WO2020079964A1 - Secondary battery, battery pack, and power system - Google Patents

Secondary battery, battery pack, and power system Download PDF

Info

Publication number
WO2020079964A1
WO2020079964A1 PCT/JP2019/033539 JP2019033539W WO2020079964A1 WO 2020079964 A1 WO2020079964 A1 WO 2020079964A1 JP 2019033539 W JP2019033539 W JP 2019033539W WO 2020079964 A1 WO2020079964 A1 WO 2020079964A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
electrode
battery
secondary battery
negative electrode
Prior art date
Application number
PCT/JP2019/033539
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 小松
井上 健士
茂樹 牧野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020079964A1 publication Critical patent/WO2020079964A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery, a battery pack and a power system.
  • the positive electrode side current collecting electrode and the negative electrode side current collecting electrode provided in parallel make it possible to form two current paths in which currents of the same magnitude flow in mutually opposite directions.
  • a battery in which electromagnetic induction caused by currents flowing in respective directions is canceled by a magnetic field to reduce parasitic inductance.
  • Patent Document 1 improves the arrangement of the collecting electrodes, but focuses on the parasitic inductance due to magnetic field cancellation, and there is room for improvement regarding the impedance inside the positive electrode and the negative electrode. it is conceivable that.
  • the present invention aims to adjust the impedance distribution including the capacitance in the electrodes of the secondary battery to reduce the impedance of the secondary battery in the high frequency band.
  • the secondary battery of the present invention has a positive electrode and a negative electrode in which an electrode material is applied to the current collector, and a separator provided between the positive electrode and the negative electrode, and the positive electrode and the negative electrode current collector, respectively.
  • a tab is provided, and at least one of the positive electrode and the negative electrode has an impedance in the vicinity of the tab smaller than the impedance in other regions.
  • the present invention it is possible to reduce the impedance of the secondary battery in the high frequency band by adjusting the distribution of impedance including the capacitance in the electrode of the secondary battery.
  • Figure 1 shows the minimum unit for the internal configuration of a lithium-ion battery.
  • the battery is composed of a negative electrode 10, a positive electrode 11, and a separator 12.
  • the negative electrode 10 and the positive electrode 11 have a negative electrode tab 13 and a positive electrode tab 14, respectively, as current paths to the outside.
  • the negative electrode 10, the positive electrode 11, and the separator 12 are filled with an electrolytic solution in which a lithium salt is dissolved, and this electrolytic solution conducts ions.
  • a laminate type battery multiple minimum unit batteries shown in Fig. 1 are stacked and connected in parallel.
  • the negative electrode tab 13 and the positive electrode tab 14 are integrated and integrated by welding or the like to form a battery in one laminate.
  • the positive electrode 11 is coated that the NMC active material (ternary LiNi x Mn y Co z O 2 ) a cathode active material represented by the conductive auxiliary agent bound with a binder to an aluminum foil (positive electrode collector) To do.
  • the negative electrode 10 a negative electrode active material typified by graphite and a conductive additive are bound by a binder and applied to a copper foil (negative electrode current collector).
  • Fig. 2 schematically shows the cross section of the electrode.
  • the electrode material 101 is applied to both surfaces of the metal foil 100 (current collector). It may be applied on one side, but it is generally applied on both sides in order to improve the energy density.
  • Fig. 3 shows only the equivalent circuit model related to the high frequency band in order to discuss the characteristics in the high frequency band.
  • the equivalent circuit 200 is derived from the electrode material of the battery near the tab.
  • the equivalent circuit 210 is derived from the electrode material in the portion far from the tab.
  • the equivalent circuit 200 is a parallel circuit of an electromotive force 201 of a battery, a capacitance 202 by a reaction of forming an electric double layer and a charge transfer resistance 203 of an electrode active material, a parallel circuit of an inductance 204 in an electrode and a resistance 205 of an inductance portion, and It is composed of a DC resistance 206 which is the sum of the resistance of the electrolytic solution of the battery and the resistance of the members.
  • the equivalent circuit 200 derived from the electrode material is connected to the external circuit via the tab-derived inductance 207 and resistance 208.
  • the equivalent circuit 210 is added with the inductance 209 integrated by the length of the electrode and is connected to the inductance 207 and the resistor 208.
  • the equivalent circuit 200 derived from the electrode material near the tab and the equivalent circuit 210 derived from the electrode material in the portion far from the tab are the same. Becomes
  • the absolute value Z of the impedance of the inductance is expressed by the following equation (1).
  • represents the frequency
  • L represents the inductance value.
  • the first embodiment improves the characteristics in the high frequency band by making the equivalent circuit 200 and the equivalent circuit 210 of FIG. 3 different in the vicinity of the tab and the vicinity of the tab.
  • Fig. 4 shows the configuration.
  • a battery compatible with high frequency includes a thick negative electrode tab 300, a thick positive electrode tab 301, an electrode material application portion 302 in which the ratio of activated carbon is increased to increase a capacitance component, and an electrode material of a battery having a normal composition.
  • the coating unit 303 is used.
  • Both the negative electrode tab 300 and the positive electrode tab 301 have a large thickness, and the electrodes are arranged close to each other. This is to reduce the inductance 207 and the resistance 208 derived from the tab shown in FIG.
  • the resistance depends on the thickness according to the following formula (2).
  • R is the resistance value
  • is the resistivity
  • l is the current path length
  • A is the cross-sectional area.
  • the inductance of the copper foil of the main path of the current path of the battery depends on the current path length according to the following equation (3).
  • L is the inductance (unit: nH)
  • l is the current path length
  • w is the width of the conductor
  • t is the thickness of the copper foil.
  • a material that increases the capacitance 202 for example, an activated carbon having a large surface area that increases the adsorption / desorption area of ions, is applied, and an electrode material that contains more components than the electrode material of the normal composition is applied.
  • An electrode material having a normal composition is applied to a region having a high impedance in a high frequency band other than the vicinity of the tab.
  • the capacitance 202 (FIG. 3) derived from the electric double layer increases near the tab.
  • the activated carbon or the like preferably has a specific surface area of about 500 to 3000 m 2 / g.
  • FIG. 4 is limited to high-frequency response components, and an equivalent circuit expressed simply will be used to explain.
  • Fig. 5 shows an equivalent circuit model related to the high frequency band.
  • the capacitance corresponding to the electrode material application portion 302 (FIG. 4) in which the capacitance component near the tab is increased is a capacitance 400, and the capacitance of the electric double layer in the electrode material application portion 303 (FIG. 4) having a normal composition.
  • Capacitance 401 corresponds to the capacitance.
  • FIG. 6 shows the result of simulation performed by changing the capacitances of the capacitance 400 and the capacitance 401 in the configuration of FIG. 5 as parameters.
  • the horizontal axis represents frequency and the vertical axis represents impedance. Both the horizontal axis and the vertical axis are represented by logarithmic axes.
  • the dotted line represents the case where the electrode material having the normal composition, which is the conventional example, is applied to the entire surface (Comparative Example 1), and the dashed line represents the case where the electrode material containing a large amount of the component that increases the capacitance is applied to the entire surface (Comparative Example 2).
  • the solid line shows the case where the electrode material containing a large amount of the component that increases the capacitance is applied only in the vicinity of the tab in the present embodiment, that is, the case where the capacitance 400 is increased, and the broken line shows that the capacitance is present only in the portion far from the tab.
  • the case where the electrode material containing a large amount of increasing components is applied, that is, the capacitance 401 is increased (Comparative Example 3) is shown.
  • “near the tab” means that the vertical width of the electrode material application portion 302 in FIG. 4 is half the vertical width of the electrode in FIG. It means that the width of the portion 302 in the vertical direction in the drawing is equal to the width of the electrode material application portion 303 in the vertical direction in the drawing. This means that the inductance 207 and the inductance 209 are equal and the resistance 206 and the resistance 208 are equal. This is the first embodiment.
  • Comparative Example 3 contrary to Example 1, the electrode material coating section 303 was provided in the vicinity of the tab, the electrode material coating section 302 was provided in the part far from the tab, and The width in the vertical direction in the middle is made equal to the width in the vertical direction in the figure of the electrode material application portion 302.
  • the capacitance ratio between the capacitance 400 and the capacitance 401 in FIG. 5 in other words, the capacitance ratio between the electrode material application section 302 and the electrode material application section 303 was set to 10: 1.
  • the electrodes it is desirable to configure the electrodes so that the impedance is low in the frequency range of several kHz to 50 kHz. More preferably, the impedance is low in the frequency range of several kHz to 20 kHz.
  • the impedance is minimal at about 40 kHz.
  • the impedance is minimal at about 20 kHz. In Comparative Examples 2 and 3, the impedance is minimal at approximately 12 to 13 kHz. That is, in the case of the present example, the resonance point where the impedance is minimum is shifted to the high frequency side as compared with Comparative Examples 2 and 3.
  • the electrode near the tab is divided into a region capable of handling high frequencies, and a part away from the tab is taken as a region for taking out an electrochemical reaction of a normal battery. Design becomes possible.
  • the width of the electrode material application portion 302 (FIG. 4) near the tab is set to one third of the width of the electrode, but the present invention is not limited to this.
  • the width of the electrode material application portion 302 (FIG. 4) near the tab may be 1 ⁇ 2 or less of the width of the electrode.
  • the effect can be obtained with at least one of the positive electrode and the negative electrode.
  • “near the tab” means a region up to half the distance from the side where the tab is attached to the opposite side in the electrode when the electrode has a rectangular shape.
  • the shape of the electrode is other shape, for example, circular or elliptical, it means the tab side area partitioned by a straight line orthogonal to the line connecting the midpoint of the tab attachment part and the center of gravity of the circular or elliptical shape.
  • “near the tab” refers to a region on the tab side that is partitioned by a straight line that is orthogonal to the straight line that connects the center of gravity of the electrode shape and the midpoint of the attached portion (line segment) of the tab. To do.
  • the impedance in the vicinity of the tab is defined as “tab of the tab” according to the above definition, even if the width of the portion coated with the electrode material containing a large amount of the component that increases the capacitance is set to 1/3 as in the first embodiment.
  • the impedance in the “vicinity” is smaller than the impedance in other regions.
  • FIG. 7 shows a cross section of the battery of FIG.
  • the negative electrode material 502 is applied to the negative electrode foil 501.
  • a positive electrode material 504 is applied to the positive electrode foil 503.
  • a thin separator 500 separates the negative electrode material 502 and the positive electrode material 504.
  • the DC resistance 206 in FIG. 3 is the sum of the resistance of the electrolytic solution and the resistance of the foil or the like.
  • the resistance of the electrolytic solution can be expressed by an equation in which the resistivity of the above formula (1) is replaced with an ionic conductivity.
  • the resistance of the electrolyte is proportional to the conduction length of the ions. Therefore, the DC resistance 206 can be lowered by making the separator 500 of FIG. 7 thin. This reduces the impedance of the battery and makes it possible to respond even at high frequencies.
  • the thickness of the separator 500 is preferably 1 ⁇ m or more and 100 ⁇ m or less. If the thickness is less than 1 ⁇ m, the strength of the film will be insufficient.
  • the current path can be controlled.
  • FIG. 8 schematically shows the electrode of the third embodiment.
  • the electrode 600 is coated with an electrode material and has a tab 601 as in the first or second embodiment.
  • a slit 602 is provided at the center of the opposite side of the side where the tab 601 is provided.
  • the current path of the electrode 600 always passes near the tab 601. Therefore, particularly in the high frequency band, current concentrates near the tab 601.
  • the impedance in the vicinity of the tab 601 becomes relatively lower than that in the portion far from the tab 601. Therefore, the utilization rate on the high frequency side near the tab 601 is improved.
  • the slit 602 in the electrode 600 and limiting the current path, it is possible to specify a location in the surface of the electrode 600 where the current concentration with a small impedance occurs.
  • the high frequency characteristics can be improved.
  • the slit 602 of this embodiment may be provided only on the metal foil, and the electrode material may be applied uniformly as usual. Further, depending on the shape of the electrode and the position of the tab, the position where the slit is formed to concentrate the current in the low inductance portion is different, so it is important to design depending on the shape of the electrode and the position of the tab.
  • the slit electrode is used to increase the usage rate in the vicinity of the tab, but the same effect can be expected by providing the through hole in the metal foil.
  • FIG. 9 schematically shows the metal foil of the electrode of the fourth embodiment.
  • the metal foil 700 has a through hole 701 in a portion far from the tab. Thereby, when the electrode material is applied, the electrode material is filled in the portion where the metal was present in the normal electrode, so that a high energy density can be realized.
  • the through hole 701 is not provided in the vicinity of the tab, and the through hole 701 is provided in a portion far from the tab, so that the resistance in the vicinity of the tab is relatively small and the current is concentrated. This improves the utilization rate near the tab in the high frequency band.
  • FIG. 10 is a schematic configuration diagram showing a battery according to the fifth embodiment.
  • the battery shown in this figure has electrodes housed in a laminated battery container 800.
  • the negative electrode tab 801 and the positive electrode tab 802 are connected to an external circuit.
  • An insulating plate 803 is sandwiched between the negative electrode tab 801 and the positive electrode tab 802 for insulation.
  • the voltage of a battery is as small as 3.7V, so it is often used in series as a battery pack. In order to reduce the inductance in the battery pack, it is effective to reduce the inductance between the batteries in addition to reducing the inductance in the batteries.
  • FIG. 11 schematically shows a battery pack composed of two batteries connected in series.
  • the battery pack includes batteries 900 and 903.
  • the battery 900 has a negative electrode tab 902 and a positive electrode tab 901.
  • the battery 903 has a positive electrode tab 904 and a negative electrode tab 905.
  • the negative electrode tab 902 and the positive electrode tab 904 will be connected.
  • the negative electrode tab 902 and the positive electrode tab 904 are fastened.
  • the battery 900 and the battery 903 are placed back to back.
  • current flows in the direction of current 906 in the battery 900 current flows in the direction of current 907 in the battery 903.
  • the directions of the magnetic fields between the batteries are reversed, so that the inductance 207 in FIG. 3 is reduced, and it becomes possible to improve the response at high frequencies.
  • Fig. 12 shows a power system in which a battery is connected to a load.
  • the motor 1000 is assumed as the load.
  • the motor 1000 is connected to a high frequency battery 1002 that is a power supply source via an inverter 1001.
  • the inverter 1001 and the high frequency battery 1002 are connected via a wiring 1003.
  • a capacity battery 1004 (another power supply device) is connected.
  • the inverter 1001 and the capacity type battery 1004 are connected via a wiring 1005. If the high frequency battery 1002 is sufficient to supply energy to the motor 1000, the capacitive battery 1004 is unnecessary.
  • the wiring 1003 is preferably as short as possible in order to reduce its impedance. A length of 1 m or less is desirable. More preferably, the length is 50 cm or less.
  • the high frequency compatible battery 1002 plays a role of a capacitor for smoothing the ripple current and voltage from the inverter 1001, and the power is supplied from the capacitive battery 1004 when large power is required.
  • the advantage of switching from the smoothing capacitor to the high frequency battery 1002 is that the reaction derived from the electrode active material of the battery is used to increase the components that can respond to the load on the lower frequency side than the smoothing capacitor. Is. Since the high frequency battery 1002 bears such a load on the low frequency side, the load of the capacity type battery 1004 is reduced, and it is possible to contribute to heat generation suppression and life extension.
  • the high frequency battery 1002 is installed at a position close to the inverter 1001, and the wiring 1003 is also provided with a + side (positive side) and a ⁇ side (negative side) so as to face each other. It is possible to reduce the inductance of the wiring 1003 due to the canceling effect.
  • the capacitive battery 1004 does not consider high frequencies, the wiring 1005 may be long and it is not necessary to face each other.
  • the high frequency battery 1002 is connected to the inverter 1001 at a position closer to the capacity type battery 1004, and the connection uses the wirings 1003 facing each other to reduce the inductance, thereby reducing the high frequency ripple current, In addition, it becomes possible to reduce the load on the capacity type battery.
  • the coating process has two stages.
  • FIG. 13 is a schematic diagram showing an electrode manufacturing process.
  • the metal foil 1100 is connected to the coating machine.
  • the metal foil 1100 is attached to a predetermined position in a roll state and sent out.
  • An electrode material 1101 having an increased capacitance component (a material applied to the electrode material application unit 302 in FIG. 4), for example, a material containing a lot of activated carbon is applied to the metal foil 1100 by the application head 1102.
  • the electrode material 1103 of the battery having the normal composition (the material applied to the electrode material application portion 303 of the battery having the normal composition of FIG. 4) is applied to the metal foil 1100 by the application head 1104.
  • coating is performed with the coating head 1102 slightly ahead of the coating head 1104.
  • the present invention is not limited to such a coating method, and the coating by the coating head 1102 and the coating head 1104 may be simultaneously performed in parallel.
  • application can be performed by a spray method, roll coating, etc., and the type is not limited.
  • the order of applying the electrode material 1101 and the electrode material 1103 may be reversed.
  • the coated metal foil 1100 is dried and then wound on a roll.
  • the step of the present embodiment is applied to both the positive electrode and the negative electrode.

Abstract

This secondary battery has a positive electrode and a negative electrode in which an electrode material is applied to a current collector, and a separator provided between the positive electrode and the negative electrode, wherein: tabs are attached to each of the current collectors in the positive electrode and the negative electrode; and, in the positive electrode and/or the negative electrode, the impedance in the vicinity of the tab is reduced so as to be less than the impedance in other regions. This makes it possible to adjust the distribution of impedance, including capacitance, in the electrodes of the secondary battery, and to reduce the impedance of the secondary battery in a high-frequency band.

Description

二次電池、電池パック及び電力システムSecondary battery, battery pack and power system
 本発明は、二次電池、電池パック及び電力システムに関する。 The present invention relates to a secondary battery, a battery pack and a power system.
 従来、電池内の寄生インダクタンスを下げることにより、高周波帯での応答性を向上させる検討が行われてきた。 Previously, studies have been conducted to improve the response in the high frequency band by reducing the parasitic inductance in the battery.
 例えば、特許文献1には、平行に設けられた正極側集電電極および負極側集電電極によって、同じ大きさの電流を互いに逆方向に流す2つの電流経路ができるようにし、これにより、逆方向の電流によってそれぞれに流れる電流によって生じる電磁誘導は磁界キャンセルされて、寄生インダクタンスを小さくすることができる電池が開示されている。 For example, in Japanese Patent Laid-Open No. 2004-242242, the positive electrode side current collecting electrode and the negative electrode side current collecting electrode provided in parallel make it possible to form two current paths in which currents of the same magnitude flow in mutually opposite directions. There is disclosed a battery in which electromagnetic induction caused by currents flowing in respective directions is canceled by a magnetic field to reduce parasitic inductance.
特開2007-220372号公報JP, 2007-220372, A
 特許文献1に記載されている電池は、集電電極の配置を改良するものであるが、磁界キャンセルによる寄生インダクタンスに着目したものであり、正極及び負極の内部におけるインピーダンスに関しては改善の余地があると考えられる。 The battery described in Patent Document 1 improves the arrangement of the collecting electrodes, but focuses on the parasitic inductance due to magnetic field cancellation, and there is room for improvement regarding the impedance inside the positive electrode and the negative electrode. it is conceivable that.
 高周波帯においては、上記のインピーダンスのうち、電極集電体に塗布された電極材料のキャパシタンス成分の寄与も大きいと考えられる。 ▽ In the high frequency band, it is considered that the contribution of the capacitance component of the electrode material applied to the electrode current collector is large among the above impedances.
 本発明は、二次電池の電極におけるキャパシタンスを含むインピーダンスの分布を調整し、高周波帯における二次電池のインピーダンスを低減することを目的とする。 The present invention aims to adjust the impedance distribution including the capacitance in the electrodes of the secondary battery to reduce the impedance of the secondary battery in the high frequency band.
 本発明の二次電池は、集電体に電極材料が塗布された正極及び負極と、正極と負極との間に設けられたセパレータと、を有し、正極及び負極の集電体にはそれぞれ、タブが付設され、正極及び負極のうち少なくとも一方は、タブの近傍のインピーダンスを、他の領域のインピーダンスよりも小さくしている。 The secondary battery of the present invention has a positive electrode and a negative electrode in which an electrode material is applied to the current collector, and a separator provided between the positive electrode and the negative electrode, and the positive electrode and the negative electrode current collector, respectively. , A tab is provided, and at least one of the positive electrode and the negative electrode has an impedance in the vicinity of the tab smaller than the impedance in other regions.
 本発明によれば、二次電池の電極におけるキャパシタンスを含むインピーダンスの分布を調整し、高周波帯における二次電池のインピーダンスを低減することができる。 According to the present invention, it is possible to reduce the impedance of the secondary battery in the high frequency band by adjusting the distribution of impedance including the capacitance in the electrode of the secondary battery.
リチウムイオン電池の内部の構成を示す概略構成図である。It is a schematic block diagram which shows the internal structure of a lithium ion battery. 電極の例を示す断面図である。It is sectional drawing which shows the example of an electrode. 電池の等価回路モデルの要部を示す構成図である。It is a block diagram which shows the principal part of the equivalent circuit model of a battery. 第一の実施形態に係る電池の等価回路モデルの要部を示す構成図である。It is a block diagram which shows the principal part of the equivalent circuit model of the battery which concerns on 1st embodiment. 高周波帯に関連する等価回路モデルを示す構成図である。It is a block diagram which shows the equivalent circuit model relevant to a high frequency band. 図5の等価回路モデルを用いてシミュレーションを行った結果を示すグラフである。6 is a graph showing the result of simulation performed using the equivalent circuit model of FIG. 5. 第二の実施形態に係る電極の例を示す断面図である。It is sectional drawing which shows the example of the electrode which concerns on 2nd embodiment. 第三の実施形態に係る電極を示す模式構成図である。It is a schematic block diagram which shows the electrode which concerns on 3rd embodiment. 第四の実施形態に係る電極を構成する金属箔を示す模式構成図である。It is a schematic block diagram which shows the metal foil which comprises the electrode which concerns on 4th embodiment. 第五の実施形態に係る電池を示す模式構成図である。It is a schematic block diagram which shows the battery which concerns on 5th embodiment. 第六の実施形態に係る電池パックを示す模式構成図である。It is a schematic block diagram which shows the battery pack which concerns on 6th embodiment. 第七の実施形態に係る電力システムを示す概略構成図である。It is a schematic block diagram which shows the electric power system which concerns on 7th embodiment. 第八の実施形態に係る電極の作製プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the electrode which concerns on 8th embodiment.
 以下、本発明の実施形態について説明する。 An embodiment of the present invention will be described below.
 以下の説明は、本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 The following description shows specific examples of the content of the present invention, and the present invention is not limited to these descriptions, and various modifications by those skilled in the art within the scope of the technical idea disclosed in the present specification. Changes and modifications are possible. In addition, in all the drawings for explaining the present invention, components having the same function are denoted by the same reference numeral, and repeated description thereof may be omitted.
 まず、本発明の実施形態の前提となる電池の構成例について説明する。 First, a configuration example of a battery which is a premise of the embodiment of the present invention will be described.
 図1は、リチウムイオン電池の内部構成についての最小単位を示したものである。 Figure 1 shows the minimum unit for the internal configuration of a lithium-ion battery.
 本図に示すように、電池は、負極10と正極11とセパレータ12とから構成されている。負極10及び正極11は、外部との電流経路としてそれぞれ、負極タブ13、正極タブ14を有している。また、負極10、正極11及びセパレータ12は、リチウム塩を溶解させた電解液で満たされており、この電解液がイオンの伝導を行う。 As shown in this figure, the battery is composed of a negative electrode 10, a positive electrode 11, and a separator 12. The negative electrode 10 and the positive electrode 11 have a negative electrode tab 13 and a positive electrode tab 14, respectively, as current paths to the outside. Further, the negative electrode 10, the positive electrode 11, and the separator 12 are filled with an electrolytic solution in which a lithium salt is dissolved, and this electrolytic solution conducts ions.
 例えばラミネート型の電池では、図1の最小単位の電池を多数積層し、並列に接続する。この場合には、負極タブ13、正極タブ14をそれぞれ集約し、溶接等により一体化し、一つのラミネート内で電池とする。 For example, in the case of a laminate type battery, multiple minimum unit batteries shown in Fig. 1 are stacked and connected in parallel. In this case, the negative electrode tab 13 and the positive electrode tab 14 are integrated and integrated by welding or the like to form a battery in one laminate.
 正極11及び負極10の構成例としては、次のようなものがある。 The following are examples of the configurations of the positive electrode 11 and the negative electrode 10.
 正極11は、NMC活物質(三元系LiNiMnCo)に代表される正極活物質と導電助剤とをバインダーにより結着したものをアルミニウム箔(正極集電体)に塗布する。一方、負極10は、グラファイトに代表される負極活物質と導電助剤とをバインダーにより結着したものを銅箔(負極集電体)に塗布する。 The positive electrode 11 is coated that the NMC active material (ternary LiNi x Mn y Co z O 2 ) a cathode active material represented by the conductive auxiliary agent bound with a binder to an aluminum foil (positive electrode collector) To do. On the other hand, for the negative electrode 10, a negative electrode active material typified by graphite and a conductive additive are bound by a binder and applied to a copper foil (negative electrode current collector).
 図2は、電極の断面を模式的に示したものである。 Fig. 2 schematically shows the cross section of the electrode.
 本図に示す電極においては、金属箔100(集電体)の両面に電極材料101を塗布している。片面塗布でもよいが、エネルギー密度を向上させるために両面に塗布を行うのが一般的である。 In the electrode shown in this figure, the electrode material 101 is applied to both surfaces of the metal foil 100 (current collector). It may be applied on one side, but it is generally applied on both sides in order to improve the energy density.
 次に、電池の等価回路モデルについて説明する。 Next, the equivalent circuit model of the battery will be explained.
 図3は、高周波帯での特性を議論するため、高周波帯で関連する等価回路モデルのみを示している。 Fig. 3 shows only the equivalent circuit model related to the high frequency band in order to discuss the characteristics in the high frequency band.
 本図において、等価回路200は、タブ近傍における電池の電極材料に由来するものである。一方、等価回路210は、タブから遠い部分における電極材料に由来するものである。 In the figure, the equivalent circuit 200 is derived from the electrode material of the battery near the tab. On the other hand, the equivalent circuit 210 is derived from the electrode material in the portion far from the tab.
 等価回路200は、電池の起電力201、電気二重層形成の反応によるキャパシタンス202と電極活物質の電荷移動抵抗203との並列回路、電極内のインダクタンス204とインダクタンス部抵抗205との並列回路、及び電池の電解液抵抗や部材の抵抗の総和である直流抵抗206から構成されている。 The equivalent circuit 200 is a parallel circuit of an electromotive force 201 of a battery, a capacitance 202 by a reaction of forming an electric double layer and a charge transfer resistance 203 of an electrode active material, a parallel circuit of an inductance 204 in an electrode and a resistance 205 of an inductance portion, and It is composed of a DC resistance 206 which is the sum of the resistance of the electrolytic solution of the battery and the resistance of the members.
 電極全体では、電極材料由来の等価回路200が外部回路に対してタブ由来のインダクタンス207及び抵抗208を介して接続されている。タブから遠いほど、銅箔のインダクタンス209の影響を受けやすい。このため、等価回路210は、インダクタンス209を電極長さの分だけ積算したものが追加され、インダクタンス207及び抵抗208に接続される。 In the entire electrode, the equivalent circuit 200 derived from the electrode material is connected to the external circuit via the tab-derived inductance 207 and resistance 208. The farther from the tab, the more susceptible it is to the inductance 209 of the copper foil. Therefore, the equivalent circuit 210 is added with the inductance 209 integrated by the length of the electrode and is connected to the inductance 207 and the resistor 208.
 通常の電極は、電極箔全面に一様に電極材料101が塗布されているため、タブ近傍の電極材料由来の等価回路200と、タブから遠い部分の電極材料由来の等価回路210とは、同一となる。 Since the electrode material 101 is uniformly applied to the entire surface of the electrode foil in an ordinary electrode, the equivalent circuit 200 derived from the electrode material near the tab and the equivalent circuit 210 derived from the electrode material in the portion far from the tab are the same. Becomes
 インダクタンスのインピーダンスの絶対値Zは、下記式(1)で表される。式中、ωは周波数、Lはインダクタンス値を表している。 The absolute value Z of the impedance of the inductance is expressed by the following equation (1). In the formula, ω represents the frequency and L represents the inductance value.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式(1)より、高周波帯では、インダクタンス209の影響を大きく受け、高インピーダンスになってしまうため、タブから遠い部分の電極材料から電力を供給することが困難とわかる。つまり、高周波帯では、タブ近傍に電流が集中してしまうことを意味する。したがって、高周波帯で電力を供給するためには、タブのインダクタンス207及び抵抗208を下げた状態で、キャパシタンス分の容量をタブ近傍のキャパシタンスに持たせることが有効であると考えられる。 From the above formula (1), it can be seen that it is difficult to supply electric power from the electrode material far from the tab because it is affected by the inductance 209 and becomes high impedance in the high frequency band. That is, it means that the electric current is concentrated near the tab in the high frequency band. Therefore, in order to supply electric power in the high frequency band, it is considered effective to provide the capacitance near the tab with the capacitance corresponding to the capacitance with the inductance 207 and the resistance 208 of the tab being lowered.
 以下、実施形態について説明する。 The embodiment will be described below.
 (第一の実施形態)
 第一の実施形態は、タブ近傍とタブ近傍以外とで、図3の等価回路200と等価回路210とを異なる構成とすることにより、高周波帯における特性を改善するものである。
(First embodiment)
The first embodiment improves the characteristics in the high frequency band by making the equivalent circuit 200 and the equivalent circuit 210 of FIG. 3 different in the vicinity of the tab and the vicinity of the tab.
 図4は、その構成を示したものである。 Fig. 4 shows the configuration.
 本図に示すように、高周波に対応した電池は、厚い負極タブ300、厚い正極タブ301、活性炭等の比率を高めキャパシタンス成分を増加させた電極材料塗布部302、及び通常組成の電池の電極材料塗布部303によって構成されている。 As shown in this figure, a battery compatible with high frequency includes a thick negative electrode tab 300, a thick positive electrode tab 301, an electrode material application portion 302 in which the ratio of activated carbon is increased to increase a capacitance component, and an electrode material of a battery having a normal composition. The coating unit 303 is used.
 負極タブ300及び正極タブ301は両方とも、厚さを厚くし、電極間を近接配置させる。これは、図3に示すタブ由来のインダクタンス207及び抵抗208を低減するためである。 Both the negative electrode tab 300 and the positive electrode tab 301 have a large thickness, and the electrodes are arranged close to each other. This is to reduce the inductance 207 and the resistance 208 derived from the tab shown in FIG.
 抵抗は、下記式(2)に従い、厚さに依存する。式中、Rは抵抗値、ρは抵抗率、lは電流経路長、Aは断面積を示している。 The resistance depends on the thickness according to the following formula (2). In the equation, R is the resistance value, ρ is the resistivity, l is the current path length, and A is the cross-sectional area.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 一方、電池の電流経路の主経路の銅箔のインダクタンスは、下記式(3)に従い、電流経路長に依存する。式中、Lはインダクタンス(単位:nH)、lは電流経路長、wは導体の幅、tは銅箔の厚さを示している。 On the other hand, the inductance of the copper foil of the main path of the current path of the battery depends on the current path length according to the following equation (3). In the formula, L is the inductance (unit: nH), l is the current path length, w is the width of the conductor, and t is the thickness of the copper foil.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このような電極タブ近傍の高周波帯でのインピーダンスを下げた領域に、容量成分を付加することが高周波で電力供給を可能にする。このため、キャパシタンス202(図3)を増加させる材料、例えばイオンの吸脱着の面積を増やす表面積の大きい活性炭等、成分を通常組成の電極材料よりも多く含む電極材料を塗布する。タブ近傍以外の高周波帯でのインピーダンスが大きい領域には、通常組成の電極材料を塗布する。このような構成にすることで、タブ近傍では電気二重層由来のキャパシタンス202(図3)が増加する。ここで、活性炭等は、比表面積が500~3000m/g程度のものが望ましい。 Adding a capacitive component to the region where the impedance in the high frequency band near the electrode tab is lowered enables power supply at high frequency. Therefore, a material that increases the capacitance 202 (FIG. 3), for example, an activated carbon having a large surface area that increases the adsorption / desorption area of ions, is applied, and an electrode material that contains more components than the electrode material of the normal composition is applied. An electrode material having a normal composition is applied to a region having a high impedance in a high frequency band other than the vicinity of the tab. With such a configuration, the capacitance 202 (FIG. 3) derived from the electric double layer increases near the tab. Here, the activated carbon or the like preferably has a specific surface area of about 500 to 3000 m 2 / g.
 この効果に関して、図4の構成を高周波応答成分に限定し、簡易的に表現した等価回路を用いて説明する。 Regarding this effect, the configuration of FIG. 4 is limited to high-frequency response components, and an equivalent circuit expressed simply will be used to explain.
 図5は、高周波帯に関連する等価回路モデルを示したものである。 Fig. 5 shows an equivalent circuit model related to the high frequency band.
 図5においては、タブ近傍のキャパシタンス成分を増加させた電極材料塗布部302(図4)に対応したキャパシタンスをキャパシタンス400、通常組成の電極材料塗布部303(図4)での電気二重層の容量分に対応したキャパシタンスをキャパシタンス401としている。 In FIG. 5, the capacitance corresponding to the electrode material application portion 302 (FIG. 4) in which the capacitance component near the tab is increased is a capacitance 400, and the capacitance of the electric double layer in the electrode material application portion 303 (FIG. 4) having a normal composition. Capacitance 401 corresponds to the capacitance.
 図6は、図5の構成において、キャパシタンス400及びキャパシタンス401の容量をパラメータとして変化させてシミュレーションを行った結果を示したものである。横軸は周波数を、縦軸はインピーダンスを示している。横軸及び縦軸はともに、対数軸で表示している。 FIG. 6 shows the result of simulation performed by changing the capacitances of the capacitance 400 and the capacitance 401 in the configuration of FIG. 5 as parameters. The horizontal axis represents frequency and the vertical axis represents impedance. Both the horizontal axis and the vertical axis are represented by logarithmic axes.
 点線は、従来例である通常組成の電極材料を全面に塗布した場合(比較例1)を、一点鎖線は、キャパシタンスが増加する成分を多く含む電極材料を全面に塗布した場合(比較例2)を、実線は、本実施形態であるタブ近傍にのみキャパシタンスが増加する成分を多く含む電極材料を塗布した場合、つまりキャパシタンス400を増加させた場合を、破線は、タブから遠い部分にのみキャパシタンスが増加する成分を多く含む電極材料を塗布した場合、つまりキャパシタンス401を増加させた場合(比較例3)を示している。 The dotted line represents the case where the electrode material having the normal composition, which is the conventional example, is applied to the entire surface (Comparative Example 1), and the dashed line represents the case where the electrode material containing a large amount of the component that increases the capacitance is applied to the entire surface (Comparative Example 2). The solid line shows the case where the electrode material containing a large amount of the component that increases the capacitance is applied only in the vicinity of the tab in the present embodiment, that is, the case where the capacitance 400 is increased, and the broken line shows that the capacitance is present only in the portion far from the tab. The case where the electrode material containing a large amount of increasing components is applied, that is, the capacitance 401 is increased (Comparative Example 3) is shown.
 なお、このシミュレーションにおいて、「タブ近傍」は、図4において、電極材料塗布部302の図中上下方向の幅が、電極の図中上下方向の幅の2分の1、言い換えると、電極材料塗布部302の図中上下方向の幅が、電極材料塗布部303の図中上下方向の幅と同等であることを意味する。これはインダクタンス207とインダクタンス209が等しい且つ抵抗206と抵抗208が等しいことを意味している。これが実施例1である。これに対して、比較例3は、実施例1とは反対に、タブ近傍に電極材料塗布部303を設け、タブから遠い部分に電極材料塗布部302を設けるとともに、電極材料塗布部303の図中上下方向の幅を、電極材料塗布部302の図中上下方向の幅と同等としている。 In this simulation, “near the tab” means that the vertical width of the electrode material application portion 302 in FIG. 4 is half the vertical width of the electrode in FIG. It means that the width of the portion 302 in the vertical direction in the drawing is equal to the width of the electrode material application portion 303 in the vertical direction in the drawing. This means that the inductance 207 and the inductance 209 are equal and the resistance 206 and the resistance 208 are equal. This is the first embodiment. On the other hand, in Comparative Example 3, contrary to Example 1, the electrode material coating section 303 was provided in the vicinity of the tab, the electrode material coating section 302 was provided in the part far from the tab, and The width in the vertical direction in the middle is made equal to the width in the vertical direction in the figure of the electrode material application portion 302.
 また、図5のキャパシタンス400とキャパシタンス401との容量の比、言い換えると、電極材料塗布部302と電極材料塗布部303の容量比は、10:1とした。 Further, the capacitance ratio between the capacitance 400 and the capacitance 401 in FIG. 5, in other words, the capacitance ratio between the electrode material application section 302 and the electrode material application section 303 was set to 10: 1.
 図6において、周波数が数kHzから50kHzまでの範囲でインピーダンスが低くなるように電極を構成することが望ましい。更に望ましくは、周波数が数kHzから20kHzまでの範囲でインピーダンスが低くなることである。 In FIG. 6, it is desirable to configure the electrodes so that the impedance is low in the frequency range of several kHz to 50 kHz. More preferably, the impedance is low in the frequency range of several kHz to 20 kHz.
 本図の(a)に示すとおり、周波数が20kHz以下の領域においては、本実施例並びに比較例2及び3の場合、比較例1の場合に比べ、インピーダンスが低くなっている。これは、通常の電極材料のみを塗布した場合よりも、キャパシタンスが増加する成分を塗布することによる。 As shown in (a) of this figure, in the region where the frequency is 20 kHz or less, the impedance of this example and Comparative examples 2 and 3 is lower than that of Comparative example 1. This is because the component that increases the capacitance is applied as compared with the case where only the normal electrode material is applied.
 比較例1の場合、約40kHzでインピーダンスが極小となっている。 In Comparative Example 1, the impedance is minimal at about 40 kHz.
 本実施例の場合、約20kHzでインピーダンスが極小となっている。比較例2及び3の場合、およそ12~13kHzでインピーダンスが極小となっている。すなわち、本実施例の場合、比較例2及び3に比べ、インピーダンスが最小となる共振点が高周波側にシフトしている。 In the case of this embodiment, the impedance is minimal at about 20 kHz. In Comparative Examples 2 and 3, the impedance is minimal at approximately 12 to 13 kHz. That is, in the case of the present example, the resonance point where the impedance is minimum is shifted to the high frequency side as compared with Comparative Examples 2 and 3.
 本実施例と比較例2及び3とを比較すると、本図の(b)に示すとおり、インピーダンスに関して、本実施例の極小値が最も小さくなっている。また、周波数が10~50kHzの領域では、本実施例のインピーダンスの積分値が最も小さくなっている。 Comparing this example with Comparative examples 2 and 3, as shown in (b) of this figure, the minimum value of this example with respect to impedance is the smallest. Further, in the frequency range of 10 to 50 kHz, the integrated value of the impedance of this embodiment is the smallest.
 以上のように、本実施例の場合、高周波領域におけるインピーダンスが低減し、高周波でも電力応答が可能になると考えられる。 As described above, in the case of this embodiment, it is considered that the impedance in the high frequency region is reduced and the power response becomes possible even at the high frequency.
 このように、タブ近傍を高周波に対応できる領域とし、タブから離れた部分を通常の電池の電気化学反応を取り出す領域として、役割を分けることにより、高周波領域及び低周波領域の両方に優位な電極設計が可能となる。 In this way, the electrode near the tab is divided into a region capable of handling high frequencies, and a part away from the tab is taken as a region for taking out an electrochemical reaction of a normal battery. Design becomes possible.
 なお、本図に示すシミュレーションにおいては、タブ近傍の電極材料塗布部302(図4)の幅を、電極の幅の3分の1としたが、本発明は、これに限定されるものではなく、タブ近傍の電極材料塗布部302(図4)の幅は、電極の幅の2分の1以下であればよい。 In the simulation shown in this figure, the width of the electrode material application portion 302 (FIG. 4) near the tab is set to one third of the width of the electrode, but the present invention is not limited to this. The width of the electrode material application portion 302 (FIG. 4) near the tab may be ½ or less of the width of the electrode.
 実施例1のような構成は、正極及び負極のうち少なくとも一方でも効果が得られる。 With the configuration as in Example 1, the effect can be obtained with at least one of the positive electrode and the negative electrode.
 本明細書においては、「タブの近傍」とは、電極の形状が長方形の場合、電極においてタブが付設された辺から対辺までの距離の半分までの領域をいう。電極の形状が他の形状、例えば円形又は楕円形の場合、タブの付設部の中点と円形又は楕円形の重心とを結ぶ直線に直交する直線で仕切られたタブ側の領域をいうことにする。まとめると、一般に、「タブの近傍」とは、電極の形状の重心とタブの付設部(線分)の中点とを結ぶ直線に直交する直線で仕切られたタブ側の領域をいうことにする。 In the present specification, "near the tab" means a region up to half the distance from the side where the tab is attached to the opposite side in the electrode when the electrode has a rectangular shape. When the shape of the electrode is other shape, for example, circular or elliptical, it means the tab side area partitioned by a straight line orthogonal to the line connecting the midpoint of the tab attachment part and the center of gravity of the circular or elliptical shape. To do. In summary, in general, “near the tab” refers to a region on the tab side that is partitioned by a straight line that is orthogonal to the straight line that connects the center of gravity of the electrode shape and the midpoint of the attached portion (line segment) of the tab. To do.
 まとめると、タブの近傍のインピーダンスは、実施例1のように、キャパシタンスが増加する成分を多く含む電極材料を塗布した部分の幅を3分の1としたとしても、上記の定義による「タブの近傍」のインピーダンスは、他の領域のインピーダンスよりも小さくなる。 In summary, the impedance in the vicinity of the tab is defined as “tab of the tab” according to the above definition, even if the width of the portion coated with the electrode material containing a large amount of the component that increases the capacitance is set to 1/3 as in the first embodiment. The impedance in the “vicinity” is smaller than the impedance in other regions.
 (第二の実施形態)
 タブ近傍の低インピーダンス化の手段について説明する。低インピーダンス化は、薄いセパレータ500を用いることにより可能になる。
(Second embodiment)
A means for lowering the impedance near the tab will be described. Low impedance can be achieved by using a thin separator 500.
 図7は、図1の電池の断面を示したものである。 FIG. 7 shows a cross section of the battery of FIG.
 図7において、負極箔501には、負極材料502が塗布されている。正極箔503には、正極材料504が塗布されている。負極材料502と正極材料504との間は、薄いセパレータ500で隔てられている。 In FIG. 7, the negative electrode material 502 is applied to the negative electrode foil 501. A positive electrode material 504 is applied to the positive electrode foil 503. A thin separator 500 separates the negative electrode material 502 and the positive electrode material 504.
 図3の直流抵抗206は、電解液の抵抗と箔等の抵抗との和である。電解液の抵抗は、上記式(1)の抵抗率をイオン伝導率に置き換えた式で表すことができる。 The DC resistance 206 in FIG. 3 is the sum of the resistance of the electrolytic solution and the resistance of the foil or the like. The resistance of the electrolytic solution can be expressed by an equation in which the resistivity of the above formula (1) is replaced with an ionic conductivity.
 よって、電解液の抵抗は、イオンの伝導長さに比例する。したがって、図7のセパレータ500を薄くすることにより、直流抵抗206を下げることが可能である。これにより、電池のインピーダンスを低減し、高周波でも応答することが可能になる。ここで、セパレータ500の厚さは、1μm以上100μm以下が望ましい。厚さが1μm未満となると、膜の強度が不十分となる。 Therefore, the resistance of the electrolyte is proportional to the conduction length of the ions. Therefore, the DC resistance 206 can be lowered by making the separator 500 of FIG. 7 thin. This reduces the impedance of the battery and makes it possible to respond even at high frequencies. Here, the thickness of the separator 500 is preferably 1 μm or more and 100 μm or less. If the thickness is less than 1 μm, the strength of the film will be insufficient.
 (第三の実施形態)
 電極にスリットを入れることにより、電流経路をコントロールすることができる。
(Third embodiment)
By slitting the electrodes, the current path can be controlled.
 図8は、第三の実施形態の電極を模式的に示したものである。 FIG. 8 schematically shows the electrode of the third embodiment.
 本図において、電極600は、第一の実施形態又は第二の実施形態と同様に、電極材料が塗布され、タブ601を有している。電極600において、タブ601を設けた辺の対辺の中央部には、スリット602が設けられている。 In this figure, the electrode 600 is coated with an electrode material and has a tab 601 as in the first or second embodiment. In the electrode 600, a slit 602 is provided at the center of the opposite side of the side where the tab 601 is provided.
 スリット602があることで、電極600の電流経路は、必ずタブ601の近傍を経由することになる。このため、特に高周波帯では、タブ601の近傍に電流が集中する。 Due to the presence of the slit 602, the current path of the electrode 600 always passes near the tab 601. Therefore, particularly in the high frequency band, current concentrates near the tab 601.
 これにより、タブ601の近傍のインピーダンスがタブ601から遠い部分と比較して相対的に低くなる。このため、タブ601の近傍の高周波側での利用率が向上する。このように電極600内のスリット602を設けて電流経路を限定することにより、電極600の面内でインピーダンスが小さい電流集中が起きる箇所を指定することが可能となる。
ここにキャパシタンス成分を付与することで、高周波特性の改善を図ることができる。本実施形態のスリット602は、金属箔にのみに設け、電極材料は、通常のように一様に塗布されていてもよい。また、電極の形状やタブの位置により、どの位置にスリットを入れれば電流が低インダクタンス部に集中するかは異なるため、電極の形状やタブの位置によって設計することが重要である。
As a result, the impedance in the vicinity of the tab 601 becomes relatively lower than that in the portion far from the tab 601. Therefore, the utilization rate on the high frequency side near the tab 601 is improved. By thus providing the slit 602 in the electrode 600 and limiting the current path, it is possible to specify a location in the surface of the electrode 600 where the current concentration with a small impedance occurs.
By providing a capacitance component here, the high frequency characteristics can be improved. The slit 602 of this embodiment may be provided only on the metal foil, and the electrode material may be applied uniformly as usual. Further, depending on the shape of the electrode and the position of the tab, the position where the slit is formed to concentrate the current in the low inductance portion is different, so it is important to design depending on the shape of the electrode and the position of the tab.
 (第四の実施形態)
 第三の実施形態では、タブ近傍の使用率を高めるに当たり、スリット入り電極を使用したが、金属箔に貫通孔を設けることにより同様の効果が期待できる。
(Fourth embodiment)
In the third embodiment, the slit electrode is used to increase the usage rate in the vicinity of the tab, but the same effect can be expected by providing the through hole in the metal foil.
 図9は、第四の実施形態の電極の金属箔を模式的に示したものである。 FIG. 9 schematically shows the metal foil of the electrode of the fourth embodiment.
 本図において、金属箔700は、タブから遠い部分に貫通孔701を有している。これにより、電極材料を塗布した際に通常の電極では金属が存在していた部分に電極材料が充填されるため、高エネルギー密度が実現できる。 In this figure, the metal foil 700 has a through hole 701 in a portion far from the tab. Thereby, when the electrode material is applied, the electrode material is filled in the portion where the metal was present in the normal electrode, so that a high energy density can be realized.
 一方で、貫通孔701が存在する部分は、電流経路が減少するため、抵抗が増加してしまう。したがって、タブ近傍には貫通孔701を設けず、タブから遠い部分に貫通孔701を設けることにより、タブ近傍の抵抗が相対的に小さくなり、電流が集中する。これにより、高周波帯においてタブ近傍の利用率が向上する。 On the other hand, in the portion where the through hole 701 is present, the current path is reduced, so the resistance increases. Therefore, the through hole 701 is not provided in the vicinity of the tab, and the through hole 701 is provided in a portion far from the tab, so that the resistance in the vicinity of the tab is relatively small and the current is concentrated. This improves the utilization rate near the tab in the high frequency band.
 (第五の実施形態)
 電池のタブ近傍のインダクタンスを低減させる手段として、正極タブと負極タブを対向させて磁界を打ち消す手段がある。
(Fifth Embodiment)
As a means for reducing the inductance near the tab of the battery, there is a means for canceling the magnetic field by making the positive electrode tab and the negative electrode tab face each other.
 図10は、第五の実施形態の電池を示す模式構成図である。 FIG. 10 is a schematic configuration diagram showing a battery according to the fifth embodiment.
 本図に示す電池は、ラミネート型の電池容器800内に電極を格納したものである。負極タブ801及び正極タブ802は、外部回路に接続されている。負極タブ801と正極タブ802との間には、絶縁板803が挟み込まれ、絶縁されている。 The battery shown in this figure has electrodes housed in a laminated battery container 800. The negative electrode tab 801 and the positive electrode tab 802 are connected to an external circuit. An insulating plate 803 is sandwiched between the negative electrode tab 801 and the positive electrode tab 802 for insulation.
 配線のインダクタンスは、対向させた配線間で、逆向きの電流が流れるように配線すると、磁界の打消し効果でインダクタンスが低減する。インダクタンスを低減するためには、この配線間の距離を短くして、磁界の打消し効果を強める必要がある。 ▽ If the wiring inductance is such that current flows in the opposite direction between the facing wirings, the inductance will be reduced due to the effect of canceling the magnetic field. In order to reduce the inductance, it is necessary to shorten the distance between the wirings and enhance the magnetic field canceling effect.
 本図の構成においては、負極タブ801と正極タブ802との間の距離を近づける必要があるが、負極タブ801と正極タブ802を接触させてしまうと、短絡し、電池が破損してしまうため、絶縁する必要がある。したがって、絶縁板803が必要である。 In the configuration of this figure, it is necessary to reduce the distance between the negative electrode tab 801 and the positive electrode tab 802, but if the negative electrode tab 801 and the positive electrode tab 802 are brought into contact with each other, a short circuit occurs and the battery is damaged. , Need to be insulated. Therefore, the insulating plate 803 is necessary.
 本図の構成により、負極タブ801に電流804が流れる場合、正極タブ802には逆向きの電流805が流れる。これにより、タブ間の磁界の向きが逆向きになるため、図3のインダクタンス207が減少し、高周波での応答性を高めることが可能となる。 With the configuration shown in the figure, when a current 804 flows through the negative electrode tab 801, a reverse current 805 flows through the positive electrode tab 802. As a result, the direction of the magnetic field between the tabs is reversed, so that the inductance 207 in FIG. 3 is reduced and the response at high frequency can be improved.
 (第六の実施形態)
 電池パック内でインダクタンスを低減する手段について説明する。
(Sixth embodiment)
A means for reducing the inductance in the battery pack will be described.
 一般に、電池は、電圧が3.7V程度と小さいため、直列化して電池パックとして使用することが多い。電池パック内でインダクタンスを低減するためには、電池内のインダクタンスを低減するのに加え、電池間でインダクタンスを低減することが有効である。 Generally, the voltage of a battery is as small as 3.7V, so it is often used in series as a battery pack. In order to reduce the inductance in the battery pack, it is effective to reduce the inductance between the batteries in addition to reducing the inductance in the batteries.
 図11は、直列に接続された2個の電池で構成された電池パックを模式的に示したものである。 FIG. 11 schematically shows a battery pack composed of two batteries connected in series.
 本図において、電池パックは、電池900、903を含む。電池900は、負極タブ902と正極タブ901とを有している。電池903は、正極タブ904と負極タブ905とを有している。 In this figure, the battery pack includes batteries 900 and 903. The battery 900 has a negative electrode tab 902 and a positive electrode tab 901. The battery 903 has a positive electrode tab 904 and a negative electrode tab 905.
 電池900と電池903とを直列化する際には、負極タブ902と正極タブ904とを接続することになる。例えば、ねじ等により直列化する場合、負極タブ902と正極タブ904とを留めることになる。この直列化の際には、電池900と電池903とを背中合わせにする。背中合わせにすることで、電池900において電流906の向きに電流が流れる場合には、電池903においては電流907の向きに電流が流れる。これにより、電池間の磁界の向きが逆向きになるため、図3のインダクタンス207が減少し、高周波での応答性を高めることが可能となる。 When the battery 900 and the battery 903 are serialized, the negative electrode tab 902 and the positive electrode tab 904 will be connected. For example, when connecting in series with a screw or the like, the negative electrode tab 902 and the positive electrode tab 904 are fastened. In this serialization, the battery 900 and the battery 903 are placed back to back. By making them back to back, when current flows in the direction of current 906 in the battery 900, current flows in the direction of current 907 in the battery 903. As a result, the directions of the magnetic fields between the batteries are reversed, so that the inductance 207 in FIG. 3 is reduced, and it becomes possible to improve the response at high frequencies.
 なお、二次電池を三個以上直列に接続した場合には、隣り合う二個の二次電池のタブを接続する。その場合、二次電池の正極のタブと負極のタブとは、図11のように空間を設けて配置されることが望ましい。 Note: If three or more secondary batteries are connected in series, connect the tabs of two adjacent secondary batteries. In that case, it is desirable that the positive electrode tab and the negative electrode tab of the secondary battery are arranged with a space as shown in FIG.
 (第七の実施形態)
 本実施形態においては、第一の実施形態~第六の実施形態で説明してきた電池を、負荷に接続した場合の電力システムの全体構成について説明する。
(Seventh embodiment)
In the present embodiment, the overall configuration of the power system when the battery described in the first to sixth embodiments is connected to a load will be described.
 図12は、電池を負荷に接続した電力システムを示したものである。 Fig. 12 shows a power system in which a battery is connected to a load.
 本図において、負荷としては、モータ1000を想定している。モータ1000は、インバータ1001を介して、電力供給源である高周波対応電池1002が接続されている。インバータ1001と高周波対応電池1002とは、配線1003を介して接続されている。別途、電池としてのエネルギーが必要な場合には、容量型電池1004(他の電力供給機器)を接続する。インバータ1001と容量型電池1004とは、配線1005を介して接続されている。高周波対応電池1002でモータ1000へのエネルギー供給が十分な場合には、容量型電池1004は不要である。なお、配線1003は、これ自体のインピーダンスを小さくするため、可能な限り短くすることが望ましい。長さ1m以下が望ましい。更に望ましくは、長さ50cm以下である。 In this figure, the motor 1000 is assumed as the load. The motor 1000 is connected to a high frequency battery 1002 that is a power supply source via an inverter 1001. The inverter 1001 and the high frequency battery 1002 are connected via a wiring 1003. Separately, when energy as a battery is required, a capacity battery 1004 (another power supply device) is connected. The inverter 1001 and the capacity type battery 1004 are connected via a wiring 1005. If the high frequency battery 1002 is sufficient to supply energy to the motor 1000, the capacitive battery 1004 is unnecessary. Note that the wiring 1003 is preferably as short as possible in order to reduce its impedance. A length of 1 m or less is desirable. More preferably, the length is 50 cm or less.
 このような構成にすることにより、インバータ1001からのリプル電流、電圧を平滑化するコンデンサの役割を高周波対応電池1002が担い、大電力が必要な際には容量型電池1004から電力を供給することが可能となる。平滑コンデンサから高周波対応電池1002とすることによる利点は、電池の電極活物質由来の反応を使用することで、平滑コンデンサよりも低周波側の負荷に対しても応答できる成分が増加していることである。
このような低周波側での負荷を高周波対応電池1002が担うことで、容量型電池1004の負荷が軽減し、発熱抑制、寿命延長に寄与することができる。
With such a configuration, the high frequency compatible battery 1002 plays a role of a capacitor for smoothing the ripple current and voltage from the inverter 1001, and the power is supplied from the capacitive battery 1004 when large power is required. Is possible. The advantage of switching from the smoothing capacitor to the high frequency battery 1002 is that the reaction derived from the electrode active material of the battery is used to increase the components that can respond to the load on the lower frequency side than the smoothing capacitor. Is.
Since the high frequency battery 1002 bears such a load on the low frequency side, the load of the capacity type battery 1004 is reduced, and it is possible to contribute to heat generation suppression and life extension.
 上記式(3)でも述べたように、電流経路長が長くなるほど、インダクタンスは増加する。 As described in equation (3) above, the longer the current path length, the greater the inductance.
 したがって、高周波対応電池1002は、インバータ1001に対して近い位置に設置し、更に、配線1003も、+側(正極側)の配線と-側(負極側)の配線とを対向させることで、磁界の打消し効果により配線1003のインダクタンスを低減することが可能である。一方で、容量型電池1004は、高周波は考慮していないため、配線1005は長くてもよく、対向させる必要はない。 Therefore, the high frequency battery 1002 is installed at a position close to the inverter 1001, and the wiring 1003 is also provided with a + side (positive side) and a − side (negative side) so as to face each other. It is possible to reduce the inductance of the wiring 1003 due to the canceling effect. On the other hand, since the capacitive battery 1004 does not consider high frequencies, the wiring 1005 may be long and it is not necessary to face each other.
 したがって、高周波対応電池1002は、容量型電池1004よりも近い位置でインバータ1001と接続され、接続は、インダクタンス低減のために対向させた配線1003を使用することで、高周波のリプル電流を低減し、且つ、容量型電池の負荷を低減することが可能になる。 Therefore, the high frequency battery 1002 is connected to the inverter 1001 at a position closer to the capacity type battery 1004, and the connection uses the wirings 1003 facing each other to reduce the inductance, thereby reducing the high frequency ripple current, In addition, it becomes possible to reduce the load on the capacity type battery.
 (第八の実施形態)
 第一の実施形態の電池(図4)の電極を作製する場合、塗布工程は2段階になる。
(Eighth embodiment)
When manufacturing the electrode of the battery (FIG. 4) of the first embodiment, the coating process has two stages.
 図13は、電極の作製プロセスを示す模式図である。 FIG. 13 is a schematic diagram showing an electrode manufacturing process.
 本図に示すように、金属箔1100は、塗布機に接続されている。金属箔1100は、ロールの状態で所定の位置に取り付けられ、送り出されるようになっている。キャパシタンス成分を増加させた電極材料1101(図4の電極材料塗布部302に塗布される材料)、例えば活性炭を多く含む材料は、塗布ヘッド1102により金属箔1100に塗布される。また、通常組成の電池の電極材料1103(図4の通常組成の電池の電極材料塗布部303に塗布される材料)は、塗布ヘッド1104により金属箔1100に塗布される。 As shown in this figure, the metal foil 1100 is connected to the coating machine. The metal foil 1100 is attached to a predetermined position in a roll state and sent out. An electrode material 1101 having an increased capacitance component (a material applied to the electrode material application unit 302 in FIG. 4), for example, a material containing a lot of activated carbon is applied to the metal foil 1100 by the application head 1102. The electrode material 1103 of the battery having the normal composition (the material applied to the electrode material application portion 303 of the battery having the normal composition of FIG. 4) is applied to the metal foil 1100 by the application head 1104.
 本図においては、塗布ヘッド1102が塗布ヘッド1104よりも少し先行する状態で塗布がなされる。ただし、本発明は、このような塗布方式に限定されるものではなく、塗布ヘッド1102及び塗布ヘッド1104による塗布を同時に並列に行ってもよい。 In this figure, coating is performed with the coating head 1102 slightly ahead of the coating head 1104. However, the present invention is not limited to such a coating method, and the coating by the coating head 1102 and the coating head 1104 may be simultaneously performed in parallel.
 なお、塗布は、スプレー方式、ロールコーティング等により行うことができ、種類を限定されるものではない。また、電極材料1101と電極材料1103との塗布順序は逆でもよい。 Note that application can be performed by a spray method, roll coating, etc., and the type is not limited. The order of applying the electrode material 1101 and the electrode material 1103 may be reversed.
 塗布された金属箔1100は、乾燥後、ロールに巻き取られる。 The coated metal foil 1100 is dried and then wound on a roll.
 なお、正極及び負極とも塗布の工程はほぼ同様であるため、本実施形態の工程は、正極及び負極の両方に適用される。 Since the steps of applying the positive electrode and the negative electrode are almost the same, the step of the present embodiment is applied to both the positive electrode and the negative electrode.
 10:負極、11:正極、12:セパレータ、13:負極タブ、14:正極タブ、100:金属箔、101:電極材料、200:等価回路、201:電池の起電力、202:キャパシタンス、203:電荷移動抵抗、204:インダクタンス、205:インダクタンス部抵抗、206:直流抵抗、207:インダクタンス、208:抵抗、209:インダクタンス、210:等価回路、300:負極タブ、301:正極タブ、302、303:電極材料塗布部、400、401:キャパシタンス、500:セパレータ、501:負極箔、502:負極材料、503:正極箔、504:正極材料、600:電極、601:タブ、602:スリット、700:金属箔、701:貫通孔、800:ラミネート型の電池容器、801:負極タブ、802:正極タブ、803:絶縁板、804、805:電流、900、903:電池、901、904:正極タブ、902、905:負極タブ、906、907:電流、1000:モータ、1001:インバータ、1002:高周波対応電池、1003:配線、1004:容量型電池、1005:配線、1100:金属箔、1101、1103:電極材料、1102、1104:塗布ヘッド。 10: Negative electrode, 11: Positive electrode, 12: Separator, 13: Negative electrode tab, 14: Positive electrode tab, 100: Metal foil, 101: Electrode material, 200: Equivalent circuit, 201: Electromotive force of battery, 202: Capacitance, 203: Charge transfer resistance, 204: inductance, 205: inductance part resistance, 206: direct current resistance, 207: inductance, 208: resistance, 209: inductance, 210: equivalent circuit, 300: negative electrode tab, 301: positive electrode tab, 302, 303: Electrode material application part, 400, 401: capacitance, 500: separator, 501: negative electrode foil, 502: negative electrode material, 503: positive electrode foil, 504: positive electrode material, 600: electrode, 601: tab, 602: slit, 700: metal Foil, 701: Through hole, 800: Laminated battery container, 801: Negative electrode tab, 8 2: positive electrode tab, 803: insulating plate, 804, 805: current, 900, 903: battery, 901, 904: positive electrode tab, 902, 905: negative electrode tab, 906, 907: current, 1000: motor, 1001: inverter, 1002: high frequency battery, 1003: wiring, 1004: capacity type battery, 1005: wiring, 1100: metal foil, 1101, 1103: electrode material, 1102, 1104: coating head.

Claims (12)

  1.  集電体に電極材料が塗布された正極及び負極と、
     前記正極と前記負極との間に設けられたセパレータと、を有し、
     前記正極及び前記負極の前記集電体にはそれぞれ、タブが付設され、
     前記正極及び前記負極のうち少なくとも一方は、前記タブの近傍のインピーダンスを、他の領域のインピーダンスよりも小さくした、二次電池。
    A positive electrode and a negative electrode in which the electrode material is applied to the current collector,
    A separator provided between the positive electrode and the negative electrode,
    A tab is attached to each of the current collectors of the positive electrode and the negative electrode,
    At least one of the positive electrode and the negative electrode is a secondary battery in which the impedance in the vicinity of the tab is smaller than the impedance in other regions.
  2.  前記タブの近傍には、キャパシタンスを増加させる材料の塗布比率を前記他の領域よりも高めた部分が設けられている、請求項1記載の二次電池。 The secondary battery according to claim 1, wherein a portion having a higher coating ratio of a material that increases capacitance than that of the other region is provided near the tab.
  3.  前記キャパシタンスを増加させる前記材料は、活性炭である、請求項2記載の二次電池。 The secondary battery according to claim 2, wherein the material that increases the capacitance is activated carbon.
  4.  前記セパレータの厚さは、1μm以上100μm以下である、請求項1記載の二次電池。 The secondary battery according to claim 1, wherein the separator has a thickness of 1 μm or more and 100 μm or less.
  5.  前記集電体の前記他の領域には、スリットが設けられている、請求項1記載の二次電池。 The secondary battery according to claim 1, wherein a slit is provided in the other area of the current collector.
  6.  前記他の領域は、前記スリットにより二分割されている、請求項5記載の二次電池。 The secondary battery according to claim 5, wherein the other area is divided into two by the slit.
  7.  前記集電体の前記他の領域には、貫通孔が設けられている、請求項1記載の二次電池。
     
    The secondary battery according to claim 1, wherein a through hole is provided in the other region of the current collector.
  8.  前記正極の前記タブと前記負極の前記タブとの間には、絶縁板が挟み込まれている、請求項1記載の二次電池。 The secondary battery according to claim 1, wherein an insulating plate is sandwiched between the tab of the positive electrode and the tab of the negative electrode.
  9.  請求項1記載の二次電池を複数個直列に接続した構成を有し、
     隣り合う二個の前記二次電池の前記タブが接続されている、電池パック。
    A plurality of secondary batteries according to claim 1 connected in series,
    A battery pack in which the tabs of two adjacent secondary batteries are connected.
  10.  前記二次電池の前記正極の前記タブと前記負極の前記タブとは、空間を設けて配置されている、請求項9記載の電池パック。 The battery pack according to claim 9, wherein the tab of the positive electrode and the tab of the negative electrode of the secondary battery are arranged with a space therebetween.
  11.  請求項1記載の二次電池と、
     インバータと、
     前記インバータに接続された負荷と、を含み、
     前記二次電池と前記インバータとを接続する配線は、他の電力供給機器と前記インバータとを接続する配線よりも、長さが短い、電力システム。
    A secondary battery according to claim 1,
    An inverter,
    A load connected to the inverter,
    The power system in which the wiring connecting the secondary battery and the inverter is shorter than the wiring connecting the other power supply device and the inverter.
  12.  前記二次電池と前記インバータとを接続する前記配線の前記長さは、1m以下である、請求項11記載の電力システム。 The power system according to claim 11, wherein the length of the wiring that connects the secondary battery and the inverter is 1 m or less.
PCT/JP2019/033539 2018-10-17 2019-08-27 Secondary battery, battery pack, and power system WO2020079964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-195748 2018-10-17
JP2018195748A JP7157619B2 (en) 2018-10-17 2018-10-17 Secondary batteries, battery packs and power systems

Publications (1)

Publication Number Publication Date
WO2020079964A1 true WO2020079964A1 (en) 2020-04-23

Family

ID=70284572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033539 WO2020079964A1 (en) 2018-10-17 2019-08-27 Secondary battery, battery pack, and power system

Country Status (2)

Country Link
JP (1) JP7157619B2 (en)
WO (1) WO2020079964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171778A (en) * 2020-09-11 2022-03-11 丰田自动车株式会社 Secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014162A1 (en) * 2022-07-13 2024-01-18 ヌヴォトンテクノロジージャパン株式会社 Power storage device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291891A (en) * 2003-03-28 2004-10-21 Mitsubishi Electric Corp Electric power source system for vehicle
JP2005174844A (en) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd Bipolar battery
JP2005268029A (en) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd Conductive member and battery pack
JP2009516352A (en) * 2005-11-18 2009-04-16 アクチュアント コーポレーション Battery electrode with integral conductor
JP2009526743A (en) * 2006-02-15 2009-07-23 ラドヤード, ライル イストバン, Mesoporous activated carbon
JP2011065850A (en) * 2009-09-17 2011-03-31 Hitachi Maxell Ltd Separator for battery and lithium secondary battery
WO2011125325A1 (en) * 2010-04-06 2011-10-13 Necトーキン株式会社 Electricity accumulator device
JP2014059971A (en) * 2012-09-14 2014-04-03 Toshiba Corp Electrode and battery
JP2018156901A (en) * 2017-03-21 2018-10-04 株式会社東芝 Secondary battery, battery pack and vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291891A (en) * 2003-03-28 2004-10-21 Mitsubishi Electric Corp Electric power source system for vehicle
JP2005174844A (en) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd Bipolar battery
JP2005268029A (en) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd Conductive member and battery pack
JP2009516352A (en) * 2005-11-18 2009-04-16 アクチュアント コーポレーション Battery electrode with integral conductor
JP2009526743A (en) * 2006-02-15 2009-07-23 ラドヤード, ライル イストバン, Mesoporous activated carbon
JP2011065850A (en) * 2009-09-17 2011-03-31 Hitachi Maxell Ltd Separator for battery and lithium secondary battery
WO2011125325A1 (en) * 2010-04-06 2011-10-13 Necトーキン株式会社 Electricity accumulator device
JP2014059971A (en) * 2012-09-14 2014-04-03 Toshiba Corp Electrode and battery
JP2018156901A (en) * 2017-03-21 2018-10-04 株式会社東芝 Secondary battery, battery pack and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171778A (en) * 2020-09-11 2022-03-11 丰田自动车株式会社 Secondary battery

Also Published As

Publication number Publication date
JP2020064754A (en) 2020-04-23
JP7157619B2 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US11817543B2 (en) Electrode sheet and battery cell
JP5510458B2 (en) battery
CN103503196B (en) There is the secondary cell of the contact resistance of improvement
US9972821B2 (en) Power storage device
US10741820B2 (en) Rechargeable battery
CN101807863B (en) Power converter
CN108598354A (en) A kind of multi pole ears battery core, multi-terminal battery, battery modules and preparation method thereof
WO2020079964A1 (en) Secondary battery, battery pack, and power system
KR102020757B1 (en) Electrical energy storage module and method for producing an electrical energy storage module
JP2014120757A (en) Electrode structure and energy storage apparatus including the same
JP2012204305A (en) Battery cell
US20120087060A1 (en) Supercapacitor module
WO2016152292A1 (en) Electric double layer capacitor
KR20090126091A (en) Bus-bar and secondary battery module including the same
JP2012190697A (en) Battery
WO2013065575A1 (en) Electricity storage device
JP2024506640A (en) Battery cells and power consumption devices using battery cells
KR20170104826A (en) Electrode assembly and secondary battery comprising the same
US20140272480A1 (en) Conductor for an electrochemical energy store
JP2008243761A (en) Solid thin-film battery
WO2023097627A1 (en) Enhanced electrolyte infiltration in a battery cell
CN213340472U (en) Roll core, battery and electronic product
JP2008300191A (en) Solid thin film battery
JP2014053158A (en) Collector, bipolar electrode, and bipolar secondary battery
CN107978761B (en) Current collector for an energy storage cell for storing electrical energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873205

Country of ref document: EP

Kind code of ref document: A1