WO2020078055A1 - 连续送粉感应加热金属增材制造方法及装置 - Google Patents

连续送粉感应加热金属增材制造方法及装置 Download PDF

Info

Publication number
WO2020078055A1
WO2020078055A1 PCT/CN2019/096099 CN2019096099W WO2020078055A1 WO 2020078055 A1 WO2020078055 A1 WO 2020078055A1 CN 2019096099 W CN2019096099 W CN 2019096099W WO 2020078055 A1 WO2020078055 A1 WO 2020078055A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
water
cable
additive manufacturing
hollow copper
Prior art date
Application number
PCT/CN2019/096099
Other languages
English (en)
French (fr)
Inventor
常辉
张生滨
陈小龙
孙中刚
唐明亮
张文书
Original Assignee
南京尚吉增材制造研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京尚吉增材制造研究院有限公司 filed Critical 南京尚吉增材制造研究院有限公司
Publication of WO2020078055A1 publication Critical patent/WO2020078055A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1053Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by induction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the field of additive manufacturing, in particular to a continuous powder feeding induction heating metal additive manufacturing method and device.
  • metal additive manufacturing technology essentially adopts the additive thinking of numerical discrete / stack forming, and obtains the three-dimensional CAD solid model through the layer-by-layer preparation method.
  • its utilization rate of metal raw materials is higher; at the same time, it has unique advantages in the preparation of metal parts with complex shapes; in addition, it can achieve rapid repair of molds and broken parts, It plays the role of shortening the design cycle of metal parts and reducing production costs, and the overall mechanical properties of the final solidified metal structure can be comparable to traditional forgings.
  • metal additive manufacturing technology represents a moldless, low-cost, digital advanced manufacturing technology, with unparalleled application prospects.
  • the heat sources used in the current metal additive manufacturing technology mainly include the following three categories: laser, electron beam and arc.
  • laser as a heat source is a common method.
  • Chinese patent CN201710843050.X proposes a laser additive manufacturing method for porous aluminum alloys.
  • the linear scanning trajectory of the upper powder is perpendicular to the linear scanning trajectory of the lower powder to achieve layer by layer Stacking, but considering that the aluminum alloy has a high reflectivity to the laser (usually more than 80%), and the aluminum alloy itself has good thermal conductivity, resulting in insufficient absorption of laser energy in the aluminum alloy additive manufacturing process, which is difficult Meet the needs of cost and efficiency.
  • Chinese patent CN201710878157.8 proposes a pre-powder-feeding electron beam additive manufacturing device, which can effectively avoid the reflection of metal powder on the energy of the laser beam and make the forming rate fast;
  • the electron beam work itself requires a severe vacuum environment, and has high requirements on equipment and process conditions. It is often restricted when molding certain large structures, resulting in higher raw material costs and time costs.
  • the arc additive manufacturing technology is another common method.
  • the Chinese patent CN201710129920.7 proposes an additive manufacturing method for aluminum-magnesium alloy structural parts.
  • the purpose of the present invention is to provide a continuous powder feeding induction heating metal additive manufacturing method and device, improve the utilization rate of heat source energy in the process of metal solidification molding, efficiently realize the automatic production of metal parts, and at the same time ensure that the molded metal is increased
  • the parts made of wood have the advantages of high molding accuracy and excellent comprehensive mechanical properties.
  • Continuous powder feeding induction heating metal additive manufacturing device including:
  • the substrate is used to provide a base for forming the metal layer for additive manufacturing
  • a motion control device and a motion unit provided on one side of the substrate the motion unit is provided with a manipulator, and the motion unit is configured to move under the control of the motion control device to drive the manipulator to move in a three-dimensional space, the The movement unit is controlled to move at least in the XY plane and the XZ plane;
  • Powder storage tank used to store the transported metal powder
  • the low-power induction preheating device is constructed as a sealed container and communicates with the powder storage tank under the first tube;
  • the first hollow copper coil is spirally wound outside the low-power induction preheating device, and is used to preheat the passing metal powder;
  • the high-power induction heating device includes a thin tube connected to the low-power induction preheating device;
  • the second hollow copper coil is spirally wound outside the thin tube, and is used to heat and melt the metal powder passing through the thin tube to form a droplet;
  • a water cooling system including a water cooling box and water cooling circulation channels formed in the first hollow copper coil and the second hollow copper coil through a water cooling cable;
  • the robot grips the powder storage tank, the powder storage tank, the low-power induction preheating device, the high-power induction heating device, and the corresponding first hollow copper coil and second hollow copper coil are all disposed vertically above the substrate Position, and keep synchronous movement with the manipulator, under the drive of the motion unit, the droplet formed by the heating and melting of the second hollow copper coil by its own gravity and the advance of the droplet above, fall onto the substrate for deposition molding.
  • a control valve is provided below the connection position of the powder storage tank and the first tube and below the connection position of the low-power induction preheating device and the thin tube, to facilitate reasonable control of the pre The speed of hot powder and molten powder.
  • the water cooling system includes a first water cooling cable and a second water cooling cable, both of which are provided with a water inlet channel and a water outlet channel, the first water cooling cable is connected with the first hollow copper coil to form a first circulation channel, and the second water cooling cable is The second hollow copper coils are connected to form a second circulation channel to facilitate the movement of the pipes of the water cooling system when the robot moves the droplets in the three-dimensional space, which facilitates the accumulation of the metal layer.
  • the water inlet channel is located at the center of the cable, and has a circular section along the length of the cable
  • the water outlet channel is located outside the cable inlet channel, and has a circular section along the length of the cable.
  • the use of such a water cooling channel design is beneficial to It is connected to the hollow copper tube (induction heating coil) and the circulating water flow inside and outside.
  • the water cooling system includes a first inlet pipe, a second inlet pipe, a first outlet pipe and a second outlet pipe connected to the water cooling box, the first inlet pipe communicates with one end of the water inlet channel of the first water cooling cable, the first An outlet pipe is connected to one end of the outlet channel of the first water-cooled cable, a second inlet pipe is connected to one end of the inlet channel of the second water-cooled cable, and the second outlet pipe is connected to one end of the outlet channel of the second water-cooled cable.
  • both ends of the first hollow copper coil wound outside the low-power induction preheating device are respectively connected to the other end of the first water-cooled cable, one end of which is connected to the water inlet channel, and the other end is connected to the water outlet channel.
  • two ends of the second hollow copper coil wound outside the high-power induction preheating device are respectively connected to the other end of the second water-cooled cable, one end of which is connected to the water inlet channel, and the other end is connected to the water outlet channel.
  • first water-cooled cable and the second water-cooled cable are designed with the same wire structure and different sizes, and the cross-sectional direction includes an outer insulating rubber layer, a water outlet channel, an outer insulating layer, a copper cable Insulation and water inlet channels.
  • an additive manufacturing method using the above device including the following steps:
  • the powder feeder Turn on the powder feeder and feed the metal powder to the powder storage tank through the powder feed tube.
  • the powder capacity in the powder storage tank reaches the set value, it is controlled to be sent to the low-power induction preheating device, which is induced by the first hollow copper coil Heat and preheat the powder;
  • the preheated powder capacity in the sealed container After the preheated powder capacity in the sealed container reaches the set value, it is controlled to be delivered to the high-power induction heating device and inductively heated by the second hollow copper coil, and the molten powder forms droplets, wherein the heating power of the second hollow copper coil is greater than the first
  • the heating power of the hollow copper coil is controlled to control the temperature of the droplet at 700 °C -900 °C;
  • the temperature of the substrate is controlled by preheating at 250 °C -350 °C, and: during the accumulation of the metal layer, through the movement
  • the three-dimensional movement of the unit causes the droplets to move in the three-dimensional space above the substrate, causing the metal layer to melt and form on the substrate until printing is completed.
  • the present invention uses induction heating as a heat source for melting metal powder.
  • the powder has a high utilization rate of energy absorption of the heat source, which plays a role in reducing energy consumption and improving the production efficiency of metal parts. Compared with wire, it can significantly improve the molded parts. Surface accuracy
  • the present invention can achieve precise control of the temperature of the molten metal droplets, which not only ensures the superheat requirement of the continuous and stable flow of the metal fluid, but also prevents excessive burning of the element caused by excessive temperature, resulting in the lack of chemical composition of the metal preparation;
  • the present invention can work under an inert gas atmosphere such as nitrogen and argon, reducing the restriction on the vacuum environment.
  • the three-dimensional coordinated movement of metal powder droplets can realize the preparation of metal parts with complex shapes, and at the same time can ensure the precise control of the size and roughness of parts;
  • the metal parts prepared by the invention have the advantages of stable alloy chemical composition and excellent comprehensive mechanical properties.
  • FIG. 1 is a schematic diagram of a continuous powder feeding induction heating metal additive manufacturing apparatus provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a powder heating device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the connection of the water cooling structure provided by the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a hollow induction coil provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a cross section of a water-cooled cable provided by an embodiment of the present invention.
  • 23 outer insulation layer; 24-—high-density copper wire; 25—inner insulation layer; 26—water inlet channel;
  • the metal powder is continuously conveyed through the powder feeder, and the preheating and melting of the induction coil cause the melted droplets to pass their own gravity and above Under the action of the droplet advancement, the metal layer is deposited and formed on the substrate, and in the process of metal layer accumulation, the position of the droplet is controlled by the movement of the three-dimensional space of the manipulator, so that the metal layer is continuously deposited on the substrate. Until printing is complete.
  • the device is evacuated and reaches a certain vacuum degree, it is filled with a high-purity inert gas (such as argon) for protection, and then the metal powder that is delivered passes through low power Induction preheating (hollow induction coil) for preheating. After preheating, the powder at a certain temperature is melted after high power induction heating (hollow induction coil) below. The molten alloy droplets are under their own gravity and above the droplets. Under the action of propulsion, it falls continuously and evenly onto the substrate.
  • a high-purity inert gas such as argon
  • the forming process of the melt-formed metal layer can be observed and monitored by a camera device (such as a CCD) in real time.
  • a camera device such as a CCD
  • FIG. 1 shows an alternative implementation of an exemplary continuous powder feeding autonomous induction heating additive manufacturing device.
  • the continuous powder-feeding induction heating metal additive manufacturing apparatus includes a substrate 6 for providing a base for forming the additive manufacturing metal layer.
  • a motion control device and a motion unit provided on the side of the substrate 6 provide three-dimensional driving of the drop position of the melt droplet, and control the drop position of the melt droplet by the movement in the three-dimensional space of the manipulator 5.
  • the motion control device includes a control box 1, the motion unit includes a first motion unit 2, a second motion unit 3, and a third motion unit 4, the first motion unit 2, the second motion unit 3, and the third motion
  • the units 4 each include a corresponding motor and gear transmission mechanism for driving rotary motion.
  • the first motion unit 2 is configured as a circular motion platform unit, which can horizontally rotate around the center axis of the circle to realize X-Y plane motion.
  • the second motion unit 3 and the third motion unit 4 are fixed, and are fixed to the circular motion platform unit through the connection seat and the rod, and can keep synchronously following the rotation with the rotation of the circular motion platform unit.
  • Both the second movement unit 3 and the third movement unit 4 can realize the X-Z plane rotation movement around their rotation axes.
  • the control box 1 can be equipped with supporting motion control software for program design according to the objectives of additive manufacturing printing, and control the three motion units (2, 3, 4) to move according to the set direction and position.
  • the motion unit (ie, the third motion unit 4) is provided with a manipulator 5, and the motion of the three motion units (2, 3, 4) causes the manipulator to move in a three-dimensional space to drive the powder storage held by the manipulator The movement of the slot 17.
  • the powder storage tank 17 is used to store the transported metal powder.
  • a powder feeder 20 continuously conveys metal powder into the powder storage tank 17 through a powder feed pipe 18.
  • the powder storage tank 17, the first tube 36, the low-power induction preheating device 13, the second tube 37, and the high-power induction heating device 9 adopt a fixed design.
  • the low-power induction preheating device 13 is configured as a sealed container, and communicates with the lower part of the powder storage tank 17 through the first tube 36.
  • the first tube 36 is also provided with a first control valve 12 for controlling the metal powder in the powder storage tank to fall into the low-power induction preheating device 13.
  • the first hollow copper coil 14, as a low-power heating induction coil, is spirally wound outside the low-power induction preheating device 13 for preheating the passing metal powder to heat the powder to a predetermined temperature, avoiding direct high During power heating, powders are prone to large temperature gradients due to heat transfer and heat radiation.
  • the high-power induction heating device 9 includes a thin tube connected to the low-power induction preheating device through the second tube 37. When the preheated powder falls, it flows into the thin tube.
  • a second control valve 16 is further provided between the low-power induction preheating device 13 and the thin tube to control the transportation of the preheated metal powder to the thin tube.
  • the setting of two control valves (12, 16) is conducive to reasonably controlling the speed of preheating powder and melting powder according to the rate of powder feeding.
  • the second hollow copper coil 10 as a high-power heating induction coil, is spirally wound outside the thin tube, and is used to heat and melt the metal powder passing through the thin tube to form a droplet.
  • the water cooling system includes a water cooling box 19 and water cooling circulation channels formed in the first hollow copper coil 14 and the second hollow copper coil 10 by water cooling cables (11, 15), respectively.
  • the manipulator 5 clamps the powder storage tank 17, the powder storage tank 17, the low power induction preheating device 13, the high power induction heating device 9, and the corresponding first hollow copper coil 14, second hollow
  • the copper coils 10 are all set vertically above the substrate, and keep moving synchronously with the manipulator 5. Under the drive of the motion unit (2, 3, 4), the second hollow copper coil 10 is heated and melted to form droplets through its own gravity and With the advancement of the upper droplet, it falls onto the substrate 6 and is deposited and formed.
  • the water cooling system includes a first water-cooling cable 11 and a second water-cooling cable 15, both of which are provided with a water inlet channel and a water outlet channel.
  • the first water cooling cable 11 is connected to the first hollow copper coil 14 to form a first circulation channel
  • the second water-cooled cable 15 is connected to the second hollow copper coil 10 to form a second circulation channel to facilitate the movement of the pipes of the water-cooled system when the robot moves the droplets in the three-dimensional space, which facilitates the accumulation of the metal layer .
  • the water inlet channel is located in the center of the cable and is circular along the length of the cable, and the water outlet channel is located outside the cable inlet channel and is circular along the length of the cable. It is beneficial to the connection when the hollow copper tube (induction heating coil) is docked and the circulating water flow inside and outside.
  • the water cooling system includes a first inlet pipe 31, a second inlet pipe 32, a first outlet pipe 33, and a second outlet pipe 34 connected to the water cooling tank.
  • the first inlet pipe 31 communicates with one end of the water inlet channel of the first water cooling cable 11
  • the first outlet pipe 33 is connected to one end of the outlet channel of the first water-cooled cable 11
  • the second inlet pipe 33 is connected to one end of the inlet channel of the second water-cooled cable
  • the second outlet pipe 34 is connected to the outlet channel of the second water-cooled cable One end.
  • the two ends of the first hollow copper coil 14 wound outside the low-power induction preheating device are respectively connected to the other end of the first water-cooled cable 11, where one end is connected to the water inlet channel and the other end is connected to the water outlet channel .
  • Two ends of the second hollow copper coil 10 wound outside the high-power induction preheating device are respectively connected to the other end of the second water-cooled cable 15, one end of which is connected to the water inlet channel, and the other end is connected to the water outlet channel.
  • the first water-cooled cable and the second water-cooled cable have the same wire structure and different sizes, and the cross-sectional direction includes an outer insulating rubber layer 21, a water outlet channel 22, an outer insulating layer 23, and a cable in order from the outside to the inside Copper wire 24, inner insulating layer 25 and water inlet channel 26.
  • the cable copper wire 24 is preferably a high-density cable copper wire.
  • the first hollow copper coil and the second hollow copper coil are designs with the same wire structure and different sizes.
  • the process of additive manufacturing includes the following steps:
  • the powder feeder 20 Turn on the powder feeder 20 and feed the metal powder to the powder storage tank 17 through the powder feed pipe 18.
  • the powder capacity in the powder storage tank reaches the set value, the powder is controlled and transferred to the low-power induction preheating device, through the first hollow copper Induction heating of the coil to preheat the powder;
  • the preheated powder capacity in the sealed container After the preheated powder capacity in the sealed container reaches the set value, it is controlled to be delivered to the high-power induction heating device and inductively heated by the second hollow copper coil, and the molten powder forms droplets, wherein the heating power of the second hollow copper coil is greater than the first
  • the heating power of the hollow copper coil is controlled to control the temperature of the droplet at 700 °C -900 °C;
  • the temperature of the substrate is controlled by preheating at 250 °C -350 °C, and: during the accumulation of the metal layer, through the movement
  • the three-dimensional movement of the unit causes the droplets to move in the three-dimensional space above the substrate, causing the metal layer to melt and form on the substrate until printing is completed.
  • the set capacity of the aforementioned powder in the powder storage tank and the sealed container can be selected as 50% to facilitate continuous transportation and production, and it is not too full to affect the transportation.
  • CCD camera devices 8 may also be provided on the two edges of the substrate 6, which are the first camera device and the second camera device, respectively, with the imaging lenses facing the formed metal layer. To observe the forming process of the melt-formed metal layer in real time.
  • the operation process of the continuous powder feeding induction heating metal induction heating additive manufacturing device proposed in the foregoing embodiment, that is, the steps of using it for additive manufacturing include:
  • the powder feeder Turn on the powder feeder and feed the metal powder to the powder storage tank through the powder feed tube.
  • the powder capacity in the powder storage tank reaches the set value, it is controlled to be sent to the low-power induction preheating device, which is induced by the first hollow copper coil. Heat and preheat the powder;
  • the preheated powder capacity in the sealed container After the preheated powder capacity in the sealed container reaches the set value, it is controlled to be delivered to the high-power induction heating device and inductively heated by the second hollow copper coil, and the molten powder forms droplets, wherein the heating power of the second hollow copper coil is greater than the first
  • the heating power of the hollow copper coil is controlled to control the temperature of the droplet at 700 °C -900 °C;
  • the temperature of the substrate is controlled by preheating at 250 °C -350 °C, and: during the accumulation of the metal layer, through the movement
  • the three-dimensional movement of the unit causes the droplets to move in the three-dimensional space above the substrate, causing the metal layer to melt and form on the substrate until printing is completed.
  • the four metal powders of 6061 aluminum alloy, 4047 aluminum alloy, 2319 aluminum alloy and pure copper will be taken as examples to realize the additive manufacturing printing process of the technical solution in the embodiment of the present invention. .
  • the metal additive manufacturing equipment and the entire environment are evacuated and filled with an inert protective gas.
  • the vacuum gauge indicates that the system pressure is less than 200Pa
  • turn on the Roots pump to continue vacuum extraction until the pressure value in the device is less than 5Pa.
  • turn off the mechanical pre-pumping pump and Roots pump in turn, then turn on the diffusion pump to perform high vacuum extraction on the device until the vacuum degree of the device is less than 10 -2 Pa, then turn off the diffusion pump, complete the whole pumping of the device, and the vacuuming time is about 11min.
  • the equipment is filled with 99.999% high purity inert gas argon for protection.
  • the oxygen content in the internal cavity of the equipment is measured by an oxygen analyzer in real time to ensure that the oxygen content is controlled below 100ppm.
  • the particle size of this 6061 aluminum alloy powder is 45 ⁇ 105 ⁇ m, and the chemical composition is: 0.34% copper, 0.95% magnesium, 0.73% silicon , 0.71% iron, the rest is aluminum and a small amount of other alloying elements.
  • the powder feeding speed of 6061 aluminum alloy powder is 50mg / s.
  • the first control valve is controlled to open, so that the 6061 aluminum alloy powder enters the low-power induction preheating device for preheating.
  • the flow rate of powder flowing into the preheating device is controlled to 50mg / s; the working power of the preheating device is 330W, to ensure that the temperature of the powder is stable at about 300 °C, and the temperature sensing system and control system on the inner wall of the device measure the temperature in the preheating device in real time And at any time by adjusting the induction preheating power to ensure that the powder temperature meets the requirements.
  • the 6061 aluminum alloy material has a large thermal conductivity and a small particle size value, which results in a large temperature gradient between the powder due to heat transfer and heat radiation, which may eventually lead to uneven structure and internal structure of the molded part. Cracks and other defects affect the overall performance of the molded part. Therefore, the method of preheating alloy powder is used to adjust the temperature distribution heterogeneity between the powders, and the possibility of defects is minimized; in addition, preheating alloy powder can also increase the absorption rate of the heat source energy, and make full use of high power for subsequent use The energy of the induction heating device provides the necessary conditions.
  • the second control valve is controlled to open, and the pre-heated 6061 aluminum alloy powder enters the high-power induction heating device for melting.
  • the flow rate of powder into the heating device is controlled at 50mg / s; the working power of the heating device is 620W, and a temperature sensing system and a control system are also installed on the inner wall of the heating device to ensure that the temperature of the alloy droplets is controlled at about 850 ° C.
  • the induction heating method does not require the use of the alloy's own resistance to generate heat, it is particularly suitable for low-resistivity metal wires; at the same time, the aluminum alloy does not have a reflective effect on the energy of induction heating, and the absorption and utilization rate of the heat source energy is high.
  • the preheating process of alloy powder undoubtedly provides a guarantee for the stability of the droplet temperature. At this temperature, it satisfies the best requirements for superheat of the metal flow of 100-250 ° C, and achieves continuous and stable flow of metal droplets; at the same time, reasonable superheat conditions also reduce the burning loss of low-melting aluminum and other elements , So that the chemical composition of the final alloy molded part is more uniform and stable.
  • the 6061 aluminum alloy droplets in the continuous molten state fall on the substrate by the gravity of themselves and the aluminum alloy droplets on the top to form a deposit.
  • the temperature of the substrate is controlled at about 300 ° C through preheating to prevent the occurrence of large temperature gradients on the edges and inside of the molded part, which increases the internal stress of the part, thereby reducing the possibility of micro-cracks.
  • the alloy powder completes the three-dimensional coordinated movement, thereby realizing the horizontal and vertical precision molding of the complex 6061 aluminum alloy parts, and using the CCD camera devices on both sides of the substrate to monitor the deposition molding in real time process.
  • the alloy composition of the 6061 aluminum alloy parts formed is 0.35% copper, 0.93% magnesium, 0.75% silicon, 0.74% iron, and the rest is aluminum and a small amount of other alloying elements, which meet the chemical composition requirements of the target aluminum alloy.
  • the surface roughness, tensile strength, yield strength and elongation at break of the three samples were tested and compared. The results are shown in Table 1.
  • the metal additive manufacturing equipment and the environment as a whole are evacuated and filled with an inert protective gas.
  • the vacuum gauge indicates that the system pressure is less than 200Pa
  • turn on the Roots pump to continue vacuuming the device until the pressure value in the device is less than 5Pa.
  • turn off the mechanical pre-pumping pump and Roots pump in turn, and then turn on the diffusion pump for high vacuum extraction.
  • the vacuum degree of the equipment is less than 10 -2 Pa
  • turn off the diffusion pump which completes the overall vacuuming of the equipment, and the vacuuming time is 10min (Requires control within 15min).
  • the equipment is filled with 99.999% high-purity inert gas nitrogen for protection.
  • the oxygen content in the internal cavity of the equipment is measured in real time by an oxygen analyzer to ensure that the oxygen content is controlled within 100ppm.
  • the particle size of this 4047 aluminum alloy powder is 53-150 ⁇ m, and the chemical composition is: 12.4% silicon, 0.47% iron, 0.26% copper , The rest is aluminum and a small amount of other alloying elements.
  • the feeding speed of 4047 aluminum alloy powder is 75mg / s.
  • the first control valve is automatically opened, so that the 4047 aluminum alloy powder enters the low-power induction preheating device for preheating.
  • the flow rate of powder into the preheating device is controlled to 75mg / s; the working power of the preheating device is 450W, which ensures that the temperature of the powder is stable at about 300 °C, and the temperature sensing system and control system on the inner wall of the device measure the temperature in the preheating device in real time And at any time by adjusting the induction preheating power to ensure that the powder temperature meets the requirements.
  • the second control valve is automatically opened, and the preheated 4047 aluminum alloy powder enters the high-power induction heating device for melting.
  • the flow rate of powder into the heating device is controlled at 75mg / s; the working power of the heating device is 850W, and the temperature sensor system and control system are also installed on the inner wall of the heating device to ensure that the temperature of the alloy droplets is controlled at about 800 °C. At this temperature, it not only meets the superheat requirement of continuous and stable flow of metal liquid; but also reduces the burning loss of low melting point aluminum and other elements, making the chemical composition of the final alloy molded part more uniform and stable.
  • the 4047 aluminum alloy droplets in the continuous molten state fall on the substrate to be deposited and shaped by their own gravity and the propulsion of the aluminum alloy droplets above.
  • the temperature of the substrate is controlled at about 300 ° C through preheating to prevent the occurrence of large temperature gradients on the edges and inside of the molded part, which increases the internal stress of the part, thereby reducing the possibility of micro-cracks.
  • the motion unit to drive the spatial movement of the robot 5 to complete the three-dimensional coordinated movement of the alloy powder, thereby achieving precise horizontal and vertical precision molding of the complex 4047 aluminum alloy parts, and at the same time using the CCD camera devices on both sides of the substrate to monitor the deposition molding process.
  • the alloy components of the formed 4047 aluminum alloy parts are 12.3% silicon, 0.49% iron, 0.26% copper, and the rest are aluminum and a small amount of other alloying elements, which meet the chemical composition requirements of the target aluminum alloy.
  • the surface roughness, tensile strength, yield strength, and elongation at break of the three samples were tested and compared. The results are shown in Table 2.
  • the metal additive manufacturing equipment and the environment as a whole are evacuated and filled with an inert protective gas.
  • the vacuum gauge indicates that the system pressure is less than 200Pa
  • turn on the Roots pump to continue vacuuming the device until the pressure value in the device is less than 5Pa.
  • turn off the mechanical pre-pumping pump and Roots pump in turn, and then turn on the diffusion pump for high vacuum extraction.
  • the vacuum degree of the equipment is less than 10 -2 Pa
  • turn off the diffusion pump to complete the overall vacuuming of the equipment.
  • the vacuuming time is 13 min ( (Requires control within 15min).
  • the device is filled with 99.999% high-purity inert gas argon for protection.
  • the oxygen content in the inner cavity of the device is measured by an oxygen analyzer in real time to ensure that the oxygen content is controlled within 100 ppm.
  • the particle size of the 2319 aluminum alloy powder is 45-150 ⁇ m, and the chemical composition is: 6.0% copper, 0.32% manganese, 0.26% zinc , 0.25% iron, the rest is aluminum and a small amount of other alloying elements.
  • the powder feeding speed of 2319 aluminum alloy powder is 100 mg / s.
  • the first control valve is automatically opened to allow the 2319 aluminum alloy powder to enter the low-power induction preheating device for preheating.
  • the flow rate of powder flowing into the preheating device is controlled to 100 mg / s; the working power of the preheating device is 600 W to ensure that the temperature of the powder is stable at about 300 ° C.
  • the temperature sensing system and control system on the inner wall of the device measure the temperature in the preheating device in real time And at any time by adjusting the induction preheating power to ensure that the powder temperature meets the requirements.
  • the second control valve is automatically opened, and the preheated 2319 aluminum alloy powder enters the high-power induction heating device for melting.
  • the flow rate of powder into the heating device is controlled at 100mg / s; the working power of the heating device is 1150W, and the temperature sensor system and control system are also installed on the inner wall of the heating device to ensure that the temperature of the alloy droplets is controlled at about 800 °C. At this temperature, it not only meets the superheat requirement of continuous and stable flow of metal liquid; but also reduces the burning loss of low melting point aluminum and other elements, making the chemical composition of the final alloy molded part more uniform and stable.
  • the continuous molten 2319 aluminum alloy droplets fall on the substrate by their own gravity and propelled by the upper aluminum alloy droplets to be deposited and formed.
  • the temperature of the substrate is controlled at about 300 ° C through preheating to prevent the occurrence of large temperature gradients on the edges and inside of the molded part, which increases the internal stress of the part, thereby reducing the possibility of micro-cracks.
  • the alloy powder completes the three-dimensional coordinated movement, thereby achieving precise horizontal and vertical precision molding of the complex 2319 aluminum alloy parts, and at the same time using the CCD camera devices on both sides of the substrate to monitor the deposition molding in real time process.
  • the alloy components of the formed 2319 aluminum alloy parts are 6.3% copper, 0.31% manganese, 0.27% zinc, 0.26% iron, and the rest are aluminum and a small amount of other alloying elements, which meet the chemical composition requirements of the target aluminum alloy.
  • the surface roughness, tensile strength, yield strength, and elongation at break of the three samples were tested and compared. The results are shown in Table 3.
  • the metal additive manufacturing equipment and the environment as a whole are evacuated and filled with an inert protective gas.
  • the vacuum gauge indicates that the system pressure is less than 200Pa
  • turn on the Roots pump to continue vacuuming the device until the pressure value in the device is less than 5Pa.
  • turn off the mechanical pre-pumping pump and Roots pump in turn, and then turn on the diffusion pump for high vacuum extraction.
  • the vacuum degree of the equipment is less than 10 -2 Pa
  • turn off the diffusion pump to complete the overall vacuuming of the equipment.
  • the vacuuming time is 12 minutes ( (Requires control within 15min).
  • the equipment is filled with 99.999% high-purity inert gas nitrogen for protection.
  • the oxygen content in the internal cavity of the equipment is measured in real time by an oxygen analyzer to ensure that the oxygen content is controlled within 100ppm.
  • the particle size of the pure copper powder is 53-105 ⁇ m, the chemical composition is: 99.96% copper, and the rest are a small amount of other alloying elements.
  • the feeding speed of pure copper powder is 25mg / s.
  • the first control valve is automatically opened to allow the pure copper powder to enter the low-power induction preheating device for preheating.
  • the flow rate of powder into the preheating device is controlled to 25mg / s; the working power of the preheating device is 300W, which ensures that the temperature of the powder is stable at about 500 ° C, and the temperature sensing system and control system on the inner wall of the device measure the temperature in the preheating device in real time And at any time by adjusting the induction preheating power to ensure that the powder temperature meets the requirements.
  • the second control valve is automatically opened, and the pure copper powder after preheating enters the high-power induction heating device for melting.
  • the flow rate of powder into the heating device is controlled at 25mg / s; the working power of the heating device is 600W, and the temperature sensor system and control system are also installed on the inner wall of the heating device to ensure that the temperature of the alloy droplets is controlled at about 1250 °C. At this temperature, it not only satisfies the superheat requirement of continuous and stable flow of metal liquid; but also reduces the burning loss of low melting point elements, making the chemical composition of the final alloy molded part more uniform and stable.
  • the continuous molten pure copper droplets fall on the substrate by their own gravity and propelled by the pure copper molten droplets.
  • the temperature of the substrate is controlled at about 500 ° C by preheating to prevent a large temperature gradient from occurring at the edges and inside of the molded part to increase the internal stress of the part, thereby reducing the possibility of micro-cracks.
  • the spatial movement of the manipulator 5 is driven by controlling the motion unit to complete the three-dimensional coordinated movement of the alloy powder, thereby realizing the precise molding of complex pure copper parts in the horizontal and vertical directions, and using the CCD camera devices on both sides of the substrate to monitor the deposition molding process in real time .
  • the composition of the formed pure copper parts is 99.95% copper, and the rest are a small amount of other alloying elements, which meet the target pure copper chemical composition requirements.
  • the surface roughness, tensile strength, yield strength and elongation at break of the three samples were tested and compared. The results are shown in Table 4.
  • the surface roughness values in the data tables 1-4 of the examples are used to evaluate the dimensional accuracy of the metal samples.
  • the tensile strength value, yield strength value and elongation at break value are used to evaluate the comprehensive mechanical properties of metal samples. The larger the tensile strength value, the yield strength value and the elongation at break value, the better the comprehensive mechanical properties.
  • the induction heating preheating process reduces the temperature gradient inside the powder under the premise of ensuring a higher energy utilization rate of the metal powder, and provides the necessary conditions for obtaining a metal sample with excellent comprehensive mechanical properties.
  • the three-dimensional coordinated movement of the metal powder droplets provides a guarantee for the high precision of metal parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种连续送粉感应加热金属增材制造方法及装置,通过送粉器(20)持续输送金属粉末,通过感应线圈的预热和熔化,使得熔滴通过自身重力以及上方熔滴推进的作用,落到基板(6)上堆积成型形成金属层,而且在金属层堆积过程中,通过机械手(5)三维空间内的运动,控制熔滴落下的位置,使得金属层在基板(6)上不断堆积成型,直至完成打印。

Description

连续送粉感应加热金属增材制造方法及装置 技术领域
本发明涉及增材制造领域,具体而言涉及一种连续送粉感应加热金属增材制造方法及装置。
背景技术
金属增材制造技术作为一种先进的快速成型技术,其本质上采取数值化离散/堆积成型的增材思维,将三维CAD实体模型通过逐层叠加的制备方式来获得。相较于传统的减材加工制造方法而言,其对金属原材料的利用率较高;同时在制备形状复杂的金属零部件时,具有得天独厚的优势;另外可实现模具及破损零件的快速修复,起到缩短金属零件设计周期及降低生产成本的两大作用,而最终凝固金属组织的综合力学性能能与传统锻件相当。总体而言,金属增材制造技术代表着一种无模、低成本、数字化的先进制造技术,具有无可比拟的应用前景。
现阶段金属增材制造技术所采用的热源主要包括以下三类:激光、电子束和电弧。其中激光作为热源是一种常见的手段,中国专利CN201710843050.X中提出了一种多孔铝合金的激光增材制造方法,采取上层粉末线性扫描轨迹垂直于下层粉末线性扫描轨迹的方式来实现逐层堆积,但是考虑到铝合金对激光具有较高的反射率(通常超过80%),而铝合金本身又具有良好的导热性,从而造成铝合金增材制造过程中对激光能量的吸收不足,难以满足成本及效率的需求。因此,针对铝合金及铜合金等激光反射率较高的金属,激光作为热源无疑具有明显的劣势。电子束作为热源也是一种不错的方法,中国专利CN201710878157.8中提出了一种前置送粉式电子束增材制造装置,能有效避免金属粉末对激光束能量的反射,使得成型速率快;但是电子束工作本身需要严苛的真空环境,对设备和工艺条件要求较高,成型某些大型结构时往往受到限制,导致原料成本及时间成本均较高。而电弧增材制造技术则是另一种常见的方法,中国专利CN201710129920.7中提出了一种铝镁合金结构件增材制造方法,其采用电弧熔丝的方法来获得三维金属结构件,具有成型设备简单及成型效率较高的特点,但是电弧自身的稳定性较差,成型过程往往难以控制,导致熔融沉积层经常出现塌陷等问题,同时将丝材作为原材料,难以摆脱成型件尺寸精度低的问题,造成成型质量和成型精度均较差,难以满足金属增材制造零部件的成型要求。
因此,如何高效且低成本的成型制备出高质量的金属增材制造零部件,已成为当前亟需解决的关键性技术问题。
发明内容
本发明目的在于提供一种连续送粉感应加热金属增材制造方法及装置,提高金属凝固成型过程中对热源能量的利用率,高效地实现金属零部件的自动化生产,同时能保证成型的金属增材制造零部件具有成型精度高、综合力学性能优良等优势。
为实现上述目的,本发明所采用的技术方案如下:
连续送粉感应加热金属增材制造装置,包括:
基板,用于提供增材制造金属层的形成基底;
设置在基板一侧的运动控制装置以及运动单元,所述运动单元上设置有机械手,运动单元被设置用于在所述运动控制装置的控制下移动以驱使机械手在三维空间内运动,所述的运动单元被控制至少在X-Y平面和X-Z平面内运动;
储粉槽,用以储存运送的金属粉末;
低功率感应预热装置,构造为一密封容器,经由第一管连通到所述储粉槽下方;
第一中空铜线圈,螺旋缠绕在所述低功率感应预热装置的外部,用于对经过的金属粉末进行预热;
高功率感应加热装置,包括一连通到低功率感应预热装置的细管;
第二中空铜线圈,螺旋缠绕在所述细管的外部,用于对经过细管的金属粉末加热熔融形成熔滴;
水冷***,包括水冷箱以及通过水冷电缆在所述第一中空铜线圈、第二中空铜线圈中各自形成的水冷循环通道;
其中,所述机械手夹持所述储粉槽,储粉槽、低功率感应预热装置、高功率感应加热装置以及对应的第一中空铜线圈、第二中空铜线圈均设置在基板的垂直上方位置,并且与机械手保持同步移动,在所述运动单元的驱动下,第二中空铜线圈加热熔融形成的熔滴通过自身重力以及上方熔滴的推进下,落入基板上沉积成型。
进一步的,所述储粉槽与所述第一管的连接位置下方以及低功率感应预热装置与所述细管的连接位置下方分别设置有控制阀,以利于根据送粉的速率合理控制预热粉末和熔融粉末的速度。
进一步的,所述水冷***包括第一水冷电缆以及第二水冷电缆,均设置有入水通道和出水通道,第一水冷电缆与第一中空铜线圈连接,形成第一循环通道,第二水冷电缆与第二中空铜线圈连接,形成第二循环通道,以利于在移动机械手使得熔滴在三维空间内移动时使得水冷***的管道可随之移动,便于金属层的堆积成型。
进一步的,所述入水通道位于电缆中心,沿着电缆长度方向并截面呈圆形,出水通道位 于电缆入水通道外侧,沿着电缆长度方向并截面呈圆环形,采用这样的水冷通道设计,利于在于与中空铜管(感应加热线圈)对接时的连接和内外部的循环水流动。
进一步的,所述水冷***包括连接到水冷箱的第一入口管、第二入口管、第一出口管和第二出口管,第一入口管连通到第一水冷电缆的入水通道的一端,第一出口管连通到第一水冷电缆的出水通道的一端,第二入口管连通到第二水冷电缆的入水通道的一端,第二出口管连通到第二水冷电缆的出水通道的一端。
进一步的,所述缠绕到低功率感应预热装置外部的第一中空铜线圈的两端分别接入到第一水冷电缆的另一端,其中一端连通入水通道,另一端连通出水通道。
进一步的,所述缠绕到高功率感应预热装置外部的第二中空铜线圈的两端分别接入到第二水冷电缆的另一端,其中一端连通入水通道,另一端连通出水通道。
进一步的,所述第一水冷电缆以及第二水冷电缆为线材结构相同、尺寸不同的设计,其截面方向从外到内依次包括外部绝缘橡胶层、出水通道、外绝缘层、电缆铜线、内绝缘层以及入水通道。
根据本发明的公开,还提出一种利用上述装置的增材制造方法,包括以下步骤:
真空环境的抽取与保持,包括对装置所处的环境进行抽真空,直到真空度低于10 -2Pa,然后冲入惰性气体,并监测氧含量;
开启送粉器并通过送粉管向储粉槽送入金属粉末,在储粉槽中的粉末容量达到设定值时控制输送到低功率感应预热装置中,通过第一中空铜线圈进行感应加热,预热粉末;
密封容器内预热的粉末容量达到设定值后控制输送到高功率感应加热装置并通过第二中空铜线圈进行感应加热,熔融粉末形成熔滴,其中第二中空铜线圈的加热功率大于第一中空铜线圈的加热功率,控制熔滴的温度控制在700℃-900℃;
连续熔融态的熔滴通过自身重力以及上方熔滴推进的作用下,落入基板上成型,其中基板的温度通过预热控制在250℃-350℃,并且:在金属层堆积过程中,通过运动单元的三维运动使得熔滴在基板上方的三维空间范围内运动,使得金属层在基板上熔融堆积成型,直至完成打印。
有益效果
(1)本发明采用感应加热作为金属粉末的熔化热源,粉末对热源能量的吸收利用率高,起到降低能耗及提高金属零部件生产效率的作用,相较于丝材能显著提高成型件的表面精度;
(2)本发明可实现金属熔融液滴温度的精确控制,既保证金属流体连续稳定流动的过热度要求,同时也防止温度过高造成元素的过量烧损,造成金属制备件的化学成分缺失;
(3)本发明可于氮气及氩气等惰性气体氛围下工作,减少对真空环境的条件限制。金属 粉末熔滴的三维协调运动可实现复杂形状的金属零部件的制备,同时也可保证零件尺寸和粗糙度的精确控制;
(4)本发明制备的金属零部件具有合金化学成分稳定,综合力学性能优良等优势。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。另外,所要求保护的主题的所有组合都被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1是本发明实施例所提供的连续送粉感应加热金属增材制造装置的示意图。
图2是本发明实施例所提供的粉末加热装置的示意图。
图3是本发明实施例所提供的水冷结构连接的示意图。
图4是本发明实施例所提供的中空感应线圈的示意图。
图5是本发明实施例所提供的水冷电缆截面的示意图。
附图标记说明:
1—控制***;2—第一运动单元;3—第二运动单元;4—第三运动单元;
5—机械手;6—基板;7—金属沉积层;8—CCD摄像装置;
9—高功率感应加热装置;10—第一中空铜线圈;11—第一水冷电缆;
12—第一控制阀;13—低功率感应预热装置;14—第二中空铜线圈;
15—第二水冷电缆;16—第二控制阀;17—储粉槽;18—送粉管;
19—水冷***;20—送粉器;21—外部绝缘橡胶;22—出水通道;
23—外绝缘层;24—高密度电缆铜线;25—内绝缘层;26—入水通道;
31—第一入口管;32—第二入口管;33—第一出口管;34—第二出口管。
具体实施方式
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定义在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以 及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。
结合图示,结合本发明的实施例所提供的连续送粉自主感应加热增材制造装置,通过送粉器持续输送金属粉末,通过感应线圈的预热和融化,使得融滴通过自身重力以及上方熔滴推进的作用下,落入基板上堆积成型形成金属层,而且在金属层堆积过程中,通过机械手三维空间内的运动,控制熔滴落下的位置,使得金属层在基板上不断堆积成型,直至完成打印。
结合图1所示,在整个装置进行增材制造过程中,装置整体抽真空并达到一定真空度后,充入高纯度的惰性气体(例如氩气)进行保护,随后输送的金属粉末通过低功率感应预热(中空感应线圈)进行预热,预热后处于一定温度的粉末经过下方的高功率感应加热(中空感应线圈)后进行熔化,熔融态的合金液滴在自身重力以及上方熔滴的推进作用下,连续且均匀的落入到基板上。
在金属层形成过程中,可以实时通过摄像装置(如CCD)来观察和监测熔融成型金属层的成型过程。
如图1示出了示例性的连续送粉自主感应加热增材制造装置的可选的实现方案。在该示例的装置中,连续送粉感应加热金属增材制造装置,包括一个基板6,用于提供增材制造金属层的形成基底。
如图1所示,设置在基板6一侧的运动控制装置以及运动单元,提供了融滴落下位置的三维驱动,通过机械手5三维空间内的运动,控制熔滴落下的位置。
如图1所示,运动控制装置包括控制箱1,运动单元包括第一运动单元2、第二运动单元3以及第三运动单元4,第一运动单元2、第二运动单元3以及第三运动单元4均包括对应的电机以及齿轮传动机构,用于驱动旋转运动。
结合图1所示,第一运动单元2设置成一个圆形运动平台单元,可围绕其圆心中轴线进行水平旋转,实现X-Y平面运动。
第二运动单元3和第三运动单元4固定,并通过连接座和杆固定到圆形运动平台单元上,并可保持随着圆形运动平台单元的旋转而同步随动旋转。
第二运动单元3和第三运动单元4均可围绕其旋转轴线实现X-Z平面旋转运动。
控制箱1内可设置有配套的运动控制软件,用于根据增材制造打印的目标进行程序设计,控制三个运动单元(2、3、4)按照设定的方向和位置进行移动。
运动单元(即第三运动单元4)上设置有机械手5,通过前述的三个运动单元(2、3、4)的运动使得机械手在三维空间内运动,以驱动被机械手夹持住的储粉槽17的运动。
储粉槽17,用以储存运送的金属粉末。
如图1所示,一送粉器20通过送粉管18将金属粉末连续输送到储粉槽17内。
结合图1、图2,储粉槽17、第一管36、低功率感应预热装置13、第二管37、高功率感应加热装置9采用固定式设计。
低功率感应预热装置13,构造为一密封容器,经由第一管36连通到储粉槽17的下方。第一管36上还设置有第一控制阀12,用于控制储粉槽内的金属粉末落入低功率感应预热装置13内。
第一中空铜线圈14,作为低功率加热感应线圈,螺旋缠绕在低功率感应预热装置13的外部,用于对经过的金属粉末进行预热,以将粉末加热到预定的温度,避免直接高功率加热时粉末之间极易由于热传递和热辐射作用出现较大的温度梯度。
高功率感应加热装置9,包括一经过第二管37连通到低功率感应预热装置的细管。当预热后的粉末落下时,流入细管内。
结合图1,低功率感应预热装置13与细管之间还设置有第二控制阀16,用于控制预热后的金属粉末向细管的输送。结合图1、2,通过2个控制阀(12、16)的设置,利于根据送粉的速率合理控制预热粉末和熔融粉末的速度。
第二中空铜线圈10,作为高功率加热感应线圈,螺旋缠绕在细管的外部,用于对经过细管的金属粉末加热熔融形成熔滴。
水冷***,包括水冷箱19以及通过水冷电缆(11、15)在第一中空铜线圈14、第二中空铜线圈10中各自形成的水冷循环通道。
结合图、图2、所示,机械手5夹持储粉槽17,储粉槽17、低功率感应预热装置13、高功率感应加热装置9以及对应的第一中空铜线圈14、第二中空铜线圈10均设置在基板的垂直上方位置,并且与机械手5保持同步移动,在运动单元(2、3、4)的驱动下,第二中空铜线圈10加热熔融形成的熔滴通过自身重力以及上方熔滴的推进下,落入基板6上沉积成型。
如图1、2,水冷***包括第一水冷电缆11以及第二水冷电缆15,均设置有入水通道和出水通道,第一水冷电缆11与第一中空铜线圈14连接,形成第一循环通道,第二水冷电缆15与第二中空铜线圈10连接,形成第二循环通道,以利于在移动机械手使得熔滴在三维空间内移动时使得水冷***的管道可随之移动,便于金属层的堆积成型。
结合图3、图5,入水通道位于电缆中心,沿着电缆长度方向并截面呈圆形,出水通道位于电缆入水通道外侧,沿着电缆长度方向并截面呈圆环形,采用这样的水冷通道设计,利于在于与中空铜管(感应加热线圈)对接时的连接和内外部的循环水流动。
水冷***包括连接到水冷箱的第一入口管31、第二入口管32、第一出口管33和第二出 口管34,第一入口管31连通到第一水冷电缆11的入水通道的一端,第一出口管33连通到第一水冷电缆11的出水通道的一端,第二入口管33连通到第二水冷电缆的入水通道的一端,第二出口管34连通到第二水冷电缆的出水通道的一端。
结合图1、图2,缠绕到低功率感应预热装置外部的第一中空铜线圈14的两端分别接入到第一水冷电缆11的另一端,其中一端连通入水通道,另一端连通出水通道。
缠绕到高功率感应预热装置外部的第二中空铜线圈10的两端分别接入到第二水冷电缆15的另一端,其中一端连通入水通道,另一端连通出水通道。
结合图5,所述第一水冷电缆以及第二水冷电缆为线材结构相同、尺寸不同的设计,其截面方向从外到内依次包括外部绝缘橡胶层21、出水通道22、外绝缘层23、电缆铜线24、内绝缘层25以及入水通道26。电缆铜线24优选高密度电缆铜线。
结合图4,第一中空铜线圈和第二中空铜线圈为线材结构相同、尺寸不同的设计。
结合前述图示和说明,在进行增材制造的过程中,包括以下步骤:
真空环境的抽取与保持,包括对装置及所处的环境进行抽真空,直到真空度低于10-2Pa,然后冲入惰性气体,并监测氧含量;
开启送粉器20并通过送粉管18向储粉槽17送入金属粉末,在储粉槽中的粉末容量达到设定值时控制输送到低功率感应预热装置中,通过第一中空铜线圈进行感应加热,预热粉末;
密封容器内预热的粉末容量达到设定值后控制输送到高功率感应加热装置并通过第二中空铜线圈进行感应加热,熔融粉末形成熔滴,其中第二中空铜线圈的加热功率大于第一中空铜线圈的加热功率,控制熔滴的温度控制在700℃-900℃;
连续熔融态的熔滴通过自身重力以及上方熔滴推进的作用下,落入基板上成型,其中基板的温度通过预热控制在250℃-350℃,并且:在金属层堆积过程中,通过运动单元的三维运动使得熔滴在基板上方的三维空间范围内运动,使得金属层在基板上熔融堆积成型,直至完成打印。
前述粉末在储粉槽和密封容器内的设定容量,可以选择50%,以利于连续输送和生产,而且也不至于过满而影响输送。
在一些实施例中,结合附图1,还可以在基板6的两个边缘还分别设置有CCD摄像装置8,分别为第一摄像装置和第二摄像装置,其成像镜头均朝向形成的金属层,以实时观察熔融成型金属层的成型过程。
结合图1所示,前述实施例提出的连续送粉感应加热金属感应加热增材制造装置的运行过程,即使用其进行增材制造的步骤包括:
真空环境的抽取与保持,包括对装置所处的环境进行抽真空,直到真空度低于10-2Pa, 然后冲入惰性气体,并监测氧含量;
开启送粉器并通过送粉管向储粉槽送入金属粉末,在储粉槽中的粉末容量达到设定值时控制输送到低功率感应预热装置中,通过第一中空铜线圈进行感应加热,预热粉末;
密封容器内预热的粉末容量达到设定值后控制输送到高功率感应加热装置并通过第二中空铜线圈进行感应加热,熔融粉末形成熔滴,其中第二中空铜线圈的加热功率大于第一中空铜线圈的加热功率,控制熔滴的温度控制在700℃-900℃;
连续熔融态的熔滴通过自身重力以及上方熔滴推进的作用下,落入基板上成型,其中基板的温度通过预热控制在250℃-350℃,并且:在金属层堆积过程中,通过运动单元的三维运动使得熔滴在基板上方的三维空间范围内运动,使得金属层在基板上熔融堆积成型,直至完成打印。
下面结合示例以更加具体的说明上述装置的操作以及实现增材制造打印的过程。
下面将结合本发明实施例中的附图,以6061铝合金、4047铝合金、2319铝合金和纯铜四种金属粉末为例,对本发明实施例中的技术方案进行增材制造打印过程的实现。
【实例1】
首先,对金属增材制造装置及环境整体抽真空,充入惰性保护气体。开启机械预抽泵进行预抽,待真空计指示***压力小于200Pa后,开启罗茨泵继续进行真空抽取,直到装置内压力值小于5Pa。随后依次关闭机械预抽泵和罗茨泵,然后开启扩散泵对设备进行高真空抽取,直到设备真空度低于10 -2Pa后,关闭扩散泵,完成设备的整体抽真空,抽真空时间约为11min。随后向设备中充入99.999%高纯度惰性气体氩气进行保护,此过程中通过氧分仪实时测量设备内腔中的氧含量,确保氧含量控制在100ppm以下。
其次,开启送粉器,将6061铝合金粉末经送粉管运送到储粉槽中,此6061铝合金粉末的粒度为45~105μm,化学成分为:0.34%铜、0.95%镁、0.73%硅、0.71%铁,其余为铝及少量其他合金化元素。6061铝合金粉末的送粉速度为50mg/s。
随后,待储粉槽中的粉末容量达到容器的1/2时,控制开启第一控制阀,使6061铝合金粉末进入低功率感应预热装置中进行预热。粉末流入预热装置中的流速控制为50mg/s;预热装置的工作功率为330W,保证粉末的温度稳定在300℃左右,装置内壁的温度传感***和控制***实时测量预热装置内温度并随时通过调节感应预热功率来保证粉末温度满足要求。6061铝合金材料由于导热系数较大,同时粉末的粒径值较小,导致粉末之间极易由于热传递和热辐射作用出现较大的温度梯度,最终可能导致成型件内部出现组织不均一及裂纹等缺陷,影响成型件的综合性能。因此采用预热合金粉末的方法来调整粉末之间的温度分布不均一性,尽量减小出现缺陷的可能性;另外预热合金粉末也能提高对热源能量的吸收率,为后续充分 利用高功率感应加热装置的能量提供必要条件。
后续,待预热装置(密封容器)中的粉末容量达到容器的1/2时,控制开启第二控制阀,经预热后的6061铝合金粉末进入高功率感应加热装置中进行熔融。粉末流入加热装置中的流速控制在50mg/s;加热装置的工作功率为620W,加热装置内壁同样安装有温度传感***和控制***来保证合金熔滴的温度控制在850℃左右。由于感应加热的方式不需要利用合金自身的电阻产热,因而特别适合低电阻率的金属丝材;同时铝合金对感应加热的能量不具有反射作用,对热源能量的吸收利用率较高,而合金粉末的预热过程无疑为熔滴温度的稳定提供了保证。在此温度下,满足了金属液流100~250℃过热度的最佳要求,实现金属熔滴连续且稳定的流动;同时合理的过热度条件也降低了对低熔点铝等元素的烧损作用,使得最终合金成型件的化学成分更加均匀和稳定。
最后,连续熔融态的6061铝合金液滴通过自身重力以及上方铝合金熔滴的推进作用下,落入基板上沉积成型。基板温度通过预热控制在300℃左右,以防止成型件边缘及内部出现较大温度梯度致使零件内应力增加,从而降低出现微裂纹的可能性。此过程中通过控制运动单元驱使机械手5的空间运动使合金粉末完成三维协调运动,从而实现复杂6061铝合金零部件水平及垂直方向的精密成型,同时利用基板两侧的CCD摄像装置实时监测沉积成型过程。
所成型的6061铝合金零部件的合金成分为0.35%铜、0.93%镁、0.75%硅、0.74%铁,其余为铝和少量其他合金化元素,满足目标铝合金的化学成分要求。分别测试三组截取样品的表面粗糙度、抗拉强度、屈服强度、断后伸长率,进行对比,结果见表1。
表1-实施例1数据
项目 表面粗糙度(mm) 抗拉强度(MPa) 屈服强度(MPa) 断后伸长率(%)
实施例1 0.12 298 253 24.2
普通成型件 0.21 272 215 17.1
【实例2】
首先,对金属增材制造装置及环境整体抽真空及充入惰性保护气体。开启机械预抽泵对设备进行预抽,待真空计指示***压力小于200Pa后,开启罗茨泵继续对设备进行真空抽取,直到设备内压力值小于5Pa。随后依次关闭机械预抽泵和罗茨泵,然后开启扩散泵进行高真空抽取,待设备真空度低于10 -2Pa后,关闭扩散泵,即完成设备的整体抽真空,抽真空时间为10min(要求控制在15min以内)。随后向设备中充入99.999%高纯度惰性气体氮气进行保护,此过程中通过氧分仪实时测量设备内腔中的氧含量,确保氧含量控制在100ppm以内。
其次,开启送粉器,将4047铝合金粉末经送粉管运送到储粉槽中,此4047铝合金粉末 的粒度为53~150μm,化学成分为:12.4%硅、0.47%铁、0.26%铜,其余为铝及少量其他合金化元素。4047铝合金粉末的送粉速度为75mg/s。
随后,待储粉槽中的粉末容量达到容器的1/2时,自动开启第一控制阀,使4047铝合金粉末进入低功率感应预热装置中进行预热。粉末流入预热装置中的流速控制为75mg/s;预热装置的工作功率为450W,保证粉末的温度稳定在300℃左右,装置内壁的温度传感***和控制***实时测量预热装置内温度并随时通过调节感应预热功率来保证粉末温度满足要求。
后续,待预热装置中的粉末容量达到容器的1/2时,自动开启第二控制阀,经预热后的4047铝合金粉末进入高功率感应加热装置中进行熔融。粉末流入加热装置中的流速控制在75mg/s;加热装置的工作功率为850W,加热装置内壁同样安装有温度传感***和控制***来保证合金熔滴的温度控制在800℃左右。在此温度下,既满足了金属液流连续且稳定流动的过热度要求;同时也降低了对低熔点铝等元素的烧损作用,使得最终合金成型件的化学成分更加均匀和稳定。
最后,连续熔融态的4047铝合金液滴通过自身重力以及上方铝合金熔滴的推进作用下,落入基板上沉积成型。基板温度通过预热控制在300℃左右,以防止成型件边缘及内部出现较大温度梯度致使零件内应力增加,从而降低出现微裂纹的可能性。此过程中通过控制运动单元驱使机械手5的空间运动使合金粉末完成三维协调运动,从而实现复杂4047铝合金零部件水平及垂直方向的精密成型,同时利用基板两侧的CCD摄像装置实时监测沉积成型过程。
所成型的4047铝合金零部件的合金成分为12.3%硅、0.49%铁、0.26%铜,其余为铝和少量其他合金化元素,满足目标铝合金的化学成分要求。分别测试三组截取样品的表面粗糙度、抗拉强度、屈服强度、断后伸长率,进行对比,结果见表2。
表2-实施例2数据
项目 表面粗糙度(mm) 抗拉强度(MPa) 屈服强度(MPa) 断后伸长率(%)
实施例2 0.13 191 88 20.8
普通成型件 0.23 151 78 17.8
【实例3】
首先,对金属增材制造装置及环境整体抽真空及充入惰性保护气体。开启机械预抽泵对设备进行预抽,待真空计指示***压力小于200Pa后,开启罗茨泵继续对设备进行真空抽取,直到设备内压力值小于5Pa。随后依次关闭机械预抽泵和罗茨泵,然后开启扩散泵进行高真空抽取,待设备真空度低于10 -2Pa后,关闭扩散泵,完成设备的整体抽真空,抽真空时间为13min(要求控制在15min以内)。随后向设备中充入99.999%高纯度惰性气体氩气进行保护, 此过程中通过氧分仪实时测量设备内腔中的氧含量,确保氧含量控制在100ppm以内。
其次,开启送粉器,将2319铝合金粉末经送粉管运送到储粉槽中,此2319铝合金粉末的粒度为45~150μm,化学成分为:6.0%铜、0.32%锰、0.26%锌、0.25%铁,其余为铝及少量其他合金化元素。2319铝合金粉末的送粉速度为100mg/s。
随后,待储粉槽中的粉末容量达到容器的1/2时,自动开启第一控制阀,使2319铝合金粉末进入低功率感应预热装置中进行预热。粉末流入预热装置中的流速控制为100mg/s;预热装置的工作功率为600W,保证粉末的温度稳定在300℃左右,装置内壁的温度传感***和控制***实时测量预热装置内温度并随时通过调节感应预热功率来保证粉末温度满足要求。
后续,待预热装置中的粉末容量达到容器的1/2时,自动开启第二控制阀,经预热后的2319铝合金粉末进入高功率感应加热装置中进行熔融。粉末流入加热装置中的流速控制在100mg/s;加热装置的工作功率为1150W,加热装置内壁同样安装有温度传感***和控制***来保证合金熔滴的温度控制在800℃左右。在此温度下,既满足了金属液流连续且稳定流动的过热度要求;同时也降低了对低熔点铝等元素的烧损作用,使得最终合金成型件的化学成分更加均匀和稳定。
最后,连续熔融态的2319铝合金液滴通过自身重力以及上方铝合金熔滴的推进作用下,落入基板上沉积成型。基板温度通过预热控制在300℃左右,以防止成型件边缘及内部出现较大温度梯度致使零件内应力增加,从而降低出现微裂纹的可能性。此过程中通过控制运动单元驱使机械手5的空间运动使合金粉末完成三维协调运动,从而实现复杂2319铝合金零部件水平及垂直方向的精密成型,同时利用基板两侧的CCD摄像装置实时监测沉积成型过程。
所成型的2319铝合金零部件的合金成分为6.3%铜、0.31%锰、0.27%锌,0.26%铁,其余为铝和少量其他合金化元素,满足目标铝合金的化学成分要求。分别测试三组截取样品的表面粗糙度、抗拉强度、屈服强度、断后伸长率,进行对比,结果见表3。
表3-实施例3数据
项目 表面粗糙度(mm) 抗拉强度(MPa) 屈服强度(MPa) 断后伸长率(%)
实施例3 0.15 268 131 12.2
普通成型件 0.26 197 101 8.9
【实例4】
首先,对金属增材制造装置及环境整体抽真空及充入惰性保护气体。开启机械预抽泵对设备进行预抽,待真空计指示***压力小于200Pa后,开启罗茨泵继续对设备进行真空抽取,直到设备内压力值小于5Pa。随后依次关闭机械预抽泵和罗茨泵,然后开启扩散泵进行高真 空抽取,待设备真空度低于10 -2Pa后,关闭扩散泵,完成设备的整体抽真空,抽真空时间为12min(要求控制在15min以内)。随后向设备中充入99.999%高纯度惰性气体氮气进行保护,此过程中通过氧分仪实时测量设备内腔中的氧含量,确保氧含量控制在100ppm以内。
其次,开启送粉器,将纯铜粉末经送粉管运送到储粉槽中,此纯铜粉末的粒度为53~105μm,化学成分为:99.96%铜,其余为少量其他合金化元素。纯铜粉末的送粉速度为25mg/s。
随后,待储粉槽中的粉末容量达到容器的1/2时,自动开启第一控制阀,使纯铜粉末进入低功率感应预热装置中进行预热。粉末流入预热装置中的流速控制为25mg/s;预热装置的工作功率为300W,保证粉末的温度稳定在500℃左右,装置内壁的温度传感***和控制***实时测量预热装置内温度并随时通过调节感应预热功率来保证粉末温度满足要求。
后续,待预热装置中的粉末容量达到容器的1/2时,自动开启第二控制阀,经预热后的纯铜粉末进入高功率感应加热装置中进行熔融。粉末流入加热装置中的流速控制在25mg/s;加热装置的工作功率为600W,加热装置内壁同样安装有温度传感***和控制***来保证合金熔滴的温度控制在1250℃左右。在此温度下,既满足了金属液流连续且稳定流动的过热度要求;同时也降低了对低熔点元素的烧损作用,使得最终合金成型件的化学成分更加均匀和稳定。
最后,连续熔融态的纯铜液滴通过自身重力以及上方纯铜熔滴的推进作用下,落入基板上沉积成型。基板温度通过预热控制在500℃左右,以防止成型件边缘及内部出现较大温度梯度致使零件内应力增加,从而降低出现微裂纹的可能性。此过程中通过控制运动单元驱使机械手5的空间运动使合金粉末完成三维协调运动,从而实现复杂纯铜零部件水平及垂直方向的精密成型,同时利用基板两侧的CCD摄像装置实时监测沉积成型过程。
所成型的纯铜零部件的成分为99.95%铜,其余为少量其他合金化元素,满足目标纯铜的化学成分要求。分别测试三组截取样品的表面粗糙度、抗拉强度、屈服强度、断后伸长率,进行对比,结果见表4。
表4-实施例4数据
项目 表面粗糙度(mm) 抗拉强度(MPa) 屈服强度(MPa) 断后伸长率(%)
实施例4 0.12 407 349 8.1
普通成型件 0.25 370 317 6.3
由上述实施例的过程以及得到的金属合金样品的分析可见,实施例数据表1-4中表面粗糙度值用于评价金属样品尺寸精度的优劣,表面粗糙度值越低表示尺寸精度越高。抗拉强度值、屈服强度值以及断后伸长率值共同用于评价金属样品综合力学性能的好坏,抗拉强度值、 屈服强度值以及断后伸长率值越大表示综合力学性能越好。
对比上述表1-4可知,实例1-4中四种金属试样在表面粗糙度值、抗拉强度值、屈服强度值和断后伸长率四个参数上都明显优于相对应的普通成型件,表明通过以上方法和装置制得的金属增材零部件具有尺寸精度高、综合力学性能优良的特点。这是因为本发明中采用感应加热作为热源,同时辅以温度反馈控制***来严格控制金属粉末熔滴的温度,不仅起到提高金属粉末对热源能量利用率的作用,同时在保证熔滴连续稳定流动的过热度要求下,还尽量减少了合金元素的烧损作用,提高了合金试样的化学成分稳定性。而感应加热预热过程的引入在保证金属粉末较高能量利用率的前提下,降低了粉末内部的温度梯度,为得到综合力学性能优良的金属样品提供了必要条件。另外金属粉末熔滴的三维协调运动为金属零部件的高精度提供了保证。最终成型出高质量的金属零部件
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (10)

  1. 连续送粉感应加热金属增材制造装置,其特征在于,包括:
    基板,用于提供增材制造金属层的形成基底;
    设置在基板一侧的运动控制装置以及运动单元,所述运动单元上设置有机械手,运动单元被设置用于在所述运动控制装置的控制下移动以驱使机械手在三维空间内运动;
    储粉槽,用以储存运送的金属粉末;
    低功率感应预热装置,构造为一密封容器,经由第一管连通到所述储粉槽下方;
    第一中空铜线圈,螺旋缠绕在所述低功率感应预热装置的外部,用于对经过的金属粉末进行预热;
    高功率感应加热装置,包括一连通到低功率感应预热装置的细管;
    第二中空铜线圈,螺旋缠绕在所述细管的外部,用于对经过细管的金属粉末加热熔融形成熔滴;
    水冷***,包括水冷箱以及通过水冷电缆在所述第一中空铜线圈、第二中空铜线圈中各自形成的水冷循环通道;
    其中,所述机械手夹持所述储粉槽,储粉槽、低功率感应预热装置、高功率感应加热装置以及对应的第一中空铜线圈、第二中空铜线圈均设置在基板的垂直上方位置,并且与机械手保持同步移动,在所述运动单元的驱动下,第二中空铜线圈加热熔融形成的熔滴通过自身重力以及上方熔滴的推进下,落入基板上沉积成型。
  2. 根据权利要求1所述的连续送粉感应加热金属增材制造装置,其特征在于,所述的运动单元被控制至少在X-Y平面和X-Z平面内运动。
  3. 根据权利要求1所述的连续送粉感应加热金属增材制造装置,其特征在于,所述储粉槽与所述第一管的连接位置下方以及低功率感应预热装置与所述细管的连接位置下方分别设置有控制阀。
  4. 根据权利要求1所述的连续送粉感应加热金属增材制造装置,其特征在于,所述水冷***包括第一水冷电缆以及第二水冷电缆,均设置有入水通道和出水通道,第一水冷电缆与第一中空铜线圈连接,形成第一循环通道,第二水冷电缆与第二中空铜线圈连接,形成第二循环通道。
  5. 根据权利要求4所述的连续送粉感应加热金属增材制造装置,其特征在于,所述入水通道位于电缆中心,沿着电缆长度方向并截面呈圆形,出水通道位于电缆入水通道外侧,沿着电缆长度方向并截面呈圆环形。
  6. 根据权利要求4所述的连续送粉感应加热金属增材制造装置,其特征在于,所述水冷***包括连接到水冷箱的第一入口管、第二入口管、第一出口管和第二出口管,第一入口管 连通到第一水冷电缆的入水通道的一端,第一出口管连通到第一水冷电缆的出水通道的一端,第二入口管连通到第二水冷电缆的入水通道的一端,第二出口管连通到第二水冷电缆的出水通道的一端。
  7. 根据权利要求6所述的连续送粉感应加热金属增材制造装置,其特征在于,所述缠绕到低功率感应预热装置外部的第一中空铜线圈的两端分别接入到第一水冷电缆的另一端,其中一端连通入水通道,另一端连通出水通道。
  8. 根据权利要求6所述的连续送粉感应加热金属增材制造装置,其特征在于,所述缠绕到高功率感应预热装置外部的第二中空铜线圈的两端分别接入到第二水冷电缆的另一端,其中一端连通入水通道,另一端连通出水通道。
  9. 根据权利要求4-8中任意一项所述的连续送粉感应加热金属增材制造装置,其特征在于,所述第一水冷电缆以及第二水冷电缆为线材结构相同、尺寸不同的设计,其截面方向从外到内依次包括外部绝缘橡胶层、出水通道、外绝缘层、电缆铜线、内绝缘层以及入水通道。
  10. 一种使用权利要求1-9中任意一项所述装置的增材制造方法,其特征在于,包括以下步骤:
    真空环境的抽取与保持,包括对装置及所处的环境进行抽真空,直到真空度低于10 -2Pa,然后冲入惰性气体,并监测氧含量;
    开启送粉器并通过送粉管向储粉槽送入金属粉末,在储粉槽中的粉末容量达到设定值时控制输送到低功率感应预热装置中,通过第一中空铜线圈进行感应加热,预热粉末;
    密封容器内预热的粉末容量达到设定值后控制输送到高功率感应加热装置并通过第二中空铜线圈进行感应加热,熔融粉末形成熔滴,其中第二中空铜线圈的加热功率大于第一中空铜线圈的加热功率,控制熔滴的温度控制在700℃-900℃;
    连续熔融态的熔滴通过自身重力以及上方熔滴推进的作用下,落入基板上成型,其中基板的温度通过预热控制在250℃-350℃,并且:在金属层堆积过程中,通过运动单元的三维运动使得熔滴在基板上方的三维空间范围内运动,使得金属层在基板上熔融堆积成型,直至完成打印。
PCT/CN2019/096099 2018-10-16 2019-07-16 连续送粉感应加热金属增材制造方法及装置 WO2020078055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811203222.8A CN108941562B (zh) 2018-10-16 2018-10-16 连续送粉感应加热金属增材制造方法及装置
CN201811203222.8 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020078055A1 true WO2020078055A1 (zh) 2020-04-23

Family

ID=64480675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096099 WO2020078055A1 (zh) 2018-10-16 2019-07-16 连续送粉感应加热金属增材制造方法及装置

Country Status (2)

Country Link
CN (1) CN108941562B (zh)
WO (1) WO2020078055A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055699A (zh) * 2022-06-24 2022-09-16 西安交通大学 颗粒增强铝基复合材料熔滴复合电弧增材制造装置及方法
CN115090898A (zh) * 2022-07-07 2022-09-23 河北科技大学 金属零部件增材制造方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941562B (zh) * 2018-10-16 2023-07-28 南京尚吉增材制造研究院有限公司 连续送粉感应加热金属增材制造方法及装置
CN112276115A (zh) * 2020-11-26 2021-01-29 上海航天设备制造总厂有限公司 用于3d打印设备基板预热的加热装置
CN113695599B (zh) * 2021-08-30 2023-02-28 中国兵器工业第五九研究所 一种旋转感应加热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203764977U (zh) * 2014-01-07 2014-08-13 东莞市亚美精密机械配件有限公司 一种金属三维打印机
US20140363327A1 (en) * 2013-06-10 2014-12-11 Grid Logic Incorporated Inductive Additive Manufacturing System
CN204490969U (zh) * 2015-01-07 2015-07-22 江苏省电力公司 一种3d打印金属熔炼装置
CN205020808U (zh) * 2015-08-25 2016-02-10 国家电网公司 一种金属3d打印加支撑结构的装置
CN107335806A (zh) * 2016-05-02 2017-11-10 韩国电子通信研究院 用于金属材料的挤出机和使用挤出机的3d打印机
CN108941562A (zh) * 2018-10-16 2018-12-07 南京尚吉增材制造研究院有限公司 连续送粉感应加热金属增材制造方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170021456A1 (en) * 2014-04-10 2017-01-26 Ge Avio S.R.L. Process for forming a component by means of additive manufacturing, and powder dispensing device for carrying out such a process
CN105880612B (zh) * 2016-06-28 2018-07-06 浙江亚通焊材有限公司 一种增材制造用活性金属粉末制备方法
CN108405863B (zh) * 2018-05-03 2020-10-09 温州大学激光与光电智能制造研究院 一种基于感应熔炼的并行式金属三维打印成型方法
CN108405864B (zh) * 2018-05-03 2020-12-01 温州大学激光与光电智能制造研究院 一种基于感应熔炼的直写式金属三维打印成型方法
CN108500279B (zh) * 2018-05-15 2020-04-24 南京尚吉增材制造研究院有限公司 冷床熔炼式气雾化粉末制备方法与装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140363327A1 (en) * 2013-06-10 2014-12-11 Grid Logic Incorporated Inductive Additive Manufacturing System
CN203764977U (zh) * 2014-01-07 2014-08-13 东莞市亚美精密机械配件有限公司 一种金属三维打印机
CN204490969U (zh) * 2015-01-07 2015-07-22 江苏省电力公司 一种3d打印金属熔炼装置
CN205020808U (zh) * 2015-08-25 2016-02-10 国家电网公司 一种金属3d打印加支撑结构的装置
CN107335806A (zh) * 2016-05-02 2017-11-10 韩国电子通信研究院 用于金属材料的挤出机和使用挤出机的3d打印机
CN108941562A (zh) * 2018-10-16 2018-12-07 南京尚吉增材制造研究院有限公司 连续送粉感应加热金属增材制造方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055699A (zh) * 2022-06-24 2022-09-16 西安交通大学 颗粒增强铝基复合材料熔滴复合电弧增材制造装置及方法
CN115055699B (zh) * 2022-06-24 2024-03-29 西安交通大学 颗粒增强铝基复合材料熔滴复合电弧增材制造装置及方法
CN115090898A (zh) * 2022-07-07 2022-09-23 河北科技大学 金属零部件增材制造方法及装置

Also Published As

Publication number Publication date
CN108941562B (zh) 2023-07-28
CN108941562A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2020078055A1 (zh) 连续送粉感应加热金属增材制造方法及装置
CN108857031A (zh) 连续送丝自主感应加热增材制造装置及方法
US20180141151A1 (en) Method and apparatus for metal three-dimensional printing
US11000896B2 (en) Preparation method of tungsten particle reinforced amorphous matrix composites
CN106925783B (zh) 一种金属3d打印设备和方法
CN106363171A (zh) 选择性激光熔化成形熔池实时监测装置及监测方法
CN107498043A (zh) 电子束熔丝增材制造装置及其控制方法
WO2020155540A1 (zh) 一种电阻感应复合加热金属丝材增材制造装置
WO2015078209A1 (zh) 非晶合金构件铸造成型设备和工艺
CN108480638A (zh) 一种三段式选择性激光熔化组合预热***
CN106424620B (zh) 一种金属-金属陶瓷层状复合材料的制备装置与制备方法
CN206200123U (zh) 一种选择性激光熔化成形熔池实时监测装置
CN105057688B (zh) 一种超细无铅焊锡粉的生产方法
CN113245562B (zh) 高能束制备金属试验件与结构件的设备
CN109759584A (zh) 一种铜铬合金零件的激光选区熔化成形方法
CN113231646B (zh) 基于电子束3D打印技术制备GCr15轴承钢及汽车部件的方法
WO2015078210A1 (zh) 非晶合金构件铸造成型设备
WO2018090820A1 (zh) 一种非晶合金或其复合材料的连续精密成形设备和工艺
CN208758790U (zh) 连续送丝自主感应加热增材制造装置
CN215508988U (zh) 一种基于感应加热金属沉积成形的非晶合金零件成形装置
CN208261854U (zh) 一种三段式选择性激光熔化组合预热***
CN111922655B (zh) 连续送丝感应加热复合轧压半固态增材制造***及方法
CN106216636A (zh) 一种AlMg3铝合金尖部接闪器低压铸造方法
CN112108742A (zh) 一种用于氩弧焊接的焊接装置及焊接方法
CN107282925A (zh) 一种三维打印设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874393

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19874393

Country of ref document: EP

Kind code of ref document: A1