WO2020075487A1 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
WO2020075487A1
WO2020075487A1 PCT/JP2019/037270 JP2019037270W WO2020075487A1 WO 2020075487 A1 WO2020075487 A1 WO 2020075487A1 JP 2019037270 W JP2019037270 W JP 2019037270W WO 2020075487 A1 WO2020075487 A1 WO 2020075487A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
opening
heat
substrate
housing
Prior art date
Application number
PCT/JP2019/037270
Other languages
French (fr)
Japanese (ja)
Inventor
康洋 森
橋本 裕介
智宏 上津
室 直樹
香菜 大井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019111538A external-priority patent/JP2020061122A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP19871633.4A priority Critical patent/EP3866130A4/en
Publication of WO2020075487A1 publication Critical patent/WO2020075487A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device

Definitions

  • the present disclosure relates generally to sensors, and more particularly to sensors that sense heat generated by, for example, a fire.
  • the sensor includes a heat sensing unit that senses heat and a smoke sensing unit that senses smoke that has flowed into the dark box.
  • the heat sensing means includes a lead wire connected to the circuit board and protruding upward from the circuit board, and a heat sensitive element such as a thermistor provided on an upper end of the lead wire.
  • the present disclosure has been made in view of the above circumstances, and an object thereof is to provide a sensor that can be downsized.
  • a sensor includes a substrate, a heat detection element, and a housing.
  • the housing accommodates the substrate.
  • the housing has a flow path that is provided in the internal space and through which gas flows, and an opening that connects the flow path and the external space of the housing.
  • the heat detecting element is a chip thermistor mounted on the substrate and detecting heat of the gas flowing from the opening.
  • FIG. 1 is a cross-sectional view of the sensor according to the first embodiment.
  • FIG. 2 is a perspective view of the above sensor seen from below.
  • FIG. 3A is a partially transparent plan view of the above sensor.
  • FIG. 3B is an enlarged plan view of a main part in FIG. 3A.
  • FIG. 4 is a schematic block configuration diagram of the above-mentioned sensor.
  • FIG. 5 is an enlarged view of the opening of the above-mentioned sensor as viewed from the front.
  • FIG. 6 is a schematic cross-sectional view of Modification 1 of the above sensor.
  • FIG. 7: is a schematic sectional drawing of the modification 2 in a sensor same as the above.
  • FIG. 8A is a perspective view of a modified example 3 of the sensor of the above, viewed from below.
  • FIG. 8B is a partially transparent plan view of Modification 3 of the above.
  • FIG. 9A is a perspective view of a modified example 4 of the sensor of the above when viewed from below.
  • FIG. 9B is a partially transparent plan view of Modification 4 of the above.
  • FIG. 10A is a perspective view of a modified example 5 of the sensor of the above when viewed from below.
  • FIG. 10B is a partially transparent plan view of Modification 5 of the above.
  • FIG. 11 is a perspective view of another modified example of the above-mentioned sensor as viewed from below.
  • FIG. 12A is a side view of a main part of the sensor according to the second embodiment.
  • FIG. 12B is a cross-sectional view of a main part of the sensor of the same taken along the horizontal direction.
  • FIG. 12A is a side view of a main part of the sensor according to the second embodiment.
  • FIG. 12B is a cross-sectional view of a main part of the sensor of the same
  • FIG. 13A is a side view of a main part of Modification 1 of the sensor of the above.
  • FIG. 13B is a cross-sectional view of a main part of Modification 1 of the above, taken along the horizontal direction.
  • FIG. 13C is a cross-sectional view of a main part of another example of the first modified example cut along the horizontal direction.
  • FIG. 14A is a side view of an essential part of a second modification of the above sensor.
  • FIG. 14B is a cross-sectional view of a main portion of Modification 2 of the above, taken along the horizontal direction.
  • FIG. 14C is a perspective view of a main part of the second modified example.
  • FIG. 15: is a disassembled perspective view of the principal part of the modification 2 same as the above.
  • FIG. 15 is a disassembled perspective view of the principal part of the modification 2 same as the above.
  • FIG. 16 is a side view of the principal part of the modification 3 in a sensor same as the above.
  • FIG. 17A is a side view of the essential parts of Modification 4 of the above sensor.
  • FIG. 17B is a cross-sectional view of a main part of Modification 4 of the above, taken along the horizontal direction.
  • FIG. 18A is a perspective view of the sensor according to the third embodiment viewed from below.
  • FIG. 18B is a partially transparent plan view of the above sensor.
  • FIG. 18C is a cross-sectional view of the main part taken along the vertical direction near the inflow port of the above sensor.
  • FIG. 19A is a diagram showing a state in which a sensor is installed on a structure and a heating inspection is performed using a tester.
  • FIG. 19B is a schematic cross-sectional view of the tester in a state in which the above-mentioned sensor is covered with the tester.
  • FIG. 20 is a perspective view of a modified example of the above-mentioned sensor as seen from below.
  • FIG. 21A is a perspective view showing a state in which the main body of the sensor according to the fourth embodiment is directly mounted on the structure using the mounting base.
  • FIG. 21B is an exploded perspective view of the main body of the sensor and the mounting base of the same.
  • FIG. 22A is a perspective view showing a state in which the main body of the above sensor is embedded and installed in a structure using an embedded base.
  • FIG. 22B is an exploded perspective view of the main body of the sensor and the embedded base of the same.
  • FIG. 23A is a partial cross-sectional view schematically showing how the embedded base of the above is attached to a structure by using the first attachment fitting.
  • FIG. 23B is a partial cross-sectional view schematically showing how the embedded base of the same is attached to the structure using the second attachment fitting.
  • the detector 1 of the present embodiment is, for example, a fire detector, and includes a heat detecting element 30 that detects heat generated by a fire or the like.
  • the sensor 1 is a sensor that has at least the function of detecting heat.
  • the detector 1 is a so-called combined fire detector further including a smoke detector 4 (see FIG. 1) (see FIGS. 1 to 5).
  • the sensor 1 may include a detection unit that detects CO (carbon monoxide) generation due to flame, gas leakage, or incomplete combustion, instead of the smoke detection unit 4, or in addition to the smoke detection unit 4. Good.
  • the senor 1 is installed on a structure X1 (ceiling in the illustrated example) which is a construction material such as a ceiling or a wall of a building.
  • a structure X1 (ceiling in the illustrated example) which is a construction material such as a ceiling or a wall of a building.
  • the senor 1 includes a substrate 2, one or more heat detection elements 30, and a housing 5.
  • the sensor 1 includes four heat detection elements 30.
  • the housing 5 houses the substrate 2. As shown in FIG. 1, the housing 5 has a flow path 6 that is provided in the internal space SP1 and through which gas flows, and an opening 7 that connects the flow path 6 and the external space SP2 of the housing 5. ing. In FIG. 1, in order to facilitate understanding of the flow of gas, the flow path 6 is schematically shown by an arrow line, but the void portion around the smoke detection unit 4 in the internal space SP1 is generally in the flow path 6 Can correspond to. Further, here, as an example, the housing 5 has six openings 7 (only three are shown in FIG. 2).
  • the heat detecting element 30 in the present embodiment is a chip thermistor which is mounted on the substrate 2 and detects the heat of the gas flowing in from the opening 7, as shown in FIG.
  • the heat detecting element 30 is a chip thermistor mounted on the substrate 2, for example, as compared with the configuration in which the heat sensitive element in Patent Document 1 is provided at the upper end of the lead wire, the entire sensor 1 is provided. Can be miniaturized (particularly thin).
  • the detector 1 is a so-called combined fire detector that detects heat and smoke.
  • the sensor 1 includes the heat detection unit 3 having the four heat detection elements 30 described above.
  • the sensor 1 further includes a display unit 8 and a control unit 9 (see FIG. 4) in addition to the substrate 2, the heat detection unit 3, the smoke detection unit 4, and the housing 5.
  • the sensor 1 also includes a mounting portion 10 for mounting on the structure X1 (see FIG. 1).
  • FIG. 1 the illustration of a mounting structure (for example, a disc-shaped mounting base) on the side of the structure X1 to which the mounting portion 10 is fixed is omitted.
  • the sensor 1 is detachably attached to the attachment base fixed to the structure X1.
  • the detector 1 includes a communication unit 11 that transmits a signal informing the occurrence of a fire to an external alarm device (not shown) when a fire is detected and receives a signal from the alarm device. .
  • the sensor 1 may be supplied with power from a commercial power supply, or may be supplied with power from a battery provided inside the housing 5.
  • the housing 5 includes the substrate 2, the heat detection unit 3, the smoke detection unit 4, the light source 81 of the display unit 8, the control unit 9, the communication unit 11, and other circuit modules inside. Accommodate.
  • the housing 5 also supports one surface of the guide portion 82 of the display unit 8 so as to be exposed to the outside (see FIG. 2).
  • the housing 5 is made of synthetic resin, for example, flame-retardant ABS resin.
  • the housing 5 is formed in a generally flat cylindrical shape in the vertical direction. As shown in FIG. 1, the housing 5 has a cylindrical front cover 51 whose one surface (upper surface in the illustrated example) is open, and a disk-shaped back cover 52.
  • the housing 5 has an installation surface 55 (see FIG. 1) facing the structure X1 to which the sensor 1 is attached.
  • one surface (upper surface) of the back cover 52 corresponds to the installation surface 55.
  • the housing 5 is configured by assembling the back cover 52 from the open one surface side of the front cover 51.
  • the housing 5 has six side surface openings (lateral holes) as six openings 7 that connect the flow path 6 and the external space SP2, which are provided in the internal space SP1 and through which gas flows. 7A.
  • the opening 7 has the side opening 7A.
  • the number of openings 7 is not particularly limited, it is preferable that two or more openings 7 are provided in consideration of the inflow and outflow of gas to and from the housing 5.
  • the front cover 51 includes a flat cylindrical body 510 whose upper and lower ends are open, and a disc-shaped base 511 below the cylindrical body 510. It is composed of a plurality of (for example, 6) crosspieces 512 connecting the cylindrical body 510 and the base 511.
  • the cylindrical body 510, the base 511, and the six crosspieces 512 are integrally formed.
  • the six crosspieces 512 are arranged in the peripheral portion of the base 511 at substantially equal intervals along the circumferential direction, and project from the peripheral portion toward the open lower edge of the cylindrical body 510.
  • the six crosspieces 512 keep the distance between the cylindrical body 510 and the base 511 at a specified distance.
  • the six openings 7 are arranged at substantially equal intervals along the circumferential direction on the circumferential wall of the front cover 51 thus configured.
  • Each opening 7 is a substantially rectangular through hole that radially penetrates the peripheral wall of the front cover 51, and serves as an opening that connects the flow path 6 and the external space SP2.
  • the front cover 51 has a positioning structure for positioning the substrate 2 on the upper surface side of the base 511.
  • a recess for positioning may be provided on the upper surface side of the base portion 511, and a claw piece protruding from the substrate 2 may be fitted into the recess.
  • the base portion 511 has a diameter dimension slightly larger than that of the substrate 2.
  • the front cover 51 has a pair of holes 513 (see FIG. 3A) in the base 511 for exposing one surface (lower surface) of the guide portion 82 of the display unit 8 to the external space SP2.
  • the pair of holes 513 are located near the peripheral edge of the base 511 when the base 511 is viewed from below.
  • the pair of holes 513 are arranged at equal intervals in the circumferential direction of the base 511. In other words, the pair of holes 513 are arranged so that an imaginary line connecting them substantially passes through the center of the base 511.
  • the arrangement direction of the pair of holes 513 corresponds to the front-back direction in the present disclosure.
  • Each hole 513 penetrates the base 511 in its thickness direction (vertical direction).
  • the opening of each hole 513 has a substantially rectangular shape.
  • a corresponding guide portion 82 is fitted into each hole portion 513. Therefore, the light emitted from the pair of light sources 81 is led out of the housing 5 through the pair of guide portions 82, respectively.
  • the back cover 52 has a plurality of fitting holes 520 into which the plurality (for example, four) of the connection pieces 101 of the mounting portion 10 fixed to the substrate 2 are fitted (see FIG. 1).
  • the plurality of connection pieces 101 are electrically connected to the circuit module provided on the substrate 2.
  • the plurality of connection pieces 101 are inserted to such an extent that the tips of the connection pieces 101 project sufficiently from the back surface side (the installation surface 55 side) of the back cover 52.
  • the plurality of connecting pieces 101 can be mechanically and electrically connected to a contact portion of a mounting base (not shown) fixed to the structure X1.
  • the mounting portion 10 is not only mechanically connected to the mounting base, but is also electrically connected to the electric wires (the power supply line and the signal line) on the back side of the structure X1, and the substrate 2 is connected to the back cover 52. It is a part that also functions as stable positioning. This positioning includes not only radial positioning of the substrate 2 but also vertical positioning of the substrate 2.
  • the back cover 52 has a housing recess 521 (see FIG. 1) for housing the upper portion of the smoke detection unit 4 mounted on the board 2 on one surface (lower surface) facing the board 2. That is, the smoke detector 4 is stably positioned by the housing recess 521.
  • the back cover 52 has a plurality of control plates (walls) 522 (see FIG. 3A: four in the illustrated example) for controlling the flow of gas in the flow path 6 on one surface (lower surface) facing the substrate 2.
  • Each control plate 522 is formed in a substantially arc shape when viewed from the substrate 2 side.
  • Each control plate 522 projects in a direction (downward) approaching the base portion 511 of the front cover 51.
  • the four control plates 522 are arranged at substantially equal intervals along the circumferential direction of the back cover 52 in the vicinity of the peripheral edge of the back cover 52 when viewed from the substrate 2 side.
  • the four control plates 522 control (guide) the airflow so that the gas flowing through the flow path 6 in the internal space SP1 of the housing 5 is more likely to flow toward the heat detection element 30 or the smoke detection unit 4.
  • the number of control plates 522 is not particularly limited and may be one.
  • the substrate 2 is a printed circuit board.
  • the board 2 is mounted with a heat detection unit 3, a smoke detection unit 4, a display unit 8, a control unit 9, a communication unit 11, and other circuit modules (not shown).
  • the other circuit modules include a lighting circuit that lights the light source 81 of the display unit 8 and the optical element 41 of the smoke detection unit 4, and a power supply that generates operating power of various circuits by using power supplied from a commercial power supply or the like. Including circuits etc.
  • FIG. 3A is a plan view of a part (the substrate 2, the control plate 522, and the smoke detection unit 4) seen through from the lower side of the sensor 1 and is transparent.
  • At least four heat detection elements 30 of the heat detection unit 3 are surface-mounted on the first surface 21 (front surface) of the substrate 2.
  • the first surface 21 is an upper surface (see FIG. 1).
  • the smoke detection unit 4 is also arranged on the same plane side as the first surface 21 of the substrate 2.
  • the smoke detector 4 is mounted on the first surface 21 of the substrate 2.
  • the labyrinth portion 43 (described later) of the smoke detector 4 has an engaging claw on the lower surface of its bottom, and the engaging claw engages with an engaging hole formed in the substrate 2 to fix it. Has been done.
  • the light source 81 of the display unit 8 is also mounted on the first surface 21 of the substrate 2.
  • the control unit 9 and a plurality of electronic components forming the circuit module are mounted on the first surface 21 or the second surface 22 of the substrate 2.
  • the control unit 9 and the plurality of electronic components configuring the circuit module may not be mounted only on the substrate 2, and for example, another mounting substrate may be arranged around the substrate 2 and the mounting substrate may include: Some or all of them may be implemented.
  • the surface opposite to the first surface 21 (upper surface) of the substrate 2 may be referred to as the second surface 22 (lower surface).
  • the substrate 2 is transparent and its second surface 22 is visible.
  • the heat detection element 30, the light source 81, and the smoke detection unit 4 are actually mounted on the first surface 21 on the back side of the second surface 22, but for convenience of description, these are also shown in perspective in FIG. 3A. Shows.
  • the optical element 41 and the light receiving element 42 arranged in the labyrinth portion 43 of the smoke detecting portion 4 are illustrated by being simplified by dots.
  • the first surface 21 of the first surface 21 and the second surface 22 corresponds to the surface closer to the installation surface 55. Therefore, it can be said that the heat detection element 30 and the smoke detection unit 4 are both arranged on the surface of the substrate 2 on the side close to the installation surface 55.
  • the substrate 2 has a circular main body portion 200, and a plurality of (eight in the illustrated example) extending portions that extend in a direction away from the center of the main body portion 200 at the edges of the main body portion 200. have.
  • the eight extended portions will be referred to as a pair of first extended portions 201, a pair of second extended portions 202, a pair of third extended portions 203, and a pair of fourth extended portions 204.
  • the smoke detector 4 is arranged on the upper surface of the main body 200.
  • the four heat detecting elements 30 and the two light sources 81 are arranged in the six extending portions (201, 202, 203), respectively.
  • the pair of first extending portions 201 extend from the left and right edges of the main body portion 200 in directions away from each other.
  • One corresponding connecting piece 101 is arranged on the upper surface of each first extending portion 201.
  • each of the first extending portions 201 has a narrower piece portion Y1 at the tip thereof.
  • One corresponding heat detection element 30 is arranged on the upper surface of each small piece portion Y1.
  • the pair of second extending portions 202 extend from the front and rear edges of the main body portion 200 in directions away from each other.
  • the extension amount of the second extension portion 202 is smaller than the extension amounts of the other extension portions.
  • One corresponding light source 81 is arranged on the upper surface of each second extending portion 202.
  • the pair of third extending portions 203 respectively extend away from each other from positions slightly offset in the counterclockwise direction from the front and rear edges of the main body portion 200 when viewed from the lower side of the substrate 2.
  • the third extension portion 203 on the front side is disposed on the left side of the second extension portion 202 on the front side
  • the third extension portion 203 on the rear side is the second extension portion 202 on the rear side. It is located on the right side of.
  • each of the third extending portions 203 also has a narrower piece portion Y1 at the tip thereof.
  • One corresponding heat detection element 30 is arranged on the upper surface of each small piece portion Y1.
  • the pair of fourth extending portions 204 extend in directions away from each other from positions slightly offset from the front and rear edges of the main body portion 200 in the clockwise direction when viewed from the lower side of the substrate 2.
  • the fourth extension portion 204 on the front side is disposed on the right side of the second extension portion 202 on the front side
  • the fourth extension portion 204 on the rear side is the second extension portion 202 on the rear side. It is located to the left of.
  • One corresponding connecting piece 101 is arranged on the upper surface of each fourth extending portion 204.
  • the substrate 2 has, for example, a two-fold symmetric shape that is symmetrical by rotating the center of the substrate 2 by 180 degrees.
  • FIG. 3B is an enlarged view of a circle portion surrounded by a dotted line (imaginary line) in FIG. 3A as an example.
  • the through hole 31 is arranged inside the heat detection element 30 (on the side of the center of the internal space SP1).
  • the heat detecting element 30 and the through hole 31 are arranged adjacent to each other.
  • the through hole 31 improves the thermal insulation property.
  • the opening area of the through hole 31 is preferably larger than the surface area of the heat detecting element 30 (for example, the surface area viewed from the upper side of the substrate 2).
  • the heat detection section 3 has the four heat detection elements 30 mounted on the first surface 21 of the substrate 2 as described above (one in FIG. 4). Only shown).
  • the number of heat detecting elements 30 is not particularly limited, and may be one, but it is preferable that the number is at least two.
  • the heat detecting element 30 in the present embodiment is a chip thermistor that detects the heat of the gas flowing from the opening 7, and is surface-mounted on the substrate 2.
  • Each heat detection element 30 is arranged so as to face one opening 7 different from the other. The positional relationship of the heat detecting element 30 with respect to the flow path 6 and the opening 7 will be described in detail later in the section “(2.7) Arrangement structure of heat detecting section”.
  • the heat detection unit 3 is electrically connected to the control unit 9 via a pattern wiring or the like formed on the substrate 2.
  • Each heat detection element 30 outputs an electric signal (detection signal) to the control unit 9.
  • the control unit 9 monitors the resistance value of each heat detection element 30 that can change depending on the temperature rise, through the electric signal output from each heat detection element 30.
  • the heat detection unit 3 may further include, in addition to the heat detection element 30, an amplification circuit that amplifies an electric signal from the heat detection element 30, a conversion circuit that performs analog-digital conversion, or the like. , May be performed on the circuit module side.
  • the smoke detector 4 is arranged in the center of the internal space SP1 and is configured to detect smoke. Specifically, the smoke detector 4 is arranged on the upper surface of the main body 200 of the substrate 2, and the upper portion thereof is housed in the housing recess 521 of the back cover 52.
  • the smoke detection unit 4 is, for example, a photoelectric sensor that detects smoke. As shown in FIG. 4, the smoke detection unit 4 includes an optical element 41 that emits light, a light receiving element 42 that receives the light emitted from the optical element 41, and a labyrinth portion 43.
  • the optical element 41 is, for example, an LED (Light Emitting Diode).
  • the light receiving element 42 is, for example, a photodiode.
  • the labyrinth portion 43 is formed inside a case having a flat and substantially cylindrical outer shell.
  • the case of the smoke detector 4 has a plurality of ports for introducing gas into the labyrinth portion 43 on the outer peripheral surface thereof, and has a structure for suppressing outside light from entering the inside.
  • the optical element 41 and the light receiving element 42 are arranged in the labyrinth portion 43 so as not to face each other.
  • the light receiving surface of the light receiving element 42 is arranged so as to be off the optical axis C1 (see FIG. 3A) of the irradiation light of the optical element 41.
  • smoke may enter the casing 5 through the opening 7 of the casing 5 and be introduced into the labyrinth portion 43.
  • the irradiation light of the optical element 41 hardly reaches the light receiving surface of the light receiving element 42.
  • the irradiation light of the optical element 41 is scattered by the smoke, and a part of the scattered light reaches the light receiving surface of the light receiving element 42. That is, in the smoke detector 4, the light receiving element 42 receives the irradiation light of the optical element 41 scattered by the smoke.
  • the light receiving element 42 of the smoke detector 4 is electrically connected to the controller 9.
  • the smoke detection unit 4 transmits to the control unit 9 an electric signal (detection signal) indicating a voltage level corresponding to the amount of light received by the light receiving element 42.
  • the control unit 9 converts the light amount of the detection signal received from the smoke detection unit 4 into smoke density and determines a fire.
  • the control unit 9 may use the light amount as it is for the threshold determination.
  • the smoke detection unit 4 may convert the amount of light received by the light receiving element 42 into smoke concentration, and then transmit a detection signal indicating a voltage level corresponding to the smoke concentration to the control unit 9.
  • the smoke detection unit 4 may further include an amplifier circuit that amplifies the electric signal from the light receiving element 42, a conversion circuit that performs analog-digital conversion, or the like, or the amplification and conversion is performed on the circuit module side. Good.
  • the number of optical elements 41 for smoke detection is not limited to one, and may be plural.
  • the display unit 8 has a pair of light sources 81 and a pair of guides 82.
  • Each light source 81 is configured as, for example, a package type LED in which at least one LED chip is mounted in the center of the mounting surface of a flat mounting substrate.
  • Each light source 81 is mounted on the substrate 2 as described above.
  • Each guide portion 82 is a light-transmitting portion formed in a substantially L shape.
  • Each of the guide portions 82 faces the corresponding light source 81 on the substrate 2 and has an incident surface on which the light emitted from the light source 81 is incident.
  • Each guide portion 82 has an emission surface through which the light incident from the incident surface is emitted to the outside of the guide portion 82. The emission surface of each guide portion 82 is exposed through the corresponding hole portion 513 of the front cover 51.
  • the display unit 8 is an operating light that notifies the operating state of the sensor 1 to the outside. Under normal conditions (when monitoring a fire), the lighting circuit of the circuit module turns off the light source 81 under the control of the control unit 9. When it is determined that a fire has occurred, the lighting circuit of the circuit module starts blinking or lighting of the light source 81 under the control of the control unit 9. In FIG. 4, the lighting circuit between the control unit 9 and the display unit 8 is omitted.
  • the control unit 9 is composed of, for example, a microcontroller (CPU) having a CPU (Central Processing Unit) and a memory as main components.
  • the control unit 9 is realized by a computer having a CPU and a memory, and the computer functions as the control unit 9 when the CPU executes the program stored in the memory.
  • the program is recorded in the memory here in advance, but may be provided through an electric communication line such as the Internet or in a non-transitory recording medium such as a memory card.
  • the control unit 9 is configured to control the communication unit 11 and the circuit module (lighting circuit, power supply circuit, etc.).
  • the control unit 9 is also configured to receive detection signals from the heat detection unit 3 and the smoke detection unit 4 and determine whether a fire has occurred. Specifically, the control unit 9 individually monitors the detection signals from the four heat detection elements 30 of the heat detection unit 3, and the signal level (corresponding to the resistance value) included in the detection signals exceeds the threshold value. When even one (or lower) heat detecting element 30 is found, it is determined that a fire has occurred. The control unit 9 also monitors the detection signal from the smoke detection unit 4, and if the signal level included in the detection signal (corresponding to the amount of light received by the light receiving element 42 or the smoke concentration) exceeds a threshold value, a fire will occur. Determine what has occurred.
  • the control unit 9 determines that a fire has occurred based on the heat detection or the smoke detection, the control unit 9 sends a signal indicating the occurrence of the fire via the communication unit 11 to the receiver of the automatic fire notification system and the fire. Send to an alarm device.
  • the communication unit 11 is a communication interface for communicating with a receiver, a fire alarm device, and the like by wire, for example.
  • the communication unit 11 is communicably connected to a receiver, a fire alarm device, and the like through the connection piece 101 of the mounting unit 10, the connector unit of the mounting base, and the signal line wired on the back side of the structure X1. ing.
  • the control unit 9 determines that a fire has occurred, it outputs a control signal for blinking or lighting the light source 81 of the display unit 8 (operation lamp) to the lighting circuit of the circuit module.
  • the heat detection element 30 of the heat detection unit 3 is a chip thermistor mounted on the first surface 21 of the substrate 2. Therefore, the sensor 1 as a whole can be downsized (particularly thin). Further, the cost of the thermistor itself and the mounting cost thereof can be suppressed to be lower than those of the lead type thermistor.
  • the smoke detector 4 is arranged in the center of the first surface 21, and the smoke detector 4 substantially occupies the center of the internal space SP1 of the housing 5.
  • the flow path 6 substantially corresponds to the space around the central portion (smoke detection unit 4) of the internal space SP1. In other words, the flow path 6 has a generally donut shape. Therefore, in the present embodiment, the entire peripheral area of the first surface 21 of the substrate 2 other than the mounting area of the smoke detector 4 is exposed in the flow path 6.
  • the peripheral area also includes the upper surfaces of the above-mentioned eight extending portions (201 to 204) in total.
  • the four thermal detection elements 30 in the first extending portion 201 and the third extending portion 203 are connected to the chip thermistor. However, the possibility of being exposed to the gas flowing through the flow path 6 can be further increased.
  • the heat detection element 30 detects heat at a temperature corresponding to a fire, and the detector 1 can quickly determine that a fire has occurred.
  • the sensor 1 can be downsized while further improving the heat detection performance of the sensor 1.
  • the sensor 1 of the present embodiment further includes a smoke detection unit 4, and the smoke detection unit 4 is located at the center of the internal space SP1 behind the flow path 6.
  • the flow path 6 is a common flow path through which heat and smoke can pass. Therefore, if the gas introduced into the housing 5 through the plurality of openings 7 has a smoke concentration higher than the specified value, smoke can be detected. Therefore, it is possible to reduce the size of the detector 1 as a whole while improving the fire detection performance.
  • each heat detection element 30 which is a chip thermistor is arranged so as to face one opening 7 different from the other.
  • the heat detection element 30 on the left side is arranged to face one opening 7 on the left side
  • the heat detection element 30 on the right side faces another opening 7 on the right side. It is arranged to.
  • each heat detection element 30 is placed within the substantially rectangular opening area 70 when the opening area 70 (see FIGS. 1 and 5) of the corresponding opening 7 is viewed from the external space SP2 side. It is located in.
  • each heat detection element 30 is arranged so as to be within the opening region 70 when the heat detection element 30 is viewed along the normal direction of the cylindrical body 510 of the housing 5.
  • the area of the heat detection element 30 projected onto the opening area 70 is contained in the opening area 70. Therefore, as compared with the case where at least a part of the heat detecting element 30 is arranged so as to be hidden outside the opening region 70, that is, behind the cylindrical body 510 of the housing 5 or the back side of the crosspiece 512, the heat detecting element 30 is not exposed from the opening 7. The possibility of being exposed to the gas that has entered can be increased.
  • each heat detection element 30 which is a chip thermistor has the first surface 21 within the opening area 70 when the opening area 70 is viewed from the external space SP2 side. It is located at the center of the opening region 70 in the orthogonal direction (vertical direction). In other words, the positional relationship between the opening 7 and the substrate 2 is defined so that each heat detecting element 30 is located at the center of the opening region 70. This positional relationship depends on, for example, the protrusion amount of the rib 514 (see FIG. 1) protruding from the back side of the base portion 511 of the front cover 51 and in contact with the substrate 2 and the insertion amount of the connection piece 101 of the mounting portion 10. Adjusted.
  • the heat detecting element 30 is exposed to the gas entering from the opening 7 as compared with the case where the heat detecting element 30 is positioned near one end (closer to the upper end or closer to the lower end) of the opening region 70. It is possible to further increase the possibility.
  • each heat detection element 30 is arranged not in the side of the smoke detection section 4 but in the vicinity of the opening 7.
  • the chip thermistor Each heat detecting element 30 is in the first path 61 (see FIG. 1). Therefore, as compared with the case where the chip thermistor is in the second path 62, for example, it is possible to improve the responsiveness regarding the heat detection in the sensor 1.
  • the flow path 6 is schematically illustrated by the arrow line in FIG. 1, but in reality, the first path 61 is a void portion around the smoke detection unit 4 in the internal space SP1.
  • the second path 62 corresponds to the inner half of the void portion.
  • the center P1 of the internal space of the labyrinth portion 43 is preferably located between the thermal detection element 30 which is a chip thermistor and the installation surface 55 in the vertical direction (FIG. 1).
  • the heat detecting element 30 is below the center P1 in the vertical direction.
  • the optical element 41 and the light receiving element 42 arranged in the labyrinth portion 43 are schematically illustrated by dots.
  • the heights of the optical element 41 and the light receiving element 42 are the same as each other, and the intersection of the optical axis C1 of the optical element 41 and the optical axis C2 of the light receiving element 42 substantially coincides with the center P1 as an example. To do.
  • the height positions of the optical element 41 and the light receiving element 42 and the directions of the optical axes C1 and C2 are not particularly limited as long as the optical axis C1 does not intersect the light receiving surface of the light receiving element 42.
  • the height of either the optical element 41 or the light receiving element 42 may be lower than the height of the other.
  • the optical axis C1 and the optical axis C2 may not intersect with each other. In this case, the midpoint between the optical axis C1 and the optical axis C2 when viewed from the side of the smoke detection unit 4 may substantially coincide with the center P1.
  • the center P1 is between the heat detecting element 30 and the installation surface 55, an ascending air current is generated when a gas having heat flows through the flow path 6 in the housing 5.
  • the smoke (gas) that has passed through the heat detection element 30 can be effectively guided to the smoke detection unit 4. Therefore, in the sensor 1 that detects not only heat but also smoke, the size of the sensor 1 as a whole can be reduced while further improving the fire detection performance.
  • the control unit 9 of the sensor 1 according to the present disclosure includes a computer system.
  • the computer system mainly has a processor and a memory as hardware.
  • the function as the control unit 9 of the sensor 1 according to the present disclosure is realized by the processor executing the program recorded in the memory of the computer system.
  • the program may be pre-recorded in the memory of the computer system, may be provided through an electric communication line, or may be recorded in a non-transitory recording medium such as a memory card, an optical disk, a hard disk drive, which can be read by the computer system. May be provided.
  • a processor of a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large-scale integrated circuit (LSI).
  • the integrated circuit such as an IC or an LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGAs Field-Programmable Gate Arrays
  • the plurality of electronic circuits may be integrated on one chip, or may be provided separately on a plurality of chips.
  • the plurality of chips may be integrated in one device, or may be provided separately in a plurality of devices.
  • the computer system includes a microcontroller having one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or more electronic circuits including a semiconductor integrated circuit or a large-scale integrated circuit.
  • the plurality of functions of the control unit 9 of the sensor 1 are integrated in one housing, and the constituent elements of the sensor 1 are distributed in the plurality of housings. It may be provided. Furthermore, at least a part of the functions of the sensor 1, for example, a part of the functions of the sensor 1 may be realized by a cloud (cloud computing) or the like. On the contrary, as in the basic example, the plurality of functions of the sensor 1 may be integrated in one housing.
  • FIG. 6 shows a schematic cross-sectional view of the sensor 1A.
  • the sensor 1A differs from the basic example in that the airflow adjusting unit Z1 is provided in the internal space SP1.
  • the airflow adjusting unit Z1 extends from the lower edge of the cylindrical body 510 in the front cover 51 of the housing 5 toward the smoke detecting unit 4.
  • the airflow adjusting unit Z1 is a plate member having a substantially donut shape when viewed in the vertical direction.
  • the airflow adjusting unit Z1 may be formed integrally with the front cover 51, or may be a member separate from the front cover 51 and fixed to the front cover 51 by screwing or the like.
  • the airflow adjusting unit Z1 extends straight along the substrate 2 for a certain distance from the edge of the opening 7 into the housing 5. However, the airflow adjusting unit Z1 is inclined toward the installation surface 55 as it goes from the middle to the center of the internal space SP1.
  • the opening cross-sectional area of the first passage 61 when viewed along the direction connecting the opening 7 and the central portion of the internal space SP1 is , Smaller than the opening cross-sectional area of the second path 62. Therefore, the gas that has entered the flow path 6 through the opening 7 can be promoted to flow from the first path 61 having a narrow space toward the second path 62 having a wide space.
  • the airflow adjusting unit Z1 since the airflow adjusting unit Z1 is inclined in the direction of approaching the installation surface 55 from the middle, the second path 62 expands in the direction of approaching the installation surface 55 from the first path 61 toward the central portion. . Therefore, the smoke (gas) that has passed through the heat detecting element 30 can be effectively treated by the smoke detecting section against the characteristic that an ascending air current is generated when the gas having heat flows through the flow path 6 in the housing 5. You can lead to 4.
  • FIG. 7 shows a schematic cross-sectional view of the sensor 1B.
  • the sensor 1B differs from the basic example in that the smoke detection unit 4 is mounted on the second surface 22 of the substrate 2 instead of the first surface 21.
  • the heat detecting element 30 is mounted on the first surface 21 as in the basic example.
  • the front cover 51 has the housing recess 515 for housing the smoke detector 4.
  • the base portion 511 of the front cover 51 is formed such that the central portion thereof is convex downward.
  • the back cover 52 has an accommodating recess 521 for accommodating the upper portion of the smoke detecting section 4 (see FIG. 1).
  • the base 511 has a hole 5111 for introducing gas (smoke) into the housing 5 on the peripheral wall of the convex portion 5110.
  • the channel 6 is divided into two parts, an upper channel 6X and a lower channel 6Y, with the substrate 2 as a boundary.
  • the gas having heat passing through the upper flow path 6X passes through the heat detecting element 30.
  • a part of the gas passing through the lower flow path 6Y goes up to the upper flow path 6X through the through hole 31 (see FIG. 3B) of the substrate 2 and passes through the heat detecting element 30.
  • the rest of the gas passing through the lower flow path 6Y goes directly to the smoke detector 4 in the center.
  • FIG. 8A is a perspective view of the sensor 1C viewed from below
  • FIG. 8B is a plan view of a part (only the substrate 2) viewed from below of the sensor 1C.
  • the detector 1C is, for example, a P-type heat detector that transmits a fire signal to the outside by a so-called P-type (Proprietary-type) communication method.
  • the sensor 1C includes the heat detection unit 3 as in the basic example, but does not include the smoke detection unit 4 unlike the basic example. That is, the sensor 1C determines the occurrence of a fire or the like only by detecting heat.
  • the senor 1C differs from the basic example in that the number of heat detecting elements 30 is three (four in the basic example).
  • the substrate 2 of the sensor 1C has a substantially rhombic shape when the substrate 2 is viewed from below.
  • Two of the three heat detecting elements 30 are surface-mounted on the first surface 21 (upper surface) of the diamond-shaped substrate 2.
  • the two heat detection elements 30 are arranged at diagonal positions in the left-right direction on the first surface 21 (upper surface).
  • the substrate 2 has a pair of convex portions 23 protruding outward (having a slight inclination with respect to the left-right direction) at both edge portions at diagonal positions. .
  • a corresponding heat detecting element 30 is arranged on the upper surface of each convex portion 23.
  • the other heat detecting element 30 is arranged on the upper surface of the central portion of the substrate 2.
  • through holes 31 are provided in the vicinity of each heat detection element 30 in order to improve heat insulation.
  • two semicircular through holes 31 are arranged so as to sandwich the heat detecting element 30 therebetween.
  • the front cover 51 of the sensor 1C has one inflow port (vertical hole) 7B and two auxiliary ports (vertical hole) 56 at its base 511.
  • the two auxiliary ports 56 are arranged near both left and right edges of the base 511, and the inflow port 7B is arranged in the center of the base 511.
  • Each of the inflow port 7B and the two auxiliary ports 56 penetrates the base portion 511 of the front cover 51 in the thickness direction thereof.
  • the two auxiliary ports 56 near the left and right edges of the base 511 have a substantially crescent-shaped opening, and the inflow port 7B at the center of the base 511 has a substantially circular opening.
  • the pair of convex portions 23 of the substrate 2 face the two auxiliary ports 56 in a one-to-one correspondence, and the central portion of the substrate 2 faces the central inlet 7B.
  • the convex portion 23 and the central portion of the substrate 2 are respectively exposed from the two auxiliary ports 56 and the inflow port 7B, as shown in FIG. 8B. Therefore, the rising gas having heat enters the housing 5 through the two auxiliary ports 56 and the inflow port 7B, and further flows into the first surface 21 (upper surface) side through the through hole 31. Therefore, the heat detecting element 30 is easily exposed not only to the gas flowing in from the opening 7 (side opening 7A: lateral hole) but also to the gas flowing in from the two auxiliary openings 56 and the inflow opening 7B. .
  • FIGS. 9A and 9B Constituent elements that are substantially common to the sensor 1 of the basic example are denoted by the same reference numerals, and description thereof may be appropriately omitted.
  • FIG. 9A is a perspective view of the sensor 1D seen from below
  • FIG. 9B is a plan view partially (only the substrate 2) seen from below of the sensor 1D.
  • the detector 1D is, for example, an R-type heat detector that transmits a fire signal to the outside by a so-called R-type (Record-type) communication method.
  • the sensor 1D includes the heat detection unit 3 as in the basic example, but does not include the smoke detection unit 4 unlike the basic example. That is, the sensor 1D, like the sensor 1C of Modification 3, determines the occurrence of a fire or the like only by detecting heat.
  • the sensor 1D differs from the basic example in that the number of the heat detection elements 30 is five (four in the basic example).
  • the substrate 2 of the sensor 1D has a shape slightly similar to that of the substrate 2 of the basic example, as shown in FIG. 9B.
  • the substrate 2 of the sensor 1D has a circular main body 200, and a plurality of (six in the illustrated example) extending in a direction away from the center of the main body 200 at the edge of the main body 200. It has a protruding part.
  • the six extending portions are referred to as a pair of first extending portions 201, a pair of second extending portions 202, and a pair of third extending portions 203.
  • One of the five heat detecting elements 30 is arranged in the center of the main body 200, and the remaining four heat detecting elements 30 and the two light sources 81 are provided in the six extending portions (201, 202, 203). Each is arranged.
  • the pair of first extending portions 201 extend from the left and right edges of the main body portion 200 in directions away from each other.
  • Each of the first extending portions 201 has a narrower piece Y1 at the tip thereof.
  • One corresponding heat detection element 30 is arranged on the upper surface of each small piece portion Y1.
  • the pair of second extending portions 202 extend from the front and rear edges of the main body portion 200 in directions away from each other.
  • the extension amount of the second extension portion 202 is smaller than the extension amounts of the other extension portions.
  • One corresponding light source 81 is arranged on the upper surface of each second extending portion 202.
  • the pair of third extending portions 203 respectively extend away from each other from positions slightly offset in the counterclockwise direction from the front and rear edges of the main body portion 200 when viewed from the lower side of the substrate 2.
  • the third extension portion 203 on the front side is disposed on the left side of the second extension portion 202 on the front side
  • the third extension portion 203 on the rear side is the second extension portion 202 on the rear side. It is located on the right side of.
  • each of the third extending portions 203 also has a narrower piece portion Y1 at the tip thereof.
  • One corresponding heat detection element 30 is arranged on the upper surface of each small piece portion Y1.
  • the substrate 2 of the sensor 1D has, for example, a two-fold symmetric shape that is symmetric by rotating the center of the sensor 1D by 180 degrees about the axis.
  • through holes 31 are provided in the vicinity of each heat detection element 30 in order to improve heat insulation.
  • two semicircular through holes 31 are arranged so as to sandwich the heat detecting element 30 therebetween.
  • the pair of guide portions 82 of the display unit 8 are exposed on the front cover 51 of the sensor 1D.
  • the front cover 51 of the sensor 1D has one inflow port (vertical hole) 7B and two auxiliary ports (vertical hole) 57 at its base 511.
  • the two auxiliary ports 57 are arranged near both left and right edges of the base portion 511, and the inflow port 7B is arranged at the center of the base portion 511.
  • Each of the two auxiliary ports 57 and the inflow port 7B penetrates the base portion 511 of the front cover 51 in the thickness direction thereof.
  • the two auxiliary ports 57 near the left and right edges of the base 511 have a substantially rectangular opening, and the inflow port 7B at the center of the base 511 has a substantially circular opening.
  • the tip ends of the small piece portions Y1 of the pair of first extending portions 201 of the substrate 2 face the left and right auxiliary ports 57 in a one-to-one correspondence, and the central portion of the substrate 2 has a central inlet port. Face 7B.
  • the tip of the small piece portion Y1 and the central portion of the substrate 2 are exposed from the two auxiliary ports 57 and the inflow port 7B, respectively, as shown in FIG. 9B. Therefore, the rising gas having heat enters the housing 5 through the two auxiliary ports 57 and the inflow port 7B, and further flows into the first surface 21 (upper surface) side through the through hole 31. Therefore, the heat detecting element 30 is easily exposed not only to the gas flowing in from the opening 7 (side surface port 7A: lateral hole) but also to the gas flowing in from the two auxiliary ports 57 and the inflow port 7B. .
  • FIGS. 10A and 10B Constituent elements that are substantially common to the sensor 1 of the basic example are denoted by the same reference numerals, and description thereof may be appropriately omitted.
  • 10A is a perspective view of the sensor 1E seen from below
  • FIG. 10B is a plan view partially (only the substrate 2) seen from below of the sensor 1E.
  • the sensor 1E is, for example, a fire alarm that outputs a sound such as an alarm sound when a fire occurs.
  • the sensor 1E includes the heat detection unit 3 as in the basic example, but does not include the smoke detection unit 4 unlike the basic example. That is, the sensor 1E, like the sensor 1C of the modified example 3 and the sensor 1D of the modified example 4, determines the occurrence of a fire or the like only by detecting heat.
  • the senor 1E is different from the basic example in that it is equipped with a speaker that outputs a sound such as an alarm sound and an acoustic circuit.
  • the sensor 1E is, for example, a battery-type fire alarm. Therefore, the sensor 1E has a battery, a housing space for housing the battery, and the like. In the sensor 1E, the operation unit U1 is exposed on the front surface of the front cover 51.
  • the operation unit U1 receives an operation from the outside.
  • the operation unit U1 can be pushed upward by a pressing operation with a user's finger or the like.
  • the operation unit U1 is a disc-shaped member having a light-transmitting property.
  • the operation unit U1 is arranged so as to face the operation lamp in the housing 5. Further, the operation unit U1 is configured to press a push button switch in the housing 5 by a pressing operation. For example, if the operation unit U1 is pressed while the alarm sound is issued, the output of the alarm sound is stopped. Further, when the sensor 1E is operating or when the battery runs out, the operation unit U1 lights up. An operation test or the like can be executed by operating the operation unit U1.
  • the sensor 1E also differs from the basic example in that the number of heat detecting elements 30 is three (four in the basic example).
  • the substrate 2 of the sensor 1E has an inverted Y-shape when the substrate 2 is viewed from below, as shown in FIG. 10B.
  • a member having a relatively large volume such as a speaker, a battery, and an operation unit U1 is housed or supported in the housing 5. Therefore, in order to avoid them, the substrate 2 is space-saving. It has a Y shape.
  • the substrate 2 of the sensor 1 ⁇ / b> E has a circular main body portion 200 with a left side chipped off, and a plurality of edges (3 in the example shown in the drawing) extending from the center of the main body portion 200 at the edge of the main body portion 200. 3) has an extended portion.
  • the three extending portions will be referred to as extending pieces 205.
  • the three heat detecting elements 30 are arranged on the three extending pieces 205, respectively.
  • One of the three extension pieces 205 on the front side extends from the front edge of the main body 200, and one corresponding heat detection element 30 is arranged on the upper surface of the tip.
  • the two rearward extending pieces 205 extend from positions slightly displaced to the left and right from the rear edge of the main body section 200, and the corresponding two thermal pieces are provided on the upper surfaces of their tips.
  • the detection elements 30 are arranged respectively.
  • through holes 31 are provided in the vicinity of the inside of each heat detecting element 30 in order to improve the heat insulating property.
  • the front cover 51 of the sensor 1E has one auxiliary port (vertical hole) 58 at its base 511.
  • the auxiliary port 58 is arranged near the front edge of the base 511.
  • the auxiliary port 58 penetrates the base portion 511 of the front cover 51 in the thickness direction thereof.
  • the auxiliary port 58 has a substantially rectangular opening.
  • the tip of the extension piece 205 on the front side of the three extension pieces 205 faces the auxiliary opening 58.
  • the front end of the extension piece 205 on the front side is exposed from the auxiliary opening 58, as shown in FIG. 10B. Therefore, the rising gas having heat enters the housing 5 through the auxiliary port 58 and further flows into the first surface 21 (upper surface) side through the through hole 31. Therefore, the heat detecting element 30 is easily exposed not only to the gas flowing in from the opening 7 (side surface port 7A: lateral hole) but also to the gas flowing in from the auxiliary port 58.
  • the sensor 1 (composite fire sensor) of the basic example does not have a vertical hole in the front cover 51, unlike the modifications 3 to 5.
  • the detector 1 (composite fire detector) has one or more auxiliary ports (vertical holes) 59 (two in the illustrated example) in the front cover 51, as shown in FIG. One).
  • the heat detection element 30 is mounted on the first surface 21 (upper surface) of the substrate 2.
  • the heat detecting element 30 may be mounted on the second surface 22 (lower surface) of the substrate 2.
  • some of the plurality of heat detecting elements 30 may be separately mounted on the first surface 21 and the rest on the second surface 22.
  • both the heat detection element 30 and the smoke detection unit 4 may be mounted on the second surface 22 (lower surface) of the substrate 2.
  • the number of the through holes 31 adjacent to one heat detection element 30 is one, but as shown in the modified examples 3 and 4, it may be two or more.
  • a plurality of through holes 31 may be provided so as to surround the periphery of one heat detection element 30.
  • the heat detecting element 30 is mounted on the first surface 21 of the substrate 2, and the through holes 31 are arranged adjacent to each other.
  • the through holes 31 be arranged adjacent to each other.
  • the board 2 is composed of one printed board.
  • the board 2 may be divided into two or more printed boards.
  • the opening 7 is a lateral hole formed in the peripheral wall of the housing 5.
  • the opening 7 referred to in the present disclosure is not a horizontal hole, but an inflow port (vertical hole) 7B, auxiliary ports (vertical holes) 56 to 58 in Modifications 3 to 5, and the above-described auxiliary port (vertical hole) 59. May correspond to.
  • the sensor 1F according to the present embodiment is different from the sensors (1, 1A to 1E) according to the first embodiment (including modified examples) in that the sensor 1F further includes a shield portion V1.
  • the shielding part V1 of the present embodiment may be appropriately applied to the sensors (1, 1A to 1E) of the first embodiment.
  • the sensor 1F shown in FIGS. 12A and 12B is, as an example, a P-type heat sensor, similar to the sensor 1C (FIGS. 8A and 8B) of Modification 3 of the first embodiment.
  • the sensor 1F is a heat sensor that does not include the smoke detector 4 and determines the occurrence of a fire or the like only by detecting heat.
  • the heat detecting element 30 fits within the opening area 70 when the opening area 70 of the opening 7 (side opening 7A: lateral hole) is seen from the external space SP2 side. Is located in. Then, the shielding portion V1 is configured to shield a part of the opening region 70 on the external space SP2 side of the heat detection element 30 (chip thermistor).
  • the shielding part V1 has a pair of pillars V11.
  • the shielding part V1 is composed of a pair of columns V11.
  • Each pillar V11 is long along the vertical direction (here, for example, the thickness direction of the substrate 2).
  • Each pillar V11 is formed integrally with the front cover 51 of the housing 5. Specifically, the first end (upper end) of each pillar V11 is connected to the cylindrical body 510 of the housing 5, and the second end (lower end) of each pillar V11 is connected to the base 511. As a result, each pillar V11 extends from the upper edge to the lower edge of the opening 7 (side opening 7A).
  • the pair of pillars V11 have a predetermined distance L1 in the direction D1 (here, the left-right direction) orthogonal to the arrangement direction of the back cover 52 and the front cover 51 when the opening region 70 is viewed from the side of the external space SP2. Will be placed.
  • the back cover 52 corresponds to the first cover and the front cover 51 corresponds to the second cover.
  • the back cover 52 corresponds to the second cover and the front cover 51 corresponds to the second cover. It may correspond to the first cover.
  • the predetermined distance L1 is a distance defined so that the test finger does not enter.
  • the test finger is, for example, a pseudo finger defined in Appendix 41 (2) C of Appendix 4 of the Electrical Appliance and Material Safety Law of Japan.
  • the heat detection element 30 is arranged between the pair of pillars V11 in the direction D1 when the opening region 70 is viewed from the side of the external space SP2 (see FIG. 12A). In other words, the heat detecting element 30 is exposed from between the pair of pillars V11.
  • the senor 1F further includes the shielding portion V1 to prevent the heat inflow from the opening 7 from being hindered, and unintentionally, for example, a finger or a tool of a person comes into contact with the chip thermistor. The possibility can be reduced.
  • each pillar V11 has a guide surface V2 for guiding the airflow from the external space SP2 toward the heat detection element 30 (chip thermistor), as shown in FIG. 12B.
  • each pillar V11 has a substantially semi-elliptical cross-section taken along the horizontal direction, and its curved surface corresponds to the guide surface V2.
  • the tip of the semi-elliptical shape faces the heat detection element 30. Therefore, it is possible to further reduce the possibility that the inflow of heat from the opening 7 is blocked by the shield V1.
  • the number of pillars V11 of the shielding portion V1 is two, but the number of pillars of the shielding portion V1 is not particularly limited.
  • 13A and 13B show a sensor 1G of the first modification.
  • the sensor 1G of Modification 1 is different from the sensor 1F in that the number of columns of the shielding portion V1 is three.
  • the sensor 1G of the modified example 1 is, for example, a P-type heat sensor.
  • the convex portion 23 of the substrate 2 of the sensor 1F protrudes slightly obliquely with respect to the radial direction of the housing 5 when viewed in the up-down direction (see FIG. 12B), the substrate 2 of the sensor 1G.
  • the convex portion 23 of is projected outward along the radial direction of the housing 5 (see FIG. 13B).
  • the shield V1 of the sensor 1G has three columns (a pair of left and right first columns V12 and a second column V13 in the middle).
  • the shield V1 is composed of three columns.
  • Each of the pair of first pillars V12 and second pillars V13 is long along the vertical direction (here, for example, the thickness direction of the substrate 2).
  • Each of the pair of first pillars V12 and second pillars V13 is formed integrally with the front cover 51 of the housing 5. Specifically, the first end (upper end) of each pillar is connected to the cylindrical body 510 of the housing 5, and the second end (lower end) of each pillar is connected to the base portion 511. As a result, each pillar extends from the upper edge to the lower edge of the opening 7.
  • the pair of first pillars V12 and the second pillar V13 are spaced apart from each other by a predetermined distance L2 in the direction D1 (here, the left-right direction) when the opening region 70 is viewed from the external space SP2 side. Will be placed.
  • the predetermined distance L2 is also a distance defined so that the test finger does not enter.
  • the heat detection element 30 is arranged between the pair of first columns V12 in the direction D1 when the opening region 70 is viewed from the side of the external space SP2 (see FIG. 13A). However, the heat detection element 30 is located at a position overlapping the second pillar V13 when the opening region 70 is viewed from the external space SP2 side. In other words, the heat detection element 30 is hidden behind the second pillar V13 and invisible.
  • the senor 1G is provided with the shielding portion V1 having three columns, so that it is difficult for the heat inflow from the opening 7 to be prevented, and a human finger, a tool, or the like comes into contact with the chip thermistor. It is possible to further reduce the possibility of the accident.
  • each of the pair of first pillars V12 has a guide surface V2 that guides the airflow from the external space SP2 toward the heat detection element 30 (chip thermistor).
  • each of the pair of first pillars V12 has a substantially racetrack shape in which the cross-sectional shape cut along the horizontal direction is long along the outer edge of the housing 5, and a semicircle is formed as a guide surface V2 on the left and right sides thereof. It has an arcuate curved surface. Therefore, it is possible to further reduce the possibility that the inflow of heat from the opening 7 is blocked by the shield V1.
  • the second pillar V13 has a substantially rectangular cross-sectional shape cut along the horizontal direction, but has a substantially racetrack shape like the first pillar V12 and has a guide surface V2. Good.
  • FIG. 13C shows another example of the sensor 1G of the first modification.
  • each of the pair of first pillars V12 has a substantially trapezoidal cross section cut along the horizontal direction.
  • Each of the first pillars V12 is configured such that, of the two sides parallel to each other in the trapezoidal shape, the short side is on the heat detecting element 30 side and the long side is on the external space SP2 side.
  • a first surface V121 facing the second pillar V13 in the middle and a second surface V122 opposite to the first surface V121 are inclined so as to face the heat detection element 30. Is a face.
  • the inclination angle of the second surface V122 with respect to the radial direction of the housing 5 is larger than the inclination angle of the first surface V121.
  • the second pillar V13 in the middle has a cross section cut along the horizontal direction in the shape of a shell that is long in the radial direction of the housing 5, and the side facing the heat detection element 30 has a semi-arcuate shape.
  • the first surface V121, the second surface V122, and the end surface having a semicircular arc cross section correspond to the guide surface V2.
  • each of the pair of first pillars V12 has the guide surface V2.
  • since the guide surface V2 is provided, it is possible to further reduce the possibility that the heat inflow from the opening portion 7 is blocked by the shield portion V1.
  • FIG. 14A to 14C and FIG. 15 show a sensor 1H according to the second modification.
  • the sensor 1H of the modification 2 is an R-type heat sensor as an example.
  • the convex portion 23 of the substrate 2 of the sensor 1H projects outward along the radial direction of the housing 5.
  • the shielding part V1 in the sensor 1H of the modified example 2 has a pair of first protrusions V14 and one second protrusion V15.
  • the shielding part V1 is composed of a pair of a first protrusion V14 and a second protrusion V15.
  • Each of the pair of first protrusions V14 extends from the back cover 52 (first cover) that covers the substrate 2 from one direction (here, above) in the thickness direction of the substrate 2 toward the front cover 51 (second cover). Project.
  • the front cover 51 covers the substrate 2 from a direction (here, below) opposite to the one direction in the thickness direction of the substrate 2.
  • the second protrusion V15 projects from the front cover 51 toward the back cover 52.
  • Each of the pair of first protrusion V14 and second protrusion V15 is elongated along the vertical direction (here, for example, the thickness direction of the substrate 2).
  • the pair of first projections V14 are formed integrally with the back cover 52, as shown in FIG. Specifically, the pair of first protrusions V14 continuously protrude downward from the peripheral edge portion on the lower surface of the back cover 52. The tip ends of the pair of first protrusions V14 are not in contact with the front cover 51, and a gap is left between the front cover 51 and the front cover 51.
  • the pair of first protrusions V14 are arranged at a predetermined distance L3 from each other in the direction D1 when the opening region 70 is viewed from the external space SP2 side.
  • the predetermined distance L3 is also a distance defined so that the test finger does not enter.
  • the heat detecting element 30 is arranged between the pair of first protrusions V14 in the direction D1 when the opening region 70 is viewed from the external space SP2 side (see FIG. 14A).
  • the second protrusion V15 is arranged in the center between the pair of first protrusions V14 in the direction D1.
  • each of the pair of first protrusions V14 is displaced from the second protrusion V15 in the direction D1 when the opening region 70 is viewed from the external space SP2 side. Therefore, it is possible to further reduce the possibility that the inflow of heat from the opening 7 is blocked by the shield V1.
  • the second protrusion V15 is formed integrally with the front cover 51. Specifically, the second protrusion V15 continuously protrudes upward from the peripheral edge portion on the upper surface of the front cover 51. The tip of the second protrusion V15 is not in contact with the upper edge of the opening 7 and has a gap between the upper edge and the upper edge.
  • the second protrusion V15 is at the same position as the chip thermistor in the direction D1 when the opening region 70 is viewed from the external space SP2 side.
  • the projection amount of the second protrusion V15 is defined so that at least a part of the chip thermistor is exposed.
  • the protrusion amount of the second protrusion V15 is defined so that the tip of the second protrusion V15 does not exceed the upper surface of the chip thermistor.
  • the tip of the second protrusion V15 is located below the lower surface of the substrate 2, and the heat detecting element 30 is hidden behind the second protrusion V15 between the pair of first protrusions V14. Exposed without.
  • the protrusion amount of the second protrusion V15 is defined so that at least a part of the chip thermistor is exposed in this way, it is further difficult to prevent the heat inflow from the opening 7 and the finger or the tool of the person. It is possible to reduce the possibility that the like will contact the chip thermistor.
  • each of the pair of first protrusions V14 also has a guide surface V2 as shown in FIG. 14B.
  • each of the pair of first protrusions V14 has a cross-sectional shape cut along the horizontal direction and has an elongated elliptical shape along the radial direction of the housing 5, and has curved surfaces on both left and right sides thereof as guide surfaces V2. are doing. Therefore, it is possible to further reduce the possibility that the inflow of heat from the opening 7 is blocked by the shield V1. In particular, since the width dimension of each first protrusion V14 is relatively small, it is possible to further reduce the possibility that heat inflow will be hindered.
  • the second protrusion V15 also has a guide surface V2 as shown in FIG. 14C.
  • the second protrusion V15 is formed in a substantially triangular shape when viewed in the arrangement direction of the pair of first protrusions V14.
  • the second protrusion V15 has a curved surface V150 that is recessed and inclined in a substantially arc shape on the side of the internal space SP1 when viewed along the direction in which the pair of first protrusions V14 are arranged.
  • This curved surface V150 also corresponds to the guide surface V2. The hot air flow can be guided toward the chip thermistor above the second protrusion V15 by colliding with the guide surface V2.
  • the sensor 1H is provided with the shield portion V1 having three protrusions, so that it is difficult for the heat inflow from the opening 7 to be prevented, and a human finger, a tool, or the like comes into contact with the chip thermistor. The possibility can be further reduced.
  • the shielding part V1 may have, for example, another first projection V14 between the pair of first projections V14.
  • the first protrusion V14 and the second protrusion V15 may be projected so that their tips are opposed to each other. Also in this case, similarly to the second protrusion V15, it is desirable that the protrusion amount of the other first protrusion V14 is regulated so that at least a part of the chip thermistor is exposed.
  • FIG. 16 shows a sensor 1I according to Modification 3.
  • the sensor 1I of Modification 3 is an R-type heat sensor as an example.
  • the shield portion V1 of the sensor 1I has a pair of first projections V16 formed integrally with the back cover 52, similarly to the pair of first projections V14 of the sensor 1H of the modified example 2. .
  • the pair of first protrusions V16 protrude from the back cover 52 toward the front cover 51.
  • the heat detection element 30 is arranged between the pair of first protrusions V16 in the direction D1 when the opening region 70 is viewed from the external space SP2 side.
  • the shield V1 of the sensor 1I further includes a pair of second protrusions V17.
  • Each of the pair of second protrusions V17 is formed integrally with the front cover 51, similarly to the second protrusion V15 of the sensor 1H according to the second modification.
  • the pair of second protrusions V17 protrude from the front cover 51 toward the back cover 52.
  • the pair of second protrusions V17 protrude so that their tips face the tip of the pair of first protrusions V16 in a one-to-one manner. In other words, there is a gap between each first protrusion V16 and the second protrusion V17 facing it.
  • the shield V1 of the sensor 1I further has a pillar V18.
  • the pillar V18 is formed integrally with the front cover 51 of the housing 5, similarly to the second pillar V13 of the sensor 1G of the first modification. Then, the heat detecting element 30 is in a position overlapping the pillar V18 when the opening region 70 is viewed from the side of the external space SP2. In other words, the heat detection element 30 is hidden behind the pillar V18 and is invisible.
  • Each of the pair of first protrusions V16 and the pillar V18 are arranged at a predetermined distance L4 in the direction D1 when the opening region 70 is viewed from the external space SP2 side.
  • the predetermined distance L4 is also a distance defined so that the test finger does not enter.
  • the senor 1I is provided with the shielding portion V1 having four protrusions and one pillar, so that the inflow of heat from the opening 7 is not easily obstructed, and the finger or the tool of a person can be chip thermistor. It is possible to further reduce the possibility of contact with.
  • the shield V1 of the sensor 1I also has a guide surface V2.
  • 17A and 17B show a sensor 1J according to Modification 4.
  • the sensor 1J of the modification 4 is an R-type heat sensor as an example.
  • the shield V1 of the sensor 1J has only one pillar V19.
  • the pillar V19 is formed integrally with the front cover 51 of the housing 5, similarly to the second pillar V13 of the sensor 1G of the first modification.
  • the heat detecting element 30 is located at a position overlapping the pillar V19 when the opening region 70 is viewed from the external space SP2 side. In other words, the heat detecting element 30 is hidden behind the pillar V19 and is invisible.
  • the pillar V19 has a guide surface V2 as shown in FIG. 17B.
  • the pillar V19 has a tapered cross-sectional shape cut along the horizontal direction toward the internal space SP1, and this tapered surface corresponds to the guide surface V2.
  • the cross-sectional shape of the pillar V19 is a semi-circular shape on the left and right sides thereof, and the surfaces on the left and right sides also correspond to the guide surface V2.
  • the sensor 1J has only one pillar V19, but the possibility that a human finger, a tool, or the like may come into contact with the chip thermistor while preventing the heat inflow from the opening 7 from being hindered. It can be reduced.
  • the number of protrusions and pillars of the shielding portion V1 is two as in the sensors 1F to 1I. The above is desirable.
  • the sensor 1K according to the present embodiment will be described with reference to FIGS. 18A to 18C.
  • configurations that are substantially the same as those of the first embodiment will be denoted by common reference numerals, and description thereof will be appropriately omitted.
  • the sensor 1K of the present embodiment has the outer surface 53 having a first surface 531 formed in a tapered shape, and thus the sensors (1, 1A to 1E) of the first embodiment (including modified examples). ) Different.
  • the tapered first surface 531 in the present embodiment may be appropriately applied to the sensor (1, 1A to 1E) of the first embodiment or the sensor (1F to 1J) of the second embodiment. Good.
  • the sensor 1K is a heat sensor that does not include the smoke detector 4 and determines the occurrence of a fire or the like only by detecting heat. Further, the sensor 1K includes a plurality of sets of shielding portions V1 similarly to the sensor 1H of the second modification of the second embodiment.
  • the opening 7 of the sensor 1K according to the present embodiment has an inflow port 7B. are doing. That is, the opening portion 7 has the inflow port 7B in addition to the six side surface ports (lateral holes) 7A.
  • the inflow port 7B is provided on the outer surface 53 (the lower surface of the front cover 51) of the housing 5 on the side opposite to the structure X1 to which the sensor 1K is attached.
  • the inflow port 7B is provided at the center of the outer surface 53.
  • the inflow port 7B penetrates the front cover 51 in its thickness direction.
  • the inflow port 7B has a substantially circular opening.
  • the substrate 2 has a hole portion 25 penetrating in the thickness direction at the center thereof.
  • the hole 25 has a substantially circular opening.
  • the hole 25 is arranged so as to substantially overlap the inflow port 7B.
  • the substrate 2 has a pair of protrusions 26 that protrude so as to approach each other at the opening edges of the holes 25. The tips of the pair of protrusions 26 are exposed from the inflow port 7B.
  • the heat detecting element 30 (chip thermistor) is also provided on the upper surface of each protrusion 26 of the substrate 2.
  • the sensor 1K includes two heat detecting elements 30 in the vicinity of the inlet 7B. have.
  • the substrate 2 has a substantially triangular shape in order to prevent the heat of the heat detecting element 30 from being transmitted through the substrate 2 in the vicinity of each heat detecting element 30 and lowering the temperature of the heat detecting element 30. It has a through hole 31.
  • the opening 7 of the sensor 1K has the inflow port 7B, the heat of the gas flowing in from the inflow port 7B can be detected, so that the responsiveness regarding the heat detection can be enhanced.
  • the outer surface 53 of the sensor 1K of the present embodiment has a first surface 531 around the inflow port 7B and a second surface 532 that is outside the first surface 531.
  • the second surface 532 is outside the first surface 531 around the first surface 531.
  • the first surface 531 has a different inclination angle from the second surface 532, and is formed in a taper shape so as to approach the structure X1 side toward the inflow port 7B (upward).
  • the outer surface 53 further includes a third surface 533. The third surface 533 is outside the first surface 531 and inside the second surface 532.
  • Each of the first surface 531 to the third surface 533 has a donut shape when the outer surface 53 is viewed from the front.
  • the radial dimension of the outer surface 53 for example, the second surface 532 is the largest, the third surface 533 is the second largest, and the first surface 531 is the smallest, but the dimensions are not particularly limited.
  • the inclination angle ⁇ 1 of the first surface 531 with respect to the horizontal plane is, for example, 23 °.
  • the inclination angle ⁇ 2 of the second surface 532 with respect to the horizontal plane is, for example, 0 ° to 1 °.
  • the inclination angle ⁇ 3 of the third surface 533 with respect to the horizontal plane is, for example, 8 °.
  • the outer surface 53 has the first surface 531 and the second surface 532, in the event of a fire, the heat inflow to the inflow port 7B is prevented. It can be further promoted (see arrow in FIG. 18C).
  • the outer surface 53 including the third surface 533 is inclined in two steps, so that the heat flow into the inflow port 7B can be more effectively promoted.
  • the inspector 600 uses a predetermined (heating) tester 900 for the heat detection element 30 of the sensor 1K installed in the structure X1 (ceiling in the illustrated example). Perform heating inspection.
  • the tester 900 includes a heat source 910 such as a Hakkin Cairo, a main body 920 having a substantially cylindrical shape with an open upper surface and accommodating the heat source 910, and a support rod 930 supporting the main body 920. .
  • the main body 920 is arranged so as to cover the base 511 and the opening 7 of the front cover 51 of the sensor 1K from below. If the heat detection element 30 and the like are normal, the sensor 1K receives the heat flow from the heat source 910 and performs the same operation as when detecting a fire.
  • the heat detecting element 30 is a chip thermistor mounted on the substrate 2, reduction in size (especially thinness) of the entire sensor (1, 1A to 1K) is achieved. Has been. On the other hand, with the downsizing of the sensor, the stability of the position of the tester 900 with respect to the sensor may be impaired during inspection.
  • the housing 5 of the sensor 1K has a plurality of (for example, six) convex portions W1 (see FIGS. 18A and 18B: however, only four are shown in FIG. 18A).
  • the plurality of protrusions W1 project from the edge (here, the upper edge) of the opening 7 in a direction (for example, downward) away from the side of the structure X1 to which the sensor 1K is attached.
  • the plurality of convex portions W1 are arranged at equal intervals along the circumferential direction of the housing 5 when viewed from below, for example.
  • the plurality of convex portions W1 come into contact with the peripheral portion 901 (see FIG. 19B) of the tester 900 in a state in which the tester 900 for performing the heat check of the heat detection element 30 is arranged so as to cover the housing 5.
  • the tester 900 is stably arranged in the housing 5. That is, the possibility that the convex portion W1 makes a point contact with the peripheral edge portion 901 increases, and rattling can be suppressed as compared with the case where the housing 5 makes a surface contact with the peripheral edge portion 901 without the convex portion W1. .
  • each convex portion W1 protrude downward from the peripheral edge of the lower end of the cylindrical body 510.
  • the plurality of convex portions W1 are located at the same position along the circumferential direction of the housing 5 so as to correspond to the plurality of crosspieces 512 one-to-one.
  • each convex portion W1 is formed integrally with a part (upper portion) of the corresponding cross section 512.
  • each convex portion W1 also functions as a portion that reinforces the corresponding cross section 512.
  • each convex portion W1 may not have a function as a reinforcing portion of the crosspiece 512.
  • Each convex portion W1 may be located at a position displaced from the crosspiece 512 in the circumferential direction of the housing 5.
  • the number of the convex portions W1 is not particularly limited, and may be one, for example. Even when the number of the convex portions W1 is one, the positioning can be performed more stably than when the housing 5 makes surface contact with the peripheral edge portion 901 of the tester 900.
  • FIG. 20 shows a sensor 1L which is a modified example of the third embodiment.
  • the sensor 1L of this modification also has a first surface 531 in which the outer surface 53 is tapered.
  • the sensor 1L is, for example, a P-type heat sensor.
  • the sensor 1L includes the shielding portion V1 having three columns (a pair of left and right first columns V12 and the second column V13 in the middle) as in the sensor 1G of the first modification of the second embodiment. I have a set. In FIG. 20, only one set of the two sets of shields V1 is shown, and the remaining one set of shields V1 is located on the back side.
  • the sensor 1L has a plurality of (for example, four) convex portions W1 configured to contact the peripheral portion 901 (see FIG. 19B) of the tester 900 (see FIG. 20: 3 Only one shown).
  • at least one of the four protrusions W1 has a part (upper part) of the second pillar V13 so that at least one protrusion W1 also functions as a part that reinforces the second pillar V13 in the middle of the shielding portion V1. ) Is formed integrally.
  • the four convex portions W1 of the sensor 1L are formed on the two crosspieces 512 and the two second pillars V13 (including the second pillar V13 of the shielding portion V1 on the opposite side of the shielding portion V1 shown in the drawing). On the other hand, they are at the same positions along the circumferential direction of the housing 5 so as to correspond to each other one by one.
  • the sensor 1M shown in FIGS. 21A and 21B is, for example, an R-type heat sensor.
  • the sensor 1M is a heat sensor that does not include the smoke detector 4 and determines the occurrence of a fire or the like only by detecting heat.
  • the sensor 1M includes a plurality of sets of shielding portions V1 having three columns.
  • the sensor 1M further includes a mounting base 100B for mounting the main body 100A on the structure X1 (ceiling in the illustrated example).
  • the mounting base 100B may be appropriately applied to the sensors (1, 1A to 1E) of the first embodiment, the sensors (1F to 1J) of the second embodiment, or the third embodiment (1K, 1L). .
  • the mounting base 100B is formed in a flat cylindrical shape with an open lower surface as a whole.
  • the mounting base 100B is fixed to the surface of the structure X1 by screwing or the like.
  • the structure X1 is provided with a hole for leading out an electric wire (a power supply line, a signal line, etc.) on the back side thereof.
  • the mounting base 100B has a through hole 103 (see FIG. 21B) in the bottom portion 106 for passing an electric wire led out from the hole of the structure X1 toward the main body 100A.
  • the mounting base 100B has an outer peripheral wall 104 and a flange portion 105 projecting outward from the outer peripheral wall 104.
  • the outer peripheral wall 104 is configured to fit into a recess formed by the cylindrical body 510 and the back cover 52 (see FIG. 1) on the upper side of the main body 100A.
  • a detailed description is omitted, for example, when the outer peripheral wall 104 is fitted in the recess of the main body 100A and rotated clockwise with respect to the axial direction, the engaging portion of the back cover 52 is engaged.
  • the engaged portion is provided on the mounting base 100B.
  • the main body 100A is fixed to the mounting base 100B by the engaging portion of the back cover 52 engaging with the engaged portion.
  • the outer peripheral surface of the collar portion 105 and the outer peripheral surface of the cylindrical body 510 of the sensor 1M are substantially flush with each other. It can be provided as a good-looking sensor.
  • the mounting base 100B described above is a type of base unit in which the sensor 1M is directly mounted on the surface of the structure X1.
  • the sensor 1M may include an embedded base 100C as shown in FIGS. 22A and 22B.
  • the embedded base 100C is a base unit of a type in which the sensor 1M is embedded and installed in the structure X1.
  • the embedded base 100C has a base body 107 that is inserted into a hole for embedding in the structure X1 and a decorative portion 108 that is integrally formed with the base body 107.
  • the base body 107 is formed in a flat cylindrical shape with an open lower surface. Further, the embedded base 100C further includes, for example, a mounting bracket (a first mounting bracket T1 or a second mounting bracket T2 described later) for fixing the embedded base 100C to the structure X1 while being inserted into the hole of the structure X1. ing.
  • the base body 107 has a through hole 110 (see FIG. 22B) in the bottom portion 109 for passing an electric wire on the back side of the structure X1 toward the body 100A.
  • the base body 107 has a recess 111 having an inner diameter slightly larger than the outer diameter of the main body 100A. That is, the main body 100A can be housed in the recess 111.
  • the recess 111 has a depth such that approximately half of the vertical direction of the cylindrical body 510 fits into the recess 111.
  • Decorative part 108 protrudes outward from the lower end of base body 107 in a brim shape.
  • the makeup section 108 is positioned and exposed below the surface of the structure X1 with the base body 107 inserted into the hole of the structure X1.
  • the engagement portion of the back cover 52 is engaged.
  • the engaged portion is provided in the embedded base 100C.
  • the main body 100A is fixed to the embedding base 100C by the engaging portion of the back cover 52 engaging with the engaged portion.
  • the sensor 1M can suppress the amount of protrusion from the surface of the structure X1 in a state where the main body 100A is fixed to the embedded base 100C, and thus has a good appearance. Can be provided as.
  • the embedded base 100C has a pair of first mounting brackets T1.
  • Each first mounting member T1 has a fixing screw T11 and a partially bent plate spring-shaped fixing piece T12.
  • the fixing piece T12 has a screw hole into which the fixing screw T11 is screwed.
  • the fixing piece T12 is temporarily fixed to the fixing screw T11 on the upper side of the base body 107 in a state where the fixing screw T11 is inserted into the through hole in the bottom portion 109 of the base body 107 from below. In other words, the bottom portion 109 is sandwiched between the flat portion T120 of the fixed piece T12 and the head portion of the fixing screw T11.
  • each fixing piece T12 When attaching the embedded base 100C to the structure X1, first loosen each fixing screw T11 with a tool such as a screwdriver to release the pinched state. In this state, each fixing piece T12 can be tilted inward together with the fixing screw T11 (see the imaginary line in FIG. 23A). Each fixing piece T12 is tilted inward, and the base body 107 is inserted into the hole X11 of the structure X1 while maintaining that state. Then, by tightening each fixing screw T11 with a tool such as a screwdriver, the fixing piece T12 falls outward with the flat portion T120 in contact with the base body 107 as a fulcrum, and its tip T121 (point of action) is the structure. Touch the back of X1.
  • a tool such as a screwdriver
  • each fixing screw T11 by further tightening each fixing screw T11, the structure X1 is sandwiched in the vertical direction by the tip T121 of each fixing piece T12 and the decorative portion 108, and as a result, the embedded base 100C becomes the structure X1. Fixed to.
  • the embedded base 100C has a pair of second mounting brackets T2.
  • Each second mounting member T2 has a fixing screw T21 and a flat rectangular plate-shaped fixing piece T22.
  • the fixing piece T22 has a screw hole into which the fixing screw T21 is screwed.
  • the fixing piece T22 is temporarily fixed to the fixing screw T21 on the upper side of the decorative portion 108 in a state where the fixing screw T21 is inserted into the through hole in the decorative portion 108 from below.
  • each fixing screw T21 When mounting the embedded base 100C to the structure X1, first loosen each fixing screw T21 with a tool such as a screwdriver, and rotate so that the tip of the fixing piece T22 faces inward. While maintaining this state, the base body 107 is inserted into the hole X11 of the structure X1. Then, by tightening each fixing screw T21 with a tool such as a screwdriver, the tip of the fixing piece T22 faces outward, and further, the fixing piece T22 descends toward the back surface of the structure X1 to make substantially surface contact. Then, by further tightening each fixing screw T21, the structure X1 is sandwiched by each fixing piece T22 and the decorative portion 108 in the vertical direction, and as a result, the embedded base 100C is fixed to the structure X1. It
  • first mounting bracket T1 and second mounting bracket T2 are merely examples, and the mounting bracket for fixing the embedded base 100C to the structure X1 is not limited to these. Further, the above-described mounting method is also merely an example and is not limited to these.
  • the senor (1, 1A to 1M) includes the substrate (2), the heat detecting element (30), and the housing (5). .
  • the housing (5) houses the substrate (2).
  • the housing (5) is provided with an internal space (SP1) and a flow path (6) through which gas flows, and an opening (connecting the flow path (6) and the external space (SP2) of the housing (5) ( 7) and.
  • the heat detecting element (30) is a chip thermistor mounted on the substrate (2) and detecting the heat of the gas flowing in from the opening (7). According to the first aspect, since the heat detection element (30) is a chip thermistor mounted on the substrate (2), the size of the sensor (1, 1A to 1M) as a whole can be reduced.
  • the first aspect at least a partial region of the surface (eg, the first surface 21) of the substrate (2) is in the flow path (6). It is preferable to expose. According to the second aspect, it is possible to further increase the possibility that the heat detection element (30) is exposed to the gas flowing through the flow path (6), and therefore, it is possible to improve the heat detection performance and reduce the size. Can be planned.
  • the chip thermistor has an opening area (70) of the opening (7) from the side of the external space (SP2). ), It is preferably arranged so as to fit within the opening region (70). According to the third aspect, it is possible to further increase the possibility that the heat detecting element (30) is exposed to the gas flowing through the flow path (6), and thus it is possible to reduce the size while improving the heat detecting performance. Can be planned.
  • the chip thermistor is preferably located at the following position. That is, the chip thermistor has a direction orthogonal to the surface (eg, the first surface 21) of the substrate (2) within the opening region (70) when the opening region (70) is viewed from the external space (SP2) side. It is preferably located in the center of the open area (70) at.
  • the heat detecting element (30) is exposed to the gas flowing through the flow path (6) as compared with the case where the chip thermistor is located near one end of the opening region (70) in the above direction. The possibility can be further increased.
  • the flow path (6) is the first path on the side of the opening (7). (61) and a second path (62) connected to the first path (61) and located on the side of the central portion of the internal space (SP1).
  • the chip thermistor is preferably in the first path (61). According to the fifth aspect, the responsiveness regarding heat detection can be improved as compared with the case where the chip thermistor is in the second path (62), for example.
  • the flow path (6) is the first path on the side of the opening (7). (61) and a second path (62) connected to the first path (61) and located on the side of the central portion of the internal space (SP1).
  • the opening cross-sectional area of the first path (61) is preferably smaller than the opening cross-sectional area of the second path (62).
  • the gas that has entered the flow path (6) through the opening (7) can be promoted to flow from the first path (61) toward the second path (62). .
  • the housing (5) faces the structure (X1) to which the sensor (1, 1A to 1M) is attached. It is preferable to have an installation surface (55) for It is preferable that the second road (62) expands in a direction closer to the installation surface (55) from the first road (61) toward the central portion. According to the seventh aspect, it is possible to more effectively generate the airflow from the first road (61) to the second road (62).
  • the sensor (1, 1A to 1M) according to the eighth aspect is the smoke detecting section according to any one of the first to seventh aspects, which is arranged in a central portion of the internal space (SP1) and detects smoke. It is preferable to further include (4). According to the eighth aspect, since not only heat but also smoke is detected, it is possible to reduce the size of the detector (1, 1A to 1M) as a whole while improving the fire detection performance.
  • the smoke detecting section (4) has a surface (for example, the first surface 21) of the substrate (2) on which the chip thermistor is mounted. It is preferably arranged on the same plane side as. According to the ninth aspect, it is possible to reduce the size of the detector (1, 1A to 1M) as a whole while further improving the fire detection performance.
  • the housing (5) has a structure to which the sensor (1, 1A to 1M) is attached. It is preferable to have an installation surface (55) facing (X1).
  • the smoke detection unit (4) is a surface (e.g., the first surface 21) of the substrate (2) and a surface (e.g., the second surface 22) opposite to the surface, which is closer to the installation surface (55). It is preferable that they are arranged. According to the tenth aspect, it is possible to further reduce the size, for example, as compared with the case where the smoke detection unit (4) is arranged on the surface far from the installation surface (55).
  • the housing (5) has one or more walls in the internal space (SP1). It is preferable to have a body (control plate 522). It is preferable that one or a plurality of walls (control plate 522) guide the gas to the heat detecting element (30) or the smoke detecting section (4). According to the eleventh aspect, the fire sensing performance can be further enhanced.
  • the sensor (1, 1A to 1M) is attached to the housing (5). It is preferable to have an installation surface (55) facing the structure (X1) to be formed.
  • the smoke detecting section (4) has an optical element (41) for emitting light, a light receiving element (42) for receiving the light emitted from the optical element (41), and a labyrinth section (43). In the labyrinth portion (43), the optical element (41) and the light receiving element (42) are arranged so as not to face each other.
  • the center (P1) of the internal space of the labyrinth portion (43) is preferably located between the chip thermistor and the installation surface (55).
  • the size of the sensor (1, 1A to 1M) as a whole can be reduced while further improving fire detection performance. Can be achieved.
  • the chip thermistor has an opening (7) from the side of the external space (SP2). It is preferably arranged to fit within the open area (70) when the area (70) is viewed. It is preferable that the sensors (1, 1A to 1M) further include a shield (V1) that shields a part of the opening region (70) on the side of the external space (SP2) with respect to the chip thermistor.
  • the shielding part (V1) since the shielding part (V1) is provided, it is possible to prevent the heat inflow from the opening part (7) from being hindered and, for example, to unintentionally insert a finger or a tool of a person into the tip. The possibility of contacting the thermistor can be reduced.
  • the shielding part (V1) includes a guide surface (V2 that guides the airflow from the external space (SP2) toward the chip thermistor. ) are preferred. According to the fourteenth aspect, it is possible to further reduce the possibility that the flow of heat through the opening (7) is blocked by the shield (V1).
  • the housing (5) includes the first cover (for example, one of the front cover 51 and the back cover 52). And a second cover (the other side).
  • the first cover covers the substrate (2) from one direction in the thickness direction of the substrate (2).
  • the second cover covers the substrate (2) from a direction opposite to the one direction in the thickness direction.
  • the shielding part (V1) includes a first protrusion (V14, V16) protruding from the first cover toward the second cover, and a second protrusion (V15, V17) protruding from the second cover toward the first cover. It is preferable to have According to the fifteenth aspect, it is possible to further reduce the possibility that a human finger, a tool, or the like will come into contact with the chip thermistor while making it more difficult to prevent the heat inflow from the opening (7).
  • the first protrusion (V14) is preferably arranged as follows. That is, the first protrusion (V14) is the second protrusion in the direction orthogonal to the arranging direction of the first cover and the second cover when the opening region (70) is viewed from the side of the external space (SP2). It is preferable to dispose with respect to (V15). According to the sixteenth aspect, it is possible to further reduce the possibility that the flow of heat from the opening (7) is blocked by the shield (V1).
  • the first protrusion (V16) and the second protrusion (V17) project so that their tips are opposed to each other. Is preferred. According to the seventeenth aspect, it is possible to further reduce the possibility that a human finger, a tool, or the like will come into contact with the chip thermistor.
  • One here, the second protrusion V15
  • the second protrusion V15 is preferably as follows. That is, at least one of the above is at the same position as the chip thermistor in the direction orthogonal to the arranging direction of the first cover and the second cover when the opening region (70) is viewed from the side of the external space (SP2). It is preferable.
  • the projection amount of at least one of the at least one is defined such that at least a part of the chip thermistor is exposed when the opening region (70) is viewed from the side of the external space (SP2). .
  • the eighteenth aspect it is possible to further reduce the possibility that a human finger, a tool, or the like will come into contact with the chip thermistor while making it more difficult to prevent heat inflow from the opening (7).
  • the opening (7) has an inflow port (7B).
  • the inlet (7B) is provided on the outer surface (53) of the housing (5) opposite the structure (X1) to which the sensors (1, 1A-1M) are attached.
  • the heat of the gas flowing in from the inflow port (7B) can be detected, so that the responsiveness regarding heat detection can be improved.
  • the outer surface (53) has a first surface (531) around the inlet (7B) and a first surface (531). 531) and the 2nd surface (532) located outside. It is preferable that the first surface (531) has an inclination angle different from that of the second surface (532) and is formed in a taper shape so as to be closer to the structure (X1) side as it is closer to the inflow port (7B). . According to the twentieth aspect, the heat inflow into the inflow port (7B) can be further promoted.
  • the housing (5) has one or more convex portions (W1). Is preferred.
  • the one or more protrusions (W1) protrude from the edge of the opening (7) in a direction away from the side of the structure (X1) to which the sensors (1, 1A to 1M) are attached.
  • the one or more convex portions (W1) are provided with a tester (900) for performing heating inspection of the heat detecting element (30) arranged so as to cover the housing (5). It is preferably configured to contact the peripheral portion (901) of the.
  • the tester (900) is stably arranged in the housing (5). That is, the convex portion (W1) is more likely to come into point contact with the peripheral edge portion (901), and rattling can be suppressed as compared with surface contact.
  • the configurations according to the second to twenty-first aspects are not essential for the sensors (1, 1A to 1M) and can be omitted as appropriate.

Abstract

The purpose of the present invention is to achieve downsizing. This sensor (1) is provided with a substrate (2), a heat-sensing element (30), and a case (5). The case (5) houses the substrate (2) therein. The case (5) has: a flow channel (6) which is provided in an interior space (SP1) of the case and which has gas flowing therethrough; and an opening (7) which connects the flow channel (6) and an exterior space (SP2) of the case (5). The heat-sensing element (30) is a chip thermistor that is mounted on the substrate (2) so as to sense heat of the gas flowing in through the opening (7).

Description

感知器sensor
 本開示は、一般に、感知器に関し、より詳細には、例えば火災等によって発生する熱を感知する感知器に関する。 The present disclosure relates generally to sensors, and more particularly to sensors that sense heat generated by, for example, a fire.
 従来例として、特許文献1に記載の熱煙複合式感知器を例示する。この感知器は、熱を感知する熱感知手段と、暗箱内に流入した煙を感知する煙感知部と、を備える。熱感知手段は、回路基板に接続されて回路基板から上側に向けて突出するリード線と、リード線の上端に設けられたサーミスタ等の感熱素子と、を備えて構成される。 As a conventional example, the heat and smoke combined type sensor described in Patent Document 1 will be illustrated. The sensor includes a heat sensing unit that senses heat and a smoke sensing unit that senses smoke that has flowed into the dark box. The heat sensing means includes a lead wire connected to the circuit board and protruding upward from the circuit board, and a heat sensitive element such as a thermistor provided on an upper end of the lead wire.
 しかし、特許文献1の感知器では、感熱素子がリード線の上端に設けられているため、リード線の長さに依存して、感知器全体としての小型化(特に、薄型化)を図り難くしている可能性がある。 However, in the sensor of Patent Document 1, since the heat-sensitive element is provided at the upper end of the lead wire, it is difficult to reduce the size of the sensor as a whole (particularly, thinning) depending on the length of the lead wire. There is a possibility that
特開2012-014330号公報JP, 2012-014330, A
 本開示は上記事由に鑑みてなされ、小型化を図ることができる感知器を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object thereof is to provide a sensor that can be downsized.
 本開示の一態様に係る感知器は、基板と、熱検知素子と、筐体と、を備える。前記筐体は、前記基板を収容する。前記筐体は、その内部空間に設けられて気体が流れる流路と、前記流路と前記筐体の外部空間とを繋ぐ開口部と、を有する。前記熱検知素子は、前記基板に実装されて、前記開口部から流入した前記気体の熱を検知するチップサーミスタである。 A sensor according to one aspect of the present disclosure includes a substrate, a heat detection element, and a housing. The housing accommodates the substrate. The housing has a flow path that is provided in the internal space and through which gas flows, and an opening that connects the flow path and the external space of the housing. The heat detecting element is a chip thermistor mounted on the substrate and detecting heat of the gas flowing from the opening.
図1は、実施形態1に係る感知器の断面図である。FIG. 1 is a cross-sectional view of the sensor according to the first embodiment. 図2は、同上の感知器の下方から見た斜視図である。FIG. 2 is a perspective view of the above sensor seen from below. 図3Aは、同上の感知器における一部透視化された平面図である。図3Bは、図3Aにおける要部の拡大平面図である。FIG. 3A is a partially transparent plan view of the above sensor. FIG. 3B is an enlarged plan view of a main part in FIG. 3A. 図4は、同上の感知器の概略ブロック構成図である。FIG. 4 is a schematic block configuration diagram of the above-mentioned sensor. 図5は、同上の感知器における開口部を正面から見た拡大図である。FIG. 5 is an enlarged view of the opening of the above-mentioned sensor as viewed from the front. 図6は、同上の感知器における変形例1の概略断面図である。FIG. 6 is a schematic cross-sectional view of Modification 1 of the above sensor. 図7は、同上の感知器における変形例2の概略断面図である。FIG. 7: is a schematic sectional drawing of the modification 2 in a sensor same as the above. 図8Aは、同上の感知器における変形例3の下方から見た斜視図である。図8Bは、同上の変形例3における一部透視化された平面図である。FIG. 8A is a perspective view of a modified example 3 of the sensor of the above, viewed from below. FIG. 8B is a partially transparent plan view of Modification 3 of the above. 図9Aは、同上の感知器における変形例4の下方から見た斜視図である。図9Bは、同上の変形例4における一部透視化された平面図である。FIG. 9A is a perspective view of a modified example 4 of the sensor of the above when viewed from below. FIG. 9B is a partially transparent plan view of Modification 4 of the above. 図10Aは、同上の感知器における変形例5の下方から見た斜視図である。図10Bは、同上の変形例5における一部透視化された平面図である。FIG. 10A is a perspective view of a modified example 5 of the sensor of the above when viewed from below. FIG. 10B is a partially transparent plan view of Modification 5 of the above. 図11は、同上の感知器における別の変形例の下方から見た斜視図である。FIG. 11 is a perspective view of another modified example of the above-mentioned sensor as viewed from below. 図12Aは、実施形態2に係る感知器の要部の側面図である。図12Bは、同上の感知器の、水平方向に沿って切った要部の断面図である。FIG. 12A is a side view of a main part of the sensor according to the second embodiment. FIG. 12B is a cross-sectional view of a main part of the sensor of the same taken along the horizontal direction. 図13Aは、同上の感知器における変形例1の要部の側面図である。図13Bは、同上の変形例1の、水平方向に沿って切った要部の断面図である。図13Cは、同上の変形例1の別の例の、水平方向に沿って切った要部の断面図である。FIG. 13A is a side view of a main part of Modification 1 of the sensor of the above. FIG. 13B is a cross-sectional view of a main part of Modification 1 of the above, taken along the horizontal direction. FIG. 13C is a cross-sectional view of a main part of another example of the first modified example cut along the horizontal direction. 図14Aは、同上の感知器における変形例2の要部の側面図である。図14Bは、同上の変形例2の、水平方向に沿って切った要部の断面図である。図14Cは、同上の変形例2の、要部の斜視図である。FIG. 14A is a side view of an essential part of a second modification of the above sensor. FIG. 14B is a cross-sectional view of a main portion of Modification 2 of the above, taken along the horizontal direction. FIG. 14C is a perspective view of a main part of the second modified example. 図15は、同上の変形例2の要部の分解斜視図である。FIG. 15: is a disassembled perspective view of the principal part of the modification 2 same as the above. 図16は、同上の感知器における変形例3の要部の側面図である。FIG. 16: is a side view of the principal part of the modification 3 in a sensor same as the above. 図17Aは、同上の感知器における変形例4の要部の側面図である。図17Bは、同上の変形例4の、水平方向に沿って切った要部の断面図である。FIG. 17A is a side view of the essential parts of Modification 4 of the above sensor. FIG. 17B is a cross-sectional view of a main part of Modification 4 of the above, taken along the horizontal direction. 図18Aは、実施形態3に係る感知器の下方から見た斜視図である。図18Bは、同上の感知器における一部透視化された平面図である。図18Cは、同上の感知器における流入口付近の、垂直方向に沿って切った要部の断面図である。FIG. 18A is a perspective view of the sensor according to the third embodiment viewed from below. FIG. 18B is a partially transparent plan view of the above sensor. FIG. 18C is a cross-sectional view of the main part taken along the vertical direction near the inflow port of the above sensor. 図19Aは、構造体に設置された同上の感知器に対して、試験器を用いて加熱点検を行う様子を示す図である。図19Bは、同上の感知器が試験器で覆われた状態における、試験器の模式的な断面図である。FIG. 19A is a diagram showing a state in which a sensor is installed on a structure and a heating inspection is performed using a tester. FIG. 19B is a schematic cross-sectional view of the tester in a state in which the above-mentioned sensor is covered with the tester. 図20は、同上の感知器における変形例の下方から見た斜視図である。FIG. 20 is a perspective view of a modified example of the above-mentioned sensor as seen from below. 図21Aは、実施形態4に係る感知器の本体が取付ベースを用いて構造体に直付け設置された様子を示す斜視図である。図21Bは、同上の感知器の本体及び同上の取付ベースの分解斜視図である。FIG. 21A is a perspective view showing a state in which the main body of the sensor according to the fourth embodiment is directly mounted on the structure using the mounting base. FIG. 21B is an exploded perspective view of the main body of the sensor and the mounting base of the same. 図22Aは、同上の感知器の本体が埋込ベースを用いて、構造体に埋め込み設置された様子を示す斜視図である。図22Bは、同上の感知器の本体及び同上の埋込ベースの分解斜視図である。FIG. 22A is a perspective view showing a state in which the main body of the above sensor is embedded and installed in a structure using an embedded base. FIG. 22B is an exploded perspective view of the main body of the sensor and the embedded base of the same. 図23Aは、同上の埋込ベースが、第1取付金具を用いて、構造体に取り付けられる様子を模式的に示す部分断面図である。図23Bは、同上の埋込ベースが、第2取付金具を用いて、構造体に取り付けられる様子を模式的に示す部分断面図である。FIG. 23A is a partial cross-sectional view schematically showing how the embedded base of the above is attached to a structure by using the first attachment fitting. FIG. 23B is a partial cross-sectional view schematically showing how the embedded base of the same is attached to the structure using the second attachment fitting.
 (実施形態1)
 (1)概要
 以下の実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
(Embodiment 1)
(1) Overview Each of the drawings described in the following embodiments is a schematic drawing, and the ratio of the size and the thickness of each constituent element in each drawing does not necessarily reflect the actual dimensional ratio. Not necessarily.
 本実施形態の感知器1は、例えば火災感知器であり、火災等によって発生する熱を検知する熱検知素子30を備えている。言い換えると、感知器1は、少なくとも熱を検知する機能を有した感知器である。以下では一例として、感知器1が、煙検知部4(図1参照)も更に備えた、いわゆる複合火災感知器であるものとする(図1~図5参照)。感知器1は、煙検知部4の代わりに、又は煙検知部4に加えて、炎、ガス漏れ、又は不完全燃焼によるCO(一酸化炭素)の発生等を検知する検知部を備えてもよい。 The detector 1 of the present embodiment is, for example, a fire detector, and includes a heat detecting element 30 that detects heat generated by a fire or the like. In other words, the sensor 1 is a sensor that has at least the function of detecting heat. In the following, as an example, it is assumed that the detector 1 is a so-called combined fire detector further including a smoke detector 4 (see FIG. 1) (see FIGS. 1 to 5). The sensor 1 may include a detection unit that detects CO (carbon monoxide) generation due to flame, gas leakage, or incomplete combustion, instead of the smoke detection unit 4, or in addition to the smoke detection unit 4. Good.
 感知器1は、図2に示すように、例えば建物の天井又は壁等の造営材である構造体X1(図示例では天井)に設置される。 As shown in FIG. 2, the sensor 1 is installed on a structure X1 (ceiling in the illustrated example) which is a construction material such as a ceiling or a wall of a building.
 感知器1は、図1~図3Aに示すように、基板2と、1又は複数の熱検知素子30と、筐体5と、を備えている。ここでは一例として、感知器1は、4つの熱検知素子30を備えている。 As shown in FIGS. 1 to 3A, the sensor 1 includes a substrate 2, one or more heat detection elements 30, and a housing 5. Here, as an example, the sensor 1 includes four heat detection elements 30.
 筐体5は、基板2を収容する。筐体5は、図1に示すように、その内部空間SP1に設けられて気体が流れる流路6と、流路6と筐体5の外部空間SP2とを繋ぐ開口部7と、を有している。図1では、気体の流れを理解し易くするために、流路6を模式的に矢印線で図示しているが、内部空間SP1における煙検知部4の周囲の空隙部分は、概ね流路6に相当し得る。またここでは一例として、筐体5は、6つの開口部7を有している(図2では3つのみ図示)。 The housing 5 houses the substrate 2. As shown in FIG. 1, the housing 5 has a flow path 6 that is provided in the internal space SP1 and through which gas flows, and an opening 7 that connects the flow path 6 and the external space SP2 of the housing 5. ing. In FIG. 1, in order to facilitate understanding of the flow of gas, the flow path 6 is schematically shown by an arrow line, but the void portion around the smoke detection unit 4 in the internal space SP1 is generally in the flow path 6 Can correspond to. Further, here, as an example, the housing 5 has six openings 7 (only three are shown in FIG. 2).
 ここで本実施形態における熱検知素子30は、図1に示すように、基板2に実装されて、開口部7から流入した気体の熱を検知するチップサーミスタである。 Here, the heat detecting element 30 in the present embodiment is a chip thermistor which is mounted on the substrate 2 and detects the heat of the gas flowing in from the opening 7, as shown in FIG.
 この構成によれば、熱検知素子30が基板2に実装されるチップサーミスタであるため、例えば特許文献1における感熱素子がリード線の上端に設けられている構成に比べて、感知器1全体としての小型化(特に薄型化)を図ることができる。 According to this configuration, since the heat detecting element 30 is a chip thermistor mounted on the substrate 2, for example, as compared with the configuration in which the heat sensitive element in Patent Document 1 is provided at the upper end of the lead wire, the entire sensor 1 is provided. Can be miniaturized (particularly thin).
 (2)詳細
 (2.1)全体構成
 以下、本実施形態に係る感知器1の全体構成について詳しく説明する。感知器1は、上述の通り、熱及び煙を検知する、いわゆる複合火災感知器である。
(2) Details (2.1) Overall Configuration Hereinafter, the overall configuration of the sensor 1 according to the present embodiment will be described in detail. As described above, the detector 1 is a so-called combined fire detector that detects heat and smoke.
 以下では、図2の例の通り、感知器1が天井面(構造体X1の一面)に設置されていることを想定する。これにより、感知器1の上下、左右、前後の方向を、図2に図示されている上下、左右、前後の矢印を用いて規定して説明する。これらの矢印は、単に説明を補助する目的で記載しているに過ぎず、実体を伴わない。またこれらの方向は、感知器1の使用方向を限定する趣旨ではない。 In the following, it is assumed that the sensor 1 is installed on the ceiling surface (one surface of the structure X1) as in the example of FIG. Therefore, the up, down, left and right, front and back directions of the sensor 1 will be described using the up, down, left and right, front and back arrows shown in FIG. These arrows are provided merely for the purpose of assisting the description and have no substance. Further, these directions are not intended to limit the usage direction of the sensor 1.
 感知器1は、上述した4つの熱検知素子30を有する熱検知部3を備えている。感知器1は、基板2、熱検知部3、煙検知部4及び筐体5に加えて、表示部8及び制御部9(図4参照)を更に備えている。また感知器1は、構造体X1に取り付けるための取付部10を備えている(図1参照)。図1では、取付部10が固定される構造体X1側の取付構造(例えば円盤状の取付ベース)の図示を省略している。感知器1は、構造体X1に固定された取付ベースに対して着脱可能に取り付けられる。 The sensor 1 includes the heat detection unit 3 having the four heat detection elements 30 described above. The sensor 1 further includes a display unit 8 and a control unit 9 (see FIG. 4) in addition to the substrate 2, the heat detection unit 3, the smoke detection unit 4, and the housing 5. The sensor 1 also includes a mounting portion 10 for mounting on the structure X1 (see FIG. 1). In FIG. 1, the illustration of a mounting structure (for example, a disc-shaped mounting base) on the side of the structure X1 to which the mounting portion 10 is fixed is omitted. The sensor 1 is detachably attached to the attachment base fixed to the structure X1.
 感知器1は、火災を検知したときに、火災の発生を知らせる信号を外部の警報器等(図示せず)へ送信し、また警報器等からの信号を受信する通信部11を備えている。 The detector 1 includes a communication unit 11 that transmits a signal informing the occurrence of a fire to an external alarm device (not shown) when a fire is detected and receives a signal from the alarm device. .
 感知器1は、商用電源によって電力が供給されてもよいし、筐体5の内部に設けられた電池によって電力が供給されてもよい。 The sensor 1 may be supplied with power from a commercial power supply, or may be supplied with power from a battery provided inside the housing 5.
 (2.2)筐体
 筐体5は、基板2、熱検知部3、煙検知部4、表示部8の光源81、制御部9、通信部11、及びその他の回路モジュール等を、内部に収容する。また筐体5は、表示部8のガイド部82の一面を外部に露出するように支持する(図2参照)。
(2.2) Housing The housing 5 includes the substrate 2, the heat detection unit 3, the smoke detection unit 4, the light source 81 of the display unit 8, the control unit 9, the communication unit 11, and other circuit modules inside. Accommodate. The housing 5 also supports one surface of the guide portion 82 of the display unit 8 so as to be exposed to the outside (see FIG. 2).
 筐体5は、合成樹脂製であり、例えば難燃性ABS樹脂製である。筐体5は、全体として、上下方向にへん平な円筒状に形成されている。筐体5は、図1に示すように、一面(図示例では上面)が開放された円筒状の表カバー51と、円板状の裏カバー52と、を有している。筐体5は、感知器1が取り付けられる構造体X1と対向する設置面55(図1参照)を有している。ここでは、裏カバー52の一面(上面)が、設置面55に相当する。筐体5は、裏カバー52が表カバー51に対してその開放された一面側から組み付けられることにより構成される。 The housing 5 is made of synthetic resin, for example, flame-retardant ABS resin. The housing 5 is formed in a generally flat cylindrical shape in the vertical direction. As shown in FIG. 1, the housing 5 has a cylindrical front cover 51 whose one surface (upper surface in the illustrated example) is open, and a disk-shaped back cover 52. The housing 5 has an installation surface 55 (see FIG. 1) facing the structure X1 to which the sensor 1 is attached. Here, one surface (upper surface) of the back cover 52 corresponds to the installation surface 55. The housing 5 is configured by assembling the back cover 52 from the open one surface side of the front cover 51.
 また筐体5は、上述の通り、その内部空間SP1に設けられて気体が流れる流路6と、流路6と外部空間SP2とを繋ぐ6つの開口部7として6つの側面口(横孔)7Aと、を有している。言い換えると、開口部7は、側面口7Aを有する。開口部7の数は特に限定されないが、筐体5に対する気体の出入りを考慮すれば、2つ以上設けられていることが好ましい。 Further, as described above, the housing 5 has six side surface openings (lateral holes) as six openings 7 that connect the flow path 6 and the external space SP2, which are provided in the internal space SP1 and through which gas flows. 7A. In other words, the opening 7 has the side opening 7A. Although the number of openings 7 is not particularly limited, it is preferable that two or more openings 7 are provided in consideration of the inflow and outflow of gas to and from the housing 5.
 ここでは6つの開口部7(6つの側面口7A)が、表カバー51に設けられている。具体的には、表カバー51は、図1及び図2に示すように、上下の両端が開放されたへん平な円筒体510と、円筒体510の下方にある円板状の基部511と、円筒体510及び基部511を繋ぐ複数本(例えば6本)の桟部512と、から構成されている。円筒体510、基部511、及び6本の桟部512は、一体なって形成されている。6本の桟部512は、基部511の周縁部において周方向に沿って略等間隔に並んでいて、かつ当該周縁部から円筒体510の開放された下縁部に向かって突出している。6本の桟部512は、円筒体510と基部511との間の距離を規定距離に保つ。6つの開口部7は、このように構成された表カバー51の周壁において、その周方向に沿って略等間隔に並んでいる。 Here, six openings 7 (six side openings 7A) are provided in the front cover 51. Specifically, as shown in FIGS. 1 and 2, the front cover 51 includes a flat cylindrical body 510 whose upper and lower ends are open, and a disc-shaped base 511 below the cylindrical body 510. It is composed of a plurality of (for example, 6) crosspieces 512 connecting the cylindrical body 510 and the base 511. The cylindrical body 510, the base 511, and the six crosspieces 512 are integrally formed. The six crosspieces 512 are arranged in the peripheral portion of the base 511 at substantially equal intervals along the circumferential direction, and project from the peripheral portion toward the open lower edge of the cylindrical body 510. The six crosspieces 512 keep the distance between the cylindrical body 510 and the base 511 at a specified distance. The six openings 7 are arranged at substantially equal intervals along the circumferential direction on the circumferential wall of the front cover 51 thus configured.
 各開口部7(各側面口7A)は、表カバー51の周壁を径方向に貫通する、略矩形状の貫通孔であり、流路6と外部空間SP2とを繋ぐ口となる。 Each opening 7 (each side opening 7A) is a substantially rectangular through hole that radially penetrates the peripheral wall of the front cover 51, and serves as an opening that connects the flow path 6 and the external space SP2.
 表カバー51は、基部511の上面側に、基板2を位置決めするための位置決め構造を有している。位置決め構造の例としては、基部511の上面側に位置決め用の凹所が設けられていて、基板2に突設された爪片が当該凹所に嵌入されてもよい。基部511は、図3Aに示すように、基板2の径寸法よりもやや大きい径寸法を有している。 The front cover 51 has a positioning structure for positioning the substrate 2 on the upper surface side of the base 511. As an example of the positioning structure, a recess for positioning may be provided on the upper surface side of the base portion 511, and a claw piece protruding from the substrate 2 may be fitted into the recess. As shown in FIG. 3A, the base portion 511 has a diameter dimension slightly larger than that of the substrate 2.
 また表カバー51は、基部511に、表示部8のガイド部82の一面(下面)を外部空間SP2に露出するための一対の孔部513(図3A参照)を有している。 Also, the front cover 51 has a pair of holes 513 (see FIG. 3A) in the base 511 for exposing one surface (lower surface) of the guide portion 82 of the display unit 8 to the external space SP2.
 一対の孔部513は、基部511を下側から見たときに、基部511の周縁部寄りの位置にある。一対の孔部513は、基部511の周方向において等間隔となるように配置されている。言い換えると、一対の孔部513は、それらを結ぶ仮想線が基部511の中心を概ね通るように配置されている。一対の孔部513の並び方向は、本開示における前後方向に相当する。 The pair of holes 513 are located near the peripheral edge of the base 511 when the base 511 is viewed from below. The pair of holes 513 are arranged at equal intervals in the circumferential direction of the base 511. In other words, the pair of holes 513 are arranged so that an imaginary line connecting them substantially passes through the center of the base 511. The arrangement direction of the pair of holes 513 corresponds to the front-back direction in the present disclosure.
 各孔部513は、基部511をその厚み方向(上下方向)に貫通している。各孔部513の開口は、略矩形状である。各孔部513に、対応するガイド部82が嵌入されている。したがって、一対の光源81から放射された光は、一対のガイド部82をそれぞれ介して、筐体5の外部に導出される。 Each hole 513 penetrates the base 511 in its thickness direction (vertical direction). The opening of each hole 513 has a substantially rectangular shape. A corresponding guide portion 82 is fitted into each hole portion 513. Therefore, the light emitted from the pair of light sources 81 is led out of the housing 5 through the pair of guide portions 82, respectively.
 裏カバー52は、基板2に固定された取付部10の複数(例えば4つ)の接続片101が嵌入される嵌入孔520を複数有している(図1参照)。複数の接続片101は、基板2上に設けられている回路モジュールと電気的に接続されている。複数の接続片101は、その先端が裏カバー52の裏面側(設置面55側)から十分に突出する程度にまで差し込まれている。複数の接続片101は、構造体X1に固定された(不図示の)取付ベースのコンタクト部に対して、機械的及び電気的に接続され得る。要するに、取付部10は、単に取付ベースへの機械的な接続だけではなく、構造体X1の裏側にある電線(給電線及び信号線)との電気的な接続、さらに裏カバー52に対する基板2の安定的な位置決めも兼ねた部位である。この位置決めとは、基板2の径方向の位置決めだけではなく、基板2の上下方向の位置決めも含む。 The back cover 52 has a plurality of fitting holes 520 into which the plurality (for example, four) of the connection pieces 101 of the mounting portion 10 fixed to the substrate 2 are fitted (see FIG. 1). The plurality of connection pieces 101 are electrically connected to the circuit module provided on the substrate 2. The plurality of connection pieces 101 are inserted to such an extent that the tips of the connection pieces 101 project sufficiently from the back surface side (the installation surface 55 side) of the back cover 52. The plurality of connecting pieces 101 can be mechanically and electrically connected to a contact portion of a mounting base (not shown) fixed to the structure X1. In short, the mounting portion 10 is not only mechanically connected to the mounting base, but is also electrically connected to the electric wires (the power supply line and the signal line) on the back side of the structure X1, and the substrate 2 is connected to the back cover 52. It is a part that also functions as stable positioning. This positioning includes not only radial positioning of the substrate 2 but also vertical positioning of the substrate 2.
 また裏カバー52は、基板2と対向する一面(下面)において、基板2に実装された煙検知部4の上部を収容するための収容凹部521(図1参照)を有している。つまり、煙検知部4は、収容凹部521により安定的に位置決めされる。 The back cover 52 has a housing recess 521 (see FIG. 1) for housing the upper portion of the smoke detection unit 4 mounted on the board 2 on one surface (lower surface) facing the board 2. That is, the smoke detector 4 is stably positioned by the housing recess 521.
 さらに裏カバー52は、基板2と対向する一面(下面)において、流路6内における気体の流れを制御する、複数の制御板(壁体)522(図3A参照:図示例では4つ)を有している。各制御板522は、基板2の側から見て、略円弧状に形成されている。各制御板522は、表カバー51の基部511に近づく方向(下方向)に突出している。4つの制御板522は、基板2の側から見て、裏カバー52の周縁部近傍において、裏カバー52の周方向に沿って略等間隔に配置されている。4つの制御板522は、筐体5の内部空間SP1において、流路6を流れる気体が、熱検知素子30又は煙検知部4に向かってより流れ易くなるように気流を制御(誘導)する。制御板522の数は、特に限定されず、1つでもよい。 Further, the back cover 52 has a plurality of control plates (walls) 522 (see FIG. 3A: four in the illustrated example) for controlling the flow of gas in the flow path 6 on one surface (lower surface) facing the substrate 2. Have Each control plate 522 is formed in a substantially arc shape when viewed from the substrate 2 side. Each control plate 522 projects in a direction (downward) approaching the base portion 511 of the front cover 51. The four control plates 522 are arranged at substantially equal intervals along the circumferential direction of the back cover 52 in the vicinity of the peripheral edge of the back cover 52 when viewed from the substrate 2 side. The four control plates 522 control (guide) the airflow so that the gas flowing through the flow path 6 in the internal space SP1 of the housing 5 is more likely to flow toward the heat detection element 30 or the smoke detection unit 4. The number of control plates 522 is not particularly limited and may be one.
 (2.3)基板
 基板2は、プリント基板である。基板2には、熱検知部3、煙検知部4、表示部8、制御部9、通信部11、及びその他の回路モジュール(不図示)等が実装されている。その他の回路モジュールとは、表示部8の光源81及び煙検知部4の光学素子41を点灯させる点灯回路、並びに、商用電源等より供給される電力を用いて各種回路の動作電力を生成する電源回路等を含む。
(2.3) Substrate The substrate 2 is a printed circuit board. The board 2 is mounted with a heat detection unit 3, a smoke detection unit 4, a display unit 8, a control unit 9, a communication unit 11, and other circuit modules (not shown). The other circuit modules include a lighting circuit that lights the light source 81 of the display unit 8 and the optical element 41 of the smoke detection unit 4, and a power supply that generates operating power of various circuits by using power supplied from a commercial power supply or the like. Including circuits etc.
 基板2は、図3Aに示すように、全体として略円形状に形成されている。図3Aは、感知器1の下側から見た、一部(基板2と制御板522と煙検知部4)透視化されている平面図である。 The substrate 2 is formed in a substantially circular shape as a whole as shown in FIG. 3A. FIG. 3A is a plan view of a part (the substrate 2, the control plate 522, and the smoke detection unit 4) seen through from the lower side of the sensor 1 and is transparent.
 本実施形態では、少なくとも熱検知部3の4つの熱検知素子30が、基板2の第1面21(表面)に表面実装されている。第1面21は、上面である(図1参照)。ここでは一例として、煙検知部4も、基板2の第1面21と同一平面側に配置されている。煙検知部4は、基板2の第1面21上に実装されている。煙検知部4の(後述する)ラビリンス部43は、その底部の下面に係合爪を有しており、その係合爪が基板2に形成されている係合穴に係合することで固定されている。また表示部8の光源81も、基板2の第1面21上に実装されている。 In this embodiment, at least four heat detection elements 30 of the heat detection unit 3 are surface-mounted on the first surface 21 (front surface) of the substrate 2. The first surface 21 is an upper surface (see FIG. 1). Here, as an example, the smoke detection unit 4 is also arranged on the same plane side as the first surface 21 of the substrate 2. The smoke detector 4 is mounted on the first surface 21 of the substrate 2. The labyrinth portion 43 (described later) of the smoke detector 4 has an engaging claw on the lower surface of its bottom, and the engaging claw engages with an engaging hole formed in the substrate 2 to fix it. Has been done. The light source 81 of the display unit 8 is also mounted on the first surface 21 of the substrate 2.
 制御部9、及び回路モジュールを構成する複数の電子部品は、基板2の第1面21又は第2面22に実装されている。制御部9、及び回路モジュールを構成する複数の電子部品は、基板2のみに実装されていなくてもよく、例えば、基板2の周辺に別の実装基板が配置されていて、当該実装基板に、それらの一部又は全部が実装されてもよい。 The control unit 9 and a plurality of electronic components forming the circuit module are mounted on the first surface 21 or the second surface 22 of the substrate 2. The control unit 9 and the plurality of electronic components configuring the circuit module may not be mounted only on the substrate 2, and for example, another mounting substrate may be arranged around the substrate 2 and the mounting substrate may include: Some or all of them may be implemented.
 以下、基板2の第1面21(上面)の反対側の面を、第2面22(下面)と呼ぶこともある。図3Aでは、基板2は、透視化されており、その第2面22が見えている。熱検知素子30、光源81及び煙検知部4は、実際には、第2面22の裏側の第1面21に実装されているが、説明の便宜上、図3Aではこれらも透視化されて図示している。特に、図3Aでは、煙検知部4のラビリンス部43内に配置される光学素子41及び受光素子42について点(ドット)により簡略化した上で図示している。 Hereinafter, the surface opposite to the first surface 21 (upper surface) of the substrate 2 may be referred to as the second surface 22 (lower surface). In FIG. 3A, the substrate 2 is transparent and its second surface 22 is visible. The heat detection element 30, the light source 81, and the smoke detection unit 4 are actually mounted on the first surface 21 on the back side of the second surface 22, but for convenience of description, these are also shown in perspective in FIG. 3A. Shows. In particular, in FIG. 3A, the optical element 41 and the light receiving element 42 arranged in the labyrinth portion 43 of the smoke detecting portion 4 are illustrated by being simplified by dots.
 第1面21及び第2面22のうち、第1面21が、設置面55に近い側の面に相当する。したがって、熱検知素子30及び煙検知部4は、いずれも、基板2における設置面55に近い側の面に配置されているといえる。 The first surface 21 of the first surface 21 and the second surface 22 corresponds to the surface closer to the installation surface 55. Therefore, it can be said that the heat detection element 30 and the smoke detection unit 4 are both arranged on the surface of the substrate 2 on the side close to the installation surface 55.
 以下、基板2の構造について詳しく説明する。基板2は、図3Aに示すように、円形状の本体部200と、本体部200の縁において、本体部200の中心から離れる方向に延出した複数(図示例では8つ)の延出部分を有している。以下、8つの延出部分を、一対の第1延出部201、一対の第2延出部202、一対の第3延出部203、及び一対の第4延出部204と呼ぶ。 The structure of the substrate 2 will be described in detail below. As shown in FIG. 3A, the substrate 2 has a circular main body portion 200, and a plurality of (eight in the illustrated example) extending portions that extend in a direction away from the center of the main body portion 200 at the edges of the main body portion 200. have. Hereinafter, the eight extended portions will be referred to as a pair of first extended portions 201, a pair of second extended portions 202, a pair of third extended portions 203, and a pair of fourth extended portions 204.
 煙検知部4は、本体部200の上面に配置されている。一方、4つの熱検知素子30、及び2つの光源81は、6つの延出部(201、202、203)に、それぞれ配置されている。 The smoke detector 4 is arranged on the upper surface of the main body 200. On the other hand, the four heat detecting elements 30 and the two light sources 81 are arranged in the six extending portions (201, 202, 203), respectively.
 一対の第1延出部201は、本体部200の左右の縁から、それぞれ、互いに離れる方向に延出している。各第1延出部201の上面に、対応する1個の接続片101が配置されている。また各第1延出部201は、その先端に、さらに幅狭の小片部Y1を有している。各小片部Y1の上面に、対応する1つの熱検知素子30が配置されている。 The pair of first extending portions 201 extend from the left and right edges of the main body portion 200 in directions away from each other. One corresponding connecting piece 101 is arranged on the upper surface of each first extending portion 201. Further, each of the first extending portions 201 has a narrower piece portion Y1 at the tip thereof. One corresponding heat detection element 30 is arranged on the upper surface of each small piece portion Y1.
 一対の第2延出部202は、本体部200の前後の縁から、それぞれ、互いに離れる方向に延出している。第2延出部202の延出量は、他の延出部の延出量よりも少ない。各第2延出部202の上面に、対応する1つの光源81が配置されている。 The pair of second extending portions 202 extend from the front and rear edges of the main body portion 200 in directions away from each other. The extension amount of the second extension portion 202 is smaller than the extension amounts of the other extension portions. One corresponding light source 81 is arranged on the upper surface of each second extending portion 202.
 一対の第3延出部203は、基板2の下側から見て、本体部200の前後の縁より反時計回りの方向に少しずれた位置から、それぞれ、互いに離れる方向に延出している。具体的には、前側の第3延出部203は、前側の第2延出部202の左横に配置され、後側の第3延出部203は、後側の第2延出部202の右横に配置されている。各第3延出部203も、第1延出部201と同様に、その先端に、さらに幅狭の小片部Y1を有している。各小片部Y1の上面に、対応する1つの熱検知素子30が配置されている。 The pair of third extending portions 203 respectively extend away from each other from positions slightly offset in the counterclockwise direction from the front and rear edges of the main body portion 200 when viewed from the lower side of the substrate 2. Specifically, the third extension portion 203 on the front side is disposed on the left side of the second extension portion 202 on the front side, and the third extension portion 203 on the rear side is the second extension portion 202 on the rear side. It is located on the right side of. Similarly to the first extending portion 201, each of the third extending portions 203 also has a narrower piece portion Y1 at the tip thereof. One corresponding heat detection element 30 is arranged on the upper surface of each small piece portion Y1.
 一対の第4延出部204は、基板2の下側から見て、本体部200の前後の縁から時計回りの方向に少しずれた位置から、それぞれ、互いに離れる方向に延出している。具体的には、前側の第4延出部204は、前側の第2延出部202の右横に配置され、後側の第4延出部204は、後側の第2延出部202の左横に配置されている。各第4延出部204の上面に、対応する1個の接続片101が配置されている。 The pair of fourth extending portions 204 extend in directions away from each other from positions slightly offset from the front and rear edges of the main body portion 200 in the clockwise direction when viewed from the lower side of the substrate 2. Specifically, the fourth extension portion 204 on the front side is disposed on the right side of the second extension portion 202 on the front side, and the fourth extension portion 204 on the rear side is the second extension portion 202 on the rear side. It is located to the left of. One corresponding connecting piece 101 is arranged on the upper surface of each fourth extending portion 204.
 要するに、基板2は、一例として、その中心を軸に180度回転させることで対称となる、二回対称の形状である。 In short, the substrate 2 has, for example, a two-fold symmetric shape that is symmetrical by rotating the center of the substrate 2 by 180 degrees.
 ところで、4つの熱検知素子30が配置されている一対の第1延出部201及び一対の第3延出部203の各々には、矩形状の開口を有した貫通孔31(図3B参照)が設けられている。図3Bは、一例として、図3Aの点線(想像線)で囲まれた円部分の拡大図である。貫通孔31は、熱検知素子30よりも内側(内部空間SP1の中心部側)に配置されている。熱検知素子30と貫通孔31とは、互いに隣接して配置されている。このような貫通孔31が、各熱検知素子30の傍に設けられていることで、熱検知素子30の周囲において基板2が占める領域を減らすことができ、熱検知素子30における熱が基板2を伝達して低くなってしまうことを抑制できる。すなわち、貫通孔31によって熱絶縁性が向上される。貫通孔31の開口面積は、熱検知素子30の表面積(例えば基板2の上側から見た表面積)よりも大きいことが望ましい。 By the way, in each of the pair of first extending portions 201 and the pair of third extending portions 203 in which the four heat detecting elements 30 are arranged, a through hole 31 having a rectangular opening (see FIG. 3B). Is provided. FIG. 3B is an enlarged view of a circle portion surrounded by a dotted line (imaginary line) in FIG. 3A as an example. The through hole 31 is arranged inside the heat detection element 30 (on the side of the center of the internal space SP1). The heat detecting element 30 and the through hole 31 are arranged adjacent to each other. By providing such a through hole 31 near each heat detecting element 30, the area occupied by the substrate 2 around the heat detecting element 30 can be reduced, and the heat in the heat detecting element 30 can be absorbed by the substrate 2. Can be suppressed from being transmitted. That is, the through hole 31 improves the thermal insulation property. The opening area of the through hole 31 is preferably larger than the surface area of the heat detecting element 30 (for example, the surface area viewed from the upper side of the substrate 2).
 (2.4)熱検知部と煙検知部
 熱検知部3は、上述の通り、基板2の第1面21に実装された4つの熱検知素子30を有している(図4では1つのみ図示)。熱検知素子30の数は、特に限定されず、1つでもよいが、少なくとも2つ以上であることが好ましい。そして、本実施形態における熱検知素子30は、開口部7から流入した気体の熱を検知するチップサーミスタであり、基板2に表面実装されている。各熱検知素子30は、互いに異なる1つの開口部7と対向するように配置されている。なお、流路6及び開口部7に対する熱検知素子30の位置関係については、後の「(2.7)熱検知部の配置構造」の欄で詳しく説明する。
(2.4) Heat Detection Section and Smoke Detection Section The heat detection section 3 has the four heat detection elements 30 mounted on the first surface 21 of the substrate 2 as described above (one in FIG. 4). Only shown). The number of heat detecting elements 30 is not particularly limited, and may be one, but it is preferable that the number is at least two. The heat detecting element 30 in the present embodiment is a chip thermistor that detects the heat of the gas flowing from the opening 7, and is surface-mounted on the substrate 2. Each heat detection element 30 is arranged so as to face one opening 7 different from the other. The positional relationship of the heat detecting element 30 with respect to the flow path 6 and the opening 7 will be described in detail later in the section “(2.7) Arrangement structure of heat detecting section”.
 熱検知部3は、基板2上に形成されたパターン配線等を介して、制御部9と電気的に接続されている。各熱検知素子30は、制御部9に電気信号(検知信号)を出力する。言い換えると、制御部9は、各熱検知素子30から出力される電気信号を通じて、温度上昇に依存して変化し得る各熱検知素子30の抵抗値を監視している。 The heat detection unit 3 is electrically connected to the control unit 9 via a pattern wiring or the like formed on the substrate 2. Each heat detection element 30 outputs an electric signal (detection signal) to the control unit 9. In other words, the control unit 9 monitors the resistance value of each heat detection element 30 that can change depending on the temperature rise, through the electric signal output from each heat detection element 30.
 熱検知部3は、熱検知素子30以外に、熱検知素子30からの電気信号を増幅する増幅回路、及びアナログ-デジタル変換する変換回路等を更に有してもよいし、あるいは増幅及び変換は、回路モジュール側で行われてもよい。 The heat detection unit 3 may further include, in addition to the heat detection element 30, an amplification circuit that amplifies an electric signal from the heat detection element 30, a conversion circuit that performs analog-digital conversion, or the like. , May be performed on the circuit module side.
 煙検知部4は、内部空間SP1の中央部に配置され、煙を検知するように構成されている。具体的には、煙検知部4は、基板2の本体部200の上面に配置されて、かつその上部が裏カバー52の収容凹部521に収められている。煙検知部4は、例えば煙を検知する光電式のセンサである。煙検知部4は、図4に示すように、光を放射する光学素子41と、光学素子41から放射された光を受光する受光素子42と、ラビリンス部43と、を有している。光学素子41は、例えばLED(Light Emitting Diode)である。受光素子42は、例えばフォトダイオードである。ラビリンス部43は、へん平な略円筒形状の外郭を有しているケースの内部に形成されている。煙検知部4のケースは、その外周面において気体をラビリンス部43内に導入する複数の口を有して、かつ外光が内部に入射することを抑制する構造を有している。 The smoke detector 4 is arranged in the center of the internal space SP1 and is configured to detect smoke. Specifically, the smoke detector 4 is arranged on the upper surface of the main body 200 of the substrate 2, and the upper portion thereof is housed in the housing recess 521 of the back cover 52. The smoke detection unit 4 is, for example, a photoelectric sensor that detects smoke. As shown in FIG. 4, the smoke detection unit 4 includes an optical element 41 that emits light, a light receiving element 42 that receives the light emitted from the optical element 41, and a labyrinth portion 43. The optical element 41 is, for example, an LED (Light Emitting Diode). The light receiving element 42 is, for example, a photodiode. The labyrinth portion 43 is formed inside a case having a flat and substantially cylindrical outer shell. The case of the smoke detector 4 has a plurality of ports for introducing gas into the labyrinth portion 43 on the outer peripheral surface thereof, and has a structure for suppressing outside light from entering the inside.
 光学素子41及び受光素子42は、ラビリンス部43内において、互いに対向しないように配置される。言い換えると、受光素子42の受光面が、光学素子41の照射光の光軸C1(図3A参照)上から外れるように配置されている。 The optical element 41 and the light receiving element 42 are arranged in the labyrinth portion 43 so as not to face each other. In other words, the light receiving surface of the light receiving element 42 is arranged so as to be off the optical axis C1 (see FIG. 3A) of the irradiation light of the optical element 41.
 火災等の発生時には、煙が筐体5の開口部7を通じて筐体5内に入り、ラビリンス部43内に導入され得る。ラビリンス部43内に煙が存在しない場合、光学素子41の照射光は、受光素子42の受光面にほとんど到達しない。一方、ラビリンス部43内に煙が存在する場合、光学素子41の照射光が煙によって散乱し、散乱した光の一部が受光素子42の受光面に到達する。つまり、煙検知部4は、煙によって散乱された光学素子41の照射光を受光素子42で受光する。 When a fire or the like occurs, smoke may enter the casing 5 through the opening 7 of the casing 5 and be introduced into the labyrinth portion 43. When there is no smoke in the labyrinth portion 43, the irradiation light of the optical element 41 hardly reaches the light receiving surface of the light receiving element 42. On the other hand, when smoke is present in the labyrinth portion 43, the irradiation light of the optical element 41 is scattered by the smoke, and a part of the scattered light reaches the light receiving surface of the light receiving element 42. That is, in the smoke detector 4, the light receiving element 42 receives the irradiation light of the optical element 41 scattered by the smoke.
 煙検知部4の受光素子42は、制御部9と電気的に接続されている。煙検知部4は、受光素子42で受光された光量に応じた電圧レベルを示す電気信号(検知信号)を制御部9に送信する。制御部9は、煙検知部4から受け取った検知信号の光量を煙濃度に換算して火災の判定を行う。制御部9は、光量をそのまま閾値判定に用いてもよい。煙検知部4は、受光素子42で受光された光量を煙濃度に換算してから煙濃度に応じた電圧レベルを示す検知信号を制御部9に送信してもよい。 The light receiving element 42 of the smoke detector 4 is electrically connected to the controller 9. The smoke detection unit 4 transmits to the control unit 9 an electric signal (detection signal) indicating a voltage level corresponding to the amount of light received by the light receiving element 42. The control unit 9 converts the light amount of the detection signal received from the smoke detection unit 4 into smoke density and determines a fire. The control unit 9 may use the light amount as it is for the threshold determination. The smoke detection unit 4 may convert the amount of light received by the light receiving element 42 into smoke concentration, and then transmit a detection signal indicating a voltage level corresponding to the smoke concentration to the control unit 9.
 煙検知部4は、受光素子42からの電気信号を増幅する増幅回路、及びアナログ-デジタル変換する変換回路等を更に有してもよいし、あるいは増幅及び変換は、回路モジュール側で行われてもよい。また煙検知用の光学素子41の数は、1つに限定されず、複数でもよい。 The smoke detection unit 4 may further include an amplifier circuit that amplifies the electric signal from the light receiving element 42, a conversion circuit that performs analog-digital conversion, or the like, or the amplification and conversion is performed on the circuit module side. Good. The number of optical elements 41 for smoke detection is not limited to one, and may be plural.
 (2.5)表示部
 表示部8は、一対の光源81と、一対のガイド部82とを有している。各光源81は、例えば、平板状の実装基板の実装面の中央に少なくとも1個のLEDチップが実装された、パッケージ型のLEDとして構成される。各光源81は、上述の通り、基板2上に実装されている。各ガイド部82は、略L字形状に形成された、透光性を有している部位である。各ガイド部82は、基板2上の対応する光源81と対向し、かつ光源81から放射された光が入射する入射面を有している。各ガイド部82は、入射面から入射した光がガイド部82の外部に出射される出射面を有している。各ガイド部82の出射面は、表カバー51の対応する孔部513を介して露出している。
(2.5) Display Unit The display unit 8 has a pair of light sources 81 and a pair of guides 82. Each light source 81 is configured as, for example, a package type LED in which at least one LED chip is mounted in the center of the mounting surface of a flat mounting substrate. Each light source 81 is mounted on the substrate 2 as described above. Each guide portion 82 is a light-transmitting portion formed in a substantially L shape. Each of the guide portions 82 faces the corresponding light source 81 on the substrate 2 and has an incident surface on which the light emitted from the light source 81 is incident. Each guide portion 82 has an emission surface through which the light incident from the incident surface is emitted to the outside of the guide portion 82. The emission surface of each guide portion 82 is exposed through the corresponding hole portion 513 of the front cover 51.
 表示部8は、感知器1の動作状態を外部に通知する、作動灯である。通常時(火災の監視時)には、回路モジュールの点灯回路は、制御部9の制御下で光源81を消灯させる。火災が発生したと判定したときには、回路モジュールの点灯回路は、制御部9の制御下で光源81の点滅又は点灯を開始する。図4では、制御部9と表示部8との間における点灯回路の図示を省略している。 The display unit 8 is an operating light that notifies the operating state of the sensor 1 to the outside. Under normal conditions (when monitoring a fire), the lighting circuit of the circuit module turns off the light source 81 under the control of the control unit 9. When it is determined that a fire has occurred, the lighting circuit of the circuit module starts blinking or lighting of the light source 81 under the control of the control unit 9. In FIG. 4, the lighting circuit between the control unit 9 and the display unit 8 is omitted.
 (2.6)制御部
 制御部9は、例えば、CPU(Central Processing Unit)及びメモリを主構成とするマイクロコントローラにて構成されている。言い換えれば、制御部9は、CPU及びメモリを有するコンピュータにて実現されており、CPUがメモリに格納されているプログラムを実行することにより、コンピュータが制御部9として機能する。プログラムは、ここではメモリに予め記録されているが、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。
(2.6) Control Unit The control unit 9 is composed of, for example, a microcontroller (CPU) having a CPU (Central Processing Unit) and a memory as main components. In other words, the control unit 9 is realized by a computer having a CPU and a memory, and the computer functions as the control unit 9 when the CPU executes the program stored in the memory. The program is recorded in the memory here in advance, but may be provided through an electric communication line such as the Internet or in a non-transitory recording medium such as a memory card.
 制御部9は、通信部11、及び回路モジュール(点灯回路及び電源回路等)を制御するように構成されている。 The control unit 9 is configured to control the communication unit 11 and the circuit module (lighting circuit, power supply circuit, etc.).
 また制御部9は、熱検知部3及び煙検知部4からの検知信号を受信し、火災が発生したか否かを判定するように構成されている。具体的には、制御部9は、熱検知部3の4つの熱検知素子30からの検知信号を個別に監視し、検知信号に含まれている信号レベル(抵抗値に相当)が閾値を上回る(又は下回る)熱検知素子30が1つでも見つかると、火災が発生した判定する。また制御部9は、煙検知部4からの検知信号も監視し、検知信号に含まれている信号レベル(受光素子42で受光された光量又は煙濃度に相当)が閾値を超えると、火災が発生した判定する。 The control unit 9 is also configured to receive detection signals from the heat detection unit 3 and the smoke detection unit 4 and determine whether a fire has occurred. Specifically, the control unit 9 individually monitors the detection signals from the four heat detection elements 30 of the heat detection unit 3, and the signal level (corresponding to the resistance value) included in the detection signals exceeds the threshold value. When even one (or lower) heat detecting element 30 is found, it is determined that a fire has occurred. The control unit 9 also monitors the detection signal from the smoke detection unit 4, and if the signal level included in the detection signal (corresponding to the amount of light received by the light receiving element 42 or the smoke concentration) exceeds a threshold value, a fire will occur. Determine what has occurred.
 制御部9は、熱検知に基づいて、又は煙検知に基づいて、火災が発生したと判定すると、通信部11を介して、火災の発生を知らせる信号を、自動火災報知システムの受信機及び火災警報器等へ送信する。通信部11は、例えば有線により、受信機及び火災警報器等と通信するための通信インターフェイスである。通信部11は、取付部10の接続片101、取付ベースのコネクタ部、及び、構造体X1の裏側に配線されている信号線を介して、受信機及び火災警報器等と通信可能に接続されている。また制御部9は、火災が発生したと判定すると、表示部8(作動灯)の光源81を点滅又は点灯させるための制御信号を、回路モジュールの点灯回路へ出力する。 When the control unit 9 determines that a fire has occurred based on the heat detection or the smoke detection, the control unit 9 sends a signal indicating the occurrence of the fire via the communication unit 11 to the receiver of the automatic fire notification system and the fire. Send to an alarm device. The communication unit 11 is a communication interface for communicating with a receiver, a fire alarm device, and the like by wire, for example. The communication unit 11 is communicably connected to a receiver, a fire alarm device, and the like through the connection piece 101 of the mounting unit 10, the connector unit of the mounting base, and the signal line wired on the back side of the structure X1. ing. When the control unit 9 determines that a fire has occurred, it outputs a control signal for blinking or lighting the light source 81 of the display unit 8 (operation lamp) to the lighting circuit of the circuit module.
 (2.7)熱検知部の配置構造
 ここで本実施形態の熱検知部3の配置構造について説明する。
(2.7) Arrangement Structure of Heat Detection Unit Here, the arrangement structure of the heat detection unit 3 of the present embodiment will be described.
 本実施形態では、上述の通り、熱検知部3の熱検知素子30が、基板2の第1面21に実装されるチップサーミスタである。そのため、感知器1全体としての小型化(特に薄型化)を図ることができる。またリードタイプのサーミスタに比べて、サーミスタ自体のコスト、及びその実装コストについても、安価に抑えることができる。 In the present embodiment, as described above, the heat detection element 30 of the heat detection unit 3 is a chip thermistor mounted on the first surface 21 of the substrate 2. Therefore, the sensor 1 as a whole can be downsized (particularly thin). Further, the cost of the thermistor itself and the mounting cost thereof can be suppressed to be lower than those of the lead type thermistor.
 さらに本実施形態では、基板2の第1面21(表面)の少なくとも一部の領域は、流路6に露出している。ここで、第1面21の中央には煙検知部4が配置されており、筐体5の内部空間SP1の中央部は、概ね煙検知部4が占有している。流路6は、実質的に、内部空間SP1のうち中央部(煙検知部4)の周囲の空間に相当する。言い換えると、流路6は、概ねドーナツ形状となっている。したがって、本実施形態では、基板2の第1面21の全領域うち、煙検知部4の実装領域以外の周辺領域が、流路6に露出していることになる。周辺領域には、上述した合計8つの延出部(201~204)の上面も含まれる。 Further, in the present embodiment, at least a part of the area of the first surface 21 (surface) of the substrate 2 is exposed in the flow path 6. Here, the smoke detector 4 is arranged in the center of the first surface 21, and the smoke detector 4 substantially occupies the center of the internal space SP1 of the housing 5. The flow path 6 substantially corresponds to the space around the central portion (smoke detection unit 4) of the internal space SP1. In other words, the flow path 6 has a generally donut shape. Therefore, in the present embodiment, the entire peripheral area of the first surface 21 of the substrate 2 other than the mounting area of the smoke detector 4 is exposed in the flow path 6. The peripheral area also includes the upper surfaces of the above-mentioned eight extending portions (201 to 204) in total.
 このように基板2の第1面21の周辺領域が流路6に露出していることで、第1延出部201及び第3延出部203にある4つの熱検知素子30が、チップサーミスタでありながらも、流路6を流れる気体に曝される可能性をより高めることができる。 Since the peripheral region of the first surface 21 of the substrate 2 is exposed to the flow path 6 in this way, the four thermal detection elements 30 in the first extending portion 201 and the third extending portion 203 are connected to the chip thermistor. However, the possibility of being exposed to the gas flowing through the flow path 6 can be further increased.
 すなわち、例えば火災等の発生に起因して熱を持った気体が下から上昇する際に、複数の開口部7から筐体5内に導入されて流路6を流れる。その時に、熱検知素子30が、火災に相当する温度の熱を検知して、感知器1は、速やかに火災が発生していると判定できる。その結果、感知器1における熱の検知性能をより向上させつつ、感知器1の小型化を図ることができる。 That is, for example, when a gas having heat rises from below due to the occurrence of a fire or the like, it is introduced into the housing 5 through the plurality of openings 7 and flows through the flow path 6. At that time, the heat detection element 30 detects heat at a temperature corresponding to a fire, and the detector 1 can quickly determine that a fire has occurred. As a result, the sensor 1 can be downsized while further improving the heat detection performance of the sensor 1.
 ここで本実施形態の感知器1は煙検知部4も更に備えていて、流路6の奥となる内部空間SP1の中央部には、煙検知部4が位置している。言い換えれば、流路6は、熱も煙も通り得る共通の流路である。したがって、複数の開口部7から筐体5内に導入された気体が規定以上の煙濃度を有していれば、煙の検知も行える。したがって、火災の感知性能を高めつつ、感知器1全体としての小型化を図ることができる。 Here, the sensor 1 of the present embodiment further includes a smoke detection unit 4, and the smoke detection unit 4 is located at the center of the internal space SP1 behind the flow path 6. In other words, the flow path 6 is a common flow path through which heat and smoke can pass. Therefore, if the gas introduced into the housing 5 through the plurality of openings 7 has a smoke concentration higher than the specified value, smoke can be detected. Therefore, it is possible to reduce the size of the detector 1 as a whole while improving the fire detection performance.
 また本実施形態では、チップサーミスタである各熱検知素子30は、互いに異なる1つの開口部7と対向するように配置されている。図1で言えば、左側にある熱検知素子30は、左側にある1つの開口部7と対向するように配置され、右側にある熱検知素子30は、右側にある別の開口部7と対向するように配置されている。そして、各熱検知素子30は、外部空間SP2の側から、対応する開口部7の開口領域70(図1及び図5参照)を見たときに、略矩形状の開口領域70内に収まるように配置されている。言い換えれば、各熱検知素子30は、筐体5の円筒体510の法線方向に沿ってその熱検知素子30を見たときに、開口領域70内に収まるように配置されている。要するに、開口領域70に対して投影された熱検知素子30の領域が、開口領域70内に収まっている。したがって、熱検知素子30の少なくとも一部が、開口領域70の外、すなわち筐体5の円筒体510の裏側又は桟部512の裏側に隠れるように配置される場合に比べて、開口部7から入り込んだ気体に曝される可能性をより高めることができる。 Further, in the present embodiment, each heat detection element 30 which is a chip thermistor is arranged so as to face one opening 7 different from the other. In FIG. 1, the heat detection element 30 on the left side is arranged to face one opening 7 on the left side, and the heat detection element 30 on the right side faces another opening 7 on the right side. It is arranged to. Then, each heat detection element 30 is placed within the substantially rectangular opening area 70 when the opening area 70 (see FIGS. 1 and 5) of the corresponding opening 7 is viewed from the external space SP2 side. It is located in. In other words, each heat detection element 30 is arranged so as to be within the opening region 70 when the heat detection element 30 is viewed along the normal direction of the cylindrical body 510 of the housing 5. In short, the area of the heat detection element 30 projected onto the opening area 70 is contained in the opening area 70. Therefore, as compared with the case where at least a part of the heat detecting element 30 is arranged so as to be hidden outside the opening region 70, that is, behind the cylindrical body 510 of the housing 5 or the back side of the crosspiece 512, the heat detecting element 30 is not exposed from the opening 7. The possibility of being exposed to the gas that has entered can be increased.
 特に本実施形態では、チップサーミスタである各熱検知素子30は、図5に示すように、外部空間SP2の側から開口領域70を見たときに、開口領域70内において、第1面21と直交する方向(上下方向)における開口領域70の中央に位置する。言い換えると、各熱検知素子30が開口領域70の中央に位置するように、開口部7と基板2との位置関係が規定されている。この位置関係は、例えば、表カバー51の基部511の裏側から突出して基板2と接触しているリブ514(図1参照)の突出量、及び取付部10の接続片101の差込量等によって調整される。このような位置関係により、例えば熱検知素子30が開口領域70の一端寄り(上端寄り又は下端寄り)に位置する場合に比べて、熱検知素子30が、開口部7から入り込んだ気体に曝される可能性を更に高めることができる。 In particular, in the present embodiment, as shown in FIG. 5, each heat detection element 30 which is a chip thermistor has the first surface 21 within the opening area 70 when the opening area 70 is viewed from the external space SP2 side. It is located at the center of the opening region 70 in the orthogonal direction (vertical direction). In other words, the positional relationship between the opening 7 and the substrate 2 is defined so that each heat detecting element 30 is located at the center of the opening region 70. This positional relationship depends on, for example, the protrusion amount of the rib 514 (see FIG. 1) protruding from the back side of the base portion 511 of the front cover 51 and in contact with the substrate 2 and the insertion amount of the connection piece 101 of the mounting portion 10. Adjusted. Due to such a positional relationship, for example, the heat detecting element 30 is exposed to the gas entering from the opening 7 as compared with the case where the heat detecting element 30 is positioned near one end (closer to the upper end or closer to the lower end) of the opening region 70. It is possible to further increase the possibility.
 また本実施形態では、各熱検知素子30は、単に煙検知部4の側方に配置されているのではなく、開口部7の近傍に配置されている。言い換えると、流路6を、開口部7の側にある第1路61と、第1路61と繋がっていて内部空間SP1の中央部の側にある第2路62とに分けると、チップサーミスタである各熱検知素子30は第1路61内にある(図1参照)。したがって、例えばチップサーミスタが第2路62内にある場合に比べて、感知器1における熱検知に関する応答性を高めることができる。なお、既述の通り、図1では流路6を模式的に矢印線で図示しているが、実際には、第1路61は、内部空間SP1における煙検知部4の周囲の空隙部分のうちの外側半分に相当し、第2路62は、空隙部分のうちの内側半分に相当する。 Further, in the present embodiment, each heat detection element 30 is arranged not in the side of the smoke detection section 4 but in the vicinity of the opening 7. In other words, if the flow path 6 is divided into a first path 61 on the side of the opening 7 and a second path 62 connected to the first path 61 and on the side of the central portion of the internal space SP1, the chip thermistor Each heat detecting element 30 is in the first path 61 (see FIG. 1). Therefore, as compared with the case where the chip thermistor is in the second path 62, for example, it is possible to improve the responsiveness regarding the heat detection in the sensor 1. Note that, as described above, the flow path 6 is schematically illustrated by the arrow line in FIG. 1, but in reality, the first path 61 is a void portion around the smoke detection unit 4 in the internal space SP1. The second path 62 corresponds to the inner half of the void portion.
 ところで、基板2の厚み方向(上下方向)において、ラビリンス部43の内部空間の中心P1は、上下方向において、チップサーミスタである熱検知素子30と設置面55との間にあることが好ましい(図1参照)。言い換えると、熱検知素子30は、上下方向において、中心P1よりも下側にある。図3Aでは、ラビリンス部43内に配置されている光学素子41及び受光素子42を模式的に点(ドット)で図示している。本実施形態では、光学素子41及び受光素子42の高さは、互いに同じであり、光学素子41の光軸C1と受光素子42の光軸C2との交点は、一例として、中心P1と略一致する。 By the way, in the thickness direction (vertical direction) of the substrate 2, the center P1 of the internal space of the labyrinth portion 43 is preferably located between the thermal detection element 30 which is a chip thermistor and the installation surface 55 in the vertical direction (FIG. 1). In other words, the heat detecting element 30 is below the center P1 in the vertical direction. In FIG. 3A, the optical element 41 and the light receiving element 42 arranged in the labyrinth portion 43 are schematically illustrated by dots. In the present embodiment, the heights of the optical element 41 and the light receiving element 42 are the same as each other, and the intersection of the optical axis C1 of the optical element 41 and the optical axis C2 of the light receiving element 42 substantially coincides with the center P1 as an example. To do.
 光学素子41及び受光素子42の高さ位置、並びに光軸C1及びC2の向きは、光軸C1が、受光素子42の受光面と交わらない限り、特に限定されない。例えば、光学素子41及び受光素子42のうちのいずれか一方の高さは、他方の高さよりも低くてもよい。また光軸C1と光軸C2は、互いに交わらなくてもよい。この場合、煙検知部4の側方から見て光軸C1と光軸C2との間の中点が、中心P1と略一致してもよい。 The height positions of the optical element 41 and the light receiving element 42 and the directions of the optical axes C1 and C2 are not particularly limited as long as the optical axis C1 does not intersect the light receiving surface of the light receiving element 42. For example, the height of either the optical element 41 or the light receiving element 42 may be lower than the height of the other. Further, the optical axis C1 and the optical axis C2 may not intersect with each other. In this case, the midpoint between the optical axis C1 and the optical axis C2 when viewed from the side of the smoke detection unit 4 may substantially coincide with the center P1.
 このように中心P1が熱検知素子30と設置面55との間にあることで、熱を持った気体が筐体5内の流路6を流れる際に、上昇気流が発生するという特性に対して、熱検知素子30を通過した煙(気体)を効果的に煙検知部4へ誘導することができる。したがって、熱だけでなく煙も検知する感知器1において、火災の感知性能を更に高めつつ、感知器1全体としての小型化を図ることができる。 As described above, since the center P1 is between the heat detecting element 30 and the installation surface 55, an ascending air current is generated when a gas having heat flows through the flow path 6 in the housing 5. Thus, the smoke (gas) that has passed through the heat detection element 30 can be effectively guided to the smoke detection unit 4. Therefore, in the sensor 1 that detects not only heat but also smoke, the size of the sensor 1 as a whole can be reduced while further improving the fire detection performance.
 (3)変形例
 上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、上記実施形態に係る感知器1と同様の機能は、感知器1の制御方法、コンピュータプログラム、又はコンピュータプログラムを記録した非一時的記録媒体等で具現化されてもよい。
(3) Modifications The above embodiments are merely one of various embodiments of the present disclosure. The above embodiment can be variously modified according to the design and the like as long as the object of the present disclosure can be achieved. Further, the same function as that of the sensor 1 according to the above-described embodiment may be embodied by a control method of the sensor 1, a computer program, or a non-transitory recording medium having the computer program recorded therein.
 以下、上記実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。なお、以下では、上記実施形態を「基本例」と呼ぶこともある。 The following is a list of modifications of the above embodiment. The modifications described below can be applied in appropriate combinations. In addition, below, the above-mentioned embodiment may be called a "basic example."
 本開示における感知器1の制御部9は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における感知器1の制御部9としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。 The control unit 9 of the sensor 1 according to the present disclosure includes a computer system. The computer system mainly has a processor and a memory as hardware. The function as the control unit 9 of the sensor 1 according to the present disclosure is realized by the processor executing the program recorded in the memory of the computer system. The program may be pre-recorded in the memory of the computer system, may be provided through an electric communication line, or may be recorded in a non-transitory recording medium such as a memory card, an optical disk, a hard disk drive, which can be read by the computer system. May be provided. A processor of a computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large-scale integrated circuit (LSI). The integrated circuit such as an IC or an LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). In addition, FPGAs (Field-Programmable Gate Arrays) that are programmed after the LSI is manufactured, or logic devices that can reconfigure the junction relationships inside the LSI or the circuit sections inside the LSI can also be used as processors. You can The plurality of electronic circuits may be integrated on one chip, or may be provided separately on a plurality of chips. The plurality of chips may be integrated in one device, or may be provided separately in a plurality of devices. The computer system includes a microcontroller having one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or more electronic circuits including a semiconductor integrated circuit or a large-scale integrated circuit.
 また、感知器1の制御部9における複数の機能が、1つの筐体内に集約されていることは感知器1に必須の構成ではなく、感知器1の構成要素は、複数の筐体に分散して設けられていてもよい。さらに、感知器1の少なくとも一部の機能、例えば、感知器1の一部の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。反対に、基本例のように、感知器1の複数の機能が1つの筐体内に集約されていてもよい。 Further, it is not an essential configuration of the sensor 1 that the plurality of functions of the control unit 9 of the sensor 1 are integrated in one housing, and the constituent elements of the sensor 1 are distributed in the plurality of housings. It may be provided. Furthermore, at least a part of the functions of the sensor 1, for example, a part of the functions of the sensor 1 may be realized by a cloud (cloud computing) or the like. On the contrary, as in the basic example, the plurality of functions of the sensor 1 may be integrated in one housing.
 (3.1)変形例1
 以下、本変形例(変形例1)の感知器1Aについて、図6を参照しながら説明する。基本例の感知器1と概ね共通する構成要素については、同じ参照符号を付してそれらの説明を適宜に省略することもある。なお、図6は、感知器1Aの模式的な断面図を示す。
(3.1) Modification 1
Hereinafter, the sensor 1A of the present modification (Modification 1) will be described with reference to FIG. Constituent elements that are substantially common to the sensor 1 of the basic example are denoted by the same reference numerals, and description thereof may be appropriately omitted. Note that FIG. 6 shows a schematic cross-sectional view of the sensor 1A.
 感知器1Aは、内部空間SP1内に、気流調整部Z1を備えている点で、基本例と異なる。気流調整部Z1は、筐体5の表カバー51における円筒体510の下縁から、煙検知部4に向かって延び出ている。気流調整部Z1は、上下方向から見て、略ドーナツ状の板部材である。気流調整部Z1は、表カバー51と一体となって形成されてもよいし、表カバー51とは別部材で、表カバー51に対してネジ止め等により固定されてもよい。 The sensor 1A differs from the basic example in that the airflow adjusting unit Z1 is provided in the internal space SP1. The airflow adjusting unit Z1 extends from the lower edge of the cylindrical body 510 in the front cover 51 of the housing 5 toward the smoke detecting unit 4. The airflow adjusting unit Z1 is a plate member having a substantially donut shape when viewed in the vertical direction. The airflow adjusting unit Z1 may be formed integrally with the front cover 51, or may be a member separate from the front cover 51 and fixed to the front cover 51 by screwing or the like.
 気流調整部Z1は、開口部7の縁から筐体5内に向かって一定の距離の間、基板2に沿って真っ直ぐ延びている。ただし、気流調整部Z1は、途中から内部空間SP1の中央部に向かうほど、設置面55に近づく方向に傾斜している。 The airflow adjusting unit Z1 extends straight along the substrate 2 for a certain distance from the edge of the opening 7 into the housing 5. However, the airflow adjusting unit Z1 is inclined toward the installation surface 55 as it goes from the middle to the center of the internal space SP1.
 つまり、感知器1Aでは、気流調整部Z1が設けられていることにより、開口部7と内部空間SP1の中央部とを結ぶ方向に沿って見たときの、第1路61の開口断面積は、第2路62の開口断面積よりも小さく設定されている。したがって、開口部7を通じて流路6内へ入った気体を、狭い空間の第1路61から、広い空間の第2路62に向かって流れるように促進させることができる。 That is, in the sensor 1A, since the airflow adjusting unit Z1 is provided, the opening cross-sectional area of the first passage 61 when viewed along the direction connecting the opening 7 and the central portion of the internal space SP1 is , Smaller than the opening cross-sectional area of the second path 62. Therefore, the gas that has entered the flow path 6 through the opening 7 can be promoted to flow from the first path 61 having a narrow space toward the second path 62 having a wide space.
 特に、気流調整部Z1が途中から設置面55に近づく方向に傾斜しているため、第2路62は、第1路61から上記中央部に向かうほど、設置面55に近づく方向に拡がっている。したがって、熱を持った気体が筐体5内の流路6を流れる際に、上昇気流が発生するという特性に対して、熱検知素子30を通過した煙(気体)を効果的に煙検知部4へ誘導することができる。 In particular, since the airflow adjusting unit Z1 is inclined in the direction of approaching the installation surface 55 from the middle, the second path 62 expands in the direction of approaching the installation surface 55 from the first path 61 toward the central portion. . Therefore, the smoke (gas) that has passed through the heat detecting element 30 can be effectively treated by the smoke detecting section against the characteristic that an ascending air current is generated when the gas having heat flows through the flow path 6 in the housing 5. You can lead to 4.
 (3.2)変形例2
 以下、本変形例(変形例2)の感知器1Bについて、図7を参照しながら説明する。基本例の感知器1と概ね共通する構成要素については、同じ参照符号を付してそれらの説明を適宜に省略することもある。なお、図7は、感知器1Bの模式的な断面図を示す。
(3.2) Modification 2
Hereinafter, the sensor 1B of this modification (Modification 2) will be described with reference to FIG. Constituent elements that are substantially common to the sensor 1 of the basic example are denoted by the same reference numerals, and description thereof may be appropriately omitted. Note that FIG. 7 shows a schematic cross-sectional view of the sensor 1B.
 感知器1Bは、煙検知部4が基板2の第1面21ではなく、第2面22に実装されている点で、基本例と異なる。なお、熱検知素子30は、基本例と同様に、第1面21に実装されている。 The sensor 1B differs from the basic example in that the smoke detection unit 4 is mounted on the second surface 22 of the substrate 2 instead of the first surface 21. The heat detecting element 30 is mounted on the first surface 21 as in the basic example.
 この感知器1Bの筐体5では、煙検知部4が第2面22(下面)に実装されているため、表カバー51が、煙検知部4を収容する収容凹部515を有している。具体的には、表カバー51の基部511は、その中央部が下方に凸となるように形成されている。なお、基本例では、裏カバー52が、煙検知部4の上部を収容するための収容凹部521を有している(図1参照)。 In the case 5 of the sensor 1B, since the smoke detector 4 is mounted on the second surface 22 (lower surface), the front cover 51 has the housing recess 515 for housing the smoke detector 4. Specifically, the base portion 511 of the front cover 51 is formed such that the central portion thereof is convex downward. In the basic example, the back cover 52 has an accommodating recess 521 for accommodating the upper portion of the smoke detecting section 4 (see FIG. 1).
 基部511は、その凸となる部位5110の周壁に、気体(煙)を筐体5内に導入させる孔部5111を有している。 The base 511 has a hole 5111 for introducing gas (smoke) into the housing 5 on the peripheral wall of the convex portion 5110.
 また流路6は、基板2を境に、上側流路6Xと、下側流路6Yの2手に分かれるように構成されている。上側流路6Xを通る熱を持った気体は、熱検知素子30を通ることになる。また下側流路6Yを通る気体の一部は、基板2の貫通孔31(図3B参照)を通って上側流路6Xへ上昇し、熱検知素子30を通ることになる。また下側流路6Yを通る気体の残りは、そのまま中央部の煙検知部4に向かう。 The channel 6 is divided into two parts, an upper channel 6X and a lower channel 6Y, with the substrate 2 as a boundary. The gas having heat passing through the upper flow path 6X passes through the heat detecting element 30. Further, a part of the gas passing through the lower flow path 6Y goes up to the upper flow path 6X through the through hole 31 (see FIG. 3B) of the substrate 2 and passes through the heat detecting element 30. The rest of the gas passing through the lower flow path 6Y goes directly to the smoke detector 4 in the center.
 (3.3)変形例3
 以下、本変形例(変形例3)の感知器1Cについて、図8A及び図8Bを参照しながら説明する。基本例の感知器1と概ね共通する構成要素については、同じ参照符号を付してそれらの説明を適宜に省略することもある。なお、図8Aは、感知器1Cを下側から見た斜視図で、図8Bは、感知器1Cの下側から見た、一部(基板2のみ)透視化されている平面図である。
(3.3) Modification 3
Hereinafter, the sensor 1C of the present modification (Modification 3) will be described with reference to FIGS. 8A and 8B. Constituent elements that are substantially common to the sensor 1 of the basic example are denoted by the same reference numerals, and description thereof may be appropriately omitted. Note that FIG. 8A is a perspective view of the sensor 1C viewed from below, and FIG. 8B is a plan view of a part (only the substrate 2) viewed from below of the sensor 1C.
 感知器1Cは、一例として、いわゆるP型(Proprietary-type)の通信方式で火災信号を外部に送信する、P型熱感知器である。感知器1Cは、基本例と同様に熱検知部3を備える一方で、基本例と異なり煙検知部4を備えていない。すなわち、感知器1Cは、熱の検知のみにより火災等の発生を判定する。 The detector 1C is, for example, a P-type heat detector that transmits a fire signal to the outside by a so-called P-type (Proprietary-type) communication method. The sensor 1C includes the heat detection unit 3 as in the basic example, but does not include the smoke detection unit 4 unlike the basic example. That is, the sensor 1C determines the occurrence of a fire or the like only by detecting heat.
 また感知器1Cでは、熱検知素子30の数が3つである点も、基本例と異なる(基本例では4つ)。 Also, the sensor 1C differs from the basic example in that the number of heat detecting elements 30 is three (four in the basic example).
 感知器1Cの基板2は、図8Bに示すように、基板2を下側から見て略菱形状となっている。3つの熱検知素子30のうち2つは、その菱形状の基板2の第1面21(上面)に表面実装されている。当該2つの熱検知素子30は、第1面21(上面)において、左右方向における対角する位置に、それぞれ配置されている。具体的には、基板2は、対角する位置における両縁部に、外方に向かって(左右方向に対してやや傾きを持って)突出する、一対の凸部23を、有している。各凸部23の上面に、対応する熱検知素子30が配置されている。もう1つの熱検知素子30は、基板2の中央部の上面に配置されている。 As shown in FIG. 8B, the substrate 2 of the sensor 1C has a substantially rhombic shape when the substrate 2 is viewed from below. Two of the three heat detecting elements 30 are surface-mounted on the first surface 21 (upper surface) of the diamond-shaped substrate 2. The two heat detection elements 30 are arranged at diagonal positions in the left-right direction on the first surface 21 (upper surface). Specifically, the substrate 2 has a pair of convex portions 23 protruding outward (having a slight inclination with respect to the left-right direction) at both edge portions at diagonal positions. . A corresponding heat detecting element 30 is arranged on the upper surface of each convex portion 23. The other heat detecting element 30 is arranged on the upper surface of the central portion of the substrate 2.
 また基本例と同様に、各熱検知素子30の近傍には、熱絶縁性を向上させるために貫通孔31が設けられている。ただし、基板2の中央部に配置されている熱検知素子30については、半円状の2つの貫通孔31が、その熱検知素子30を間に挟むように配置されている。 Also, as in the basic example, through holes 31 are provided in the vicinity of each heat detection element 30 in order to improve heat insulation. However, with respect to the heat detecting element 30 arranged in the central portion of the substrate 2, two semicircular through holes 31 are arranged so as to sandwich the heat detecting element 30 therebetween.
 また感知器1Cの表カバー51は、その基部511に、1つの流入口(縦孔)7Bと、2つの補助口(縦孔)56と、を有している。2つの補助口56は、基部511の左右の両縁近傍に配置され、流入口7Bは、基部511の中央に配置されている。流入口7B及び2つの補助口56の各々は、表カバー51の基部511をその厚み方向に貫通している。基部511の左右の両縁近傍にある2つの補助口56は、略三日月形状の開口を有し、基部511の中央にある流入口7Bは、略円形状の開口を有している。そして、基板2の一対の凸部23は、2つの補助口56とそれぞれ一対一で対応するように対向し、基板2の中央部は、中央の流入口7Bと対向する。その結果、凸部23及び基板2の中央部は、図8Bに示すように、2つの補助口56と流入口7Bとからそれぞれ露出している。したがって、上昇してくる熱を持った気体は、2つの補助口56及び流入口7Bを通って筐体5内に入り、さらに貫通孔31を通って第1面21(上面)側に流れ込む。よって、熱検知素子30は、開口部7(側面口7A:横孔)から流入してくる気体だけでなく、2つの補助口56及び流入口7Bから流入してくる気体にも曝され易くなる。 Further, the front cover 51 of the sensor 1C has one inflow port (vertical hole) 7B and two auxiliary ports (vertical hole) 56 at its base 511. The two auxiliary ports 56 are arranged near both left and right edges of the base 511, and the inflow port 7B is arranged in the center of the base 511. Each of the inflow port 7B and the two auxiliary ports 56 penetrates the base portion 511 of the front cover 51 in the thickness direction thereof. The two auxiliary ports 56 near the left and right edges of the base 511 have a substantially crescent-shaped opening, and the inflow port 7B at the center of the base 511 has a substantially circular opening. The pair of convex portions 23 of the substrate 2 face the two auxiliary ports 56 in a one-to-one correspondence, and the central portion of the substrate 2 faces the central inlet 7B. As a result, the convex portion 23 and the central portion of the substrate 2 are respectively exposed from the two auxiliary ports 56 and the inflow port 7B, as shown in FIG. 8B. Therefore, the rising gas having heat enters the housing 5 through the two auxiliary ports 56 and the inflow port 7B, and further flows into the first surface 21 (upper surface) side through the through hole 31. Therefore, the heat detecting element 30 is easily exposed not only to the gas flowing in from the opening 7 (side opening 7A: lateral hole) but also to the gas flowing in from the two auxiliary openings 56 and the inflow opening 7B. .
 この構成においても、火災の感知性能を更に高めつつ、感知器1C全体としての小型化(特に薄型化)を図ることができる。 Even with this configuration, it is possible to reduce the size of the detector 1C as a whole (especially to reduce the thickness) while further improving the fire detection performance.
 (3.4)変形例4
 以下、本変形例(変形例4)の感知器1Dについて、図9A及び図9Bを参照しながら説明する。基本例の感知器1と概ね共通する構成要素については、同じ参照符号を付してそれらの説明を適宜に省略することもある。なお、図9Aは、感知器1Dを下側から見た斜視図で、図9Bは、感知器1Dの下側から見た、一部(基板2のみ)透視化されている平面図である。
(3.4) Modification 4
Hereinafter, the sensor 1D of the present modification (modification 4) will be described with reference to FIGS. 9A and 9B. Constituent elements that are substantially common to the sensor 1 of the basic example are denoted by the same reference numerals, and description thereof may be appropriately omitted. Note that FIG. 9A is a perspective view of the sensor 1D seen from below, and FIG. 9B is a plan view partially (only the substrate 2) seen from below of the sensor 1D.
 感知器1Dは、一例として、いわゆるR型(Record-type)の通信方式で火災信号を外部に送信する、R型熱感知器である。感知器1Dは、基本例と同様に熱検知部3を備える一方で、基本例と異なり煙検知部4を備えていない。すなわち、感知器1Dは、変形例3の感知器1Cと同様に、熱の検知のみにより火災等の発生を判定する。 The detector 1D is, for example, an R-type heat detector that transmits a fire signal to the outside by a so-called R-type (Record-type) communication method. The sensor 1D includes the heat detection unit 3 as in the basic example, but does not include the smoke detection unit 4 unlike the basic example. That is, the sensor 1D, like the sensor 1C of Modification 3, determines the occurrence of a fire or the like only by detecting heat.
 また感知器1Dでは、熱検知素子30の数が5つである点も、基本例と異なる(基本例では4つ)。 Also, the sensor 1D differs from the basic example in that the number of the heat detection elements 30 is five (four in the basic example).
 感知器1Dの基板2は、図9Bに示すように、基本例の基板2とやや類似した形状となっている。具体的には、感知器1Dの基板2は、円形状の本体部200と、本体部200の縁において、本体部200の中心から離れる方向に延出した複数(図示例では6つ)の延出部分を有している。以下、6つの延出部分を、一対の第1延出部201、一対の第2延出部202、及び一対の第3延出部203と呼ぶ。5つの熱検知素子30のうち1つは、本体部200の中央に配置され、残り4つの熱検知素子30、及び2つの光源81は、6つの延出部(201、202、203)に、それぞれ配置されている。 The substrate 2 of the sensor 1D has a shape slightly similar to that of the substrate 2 of the basic example, as shown in FIG. 9B. Specifically, the substrate 2 of the sensor 1D has a circular main body 200, and a plurality of (six in the illustrated example) extending in a direction away from the center of the main body 200 at the edge of the main body 200. It has a protruding part. Hereinafter, the six extending portions are referred to as a pair of first extending portions 201, a pair of second extending portions 202, and a pair of third extending portions 203. One of the five heat detecting elements 30 is arranged in the center of the main body 200, and the remaining four heat detecting elements 30 and the two light sources 81 are provided in the six extending portions (201, 202, 203). Each is arranged.
 一対の第1延出部201は、本体部200の左右の縁から、それぞれ、互いに離れる方向に延出している。各第1延出部201は、その先端に、さらに幅狭の小片部Y1を有している。各小片部Y1の上面に、対応する1つの熱検知素子30が配置されている。 The pair of first extending portions 201 extend from the left and right edges of the main body portion 200 in directions away from each other. Each of the first extending portions 201 has a narrower piece Y1 at the tip thereof. One corresponding heat detection element 30 is arranged on the upper surface of each small piece portion Y1.
 一対の第2延出部202は、本体部200の前後の縁から、それぞれ、互いに離れる方向に延出している。第2延出部202の延出量は、他の延出部の延出量よりも少ない。各第2延出部202の上面に、対応する1つの光源81が配置されている。 The pair of second extending portions 202 extend from the front and rear edges of the main body portion 200 in directions away from each other. The extension amount of the second extension portion 202 is smaller than the extension amounts of the other extension portions. One corresponding light source 81 is arranged on the upper surface of each second extending portion 202.
 一対の第3延出部203は、基板2の下側から見て、本体部200の前後の縁より反時計回りの方向に少しずれた位置から、それぞれ、互いに離れる方向に延出している。具体的には、前側の第3延出部203は、前側の第2延出部202の左横に配置され、後側の第3延出部203は、後側の第2延出部202の右横に配置されている。各第3延出部203も、第1延出部201と同様に、その先端に、さらに幅狭の小片部Y1を有している。各小片部Y1の上面に、対応する1つの熱検知素子30が配置されている。 The pair of third extending portions 203 respectively extend away from each other from positions slightly offset in the counterclockwise direction from the front and rear edges of the main body portion 200 when viewed from the lower side of the substrate 2. Specifically, the third extension portion 203 on the front side is disposed on the left side of the second extension portion 202 on the front side, and the third extension portion 203 on the rear side is the second extension portion 202 on the rear side. It is located on the right side of. Similarly to the first extending portion 201, each of the third extending portions 203 also has a narrower piece portion Y1 at the tip thereof. One corresponding heat detection element 30 is arranged on the upper surface of each small piece portion Y1.
 要するに、感知器1Dの基板2は、一例として、その中心を軸に180度回転させることで対称となる、二回対称の形状である。 In short, the substrate 2 of the sensor 1D has, for example, a two-fold symmetric shape that is symmetric by rotating the center of the sensor 1D by 180 degrees about the axis.
 また基本例と同様に、各熱検知素子30の近傍には、熱絶縁性を向上させるために貫通孔31が設けられている。ただし、基板2の中央部に配置されている熱検知素子30については、半円状の2つの貫通孔31が、その熱検知素子30を間に挟むように配置されている。また基本例と同様に、感知器1Dの表カバー51には、表示部8の一対のガイド部82が露出している。 Also, as in the basic example, through holes 31 are provided in the vicinity of each heat detection element 30 in order to improve heat insulation. However, with respect to the heat detecting element 30 arranged in the central portion of the substrate 2, two semicircular through holes 31 are arranged so as to sandwich the heat detecting element 30 therebetween. Further, similarly to the basic example, the pair of guide portions 82 of the display unit 8 are exposed on the front cover 51 of the sensor 1D.
 感知器1Dの表カバー51は、その基部511に、1つの流入口(縦孔)7Bと、2つの補助口(縦孔)57と、を有している。2つの補助口57は、基部511の左右の両縁近傍に配置され、流入口7Bは、基部511の中央に配置されている。2つの補助口57及び流入口7Bの各々は、表カバー51の基部511をその厚み方向に貫通している。基部511の左右の両縁近傍にある2つの補助口57は、略矩形状の開口を有し、基部511の中央にある流入口7Bは、略円形状の開口を有している。そして、基板2の一対の第1延出部201における小片部Y1の先端は、左右2つの補助口57とそれぞれ一対一で対応するように対向し、基板2の中央部は、中央の流入口7Bと対向する。その結果、小片部Y1の先端及び基板2の中央部は、図9Bに示すように、2つの補助口57と流入口7Bとからそれぞれ露出している。したがって、上昇してくる熱を持った気体は、2つの補助口57及び流入口7Bを通って筐体5内に入り、さらに貫通孔31を通って第1面21(上面)側に流れ込む。よって、熱検知素子30は、開口部7(側面口7A:横孔)から流入してくる気体だけでなく、2つの補助口57及び流入口7Bから流入してくる気体にも曝され易くなる。 The front cover 51 of the sensor 1D has one inflow port (vertical hole) 7B and two auxiliary ports (vertical hole) 57 at its base 511. The two auxiliary ports 57 are arranged near both left and right edges of the base portion 511, and the inflow port 7B is arranged at the center of the base portion 511. Each of the two auxiliary ports 57 and the inflow port 7B penetrates the base portion 511 of the front cover 51 in the thickness direction thereof. The two auxiliary ports 57 near the left and right edges of the base 511 have a substantially rectangular opening, and the inflow port 7B at the center of the base 511 has a substantially circular opening. The tip ends of the small piece portions Y1 of the pair of first extending portions 201 of the substrate 2 face the left and right auxiliary ports 57 in a one-to-one correspondence, and the central portion of the substrate 2 has a central inlet port. Face 7B. As a result, the tip of the small piece portion Y1 and the central portion of the substrate 2 are exposed from the two auxiliary ports 57 and the inflow port 7B, respectively, as shown in FIG. 9B. Therefore, the rising gas having heat enters the housing 5 through the two auxiliary ports 57 and the inflow port 7B, and further flows into the first surface 21 (upper surface) side through the through hole 31. Therefore, the heat detecting element 30 is easily exposed not only to the gas flowing in from the opening 7 (side surface port 7A: lateral hole) but also to the gas flowing in from the two auxiliary ports 57 and the inflow port 7B. .
 この構成においても、火災の感知性能を更に高めつつ、感知器1D全体としての小型化(特に薄型化)を図ることができる。 Even with this configuration, it is possible to reduce the size of the detector 1D as a whole (especially to reduce the thickness) while further improving the fire detection performance.
 (3.5)変形例5
 以下、本変形例(変形例5)の感知器1Eについて、図10A及び図10Bを参照しながら説明する。基本例の感知器1と概ね共通する構成要素については、同じ参照符号を付してそれらの説明を適宜に省略することもある。なお、図10Aは、感知器1Eを下側から見た斜視図で、図10Bは、感知器1Eの下側から見た、一部(基板2のみ)透視化されている平面図である。
(3.5) Modification 5
Hereinafter, the sensor 1E of the present modification (modification 5) will be described with reference to FIGS. 10A and 10B. Constituent elements that are substantially common to the sensor 1 of the basic example are denoted by the same reference numerals, and description thereof may be appropriately omitted. 10A is a perspective view of the sensor 1E seen from below, and FIG. 10B is a plan view partially (only the substrate 2) seen from below of the sensor 1E.
 感知器1Eは、一例として火災の発生時に警報音等の音を出力する火災警報器である。感知器1Eは、基本例と同様に熱検知部3を備える一方で、基本例と異なり煙検知部4を備えていない。すなわち、感知器1Eは、変形例3の感知器1C及び変形例4の感知器1Dと同様に、熱の検知のみにより火災等の発生を判定する。 The sensor 1E is, for example, a fire alarm that outputs a sound such as an alarm sound when a fire occurs. The sensor 1E includes the heat detection unit 3 as in the basic example, but does not include the smoke detection unit 4 unlike the basic example. That is, the sensor 1E, like the sensor 1C of the modified example 3 and the sensor 1D of the modified example 4, determines the occurrence of a fire or the like only by detecting heat.
 また感知器1Eは、警報音等の音を出力するスピーカ、及び音響回路等を備えている点も、基本例と異なる。また感知器1Eは、一例として電池式の火災警報器である。したがって、感知器1Eは、電池、及び電池を収容するための収容空間等を有している。感知器1Eでは、操作部U1が表カバー51の正面に露出している。 Also, the sensor 1E is different from the basic example in that it is equipped with a speaker that outputs a sound such as an alarm sound and an acoustic circuit. The sensor 1E is, for example, a battery-type fire alarm. Therefore, the sensor 1E has a battery, a housing space for housing the battery, and the like. In the sensor 1E, the operation unit U1 is exposed on the front surface of the front cover 51.
 操作部U1は、外部からの操作を受け付ける。操作部U1は、ユーザの指等による押し操作により上方へ押し込み可能となっている。また操作部U1は、透光性を有した円板状の部材である。操作部U1は、筐体5内の作動灯と対向して配置されている。さらに操作部U1は、押し操作により、筐体5内の押し釦スイッチを押すように構成されている。例えば警報音を発報中に操作部U1が押されると、警報音の出力が停止される。また感知器1Eが動作中である時、又は電池切れ等の発生時には、操作部U1が光る。なお、操作部U1への操作により動作試験等も実行可能である。 The operation unit U1 receives an operation from the outside. The operation unit U1 can be pushed upward by a pressing operation with a user's finger or the like. The operation unit U1 is a disc-shaped member having a light-transmitting property. The operation unit U1 is arranged so as to face the operation lamp in the housing 5. Further, the operation unit U1 is configured to press a push button switch in the housing 5 by a pressing operation. For example, if the operation unit U1 is pressed while the alarm sound is issued, the output of the alarm sound is stopped. Further, when the sensor 1E is operating or when the battery runs out, the operation unit U1 lights up. An operation test or the like can be executed by operating the operation unit U1.
 感知器1Eでは、熱検知素子30の数が3つである点も、基本例と異なる(基本例では4つ)。 The sensor 1E also differs from the basic example in that the number of heat detecting elements 30 is three (four in the basic example).
 感知器1Eの基板2は、図10Bに示すように、基板2を下側から見て逆Y字形状となっている。感知器1Eは、筐体5内に、スピーカ、電池及び操作部U1等、比較的体積の大きい部材が収容又は支持されるため、それらを避けるために、基板2は、省スペース化となる逆Y字形状を有している。 The substrate 2 of the sensor 1E has an inverted Y-shape when the substrate 2 is viewed from below, as shown in FIG. 10B. In the sensor 1E, a member having a relatively large volume such as a speaker, a battery, and an operation unit U1 is housed or supported in the housing 5. Therefore, in order to avoid them, the substrate 2 is space-saving. It has a Y shape.
 具体的には、感知器1Eの基板2は、左側が欠けた円形状の本体部200と、本体部200の縁において、本体部200の中心から離れる方向に延出した複数(図示例では3つ)の延出部分を有している。以下、3つの延出部分を、延出片205と呼ぶ。3つの熱検知素子30は、3つの延出片205に、それぞれ配置されている。 Specifically, the substrate 2 of the sensor 1 </ b> E has a circular main body portion 200 with a left side chipped off, and a plurality of edges (3 in the example shown in the drawing) extending from the center of the main body portion 200 at the edge of the main body portion 200. 3) has an extended portion. Hereinafter, the three extending portions will be referred to as extending pieces 205. The three heat detecting elements 30 are arranged on the three extending pieces 205, respectively.
 3つの延出片205のうち前側の1つの延出片205は、本体部200の前縁から延出していて、その先端の上面に、対応する1つの熱検知素子30が配置されている。3つの延出片205のうち後側の2つの延出片205は、本体部200の後縁より少し左右にずれた位置から延出していて、それらの先端の上面に、対応する2つの熱検知素子30がそれぞれ配置されている。 One of the three extension pieces 205 on the front side extends from the front edge of the main body 200, and one corresponding heat detection element 30 is arranged on the upper surface of the tip. Of the three extending pieces 205, the two rearward extending pieces 205 extend from positions slightly displaced to the left and right from the rear edge of the main body section 200, and the corresponding two thermal pieces are provided on the upper surfaces of their tips. The detection elements 30 are arranged respectively.
 また基本例と同様に、各熱検知素子30より内側の近傍には、熱絶縁性を向上させるために貫通孔31(合計3つ)が設けられている。 Also, as in the basic example, through holes 31 (three in total) are provided in the vicinity of the inside of each heat detecting element 30 in order to improve the heat insulating property.
 感知器1Eの表カバー51は、その基部511に、1つの補助口(縦孔)58を有している。補助口58は、基部511の前縁近傍に配置されている。補助口58は、表カバー51の基部511をその厚み方向に貫通している。補助口58は、略矩形状の開口を有している。そして、3つの延出片205のうち前側の延出片205の先端は、補助口58と対向する。その結果、前側の延出片205の先端は、図10Bに示すように、補助口58から露出している。したがって、上昇してくる熱を持った気体は、補助口58を通って筐体5内に入り、さらに貫通孔31を通って第1面21(上面)側に流れ込む。よって、熱検知素子30は、開口部7(側面口7A:横孔)から流入してくる気体だけでなく、補助口58から流入してくる気体にも曝され易くなる。 The front cover 51 of the sensor 1E has one auxiliary port (vertical hole) 58 at its base 511. The auxiliary port 58 is arranged near the front edge of the base 511. The auxiliary port 58 penetrates the base portion 511 of the front cover 51 in the thickness direction thereof. The auxiliary port 58 has a substantially rectangular opening. The tip of the extension piece 205 on the front side of the three extension pieces 205 faces the auxiliary opening 58. As a result, the front end of the extension piece 205 on the front side is exposed from the auxiliary opening 58, as shown in FIG. 10B. Therefore, the rising gas having heat enters the housing 5 through the auxiliary port 58 and further flows into the first surface 21 (upper surface) side through the through hole 31. Therefore, the heat detecting element 30 is easily exposed not only to the gas flowing in from the opening 7 (side surface port 7A: lateral hole) but also to the gas flowing in from the auxiliary port 58.
 この構成においても、火災の感知性能を更に高めつつ、感知器1E全体としての小型化(特に薄型化)を図ることができる。 Even with this configuration, it is possible to reduce the size of the detector 1E as a whole (especially to make it thinner) while further improving the fire detection performance.
 (3.6)その他の変形例
 基本例の感知器1(複合火災感知器)は、変形例3~5とは異なり、表カバー51に縦孔を有していない。しかし、変形例3~5と同様に、感知器1(複合火災感知器)は、図11に示すように、表カバー51に、1又は複数の補助口(縦孔)59(図示例では2つ)を有していてもよい。
(3.6) Other Modifications The sensor 1 (composite fire sensor) of the basic example does not have a vertical hole in the front cover 51, unlike the modifications 3 to 5. However, as in Modifications 3 to 5, the detector 1 (composite fire detector) has one or more auxiliary ports (vertical holes) 59 (two in the illustrated example) in the front cover 51, as shown in FIG. One).
 基本例では、基板2の第1面21(上面)に熱検知素子30が実装されている。しかし、熱検知素子30は、基板2の第2面22(下面)に実装されてもよい。あるいは、複数の熱検知素子30のうちの一部が第1面21に、残りが第2面22に、分かれて実装されてもよい。また、例えば熱検知素子30と煙検知部4の両方が、基板2の第2面22(下面)に実装されてもよい。 In the basic example, the heat detection element 30 is mounted on the first surface 21 (upper surface) of the substrate 2. However, the heat detecting element 30 may be mounted on the second surface 22 (lower surface) of the substrate 2. Alternatively, some of the plurality of heat detecting elements 30 may be separately mounted on the first surface 21 and the rest on the second surface 22. Further, for example, both the heat detection element 30 and the smoke detection unit 4 may be mounted on the second surface 22 (lower surface) of the substrate 2.
 基本例では、1つの熱検知素子30に対して隣接する貫通孔31の数は1つであるが、変形例3及び4に示したように、2つ以上であってもよい。例えば1つの熱検知素子30の周囲を囲むように複数の貫通孔31が設けられてもよい。 In the basic example, the number of the through holes 31 adjacent to one heat detection element 30 is one, but as shown in the modified examples 3 and 4, it may be two or more. For example, a plurality of through holes 31 may be provided so as to surround the periphery of one heat detection element 30.
 基本例では、熱検知素子30が基板2の第1面21に実装された上で、貫通孔31が隣接して配置されている。しかし、たとえ熱検知素子30が基板2の第2面22に実装されていても、貫通孔31が隣接して配置されていることが望ましい。 In the basic example, the heat detecting element 30 is mounted on the first surface 21 of the substrate 2, and the through holes 31 are arranged adjacent to each other. However, even if the heat detecting element 30 is mounted on the second surface 22 of the substrate 2, it is desirable that the through holes 31 be arranged adjacent to each other.
 基本例では、基板2は、1枚のプリント基板から構成されている。しかし、基板2は、2枚以上のプリント基板に分割されて構成されてもよい。ただし、分割された複数のプリント基板は、同一平面上に配置されることが望ましい。 In the basic example, the board 2 is composed of one printed board. However, the board 2 may be divided into two or more printed boards. However, it is desirable that the plurality of divided printed boards be arranged on the same plane.
 基本例では、開口部7は、筐体5の周壁に形成されている横孔である。しかし、本開示で言う開口部7は、横孔ではなく、変形例3~5における流入口(縦孔)7B、補助口(縦孔)56~58、及び上述した補助口(縦孔)59に相当してもよい。 In the basic example, the opening 7 is a lateral hole formed in the peripheral wall of the housing 5. However, the opening 7 referred to in the present disclosure is not a horizontal hole, but an inflow port (vertical hole) 7B, auxiliary ports (vertical holes) 56 to 58 in Modifications 3 to 5, and the above-described auxiliary port (vertical hole) 59. May correspond to.
 (実施形態2)
 以下、本実施形態に係る感知器1Fについて図12A及び図12Bを参照しながら説明する。本実施形態に係る感知器1Fは、遮蔽部V1を更に備える点で、実施形態1(変形例を含む)の感知器(1、1A~1E)と異なる。以下、実施形態1と実質的に同様の構成については、共通の符号を付して適宜説明を省略する。本実施形態の遮蔽部V1は、実施形態1の感知器(1、1A~1E)に対しても適宜適用されてもよい。
(Embodiment 2)
Hereinafter, the sensor 1F according to the present embodiment will be described with reference to FIGS. 12A and 12B. The sensor 1F according to the present embodiment is different from the sensors (1, 1A to 1E) according to the first embodiment (including modified examples) in that the sensor 1F further includes a shield portion V1. Hereinafter, configurations that are substantially the same as those of the first embodiment will be denoted by common reference numerals, and description thereof will be appropriately omitted. The shielding part V1 of the present embodiment may be appropriately applied to the sensors (1, 1A to 1E) of the first embodiment.
 なお、図12A及び図12Bに示す感知器1Fは、実施形態1における変形例3の感知器1C(図8A及び図8B)と同様に、一例としてP型熱感知器である。また感知器1Fは、実施形態1における変形例3の感知器1Cと同様に、煙検知部4を備えておらず熱の検知のみにより火災等の発生を判定する熱感知器である。 Note that the sensor 1F shown in FIGS. 12A and 12B is, as an example, a P-type heat sensor, similar to the sensor 1C (FIGS. 8A and 8B) of Modification 3 of the first embodiment. Like the sensor 1C of the third modification of the first embodiment, the sensor 1F is a heat sensor that does not include the smoke detector 4 and determines the occurrence of a fire or the like only by detecting heat.
 本実施形態においても、熱検知素子30(チップサーミスタ)は、外部空間SP2の側から開口部7(側面口7A:横孔)の開口領域70を見たときに、開口領域70内に収まるように配置される。そして、遮蔽部V1は、熱検知素子30(チップサーミスタ)よりも外部空間SP2の側において開口領域70の一部を遮るように構成される。 Also in the present embodiment, the heat detecting element 30 (chip thermistor) fits within the opening area 70 when the opening area 70 of the opening 7 (side opening 7A: lateral hole) is seen from the external space SP2 side. Is located in. Then, the shielding portion V1 is configured to shield a part of the opening region 70 on the external space SP2 side of the heat detection element 30 (chip thermistor).
 遮蔽部V1は、一対の柱V11を有している。ここでは遮蔽部V1は、一対の柱V11から構成される。各柱V11は、上下方向(ここでは例えば基板2の厚み方向)に沿って長尺である。各柱V11は、筐体5の表カバー51と一体となって形成されている。具体的には、各柱V11の第1端(上端)は、筐体5の円筒体510に繋がっていて、各柱V11の第2端(下端)は、基部511に繋がっている。その結果、各柱V11は、開口部7(側面口7A)の上縁から下縁まで延びている。 The shielding part V1 has a pair of pillars V11. Here, the shielding part V1 is composed of a pair of columns V11. Each pillar V11 is long along the vertical direction (here, for example, the thickness direction of the substrate 2). Each pillar V11 is formed integrally with the front cover 51 of the housing 5. Specifically, the first end (upper end) of each pillar V11 is connected to the cylindrical body 510 of the housing 5, and the second end (lower end) of each pillar V11 is connected to the base 511. As a result, each pillar V11 extends from the upper edge to the lower edge of the opening 7 (side opening 7A).
 一対の柱V11は、外部空間SP2の側から開口領域70を見たときに、裏カバー52と表カバー51とが並ぶ並び方向と直交する方向D1(ここでは左右方向)において、所定の距離L1を空けて配置される。以下、一例として、裏カバー52が第1カバーに相当し、表カバー51が第2カバーに相当するものとするが、その逆で、裏カバー52が第2カバーに相当し、表カバー51が第1カバーに相当してもよい。 The pair of pillars V11 have a predetermined distance L1 in the direction D1 (here, the left-right direction) orthogonal to the arrangement direction of the back cover 52 and the front cover 51 when the opening region 70 is viewed from the side of the external space SP2. Will be placed. Hereinafter, as an example, it is assumed that the back cover 52 corresponds to the first cover and the front cover 51 corresponds to the second cover. On the contrary, the back cover 52 corresponds to the second cover and the front cover 51 corresponds to the second cover. It may correspond to the first cover.
 ここでは一例として、所定の距離L1は、試験指が入らないように規定された距離である。試験指は、例えば、日本の電気用品安全法の別表第四1(2)ハに規定された擬似指とする。 Here, as an example, the predetermined distance L1 is a distance defined so that the test finger does not enter. The test finger is, for example, a pseudo finger defined in Appendix 41 (2) C of Appendix 4 of the Electrical Appliance and Material Safety Law of Japan.
 熱検知素子30は、外部空間SP2の側から開口領域70を見たときに、方向D1において、一対の柱V11間に配置される(図12A参照)。言い換えると、熱検知素子30は、一対の柱V11の間から露出する。 The heat detection element 30 is arranged between the pair of pillars V11 in the direction D1 when the opening region 70 is viewed from the side of the external space SP2 (see FIG. 12A). In other words, the heat detecting element 30 is exposed from between the pair of pillars V11.
 このように感知器1Fは、遮蔽部V1を更に備えることで、開口部7からの熱流入が妨げられにくくしつつ、例えば意図せずに人の指又は工具等がチップサーミスタに接触してしまう可能性を低減できる。 As described above, the sensor 1F further includes the shielding portion V1 to prevent the heat inflow from the opening 7 from being hindered, and unintentionally, for example, a finger or a tool of a person comes into contact with the chip thermistor. The possibility can be reduced.
 ところで、各柱V11は、図12Bに示すように、外部空間SP2からの気流を熱検知素子30(チップサーミスタ)に向かって誘導する誘導面V2を有している。ここでは各柱V11は、水平方向に沿って切った断面形状が略半楕円形状となっていて、その曲面が誘導面V2に相当する。そして、当該半楕円形状の先端が熱検知素子30に向いてある。したがって、遮蔽部V1によって開口部7からの熱流入が妨げられる可能性をさらに低減できる。 By the way, each pillar V11 has a guide surface V2 for guiding the airflow from the external space SP2 toward the heat detection element 30 (chip thermistor), as shown in FIG. 12B. Here, each pillar V11 has a substantially semi-elliptical cross-section taken along the horizontal direction, and its curved surface corresponds to the guide surface V2. The tip of the semi-elliptical shape faces the heat detection element 30. Therefore, it is possible to further reduce the possibility that the inflow of heat from the opening 7 is blocked by the shield V1.
 次に本実施形態の変形例1について説明する。上述した図12A及び図12Bの例では、遮蔽部V1の柱V11の数は2本であるが、遮蔽部V1の柱の数は特に限定されない。図13A及び図13Bは、変形例1の感知器1Gを示す。変形例1の感知器1Gは、遮蔽部V1の柱の数が3本である点で、感知器1Fと異なる。 Next, a modified example 1 of this embodiment will be described. In the example of FIGS. 12A and 12B described above, the number of pillars V11 of the shielding portion V1 is two, but the number of pillars of the shielding portion V1 is not particularly limited. 13A and 13B show a sensor 1G of the first modification. The sensor 1G of Modification 1 is different from the sensor 1F in that the number of columns of the shielding portion V1 is three.
 変形例1の感知器1Gは、一例としてP型熱感知器である。なお、感知器1Fの基板2の凸部23は、上下方向に沿って見て、筐体5の径方向に対してやや斜めに突出しているが(図12B参照)、感知器1Gの基板2の凸部23は、筐体5の径方向に沿って外側に突出している(図13B参照)。 The sensor 1G of the modified example 1 is, for example, a P-type heat sensor. Although the convex portion 23 of the substrate 2 of the sensor 1F protrudes slightly obliquely with respect to the radial direction of the housing 5 when viewed in the up-down direction (see FIG. 12B), the substrate 2 of the sensor 1G. The convex portion 23 of is projected outward along the radial direction of the housing 5 (see FIG. 13B).
 感知器1Gの遮蔽部V1は、3本の柱(左右一対の第1柱V12と真ん中の第2柱V13)を有している。ここでは遮蔽部V1は、3本の柱から構成される。一対の第1柱V12及び第2柱V13の各々は、上下方向(ここでは例えば基板2の厚み方向)に沿って長尺である。一対の第1柱V12及び第2柱V13の各々は、筐体5の表カバー51と一体となって形成されている。具体的には、各柱の第1端(上端)は、筐体5の円筒体510に繋がっていて、各柱の第2端(下端)は、基部511に繋がっている。その結果、各柱は、開口部7の上縁から下縁まで延びている。 The shield V1 of the sensor 1G has three columns (a pair of left and right first columns V12 and a second column V13 in the middle). Here, the shield V1 is composed of three columns. Each of the pair of first pillars V12 and second pillars V13 is long along the vertical direction (here, for example, the thickness direction of the substrate 2). Each of the pair of first pillars V12 and second pillars V13 is formed integrally with the front cover 51 of the housing 5. Specifically, the first end (upper end) of each pillar is connected to the cylindrical body 510 of the housing 5, and the second end (lower end) of each pillar is connected to the base portion 511. As a result, each pillar extends from the upper edge to the lower edge of the opening 7.
 一対の第1柱V12の各々と、第2柱V13とは、外部空間SP2の側から開口領域70を見たときに、方向D1(ここでは左右方向)において、それぞれ所定の距離L2を空けて配置される。ここでは一例として、所定の距離L2も、試験指が入らないように規定された距離である。 The pair of first pillars V12 and the second pillar V13 are spaced apart from each other by a predetermined distance L2 in the direction D1 (here, the left-right direction) when the opening region 70 is viewed from the external space SP2 side. Will be placed. Here, as an example, the predetermined distance L2 is also a distance defined so that the test finger does not enter.
 熱検知素子30は、外部空間SP2の側から開口領域70を見たときに、方向D1において、一対の第1柱V12間に配置される(図13A参照)。ただし、熱検知素子30は、外部空間SP2の側から開口領域70を見たときに、第2柱V13と重なる位置にある。言い換えると、熱検知素子30は、第2柱V13の裏側に隠れて見えない位置にある。 The heat detection element 30 is arranged between the pair of first columns V12 in the direction D1 when the opening region 70 is viewed from the side of the external space SP2 (see FIG. 13A). However, the heat detection element 30 is located at a position overlapping the second pillar V13 when the opening region 70 is viewed from the external space SP2 side. In other words, the heat detection element 30 is hidden behind the second pillar V13 and invisible.
 このように感知器1Gは、3本の柱を有した遮蔽部V1を備えることで、開口部7からの熱流入が妨げられにくくしつつ、人の指又は工具等がチップサーミスタに接触してしまう可能性をさらに低減できる。 As described above, the sensor 1G is provided with the shielding portion V1 having three columns, so that it is difficult for the heat inflow from the opening 7 to be prevented, and a human finger, a tool, or the like comes into contact with the chip thermistor. It is possible to further reduce the possibility of the accident.
 ところで、一対の第1柱V12の各々は、図13Bに示すように、外部空間SP2からの気流を熱検知素子30(チップサーミスタ)に向かって誘導する誘導面V2を有している。ここでは一対の第1柱V12の各々は、水平方向に沿って切った断面形状が筐体5の外縁に沿って長い略レーストラック形状となっていて、その左右両側に誘導面V2として半円弧状の曲面を有している。したがって、遮蔽部V1によって開口部7からの熱流入が妨げられる可能性をさらに低減できる。なお、第2柱V13は、水平方向に沿って切った断面形状が略矩形状となっているが、第1柱V12と同様に略レーストラック形状となっていて、誘導面V2を有してもよい。 Incidentally, as shown in FIG. 13B, each of the pair of first pillars V12 has a guide surface V2 that guides the airflow from the external space SP2 toward the heat detection element 30 (chip thermistor). Here, each of the pair of first pillars V12 has a substantially racetrack shape in which the cross-sectional shape cut along the horizontal direction is long along the outer edge of the housing 5, and a semicircle is formed as a guide surface V2 on the left and right sides thereof. It has an arcuate curved surface. Therefore, it is possible to further reduce the possibility that the inflow of heat from the opening 7 is blocked by the shield V1. The second pillar V13 has a substantially rectangular cross-sectional shape cut along the horizontal direction, but has a substantially racetrack shape like the first pillar V12 and has a guide surface V2. Good.
 なお、図13Cは、変形例1の感知器1Gの別の例を示す。この別の例では、一対の第1柱V12の各々は、水平方向に沿って切った断面形状が略台形状となっている。各第1柱V12は、当該台形状において互いに平行な2辺のうち短辺が熱検知素子30の側に、長辺が外部空間SP2の側となるように構成される。特に各第1柱V12は、真ん中の第2柱V13と対向する第1面V121、及び当該第1面V121とは反対側の第2面V122が、熱検知素子30に向かうように傾斜した傾斜面となっている。筐体5の径方向に対する第2面V122の傾斜角度は、第1面V121の傾斜角度よりも大きい。真ん中の第2柱V13は、水平方向に沿って切った断面形状が、筐体5の径方向に長い砲弾形状になっていて、熱検知素子30と対向する側が半円弧状である。この別の例では、第1面V121、第2面V122及び断面半円弧状の端面が、誘導面V2に相当する。要するに、この別の例では、一対の第1柱V12の各々が、誘導面V2を有している。この別の例においても、誘導面V2が設けられていることで、遮蔽部V1によって開口部7からの熱流入が妨げられる可能性をさらに低減できる。 Note that FIG. 13C shows another example of the sensor 1G of the first modification. In this another example, each of the pair of first pillars V12 has a substantially trapezoidal cross section cut along the horizontal direction. Each of the first pillars V12 is configured such that, of the two sides parallel to each other in the trapezoidal shape, the short side is on the heat detecting element 30 side and the long side is on the external space SP2 side. In particular, in each first pillar V12, a first surface V121 facing the second pillar V13 in the middle and a second surface V122 opposite to the first surface V121 are inclined so as to face the heat detection element 30. Is a face. The inclination angle of the second surface V122 with respect to the radial direction of the housing 5 is larger than the inclination angle of the first surface V121. The second pillar V13 in the middle has a cross section cut along the horizontal direction in the shape of a shell that is long in the radial direction of the housing 5, and the side facing the heat detection element 30 has a semi-arcuate shape. In this another example, the first surface V121, the second surface V122, and the end surface having a semicircular arc cross section correspond to the guide surface V2. In short, in this another example, each of the pair of first pillars V12 has the guide surface V2. Also in this another example, since the guide surface V2 is provided, it is possible to further reduce the possibility that the heat inflow from the opening portion 7 is blocked by the shield portion V1.
 次に本実施形態の変形例2について説明する。図14A~14C及び図15は、変形例2の感知器1Hを示す。変形例2の感知器1Hは、一例としてR型熱感知器である。感知器1Hの基板2の凸部23は、筐体5の径方向に沿って外側に突出している。 Next, a modified example 2 of this embodiment will be described. 14A to 14C and FIG. 15 show a sensor 1H according to the second modification. The sensor 1H of the modification 2 is an R-type heat sensor as an example. The convex portion 23 of the substrate 2 of the sensor 1H projects outward along the radial direction of the housing 5.
 変形例2の感知器1Hにおける遮蔽部V1は、一対の第1突起V14と、1つの第2突起V15とを有している。ここでは遮蔽部V1は、一対の第1突起V14と、第2突起V15とから構成される。一対の第1突起V14の各々は、基板2の厚み方向における一の方向(ここでは上方)から基板2を覆う裏カバー52(第1カバー)から、表カバー51(第2カバー)に向かって突出する。表カバー51は、基板2の厚み方向における上記一の方向とは反対の方向(ここでは下方)から基板2を覆う。第2突起V15は、表カバー51から裏カバー52に向かって突出する。一対の第1突起V14及び第2突起V15の各々は、上下方向(ここでは例えば基板2の厚み方向)に沿って長尺である。 The shielding part V1 in the sensor 1H of the modified example 2 has a pair of first protrusions V14 and one second protrusion V15. Here, the shielding part V1 is composed of a pair of a first protrusion V14 and a second protrusion V15. Each of the pair of first protrusions V14 extends from the back cover 52 (first cover) that covers the substrate 2 from one direction (here, above) in the thickness direction of the substrate 2 toward the front cover 51 (second cover). Project. The front cover 51 covers the substrate 2 from a direction (here, below) opposite to the one direction in the thickness direction of the substrate 2. The second protrusion V15 projects from the front cover 51 toward the back cover 52. Each of the pair of first protrusion V14 and second protrusion V15 is elongated along the vertical direction (here, for example, the thickness direction of the substrate 2).
 一対の第1突起V14は、図15に示すように、裏カバー52と一体となって形成されている。具体的には、一対の第1突起V14は、裏カバー52の下面における周縁部から連続して下方に突出する。なお、一対の第1突起V14の各々の先端は、表カバー51と接触しておらず、表カバー51との間に隙間を空けている。 The pair of first projections V14 are formed integrally with the back cover 52, as shown in FIG. Specifically, the pair of first protrusions V14 continuously protrude downward from the peripheral edge portion on the lower surface of the back cover 52. The tip ends of the pair of first protrusions V14 are not in contact with the front cover 51, and a gap is left between the front cover 51 and the front cover 51.
 一対の第1突起V14は、外部空間SP2の側から開口領域70を見たときに、方向D1において、互いに所定の距離L3を空けて配置される。ここでは一例として、所定の距離L3も、試験指が入らないように規定された距離である。熱検知素子30は、外部空間SP2の側から開口領域70を見たときに、方向D1において、一対の第1突起V14間に配置される(図14A参照)。 The pair of first protrusions V14 are arranged at a predetermined distance L3 from each other in the direction D1 when the opening region 70 is viewed from the external space SP2 side. Here, as an example, the predetermined distance L3 is also a distance defined so that the test finger does not enter. The heat detecting element 30 is arranged between the pair of first protrusions V14 in the direction D1 when the opening region 70 is viewed from the external space SP2 side (see FIG. 14A).
 第2突起V15は、方向D1において、一対の第1突起V14の間の中央に配置される。言い換えると、一対の第1突起V14の各々は、外部空間SP2の側から開口領域70を見たときに、方向D1において第2突起V15に対してずれて配置される。そのため、遮蔽部V1によって開口部7からの熱流入が妨げられる可能性をさらに低減できる。 The second protrusion V15 is arranged in the center between the pair of first protrusions V14 in the direction D1. In other words, each of the pair of first protrusions V14 is displaced from the second protrusion V15 in the direction D1 when the opening region 70 is viewed from the external space SP2 side. Therefore, it is possible to further reduce the possibility that the inflow of heat from the opening 7 is blocked by the shield V1.
 第2突起V15は、表カバー51と一体となって形成されている。具体的には、第2突起V15は、表カバー51の上面における周縁部から連続して上方に突出する。第2突起V15の先端は、開口部7の上縁と接触しておらず、当該上縁との間に隙間を空けている。 The second protrusion V15 is formed integrally with the front cover 51. Specifically, the second protrusion V15 continuously protrudes upward from the peripheral edge portion on the upper surface of the front cover 51. The tip of the second protrusion V15 is not in contact with the upper edge of the opening 7 and has a gap between the upper edge and the upper edge.
 第2突起V15は、図14Aに示すように、外部空間SP2の側から開口領域70を見たときに、方向D1において、チップサーミスタと同じ位置にある。ただし、第2突起V15は、チップサーミスタの少なくとも一部が露出するように、その突出量が規定されている。具体的には、第2突起V15の先端が、チップサーミスタの上面を超えないように、その突出量が規定されている。なお、ここでは一例として、第2突起V15の先端は、基板2の下面よりも下に位置し、熱検知素子30は、一対の第1突起V14の間において、第2突起V15の裏側に隠れることなく露出する。 As shown in FIG. 14A, the second protrusion V15 is at the same position as the chip thermistor in the direction D1 when the opening region 70 is viewed from the external space SP2 side. However, the projection amount of the second protrusion V15 is defined so that at least a part of the chip thermistor is exposed. Specifically, the protrusion amount of the second protrusion V15 is defined so that the tip of the second protrusion V15 does not exceed the upper surface of the chip thermistor. Here, as an example, the tip of the second protrusion V15 is located below the lower surface of the substrate 2, and the heat detecting element 30 is hidden behind the second protrusion V15 between the pair of first protrusions V14. Exposed without.
 このようにチップサーミスタの少なくとも一部が露出するように、第2突起V15の突出量が規定されていることで、さらに開口部7からの熱流入が妨げられにくくしつつ、人の指又は工具等がチップサーミスタに接触してしまう可能性を低減できる。 Since the protrusion amount of the second protrusion V15 is defined so that at least a part of the chip thermistor is exposed in this way, it is further difficult to prevent the heat inflow from the opening 7 and the finger or the tool of the person. It is possible to reduce the possibility that the like will contact the chip thermistor.
 ところで、一対の第1突起V14の各々も、図14Bに示すように、誘導面V2を有している。ここでは一対の第1突起V14の各々は、水平方向に沿って切った断面形状が筐体5の径方向に沿って細長い楕円形状となっていて、その左右両側に誘導面V2として曲面を有している。したがって、遮蔽部V1によって開口部7からの熱流入が妨げられる可能性をさらに低減できる。特に各第1突起V14の幅寸法が比較的小さいことで、さらに熱流入が妨げられる可能性をさらに低減できる。 By the way, each of the pair of first protrusions V14 also has a guide surface V2 as shown in FIG. 14B. Here, each of the pair of first protrusions V14 has a cross-sectional shape cut along the horizontal direction and has an elongated elliptical shape along the radial direction of the housing 5, and has curved surfaces on both left and right sides thereof as guide surfaces V2. are doing. Therefore, it is possible to further reduce the possibility that the inflow of heat from the opening 7 is blocked by the shield V1. In particular, since the width dimension of each first protrusion V14 is relatively small, it is possible to further reduce the possibility that heat inflow will be hindered.
 一方、第2突起V15も、図14Cに示すように、誘導面V2を有している。第2突起V15は、一対の第1突起V14が並ぶ並び方向に沿ってみて、略三角形状に形成されている。特に第2突起V15は、一対の第1突起V14が並ぶ並び方向に沿ってみて、内部空間SP1の側において、略円弧状に凹んで傾斜した曲面V150を有している。この曲面V150も、誘導面V2に相当する。熱気流は、誘導面V2に衝突することで、第2突起V15より上にあるチップサーミスタに向かって誘導され得る。 On the other hand, the second protrusion V15 also has a guide surface V2 as shown in FIG. 14C. The second protrusion V15 is formed in a substantially triangular shape when viewed in the arrangement direction of the pair of first protrusions V14. In particular, the second protrusion V15 has a curved surface V150 that is recessed and inclined in a substantially arc shape on the side of the internal space SP1 when viewed along the direction in which the pair of first protrusions V14 are arranged. This curved surface V150 also corresponds to the guide surface V2. The hot air flow can be guided toward the chip thermistor above the second protrusion V15 by colliding with the guide surface V2.
 このように感知器1Hは、3つの突起を有した遮蔽部V1を備えることで、開口部7からの熱流入が妨げられにくくしつつ、人の指又は工具等がチップサーミスタに接触してしまう可能性をさらに低減できる。 As described above, the sensor 1H is provided with the shield portion V1 having three protrusions, so that it is difficult for the heat inflow from the opening 7 to be prevented, and a human finger, a tool, or the like comes into contact with the chip thermistor. The possibility can be further reduced.
 なお、遮蔽部V1は、例えば、一対の第1突起V14の間に、もう1本別の第1突起V14を有してもよい。当該別の第1突起V14及び第2突起V15は、互いの先端同士が対向するように突出してもよい。この場合においても第2突起V15と同様に、当該別の第1突起V14は、チップサーミスタの少なくとも一部が露出するように、その突出量が規定されていることが望ましい。 Note that the shielding part V1 may have, for example, another first projection V14 between the pair of first projections V14. The first protrusion V14 and the second protrusion V15 may be projected so that their tips are opposed to each other. Also in this case, similarly to the second protrusion V15, it is desirable that the protrusion amount of the other first protrusion V14 is regulated so that at least a part of the chip thermistor is exposed.
 次に本実施形態の変形例3について説明する。図16は、変形例3の感知器1Iを示す。変形例3の感知器1Iは、一例としてR型熱感知器である。 Next, a modified example 3 of this embodiment will be described. FIG. 16 shows a sensor 1I according to Modification 3. The sensor 1I of Modification 3 is an R-type heat sensor as an example.
 感知器1Iの遮蔽部V1は、変形例2の感知器1Hの一対の第1突起V14と同様に、裏カバー52と一体となって形成されている一対の第1突起V16を有している。一対の第1突起V16は、裏カバー52から表カバー51に向かって突出する。熱検知素子30は、外部空間SP2の側から開口領域70を見たときに、方向D1において、一対の第1突起V16間に配置される。 The shield portion V1 of the sensor 1I has a pair of first projections V16 formed integrally with the back cover 52, similarly to the pair of first projections V14 of the sensor 1H of the modified example 2. . The pair of first protrusions V16 protrude from the back cover 52 toward the front cover 51. The heat detection element 30 is arranged between the pair of first protrusions V16 in the direction D1 when the opening region 70 is viewed from the external space SP2 side.
 感知器1Iの遮蔽部V1は、一対の第2突起V17を更に有している。一対の第2突起V17の各々は、変形例2の感知器1Hの第2突起V15と同様に、表カバー51と一体となって形成されている。一対の第2突起V17は、表カバー51から裏カバー52に向かって突出する。ただし、一対の第2突起V17は、これらの先端が一対の第1突起V16の先端と一対一で対向するように突出する。言い換えると、各第1突起V16とそれに対向する第2突起V17との間には隙間が空けられている。 The shield V1 of the sensor 1I further includes a pair of second protrusions V17. Each of the pair of second protrusions V17 is formed integrally with the front cover 51, similarly to the second protrusion V15 of the sensor 1H according to the second modification. The pair of second protrusions V17 protrude from the front cover 51 toward the back cover 52. However, the pair of second protrusions V17 protrude so that their tips face the tip of the pair of first protrusions V16 in a one-to-one manner. In other words, there is a gap between each first protrusion V16 and the second protrusion V17 facing it.
 また感知器1Iの遮蔽部V1は、柱V18を更に有している。柱V18は、変形例1の感知器1Gの第2柱V13と同様に、筐体5の表カバー51と一体となって形成されている。そして、熱検知素子30は、外部空間SP2の側から開口領域70を見たときに、柱V18と重なる位置にある。言い換えると、熱検知素子30は、柱V18の裏側に隠れて見えない位置にある。 The shield V1 of the sensor 1I further has a pillar V18. The pillar V18 is formed integrally with the front cover 51 of the housing 5, similarly to the second pillar V13 of the sensor 1G of the first modification. Then, the heat detecting element 30 is in a position overlapping the pillar V18 when the opening region 70 is viewed from the side of the external space SP2. In other words, the heat detection element 30 is hidden behind the pillar V18 and is invisible.
 一対の第1突起V16の各々と、柱V18とは、外部空間SP2の側から開口領域70を見たときに、方向D1において、それぞれ所定の距離L4を空けて配置される。ここでは一例として、所定の距離L4も、試験指が入らないように規定された距離である。 Each of the pair of first protrusions V16 and the pillar V18 are arranged at a predetermined distance L4 in the direction D1 when the opening region 70 is viewed from the external space SP2 side. Here, as an example, the predetermined distance L4 is also a distance defined so that the test finger does not enter.
 このように感知器1Iは、4つの突起と1本の柱を有した遮蔽部V1を備えることで、開口部7からの熱流入が妨げられにくくしつつ、人の指又は工具等がチップサーミスタに接触してしまう可能性をさらに低減できる。 As described above, the sensor 1I is provided with the shielding portion V1 having four protrusions and one pillar, so that the inflow of heat from the opening 7 is not easily obstructed, and the finger or the tool of a person can be chip thermistor. It is possible to further reduce the possibility of contact with.
 なお、図示は省略するが、感知器1Iの遮蔽部V1も、誘導面V2を有していることが望ましい。 Although not shown, it is desirable that the shield V1 of the sensor 1I also has a guide surface V2.
 次に本実施形態の変形例4について説明する。図17A及び図17Bは、変形例4の感知器1Jを示す。変形例4の感知器1Jは、一例としてR型熱感知器である。 Next, a modified example 4 of this embodiment will be described. 17A and 17B show a sensor 1J according to Modification 4. The sensor 1J of the modification 4 is an R-type heat sensor as an example.
 感知器1Jの遮蔽部V1は、1本の柱V19のみを有している。柱V19は、変形例1の感知器1Gの第2柱V13と同様に、筐体5の表カバー51と一体となって形成されている。そして、熱検知素子30は、外部空間SP2の側から開口領域70を見たときに、柱V19と重なる位置にある。言い換えると、熱検知素子30は、柱V19の裏側に隠れて見えない位置にある。 The shield V1 of the sensor 1J has only one pillar V19. The pillar V19 is formed integrally with the front cover 51 of the housing 5, similarly to the second pillar V13 of the sensor 1G of the first modification. The heat detecting element 30 is located at a position overlapping the pillar V19 when the opening region 70 is viewed from the external space SP2 side. In other words, the heat detecting element 30 is hidden behind the pillar V19 and is invisible.
 柱V19は、図17Bに示すように、誘導面V2を有している。ここでは柱V19は、水平方向に沿って切った断面形状が、内部空間SP1に向かって先の尖ったテーパ形状となっていて、このテーパ面が誘導面V2に相当する。また柱V19の断面形状は、その左右両側において半円弧状となっていて、この左右両側の面も、誘導面V2に相当する。 The pillar V19 has a guide surface V2 as shown in FIG. 17B. Here, the pillar V19 has a tapered cross-sectional shape cut along the horizontal direction toward the internal space SP1, and this tapered surface corresponds to the guide surface V2. The cross-sectional shape of the pillar V19 is a semi-circular shape on the left and right sides thereof, and the surfaces on the left and right sides also correspond to the guide surface V2.
 このように感知器1Jは、1本の柱V19のみでありながらも、開口部7からの熱流入が妨げられにくくしつつ、人の指又は工具等がチップサーミスタに接触してしまう可能性を低減できる。なお、人の指又は工具等がチップサーミスタに接触してしまう可能性を低減する点を重視する場合には、遮蔽部V1の突起及び柱の数は、感知器1F~1Iのように2つ以上であることが望ましい。 As described above, the sensor 1J has only one pillar V19, but the possibility that a human finger, a tool, or the like may come into contact with the chip thermistor while preventing the heat inflow from the opening 7 from being hindered. It can be reduced. When the importance of reducing the possibility that a human finger, a tool, or the like will come into contact with the chip thermistor, the number of protrusions and pillars of the shielding portion V1 is two as in the sensors 1F to 1I. The above is desirable.
 (実施形態3)
 以下、本実施形態に係る感知器1Kについて図18A~図18Cを参照しながら説明する。以下、実施形態1と実質的に同様の構成については、共通の符号を付して適宜説明を省略する。本実施形態の感知器1Kは、後述の通り、外表面53がテーパ状に形成された第1表面531を有する点で、実施形態1(変形例を含む)の感知器(1、1A~1E)と異なる。本実施形態におけるテーパ状に形成された第1表面531は、実施形態1の感知器(1、1A~1E)又は実施形態2の感知器(1F~1J)に対しても適宜適用されてもよい。なお、図18A~図18Cに示す感知器1Kは、一例としてR型熱感知器である。また感知器1Kは、実施形態1における変形例3の感知器1Cと同様に、煙検知部4を備えておらず熱の検知のみにより火災等の発生を判定する熱感知器である。また感知器1Kは、実施形態2の変形例2の感知器1Hと同様に、遮蔽部V1を複数セット備えている。
(Embodiment 3)
Hereinafter, the sensor 1K according to the present embodiment will be described with reference to FIGS. 18A to 18C. Hereinafter, configurations that are substantially the same as those of the first embodiment will be denoted by common reference numerals, and description thereof will be appropriately omitted. As will be described later, the sensor 1K of the present embodiment has the outer surface 53 having a first surface 531 formed in a tapered shape, and thus the sensors (1, 1A to 1E) of the first embodiment (including modified examples). ) Different. The tapered first surface 531 in the present embodiment may be appropriately applied to the sensor (1, 1A to 1E) of the first embodiment or the sensor (1F to 1J) of the second embodiment. Good. The sensor 1K shown in FIGS. 18A to 18C is, for example, an R-type heat sensor. Like the sensor 1C of the third modification of the first embodiment, the sensor 1K is a heat sensor that does not include the smoke detector 4 and determines the occurrence of a fire or the like only by detecting heat. Further, the sensor 1K includes a plurality of sets of shielding portions V1 similarly to the sensor 1H of the second modification of the second embodiment.
 本実施形態に係る感知器1Kの開口部7は、実施形態1で説明した感知器1C(図8A、8B参照)及び感知器1D(図9A、9B参照)と同様に、流入口7Bを有している。つまり、開口部7は、6つの側面口(横孔)7Aに加えて、流入口7Bを有している。流入口7Bは、筐体5における、感知器1Kが取り付けられる構造体X1とは反対側の外表面53(表カバー51の下面)に設けられている。ここでは例えば、流入口7Bは、外表面53の中央に設けられている。流入口7Bは、表カバー51をその厚み方向に貫通する。流入口7Bは、略円形状の開口を有している。 Like the sensor 1C (see FIGS. 8A and 8B) and the sensor 1D (see FIGS. 9A and 9B) described in the first embodiment, the opening 7 of the sensor 1K according to the present embodiment has an inflow port 7B. are doing. That is, the opening portion 7 has the inflow port 7B in addition to the six side surface ports (lateral holes) 7A. The inflow port 7B is provided on the outer surface 53 (the lower surface of the front cover 51) of the housing 5 on the side opposite to the structure X1 to which the sensor 1K is attached. Here, for example, the inflow port 7B is provided at the center of the outer surface 53. The inflow port 7B penetrates the front cover 51 in its thickness direction. The inflow port 7B has a substantially circular opening.
 感知器1Kにおいては、図18Bに示すように、基板2の一部が流入口7Bから露出している。具体的には、基板2は、その中央において厚み方向に貫通する孔部25を有している。孔部25は、略円形状の開口を有している。孔部25は、流入口7Bと概ね重なるように配置される。基板2は、孔部25の開口縁において、互いに近づくように突出する一対の突起部26を有している。一対の突起部26の先端が、流入口7Bから露出している。そして、基板2の各突起部26の上面にも、熱検知素子30(チップサーミスタ)が設けられている。要するに、感知器1Kは、側面口(横孔)7Aの近傍に設けられた複数の熱検知素子30(図示例では6つ)に加えて、流入口7Bの近傍にも2つの熱検知素子30を有している。また基板2は、各熱検知素子30の近傍において、熱検知素子30における熱が基板2を伝達して、熱検知素子30の温度が低くなってしまうことを抑制するために、略三角形状の貫通孔31を有している。 In the sensor 1K, as shown in FIG. 18B, a part of the substrate 2 is exposed from the inflow port 7B. Specifically, the substrate 2 has a hole portion 25 penetrating in the thickness direction at the center thereof. The hole 25 has a substantially circular opening. The hole 25 is arranged so as to substantially overlap the inflow port 7B. The substrate 2 has a pair of protrusions 26 that protrude so as to approach each other at the opening edges of the holes 25. The tips of the pair of protrusions 26 are exposed from the inflow port 7B. The heat detecting element 30 (chip thermistor) is also provided on the upper surface of each protrusion 26 of the substrate 2. In short, in addition to the plurality of heat detecting elements 30 (six in the illustrated example) provided in the vicinity of the side opening (lateral hole) 7A, the sensor 1K includes two heat detecting elements 30 in the vicinity of the inlet 7B. have. Further, the substrate 2 has a substantially triangular shape in order to prevent the heat of the heat detecting element 30 from being transmitted through the substrate 2 in the vicinity of each heat detecting element 30 and lowering the temperature of the heat detecting element 30. It has a through hole 31.
 感知器1Kの開口部7は、流入口7Bを有していることで、流入口7Bから流入した気体の熱を検知できるため、熱検知に関する応答性を高めることができる。 Since the opening 7 of the sensor 1K has the inflow port 7B, the heat of the gas flowing in from the inflow port 7B can be detected, so that the responsiveness regarding the heat detection can be enhanced.
 ここで本実施形態の感知器1Kの外表面53は、流入口7Bの周囲における第1表面531と、第1表面531よりも外側にある第2表面532と、を有している。ここでは、第2表面532は、第1表面531の周りにおいて第1表面531よりも外側にある。特に第1表面531は、図18Cに示すように、第2表面532とは異なる傾斜角で、流入口7Bに近づくほど構造体X1の側に近づく向き(上向き)にテーパ状に形成されている。なお、ここでは一例として、外表面53は、第3表面533を更に有している。第3表面533は、第1表面531よりも外側で、かつ第2表面532よりも内側にある。第1表面531~第3表面533は、外表面53を正面から見て、いずれもドーナツ形状である。外表面53の径方向における寸法に関して、例えば、第2表面532が最も大きく、次に第3表面533が大きく、第1表面531が最も小さいが、特に限定されない。 Here, the outer surface 53 of the sensor 1K of the present embodiment has a first surface 531 around the inflow port 7B and a second surface 532 that is outside the first surface 531. Here, the second surface 532 is outside the first surface 531 around the first surface 531. In particular, as shown in FIG. 18C, the first surface 531 has a different inclination angle from the second surface 532, and is formed in a taper shape so as to approach the structure X1 side toward the inflow port 7B (upward). . Here, as an example, the outer surface 53 further includes a third surface 533. The third surface 533 is outside the first surface 531 and inside the second surface 532. Each of the first surface 531 to the third surface 533 has a donut shape when the outer surface 53 is viewed from the front. Regarding the radial dimension of the outer surface 53, for example, the second surface 532 is the largest, the third surface 533 is the second largest, and the first surface 531 is the smallest, but the dimensions are not particularly limited.
 水平面に対する第1表面531の傾斜角θ1は、例えば23°である。水平面に対する第2表面532の傾斜角θ2は、例えば0°~1°である。水平面に対する第3表面533の傾斜角θ3は、例えば8°である。 The inclination angle θ1 of the first surface 531 with respect to the horizontal plane is, for example, 23 °. The inclination angle θ2 of the second surface 532 with respect to the horizontal plane is, for example, 0 ° to 1 °. The inclination angle θ3 of the third surface 533 with respect to the horizontal plane is, for example, 8 °.
 このように本実施形態に係る感知器1Kでは、外表面53が第1表面531と第2表面532とを有しているため、火災が発生した際には、流入口7Bへの熱流入をさらに促進できる(図18Cの矢印参照)。特に、感知器1Kでは、外表面53が、第3表面533も含めて2段階で傾斜しているため、流入口7Bへの熱流入をより効果的に促進できる。 As described above, in the sensor 1K according to the present embodiment, since the outer surface 53 has the first surface 531 and the second surface 532, in the event of a fire, the heat inflow to the inflow port 7B is prevented. It can be further promoted (see arrow in FIG. 18C). In particular, in the sensor 1K, the outer surface 53 including the third surface 533 is inclined in two steps, so that the heat flow into the inflow port 7B can be more effectively promoted.
 ところで、この種の感知器においては、正常に動作するか否かについての定期点検が法令で義務付けられている(例えば半年に1回の点検)。図19Aに示すように、点検作業者600は、所定の(加熱)試験器900を用いて、構造体X1(図示例では天井)に設置されている感知器1Kの熱検知素子30に対して加熱点検を行う。 By the way, with this type of sensor, regular inspection is required by law to check whether or not it operates normally (for example, inspection once every six months). As shown in FIG. 19A, the inspector 600 uses a predetermined (heating) tester 900 for the heat detection element 30 of the sensor 1K installed in the structure X1 (ceiling in the illustrated example). Perform heating inspection.
 試験器900は、ハクキンカイロ等の熱源910と、上面が開放された略円筒形状で内部に熱源910を収容する本体部920と、本体部920を支持する支持棒930と、を有している。点検時には、本体部920は、感知器1Kの表カバー51の基部511及び開口部7を、下方から覆うように配置される。感知器1Kは、熱検知素子30等が正常であれば、熱源910からの熱流を受けることで、火災を検知した場合と同様の動作を行うことになる。 The tester 900 includes a heat source 910 such as a Hakkin Cairo, a main body 920 having a substantially cylindrical shape with an open upper surface and accommodating the heat source 910, and a support rod 930 supporting the main body 920. . At the time of inspection, the main body 920 is arranged so as to cover the base 511 and the opening 7 of the front cover 51 of the sensor 1K from below. If the heat detection element 30 and the like are normal, the sensor 1K receives the heat flow from the heat source 910 and performs the same operation as when detecting a fire.
 ここで実施形態1でも説明したように、熱検知素子30が基板2に実装されるチップサーミスタであることで、感知器(1、1A~1K)全体としての小型化(特に薄型化)が図られている。一方で、感知器の小型化に伴って、点検時において、感知器に対する試験器900の位置に関する安定性が損なわれる可能性がある。 Here, as described in the first embodiment, since the heat detecting element 30 is a chip thermistor mounted on the substrate 2, reduction in size (especially thinness) of the entire sensor (1, 1A to 1K) is achieved. Has been. On the other hand, with the downsizing of the sensor, the stability of the position of the tester 900 with respect to the sensor may be impaired during inspection.
 そこで、本実施形態に係る感知器1Kの筐体5は、複数(例えば6つ)の凸部W1を有している(図18A及び図18B参照:ただし、図18Aでは4つのみ図示)。複数の凸部W1は、開口部7の縁部(ここでは上縁部)から、感知器1Kが取り付けられる構造体X1の側から離れる方向(例えば下方)に突出する。複数の凸部W1は、例えば下方から見て、筐体5の周方向に沿って等間隔に並んでいる。 Therefore, the housing 5 of the sensor 1K according to this embodiment has a plurality of (for example, six) convex portions W1 (see FIGS. 18A and 18B: however, only four are shown in FIG. 18A). The plurality of protrusions W1 project from the edge (here, the upper edge) of the opening 7 in a direction (for example, downward) away from the side of the structure X1 to which the sensor 1K is attached. The plurality of convex portions W1 are arranged at equal intervals along the circumferential direction of the housing 5 when viewed from below, for example.
 複数の凸部W1は、熱検知素子30の加熱点検を行うための試験器900が筐体5を覆うように配置された状態で、試験器900の周縁部901(図19B参照)と接触するように構成される。このように複数の凸部W1が設けられていることで、筐体5に対して試験器900が安定的に配置される。すなわち、凸部W1が周縁部901と点接触する可能性が高くなり、凸部W1が存在せずに筐体5が周縁部901と面接触する場合に比べて、がたつきが抑制され得る。 The plurality of convex portions W1 come into contact with the peripheral portion 901 (see FIG. 19B) of the tester 900 in a state in which the tester 900 for performing the heat check of the heat detection element 30 is arranged so as to cover the housing 5. Is configured as follows. By providing the plurality of convex portions W1 in this manner, the tester 900 is stably arranged in the housing 5. That is, the possibility that the convex portion W1 makes a point contact with the peripheral edge portion 901 increases, and rattling can be suppressed as compared with the case where the housing 5 makes a surface contact with the peripheral edge portion 901 without the convex portion W1. .
 ここでは複数の凸部W1は、円筒体510の下端の周縁から下方に突出する。そして、複数の凸部W1は、複数の桟部512と、それぞれ一対一で対応するように、筐体5の周方向に沿って同じ位置にある。具体的には、各凸部W1は、対応する桟部512の一部(上部)と一体となって形成されている。言い換えると、各凸部W1は、対応する桟部512を補強する部位としても機能する。ただし、各凸部W1は、桟部512の補強部位としての機能は有してなくてもよい。各凸部W1は、筐体5の周方向において、桟部512からずれた位置にあってもよい。 Here, the plurality of convex portions W1 protrude downward from the peripheral edge of the lower end of the cylindrical body 510. The plurality of convex portions W1 are located at the same position along the circumferential direction of the housing 5 so as to correspond to the plurality of crosspieces 512 one-to-one. Specifically, each convex portion W1 is formed integrally with a part (upper portion) of the corresponding cross section 512. In other words, each convex portion W1 also functions as a portion that reinforces the corresponding cross section 512. However, each convex portion W1 may not have a function as a reinforcing portion of the crosspiece 512. Each convex portion W1 may be located at a position displaced from the crosspiece 512 in the circumferential direction of the housing 5.
 なお、凸部W1の数は、特に限定されず、例えば1つでもよい。凸部W1の数が1つであっても、筐体5が試験器900の周縁部901と面接触する場合に比べると、安定的に位置決めされ得る。 The number of the convex portions W1 is not particularly limited, and may be one, for example. Even when the number of the convex portions W1 is one, the positioning can be performed more stably than when the housing 5 makes surface contact with the peripheral edge portion 901 of the tester 900.
 また図20は、実施形態3の変形例である感知器1Lを示す。この変形例の感知器1Lも、外表面53がテーパ状に形成された第1表面531を有している。感知器1Lは、一例としてP型熱感知器である。特に感知器1Lは、実施形態2の変形例1の感知器1Gと同様に、3本の柱(左右一対の第1柱V12と真ん中の第2柱V13)を有した遮蔽部V1を、2セット備えている。図20では、2セットの遮蔽部V1のうち1セットだけが図示されていて、残りの1セットの遮蔽部V1は、裏側に位置する。 Further, FIG. 20 shows a sensor 1L which is a modified example of the third embodiment. The sensor 1L of this modification also has a first surface 531 in which the outer surface 53 is tapered. The sensor 1L is, for example, a P-type heat sensor. In particular, the sensor 1L includes the shielding portion V1 having three columns (a pair of left and right first columns V12 and the second column V13 in the middle) as in the sensor 1G of the first modification of the second embodiment. I have a set. In FIG. 20, only one set of the two sets of shields V1 is shown, and the remaining one set of shields V1 is located on the back side.
 また感知器1Lは、試験器900の周縁部901(図19B参照)と接触するように構成された、複数(例えば4つ)の凸部W1を有している(図20参照:ただし、3つのみ図示)。ここで4つの凸部W1のうちの、少なくとも1つの凸部W1は、遮蔽部V1の真ん中の第2柱V13を補強する部位としても機能するように、当該第2柱V13の一部(上部)と一体となって形成されている。要するに、感知器1Lの4つの凸部W1は、2つの桟部512及び2つの第2柱V13(図示される遮蔽部V1とは反対側にある遮蔽部V1の第2柱V13も含む)に対して、それぞれ一対一で対応するように、筐体5の周方向に沿って、これらと同じ位置にある。 Further, the sensor 1L has a plurality of (for example, four) convex portions W1 configured to contact the peripheral portion 901 (see FIG. 19B) of the tester 900 (see FIG. 20: 3 Only one shown). Here, at least one of the four protrusions W1 has a part (upper part) of the second pillar V13 so that at least one protrusion W1 also functions as a part that reinforces the second pillar V13 in the middle of the shielding portion V1. ) Is formed integrally. In short, the four convex portions W1 of the sensor 1L are formed on the two crosspieces 512 and the two second pillars V13 (including the second pillar V13 of the shielding portion V1 on the opposite side of the shielding portion V1 shown in the drawing). On the other hand, they are at the same positions along the circumferential direction of the housing 5 so as to correspond to each other one by one.
 (実施形態4)
 以下、本実施形態に係る感知器1Mについて図21A及び図21Bを参照しながら説明する。以下、実施形態1と実質的に同様の構成については、共通の符号を付して適宜説明を省略する。なお、図21A及び図21Bに示す感知器1Mは、一例としてR型熱感知器である。また感知器1Mは、実施形態1における変形例3の感知器1Cと同様に、煙検知部4を備えておらず熱の検知のみにより火災等の発生を判定する熱感知器である。また感知器1Mは、3本の柱を有した遮蔽部V1を複数セット備えている。
(Embodiment 4)
Hereinafter, the sensor 1M according to the present embodiment will be described with reference to FIGS. 21A and 21B. Hereinafter, configurations that are substantially the same as those of the first embodiment will be denoted by common reference numerals, and description thereof will be appropriately omitted. The sensor 1M shown in FIGS. 21A and 21B is, for example, an R-type heat sensor. Like the sensor 1C of the third modification of the first embodiment, the sensor 1M is a heat sensor that does not include the smoke detector 4 and determines the occurrence of a fire or the like only by detecting heat. In addition, the sensor 1M includes a plurality of sets of shielding portions V1 having three columns.
 感知器1Mは、その本体100Aを構造体X1(図示例では天井)に設置するための取付ベース100Bを更に備える。取付ベース100Bは、実施形態1の感知器(1、1A~1E)、実施形態2の感知器(1F~1J)、又は実施形態3(1K、1L)に対しても適宜適用されてもよい。 The sensor 1M further includes a mounting base 100B for mounting the main body 100A on the structure X1 (ceiling in the illustrated example). The mounting base 100B may be appropriately applied to the sensors (1, 1A to 1E) of the first embodiment, the sensors (1F to 1J) of the second embodiment, or the third embodiment (1K, 1L). .
 取付ベース100Bは、全体として下面が開放された扁平な円筒状に形成されている。取付ベース100Bは、ねじ止め等により構造体X1の表面に固定される。構造体X1には、その裏側にある電線(給電線及び信号線等)を導出するための孔が設けられている。取付ベース100Bは、その底部106に、構造体X1の孔から導出された電線を本体100Aに向かって通すための貫通孔103(図21B参照)を有している。 The mounting base 100B is formed in a flat cylindrical shape with an open lower surface as a whole. The mounting base 100B is fixed to the surface of the structure X1 by screwing or the like. The structure X1 is provided with a hole for leading out an electric wire (a power supply line, a signal line, etc.) on the back side thereof. The mounting base 100B has a through hole 103 (see FIG. 21B) in the bottom portion 106 for passing an electric wire led out from the hole of the structure X1 toward the main body 100A.
 また取付ベース100Bは、外周壁104と、外周壁104よりも外側に突出する鍔部105とを有している。外周壁104は、本体100Aの上側における、円筒体510と裏カバー52(図1参照)とによって構成された凹所に嵌まり込むように構成される。詳細な説明は省略するが、例えば外周壁104を本体100Aの上記凹所に嵌め込んだ状態で、軸方向に対して右回りに回転させることで、裏カバー52の係合部が係合する被係合部が、取付ベース100Bに設けられている。本体100Aは、裏カバー52の係合部が被係合部に係合することで、取付ベース100Bに固定される。 Further, the mounting base 100B has an outer peripheral wall 104 and a flange portion 105 projecting outward from the outer peripheral wall 104. The outer peripheral wall 104 is configured to fit into a recess formed by the cylindrical body 510 and the back cover 52 (see FIG. 1) on the upper side of the main body 100A. Although a detailed description is omitted, for example, when the outer peripheral wall 104 is fitted in the recess of the main body 100A and rotated clockwise with respect to the axial direction, the engaging portion of the back cover 52 is engaged. The engaged portion is provided on the mounting base 100B. The main body 100A is fixed to the mounting base 100B by the engaging portion of the back cover 52 engaging with the engaged portion.
 感知器1Mは、図21Aに示すように、本体100Aが取付ベース100Bに固定された状態において、鍔部105の外周面と円筒体510の外周面とが略面一となるので、外観上の見栄えのよい感知器として提供できる。 As shown in FIG. 21A, when the main body 100A is fixed to the mounting base 100B, the outer peripheral surface of the collar portion 105 and the outer peripheral surface of the cylindrical body 510 of the sensor 1M are substantially flush with each other. It can be provided as a good-looking sensor.
 ところで、上述した取付ベース100Bは、感知器1Mを構造体X1の表面に直付け設置するタイプのベースユニットである。これに対して、本実施形態の変形例として、取付ベース100Bの代わりに、感知器1Mは、図22A及び図22Bに示すように、埋込ベース100Cを備えてもよい。埋込ベース100Cは、感知器1Mを構造体X1に対して埋め込み設置するタイプのベースユニットである。 By the way, the mounting base 100B described above is a type of base unit in which the sensor 1M is directly mounted on the surface of the structure X1. On the other hand, as a modified example of the present embodiment, instead of the mounting base 100B, the sensor 1M may include an embedded base 100C as shown in FIGS. 22A and 22B. The embedded base 100C is a base unit of a type in which the sensor 1M is embedded and installed in the structure X1.
 埋込ベース100Cは、構造体X1にある埋め込み用の孔に挿入されるベース本体107と、ベース本体107と一体となって形成されている化粧部108と、を有している。 The embedded base 100C has a base body 107 that is inserted into a hole for embedding in the structure X1 and a decorative portion 108 that is integrally formed with the base body 107.
 ベース本体107は、下面が開放された扁平な円筒状に形成されている。また埋込ベース100Cは、例えば、構造体X1の上記孔に挿入された状態で構造体X1に固定するための取付金具(後述する第1取付金具T1又は第2取付金具T2)を更に有している。ベース本体107は、その底部109に、構造体X1の裏側にある電線を本体100Aに向かって通すための貫通孔110(図22B参照)を有している。 The base body 107 is formed in a flat cylindrical shape with an open lower surface. Further, the embedded base 100C further includes, for example, a mounting bracket (a first mounting bracket T1 or a second mounting bracket T2 described later) for fixing the embedded base 100C to the structure X1 while being inserted into the hole of the structure X1. ing. The base body 107 has a through hole 110 (see FIG. 22B) in the bottom portion 109 for passing an electric wire on the back side of the structure X1 toward the body 100A.
 ベース本体107は、本体100Aの外径よりも僅かに大きい内径の凹所111を有している。すなわち、本体100Aは、凹所111内に収容可能となっている。ここでは、凹所111は、円筒体510における上下方向の略半分が凹所111内に収まる程度の深さを有している。 The base body 107 has a recess 111 having an inner diameter slightly larger than the outer diameter of the main body 100A. That is, the main body 100A can be housed in the recess 111. Here, the recess 111 has a depth such that approximately half of the vertical direction of the cylindrical body 510 fits into the recess 111.
 化粧部108は、ベース本体107の下端から外側に向かって鍔状に突出する。化粧部108は、ベース本体107が構造体X1の上記孔に挿入された状態で、構造体X1の表面よりも下方に位置して露出する。 Decorative part 108 protrudes outward from the lower end of base body 107 in a brim shape. The makeup section 108 is positioned and exposed below the surface of the structure X1 with the base body 107 inserted into the hole of the structure X1.
 詳細な説明は省略するが、例えば本体100Aをベース本体107の凹所111内に嵌め込んだ状態で、軸方向に対して右回りに回転させることで、裏カバー52の係合部が係合する被係合部が、埋込ベース100Cに設けられている。本体100Aは、裏カバー52の係合部が被係合部に係合することで、埋込ベース100Cに固定される。 Although a detailed description is omitted, for example, when the main body 100A is fitted in the recess 111 of the base main body 107 and rotated clockwise with respect to the axial direction, the engagement portion of the back cover 52 is engaged. The engaged portion is provided in the embedded base 100C. The main body 100A is fixed to the embedding base 100C by the engaging portion of the back cover 52 engaging with the engaged portion.
 感知器1Mは、図22Aに示すように、本体100Aが埋込ベース100Cに固定された状態において、構造体X1の表面からの突出量を抑えることができるため、外観上の見栄えのよい感知器として提供できる。 As shown in FIG. 22A, the sensor 1M can suppress the amount of protrusion from the surface of the structure X1 in a state where the main body 100A is fixed to the embedded base 100C, and thus has a good appearance. Can be provided as.
 ここで、一対の第1取付金具T1を用いて埋込ベース100Cを構造体X1へ取り付ける取付方法について、図23Aを参照しながら説明する。埋込ベース100Cは、一対の第1取付金具T1を有している。図23Aでは、説明の便宜上、構造体X1のみを断面で示している。各第1取付金具T1は、固定ねじT11と、部分的に屈曲した板ばね状の固定片T12と、を有している。固定片T12は、固定ねじT11が螺合されるねじ孔を有している。固定片T12は、固定ねじT11がベース本体107の底部109にある貫通孔に下方から挿入された状態で、ベース本体107の上側で、固定ねじT11に仮固定されている。言い換えれば、固定片T12の平坦部T120と固定ねじT11の頭部とで底部109を挟み込んだ状態となっている。 Here, a mounting method for mounting the embedded base 100C to the structure X1 using the pair of first mounting brackets T1 will be described with reference to FIG. 23A. The embedded base 100C has a pair of first mounting brackets T1. In FIG. 23A, for convenience of description, only the structure X1 is shown in a cross section. Each first mounting member T1 has a fixing screw T11 and a partially bent plate spring-shaped fixing piece T12. The fixing piece T12 has a screw hole into which the fixing screw T11 is screwed. The fixing piece T12 is temporarily fixed to the fixing screw T11 on the upper side of the base body 107 in a state where the fixing screw T11 is inserted into the through hole in the bottom portion 109 of the base body 107 from below. In other words, the bottom portion 109 is sandwiched between the flat portion T120 of the fixed piece T12 and the head portion of the fixing screw T11.
 埋込ベース100Cを構造体X1へ取り付ける際には、まず各固定ねじT11をドライバー等の工具で緩めて、上記の挟み込んだ状態を解除する。この状態で、各固定片T12は、固定ねじT11と共に、内側へ傾斜可能となっている(図23Aの想像線を参照)。各固定片T12を内側に傾けて、その状態を維持しながらベース本体107を構造体X1の孔X11に挿入する。その後、各固定ねじT11をドライバー等の工具で締め付けることで、固定片T12が、ベース本体107と接触している平坦部T120を支点として外側に倒れこみ、その先端T121(作用点)が構造体X1の裏面に接触する。そして更に各固定ねじT11を締め付けることで、構造体X1は、各固定片T12の先端T121と、化粧部108とで、上下方向において挟み込むことになり、その結果、埋込ベース100Cが構造体X1に固定される。 When attaching the embedded base 100C to the structure X1, first loosen each fixing screw T11 with a tool such as a screwdriver to release the pinched state. In this state, each fixing piece T12 can be tilted inward together with the fixing screw T11 (see the imaginary line in FIG. 23A). Each fixing piece T12 is tilted inward, and the base body 107 is inserted into the hole X11 of the structure X1 while maintaining that state. Then, by tightening each fixing screw T11 with a tool such as a screwdriver, the fixing piece T12 falls outward with the flat portion T120 in contact with the base body 107 as a fulcrum, and its tip T121 (point of action) is the structure. Touch the back of X1. Then, by further tightening each fixing screw T11, the structure X1 is sandwiched in the vertical direction by the tip T121 of each fixing piece T12 and the decorative portion 108, and as a result, the embedded base 100C becomes the structure X1. Fixed to.
 次に、一対の第2取付金具T2を用いて埋込ベース100Cを構造体X1へ取り付ける取付方法について、図23Bを参照しながら説明する。埋込ベース100Cは、一対の第2取付金具T2を有している。図23Bでは、説明の便宜上、構造体X1のみを断面で示している。各第2取付金具T2は、固定ねじT21と、平坦な矩形の板状の固定片T22と、を有している。固定片T22は、固定ねじT21が螺合されるねじ孔を有している。固定片T22は、固定ねじT21が化粧部108にある貫通孔に下方から挿入された状態で、化粧部108の上側で、固定ねじT21に仮固定されている。 Next, a mounting method for mounting the embedded base 100C to the structure X1 using the pair of second mounting brackets T2 will be described with reference to FIG. 23B. The embedded base 100C has a pair of second mounting brackets T2. In FIG. 23B, for convenience of description, only the structure X1 is shown in a cross section. Each second mounting member T2 has a fixing screw T21 and a flat rectangular plate-shaped fixing piece T22. The fixing piece T22 has a screw hole into which the fixing screw T21 is screwed. The fixing piece T22 is temporarily fixed to the fixing screw T21 on the upper side of the decorative portion 108 in a state where the fixing screw T21 is inserted into the through hole in the decorative portion 108 from below.
 埋込ベース100Cを構造体X1へ取り付ける際には、まず各固定ねじT21をドライバー等の工具で緩めて、固定片T22の先端が内側を向くように回転させる。この状態を維持しながらベース本体107を構造体X1の孔X11に挿入する。その後、各固定ねじT21をドライバー等の工具で締め付けることで、固定片T22の先端が外側を向き、さらに固定片T22は、構造体X1の裏面に向かって下降して概ね面接触する。そして更に各固定ねじT21を締め付けることで、構造体X1は、各固定片T22と、化粧部108とで、上下方向において挟み込むことになり、その結果、埋込ベース100Cが構造体X1に固定される。 When mounting the embedded base 100C to the structure X1, first loosen each fixing screw T21 with a tool such as a screwdriver, and rotate so that the tip of the fixing piece T22 faces inward. While maintaining this state, the base body 107 is inserted into the hole X11 of the structure X1. Then, by tightening each fixing screw T21 with a tool such as a screwdriver, the tip of the fixing piece T22 faces outward, and further, the fixing piece T22 descends toward the back surface of the structure X1 to make substantially surface contact. Then, by further tightening each fixing screw T21, the structure X1 is sandwiched by each fixing piece T22 and the decorative portion 108 in the vertical direction, and as a result, the embedded base 100C is fixed to the structure X1. It
 上述した第1取付金具T1及び第2取付金具T2は、単なる一例であって、埋込ベース100Cを構造体X1に固定するための取付金具は、これらに限定されない。また上述した取付方法も、単なる一例であって、これらに限定されない。 The above-described first mounting bracket T1 and second mounting bracket T2 are merely examples, and the mounting bracket for fixing the embedded base 100C to the structure X1 is not limited to these. Further, the above-described mounting method is also merely an example and is not limited to these.
 (4)まとめ
 以上説明したように、第1の態様に係る感知器(1、1A~1M)は、基板(2)と、熱検知素子(30)と、筐体(5)と、を備える。筐体(5)は、基板(2)を収容する。筐体(5)は、その内部空間(SP1)に設けられて気体が流れる流路(6)と、流路(6)と筐体(5)の外部空間(SP2)とを繋ぐ開口部(7)と、を有する。熱検知素子(30)は、基板(2)に実装されて、開口部(7)から流入した気体の熱を検知するチップサーミスタである。第1の態様によれば、熱検知素子(30)が、基板(2)に実装されるチップサーミスタであるため、感知器(1、1A~1M)全体としての小型化を図ることができる。
(4) Summary As described above, the sensor (1, 1A to 1M) according to the first aspect includes the substrate (2), the heat detecting element (30), and the housing (5). . The housing (5) houses the substrate (2). The housing (5) is provided with an internal space (SP1) and a flow path (6) through which gas flows, and an opening (connecting the flow path (6) and the external space (SP2) of the housing (5) ( 7) and. The heat detecting element (30) is a chip thermistor mounted on the substrate (2) and detecting the heat of the gas flowing in from the opening (7). According to the first aspect, since the heat detection element (30) is a chip thermistor mounted on the substrate (2), the size of the sensor (1, 1A to 1M) as a whole can be reduced.
 第2の態様に係る感知器(1、1A~1M)に関して、第1の態様において、基板(2)の表面(例えば第1面21)の少なくとも一部の領域は、流路(6)に露出することが好ましい。第2の態様によれば、熱検知素子(30)が流路(6)を流れる気体に曝される可能性をより高めることができるため、熱の検知性能をより向上させつつ、小型化を図ることができる。 Regarding the sensor (1, 1A to 1M) according to the second aspect, in the first aspect, at least a partial region of the surface (eg, the first surface 21) of the substrate (2) is in the flow path (6). It is preferable to expose. According to the second aspect, it is possible to further increase the possibility that the heat detection element (30) is exposed to the gas flowing through the flow path (6), and therefore, it is possible to improve the heat detection performance and reduce the size. Can be planned.
 第3の態様に係る感知器(1、1A~1M)に関して、第1の態様又は第2の態様において、チップサーミスタは、外部空間(SP2)の側から開口部(7)の開口領域(70)を見たときに、開口領域(70)内に収まるように配置されていることが好ましい。第3の態様によれば、熱検知素子(30)が流路(6)を流れる気体に曝される可能性をより高めることができるため、熱の検知性能をより向上させつつ、小型化を図ることができる。 Regarding the sensor (1, 1A to 1M) according to the third aspect, in the first aspect or the second aspect, the chip thermistor has an opening area (70) of the opening (7) from the side of the external space (SP2). ), It is preferably arranged so as to fit within the opening region (70). According to the third aspect, it is possible to further increase the possibility that the heat detecting element (30) is exposed to the gas flowing through the flow path (6), and thus it is possible to reduce the size while improving the heat detecting performance. Can be planned.
 第4の態様に係る感知器(1、1A~1M)に関して、第3の態様において、チップサーミスタは、次の位置にあることが好ましい。すなわち、チップサーミスタは、外部空間(SP2)の側から開口領域(70)を見たときに、開口領域(70)内において、基板(2)の表面(例えば第1面21)と直交する方向における開口領域(70)の中央に位置することが好ましい。第4の態様によれば、例えばチップサーミスタが上記方向における開口領域(70)の一端寄りに位置する場合に比べて、熱検知素子(30)が流路(6)を流れる気体に曝される可能性を更に高めることができる。 Regarding the sensors (1, 1A to 1M) according to the fourth aspect, in the third aspect, the chip thermistor is preferably located at the following position. That is, the chip thermistor has a direction orthogonal to the surface (eg, the first surface 21) of the substrate (2) within the opening region (70) when the opening region (70) is viewed from the external space (SP2) side. It is preferably located in the center of the open area (70) at. According to the fourth aspect, for example, the heat detecting element (30) is exposed to the gas flowing through the flow path (6) as compared with the case where the chip thermistor is located near one end of the opening region (70) in the above direction. The possibility can be further increased.
 第5の態様に係る感知器(1、1A~1M)に関して、第1~第4の態様のいずれか1つにおいて、流路(6)は、開口部(7)の側にある第1路(61)と、第1路(61)と繋がっていて内部空間(SP1)の中央部の側にある第2路(62)とを含む。チップサーミスタは、第1路(61)内にあることが好ましい。第5の態様によれば、例えばチップサーミスタが第2路(62)内にある場合に比べて、熱検知に関する応答性を高めることができる。 Regarding the sensor (1, 1A to 1M) according to the fifth aspect, in any one of the first to fourth aspects, the flow path (6) is the first path on the side of the opening (7). (61) and a second path (62) connected to the first path (61) and located on the side of the central portion of the internal space (SP1). The chip thermistor is preferably in the first path (61). According to the fifth aspect, the responsiveness regarding heat detection can be improved as compared with the case where the chip thermistor is in the second path (62), for example.
 第6の態様に係る感知器(1、1A~1M)に関して、第1~第5の態様のいずれか1つにおいて、流路(6)は、開口部(7)の側にある第1路(61)と、第1路(61)と繋がっていて内部空間(SP1)の中央部の側にある第2路(62)とを含む。第1路(61)の開口断面積は、第2路(62)の開口断面積よりも小さいことが好ましい。第6の態様によれば、開口部(7)を通じて流路(6)内へ入った気体が、第1路(61)から第2路(62)に向かって流れるように促進させることができる。 Regarding the sensor (1, 1A to 1M) according to the sixth aspect, in any one of the first to fifth aspects, the flow path (6) is the first path on the side of the opening (7). (61) and a second path (62) connected to the first path (61) and located on the side of the central portion of the internal space (SP1). The opening cross-sectional area of the first path (61) is preferably smaller than the opening cross-sectional area of the second path (62). According to the sixth aspect, the gas that has entered the flow path (6) through the opening (7) can be promoted to flow from the first path (61) toward the second path (62). .
 第7の態様に係る感知器(1、1A~1M)に関して、第6の態様において、筐体(5)は、当該感知器(1、1A~1M)が取り付けられる構造体(X1)と対向する設置面(55)を有することが好ましい。第2路(62)は、第1路(61)から上記中央部に向かうほど、設置面(55)に近づく方向に拡がっていることが好ましい。第7の態様によれば、第1路(61)から第2路(62)に向かう気流をより効果的に発生させることができる。 Regarding the sensor (1, 1A to 1M) according to the seventh aspect, in the sixth aspect, the housing (5) faces the structure (X1) to which the sensor (1, 1A to 1M) is attached. It is preferable to have an installation surface (55) for It is preferable that the second road (62) expands in a direction closer to the installation surface (55) from the first road (61) toward the central portion. According to the seventh aspect, it is possible to more effectively generate the airflow from the first road (61) to the second road (62).
 第8の態様に係る感知器(1、1A~1M)は、第1~第7の態様のいずれか1つにおいて、内部空間(SP1)の中央部に配置され、煙を検知する煙検知部(4)を、更に備えることが好ましい。第8の態様によれば、熱だけでなく煙も検知するため、火災の感知性能を高めつつ、感知器(1、1A~1M)全体としての小型化を図ることができる。 The sensor (1, 1A to 1M) according to the eighth aspect is the smoke detecting section according to any one of the first to seventh aspects, which is arranged in a central portion of the internal space (SP1) and detects smoke. It is preferable to further include (4). According to the eighth aspect, since not only heat but also smoke is detected, it is possible to reduce the size of the detector (1, 1A to 1M) as a whole while improving the fire detection performance.
 第9の態様に係る感知器(1、1A~1M)に関して、第8の態様において、煙検知部(4)は、チップサーミスタが実装された基板(2)の表面(例えば第1面21)と同一平面側に配置されていることが好ましい。第9の態様によれば、火災の感知性能を更に高めつつ、感知器(1、1A~1M)全体としての小型化を図ることができる。 Regarding the sensor (1, 1A to 1M) according to the ninth aspect, in the eighth aspect, the smoke detecting section (4) has a surface (for example, the first surface 21) of the substrate (2) on which the chip thermistor is mounted. It is preferably arranged on the same plane side as. According to the ninth aspect, it is possible to reduce the size of the detector (1, 1A to 1M) as a whole while further improving the fire detection performance.
 第10の態様に係る感知器(1、1A~1M)に関して、第8の態様又は第9の態様において、筐体(5)は、当該感知器(1、1A~1M)が取り付けられる構造体(X1)と対向する設置面(55)を有することが好ましい。煙検知部(4)は、基板(2)における表面(例えば第1面21)、及び表面とは反対側の裏面(例えば第2面22)のうち、設置面(55)に近い側の面に、配置されていることが好ましい。第10の態様によれば、例えば煙検知部(4)が設置面(55)に遠い側の面に配置されている場合に比べて、さらに小型化を図ることができる。 Regarding the sensor (1, 1A to 1M) according to the tenth aspect, in the eighth or ninth aspect, the housing (5) has a structure to which the sensor (1, 1A to 1M) is attached. It is preferable to have an installation surface (55) facing (X1). The smoke detection unit (4) is a surface (e.g., the first surface 21) of the substrate (2) and a surface (e.g., the second surface 22) opposite to the surface, which is closer to the installation surface (55). It is preferable that they are arranged. According to the tenth aspect, it is possible to further reduce the size, for example, as compared with the case where the smoke detection unit (4) is arranged on the surface far from the installation surface (55).
 第11の態様に係る感知器(1、1A~1M)に関して、第8~第10の態様のいずれか1つにおいて、筐体(5)は、内部空間(SP1)において、1又は複数の壁体(制御板522)を有することが好ましい。1又は複数の壁体(制御板522)は、熱検知素子(30)又は煙検知部(4)に気体を誘導することが好ましい。第11の態様によれば、火災の感知性能を更に高めることができる。 Regarding the sensor (1, 1A to 1M) according to the eleventh aspect, in any one of the eighth to tenth aspects, the housing (5) has one or more walls in the internal space (SP1). It is preferable to have a body (control plate 522). It is preferable that one or a plurality of walls (control plate 522) guide the gas to the heat detecting element (30) or the smoke detecting section (4). According to the eleventh aspect, the fire sensing performance can be further enhanced.
 第12の態様に係る感知器(1、1A~1M)に関して、第8~第11の態様のいずれか1つにおいて、筐体(5)は、当該感知器(1、1A~1M)が取り付けられる構造体(X1)と対向する設置面(55)を有することが好ましい。煙検知部(4)は、光を放射する光学素子(41)と、光学素子(41)から放射された光を受光する受光素子(42)と、ラビリンス部(43)と、を有する。ラビリンス部(43)内において、光学素子(41)及び受光素子(42)は、互いに対向しないように配置される。基板(2)の厚み方向(上下方向)において、ラビリンス部(43)の内部空間の中心(P1)は、チップサーミスタと設置面(55)との間にあることが好ましい。第12の態様によれば、熱だけでなく煙も検知する感知器(1、1A~1M)において、火災の感知性能を更に高めつつ、感知器(1、1A~1M)全体としての小型化を図ることができる。 Concerning the sensor (1, 1A to 1M) according to the twelfth aspect, in any one of the eighth to eleventh aspects, the sensor (1, 1A to 1M) is attached to the housing (5). It is preferable to have an installation surface (55) facing the structure (X1) to be formed. The smoke detecting section (4) has an optical element (41) for emitting light, a light receiving element (42) for receiving the light emitted from the optical element (41), and a labyrinth section (43). In the labyrinth portion (43), the optical element (41) and the light receiving element (42) are arranged so as not to face each other. In the thickness direction (vertical direction) of the substrate (2), the center (P1) of the internal space of the labyrinth portion (43) is preferably located between the chip thermistor and the installation surface (55). According to the twelfth aspect, in the sensor (1, 1A to 1M) that detects not only heat but also smoke, the size of the sensor (1, 1A to 1M) as a whole can be reduced while further improving fire detection performance. Can be achieved.
 第13の態様に係る感知器(1、1A~1M)に関して、第1~第12の態様のいずれか1つにおいて、チップサーミスタは、外部空間(SP2)の側から開口部(7)の開口領域(70)を見たときに開口領域(70)内に収まるように配置されることが好ましい。感知器(1、1A~1M)は、チップサーミスタよりも外部空間(SP2)の側において開口領域(70)の一部を遮る遮蔽部(V1)を、更に備えることが好ましい。第13の態様によれば、遮蔽部(V1)が設けられていることで、開口部(7)からの熱流入が妨げられにくくしつつ、例えば意図せずに人の指又は工具等がチップサーミスタに接触してしまう可能性を低減できる。 Regarding the sensor (1, 1A to 1M) according to the thirteenth aspect, in any one of the first to twelfth aspects, the chip thermistor has an opening (7) from the side of the external space (SP2). It is preferably arranged to fit within the open area (70) when the area (70) is viewed. It is preferable that the sensors (1, 1A to 1M) further include a shield (V1) that shields a part of the opening region (70) on the side of the external space (SP2) with respect to the chip thermistor. According to the thirteenth aspect, since the shielding part (V1) is provided, it is possible to prevent the heat inflow from the opening part (7) from being hindered and, for example, to unintentionally insert a finger or a tool of a person into the tip. The possibility of contacting the thermistor can be reduced.
 第14の態様に係る感知器(1、1A~1M)に関して、第13の態様において、遮蔽部(V1)は、外部空間(SP2)からの気流をチップサーミスタに向かって誘導する誘導面(V2)を有することが好ましい。第14の態様によれば、遮蔽部(V1)によって開口部(7)からの熱流入が妨げられる可能性をさらに低減できる。 Regarding the sensor (1, 1A to 1M) according to the fourteenth aspect, in the thirteenth aspect, the shielding part (V1) includes a guide surface (V2 that guides the airflow from the external space (SP2) toward the chip thermistor. ) Are preferred. According to the fourteenth aspect, it is possible to further reduce the possibility that the flow of heat through the opening (7) is blocked by the shield (V1).
 第15の態様に係る感知器(1、1A~1M)に関して、第13の態様又は第14の態様において、筐体(5)は、第1カバー(例えば表カバー51及び裏カバー52の一方)と、第2カバー(他方)と、を有することが好ましい。第1カバーは、基板(2)の厚み方向における一の方向から基板(2)を覆う。第2カバーは、上記厚み方向における上記一の方向とは反対の方向から基板(2)を覆う。遮蔽部(V1)は、第1カバーから第2カバーに向かって突出する第1突起(V14、V16)と、第2カバーから第1カバーに向かって突出する第2突起(V15、V17)と、を有することが好ましい。第15の態様によれば、さらに開口部(7)からの熱流入が妨げられにくくしつつ、人の指又は工具等がチップサーミスタに接触してしまう可能性を低減できる。 Regarding the sensor (1, 1A to 1M) according to the fifteenth aspect, in the thirteenth aspect or the fourteenth aspect, the housing (5) includes the first cover (for example, one of the front cover 51 and the back cover 52). And a second cover (the other side). The first cover covers the substrate (2) from one direction in the thickness direction of the substrate (2). The second cover covers the substrate (2) from a direction opposite to the one direction in the thickness direction. The shielding part (V1) includes a first protrusion (V14, V16) protruding from the first cover toward the second cover, and a second protrusion (V15, V17) protruding from the second cover toward the first cover. It is preferable to have According to the fifteenth aspect, it is possible to further reduce the possibility that a human finger, a tool, or the like will come into contact with the chip thermistor while making it more difficult to prevent the heat inflow from the opening (7).
 第16の態様に係る感知器(1、1A~1M)に関して、第15の態様において、第1突起(V14)は、次のように配置されることが好ましい。すなわち、第1突起(V14)は、外部空間(SP2)の側から開口領域(70)を見たときに、第1カバーと第2カバーとが並ぶ並び方向と直交する方向において、第2突起(V15)に対して、ずれて配置されることが好ましい。第16の態様によれば、遮蔽部(V1)によって開口部(7)からの熱流入が妨げられる可能性をさらに低減できる。 Regarding the sensor (1, 1A to 1M) according to the sixteenth aspect, in the fifteenth aspect, the first protrusion (V14) is preferably arranged as follows. That is, the first protrusion (V14) is the second protrusion in the direction orthogonal to the arranging direction of the first cover and the second cover when the opening region (70) is viewed from the side of the external space (SP2). It is preferable to dispose with respect to (V15). According to the sixteenth aspect, it is possible to further reduce the possibility that the flow of heat from the opening (7) is blocked by the shield (V1).
 第17の態様に係る感知器(1、1A~1M)に関して、第15の態様において、第1突起(V16)及び第2突起(V17)は、互いの先端同士が対向するように突出することが好ましい。第17の態様によれば、人の指又は工具等がチップサーミスタに接触してしまう可能性をさらに低減できる。 With regard to the sensor (1, 1A to 1M) according to the seventeenth aspect, in the fifteenth aspect, the first protrusion (V16) and the second protrusion (V17) project so that their tips are opposed to each other. Is preferred. According to the seventeenth aspect, it is possible to further reduce the possibility that a human finger, a tool, or the like will come into contact with the chip thermistor.
 第18の態様に係る感知器(1、1A~1M)に関して、第15~第17の態様のいずれか1つにおいて、第1突起(V14、V16)及び第2突起(V15、V17)の少なくとも一方(ここでは第2突起V15)は、次の通りであることが好ましい。すなわち、上記少なくとも一方は、外部空間(SP2)の側から開口領域(70)を見たときに、第1カバーと第2カバーとが並ぶ並び方向と直交する方向においてチップサーミスタと同じ位置にあることが好ましい。さらに上記少なくとも一方は、外部空間(SP2)の側から開口領域(70)を見たときに、チップサーミスタの少なくとも一部が露出するように上記少なくとも一方の突出量が規定されていることが好ましい。第18の態様によれば、さらに開口部(7)からの熱流入が妨げられにくくしつつ、人の指又は工具等がチップサーミスタに接触してしまう可能性を低減できる。 Regarding the sensor (1, 1A to 1M) according to the eighteenth aspect, in any one of the fifteenth to seventeenth aspects, at least the first protrusion (V14, V16) and the second protrusion (V15, V17). One (here, the second protrusion V15) is preferably as follows. That is, at least one of the above is at the same position as the chip thermistor in the direction orthogonal to the arranging direction of the first cover and the second cover when the opening region (70) is viewed from the side of the external space (SP2). It is preferable. Furthermore, it is preferable that the projection amount of at least one of the at least one is defined such that at least a part of the chip thermistor is exposed when the opening region (70) is viewed from the side of the external space (SP2). . According to the eighteenth aspect, it is possible to further reduce the possibility that a human finger, a tool, or the like will come into contact with the chip thermistor while making it more difficult to prevent heat inflow from the opening (7).
 第19の態様に係る感知器(1、1A~1M)に関して、第1~第18の態様のいずれか1つにおいて、開口部(7)は、流入口(7B)を有することが好ましい。流入口(7B)は、筐体(5)における、感知器(1、1A~1M)が取り付けられる構造体(X1)とは反対側の外表面(53)に設けられている。第19の態様によれば、流入口(7B)から流入した気体の熱を検知できるため、熱検知に関する応答性を高めることができる。 Regarding the sensor (1, 1A to 1M) according to the nineteenth aspect, in any one of the first to eighteenth aspects, it is preferable that the opening (7) has an inflow port (7B). The inlet (7B) is provided on the outer surface (53) of the housing (5) opposite the structure (X1) to which the sensors (1, 1A-1M) are attached. According to the nineteenth aspect, the heat of the gas flowing in from the inflow port (7B) can be detected, so that the responsiveness regarding heat detection can be improved.
 第20の態様に係る感知器(1、1A~1M)に関して、第19の態様において、外表面(53)は、流入口(7B)の周囲における第1表面(531)と、第1表面(531)よりも外側にある第2表面(532)と、を有することが好ましい。第1表面(531)は、第2表面(532)とは異なる傾斜角で、流入口(7B)に近づくほど構造体(X1)の側に近づく向きにテーパ状に形成されていることが好ましい。第20の態様によれば、流入口(7B)への熱流入をさらに促進できる。 Regarding the sensor (1, 1A to 1M) according to the twentieth aspect, in the nineteenth aspect, the outer surface (53) has a first surface (531) around the inlet (7B) and a first surface (531). 531) and the 2nd surface (532) located outside. It is preferable that the first surface (531) has an inclination angle different from that of the second surface (532) and is formed in a taper shape so as to be closer to the structure (X1) side as it is closer to the inflow port (7B). . According to the twentieth aspect, the heat inflow into the inflow port (7B) can be further promoted.
 第21の態様に係る感知器(1、1A~1M)に関して、第1~第20の態様のいずれか1つにおいて、筐体(5)は、1又は複数の凸部(W1)を有することが好ましい。1又は複数の凸部(W1)は、開口部(7)の縁部から、感知器(1、1A~1M)が取り付けられる構造体(X1)の側から離れる方向に突出する。1又は複数の凸部(W1)は、熱検知素子(30)の加熱点検を行うための試験器(900)が筐体(5)を覆うように配置された状態で、試験器(900)の周縁部(901)と接触するように構成されることが好ましい。第21の態様によれば、凸部(W1)が設けられていることで、筐体(5)に対して試験器(900)が安定的に配置される。すなわち、凸部(W1)が周縁部(901)と点接触する可能性が高くなり、面接触に比べて、がたつきが抑制され得る。 As for the sensor (1, 1A to 1M) according to the twenty-first aspect, in any one of the first to twentieth aspects, the housing (5) has one or more convex portions (W1). Is preferred. The one or more protrusions (W1) protrude from the edge of the opening (7) in a direction away from the side of the structure (X1) to which the sensors (1, 1A to 1M) are attached. The one or more convex portions (W1) are provided with a tester (900) for performing heating inspection of the heat detecting element (30) arranged so as to cover the housing (5). It is preferably configured to contact the peripheral portion (901) of the. According to the twenty-first aspect, since the convex portion (W1) is provided, the tester (900) is stably arranged in the housing (5). That is, the convex portion (W1) is more likely to come into point contact with the peripheral edge portion (901), and rattling can be suppressed as compared with surface contact.
 第2~21の態様に係る構成については、感知器(1、1A~1M)に必須の構成ではなく、適宜省略可能である。 The configurations according to the second to twenty-first aspects are not essential for the sensors (1, 1A to 1M) and can be omitted as appropriate.
 1、1A~1M 感知器
 2 基板
 30 熱検知素子
 4 煙検知部
 41 光学素子
 42 受光素子
 43 ラビリンス部
 5 筐体
 51 表カバー(第2カバー)
 52 裏カバー(第1カバー)
 53 外表面
 531 第1表面
 532 第2表面
 55 設置面
 522 制御板(壁体)
 6 流路
 61 第1路
 62 第2路
 7 開口部
 7B 流入口
 70 開口領域
 P1 中心
 SP1 内部空間
 SP2 外部空間
 V1 遮蔽部
 V14、V16 第1突起
 V15、V17 第2突起
 V2 誘導面
 W1 凸部
 X1 構造体
 900 試験器
 901 周縁部
1, 1A to 1M Sensor 2 Substrate 30 Heat detecting element 4 Smoke detecting section 41 Optical element 42 Light receiving element 43 Labyrinth section 5 Case 51 Front cover (second cover)
52 Back cover (first cover)
53 outer surface 531 first surface 532 second surface 55 installation surface 522 control plate (wall)
6 Flow Path 61 1st Road 62 2nd Road 7 Opening 7B Inlet 70 Opening Area P1 Center SP1 Internal Space SP2 External Space V1 Shielding V14, V16 First Protrusion V15, V17 Second Protrusion V2 Guide Surface W1 Convex X1 Structure 900 Tester 901 Perimeter

Claims (21)

  1.  基板と、
     熱検知素子と、
     前記基板を収容する筐体と、
    を備え、
     前記筐体は、
      その内部空間に設けられて気体が流れる流路と、
      前記流路と前記筐体の外部空間とを繋ぐ開口部と、
    を有し、
     前記熱検知素子は、前記基板に実装されて、前記開口部から流入した前記気体の熱を検知するチップサーミスタである、
     感知器。
    Board and
    A heat sensing element,
    A housing for housing the substrate,
    With
    The housing is
    A flow path provided in the internal space through which gas flows,
    An opening connecting the flow path and the external space of the housing,
    Have
    The heat detecting element is a chip thermistor mounted on the substrate and detecting heat of the gas flowing from the opening.
    sensor.
  2.  前記基板の表面の少なくとも一部の領域は、前記流路に露出する、
     請求項1に記載の感知器。
    At least a portion of the surface of the substrate is exposed in the flow path,
    The sensor according to claim 1.
  3.  前記チップサーミスタは、前記外部空間の側から前記開口部の開口領域を見たときに、前記開口領域内に収まるように配置されている、
     請求項1又は2に記載の感知器。
    The chip thermistor is arranged so as to fit within the opening area when the opening area of the opening is viewed from the side of the external space.
    The sensor according to claim 1 or 2.
  4.  前記チップサーミスタは、前記外部空間の側から前記開口領域を見たときに、前記開口領域内において、前記基板の表面と直交する方向における前記開口領域の中央に位置する、
     請求項3に記載の感知器。
    The chip thermistor is located at the center of the opening region in the direction orthogonal to the surface of the substrate in the opening region when the opening region is viewed from the side of the external space.
    The sensor according to claim 3.
  5.  前記流路は、前記開口部の側にある第1路と、前記第1路と繋がっていて前記内部空間の中央部の側にある第2路とを含み、
     前記チップサーミスタは、前記第1路内にある、
     請求項1~4のいずれか1項に記載の感知器。
    The flow path includes a first path on the side of the opening and a second path connected to the first path on the side of the central portion of the internal space,
    The chip thermistor is in the first path,
    The sensor according to any one of claims 1 to 4.
  6.  前記流路は、前記開口部の側にある第1路と、前記第1路と繋がっていて前記内部空間の中央部の側にある第2路とを含み、
     前記第1路の開口断面積は、前記第2路の開口断面積よりも小さい、
     請求項1~5のいずれか1項に記載の感知器。
    The flow path includes a first path on the side of the opening and a second path connected to the first path on the side of the central portion of the internal space,
    The opening cross-sectional area of the first path is smaller than the opening cross-sectional area of the second path,
    The sensor according to any one of claims 1 to 5.
  7.  前記筐体は、当該感知器が取り付けられる構造体と対向する設置面を有し、
     前記第2路は、前記第1路から前記中央部に向かうほど、前記設置面に近づく方向に拡がっている、
     請求項6に記載の感知器。
    The housing has an installation surface facing a structure to which the sensor is attached,
    The second road expands in a direction closer to the installation surface from the first road toward the central portion.
    The sensor according to claim 6.
  8.  前記内部空間の中央部に配置され、煙を検知する煙検知部を、更に備える、
     請求項1~7のいずれか1項に記載の感知器。
    A smoke detector arranged in the central portion of the internal space to detect smoke is further provided.
    The sensor according to any one of claims 1 to 7.
  9.  前記煙検知部は、前記チップサーミスタが実装された前記基板の表面と同一平面側に配置されている、
     請求項8に記載の感知器。
    The smoke detection unit is arranged on the same plane as the surface of the substrate on which the chip thermistor is mounted,
    The sensor according to claim 8.
  10.  前記筐体は、当該感知器が取り付けられる構造体と対向する設置面を有し、
     前記煙検知部は、前記基板における表面、及び前記表面とは反対側の裏面のうち、前記設置面に近い側の面に、配置されている、
     請求項8又は9に記載の感知器。
    The housing has an installation surface facing a structure to which the sensor is attached,
    The smoke detection unit is disposed on a surface of the substrate, and a back surface opposite to the surface, on a surface close to the installation surface.
    The sensor according to claim 8 or 9.
  11.  前記筐体は、前記内部空間において、前記熱検知素子又は前記煙検知部に前記気体を誘導する1又は複数の壁体を有する、
     請求項8~10のいずれか1項に記載の感知器。
    The casing has one or more wall bodies that guide the gas to the heat detection element or the smoke detection unit in the internal space,
    The sensor according to any one of claims 8 to 10.
  12.  前記筐体は、当該感知器が取り付けられる構造体と対向する設置面を有し、
     前記煙検知部は、
      光を放射する光学素子と、
      前記光学素子から放射された光を受光する受光素子と、
      前記光学素子及び前記受光素子が互いに対向しないように配置されるラビリンス部と、
    を有し、
     前記基板の厚み方向においてラビリンス部の内部空間の中心は、前記チップサーミスタと前記設置面との間にある、
     請求項8~11のいずれか1項に記載の感知器。
    The housing has an installation surface facing a structure to which the sensor is attached,
    The smoke detector is
    An optical element that emits light,
    A light receiving element for receiving the light emitted from the optical element,
    A labyrinth portion arranged such that the optical element and the light receiving element do not face each other,
    Have
    The center of the internal space of the labyrinth portion in the thickness direction of the substrate is between the chip thermistor and the installation surface,
    The sensor according to any one of claims 8 to 11.
  13.  前記チップサーミスタは、前記外部空間の側から前記開口部の開口領域を見たときに、前記開口領域内に収まるように配置され、
     前記チップサーミスタよりも前記外部空間の側において前記開口領域の一部を遮る遮蔽部を、更に備える、
     請求項1~12のいずれか1項に記載の感知器。
    The chip thermistor is arranged so as to fit within the opening area when the opening area of the opening is viewed from the side of the external space,
    Further comprising a shielding portion that shields a part of the opening region on the side of the external space with respect to the chip thermistor,
    The sensor according to any one of claims 1 to 12.
  14.  前記遮蔽部は、前記外部空間からの気流を前記チップサーミスタに向かって誘導する誘導面を有する、
     請求項13に記載の感知器。
    The shielding portion has a guide surface that guides an air flow from the external space toward the chip thermistor,
    The sensor according to claim 13.
  15.  前記筐体は、
      前記基板の厚み方向における一の方向から前記基板を覆う第1カバーと、
      前記厚み方向における前記一の方向とは反対の方向から前記基板を覆う第2カバーと、
    を有し、
     前記遮蔽部は、
      前記第1カバーから前記第2カバーに向かって突出する第1突起と、
      前記第2カバーから前記第1カバーに向かって突出する第2突起と、
    を有する、
     請求項13又は14に記載の感知器。
    The housing is
    A first cover that covers the substrate from one direction in the thickness direction of the substrate;
    A second cover that covers the substrate from a direction opposite to the one direction in the thickness direction;
    Have
    The shield is
    A first protrusion protruding from the first cover toward the second cover;
    A second protrusion protruding from the second cover toward the first cover;
    Having,
    The sensor according to claim 13 or 14.
  16.  前記第1突起は、前記外部空間の側から前記開口領域を見たときに、前記第1カバーと前記第2カバーとが並ぶ並び方向と直交する方向において、前記第2突起に対して、ずれて配置される、
     請求項15に記載の感知器。
    The first protrusion is displaced from the second protrusion in a direction orthogonal to a direction in which the first cover and the second cover are arranged side by side when the opening region is viewed from the external space side. Are placed,
    The sensor according to claim 15.
  17.  前記第1突起及び前記第2突起は、互いの先端同士が対向するように突出する、
     請求項15に記載の感知器。
    The first protrusion and the second protrusion protrude so that their tips are opposed to each other,
    The sensor according to claim 15.
  18.  前記第1突起及び前記第2突起の少なくとも一方は、前記外部空間の側から前記開口領域を見たときに、前記第1カバーと前記第2カバーとが並ぶ並び方向と直交する方向において前記チップサーミスタと同じ位置にあり、かつ、前記チップサーミスタの少なくとも一部が露出するように前記少なくとも一方の突出量が規定されている、
     請求項15~17のいずれか1項に記載の感知器。
    At least one of the first protrusion and the second protrusion is the chip in a direction orthogonal to a direction in which the first cover and the second cover are arranged side by side when the opening region is viewed from the external space side. At the same position as the thermistor, and the projection amount of at least one of the chip thermistors is defined so that at least a part of the chip thermistor is exposed,
    The sensor according to any one of claims 15 to 17.
  19.  前記開口部は、流入口を有し、
     前記流入口は、前記筐体における、当該感知器が取り付けられる構造体とは反対側の外表面に設けられている、
     請求項1~18のいずれか1項に記載の感知器。
    The opening has an inlet,
    The inlet is provided on an outer surface of the housing opposite to a structure to which the sensor is attached,
    The sensor according to any one of claims 1 to 18.
  20.  前記外表面は、前記流入口の周囲における第1表面と、前記第1表面よりも外側にある第2表面と、を有し、
     前記第1表面は、前記第2表面とは異なる傾斜角で、前記流入口に近づくほど前記構造体の側に近づく向きにテーパ状に形成されている、
     請求項19に記載の感知器。
    The outer surface has a first surface around the inlet and a second surface outside the first surface,
    The first surface has a different inclination angle from that of the second surface, and is formed in a taper shape so as to approach the structure side toward the inlet.
    The sensor according to claim 19.
  21.  前記筐体は、前記開口部の縁部から、当該感知器が取り付けられる構造体の側から離れる方向に突出した1又は複数の凸部を有し、
     前記1又は複数の凸部は、前記熱検知素子の加熱点検を行うための試験器が前記筐体を覆うように配置された状態で、前記試験器の周縁部と接触するように構成される、
     請求項1~20のいずれか1項に記載の感知器。
    The casing has one or a plurality of protrusions protruding from the edge of the opening in a direction away from the side of the structure to which the sensor is attached,
    The one or more convex portions are configured to come into contact with a peripheral portion of the tester in a state where a tester for performing heat inspection of the heat detecting element is arranged so as to cover the housing. ,
    The sensor according to any one of claims 1 to 20.
PCT/JP2019/037270 2018-10-10 2019-09-24 Sensor WO2020075487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19871633.4A EP3866130A4 (en) 2018-10-10 2019-09-24 Sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018191979 2018-10-10
JP2018-191979 2018-10-10
JP2019-111538 2019-06-14
JP2019111538A JP2020061122A (en) 2018-10-10 2019-06-14 sensor

Publications (1)

Publication Number Publication Date
WO2020075487A1 true WO2020075487A1 (en) 2020-04-16

Family

ID=70164922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037270 WO2020075487A1 (en) 2018-10-10 2019-09-24 Sensor

Country Status (1)

Country Link
WO (1) WO2020075487A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021215460A1 (en) * 2020-04-21 2021-10-28
EP4080476A1 (en) * 2021-04-21 2022-10-26 Panasonic Intellectual Property Management Co., Ltd. Sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916869A (en) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Smoke and heat composite sensor
JP2005071139A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Waterproof fire sensor and its manufacturing method
JP2005250912A (en) * 2004-03-04 2005-09-15 Nohmi Bosai Ltd Flame sensor and testing device for operation of flame sensor
JP2009230510A (en) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Fire alarm
JP2009245088A (en) * 2008-03-31 2009-10-22 Nohmi Bosai Ltd Fire detector and protective cover for fire detector
JP2010117881A (en) * 2008-11-13 2010-05-27 Fenwall Controls Of Japan Ltd Fire detector
JP2011215689A (en) * 2010-03-31 2011-10-27 Nohmi Bosai Ltd Photoelectric smoke sensor
JP2012014330A (en) 2010-06-30 2012-01-19 Lixil Nittan Co Ltd Heat-smoke composite type sensor
JP2014126878A (en) * 2012-12-25 2014-07-07 Hochiki Corp Distributed fire monitoring system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916869A (en) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Smoke and heat composite sensor
JP2005071139A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Waterproof fire sensor and its manufacturing method
JP2005250912A (en) * 2004-03-04 2005-09-15 Nohmi Bosai Ltd Flame sensor and testing device for operation of flame sensor
JP2009230510A (en) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Fire alarm
JP2009245088A (en) * 2008-03-31 2009-10-22 Nohmi Bosai Ltd Fire detector and protective cover for fire detector
JP2010117881A (en) * 2008-11-13 2010-05-27 Fenwall Controls Of Japan Ltd Fire detector
JP2011215689A (en) * 2010-03-31 2011-10-27 Nohmi Bosai Ltd Photoelectric smoke sensor
JP2012014330A (en) 2010-06-30 2012-01-19 Lixil Nittan Co Ltd Heat-smoke composite type sensor
JP2014126878A (en) * 2012-12-25 2014-07-07 Hochiki Corp Distributed fire monitoring system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021215460A1 (en) * 2020-04-21 2021-10-28
WO2021215460A1 (en) * 2020-04-21 2021-10-28 パナソニックIpマネジメント株式会社 Detector
EP4141833A4 (en) * 2020-04-21 2023-10-11 Panasonic Intellectual Property Management Co., Ltd. Detector
JP7394360B2 (en) 2020-04-21 2023-12-08 パナソニックIpマネジメント株式会社 Detector and fire alarm system
EP4080476A1 (en) * 2021-04-21 2022-10-26 Panasonic Intellectual Property Management Co., Ltd. Sensor

Similar Documents

Publication Publication Date Title
JP5484219B2 (en) Combined thermal smoke sensor
JP2020061122A (en) sensor
JP6907367B2 (en) Alarm device and its manufacturing method
TWI439968B (en) Fire detector
WO2020075487A1 (en) Sensor
JP7237452B2 (en) thermal alarm
JP2008242627A (en) Photoelectric smoke detector
JP2021144746A (en) Alarm device
JP4772076B2 (en) Thermal smoke combined fire detector
JP7308418B2 (en) Heat Detector, and Thermal Smoke Combined Fire Detector
JP2023164664A (en) Sensor and automatic fire alarm system
JP7442064B2 (en) heat detector
TW201905863A (en) Alarm device
JP2009245088A (en) Fire detector and protective cover for fire detector
WO2021215460A1 (en) Detector
JP7390539B2 (en) Detectors and fire alarm systems
JP2023067547A (en) sensor
JP7280025B2 (en) fire detection device
JP7208730B2 (en) fire detection device
JP2020204846A (en) Smoke sensor
JP2023108348A (en) fire detection device
JP2023145735A (en) Smoke detector
CN117242505A (en) Fire disaster detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019871633

Country of ref document: EP

Effective date: 20210510