WO2020077498A1 - 发光装置、生物特征检测装置和电子设备 - Google Patents

发光装置、生物特征检测装置和电子设备 Download PDF

Info

Publication number
WO2020077498A1
WO2020077498A1 PCT/CN2018/110276 CN2018110276W WO2020077498A1 WO 2020077498 A1 WO2020077498 A1 WO 2020077498A1 CN 2018110276 W CN2018110276 W CN 2018110276W WO 2020077498 A1 WO2020077498 A1 WO 2020077498A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide structure
light source
light guide
emitting device
Prior art date
Application number
PCT/CN2018/110276
Other languages
English (en)
French (fr)
Inventor
徐兴浪
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201880002038.9A priority Critical patent/CN109478236A/zh
Priority to PCT/CN2018/110276 priority patent/WO2020077498A1/zh
Publication of WO2020077498A1 publication Critical patent/WO2020077498A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • the embodiments of the present application relate to the field of electronic technology, and more specifically, to a light emitting device, a biometric detection device, and an electronic device.
  • the under-screen fingerprint system of a liquid crystal display usually requires an external light source. Since the backlight module of the LCD has a light blocking effect, the external light source can only be placed under the non-display area of the display screen. However, in the context of full-screen display, the non-display area is getting narrower and narrower, resulting in insufficient space below the non-display area to arrange the external light source.
  • the present application provides a light-emitting device, a biometric detection device, and an electronic device.
  • the light-emitting device can be applied to an under-screen fingerprint system for full-screen display on an LCD.
  • a biometric detection device for use in an electronic device having a display screen.
  • the biometric detection device includes:
  • a light emitting device includes a light source and a light guide structure, the light source is used to provide a biometric detection light signal, the light guide device includes a first end and a second end, the light guide device is used to pass from the first end
  • the light source receives the biometric detection optical signal and emits the biometric detection optical signal through the second end, wherein the size of the light source is larger than the size of the second end;
  • the biometrics identification module is arranged below the display screen to detect the return light formed by the target biometric detection light signal emitted from the second end of the light guide device on the target object above the display screen.
  • the returned light is used to detect the biometric information of the target object.
  • the light source is an infrared light source
  • the biometric detection light signal is an infrared light signal
  • the display screen is a liquid crystal display screen, which includes a liquid crystal display module and a backlight module providing a backlight source for the liquid crystal display module, and the biometric recognition module is used to set Below the backlight module, and the biometric detection area of the biometric identification module is at least partially located in the display area of the display screen.
  • the light-emitting device is configured to be arranged side by side with the display screen under the cover of the electronic device, and the light-emitting device does not overlap the display screen.
  • the first end covers at least the light emitting surface of the light source.
  • the size of the first end is greater than or equal to the size of the second end.
  • the axial direction of the first end and the axial direction of the second end form a preset angle.
  • the preset angle is less than or equal to 90 °.
  • the light source is a side light source
  • the axial direction of the first end forms a first angle with the first direction
  • the axial direction of the first end forms a second angle with the axial direction of the second end
  • the first direction is the axial direction of the middle position of the light guide structure.
  • the light source includes multiple light sources, the first end includes multiple openings corresponding to the multiple light sources, the second end includes an opening, and the biometric detection light signal Shot from the plurality of openings and shot from the one opening.
  • the area of the one opening is greater than or equal to the preset area.
  • the projection of the first end on a plane perpendicular to the axial direction of the first end is a circle or a polygon, and / or the second end is perpendicular to the second end
  • the projection on the axial plane is circular or polygonal.
  • the structure of the first end is a tapered structure.
  • the light guide structure is on at least one section line of the first section, the first end is connected to the second end through a first arc, and the first section is the The cross section where the axial direction of the first end and the axial direction of the second end are located.
  • the center of the circle corresponding to the first arc is located on a side of the first arc away from the center of the light guide structure.
  • the center of the circle corresponding to the first arc is located on the side of the first arc near the center of the light guide structure.
  • the first arc is connected to the second end through a second arc, and the center of the circle corresponding to the second arc is located away from the light guide structure of the second arc Side of the center.
  • the first arc is connected to the second arc by a straight line.
  • the second arc is connected to the second end through at least one line.
  • the at least one connecting line includes a first straight line and a second straight line, and the included angle between the first straight line and the second straight line is greater than a preset included angle.
  • the first straight line is connected to the second straight line through a third arc, and the center of the circle corresponding to the third arc is located near the light guide structure of the third arc Side of the center.
  • the biometric detection device further includes:
  • a lens which is disposed between the light source and the first end, and is used to transmit the biometric detection light signal.
  • the lens is disposed in the first end, or there is a preset gap between the lens and the first end.
  • the lens is a concave lens, or the lens is a convex lens.
  • the lens is a hemispherical lens, and the convex surface of the hemispherical lens is disposed toward the first end, or the convex surface of the hemispherical lens is disposed toward the light source.
  • the light guide structure is fixedly connected to the light source.
  • the biometric detection device is applied to an electronic device, the light source and / or the light guide structure are fixedly installed on a middle frame of the electronic device, and at least a part of the light source is located on the Below the backlight module of the display screen, the second end of the light guide structure is disposed below the frame of the display screen.
  • a light emitting device including:
  • Infrared light source used to emit infrared light signal
  • a light guide structure the light guide structure includes a first end and a second end, the light guide structure is used to receive the infrared light signal through the first end, and the infrared light through the second end The signal is emitted, wherein the size of the infrared light source is larger than the size of the second end.
  • the first end covers at least a light emitting surface of the infrared light source.
  • the size of the first end is greater than or equal to the size of the second end.
  • the axial direction of the first end and the axial direction of the second end form a preset angle.
  • the preset angle is less than or equal to 90 °.
  • the infrared light source is a side light source
  • the axial direction of the first end forms a first angle with the first direction
  • the axial direction of the first end forms a second angle with the axial direction of the second end Angle
  • the first direction is the axial direction of the middle position of the light guide structure.
  • the infrared light source includes multiple light sources, the first end includes multiple openings corresponding to the multiple light sources, and the second end includes an opening, and the infrared light signal is from The plurality of openings are shot in and out from the one opening.
  • the area of the one opening is greater than or equal to the preset area.
  • the projection of the first end on a plane perpendicular to the axial direction of the first end is a circle or a polygon, and / or the second end is perpendicular to the second end
  • the projection on the axial plane is circular or polygonal.
  • the structure of the first end is a tapered structure.
  • the light guide structure is on at least one section line of the first section, the first end is connected to the second end through a first arc, and the first section is the The cross section where the axial direction of the first end and the axial direction of the second end are located.
  • the center of the circle corresponding to the first arc is located on a side of the first arc away from the center of the light guide structure.
  • the center of the circle corresponding to the first arc is located on the side of the first arc near the center of the light guide structure.
  • the first arc is connected to the second end through a second arc, and the center of the circle corresponding to the second arc is located away from the light guide structure of the second arc Side of the center.
  • the first arc is connected to the second arc by a straight line.
  • the second arc is connected to the second end through at least one line.
  • the at least one connecting line includes a first straight line and a second straight line, and the included angle between the first straight line and the second straight line is greater than a preset included angle.
  • the first straight line is connected to the second straight line through a third arc, and the center of the circle corresponding to the third arc is located near the light guide structure of the third arc Side of the center.
  • the light emitting device further includes:
  • a lens which is disposed between the infrared light source and the first end, and is used to transmit the infrared light signal.
  • the lens is disposed in the first end, or there is a preset gap between the lens and the first end.
  • the lens is a concave lens, or the lens is a convex lens.
  • the lens is a hemispherical lens, and the convex surface of the hemispherical lens is disposed toward the first end, or the convex surface of the hemispherical lens is disposed toward the infrared light source.
  • the light guide structure is fixedly connected to the infrared light source.
  • the light emitting device is applied to an electronic device, the infrared light source and / or the light guide structure are fixedly installed on a middle frame of the electronic device, and at least a part of the infrared light source is located on the Below the backlight module of the display screen, the second end of the light guide structure is disposed below the frame of the display screen.
  • an electronic device including:
  • the display and
  • the light emitting device according to the second aspect and any possible implementation manner of the second aspect; wherein the infrared light source in the light emitting device is located below the display screen, and the light guide structure in the light emitting device is at least partially Located below the frame of the display screen.
  • the electronic device further includes:
  • the infrared light source and / or the light guide structure are fixedly mounted on the middle frame, and at least a part of the infrared light source is located under the backlight module of the display screen.
  • the two ends are arranged below the frame of the display screen.
  • the electronic device further includes:
  • An optical wedge is provided between the display screen and the light guide structure, for changing the direction of the infrared light signal emitted from the light guide structure, and / or the optical wedge is used for the light guide structure
  • the dispensing area pasted to the cover of the electronic device.
  • the electronic device further includes:
  • the fingerprint identification module is arranged below the display screen;
  • the fingerprint recognition module is used to receive the infrared light signal emitted by the light emitting device after illuminating the human finger, and the infrared light signal is used to detect the fingerprint information of the finger.
  • the display screen is a liquid crystal display screen, and the width of the dispensing area of the display screen is smaller than the minimum width of the projection of the infrared light source in the light emitting device on the display screen.
  • the light emitting device when the light emitting device is installed in an electronic device with an LCD, by ensuring that the size of the infrared light source of the light emitting device is larger than the size of the signal output end of the light guide structure in the light emitting device, the infrared At least a part of the light source is installed below the display screen of the LCD, and the infrared light signal emitted by the infrared light source is guided below the frame of the display screen through the light guide structure, thereby realizing the full-screen display of the LCD Under-screen biometric recognition.
  • FIG. 1 is a schematic plan view of an electronic device to which this application can be applied.
  • FIG. 2 is a schematic cross-sectional view of the electronic device shown in FIG. 1 along A'-A '.
  • FIG. 3 is a schematic side cross-sectional view of an electronic device according to an embodiment of the present application.
  • FIG. 4 is a schematic side cross-sectional view of a light-emitting device according to an embodiment of the present application.
  • FIG. 5 is a schematic side cross-sectional view of an electronic device including the light-emitting device shown in FIG. 4.
  • FIG. 6 is a schematic side cross-sectional view of a light emitting device according to another embodiment of the present application.
  • FIG. 7 is a schematic perspective view of the light emitting device shown in FIG. 6.
  • FIG. 8 is a schematic side sectional view of an electronic device including the light emitting device shown in FIG. 6.
  • FIG. 9 is a schematic side cross-sectional view of an electronic device according to another embodiment of the present application.
  • FIG. 10 is a schematic side cross-sectional view of an electronic device according to still another embodiment of the present application.
  • FIG. 11 is a schematic side cross-sectional view of a light emitting device according to still another embodiment of the present application.
  • FIG. 12 is a schematic side cross-sectional view of an electronic device according to still another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a structure formed by disposing a hemispherical lens in a light guide structure in the electronic device shown in FIG. 12.
  • FIG. 14 is another schematic diagram of a structure formed by disposing a hemispherical lens in a light guide structure in the electronic device shown in FIG. 12.
  • 15 is a schematic side cross-sectional view of an electronic device according to still another embodiment of the present application.
  • FIG. 16 is a side view of the light guide structure in the electronic device described in FIG. 15.
  • FIG. 17 is a side view in which the first port of the light guide structure shown in FIG. 16 is provided as a tapered structure.
  • 18 is a side view of a light guide structure of another embodiment of the present application.
  • 19 is a partial side view of a light guide structure according to still another embodiment of the present application.
  • biometric recognition can also be other biometric recognition
  • living body identification etc.
  • this embodiment of the present application is not limited thereto.
  • the following will first introduce the off-screen biometric recognition technology.
  • under-display Under-display or Under-screen biometric recognition technology
  • biometric recognition modules such as fingerprint recognition modules
  • the off-screen biometric recognition technology uses light returned from the top surface of the display component of the device to perform fingerprint sensing and other sensing operations.
  • the returned light carries information of objects (such as fingers) in contact with the top surface, and a specific optical sensor module located below the display screen is realized by collecting and detecting the returned light.
  • the design of the optical sensor module may be to achieve the desired optical imaging by appropriately configuring the optical elements for collecting and detecting the returned light.
  • FIGS. 1 and 2 show schematic diagrams of an electronic device 100 to which the off-screen biometric recognition technology can be applied.
  • FIG. 1 is a schematic front view of the electronic device 100
  • FIG. 2 is the electronic device 100 shown in FIG. 1 along A′-A. 'Partial cross-sectional structure diagram.
  • the electronic device 100 may include a display screen 120 and a biometrics identification module 140, wherein the display screen 120 has a display area 102, and the biometrics identification module 140 is disposed on the display Below the screen 120.
  • the display screen 120 may be a self-luminous display screen, which uses a display unit with self-luminescence as display pixels.
  • the display screen 120 may be an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro-LED display screen.
  • OLED Organic Light-Emitting Diode
  • the display screen 120 may also be a liquid crystal display (Liquid Crystal Display, LCD) or other passive light-emitting display screen, which is not limited in the embodiments of the present application.
  • the display screen 120 is specifically a touch display screen, which can not only display images, but also detect the user's touch or press operation, thereby providing a human-computer interaction interface for the user.
  • the electronic device 100 may include a touch sensor, and the touch sensor may specifically be a touch panel (Touch Panel, TP), which may be provided on the surface of the display screen 120, or may be partly It is integrated or integrated into the display screen 120 to form the touch display screen.
  • Touch Panel Touch Panel
  • the biometric identification module 140 may be specifically an optical biometric identification module, such as an optical fingerprint module, which is mainly used to collect biometric information (such as fingerprint image information) of a user.
  • the biometric identification module 140 may be provided at least in a partial area below the display screen 120, so that the biometric collection area (or sensing area) 130 of the biometric identification module 140 At least partially located in the display area 102 of the display screen 120.
  • the biometric recognition module 140 may include an optical image acquisition device, and the optical image acquisition device may include multiple optical image acquisition units, and the optical image acquisition unit may specifically include a photodetector or a photoelectric sensor.
  • the optical image acquisition device of the biometric identification module 140 may include a photodetector array (or called photodetector array, photoelectric sensor array), which includes a plurality of arrayed distributions Photodetector / photoelectric sensor.
  • the optical image acquisition device of the biometric recognition module 140 may include an optical biometric sensor with an optical sensing array, such as an optical fingerprint sensor; the optical sensing array includes multiple optical sensing units, and the optical sensing unit It may specifically include a light detector or a photoelectric sensor, and the area or the light sensing range of the optical sensing array corresponds to the biometric collection area 130 of the biometric identification module 140.
  • the biometric collection area 130 is located in the display area 102 of the display screen 120. Therefore, when the user needs to unlock the electronic device 100 or verify other biometrics, he only needs to change Pressing the finger on the biometrics collection area 130 located on the display screen 120 can realize the biometric input operation.
  • the electronic device 100 Since the biometrics collection and detection can be implemented within the display area 102 of the display screen 120, the electronic device 100 adopting the above structure does not require a special reserved space on the front of it to set fingerprint buttons (such as the Home button), so a full screen solution can be adopted. Therefore, the display area 102 of the display screen 120 can be substantially extended to the entire front surface of the electronic device 100.
  • the biometrics identification module 140 may use an external light source as an excitation light source for biometrics detection and identification.
  • the light emitted by the external light source transmits through the finger and forms transmitted light, wherein the The transmitted light can carry the biometric information of the user's finger.
  • the transmitted light returns to the display screen 120 and is received by the photodetector array of the biometric identification module 140 below it and converted into a corresponding electrical signal, that is, a biometric detection signal.
  • the electronic device 100 can obtain the user's biometric information based on the biometric detection signal, and can further perform biometric matching verification to complete the identity verification of the current user in order to confirm whether he has the authority to the electronic device 100 Take the appropriate action.
  • the biometric identification module 140 may also be disposed in the entire area below the display screen 120, thereby extending the biometric collection area 130 to the entire display area of the entire display screen 120 102. Realize full-screen biometric identification.
  • the electronic device 100 further includes a protective cover 110, and the cover 110 may be specifically a transparent cover, such as a glass cover or a sapphire cover, which is located on the display screen 120 And cover the front of the electronic device 100, and a protective layer may be provided on the surface of the protective cover 110. Therefore, in the embodiment of the present application, the so-called finger pressing on the display screen 120 may actually mean that the finger presses the cover plate 110 above the display screen 120 or covers the surface of the protective layer of the cover plate 110.
  • a circuit board 150 such as a flexible printed circuit (Flexible Printed Circuit, FPC) or a printed circuit board (Printed Circuit Board, PCB), may also be disposed under the biometric identification module 140.
  • the feature recognition module 140 may be soldered to the circuit board 150 through pads, and realize electrical interconnection and signal transmission with other peripheral circuits or other elements of the electronic device 100 through the circuit board 150.
  • the biometric identification module 140 may receive the control signal of the processing unit of the electronic device 100 through the circuit board 150, and may also output the biometric detection signal to the The processing unit or control unit of the electronic device 100 and the like.
  • the image acquisition unit in the biometric identification module 140 can not only be applied to non-self Light-emitting display screens, such as LCD or other passive light-emitting display screens, can also be applied to self-luminous display screens such as OLED display screens.
  • the external light source needs to be disposed below the non-display area of the non-self-luminous display screen, or the external light source needs to be installed
  • the dispensing area below the non-display area of the non-self-luminous display may also be referred to as the periphery of the display screen or the border of the display screen.
  • FIG. 3 shows a schematic block diagram of an electronic device 200 with a non-self-luminous display screen to which the off-screen biometric recognition technology can be applied.
  • the electronic device 200 may include a cover 211, a display module 212 and a backlight module 213.
  • the cover plate 211, the display module 212 and the backlight module 213 may form a non-self-luminous display screen of the electronic device 200.
  • the non-display area of the display screen may also be referred to as the non-display area of the cover plate 211 or the frame of the cover plate 211.
  • the backlight module 213 is used to supply the display module 212 with sufficient brightness and uniformly distributed light sources, so that the display module 212 can display images normally.
  • the cover 211 serves as an image display interface. Further, when the display module 212 is specifically a display touch module, the cover 211 can also be used as a touch operation interface for the human finger 210.
  • the electronic device 200 may further include a biometric identification module 220 and an external light source 230, wherein the external light source 230 is used to emit an optical signal for biometric detection and identification.
  • the biometrics identification module 220 is used to receive the optical signal 233 emitted by the external light source 230 and formed by transmission through the human finger 210, and obtain biometric information of the finger 210 according to the optical signal 233, for example, the finger 210 fingerprint images.
  • the external light source 230 needs to be disposed below the non-display area 250 of the cover plate 211, specifically, the external light source 230 is disposed on the The dispensing area in the non-display area 250.
  • the display module 212 may be disposed below the display area and part of the non-display area of the cover plate 211, the backlight module 213 is disposed below the display module 212, and the biometric recognition The module 220 is disposed below the backlight module 213.
  • the external light source 230 is disposed below the cover plate 231, and the optical signal emitted by the external light source 230 may be It is directly transmitted to the finger 210 through the cover plate 211 and transmitted through the finger 210 to form a transmitted light signal for fingerprint recognition.
  • the technical solution of the embodiment of the present application avoids that the optical signal emitted by the external light source 230 is in the backlight module 213 and The transmission loss in the display module 212 effectively reduces the loss of the optical signal emitted by the external light source 230 during the transmission process.
  • biometrics identification module 220 is disposed under the backlight module 213, which can effectively separate the emission path of the external light source 230 and the reception path of the biometrics identification module 220, which can effectively The amount of fingerprint information carried by the optical signal received by the biometric identification module 220 is increased.
  • the technical solutions of the embodiments of the present application can effectively improve the recognition effect of biometric recognition.
  • the optical signal received by the biometric identification module 220 for biometric identification may be optical processing of the optical signal emitted by the external light source 230 by a human finger 210 Optical signal.
  • the optical signal received by the biometric identification module 220 may be the optical signal that passes through the backlight module 213 after being transmitted through the human finger 210. This embodiment of the present application does not specifically limit this.
  • the electronic device 200 may further include a connection circuit 231 connected to the external light source 230, the connection circuit 231 is used to receive a control signal, and the control signal is used to control the external power supply 230 shine or not shine.
  • the connection circuit 231 may be a circuit board.
  • printed circuit board Printed Circuit Board, PCB
  • flexible circuit board Flexible Printed Circuit, FPC.
  • the backlight module 213 may include a composite film, a light enhancement film, a diffusion film, and a light guide plate in order from top to bottom.
  • the visible light emitted by the visible light source is transmitted to the diffusion film after passing through the light guide plate, and the light diffused through the diffusion film is transmitted to the light enhancement film, and the light enhancement film is used to gain the received optical signal, and
  • the optical signal after gain is sent to a composite film, which is used to further gain the received optical signal, and transmit the optical signal after gain to the display screen for image display.
  • the backlight module 213 may further include a steel plate and / or a reflective film, and the reflective film may be disposed under the light guide plate, and used to direct the visible light source to emit visible light in a direction opposite to the display module 212 It is reflected back to the light guide plate, thereby improving the utilization rate of the light emitted by the visible light source, and the steel plate is used to block the light emitted by the visible light source from being emitted in the opposite direction to the display module 212.
  • the external light source 230 is an infrared light source. It should be noted that the infrared light signal emitted by the infrared light source is invisible light.
  • the light signal used for the image display of the display module 212 is visible light.
  • the visible light may be light emitted by any light source located behind a liquid crystal display (LCD).
  • the visible light source may be an electroluminescence (EL) backlight, a small cold cathode fluorescent lamp (CCFL), or an LED backlight.
  • EL electroluminescence
  • CCFL small cold cathode fluorescent lamp
  • the optical signal used for biometric identification is an invisible light signal
  • the optical signal used for displaying an image is a visible light signal, an invisible light signal used for biometric identification, and an image used for displaying an image.
  • Visible light signals can avoid affecting each other. That is, the embodiments of the present application can effectively perform biometric recognition while ensuring that the image is displayed normally.
  • the haze when the infrared light signal passes through the backlight module 213 is less than the haze when the visible light for displaying an image passes through the backlight module 213.
  • the backlight module 213 can not only realize the modulation of the visible light signal, but also effectively reduce the loss of the infrared light signal in the transmission of the optical path.
  • the haze when the infrared light signal passes through the diffusion layer in the backlight module 213 is smaller than the haze when the visible light used for displaying an image passes through the diffusion layer.
  • the transmittance of the infrared light signal when passing through the backlight module 213 may also be greater than the transmittance of visible light used for displaying images when passing through the backlight module 213.
  • the transmittance of the infrared light signal when passing through the diffusion layer is greater than the transmittance of the visible light when passing through the diffusion layer.
  • the transmittance of the infrared light signal passing through the reflective layer of the backlight module 213 is greater than the transmittance of visible light used for displaying an image when passing through the reflective layer. It can be found that during the image realization process, the diffusion plate can not only increase the brightness of the front of the display module 212, but also make the distribution of visible light more uniform, thereby ensuring that the user will not see the reflection point from the front.
  • the haze when the infrared light signal passes through the diffusion layer is less than the haze when the visible light used to display the image passes through the diffusion layer, and the infrared light signal passes through the
  • the light transmittance of the diffusion layer is greater than the light transmittance of the visible light passing through the diffusion layer, which can effectively reduce the loss of the infrared light signal in the transmission of the optical path, thereby improving the identification effect of biological features.
  • the steel plate may be formed with an opening, and the biometric identification module 220 may be disposed below the opening, so that the biometric identification module 220 After receiving the infrared light signal emitted by the external light source 230 and illuminating a human finger and passing through the opening.
  • the opening can prevent the visible light signal from being transmitted in the opposite direction to the display module 212 as much as possible, and prevent the backlight module 213 from being damaged due to external impact, and can effectively reduce the infrared light signal used for biometric identification.
  • the energy loss when passing through the steel plate further improves the biometrics identification effect.
  • biometric identification module 220 shown in FIG. 3 are similar to those of the biometric identification module 140 shown in FIG. 2 and other figures 2. To avoid repetition, they are not described here.
  • the electronic device 200 may further include a middle frame 240, and the middle frame 240 may be any frame or structure for supporting the electronic device 200.
  • the biometric identification module 220 When the biometric identification module 220 is disposed below the non-display area 250 of the cover plate 211, it can be directly pasted on the lower surface of the cover plate 211, or can be fixed to the cover by the middle frame 240 Below the plate 211. This embodiment of the present application does not specifically limit this.
  • the cover plate 211 may be fixedly connected to the middle frame 240, and there is a gap between the display module 212 located under the cover plate 211 and the middle frame ( That is, the dispensing area of the cover plate 211), the external light source 230 is disposed in the gap (dispensing area).
  • the width 250 of the frame of the cover 221 includes the width 251 occupied by the external light source 230, part of the display module 212, and part of the width 252 occupied by the middle frame 240.
  • the dispensing area in the width 250 of the cover plate 211 needs to be set narrower and narrower, which in turn causes the width 251 to be smaller than installing the external The required width of the light source 230, that is to say, there will not be enough space under the frame of the cover plate 211 to arrange the external light source 230.
  • the embodiments of the present application provide an improved light-emitting device, which can be applied to off-screen biometrics collection or recognition under a full-screen display of a non-self-luminous display screen.
  • the light emitting device may include: an infrared light source for emitting an infrared light signal; a light guide structure, the light guide structure includes a first end and a second end, and the light guide structure is used for passing the first The end receives the infrared light signal and emits the infrared light signal through the second end, wherein the size of the infrared light source is larger than the size of the second end.
  • the light-emitting device When the light-emitting device is installed in an electronic device with a non-self-luminous display screen, by ensuring that the size of the infrared light source of the light-emitting device is larger than the size of the signal output end of the light guide structure in the light-emitting device, the infrared light source At least a part of it is installed under the display screen, and the infrared light signal emitted by the infrared light source is guided under the frame of the display screen through the light guide structure, thereby realizing the full-screen display of the non-self-luminous display screen Biometric recognition under the screen.
  • the size of the infrared light source may refer to the size of the device including the infrared light source.
  • the size of the infrared light source may refer to the size formed by the infrared light source and the circuit board.
  • FIGS. 4 to 19 show schematic diagrams of the light-emitting device of the embodiment of the present application and the electronic device 300 to which the light-emitting device can be applied.
  • the light-emitting device in the embodiment of the present application will be described in detail with reference to FIGS. 4 to 19 in the following, taking the light-emitting device as an example of applying on-screen fingerprint recognition of an LCD full-screen display.
  • FIG. 4 shows a side cross-sectional view of a light-emitting device according to an embodiment of the present application.
  • FIG. 5 is a schematic side sectional view of the electronic device 300 including the light emitting device shown in FIG. 4.
  • the light emitting device may include: an infrared light source 330 and a light guide structure 361.
  • the infrared light source 330 may be the external light source 230 shown in FIG. 3, and the infrared light source 330 is used to emit an infrared light signal.
  • the infrared light source 330 may include an external light source 331 and a circuit board 332.
  • the circuit board 332 may be a printed circuit board (Printed Circuit Board, PCB) or a flexible circuit board (Flexible Printed Circuit, FPC).
  • the light guide structure 361 includes a first end and a second end.
  • the light guide structure 361 is used to receive the infrared light signal through the first end and emit the infrared light signal through the second end .
  • the first end is the input end of the infrared light signal of the light guide structure 361
  • the second end is the output end of the infrared light signal of the light guide structure 361.
  • the size of the infrared light source 330 is larger than the size of the second end.
  • the electronic device 300 may include a cover 311, a display module 312, a backlight module 313 and a biometrics identification module 320.
  • the cover plate 331 may be the cover plate 211 shown in FIG. 3
  • the display module 312 may be the display module 212 shown in FIG. 3
  • the backlight module 313 may be the one shown in FIG. 3
  • the biometrics identification module 320 may be the biometrics identification module 220 shown in FIG. 3, and in order to avoid repetition, it will not be repeated here.
  • the infrared light source 330 when the infrared light source 330 is installed in an electronic device with an LCD, by ensuring that the size of the infrared light source 330 is larger than the size of the second end of the light guide structure 361, at least a portion of the infrared light source 330 can be installed Under the LCD (that is, the non-dispensing area of the cover plate, which can be specifically installed under the display module), and the infrared light signal emitted by the infrared light source 330 is guided to the Below the frame of the LCD, the on-screen biometric identification under the full-screen display of the LCD is realized. As shown in FIG.
  • the infrared light source 330 may be installed under the backlight module 313, that is, the infrared light source 330 needs to occupy a larger space than the dispensing area of the cover plate 311,
  • the infrared light source 330 needs to occupy a larger space than the dispensing area of the cover plate 311,
  • by moving the infrared light source 330 below the backlight module 313, and transmitting the infrared light signal emitted by the infrared light source 330 to the cover plate 311 through the light guide structure 361 Under the frame avoiding the infrared light signal transmitted by the infrared light source 330 through the backlight module 313, which can effectively reduce the loss of the infrared light signal emitted by the infrared light source 330 in the transmission path, thereby improving the biological characteristics Identify the effect.
  • the side cross-sectional view of the light guide structure 361 may be square.
  • the light guide structure 361 may be a cylindrical structure, a square pillar structure, or the like.
  • the light guide structure 361 may also be a structure formed by combining a cylindrical structure and a square pillar structure.
  • the embodiments of the present application are not limited to this.
  • the light guide structure 361 may be a solid structure.
  • the light guide structure 361 may be provided with a cavity, and the cavity is used to transmit infrared light signals.
  • the size of the infrared light source 330 may be the minimum width of the infrared light source 330 along the first direction, wherein the first direction may be a direction parallel to the plane where the LCD is located and perpendicular to the frame of the LCD.
  • the size of the infrared light source 330 may be the minimum width of the device formed by the external light source 331 and the circuit board 332 along the first direction.
  • the size of the infrared light source 330 may be the minimum width of the external light source 331 and the inflexible portion of the circuit board 332 along the first direction.
  • the size of the infrared light source 330 may be the width of the infrared light source 330 as shown in FIG. 5.
  • the size of the second end may be the smallest width of the second end in the first direction.
  • the size of the second end may be the width of the light guide structure 361 shown in FIG. 5.
  • the first end of the light guide structure 361 covers at least the light emitting surface of the infrared light source 330.
  • the first end of the light guide structure 361 can receive a sufficient infrared light signal.
  • the present application does not limit the specific position where the first end covers the infrared light source 330.
  • the first end completely covers the light emitting surface of the infrared light source 330.
  • the first end covers the center position of the light emitting surface of the infrared light source 330.
  • the embodiment of the present application does not limit the specific installation method.
  • the light guide structure 361 and the infrared light source 330 may be installed separately.
  • the light guide structure 361 and the infrared light source 330 may be respectively installed on the middle frame 340 of the electronic device 300.
  • the embodiments of the present application are not limited to this.
  • the light guide structure 361 and the infrared light source 330 are fixedly connected, and then the light guide structure 361 and the infrared light source 330 are fixedly connected by means of fixed connection Go to the middle frame 340.
  • the electronic device 300 may further include a modulation structure 370 for receiving and modulating the infrared light signal emitted by the infrared light source 330 and sending the modulated infrared light signal to all The first end of the light guide structure 361.
  • the modulation structure 370 may be a lens, such as a spherical lens or a hemispherical lens, and for example, a convex lens or a concave lens.
  • the modulation structure 370 may be fixedly connected to the light guide structure 361, or may be fixedly connected to the infrared light source 330.
  • the embodiments of the present application are not limited to this. For example, as shown in FIG.
  • the modulation structure 370 may be provided separately from the light guide structure 361, and the modulation structure 370 may be provided separately from the infrared light source 330.
  • the modulation structure 370 may be fixedly installed on the middle frame 340 of the electronic device 300.
  • the electronic device 300 may further include an optical wedge 380 for changing infrared light output from the second end (ie, infrared light signal output end) of the light guide structure 361
  • the direction of the signal, and / or, the optical wedge 380 is used to paste the light guide structure 361 to the dispensing area of the cover plate 311.
  • the material of the optical wedge 380 may be optical glue.
  • the optical wedge 380 is used to guide the infrared light signal output from the second end to the fingerprint collection area of the cover plate 311.
  • a transmitted light signal 333 as shown in FIG. 5 is formed.
  • the biometric identification module 320 is used to receive the transmitted light signal 333 and perform biometric identification according to the transmitted light signal 333. For example, fingerprint recognition.
  • the light emitting device shown in FIG. 4 or the electronic device 300 shown in FIG. 5 may further include a visible light filter.
  • the visible light filter may be disposed between the backlight module 313 and the biometrics recognition module 320. Thereby, the visible light transmitted to the visible light filter can be filtered, and the recognition quality of the biometric recognition module 320 can be further improved.
  • the visible light filter may specifically be used to filter out visible light wavelengths, for example, visible light used for image display.
  • the optical filter may specifically include one or more optical filters, which may be configured as, for example, a band-pass filter to filter out the light emitted by the visible light source without filtering out the infrared light signal .
  • the one or more optical filters may be implemented as, for example, an optical filter coating formed on one or more continuous interfaces, or may be implemented on one or more discrete interfaces.
  • the visible light filter may be fabricated on the surface of any optical component, or along the optical path to the biometric recognition module 320 through the transmitted light formed by the finger transmission.
  • the visible light filter may be attached to the bottom surface of the display module 312, the steel plate in the backlight module 313, or the inside of the biometric identification module 320.
  • the side cross-sectional view of the light guide structure 361 shown in FIG. 5 is a square structure.
  • the embodiments of the present application are not limited to this.
  • the side cross-sectional view of the light guide structure 361 may be a deformed structure of a square structure.
  • the size of the first end of the light guide structure 361 shown in FIG. 5 is the same as the size of the second end of the light guide structure.
  • the embodiments of the present application are not limited to this.
  • the size of the first end may be greater than the size of the second end.
  • the size of the first end may be smaller than the size of the second end.
  • the axial direction of the first end of the light guide structure 361 shown in FIG. 5 is the same as the axial direction of the second end of the light guide structure 361.
  • the embodiments of the present application are not limited to this.
  • the axial direction of the first end and the axial direction of the second end form a preset angle.
  • the preset angle may be formed between the direction of the infrared light signal received by the light guide structure and the direction of the infrared light signal output by the light guide structure.
  • the preset angle may be less than or equal to 90 °.
  • the infrared light source 330 shown in FIG. 5 is a positive emission source.
  • the embodiments of the present application are not limited to this.
  • the embodiments of the present application are not limited to this.
  • the light-emitting source 331 may be a side-emitting light source.
  • the first end of the light guide structure 361 shown in FIG. 5 includes only one opening.
  • the embodiments of the present application are not limited to this.
  • the first end may include multiple openings.
  • the infrared light source 330 includes a plurality of light sources
  • the first end includes a plurality of openings corresponding to the plurality of light sources
  • the second end includes an opening
  • the infrared light signal from the plurality of light sources The opening is shot in and out from the one opening.
  • FIG. 6 shows a side cross-sectional view of a light emitting device according to another embodiment of the present application.
  • 7 is a schematic perspective view of the light emitting device described in FIG. 6.
  • 8 is a schematic side cross-sectional view of an electronic device 300 including the light emitting device shown in FIG. 6.
  • the light emitting device may include a light guide structure 362 and an infrared light source 330.
  • a corner is formed, and this corner can make the light guide
  • the infrared light signal output from the second end of the structure 362 directly faces the sensing area or the collecting area of the cover plate 311.
  • this corner can make the infrared light signal output from the second end of the light guide structure 362 directly face the finger 310 on the cover plate 311.
  • the opening of the second end of the light guide structure 362 faces the finger 310.
  • the light guide structure 362 enables the electronic device 300 to avoid using additional components to adjust the direction of the infrared light signal output from the second end of the light guide structure 362, thereby effectively simplifying the structure of the electronic device 300, and Reduced production costs.
  • FIGS. 6 to 8 are only examples of embodiments of the present application, and should not be construed as limiting the embodiments of the present application.
  • the axial direction of the first end and the axial direction of the second end may directly form an angle.
  • the embodiments of the present application are not limited to this.
  • the axial direction of the first end may first form a first angle with the first direction, and then the first direction and the first The axial directions of the two ends form a second angle, wherein the first direction is the axial direction of the middle position of the light guide structure.
  • FIG. 9 is a schematic side sectional view of an electronic device 300 including a modified structure of the light emitting device shown in FIG. 6.
  • the electronic device 300 may include a light guide structure 363.
  • a corner is formed, and this corner can cause infrared light output from the second end of the light guide structure 363
  • the optical signal directly faces the sensing area or the collecting area of the cover plate 311.
  • this corner can make the infrared light signal output from the second end of the light guide structure 363 directly face the finger 310 on the cover plate 311.
  • the opening of the second end of the light guide structure 363 faces the finger 310.
  • the light guide structure 363 enables the electronic device 300 to avoid using additional components to adjust the direction of the infrared light signal output from the second end of the light guide structure 362, thereby effectively simplifying the structure of the electronic device 300, and Reduced production costs.
  • the size may gradually decrease.
  • the outer diameter of the light guide structure 363 gradually decreases as the first end extends toward the second end.
  • the size of the first end of the light guide structure 363 is larger than the size of the second end of the light guide structure 363.
  • the position of the corner on the side of the light guide structure 363 close to the display module 312 or close to the backlight module 313 is higher than the The position on the light guide structure 363 near the corner of the middle frame 340.
  • the space that the light guide structure 363 needs to occupy can be effectively reduced, and thus it can be applied to electronic equipment with a very narrow frame of the cover plate.
  • FIG. 9 is only an example of an embodiment of the present application, and should not be understood as a limitation of the embodiment of the present application.
  • the size of the first end is located between the display module 313 and the middle frame 340
  • the outer diameter of the light guide structure 363 is the same.
  • the embodiments of the present application are not limited to this.
  • the size of the first end may be the same as the outer diameter of the light guide structure 363 between the display module 313 and the middle frame 340.
  • FIG. 10 is a schematic side sectional view of an electronic device 300 including another modified structure of the light emitting device shown in FIG. 6.
  • the electronic device 300 may include a light guide structure 364.
  • the first end of the light guide structure 364 is a tapered structure.
  • the larger-sized opening of the tapered structure is used to align the infrared light source 330, thereby ensuring that the light guide structure 364 can receive a sufficient infrared light signal.
  • FIG. 10 is only an example of an embodiment of the present application, and should not be construed as limiting the embodiment of the present application.
  • the first end of the light guide structure 364 shown in FIG. 10 and the middle portion of the light guide structure 364 are connected by an obtuse angle.
  • the embodiments of the present application are not limited to this.
  • the first end of the light guide structure 364 and the middle portion of the light guide structure 364 may also be connected by an arc.
  • the light guide structure 364 is on at least one section line of the first section, and the first end is connected to the second end through a first arc, the first The cross section is a cross section where the axial direction of the first end and the axial direction of the second end are located.
  • FIG. 11 is a schematic perspective view of a light guide structure 365 according to an embodiment of the present application.
  • the light guide structure 365 may be a semi-L structure.
  • the flat side of the light guide structure 365 may be connected to the middle frame 340.
  • the non-flat side of the light guide structure 365 can be disposed close to the display module 312 or the backlight module 313 shown in FIG. 10.
  • the light guide structure 365 is on the first section line of the first section, the first end is connected to the second end through a first arc, and the center of the circle corresponding to the first arc is located at the The side of the first arc away from the center of the light guide structure.
  • the first cross-section is a cross-section where the axial direction of the first end and the axial direction of the second end are located, and the first cross-sectional line is a display module on the first cross-section that is close to the display module shown in FIG. 312 or the hatching on one side of the backlight module 313.
  • FIG. 11 is only an example of an embodiment of the present application, and should not be understood as a limitation of the embodiment of the present application.
  • the light guide structure is on a first section line of a first section, the first end is connected to the second end through a first arc, and the first arc The corresponding circle center is located on the side of the first arc near the center of the light guide structure.
  • the first arc is connected to the second end through a second arc, and the center of the circle corresponding to the second arc is located on a part of the second arc away from the center of the light guide structure side.
  • the first arc is connected to the second arc by a straight line.
  • the second arc is connected to the second end through at least one line.
  • the at least one connecting line includes a first straight line and a second straight line, and the angle between the first straight line and the second line is greater than a preset angle.
  • the first straight line is connected to the second straight line through a third arc, and the center of the circle corresponding to the third arc is located on a side of the third arc near the center of the light guide structure side.
  • FIG. 12 is a schematic side cross-sectional view of an electronic device 300 according to still another embodiment of the present application.
  • the electronic device 300 may include a light guide structure 366.
  • the shape of the light guide structure 366 may specifically be the shape of a bottle.
  • the bottle mouth serves as the second end of the light guide structure 366 and is used to output an infrared light signal.
  • the bottom of the bottle serves as the first end of the light guide structure 366 and is used to receive the infrared light signal output by the infrared light source 330.
  • FIG. 12 is only an example of an embodiment of the present application, and should not be understood as a limitation of the embodiment of the present application.
  • the light guide structure 366 shown in FIG. 12 is in contact connection with the infrared light source 330.
  • the embodiments of the present application are not limited to this.
  • the infrared light source 330 and the light guide structure 366 may also be fixedly connected to the middle frame 340 in a separated form.
  • the infrared light source 330 and the light guide structure 366 may also be connected by a lens.
  • the lens is disposed between the infrared light source 330 and the first Between the ends, used to transmit the infrared light signal.
  • the lens is disposed in the first end, or there is a preset gap between the lens and the first end.
  • the lens is a concave lens, or the lens is a convex lens.
  • FIG. 13 and 14 are schematic perspective views of a hemispherical lens built into the first end of the light guide structure 367 according to an embodiment of the present application.
  • the convex surface of the hemispherical lens 371 is disposed toward the first end of the light guide structure 367.
  • the flat surface of the hemispherical lens 371 is disposed toward the infrared light source.
  • the flat surface of the hemispherical lens 371 is disposed toward the infrared light source 330 shown in FIG. 12. Therefore, the hemispherical lens 371 can also transmit the large-angle light signal output by the infrared light source 330 to the light guide structure 367, thereby increasing the utilization rate of the infrared light signal emitted by the infrared light source 331.
  • the convex surface of the hemispherical lens 372 is disposed toward the infrared light source.
  • the flat surface of the hemispherical lens 372 is disposed toward the infrared light source 330 shown in FIG. 12.
  • the flat surface of the hemispherical lens 372 is disposed toward the first end of the light guide structure 367.
  • the hemispherical lens 372 can convert the point light source signal output by the infrared light source 330 into a parallel light signal, and transmit the converted parallel light signal to the light guide structure 367, thereby reducing the light signal in The frequency of reflection or refraction in the light guide structure 367, thereby reducing the loss of optical signals transmitted in the light guide structure 367.
  • 15 is a schematic side cross-sectional view of an electronic device 300 according to still another embodiment of the present application. 16 is a schematic perspective view of the light guide structure 368 in the electronic device 300 described in FIG. 15.
  • the electronic device 300 may include an infrared light source 330 and a light guide structure 368, wherein the infrared light source 330 is a side-emitting light source, and the light guide structure 368 may have a 90 ° corner.
  • the light guide structure 368 may be used to convert the infrared light signal emitted by the infrared light source 330 parallel to the cover plate 311 into an infrared light signal perpendicular to the cover plate 311, and output the converted infrared light signal.
  • the light guide structure 368 may be a cylindrical structure.
  • FIG. 16 is only an example of an embodiment of the present application, and should not be understood as a limitation of the embodiment of the present application.
  • the light guide structure 368 may adopt a non-cylindrical structure or a combination structure including multiple structures.
  • the first end of the light guide structure 369 is a tapered structure
  • the second end of the light guide structure 369 is a cylindrical structure.
  • the light guide structure 3610 may be a flat columnar structure.
  • 19 is a partial side view of a light guide structure 3611 of an embodiment of the present application.
  • the light guide structure 3611 may include a first end for receiving infrared light signals and a second end for outputting infrared light signals.
  • the light guide structure 3611 may be a columnar structure. In the process of extending the first end of the light guide structure 3611 toward the second end, a corner of approximately 90 ° is formed, and the inner diameter and the outer diameter gradually decrease.
  • the second end may include a predetermined opening.
  • the preset opening may be an opening formed on a surface of the second end opposite to the first end. More specifically, the periphery of the first opening may extend upward to the same plane.
  • the size of the preset opening may be greater than or equal to a preset value.
  • the area of the preset opening may be greater than or equal to the preset value. It can be found that the preset opening can effectively increase the number of infrared light signals output by the second end.
  • the size of the preset opening can be set large enough to satisfy a large-area screen Under the biometric recognition technology.
  • FIG. 19 is only an example of an embodiment of the present application, and should not be understood as a limitation of the embodiment of the present application.
  • the second end of the light guide structure 3611 may further include multiple openings, and the multiple openings may correspond to multiple biometric identification modules.
  • the light guide structure 3611 may also include other types of structures, or the light guide structure 3611 may also include a structure formed by combining a columnar structure and other types of structures.
  • the light emitting device of the embodiment of the present application may be applied to a biometric detection device.
  • the light emitting device is integrated and installed in the biometric detection device.
  • the biometric detection device may include the light emitting device and the biometric identification module described above, the biometric identification module is used to be disposed under the display screen to detect the second of the light guide device
  • the biometric detection light signal emitted from the end is returned light formed by the target object above the display screen, and the returned light is used for biometric information of the target object.
  • the light source is an infrared light source
  • the biometric detection light signal is an infrared light signal
  • the display screen is a liquid crystal display screen, which includes a liquid crystal display module and a backlight module providing a backlight source for the liquid crystal display module, and the biometric recognition module
  • the group is used to be arranged under the backlight module, and the biometric detection area of the biometric identification module is at least partially located in the display area of the display screen.
  • the light emitting device is configured to be arranged side by side with the display screen under the cover of the electronic device, and the light emitting device does not overlap the display screen.
  • the light-emitting device in the embodiments of the present application can be applied to electronic equipment, especially to electronic equipment having a backlight module.
  • the electronic device may include a display screen and the light emitting device described above; wherein the infrared light source 330 in the light emitting device is located below the display screen, and the light guide structure in the light emitting device is at least partially located in the Below the bezel of the display.
  • the infrared light source 330 may be a positive light source or a side light source.
  • the infrared light source 330 may be disposed below the frame of the display screen.
  • the infrared light source 330 is a side-emitting light source
  • the infrared light source 330 can be arranged below the display area of the display screen. At this time, part of the light guide structure can be arranged below the display area. A part of the light guide structure may be disposed below the frame.
  • the infrared light source 330 and / or the light guide structure are fixedly installed on the middle frame of the electronic device, and at least a part of the infrared light source 330 is located under the backlight module of the display screen, the light guide structure The second end of is located below the bezel of the display screen. In this way, the infrared light signal emitted by the infrared light source 330 is guided below the frame of the display screen through the light guide structure, thereby achieving off-screen biometric identification of a full-screen display.
  • the electronic device may further include:
  • An optical wedge is provided between the display screen and the light guide structure, for changing the direction of the infrared light signal emitted from the light guide structure, and / or the optical wedge is used for the light guide structure
  • the dispensing area pasted to the cover of the electronic device may be optical glue.
  • the electronic device further includes:
  • a fingerprint recognition module is provided below the display screen; wherein, the fingerprint recognition module is used to receive an infrared light signal emitted by the light emitting device after illuminating a human finger, and the infrared light signal is used to detect the Fingerprint information.
  • the display screen is a liquid crystal display screen
  • the width of the dispensing area of the display screen is smaller than the projection of the infrared light source 330 of the light emitting device on the display screen The minimum width.
  • the technical solutions of the embodiments of the present application may essentially be a part that contributes to the existing technology or a part of the technical solution may be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • the division of units or modules or components in the device embodiments described above is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or modules or components may be combined or integrated To another system, or some units or modules or components can be ignored, or not implemented.
  • the units / modules / components described as separate / display components may or may not be physically separated, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units / modules / components may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • coupling or direct coupling or communication connection shown or discussed above may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)

Abstract

一种发光装置、生物特征检测装置和电子设备,该生物特征检测装置包括:发光装置包括光源(330)和导光结构(361),该光源(330)用于提供生物特征检测光信号,该导光结构(361)用于通过第一端从该光源(330)接收该生物特征检测光信号,并通过第二端将该生物特征检测光信号射出,该光源(330)的尺寸大于该第二端的尺寸;生物特征识别模组用于检测该生物特征检测光信号在该显示屏上方的目标物体形成的返回光,该返回光用于检测生物特征信息。该生物特征检测装置通过保证该光源(330)的尺寸大于该导光结构(361)的信号输出端的尺寸,可以将该光源(330)的至少一部分安装在显示屏的下方,并通过该导光结构(361)将该光源(330)发出的光信号引导至该显示屏的边框的下方,进而实现全面屏显示的屏下生物特征识别。

Description

发光装置、生物特征检测装置和电子设备 技术领域
本申请实施例涉及电子技术领域,并且更具体地,涉及发光装置、生物特征检测装置和电子设备。
背景技术
截至目前,液晶显示屏(liquid crystal display,LCD)的屏下指纹***通常需要设置一个外部光源。由于LCD的背光模组对光线具有阻隔效果,因此,所述外部光源只能放在显示屏的非显示区域的下方。但是在全面屏显示的背景下,所述非显示区域设置的越来越窄,进而导致了所述非显示区域的下方已经没有足够的空间来布置所述外部光源。
因此,本领域急需一种能够适应LCD全面屏显示的屏下指纹***的外部光源的布置方案。
发明内容
本申请提供了一种发光装置、生物特征检测装置和电子设备,所述发光装置能够适用于LCD全面屏显示的屏下指纹***。
第一方面,提供了一种生物特征检测装置,应用在具有显示屏的电子设备,所述生物特征检测装置包括:
发光装置,包括光源和导光结构,所述光源用于提供生物特征检测光信号,所述导光装置包括第一端和第二端,所述导光装置用于通过所述第一端从所述光源接收所述生物特征检测光信号,并通过所述第二端将所述生物特征检测光信号射出,其中,所述光源的尺寸大于所述第二端的尺寸;
生物特征识别模组,用于设置在所述显示屏的下方,以检测所述导光装置的第二端射出的生物特征检测光信号在所述显示屏上方的目标物体形成的返回光,所述返回光用于检测所述目标物体的生物特征信息。
在一些可能的实现方式中,所述光源为红外光源,且所述生物特征检测光信号为红外光信号。
在一些可能的实现方式中,所述显示屏为液晶显示屏,其包括液晶显示模组和为所述液晶显示模组提供背光源的背光模组,所述生物特征识别模组 用于设置在所述背光模组的下方,且所述生物特征识别模组的生物特征检测区域至少部分位于所述显示屏的显示区域。
在一些可能的实现方式中,所述发光装置用于与所述显示屏并排设置在所述电子设备的盖板下方,且所述发光装置与所述显示屏不相重叠。
在一些可能的实现方式中,所述第一端至少覆盖所述光源的发光面。
在一些可能的实现方式中,所述第一端的尺寸大于或等于所述第二端的尺寸。
在一些可能的实现方式中,所述第一端的轴向与所述第二端的轴向形成预设角度。
在一些可能的实现方式中,所述预设角度小于或等于90°。
在一些可能的实现方式中,所述光源为侧发光源,所述第一端的轴向和第一方向形成第一角度,所述第一方向和所述第二端的轴向形成第二角度,所述第一方向为所述导光结构的中间位置的轴向方向。
在一些可能的实现方式中,所述光源包括多个光源,所述第一端包括与所述多个光源对应的多个开口,所述第二端包括一个开口,所述生物特征检测光信号从所述多个开***入,并从所述一个开***出。
在一些可能的实现方式中,所述一个开口的面积大于或等于预设面积。
在一些可能的实现方式中,所述第一端在垂直所述第一端的轴向的平面上的投影为圆形或者多边形,和/或,所述第二端在垂直所述第二端的轴向的平面上的投影为圆形或者多边形。
在一些可能的实现方式中,所述第一端的结构为锥形结构。
在一些可能的实现方式中,所述导光结构在第一剖面的至少一条剖面线上,所述第一端通过第一弧线连接至所述第二端,所述第一剖面为所述第一端的轴向和所述第二端的轴向所在的剖面。
在一些可能的实现方式中,所述第一弧线对应的圆心位于所述第一弧线的远离所述导光结构的中心的一侧。
在一些可能的实现方式中,所述第一弧线对应的圆心位于所述第一弧线的靠近所述导光结构的中心的一侧。
在一些可能的实现方式中,所述第一弧线通过第二弧线连接至所述第二端,所述第二弧线对应的圆心位于所述第二弧线的远离所述导光结构的中心的一侧。
在一些可能的实现方式中,所述第一弧线通过一条直线与所述第二弧线相连。
在一些可能的实现方式中,所述第二弧线通过至少一个条线连接至所述第二端。
在一些可能的实现方式中,所述至少一条连接线包括第一直线和第二直线,所述第一直线和第二之间的夹角大于预设夹角。
在一些可能的实现方式中,所述第一直线通过第三弧线连接至所述第二直线,所述第三弧线对应的圆心位于所述第三弧线的靠近所述导光结构的中心的一侧。
在一些可能的实现方式中,所述生物特征检测装置还包括:
透镜,所述透镜设置在所述光源和所述第一端之间,用于传输所述生物特征检测光信号。
在一些可能的实现方式中,所述透镜设置在所述第一端内,或者所述透镜与所述第一端之间具有预设间隙。
在一些可能的实现方式中,所述透镜为凹透镜,或者所述透镜为凸透镜。
在一些可能的实现方式中,所述透镜为半球透镜,所述半球透镜的凸起表面朝向所述第一端设置,或者所述半球透镜的凸起表面朝向所述光源设置。
在一些可能的实现方式中,所述导光结构与所述光源固定连接。
在一些可能的实现方式中,所述生物特征检测装置应用于电子设备,所述光源和/或所述导光结构固定安装于所述电子设备的中框,且所述光源的至少一部分位于所述显示屏的背光模组的下方,所述导光结构的第二端设置在所述显示屏的边框的下方。
第二方面,提供了一种发光装置,包括:
红外光源,用于发出红外光信号;
导光结构,所述导光结构包括第一端和第二端,所述导光结构用于通过所述第一端接收所述红外光信号,并通过所述第二端将所述红外光信号射出,其中,所述红外光源的尺寸大于所述第二端的尺寸。
在一些可能的实现方式中,所述第一端至少覆盖所述红外光源的发光面。
在一些可能的实现方式中,所述第一端的尺寸大于或等于所述第二端的 尺寸。
在一些可能的实现方式中,所述第一端的轴向与所述第二端的轴向形成预设角度。
在一些可能的实现方式中,所述预设角度小于或等于90°。
在一些可能的实现方式中,所述红外光源为侧发光源,所述第一端的轴向和第一方向形成第一角度,所述第一方向和所述第二端的轴向形成第二角度,所述第一方向为所述导光结构的中间位置的轴向方向。
在一些可能的实现方式中,所述红外光源包括多个光源,所述第一端包括与所述多个光源对应的多个开口,所述第二端包括一个开口,所述红外光信号从所述多个开***入,并从所述一个开***出。
在一些可能的实现方式中,所述一个开口的面积大于或等于预设面积。
在一些可能的实现方式中,所述第一端在垂直所述第一端的轴向的平面上的投影为圆形或者多边形,和/或,所述第二端在垂直所述第二端的轴向的平面上的投影为圆形或者多边形。
在一些可能的实现方式中,所述第一端的结构为锥形结构。
在一些可能的实现方式中,所述导光结构在第一剖面的至少一条剖面线上,所述第一端通过第一弧线连接至所述第二端,所述第一剖面为所述第一端的轴向和所述第二端的轴向所在的剖面。
在一些可能的实现方式中,所述第一弧线对应的圆心位于所述第一弧线的远离所述导光结构的中心的一侧。
在一些可能的实现方式中,所述第一弧线对应的圆心位于所述第一弧线的靠近所述导光结构的中心的一侧。
在一些可能的实现方式中,所述第一弧线通过第二弧线连接至所述第二端,所述第二弧线对应的圆心位于所述第二弧线的远离所述导光结构的中心的一侧。
在一些可能的实现方式中,所述第一弧线通过一条直线与所述第二弧线相连。
在一些可能的实现方式中,所述第二弧线通过至少一个条线连接至所述第二端。
在一些可能的实现方式中,所述至少一条连接线包括第一直线和第二直线,所述第一直线和第二之间的夹角大于预设夹角。
在一些可能的实现方式中,所述第一直线通过第三弧线连接至所述第二直线,所述第三弧线对应的圆心位于所述第三弧线的靠近所述导光结构的中心的一侧。
在一些可能的实现方式中,所述发光装置还包括:
透镜,所述透镜设置在所述红外光源和所述第一端之间,用于传输所述红外光信号。
在一些可能的实现方式中,所述透镜设置在所述第一端内,或者所述透镜与所述第一端之间具有预设间隙。
在一些可能的实现方式中,所述透镜为凹透镜,或者所述透镜为凸透镜。
在一些可能的实现方式中,所述透镜为半球透镜,所述半球透镜的凸起表面朝向所述第一端设置,或者所述半球透镜的凸起表面朝向所述红外光源设置。
在一些可能的实现方式中,所述导光结构与所述红外光源固定连接。
在一些可能的实现方式中,所述发光装置应用于电子设备,所述红外光源和/或所述导光结构固定安装于所述电子设备的中框,且所述红外光源的至少一部分位于所述显示屏的背光模组的下方,所述导光结构的第二端设置在所述显示屏的边框的下方。
第三方面,提供了一种电子设备,包括:
显示屏,以及
第二方面以及第二方面中任一可能实现的方式中所述的发光装置;其中,所述发光装置中的红外光源位于所述显示屏的下方,所述发光装置中的导光结构至少部分位于所述显示屏的边框的下方。
在一些可能的实现方式中,所述电子设备还包括:
中框,所述红外光源和/或所述导光结构固定安装于所述中框,且所述红外光源的至少一部分位于所述显示屏的背光模组的下方,所述导光结构的第二端设置在所述显示屏的边框的下方。
在一些可能的实现方式中,所述电子设备还包括:
光楔,设置在所述显示屏和所述导光结构之间,用于改变从所述导光结构射出的红外光信号的方向,和/或所述光楔用于将所述导光结构粘贴至所述电子设备的盖板的点胶区域。
在一些可能的实现方式中,所述电子设备还包括:
指纹识别模组,设置在所述显示屏的下方;
其中,所述指纹识别模组用于接收所述发光装置发出的照射人体手指后的红外光信号,所述红外光信号用于检测所述手指的指纹信息。
在一些可能的实现方式中,所述显示屏为液晶显示屏,所述显示屏的点胶区域的宽度小于所述发光装置中的红外光源在所述显示屏的投影的最小宽度。
基于以上技术方案,所述发光装置安装于具有LCD的电子设备时,通过保证所述发光装置的红外光源的尺寸大于所述发光装置中的导光结构的信号输出端的尺寸,可以将所述红外光源的至少一部分安装在所述LCD的显示屏的下方,并通过所述导光结构将所述红外光源发出的红外光信号引导至所述显示屏的边框的下方,进而实现LCD全面屏显示的屏下生物特征识别。
附图说明
图1是本申请可以适用的电子设备的平面示意图。
图2是图1所示的电子设备沿A’-A’的部分剖面示意图。
图3是本申请一个实施例的电子设备的示意性侧截面图。
图4是本申请一个实施例的发光装置的示意性侧截面图。
图5是包括图4所示的发光装置的电子设备的示意性侧截面图。
图6是本申请另一实施例的发光装置的示意性侧截面图。
图7是图6所示的发光装置的示意性立体图。
图8是包括图6所示的发光装置的电子设备的示意性侧截面图。
图9是本申请另一实施例的电子设备的示意性侧截面图。
图10是本申请再一实施例的电子设备的示意性侧截面图。
图11是本申请再一实施例的发光装置的示意性侧截面图。
图12是本申请再一实施例的电子设备的示意性侧截面图。
图13是将半球透镜设置在图12所示的电子设备中的导光结构内形成的结构的示意图。
图14是将半球透镜设置在图12所示的电子设备中的导光结构内形成的结构的另一示意图。
图15是本申请再一实施例的电子设备的示意性侧截面图。
图16是图15所述的电子设备中的导光结构的侧视图。
图17是将图16所示的导光结构的第一端口设置为锥形结构的侧视图。
图18是本申请另一实施例的导光结构的侧视图。
图19是本申请再一实施例的导光结构的部分侧视图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种电子设备,例如智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备,但本申请实施例对此并不限定。
本申请实施例的技术方案可以用于屏下光学图像采集,例如,屏下生物特征识别或者屏下隐藏式摄像头功能等,其中,生物特征识别除了指纹识别外,还可以为其他生物特征识别,例如,活体识别等,本申请实施例对此也不限定。为了便于理解本申请实施例的技术方案,下面首先对屏下生物特征识别技术进行介绍。
随着电子设备步入全面屏时代,电子设备正面生物特征采集区域受到全面屏的挤压,因此屏下(Under-display或者Under-screen)生物特征识别技术越来越受到关注。屏下生物特征识别技术是指将生物特征识别模组(比如指纹识别模组)安装在显示屏下方,从而实现在显示屏的显示区域内进行生物特征识别操作,不需要在电子设备正面除显示区域外的区域设置生物特征采集区域。
屏下生物特征识别技术使用从设备显示组件的顶面返回的光来进行指纹感应和其他感应操作。该返回的光携带与该顶面接触的物体(例如手指)的信息,通过采集和检测该返回的光实现位于显示屏下方的特定光学传感器模块。光学传感器模块的设计可以为通过恰当地配置用于采集和检测返回的光的光学元件来实现期望的光学成像。
图1和图2示出了屏下生物特征识别技术可以适用的电子设备100的示意图,其中图1为电子设备100的正面示意图,图2为图1所示的电子设备100沿A’-A’的部分剖面结构示意图。
如图1和图2所示,电子设备100可以包括显示屏120和生物特征识别 模组140,其中,所述显示屏120具有显示区域102,所述生物特征识别模组140设置在所述显示屏120的下方。
所述显示屏120可以为自发光显示屏,其采用具有自发光的显示单元作为显示像素。比如显示屏120可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。在其他替代实施例中,所述显示屏120也可以为液晶显示屏(Liquid Crystal Display,LCD)或者其他被动发光显示屏,本申请实施例对此不做限制。
另一方面,所述显示屏120具体为触控显示屏,其不仅可以进行画面显示,还可以检测用户的触摸或者按压操作,从而为用户提供一个人机交互界面。比如,在一种实施例中,所述电子设备100可以包括触摸传感器,所述触摸传感器可以具体为触控面板(Touch Panel,TP),其可以设置在所述显示屏120表面,也可以部分集成或者整体集成到所述显示屏120内部,从而形成所述触控显示屏。
所述生物特征识别模组140可以具体为光学生物特征识别模组,比如光学指纹模组,其主要用于采集用户的生物特征信息(比如指纹图像信息)。在本申请实施例中,所述生物特征识别模组140可以至少设置在所述显示屏120下方的局部区域,从而使得所述生物特征识别模组140的生物特征采集区域(或感应区域)130至少部分位于所述显示屏120的显示区域102。
作为一种实施例,所述生物特征识别模组140可以包括光学图像采集装置,所述光学图像采集装置可以包括多个光学图像采集单元,所述光学图像采集单元可以具体包括光探测器或者光电传感器。或者说,所述生物特征识别模组140的所述光学图像采集装置可以包括光探测器(Photo detector)阵列(或称为光电探测器阵列、光电传感器阵列),其包括多个呈阵列式分布的光探测器/光电传感器。或者说,所述生物特征识别模组140的光学图像采集装置可以包括具有光学感应阵列的光学生物特征传感器,比如光学指纹传感器;所述光学感应阵列包括多个光学感应单元,所述光学感应单元可以具体包括光探测器或者光电传感器,且所述光学感应阵列的所在区域或者光感应范围对应所述生物特征识别模组140的生物特征采集区域130。如图1所示,所述生物特征采集区域130位于所述显示屏120的显示区域102之中,因此,用户在需要对所述电子设备100进行解锁或者其他生物特征验证的时候,只需要将手指按压在位于所述显示屏120的生物特征采集区域130,便 可以实现生物特征输入操作。由于生物特征采集检测可以在所述显示屏120的显示区域102内部实现,采用上述结构的电子设备100无需其正面专门预留空间来设置指纹按键(比如Home键),因而可以采用全面屏方案。因此,所述显示屏120的显示区域102可以基本扩展到所述电子设备100的整个正面。
本申请实施例中,所述生物特征识别模组140可以利用外置光源作为生物特征检测识别的激励光源。
以所述显示屏120采用LCD为例。当手指触摸、按压或者接近(为便于描述,在本申请中统称为按压)在所述生物特征采集区域130时,所述外置光源发出的光线在手指发生透射并形成透射光,其中所述透射光可以携带有用户手指的生物特征信息。比如,所述光线被用户手指表面的指纹发生透射之后,由于手指指纹的纹脊和纹谷的透射光是不同的,因此透射光便携带有用户的指纹信息。所述透射光返回所述显示屏120并被其下方的生物特征识别模组140的光探测器阵列所接收并且转换为相应的电信号,即生物特征检测信号。所述电子设备100基于所述生物特征检测信号便可以获得用户的生物特征信息,并且可以进一步进行生物特征匹配验证,从而完成当前用户的身份验证以便于确认其是否有权限对所述电子设备100进行相应的操作。
在其他替代实施例中,所述生物特征识别模组140也可以设置在所述显示屏120下方的整个区域,从而将所述生物特征采集区域130扩展到整个所述显示屏120的整个显示区域102,实现全屏生物特征识别。
应当理解的是,在具体实现上,所述电子设备100还包括保护盖板110,所述盖板110可以具体为透明盖板,比如玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述电子设备100的正面,且所述保护盖板110表面还可以设置有保护层。因此,本申请实施例中,所谓的手指按压所述显示屏120实际上可以是指手指按压在所述显示屏120上方的盖板110或者覆盖所述盖板110的保护层表面。
另一方面,所述生物特征识别模组140的下方还可以设置有电路板150,比如软性电路板(Flexible Printed Circuit,FPC)或者印制电路板(Printed Circuit Board,PCB),所述生物特征识别模组140可以通过焊盘焊接到所述电路板150,并通过所述电路板150实现与其他***电路或者所述电子设备100的其他元件的电性互连和信号传输。比如,所述生物特征识别模组140 可以通过所述电路板150接收所述电子设备100的处理单元的控制信号,并且还可以通过所述电路板150将所述生物特征检测信号输出给所述电子设备100的处理单元或者控制单元等。
需要注意的是,所述生物特征识别模组140利用外置光源来提供用于进行生物特征检测识别的光信号时,所述生物特征识别模组140中的图像采集单元不仅可以适用于非自发光显示屏,比如LCD或者其他的被动发光显示屏,还可以适用于如OLED显示屏等自发光显示屏。
但是,由于非自发光显示屏的背光模组对光信号具有阻隔效果,因此,所述外置光源需要设置在非自发光显示屏的非显示区域的下方,或者说所述外置光源需要设置在非自发光显示屏的非显示区域下方的点胶区域。应理解,本申请实施例中,所述非显示区域也可以称为显示屏的周边或者显示屏的边框。为便于描述,下面统一采用边框对本申请实施例的技术方案进行说明。
图3示出了屏下生物特征识别技术可以适用的具有非自发光显示屏的电子设备200的示意性框图。
如图3所示,所述电子设备200可以包括盖板211、显示模组212以及背光模组213。其中,所述盖板211、所述显示模组212以及所述背光模组213可以形成所述电子设备200的非自发光显示屏。其中,显示屏的非显示区域也可以称为所述盖板211的非显示区域或者所述盖板211的边框。所述背光模组213用于为所述显示模组212供应充足的亮度与分布均匀的光源,以便所述显示模组212能够正常显示影像。所述盖板211作为图像显示界面。进一步地,所述显示模组212具体为显示触控模组时,所述盖板211还可以作为人体手指210的触控操作界面。
如图3所示,所述电子设备200还可以包括生物特征识别模组220和外置光源230,其中,所述外置光源230用于发出用于进行生物特征检测识别的光信号,所述生物特征识别模组220用于接收所述外置光源230发射的经由人体手指210透射形成的光信号233,并根据所述光信号233获取所述手指210的生物特征信息,例如,所述手指210的指纹图像。
由于背光模组213对光信号233具有阻挡效果,因此,需要将外置光源230设置在所述盖板211的非显示区域250的下方,具体地,将所述外置光源230设置在所述非显示区域250中的点胶区域。进一步地,所述显示模组 212可以设置在所述盖板211的显示区域和部分非显示区域的下方,所述背光模组213设置在所述显示模组212的下方,所述生物特征识别模组220设置在所述背光模组213的下方。
本申请实施例中,以所述生物特征识别模组220用于指纹识别为例,将所述外置光源230设置在所述盖板231的下方,所述外置光源230发出的光信号可以直接通过所述盖板211传输至所述手指210,并经由所述手指210透射后形成用于指纹识别的透射光信号。本申请实施例的技术方案与将所述生物特征识别模组220设置在所述背光模组213的下方相比,避免了所述外置光源230发出的光信号在所述背光模组213和所述显示模组212中的传输损耗,有效降低了所述外置光源230发出的光信号在传输过程中的损耗。此外,将所述生物特征识别模组220设置在所述背光模组213的下方,能够有效分离所述外置光源230的发射路径和所述生物特征识别模组220的接收路径,进而能够有效提高所述生物特征识别模组220接收到的光信号携带的指纹信息的信息量。综上所述,本申请实施例的技术方案能够有效提高生物特征识别的识别效果。
应理解,本申请实施例中,所述生物特征识别模组220接收到的用于进行生物特征识别的光信号可以是人体手指210对所述外置光源230发出的光信号的进行光学处理的光信号。例如,所述生物特征识别模组220接收到的光信号可以是进行经由人体手指210透射后穿过所述背光模组213的所述光信号。本申请实施例对此不做具体限定。
如图3所示,所述电子设备200还可以包括与所述外置光源230相连的连接电路231,所述连接电路231用于接收控制信号,所述控制信号用于控制所述外置电源230发光或者不发光。例如,所述连接电路231可以是电路板。例如,印制电路板(Printed Circuit Board,PCB)或者柔性电路板(Flexible Printed Circuit,FPC)。
作为一种实施例,所述背光模组213由上至下依次可以包括复合膜、增光膜、扩散膜和导光板(light guide plate)。在图像显示过程中,可见光源发出的可见光经过导光板之后传输至扩散膜,经过所述扩散膜扩散后的光线传输至所述增光膜,所述增光膜用于增益接收到的光信号,并将增益后的光信号发送至复合膜,所述复合膜用于进一步增益接收到的光信号,并将增益后的光信号传输至显示屏,用于进行图像显示。进一步地,所述背光模组213 还可以包括钢板和/或反射膜,所述反射膜可以设置在所述导光板的下方,用于将可见光源朝与显示模组212相反的方向射出的可见光反射回所述导光板,进而提高所述可见光源射出的光的利用率,所述钢板用于阻挡所述可见光源射出的光朝与显示模组212相反的方向射出。
作为一种实施例,所述外置光源230为红外光源。需要说明的是,所述红外光源发出的红外光信号为不可见光。而用于所述显示模组212进行图像显示的光信号为可见光,具体地,所述可见光可以是位于液晶显示器(LCD)背后的任一种光源发出的光。例如,所述可见光源可以是电致发光(EL)背光源、小型冷阴极荧光灯(CCFL)或者LED背光源。换句话说,本申请实施例中,用于生物特征识别的光信号是不可见光信号,而用于显示图像的光信号是可见光信号,用于生物特征识别的不可见光信号和用于显示图像的可见光信号能够避免互相之间产生影响。即,本申请实施例能够在保证图像正常显示的同时,有效进行生物特征识别。
作为一种实施例,所述红外光信号穿过所述背光模组213时的雾度小于用于显示图像的可见光穿过所述背光模组213时的雾度。进而,所述背光模组213不仅能够实现对可见光信号的调制,而且能够有效降低所述红外光信号在光路传输中的损耗。例如,所述红外光信号穿过所述背光模组213中的扩散层时的雾度小于用于显示图像的可见光穿过所述扩散层时的雾度。类似地,所述红外光信号穿过所述背光模组213时的透光率还可以大于用于显示图像的可见光穿过所述背光模组213时的透光率。例如,所述红外光信号穿过所述扩散层时的透光率大于所述可见光穿过所述扩散层时的透光率。又例如,所述红外光信号穿过所述背光模组213的反射层的透光率大于用于显示图像的可见光穿过所述反射层时的透光率。可以发现,在图像实现过程中,所述扩散板不仅能够提高显示模组212的正面的亮度,使得可见光的分布更加均匀,进而保证用户从正面不会看到反射点。在生物特征识别过程中,由于所述红外光信号穿过所述扩散层时的雾度小于用于显示图像的可见光穿过所述扩散层时的雾度,且所述红外光信号穿过所述扩散层时的透光率大于所述可见光穿过所述扩散层时的透光率,能够有效降低所述红外光信号在光路传输中的损耗,进而提高生物特征的识别效果。
可选地,所述背光模组213包括钢板时,所述钢板可以形成有开孔,所述生物特征识别模组220可以设置在所述开孔的下方,以便所述生物特征识 别模组220接收所述外置光源230发出的照射人体手指后并穿过所述开孔的所述红外光信号。所述开孔能够尽可能的阻止可见光信号向与显示模组212相反的方向传输,并避免所述背光模组213由于外部冲击造成损坏,而且能够有效降低用于生物特征识别的红外光信号在经过所述钢板时的能量损耗,进而提高生物特征的识别效果。
应理解,图3所示的生物特征识别模组220的具体结构和功能与图2和他图2所示的生物特征识别模组140类似,为避免重复,此处不再赘述。
如图3所示,所述电子设备200还可以包括中框240,所述中框240可以是用于支撑所述电子设备200的任一框架或者结构。所述生物特征识别模组220设置在所述盖板211的非显示区域250的下方时,可以直接粘贴在所述盖板211的下表面,也可以通过所述中框240固定在所述盖板211的下方。本申请实施例对此不做具体限定。
作为一种实施例,如图3所示,所述盖板211可以与所述中框240固定连接,且位于所述盖板211下方的显示模组212与所述中框之间存在间隙(即所述盖板211的点胶区域),所述外置光源230设置在所述间隙(点胶区域)内。结合图3所示,所述盖板221的边框的宽度250包括所述外置光源230、部分显示模组212所占用的宽度251和部分所述中框240占用的宽度252。但是,需要注意的是,随着全面屏技术的发展,所述盖板211的的宽度250中的点胶区域需要设置的越来越窄,进而导致了所述宽度251小于安装所述外置光源230需要的的宽度,也就是说,所述盖板211的边框的下方会没有足够的空间来布置所述外置光源230。
本申请实施例提供了一种改进的发光装置,可以适用于非自发光显示屏全面屏显示下的屏下生物特征采集或者识别。具体地,所述发光装置可以包括:红外光源,用于发出红外光信号;导光结构,所述导光结构包括第一端和第二端,所述导光结构用于通过所述第一端接收所述红外光信号,并通过所述第二端将所述红外光信号射出,其中,所述红外光源的尺寸大于所述第二端的尺寸。所述发光装置安装于具有非自发光显示屏的电子设备时,通过保证所述发光装置的红外光源的尺寸大于所述发光装置中的导光结构的信号输出端的尺寸,可以将所述红外光源的至少一部分安装在显示屏的下方,并通过所述导光结构将所述红外光源发出的红外光信号引导至所述显示屏的边框的下方,进而实现非自发光显示屏的全面屏显示下的屏下生物特征识 别。
需要注意的是,本申请实施例中,所述红外光源的尺寸可以指包括所述红外光源的器件的尺寸。例如,所述红外光源与电路板一体化设置时,所述红外光源的尺寸可以指所述红外光源和所述电路板形成的尺寸。
图4至图19示出了本申请实施例的发光装置和所述发光装置可以适用的电子设备300的示意图。为便于理解,下面以所述发光装置应用于LCD全面屏显示的屏下指纹识别为例,结合图4至图19对本申请实施例中的发光装置进行详细说明。
应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及所述发光装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
图4示出了本申请一个实施例的发光装置的侧截面图。图5是包括图4所示的发光装置的电子设备300的示意性侧截面图。
如图4所示,所述发光装置可以包括:红外光源330和导光结构361。其中,所述红外光源330可以为图3所示的外置光源230,所述红外光源330用于发出红外光信号。可选地,如图4所示,所述红外光源330可以包括外置光源331和电路板332。可选地,所述电路板332可以是印制电路板(Printed Circuit Board,PCB)或者柔性电路板(Flexible Printed Circuit,FPC)。所述导光结构361包括第一端和第二端,所述导光结构361用于通过所述第一端接收所述红外光信号,并通过所述第二端将所述红外光信号射出。或者说,所述第一端为所述导光结构361的红外光信号的输入端,所述第二端为所述导光结构361的红外光信号的输出端。其中,所述红外光源330的尺寸大于所述第二端的尺寸。如图5所示,所述电子设备300可以包括:盖板311、显示模组312、背光模组313以及生物特征识别模组320。应理解,所述盖板331可以为图3所示的盖板211,所述显示模组312可以为图3所示的显示模组212,所述背光模组313可以为图3所示的背光模组213,所述生物特征识别模组320可以是图3所示的生物特征识别模组220,为了避免重复,此处不再赘述。
可以发现,所述红外光源330安装于具有LCD的电子设备时,通过保证所述红外光源330的尺寸大于所述导光结构361的第二端的尺寸,可以将所述红外光源330的至少一部分安装在LCD的下方(即所述盖板的非点胶 区域,具体可以安装在显示模组的下方),并通过所述导光结构361将所述红外光源330发出的红外光信号引导至所述LCD的边框的下方,进而实现LCD的全面屏显示下的屏下生物特征识别。如图5所示,所述红外光源330的至少一部分可以安装在所述背光模组313的下方,即所述红外光源330需要占据的空间大于所述盖板311的点胶区域所属的空间,本申请实施例中,通过将所述红外光源330移动至所述背光模组313的下方,并通过所述导光结构361将所述红外光源330发出的红外光信号传输至所述盖板311的边框下方,避免了通过所述背光模组313传输所述红外光源330发出的红外光信号,能够有效降低所述红外光源330发出的红外光信号在传输路径的损耗,进而提高了生物特征的识别效果。
如图4所示,所述导光结构361的侧截面图可以为方形。具体地,所述导光结构361可以具体为圆柱结构、方柱结构等等。所述导光结构361也可以是圆柱结构和方柱结构的结合后形成的结构。但本申请实施例不限于此。所述导光结构361为圆柱结构时,能够有效降低所述导光结构361在传输红外光信号过程中的损耗。在本申请的一个实施例中,所述导光结构361可以为实心结构。在本申请的另一个实施例中,所述导光结构361可以设置有空腔,所述空腔用于传输红外光信号。
所述红外光源330的尺寸可以是所述红外光源330沿第一方向上的最小宽度,其中,所述第一方向可以是与LCD所在的平面平行且与所述LCD的边框垂直的方向。可选地,所述红外光源330的尺寸可以是外置光源331和电路板332形成的器件沿所述第一方向上的最小宽度。可选的,所述红外光源330的尺寸可以是外置光源331和电路板332的不可弯折部分沿所述第一方向上的最小宽度。例如,所述红外光源330的尺寸可以是如图5所示的红外光源330的宽度。类似地,所述第二端的尺寸可以是所述第二端沿所述第一方向上的最小宽度。例如,所述第二端的尺寸可以是如图5所示的导光结构361的宽度。
可选地,在本申请的一些实施例中,所述导光结构361的第一端至少覆盖所述红外光源330的发光面。由此,可以确保所述导光结构361的第一端能够接收到足够的红外光信号。应理解,本申请对所述第一端覆盖所述红外光源330的具***置不做限定。例如,所述第一端完全覆盖所述红外光源330的发光面。又例如,所述第一端覆盖所述红外光源330的发光面的中心位置。
图4所示的发光装置安装于所述电子设备300时,本申请实施例对其具体安装方式不做限定。例如,如图5所示,所述导光结构361和所述红外光源330可以分开安装。具体地,所述导光结构361和所述红外光源330可以分别安装在所述电子设备300的中框340上。但本申请实施例不限于此。例如,在其他可替代实施例中,所述导光结构361和所述红外光源330先进行固定连接,然后将所述导光结构361和所述红外光源330通过固定连接的方式形成的部件固定到所述中框340上。
应理解,本申请实施例对以下固定连接方式的实现形式不做具体限定:
所述导光结构361和所述红外光源330之间的固定连接方式、所述导光结构361和所述中框340之间的固定连接方式、所述红外光源330和所述中框340之间的固定连接方式。
如图5所示,所述电子设备300还可以包括调制结构370,所述调制结构370用于接收并调制所述红外光源330发出的红外光信号,并将调制后的红外光信号发送至所述导光结构361的所述第一端。可选地,所述调制结构370可以是透镜,例如球面透镜或者半球面透镜,又例如凸透镜或者凹透镜。可选地,所述调制结构370可以与所述导光结构361固定连接,也可以与所述红外光源330固定连接。但本申请实施例不限于此。例如,如图5所示,所述调制结构370可以与所述导光结构361分离设置,且所述调制结构370与所述红外光源330分离设置。可选地,所述调制结构370可以固定安装于所述电子设备300的中框340。
如图5所示,所述电子设备300还可以包括光楔380,所述光楔380用于改变所述导光结构361的所述第二端(即红外光信号输出端)输出的红外光信号的方向,和/或,所述光楔380用于将所述导光结构361粘贴至所述盖板311的点胶区域。可选地,所述光楔380的材料可以为光学胶。具体地,所述光楔380用于将所述第二端输出的红外光信号引导至所述盖板311的指纹采集区域。所述手指310透射接收到的红外光信号后形成如图5所示的透射光信号333。所述生物特征识别模组320用于接收所述透射光信号333,并根据所述透射光信号333进行生物特征识别。例如,指纹识别。
应理解,图4和图5仅仅是一种示例,不应理解为对本申请实施例的限定。例如,在其他可替代实施例中,图4所示的发光装置或图5所示的电子设备300还可以包括可见光滤光片。可选地,所述可见光滤光片可以设置在 所述背光模组313和所述生物特征识别模组320之间。由此,可以对传输至可见光滤光片处的可见光进行滤除,能够进一步提高生物特征识别模组320的识别质量。其中,所述可见光滤光片具体可以用于过滤掉可见光波长,例如,用于图像显示的可见光等。所述滤光片具体地可以包括一个或多个光学过滤器,所述一个或多个光学过滤器可以配置为例如带通过滤器,以滤除可见光光源发射的光,同时不滤除红外光信号。所述一个或多个光学过滤器可以实现为例如光学过滤涂层,该光学过滤涂层形成在一个或多个连续界面上,或可以实现为一个或多个离散的界面上。
应理解,所述可见光滤光片可以制作在任何光学部件的表面上,或者沿着到经由手指透射形成的透射光至生物特征识别模组320的光学路径上。例如,所述可见光滤光片可以贴合在包括显示模组312底面、所述背光模组313中的钢板的上方或所述生物特征识别模组320的内部等。
还应理解,图4所示的发光装置和图5所示的电子设备仅为本申请实施例的一种示例,不应理解为对本申请实施例的限定。
例如,图5所示的所述导光结构361的侧截面图为方形结构。但本申请实施例不限于此。例如,在其他可替代实施例中,所述导光结构361的侧截面图可以是方形结构的变形结构。
又例如,图5所述的所述导光结构361的第一端的尺寸和所述导光结构的第二端的尺寸相同。但本申请实施例不限于此。例如,在其他可替代实施例中,所述第一端的尺寸可以大于所述第二端的尺寸。又例如,所述第一端的尺寸可以小于所述第二端的尺寸。
又例如,图5所示的所述导光结构361的第一端的轴向和所述导光结构361的第二端的轴向相同。但本申请实施例不限于此。例如,在其他可替代实施例中,所述第一端的轴向与所述第二端的轴向形成预设角度。或者说,所述导光结构的接收的红外光信号的方向和所述导光结构输出红外光信号的方向之间可以形成所述预设角度。可选地,所述预设角度可以小于或等于90°。
又例如,图5所示的红外光源330为正发光源。但本申请实施例不限于此。但本申请实施例不限于此。例如,在其他可替代实施例中,所述发光源331可以为侧发光式光源。
又例如,图5所述的导光结构361的第一端仅包括一个开口。但本申请 实施例不限于此。例如,在其他可替代实施例中,所述第一端可以包括多个开口。以确保所述导光结构361能够接收到足够的红外光信号。或者说,所述红外光源330包括多个光源,所述第一端包括与所述多个光源对应的多个开口,所述第二端包括一个开口,所述红外光信号从所述多个开***入,并从所述一个开***出。
下面结合图6至图19对图4和图5所示的导光结构361的变形结构进行示例性说明。
需要说明的是,为便于说明,在图4至图19所示的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。
图6示出了本申请另一个实施例的发光装置的侧截面图。图7是图6所述的发光装置的示意性立体图。图8是包括图6所示的发光装置的电子设备300的示意性侧截面图。
如图6所示,所述发光装置可以包括导光结构362和红外光源330。其中,如图6至图8所示,所述导光结构362的第一端向所述导光结构362的第二端延伸的过程中,形成有一个拐角,这个拐角可以使得所述导光结构362的第二端输出的红外光信号直接朝向所述盖板311的感应区域或采集区域。或者说,这个拐角可以使得所述导光结构362的第二端输出的红外光信号直接朝向所述盖板311上的手指310。或者说,所述导光结构362的第二端的开口朝向所述手指310。所述导光结构362使得所述电子设备300避免了采用额外的部件调整所述导光结构362的第二端输出的红外光信号的方向,进而能够有效简化所述电子设备300的结构,进而降低了生产成本。
应当理解,图6至图8仅为本申请实施例的一种示例,不应理解为对本申请实施例的限定。例如,图8所述的发光装置中的导光结构362中,所述第一端的轴向和所述第二端的轴向可以直接形成一个角度。但本申请实施例不限于此。例如,在其他可替代实施例中,所述红外光源330为侧发光源时,所述第一端的轴向可以先和第一方向形成第一角度,所述第一方向再和所述第二端的轴向形成第二角度,其中,所述第一方向为所述导光结构的中间位置的轴向方向。
图9是包括图6所示的发光装置的变形结构的电子设备300的示意性侧截面图。
如图9所示,所述电子设备300可以包括导光结构363。其中,所述导光结构363的第一端向所述导光结构363的第二端延伸的过程中,形成有一个拐角,这个拐角可以使得所述导光结构363的第二端输出的红外光信号直接朝向所述盖板311的感应区域或采集区域。或者说,这个拐角可以使得所述导光结构363的第二端输出的红外光信号直接朝向所述盖板311上的手指310。或者说,所述导光结构363的第二端的开口朝向所述手指310。所述导光结构363使得所述电子设备300避免了采用额外的部件调整所述导光结构362的第二端输出的红外光信号的方向,进而能够有效简化所述电子设备300的结构,进而降低了生产成本。
如图9所示,所述导光结构363的第一端向所述导光结构363的第二端延伸的过程中,尺寸可以逐渐缩小。例如,假设所述导光结构363为柱状结构,则所述第一端向所述第二端延伸过程中,所述导光结构363的外径逐渐缩小。或者说,所述导光结构363的第一端的尺寸大于所述导光结构363的第二端的尺寸。由此,能够保证所述导光结构363接收到足够的红外光源330发出的红外光信号。
如图9所示,在发射光信号333的方向上,所述导光结构363上的靠近所述显示模组312或者靠近所述背光模组313的一侧的拐角的位置,高于所述导光结构363上的靠近所述中框340的的拐角的位置。由此,能够有效减少所述导光结构363需要占用的空间,进而可以适用于盖板的边框非常窄的电子设备。
应当理解,图9仅为本申请实施例的一种示例,不应理解为对本申请实施例的限定。例如,假设所述导光结构363为柱状结构,图9所述的发光装置中的导光结构363中,所述第一端的尺寸和位于所述显示模组313和所述中框340之间的所述导光结构363的外径相同。但本申请实施例不限于此。例如,在其他可替代实施例中,所述第一端的尺寸可以大于位于所述显示模组313和所述中框340之间的所述导光结构363的外径相同。
图10是包括图6所示的发光装置的另一变形结构的电子设备300的示意性侧截面图。
如图10所示,所述电子设备300可以包括导光结构364。其中,所述导光结构364的第一端为锥形结构。具体地,所述锥形结构的尺寸较大的开口用于对准所述红外光源330,进而保证所述导光结构364能够接收到足够的 红外光信号。
应当理解,图10仅为本申请实施例的一种示例,不应理解为对本申请实施例的限定。例如,图10所示的导光结构364的第一端和所述导光结构364的中间部位通过一个钝角连接。但本申请实施例不限于此。例如,在其他可替代实施例中,所述导光结构364的第一端和所述导光结构364的中间部位还可以通过一个弧线连接。又例如,在其他可替代实施例中,所述导光结构364在第一剖面的至少一条剖面线上,所述第一端通过第一弧线连接至所述第二端,所述第一剖面为所述第一端的轴向和所述第二端的轴向所在的剖面。
图11是本申请一个实施例的导光结构365的示意性立体图。
如图11所示,所述导光结构365可以是半L性结构。采用所述导光结构365代替如图10所示的导光结构364时,可以将所述导光结构365的平整的侧面与所述中框340连接。换句话说,可以将所述导光结构365的非平整侧面靠近如图10所示的显示模组312或者背光模组313设置。或者说,所述导光结构365在第一剖面的第一剖面线上,所述第一端通过第一弧线连接至所述第二端,所述第一弧线对应的圆心位于所述第一弧线的远离所述导光结构的中心的一侧。所述第一剖面为所述第一端的轴向和所述第二端的轴向所在的剖面,所述第一剖面线为所述第一剖面上的靠近如图10所述的显示模组312或者背光模组313的一侧的剖面线。
应理解,图11仅为本申请实施例的一种示例,不应理解为对本申请实施例的限定。例如,在其他可替代实施例中,所述导光结构在第一剖面的第一剖面线上,所述第一端通过第一弧线连接至所述第二端,所述第一弧线对应的圆心位于所述第一弧线的靠近所述导光结构的中心的一侧。可选地,所述第一弧线通过第二弧线连接至所述第二端,所述第二弧线对应的圆心位于所述第二弧线的远离所述导光结构的中心的一侧。可选地,所述第一弧线通过一条直线与所述第二弧线相连。可选地,所述第二弧线通过至少一个条线连接至所述第二端。可选地,所述至少一条连接线包括第一直线和第二直线,所述第一直线和第二之间的夹角大于预设夹角。可选地,所述第一直线通过第三弧线连接至所述第二直线,所述第三弧线对应的圆心位于所述第三弧线的靠近所述导光结构的中心的一侧。
图12是本申请再一实施例的电子设备300的示意性侧截面图。
如图12所示,所述电子设备300可以包括导光结构366。所述导光结构366的形状具体可以为一个瓶子的形状。其中,瓶口作为所述导光结构366的第二端,用于输出红外光信号。瓶底作为所述导光结构366的第一端,用于接收红外光源330输出的红外光信号。
应当理解,图12仅为本申请实施例的一种示例,不应理解为对本申请实施例的限定。例如,图12所示的导光结构366与所述红外光源330之间接触连接。但本申请实施例不限于此。例如,在其他可替代实施例中,所述红外光源330和所述导光结构366之间也可以通过分离的形式与所述中框340固定连接。又例如,在其他可替代实施例中,所述红外光源330和所述导光结构366之间也可以通过透镜连接,可选地,所述透镜设置在所述红外光源330和所述第一端之间,用于传输所述红外光信号。所述透镜设置在所述第一端内,或者所述透镜与所述第一端之间具有预设间隙。可选地,所述透镜为凹透镜,或者所述透镜为凸透镜。
图13和图14是本申请一个实施例的所述导光结构367的第一端内置有半球透镜的示意性立体图。
如图13所示,在本申请的一个实施例中,所述半球透镜371的凸起表面朝向所述导光结构367的第一端设置。或者说,所述半球透镜371的平整表面朝向红外光源设置。例如,所述半球透镜371的平整表面朝向图12所示的红外光源330设置。由此,所述半球透镜371可以将所述红外光源330输出的大角度光信号也传输至所述导光结构367内,进而增加了所述红外光光源331发出的红外光信号的利用率。
如图14所示,在本申请的另一个实施例中,所述半球透镜372的凸起表面朝向红外光源设置。例如,所述半球透镜372的平整表面朝向图12所示的红外光源330设置。或者说,所述半球透镜372的平整表面朝向所述导光结构367的第一端设置。由此,所述半球透镜372可以将所述红外光源330输出的点光源信号转换成平行光信号,并将转换后的平行光信号传输至所述导光结构367内,进而降低了光信号在所述导光结构367内的反射或者折射的频率,进而降低了光信号在所述导光结构367内传输时的损耗。
图15是本申请再一个实施例的电子设备300的示意性侧截面图。图16是图15所述的电子设备300中的导光结构368的示意性立体图。
如图15所示,所述电子设备300可以包括红外光源330和导光结构368, 其中,所述红外光源330为侧发光式光源,所述导光结构368可以具有一个90°的拐角。所述导光结构368可以用于将所述红外光源330发出的平行于所述盖板311的红外光信号,转换为垂直与所述盖板311的红外光信号,并输出转换后的红外光信号。可选地,如图16所示,所述导光结构368可以是圆柱结构。
应理解,图16仅为本申请实施例的一种示例,不应理解为对本申请实施例的限定。例如,在其他可替代实施例中,所述红外光源为侧发光式光源时,所述导光结构368可以采用非圆柱结构或者包括多种结构的组合结构。例如,如图17所示,所述导光结构369的第一端为锥形结构,所述导光结构369的第二端为圆柱结构。又例如,如图18所示,所述导光结构3610可以是扁平的柱状结构。
图19是本申请实施例的导光结构3611的部分侧视图。
如图19所示,所述导光结构3611可以包括用于接收红外光信号的第一端和用于输出红外光信号的第二端。所述导光结构3611可以具体为柱状结构。其中,所述导光结构3611的第一端向所述第二端延伸的过程中,形成有一个近似90°的拐角,且内径和外径逐渐减小。所述第二端可以包括一个预设开口。具体地,所述预设开口可以是在于所述第二端上的与所述第一端相对的表面上形成的开口。更具体地,所述第一开口的周边可以向上延伸至同一平面。可选地,所述预设开口的尺寸可以大于或等于预设值。例如,所述预设开口的面积可以大于或者额等于预设值。可以发现,所述预设开口能够有效增加所述第二端输出的红外光信号的数量。此外,所述导光结构3611的第一端包括两个开口,且所述两个开口平行显示屏的边框设置时,可以将所述预设开口的尺寸设置的足够大,以便满足大面积屏下生物特征识别的技术。
应理解,图19仅为本申请实施例的一种示例,不应理解为对本申请实施例的限定。例如,在其他可替代实施例中,所述导光结构3611的第二端还可以包括多个开口,所述多个开口可以对应多个生物特征识别模组。又例如,所述导光结构3611也可以包括其它类型结构,或者所述导光结构3611也可以包括柱状结构和其它类型结构组合形成的结构。
应理解,本申请实施例的发光装置可以应用于生物特征检测装置。例如,将所述发光装置集成安装在所述生物特征检测装置内。
所述生物特征检测装置可以包括上文所述的发光装置和生物特征识别模组,所述生物特征识别模组用于设置在所述显示屏的下方,以检测所述导光装置的第二端射出的生物特征检测光信号在所述显示屏上方的目标物体形成的返回光,所述返回光用于对所述目标物体的生物特征信息。
可选地,在本申请的一些实施例中,所述光源为红外光源,且所述生物特征检测光信号为红外光信号。
可选地,在本申请的一些实施例中,所述显示屏为液晶显示屏,其包括液晶显示模组和为所述液晶显示模组提供背光源的背光模组,所述生物特征识别模组用于设置在所述背光模组的下方,且所述生物特征识别模组的生物特征检测区域至少部分位于所述显示屏的显示区域。
可选地,在本申请的一些实施例中,所述发光装置用于与所述显示屏并排设置在所述电子设备的盖板下方,且所述发光装置与所述显示屏不相重叠。
还应理解,本申请实施例中的发光装置可应用于电子设备,尤其可应用于具有背光模组的电子设备。
所述电子设备可以包括显示屏以及上文所述的发光装置;其中,所述发光装置中的红外光源330位于所述显示屏的下方,所述发光装置中的导光结构至少部分位于所述显示屏的边框的下方。例如所述红外光源330可以是正发光源或者侧发光源,所述红外光源330为正发光源时可以将所述红外光源330设置在显示屏的边框的下方,此时所述导光结构可以完整设置在边框的下方,所述红外光源330为侧发光源时可以将所述红外光源330设置在显示屏的显示区域的下方,此时部分所述导光结构可以设置在显示区域的下方,另一部分所述导光结构可以设置在在边框的下方。
所述红外光源330和/或所述导光结构固定安装于所述电子设备的中框,且所述红外光源330的至少一部分位于所述显示屏的背光模组的下方,所述导光结构的第二端设置在所述显示屏的边框的下方。由此,通过所述导光结构将所述红外光源330发出的红外光信号引导至所述显示屏的边框的下方,进而实现全面屏显示的屏下生物特征识别。
可选地,在本申请的一些实施例中,所述电子设备还可以包括:
光楔,设置在所述显示屏和所述导光结构之间,用于改变从所述导光结构射出的红外光信号的方向,和/或所述光楔用于将所述导光结构粘贴至所述 电子设备的盖板的点胶区域。可选地,所述光楔的材料可以为光学胶。
可选地,在本申请的一些实施例中,所述电子设备还包括:
指纹识别模组,设置在所述显示屏的下方;其中,所述指纹识别模组用于接收所述发光装置发出的照射人体手指后的红外光信号,所述红外光信号用于检测所述手指的指纹信息。
可选地,在本申请的一些实施例中,所述显示屏为液晶显示屏,所述显示屏的点胶区域的宽度小于所述发光装置中的红外光源330在所述显示屏的投影的最小宽度。
需要说明的是,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的电子设备、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个***,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (56)

  1. 一种生物特征检测装置,其特征在于,应用在具有显示屏的电子设备,所述生物特征检测装置包括:
    发光装置,包括光源和导光结构,所述光源用于提供生物特征检测光信号,所述导光装置包括第一端和第二端,所述导光装置用于通过所述第一端从所述光源接收所述生物特征检测光信号,并通过所述第二端将所述生物特征检测光信号射出,其中,所述光源的尺寸大于所述第二端的尺寸;
    生物特征识别模组,用于设置在所述显示屏的下方,以检测所述导光装置的第二端射出的生物特征检测光信号在所述显示屏上方的目标物体形成的返回光,所述返回光用于检测所述目标物体的生物特征信息。
  2. 根据权利要求1所述的生物特征检测装置,其特征在于,所述光源为红外光源,且所述生物特征检测光信号为红外光信号。
  3. 根据权利要求1或2所述的生物特征检测装置,其特征在于,所述显示屏为液晶显示屏,其包括液晶显示模组和为所述液晶显示模组提供背光源的背光模组,所述生物特征识别模组用于设置在所述背光模组的下方,且所述生物特征识别模组的生物特征检测区域至少部分位于所述显示屏的显示区域。
  4. 根据权利要求3所述的生物特征检测装置,其特征在于,所述发光装置用于与所述显示屏并排设置在所述电子设备的盖板下方,且所述发光装置与所述显示屏不相重叠。
  5. 根据权利要求1至4中任一项所述的生物特征检测装置,其特征在于,所述第一端至少覆盖所述光源的发光面。
  6. 根据权利要求1至5中任一项所述的生物特征检测装置,其特征在于,所述第一端的尺寸大于或等于所述第二端的尺寸。
  7. 根据权利要求1至6中任一项所述的生物特征检测装置,其特征在于,所述第一端的轴向与所述第二端的轴向形成预设角度。
  8. 根据权利要求7所述的生物特征检测装置,其特征在于,所述预设角度小于或等于90°。
  9. 根据权利要求7所述的生物特征检测装置,其特征在于,所述光源为侧发光源,所述第一端的轴向和第一方向形成第一角度,所述第一方向和所 述第二端的轴向形成第二角度,所述第一方向为所述导光结构的中间位置的轴向方向。
  10. 根据权利要求1至9中任一项所述的生物特征检测装置,其特征在于,所述光源包括多个光源,所述第一端包括与所述多个光源对应的多个开口,所述第二端包括一个开口,所述生物特征检测光信号从所述多个开***入,并从所述一个开***出。
  11. 根据权利要求10所述的生物特征检测装置,其特征在于,所述一个开口的面积大于或等于预设面积。
  12. 根据权利要求1至11中任一项所述的生物特征检测装置,其特征在于,所述第一端在垂直所述第一端的轴向的平面上的投影为圆形或者多边形,和/或,所述第二端在垂直所述第二端的轴向的平面上的投影为圆形或者多边形。
  13. 根据权利要求1至12中任一项所述的生物特征检测装置,其特征在于,所述第一端的结构为锥形结构。
  14. 根据权利要求1至13中任一项所述的生物特征检测装置,其特征在于,所述导光结构在第一剖面的至少一条剖面线上,所述第一端通过第一弧线连接至所述第二端,所述第一剖面为所述第一端的轴向和所述第二端的轴向所在的剖面。
  15. 根据权利要求14所述的生物特征检测装置,其特征在于,所述第一弧线对应的圆心位于所述第一弧线的远离所述导光结构的中心的一侧。
  16. 根据权利要求14所述的生物特征检测装置,其特征在于,所述第一弧线对应的圆心位于所述第一弧线的靠近所述导光结构的中心的一侧。
  17. 根据权利要求16所述的生物特征检测装置,其特征在于,所述第一弧线通过第二弧线连接至所述第二端,所述第二弧线对应的圆心位于所述第二弧线的远离所述导光结构的中心的一侧。
  18. 根据权利要求17所述的生物特征检测装置,其特征在于,所述第一弧线通过一条直线与所述第二弧线相连。
  19. 根据权利要求17所述的生物特征检测装置,其特征在于,所述第二弧线通过至少一个条线连接至所述第二端。
  20. 根据权利要求19所述的生物特征检测装置,其特征在于,所述至少一条连接线包括第一直线和第二直线,所述第一直线和第二之间的夹角大于 预设夹角。
  21. 根据权利要求20所述的生物特征检测装置,其特征在于,所述第一直线通过第三弧线连接至所述第二直线,所述第三弧线对应的圆心位于所述第三弧线的靠近所述导光结构的中心的一侧。
  22. 根据权利要求1至21中任一项所述的生物特征检测装置,其特征在于,所述生物特征检测装置还包括:
    透镜,所述透镜设置在所述光源和所述第一端之间,用于传输所述生物特征检测光信号。
  23. 根据权利要求22所述的生物特征检测装置,其特征在于,所述透镜设置在所述第一端内,或者所述透镜与所述第一端之间具有预设间隙。
  24. 根据权利要求22所述的生物特征检测装置,其特征在于,所述透镜为凹透镜,或者所述透镜为凸透镜。
  25. 根据权利要求22所述的生物特征检测装置,其特征在于,所述透镜为半球透镜,所述半球透镜的凸起表面朝向所述第一端设置,或者所述半球透镜的凸起表面朝向所述光源设置。
  26. 根据权利要求1至25中任一项所述的生物特征检测装置,其特征在于,所述导光结构与所述光源固定连接。
  27. 根据权利要求1至26中任一项所述的生物特征检测装置,其特征在于,所述生物特征检测装置应用于电子设备,所述光源和/或所述导光结构固定安装于所述电子设备的中框,且所述光源的至少一部分位于所述显示屏的背光模组的下方,所述导光结构的第二端设置在所述显示屏的边框的下方。
  28. 一种发光装置,其特征在于,包括:
    红外光源,用于发出红外光信号;
    导光结构,所述导光结构包括第一端和第二端,所述导光结构用于通过所述第一端接收所述红外光信号,并通过所述第二端将所述红外光信号射出,其中,所述红外光源的尺寸大于所述第二端的尺寸。
  29. 根据权利要求28所述的发光装置,其特征在于,所述第一端至少覆盖所述红外光源的发光面。
  30. 根据权利要求28或29所述的发光装置,其特征在于,所述第一端的尺寸大于或等于所述第二端的尺寸。
  31. 根据权利要求28至30中任一项所述的发光装置,其特征在于,所 述第一端的轴向与所述第二端的轴向形成预设角度。
  32. 根据权利要求31所述的发光装置,其特征在于,所述预设角度小于或等于90°。
  33. 根据权利要求31所述的发光装置,其特征在于,所述红外光源为侧发光源,所述第一端的轴向和第一方向形成第一角度,所述第一方向和所述第二端的轴向形成第二角度,所述第一方向为所述导光结构的中间位置的轴向方向。
  34. 根据权利要求28至33中任一项所述的发光装置,其特征在于,所述红外光源包括多个光源,所述第一端包括与所述多个光源对应的多个开口,所述第二端包括一个开口,所述红外光信号从所述多个开***入,并从所述一个开***出。
  35. 根据权利要求34所述的发光装置,其特征在于,所述一个开口的面积大于或等于预设面积。
  36. 根据权利要求28至35中任一项所述的发光装置,其特征在于,所述第一端在垂直所述第一端的轴向的平面上的投影为圆形或者多边形,和/或,所述第二端在垂直所述第二端的轴向的平面上的投影为圆形或者多边形。
  37. 根据权利要求28至36中任一项所述的发光装置,其特征在于,所述第一端的结构为锥形结构。
  38. 根据权利要求28至37中任一项所述的发光装置,其特征在于,所述导光结构在第一剖面的至少一条剖面线上,所述第一端通过第一弧线连接至所述第二端,所述第一剖面为所述第一端的轴向和所述第二端的轴向所在的剖面。
  39. 根据权利要求38所述的发光装置,其特征在于,所述第一弧线对应的圆心位于所述第一弧线的远离所述导光结构的中心的一侧。
  40. 根据权利要求38所述的发光装置,其特征在于,所述第一弧线对应的圆心位于所述第一弧线的靠近所述导光结构的中心的一侧。
  41. 根据权利要求40所述的发光装置,其特征在于,所述第一弧线通过第二弧线连接至所述第二端,所述第二弧线对应的圆心位于所述第二弧线的远离所述导光结构的中心的一侧。
  42. 根据权利要求41所述的发光装置,其特征在于,所述第一弧线通过 一条直线与所述第二弧线相连。
  43. 根据权利要求41所述的发光装置,其特征在于,所述第二弧线通过至少一个条线连接至所述第二端。
  44. 根据权利要求43所述的发光装置,其特征在于,所述至少一条连接线包括第一直线和第二直线,所述第一直线和第二之间的夹角大于预设夹角。
  45. 根据权利要求44所述的发光装置,其特征在于,所述第一直线通过第三弧线连接至所述第二直线,所述第三弧线对应的圆心位于所述第三弧线的靠近所述导光结构的中心的一侧。
  46. 根据权利要求28至45中任一项所述的发光装置,其特征在于,所述发光装置还包括:
    透镜,所述透镜设置在所述红外光源和所述第一端之间,用于传输所述红外光信号。
  47. 根据权利要求46所述的发光装置,其特征在于,所述透镜设置在所述第一端内,或者所述透镜与所述第一端之间具有预设间隙。
  48. 根据权利要求46所述的发光装置,其特征在于,所述透镜为凹透镜,或者所述透镜为凸透镜。
  49. 根据权利要求46所述的发光装置,其特征在于,所述透镜为半球透镜,所述半球透镜的凸起表面朝向所述第一端设置,或者所述半球透镜的凸起表面朝向所述红外光源设置。
  50. 根据权利要求28至49中任一项所述的发光装置,其特征在于,所述导光结构与所述红外光源固定连接。
  51. 根据权利要求28至50中任一项所述的发光装置,其特征在于,所述发光装置应用于电子设备,所述红外光源和/或所述导光结构固定安装于所述电子设备的中框,且所述红外光源的至少一部分位于所述显示屏的背光模组的下方,所述导光结构的第二端设置在所述显示屏的边框的下方。
  52. 一种电子设备,其特征在于,包括:
    显示屏,以及
    根据权利要求28至51中任一项所述的发光装置;其中,所述发光装置中的红外光源位于所述显示屏的下方,所述发光装置中的导光结构至少部分位于所述显示屏的边框的下方。
  53. 根据权利要求52所述的电子设备,其特征在于,所述电子设备还包括:
    中框,所述红外光源和/或所述导光结构固定安装于所述中框,且所述红外光源的至少一部分位于所述显示屏的背光模组的下方,所述导光结构的第二端设置在所述显示屏的边框的下方。
  54. 根据权利要求52或53所述的电子设备,其特征在于,所述电子设备还包括:
    光楔,设置在所述显示屏和所述导光结构之间,用于改变从所述导光结构射出的红外光信号的方向,和/或所述光楔用于将所述导光结构粘贴至所述电子设备的盖板的点胶区域。
  55. 根据权利要求52至54中任一项所述的电子设备,其特征在于,所述电子设备还包括:
    指纹识别模组,设置在所述显示屏的下方;
    其中,所述指纹识别模组用于接收所述发光装置发出的照射人体手指后的红外光信号,所述红外光信号用于检测所述手指的指纹信息。
  56. 根据权利要求52至55中任一项所述的电子设备,其特征在于,所述显示屏为液晶显示屏,所述显示屏的点胶区域的宽度小于所述发光装置中的红外光源在所述显示屏的投影的最小宽度。
PCT/CN2018/110276 2018-10-15 2018-10-15 发光装置、生物特征检测装置和电子设备 WO2020077498A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880002038.9A CN109478236A (zh) 2018-10-15 2018-10-15 发光装置、生物特征检测装置和电子设备
PCT/CN2018/110276 WO2020077498A1 (zh) 2018-10-15 2018-10-15 发光装置、生物特征检测装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/110276 WO2020077498A1 (zh) 2018-10-15 2018-10-15 发光装置、生物特征检测装置和电子设备

Publications (1)

Publication Number Publication Date
WO2020077498A1 true WO2020077498A1 (zh) 2020-04-23

Family

ID=65678293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110276 WO2020077498A1 (zh) 2018-10-15 2018-10-15 发光装置、生物特征检测装置和电子设备

Country Status (2)

Country Link
CN (1) CN109478236A (zh)
WO (1) WO2020077498A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111611987A (zh) * 2020-05-21 2020-09-01 昆山工研院新型平板显示技术中心有限公司 显示装置及利用显示装置实现特征识别的方法
CN111881761A (zh) * 2020-06-30 2020-11-03 厦门天马微电子有限公司 显示模组及显示装置
CN113890908A (zh) * 2020-07-01 2022-01-04 深圳市万普拉斯科技有限公司 电子设备
CN115981045A (zh) * 2023-03-23 2023-04-18 惠科股份有限公司 显示装置及电子设备
CN116085385A (zh) * 2023-04-10 2023-05-09 合肥联宝信息技术有限公司 转轴组件及电子设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021012117A1 (zh) * 2019-07-19 2021-01-28 深圳市汇顶科技股份有限公司 屏下光学指纹识别装置及***、扩散膜和液晶显示屏
CN110458125B (zh) * 2019-08-16 2024-06-18 深圳阜时科技有限公司 光学检测装置
US11320693B2 (en) 2019-08-30 2022-05-03 Shenzhen GOODIX Technology Co., Ltd. Under-display illumination with external light sources
CN111066030B (zh) * 2019-10-29 2024-03-15 深圳市汇顶科技股份有限公司 屏下指纹识别装置及电子设备
WO2021097639A1 (zh) * 2019-11-19 2021-05-27 深圳市汇顶科技股份有限公司 屏下指纹识别装置、lcd指纹识别***、电子设备及导光膜
CN111413834B (zh) * 2020-03-27 2022-06-10 厦门天马微电子有限公司 显示装置
CN111753655A (zh) * 2020-05-18 2020-10-09 深圳市隆利科技股份有限公司 用于全屏指纹识别的电子设备
CN111476218A (zh) * 2020-05-29 2020-07-31 厦门天马微电子有限公司 一种显示装置
WO2021253445A1 (zh) * 2020-06-19 2021-12-23 深圳市汇顶科技股份有限公司 生物特征检测装置及智能穿戴设备
CN112485947B (zh) * 2020-12-09 2022-08-16 武汉天马微电子有限公司 显示模组及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150364107A1 (en) * 2014-06-17 2015-12-17 LuxVue Technology Corporation Interactive display panel with ir diodes
CN107273808A (zh) * 2017-05-19 2017-10-20 上海箩箕技术有限公司 显示模组
CN108241831A (zh) * 2016-12-23 2018-07-03 创智能科技股份有限公司 生物辨识装置
US20180204039A1 (en) * 2017-01-13 2018-07-19 Primax Electronics Ltd. Fingerprint identifying module with indicating function
CN108446677A (zh) * 2018-05-03 2018-08-24 东莞市美光达光学科技有限公司 一种用于屏幕下方的指纹识别模组
CN108491833A (zh) * 2018-05-22 2018-09-04 昆山丘钛微电子科技有限公司 一种光学指纹模组及移动终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2412460C2 (ru) * 2006-04-10 2011-02-20 Электролюкс Хоум Продактс Корпорейшн Н.В. Бытовой электроприбор, оснащенный датчиком идентификации "отпечатка пальца"
CN106203408A (zh) * 2016-08-31 2016-12-07 上海箩箕技术有限公司 光学指纹传感器模组
CN108229241A (zh) * 2016-12-09 2018-06-29 上海箩箕技术有限公司 显示模组及其使用方法
CN108010441A (zh) * 2017-12-06 2018-05-08 广东欧珀移动通信有限公司 显示屏组件及电子设备
CN108010442A (zh) * 2017-12-06 2018-05-08 广东欧珀移动通信有限公司 显示屏组件及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150364107A1 (en) * 2014-06-17 2015-12-17 LuxVue Technology Corporation Interactive display panel with ir diodes
CN108241831A (zh) * 2016-12-23 2018-07-03 创智能科技股份有限公司 生物辨识装置
US20180204039A1 (en) * 2017-01-13 2018-07-19 Primax Electronics Ltd. Fingerprint identifying module with indicating function
CN107273808A (zh) * 2017-05-19 2017-10-20 上海箩箕技术有限公司 显示模组
CN108446677A (zh) * 2018-05-03 2018-08-24 东莞市美光达光学科技有限公司 一种用于屏幕下方的指纹识别模组
CN108491833A (zh) * 2018-05-22 2018-09-04 昆山丘钛微电子科技有限公司 一种光学指纹模组及移动终端

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111611987A (zh) * 2020-05-21 2020-09-01 昆山工研院新型平板显示技术中心有限公司 显示装置及利用显示装置实现特征识别的方法
CN111611987B (zh) * 2020-05-21 2022-08-09 昆山工研院新型平板显示技术中心有限公司 显示装置及利用显示装置实现特征识别的方法
CN111881761A (zh) * 2020-06-30 2020-11-03 厦门天马微电子有限公司 显示模组及显示装置
CN111881761B (zh) * 2020-06-30 2022-09-23 厦门天马微电子有限公司 显示模组及显示装置
CN113890908A (zh) * 2020-07-01 2022-01-04 深圳市万普拉斯科技有限公司 电子设备
CN113890908B (zh) * 2020-07-01 2024-04-05 深圳市万普拉斯科技有限公司 电子设备
CN115981045A (zh) * 2023-03-23 2023-04-18 惠科股份有限公司 显示装置及电子设备
CN115981045B (zh) * 2023-03-23 2023-06-23 惠科股份有限公司 显示装置及电子设备
CN116085385A (zh) * 2023-04-10 2023-05-09 合肥联宝信息技术有限公司 转轴组件及电子设备

Also Published As

Publication number Publication date
CN109478236A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2020077498A1 (zh) 发光装置、生物特征检测装置和电子设备
CN110235143B (zh) 屏下指纹识别装置和电子设备
CN209895353U (zh) 指纹识别装置和电子设备
CN209962265U (zh) 指纹识别装置和电子设备
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
EP3396588B1 (en) Display screen, display device and mobile terminal
US11663846B2 (en) Fingerprint identification apparatus and electronic device
CN111033518B (zh) Lcd指纹识别***、屏下光学指纹识别装置和电子装置
CN109061946B (zh) 显示屏组件及电子设备
WO2020037683A1 (zh) 背光模组、屏下指纹识别方法、装置和电子设备
WO2020133378A1 (zh) 指纹识别装置和电子设备
CN213240740U (zh) 应用于显示面板的背光模组
WO2019178793A1 (zh) 屏下生物特征识别装置和电子设备
CN111095289B (zh) 屏下指纹识别装置以及终端设备
WO2021087695A1 (zh) 光学指纹装置和电子设备
WO2020082375A1 (zh) 复合透镜结构、指纹识别装置和电子设备
CN210109828U (zh) 指纹识别的装置和电子设备
CN110187537A (zh) 一种终端
CN110770748A (zh) 光学指纹识别装置、电子设备和指纹识别方法
CN211319236U (zh) 指纹检测装置、背光模组、显示屏和电子设备
CN212160687U (zh) 一种生物特征检测装置
CN110796070B (zh) 显示屏组件及屏下指纹识别电子设备
CN210864764U (zh) 指纹识别装置和电子设备
CN111758101B (zh) 指纹检测装置、背光模组、显示屏和电子设备
CN211087274U (zh) 指纹检测装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937148

Country of ref document: EP

Kind code of ref document: A1