-19 2019-10-01 Fin

Country Status (2)

Country Link
JP (1) JP2020062673A (en)
WO (1) WO2020080097A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4624768B1 (en) * 1963-05-15 1971-07-16
JPH07280484A (en) * 1994-04-06 1995-10-27 Calsonic Corp Stacked type heat exchanger
US20040231386A1 (en) * 2000-04-19 2004-11-25 Paolo Perotti High thermal efficiency heat exchanger, partially corrugrated sheet metal for heat exchangers, plant and procedure for obtaining said partially corrugated sheet metal
WO2018135152A1 (en) * 2017-01-20 2018-07-26 株式会社デンソー Fin, heat exchanger with fin, and method for manufacturing fin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4624768B1 (en) * 1963-05-15 1971-07-16
JPH07280484A (en) * 1994-04-06 1995-10-27 Calsonic Corp Stacked type heat exchanger
US20040231386A1 (en) * 2000-04-19 2004-11-25 Paolo Perotti High thermal efficiency heat exchanger, partially corrugrated sheet metal for heat exchangers, plant and procedure for obtaining said partially corrugated sheet metal
WO2018135152A1 (en) * 2017-01-20 2018-07-26 株式会社デンソー Fin, heat exchanger with fin, and method for manufacturing fin

Also Published As

Publication number Publication date
JP2020062673A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP5156773B2 (en) Corrugated fin and heat exchanger provided with the same
JP3784735B2 (en) Louver fin
US9766015B2 (en) Heat exchanger
JP2000304488A (en) Aluminum alloy heat exchanger
JPH08200977A (en) Flat tube for heat exchanger and manufacture thereof
KR20010086012A (en) Plate type heat exchanger and method of manufacturing the heat exchanger
JP6531328B2 (en) Heat exchanger and method of manufacturing the same
WO2020003411A1 (en) Heat transport device and method for manufacturing same
US5373895A (en) Heat exchanger
WO2020080097A1 (en) Fin
US7905277B2 (en) Method of producing a heat exchanger module
JP6560313B2 (en) Heat exchanger and manufacturing method thereof
JPH0416707B2 (en)
JP7035187B2 (en) Heat transport device and its manufacturing method
JP2007029999A (en) Roll forming method and its apparatus
JP2007017061A (en) Gas cooler for carbon dioxide air conditioner
JPH0539992A (en) Heat exchanger
JP2020101329A (en) Heat exchanger and manufacturing method thereof
JP2023146197A (en) Lamination type heat exchanger
JP2013050303A (en) Corrugated fin and heat exchanger including the same
JP2007085633A (en) Laminated type evaporator
JP6623339B2 (en) Heat exchanger
JP3772150B2 (en) Heat exchanger
JP2015180852A (en) Corrugated fin and heat exchanger including the same
JP2018087660A (en) Drawn-cup type heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874673

Country of ref document: EP

Kind code of ref document: A1