WO2020071431A1 - Heat sink and robot control device provided with same - Google Patents

Heat sink and robot control device provided with same

Info

Publication number
WO2020071431A1
WO2020071431A1 PCT/JP2019/038944 JP2019038944W WO2020071431A1 WO 2020071431 A1 WO2020071431 A1 WO 2020071431A1 JP 2019038944 W JP2019038944 W JP 2019038944W WO 2020071431 A1 WO2020071431 A1 WO 2020071431A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
main surface
control device
robot control
substrate
Prior art date
Application number
PCT/JP2019/038944
Other languages
French (fr)
Japanese (ja)
Inventor
毅 田頭
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201980064038.6A priority Critical patent/CN112789722A/en
Publication of WO2020071431A1 publication Critical patent/WO2020071431A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat sink and a robot control device including the same.
  • Heat sinks for cooling a heating element have been known.
  • a heat sink for example, there is a radiator proposed in the heat radiation structure of the element of Patent Document 1.
  • Patent Document 1 describes a heat dissipation structure including an element, a heat conductive material, a substrate, and a radiator.
  • the radiator has a plate-like portion having a first main surface and a second main surface, a protrusion protruding from the first main surface of the plate-like portion, and protruding from the second main surface of the plate-like portion.
  • a plurality of radiation fins. The radiator is arranged such that the protrusion penetrates a through hole formed in the substrate and the protrusion contacts the lower surface of the element via a heat conductive material.
  • the radiator of Patent Document 1 does not consider cooling an element as a heating element provided in the robot controller.
  • some robot control devices include a first element and a second element existing on a substrate. These two elements may have different distances from their respective tips to the substrate.
  • the distance from the tip of the first element to the substrate is longer than that of the second element.
  • the base of the heat sink contacts only the first element and does not contact the second element, it is difficult to cool these two elements with one heat sink.
  • a heat sink is a heat sink provided in a robot control device, wherein the robot control device includes a substrate, a first element and a second element existing on a main surface of the substrate. And a base portion formed in a plate shape having a first main surface, wherein the base portion is arranged such that the first main surface is in thermal contact with the first element. A projecting portion projecting from the main surface, the tip of which is arranged so as to be in thermal contact with the second element.
  • the first element can be cooled by the base portion arranged such that the first main surface thereof is in thermal contact with the first element, and
  • the second element can be cooled by a protrusion arranged such that the tip is in thermal contact with the second.
  • the method may further include a heat conductive material provided at a tip of the protrusion, and the protrusion may be arranged so as to be in thermal contact with the second element via the heat conductive material.
  • the heat generated by the second element can be satisfactorily transmitted to the protrusion by the heat conductive material.
  • the heat conductive material may be composed of an insulator.
  • the heat conductive material may be made of an elastic material.
  • the protrusion may be formed integrally with the base.
  • the heat generated by the second element can be transmitted well from the protrusion to the base, so that the second element can be efficiently cooled.
  • the robot control device may include a plurality of the second elements, and a plurality of the protrusions may be provided according to the second elements.
  • a plurality of fins each standing on a second main surface extending parallel to the first main surface of the base portion may be further provided.
  • both the first element and the second element can be efficiently cooled.
  • a robot control device including any one of the heat sinks, the substrate, the first element, and the second element, Further comprising a housing in which a first space isolated from the air and a second space open to the outside are provided, and wherein the substrate, the first element, and the second element are arranged in the first space. And at least a part of the heat sink is arranged in the second space.
  • the robot control device can cool both the first element and the second element having different distances from the respective tips to the substrate by including any one of the heat sinks. Becomes
  • the first element is configured as a power module mounted on a main surface of the substrate, and the second element is mounted on the main surface of the substrate to measure a current value output from the power module. It may be configured as an element.
  • the apparatus may further include a cooling fan that blows outside air to the heat sink.
  • both the first element and the second element can be efficiently cooled.
  • a heat sink and a robot control device including the same, which can cool both the first element and the second element having different distances from the respective tips to the substrate.
  • FIG. 1 is an external perspective view of a robot control device including a heat sink according to one embodiment of the present invention.
  • FIG. 1 is a schematic diagram illustrating a main structure of a robot control device including a heat sink according to an embodiment of the present invention. It is the schematic which looked at the state which expanded the principal part structure and its peripheral part of the robot control apparatus provided with the heat sink which concerns on one Embodiment of this invention from the right side plate side. It is a figure for explaining the positional relationship of the heat sink which concerns on one Embodiment of this invention, a power module, and a resistance element, (A) is a bottom view of a heat sink, (B) is a board
  • FIG. 1 is an external perspective view of a robot control device including a heat sink according to the present embodiment.
  • the robot control device 10 according to the present embodiment is used to control the operation of a robot (not shown).
  • the robot may include, for example, a robot arm having a plurality of joint axes, and an end effector attached to a tip of the robot arm.
  • the robot control device 10 includes a housing 20 for housing its internal structure (for example, a substrate 30, a power module 40, a resistance element 90, a heat sink 50, and the like, which will be described later).
  • the housing 20 has a hollow rectangular parallelepiped shape.
  • the housing 20 includes a rectangular bottom plate 21 in plan view, a front plate 22 erected on the front edge of the bottom plate 21, and a back plate 23 erected on the rear edge of the bottom plate 21.
  • the housing 20 includes a right side plate 24 erected on the right end edge of the bottom plate 21, a left side plate 25 erected on the left end edge of the bottom plate 21, a front plate 22, a back plate 23, a right side plate 24, and a left side plate.
  • a top plate provided to cover a box formed by the plate.
  • a tapered mounting portion 80 whose cross-sectional area decreases toward the bottom is provided.
  • FIG. 2 is a schematic view of an enlarged view of a main structure of a robot control device including a heat sink according to the present embodiment and a peripheral portion thereof as viewed from a right side plate.
  • the housing 20 further includes a partition plate 27 that extends horizontally at the center in the height direction.
  • a first space 28 and a second space 29 that are adjacent to each other in the height direction with the partition plate 27 as a boundary are provided inside the housing 20.
  • the partition plate 27 is provided with a rectangular through hole 27a having an area slightly smaller than a base portion 51 of the heat sink 50 described later in plan view.
  • the first space 28 is a space above the partition plate 27 and is shielded from the outside air.
  • the first space 28 mainly includes an upper surface of the partition plate 27, a first main surface 52 of a base portion 51 of the heat sink 50 described later, an upper inner surface of the front plate 22, an upper inner surface of the back plate 23, an upper inner surface of the right plate 24, The peripheral edge is defined by the upper inner surface of the left side plate 25 and the inner surface of the top plate 26.
  • the first space 28 has a dustproof property by being shielded from the outside air, and for example, precision machines such as a substrate 30, a power module 40, and a resistance element 90, which will be described later, are arranged.
  • the second space 29 is a space located below the partition plate 27 and is open to the outside air.
  • the second space 29 mainly includes a bottom surface of the partition plate 27, a second main surface 54 of a base portion 51 of a heat sink 50 described later, an inner surface of the bottom plate 21, a lower inner surface of the front plate 22, a lower inner surface of the back plate 23, and a right side plate.
  • the lower inner surface of the left side plate 24 and the lower inner surface of the left side plate 25 define the periphery thereof.
  • the robot controller 10 further includes a cooling fan 82 that blows outside air to the heat sink 50.
  • a cooling fan 82 that blows outside air to the heat sink 50.
  • four cooling fans 82 are arranged in parallel along the lower inner surface of the right side plate 24.
  • a plurality of intake slits 84 are formed in the lower portion of the right side plate 24 at positions corresponding to the four cooling fans 82.
  • a plurality of exhaust slits 85 corresponding to the plurality of intake slits 84 are formed in a lower portion of the left side plate 25.
  • the cooling fan 82 when the cooling fan 82 is driven, outside air is taken into the second space 29 from the intake slit 84 of the right side plate 24, and the outside air is exhausted from the exhaust slit 85 of the left side plate 25. . That is, the outside air flowing in the direction from the right side plate 24 to the left side plate 25 (X direction described later) is supplied to the second space 29 in the housing 20.
  • the second space 29 for example, at least a part of a heat sink 50 described later is arranged.
  • at least a part of the heat sink 50 includes a fin assembly 60 and a second main surface 54 of the base 51 described later.
  • FIG. 2 is a schematic diagram illustrating a main structure of a robot control device including the heat sink according to the present embodiment.
  • FIG. 3 is a schematic view of a main part structure of a robot control device including a heat sink according to the present embodiment and an enlarged view of a peripheral portion thereof when viewed from a right side plate side.
  • FIGS. 3A and 3B are diagrams for explaining the positional relationship between the heat sink, the power module, and the resistance element according to the present embodiment.
  • FIG. 3A is a bottom view of the heat sink
  • FIG. It is a bottom view of the power module and the resistance element which were obtained.
  • FIG. 4B the main structure (a base 51, a protrusion 77, and a heat conductive sheet 78 to be described later) of the heat sink 50 according to the present embodiment is indicated by a broken line.
  • the robot controller 10 measures the substrate 30, a power module 40 (first element) attached to the bottom surface of the substrate 30, and a current value output from the power module 40. And a resistive element 90 (second element).
  • the substrate 30, the power module 40, and the resistance element 90 are each disposed in the first space 28 that is shielded from the outside air.
  • the substrate 30 has, for example, a flat plate formed of an insulator such as silicon, and a plurality of electronic components each of which is disposed on the surface and inside of the flat plate and is electrically connected to each other, thereby forming an electronic circuit. May work.
  • eight power modules 40 are substantially rectangular parallelepiped, and eight power modules 40 are mounted on the bottom surface of the substrate 30.
  • the eight power modules 40 have the same shape and size as each other.
  • the plurality of power modules 40 are respectively arranged in the X direction shown in FIG. 4 (that is, the direction connecting the right side plate 24 and the left side plate 25 of the housing 20) and the Y direction orthogonal to the X direction. Are arranged in a matrix.
  • eight power modules 40 are arranged on the bottom surface of the substrate 30 by arranging four power modules 40 in parallel in the X direction and arranging two of the aggregates in the Y direction. Mounted in a matrix of ⁇ 4. Note that each of the eight power modules 40 may be attached to the substrate 30 via a spacer 41 (see FIG. 3). Thus, since the eight power modules 40 are arranged such that the top surfaces thereof do not contact the bottom surface of the substrate 30, it is possible to prevent heat generated in each of the eight power modules from being directly transmitted to the substrate 30.
  • the eight power modules 40 may be intelligent power modules (Intelligent Power Module, IPM), or may be main components of a servo amplifier. Then, for example, a current for a three-phase motor may be output from each of the plurality of servo amplifiers including the power module 40. With such a configuration, the robot controller 10 may be configured to control one axis by one power module 40.
  • the axis may include, for example, a joint axis or an external axis of the robot.
  • восем ⁇ resistance elements 90 are substantially rectangular parallelepiped, and eight resistance elements 90 are mounted on the bottom surface of the substrate 30 in correspondence with the power modules 40.
  • Each of the eight resistance elements 90 has the same shape and dimensions as each other.
  • Each of the eight resistance elements 90 is arranged along a surface existing outside the corresponding power module 40 in the front-rear direction (that is, the direction connecting the front plate 22 and the back plate 23).
  • the resistance elements 90 mounted corresponding to the four power modules 40 arranged in parallel in the X direction on the front plate 22 side are mounted on the front plate 22 side of the four power modules 40, respectively.
  • the resistance elements 90 mounted corresponding to the four power modules 40 arranged in parallel in the X direction on the back plate 23 side are mounted on the back plate 23 side of the four power modules 40, respectively.
  • Each of the four resistance elements 90 is connected in series to the corresponding power module 40 in order to measure a current value output from the corresponding power module 40.
  • the tip of the power module 40 (that is, the bottom surface in FIG. 3) is located farther from the main surface of the substrate 30 than the tip (before) of the resistance element 90.
  • the first main surface 52 of) the base portion 51 of the heat sink 50 according to the present embodiment directly (thermally) contacts only the power module 40 and does not contact the resistance element 90.
  • the heat sink 50 As shown in FIGS. 2 to 4, the heat sink 50 according to the present embodiment is disposed in the second space 29 open to the outside air.
  • the heat sink 50 is formed in a plate shape so as to have a first main surface 52 and a second main surface 54 extending in parallel with the first main surface 52, and the first main surface 52 includes eight power modules 40. And a plurality of fins 70 erected on the second main surface 54 of the base portion 51.
  • the base portion 51 is formed in a rectangular shape slightly larger than the through hole 27a formed in the partition plate 27 in a plan view.
  • the base portion 51 is fixed to the bottom surface of the partition plate 27 in a state where the edge portion of the first main surface 52 is in contact with the peripheral edge portion of the through hole 27a from the bottom surface side of the partition plate 27.
  • the base portion 51 is arranged in this manner, so that the first main surface 52 defines a part of the periphery of the first space 28 shielded from the outside air, and the second main surface 54 is connected to the outside air. It defines a part of the periphery of the opened second space 29.
  • Each of the plurality of fins 70 is formed in a plate shape, and is erected on the second main surface 54 of the base portion 51 in parallel with the Y direction with each thickness direction coinciding with the Y direction. .
  • the plurality of fins 70 form the fin assembly 60. Note that the intervals between the fins 70 adjacent to each other in the Y direction are the same as each other.
  • the plurality of fins 70 are arranged in parallel at positions corresponding to the eight power modules 40, so that each of the fin assemblies 60 extends in the Y direction and is arranged in parallel in the X direction.
  • the plurality of ridges 62 referred to herein means that the plurality of fins 70 are erected on the second main surface 54 of the base portion 51 as described above, so that the plurality of fins 70 as a whole A portion configured as a ridge or a protrusion extending in the Y direction on the second main surface 54 of the base portion 51.
  • the heat sink 50 according to the present embodiment is sufficiently cooled by the plurality of ridges 62 of the fin assembly 60 while the weight is reduced by the groove 64 of the fin assembly 60. It is possible to
  • the four power modules 40 are arranged in the X direction as described above, the four ridges 62 are arranged in the X direction correspondingly.
  • the four ridges 62 are arranged in parallel in this manner, there are a total of three groove-like portions 64 extending in the Y direction therebetween.
  • the plurality of fins 62 are arranged in parallel at positions corresponding to the power modules 40 adjacent to each other in the Y direction among the eight power modules 40, so that the four ridges 62 are formed. Extend in the Y direction even at positions corresponding to between the power modules 40 adjacent to each other in the Y direction.
  • the plurality of fins 70 each have a width corresponding to the length in the X direction of each of the eight power modules 40.
  • the heat sink 50 according to the present embodiment can appropriately reduce the weight. Therefore, it is possible to suppress a decrease in cooling efficiency due to a reduction in weight (that is, providing the groove portions 64 in the fin assembly 60).
  • each of the plurality of fins 70 has a base edge extending in the X direction as a lower bottom 71, a tip edge extending in the X direction as an upper bottom 72 when viewed in the thickness direction, and
  • the lower bottom 71 has a trapezoidal shape longer than the upper bottom 72. Accordingly, when the entire heat sink 50 is integrally formed by die casting, it is possible to appropriately perform the operation of pulling out the heat sink 50 from the mold.
  • connection portion 74 that connects the mutually adjacent fins 70 is provided between the mutually adjacent fins 70 in the X direction (the left and right direction in FIG. 2) among the plurality of fins 70.
  • the connecting portion 74 is erected on the second main surface 54 of the base portion 51 and has a shorter length from the second main surface 54 than the fin 70. This increases the surface area of the heat sink 50, so that it is possible to suppress a decrease in cooling efficiency due to the groove-shaped portions 64 of the fin assembly 60.
  • the groove formed between the fins 70 adjacent to each other in the Y direction and extending in the X direction and the groove formed between the connecting portions 74 adjacent to each other in the Y direction and extending in the X direction are continuous in the X direction.
  • a groove extending from one end to the other end in the X direction is formed. This prevents the outside air flowing in the X direction, which is blown into the second space 29 by the cooling fan 82, from diffusing inside the fin assembly 60, so that the heat sink 50 inhibits the flow of the outside air. Can be suppressed.
  • the cooling fan 82 is arranged so as to face the ridge 62 on the rightmost plate 24 side of the four ridges 62 in the X direction (the horizontal direction in FIG. 2). You. Thereby, the cooling fan 82 can blow the outside air flowing in the X direction to the fin assembly 60.
  • the heat sink 50 further includes a protrusion 77 projecting from the first main surface 52 of the base portion 51 and arranged so that the tip thereof is in thermal contact with the resistance element 90.
  • a protrusion 77 projecting from the first main surface 52 of the base portion 51 and arranged so that the tip thereof is in thermal contact with the resistance element 90.
  • Eight protrusions 77 are provided corresponding to the resistance elements 90.
  • Each of the eight protrusions 77 is formed in a rectangular parallelepiped shape, and has the same shape and size. Further, the eight protrusions 77 are formed integrally with the base 51 and the plurality of fins 70.
  • the tip (the bottom in FIG. 3) of the power module 40 is located farther from the main surface of the substrate 30 than the tip (the same as before) of the resistance element 90.
  • the height dimension of the protrusion 77 is a distance in the height direction from the tip of the resistance element 90 to the tip of the power module 40 (or the distance from the tip of the resistance element 90 to the first main surface 52 of the base portion 51).
  • the heat sink 50 further includes a heat conductive sheet 78 (heat conductive material) provided at the tip of the protrusion 77.
  • the gap is filled with the heat conductive sheet 78.
  • the protrusion 77 is arranged so as to be in thermal contact with the resistance element 90 via the heat conductive sheet 78.
  • the heat conductive sheet 78 is an insulator and an elastic body.
  • the power module 40 (first element) is cooled by the base portion 51 arranged so that the first main surface 52 is in direct (thermal) contact with the power module 40.
  • the resistance element 90 (second element) can be cooled by the protrusion 77 arranged so that the tip thereof is in thermal contact with the resistance element 90.
  • the heat sink 50 since the heat sink 50 according to the present embodiment includes the heat conductive sheet 78 (heat conductive material) provided at the tip of the protrusion 77, the heat generated by the resistance element 90 is favorably transmitted to the protrusion 77 by the heat conductive sheet 78. can do.
  • the heat conductive sheet 78 according to the present embodiment is made of an insulator, it is possible to eliminate the possibility that a short circuit occurs between the protrusion of the heat sink and the second element.
  • the heat conductive sheet 78 is formed of an elastic body, the heat conductive sheet 78 is elastically deformed in a gap formed between the tip of the protrusion 77 and the resistance element 90 (second element). Can be arranged. This makes it possible to easily and appropriately bring the tip of the protrusion 77 into thermal contact with the resistance element 90.
  • the protrusion 77 is formed integrally with the base 51 and the plurality of fins 70, the heat generated by the resistance element 90 is transmitted well from the protrusion 77 to the base 51, and Since the power can be transmitted well from the base portion 51 to the plurality of fins 70, the resistance element 90 can be efficiently cooled.
  • the entire heat sink 50 can be integrally formed by die casting, it is possible to manufacture the heat sink 50 at low cost.
  • the robot control device 10 since the robot control device 10 includes eight power modules 40 and eight resistance elements 90, and eight protrusions 77 are provided in accordance with the resistance elements 90, the first main surface 52 of the base part 51 is The eight power modules 40 can be cooled by directly contacting the two power modules 40, and the eight power modules 40 can be cooled by each of the eight protrusions 77 thermally contacting the corresponding resistance element 90.
  • the resistance element 90 can be cooled.
  • the heat sink 50 includes the plurality of fins 70, the surface area is increased. Thereby, the power module 40 and the resistance element 90 can be efficiently cooled.
  • the robot control device 10 includes the heat sinks 50, so that both the power module 40 and the resistance element 90 having different distances from the respective ends to the substrate 30 can be cooled.
  • the first element is configured as the power module 40 and the second element is configured as the resistance element 90 for measuring the current value output from the power module 40, the distances from the respective tips to the substrate 30 are different from each other. This makes it possible to cool both the power module 40 and the resistance element 90, which have been difficult to cool together due to being provided adjacent to each other.
  • the robot control device 10 includes the cooling fan 82 that blows outside air to the heat sink 50, so that the power module 40 and the resistance element 90 can be efficiently cooled.
  • the first element is configured as the power module 40 mounted on the main surface of the substrate 30, and the second element is mounted on the main surface of the substrate 30 to measure the current value output from the power module 40.
  • the resistor element 90 is mounted
  • the present invention is not limited to this. That is, the first element and the second element may be other electronic components as long as at least one of the shape and the dimension is different from each other.
  • the first element may be an IC chip mounted on the main surface of the substrate 30, or may be another electronic component. The same applies to the second element.
  • the base portion 51 of the heat sink 50 may contact the power module 40 via a member similar to the heat conductive sheet 78 provided at the tip of the protrusion 77.
  • the heat conductive material is the heat conductive sheet 78 which is an insulator and an elastic body
  • the heat conductive material may be another heat conductive sheet that is an insulator but not an elastic body, or may be another heat conductive sheet that is an elastic body but not an insulator, or Heat conductive material.
  • the heat conductive material is not an insulator, a short circuit may occur between the protrusion 77 of the heat sink 50 and the resistance element 90 (second element). Therefore, in such a case, an insulator may be provided between the protrusion 77 of the heat sink 50 and the resistance element 90 (second element) in addition to the heat conductive material, or no heat conductive material is provided. May be provided only with an insulator.
  • a total of eight power modules 40 are arranged in parallel in a 2 ⁇ 4 matrix, and correspondingly, eight resistive elements 90 and eight protrusions 77 are arranged in parallel.
  • the present invention is not limited to this. That is, one or more power modules 40 may be arranged, and one or more resistance elements 90 and one or more protrusions 77 may be arranged in parallel corresponding to this.
  • the power modules 40 need to be arranged at least in parallel in the X direction.
  • the protrusion 77 has a rectangular parallelepiped shape.
  • the present invention is not limited to this case.
  • it may have a tapered shape in which the cross-sectional area decreases as the distance from the first main surface 52 of the base portion 51 increases, or may have another shape.
  • each of the plurality of fins 70 has a trapezoidal shape when viewed in the thickness direction.
  • the present invention is not limited to this case.
  • each of the plurality of fins 70 may have another square shape such as a square shape or a rectangular shape when viewed in the thickness direction thereof, or may have another polygonal shape.
  • the shape may be as follows.
  • the X direction is the direction connecting the right side plate 24 and the left side plate 25 and the Y direction is the direction connecting the front plate 22 and the back plate 23
  • the present invention is not limited to this.
  • the X direction may be a direction connecting the front plate 22 and the back plate 23
  • the Y direction may be a direction connecting the right side plate 24 and the left side plate 25.
  • the X direction is the direction connecting the bottom plate 21 and the top plate 26
  • the Y direction is the direction connecting the front plate 22 and the back plate 23. Or vice versa.
  • robot control device 20 housing 21 bottom plate 22 front plate 23 back plate 24 right plate 25 left plate 26 top plate 27 partition plate 27a through hole 28 first space 29 second space 30 substrate 40 power module 50 heat sink 51 base 52 1 main surface 54 second main surface 60 fin assembly 62 ridge portion 64 groove portion 70 fin 71 trapezoidal lower bottom 72 trapezoidal upper bottom 74 connecting portion 77 protrusion 78 thermal conduction sheet 80 mounting portion 82 cooling fan 84 Inlet slit 85 Exhaust slit 90 Resistance element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Manipulator (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This heat sink is provided on a robot control device; and the robot control device comprises a substrate, and a first element and a second element, said elements being arranged on a main surface of the substrate. This heat sink is characterized by being provided with: a base part which is formed into a plate-like shape so as to have a first main surface, and which is arranged such that the first main surface is in thermal contact with the first element; and a projection part which is formed so as to protrude from the first main surface of the base part, and which is arranged such that the front end thereof is in thermal contact with the second element.

Description

ヒートシンク及びそれを備えるロボット制御装置Heat sink and robot control device including the same
 本発明は、ヒートシンク及びそれを備えるロボット制御装置に関する。 The present invention relates to a heat sink and a robot control device including the same.
 従来から、発熱体を冷却するためのヒートシンクが知られている。このようなヒートシンクとして、例えば、特許文献1の素子の放熱構造で提案されているような放熱器がある。 ヒ ー ト シ ン ク Heat sinks for cooling a heating element have been known. As such a heat sink, for example, there is a radiator proposed in the heat radiation structure of the element of Patent Document 1.
 特許文献1には、素子、熱伝導材、基板、及び放熱器を備える放熱構造が記載されている。放熱器は、第1主面及び第2主面を有する板状部と、板状部の第1主面に突設される突出部と、板状部の第2主面に突設される複数の放熱フィンとを備える。放熱器は、突出部が基板に穿設される貫通穴を貫通し、且つ、当該突出部が熱伝導材を介して素子の下面に接触するように配置される。 Patent Document 1 describes a heat dissipation structure including an element, a heat conductive material, a substrate, and a radiator. The radiator has a plate-like portion having a first main surface and a second main surface, a protrusion protruding from the first main surface of the plate-like portion, and protruding from the second main surface of the plate-like portion. A plurality of radiation fins. The radiator is arranged such that the protrusion penetrates a through hole formed in the substrate and the protrusion contacts the lower surface of the element via a heat conductive material.
特開2010-141279号公報JP 2010-141279 A
 ところで、特許文献1の放熱器は、ロボット制御装置に設けられる発熱体としての素子を冷却することについて考慮されていない。ここで、ロボット制御装置は、基板上に存する第1素子及び第2素子を備えるものがある。そして、これら2つの素子は、それぞれ、各々の先端から基板までの距離が互いに異なる場合がある。 By the way, the radiator of Patent Document 1 does not consider cooling an element as a heating element provided in the robot controller. Here, some robot control devices include a first element and a second element existing on a substrate. These two elements may have different distances from their respective tips to the substrate.
 ここで、第1素子の先端から基板までの距離が第2素子のそれと比較して長いこととする。このような場合、ヒートシンクのベース部は、第1素子のみに接触し、第2素子には接触しないので、一つのヒートシンクでこれら2つの素子を冷却することは困難であった。 Here, the distance from the tip of the first element to the substrate is longer than that of the second element. In such a case, since the base of the heat sink contacts only the first element and does not contact the second element, it is difficult to cool these two elements with one heat sink.
 そこで、本発明は、各々の先端から基板までの距離が互いに異なる第1素子及び第2素子をともに冷却することが可能な、ヒートシンク及びそれを備えるロボット制御装置を提供することを目的とする。 Accordingly, it is an object of the present invention to provide a heat sink and a robot control device including the same, which can cool both the first element and the second element having different distances from the respective tips to the substrate.
 前記課題を解決するために、本発明に係るヒートシンクは、ロボット制御装置に設けられるヒートシンクであって、前記ロボット制御装置は、基板と、前記基板の主面上に存する第1素子及び第2素子と、を備え、第1主面を有するように板状に形成され、前記第1主面が前記第1素子と熱的に接触するように配置されるベース部と、前記ベース部の第1主面上に突設され、その先端が前記第2素子と熱的に接触するように配置される突部と、を備えることを特徴とする。 In order to solve the above problem, a heat sink according to the present invention is a heat sink provided in a robot control device, wherein the robot control device includes a substrate, a first element and a second element existing on a main surface of the substrate. And a base portion formed in a plate shape having a first main surface, wherein the base portion is arranged such that the first main surface is in thermal contact with the first element. A projecting portion projecting from the main surface, the tip of which is arranged so as to be in thermal contact with the second element.
 上記構成によれば、本発明に係るヒートシンクは、その第1主面が第1素子と熱的に接触するように配置されるベース部によって前記第1素子を冷却することができ、且つ、その先端が第2と熱的に接触するように配置される突部によって前記第2素子を冷却することができる。 According to the configuration, in the heat sink according to the present invention, the first element can be cooled by the base portion arranged such that the first main surface thereof is in thermal contact with the first element, and The second element can be cooled by a protrusion arranged such that the tip is in thermal contact with the second.
 前記突部の先端に設けられる熱伝導材をさらに備え、前記突部は、前記熱伝導材を介して前記第2素子と熱的に接触するように配置されてもよい。 The method may further include a heat conductive material provided at a tip of the protrusion, and the protrusion may be arranged so as to be in thermal contact with the second element via the heat conductive material.
 上記構成によれば、第2素子が発する熱を熱伝導材によって突部へと良好に伝達することができる。 According to the above configuration, the heat generated by the second element can be satisfactorily transmitted to the protrusion by the heat conductive material.
 前記熱伝導材は絶縁体で構成されてもよい。 The heat conductive material may be composed of an insulator.
 上記構成によれば、ヒートシンクの突部と第2素子との間で短絡が生じる虞をなくすことが可能となる。 According to the above configuration, it is possible to eliminate the possibility that a short circuit occurs between the protrusion of the heat sink and the second element.
 前記熱伝導材は弾性体で構成されてもよい。 The heat conductive material may be made of an elastic material.
 上記構成によれば、容易且つ適切に突部の先端を第2素子と熱的に接触させることが可能となる。 According to the above configuration, it is possible to easily and appropriately bring the tip of the projection into thermal contact with the second element.
 前記突部は、前記ベース部と一体的に形成されてもよい。 突 The protrusion may be formed integrally with the base.
 上記構成によれば、第2素子が発する熱を突部からベース部へと良好に伝達することができるので、前記第2素子を効率良く冷却することが可能となる。 According to the above configuration, the heat generated by the second element can be transmitted well from the protrusion to the base, so that the second element can be efficiently cooled.
 前記ロボット制御装置は前記第2素子を複数備え、前記突部は、前記第2素子に応じて複数設けられてもよい。 The robot control device may include a plurality of the second elements, and a plurality of the protrusions may be provided according to the second elements.
 上記構成によれば、ロボット制御装置に設けられる複数の第2素子を冷却することが可能となる。 According to the above configuration, it is possible to cool the plurality of second elements provided in the robot control device.
 各々が前記ベース部の第1主面と平行に延在する第2主面上に立設される複数のフィンをさらに備えてもよい。 A plurality of fins each standing on a second main surface extending parallel to the first main surface of the base portion may be further provided.
 上記構成によれば、複数のフィンによってヒートシンクの表面積が大きくなるので、第1素子及び第2素子をともに効率良く冷却することが可能となる。 According to the above configuration, since the surface area of the heat sink is increased by the plurality of fins, both the first element and the second element can be efficiently cooled.
 前記課題を解決するために、本発明に係るロボット制御装置は、上記いずれかのヒートシンクと、前記基板と、前記第1素子と、前記第2素子と、を備えるロボット制御装置であって、外気から遮断された第1空間と、外気に開放された第2空間とがその内部に設けられる筐体をさらに備え、前記第1空間内に前記基板、前記第1素子及び前記第2素子が配置され、前記第2空間内に前記ヒートシンクの少なくとも一部が配置されることを特徴とする。 In order to solve the above problem, a robot control device according to the present invention is a robot control device including any one of the heat sinks, the substrate, the first element, and the second element, Further comprising a housing in which a first space isolated from the air and a second space open to the outside are provided, and wherein the substrate, the first element, and the second element are arranged in the first space. And at least a part of the heat sink is arranged in the second space.
 上記構成によれば、本発明に係るロボット制御装置は、上記いずれかのヒートシンクを備えることで、各々の先端から基板までの距離が互いに異なる第1素子及び第2素子をともに冷却することが可能となる。 According to the above configuration, the robot control device according to the present invention can cool both the first element and the second element having different distances from the respective tips to the substrate by including any one of the heat sinks. Becomes
 前記第1素子が前記基板の主面上に取り付けられるパワーモジュールとして構成され、前記第2素子が前記パワーモジュールから出力される電流値を測定するために前記基板の主面上に実装される抵抗素子として構成されてもよい。 The first element is configured as a power module mounted on a main surface of the substrate, and the second element is mounted on the main surface of the substrate to measure a current value output from the power module. It may be configured as an element.
 上記構成によれば、各々の先端から基板までの距離が互いに異なり、互いに隣接して設けられることに起因してともに冷却することが困難であったパワーモジュール及び抵抗素子をともに冷却することが可能となる。 According to the above configuration, it is possible to cool both the power module and the resistance element, which are difficult to cool together because the distances from the respective tips to the substrate are different from each other and are provided adjacent to each other. Becomes
 前記ヒートシンクに対して外気を送風する冷却ファンをさらに備えてもよい。 The apparatus may further include a cooling fan that blows outside air to the heat sink.
 上記構成によれば、第1素子及び第2素子をともに効率良く冷却することが可能となる。 According to the above configuration, both the first element and the second element can be efficiently cooled.
 本発明によれば、各々の先端から基板までの距離が互いに異なる第1素子及び第2素子をともに冷却することが可能な、ヒートシンク及びそれを備えるロボット制御装置を提供することが可能となる。 According to the present invention, it is possible to provide a heat sink and a robot control device including the same, which can cool both the first element and the second element having different distances from the respective tips to the substrate.
本発明の一実施形態に係るヒートシンクを備えるロボット制御装置の外観斜視図である。1 is an external perspective view of a robot control device including a heat sink according to one embodiment of the present invention. 本発明の一実施形態に係るヒートシンクを備えるロボット制御装置の要部構造を示す概略図である。FIG. 1 is a schematic diagram illustrating a main structure of a robot control device including a heat sink according to an embodiment of the present invention. 本発明の一実施形態に係るヒートシンクを備えるロボット制御装置の要部構造及びその周辺部分を拡大した様子を右側板側から見たときの概略図である。It is the schematic which looked at the state which expanded the principal part structure and its peripheral part of the robot control apparatus provided with the heat sink which concerns on one Embodiment of this invention from the right side plate side. 本発明の一実施形態に係るヒートシンクとパワーモジュール及び抵抗素子との位置関係を説明するための図であり、(A)がヒートシンクの底面図、(B)が基板及び当該基板に取り付けられたパワーモジュール及び抵抗素子の底面図である。It is a figure for explaining the positional relationship of the heat sink which concerns on one Embodiment of this invention, a power module, and a resistance element, (A) is a bottom view of a heat sink, (B) is a board | substrate and the power attached to the said board | substrate. It is a bottom view of a module and a resistance element.
 以下、本発明の一実施形態に係るヒートシンク及びそれを備えるロボット制御装置について、図面を参照して説明する。なお、本実施形態によって本発明が限定されるものではない。また、以下では、全ての図を通じて、同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。 Hereinafter, a heat sink according to an embodiment of the present invention and a robot control device including the same will be described with reference to the drawings. The present invention is not limited by the embodiment. In the following, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description will be omitted.
 (ロボット制御装置10)
 図1は、本実施形態に係るヒートシンクを備えるロボット制御装置の外観斜視図である。本実施形態に係るロボット制御装置10は、図示しないロボットの動作を制御するために用いられる。前記ロボットは、例えば、複数の関節軸を有するロボットアームと、当該ロボットアームの先端に取り付けられるエンドエフェクタとを備えてもよい。
(Robot control device 10)
FIG. 1 is an external perspective view of a robot control device including a heat sink according to the present embodiment. The robot control device 10 according to the present embodiment is used to control the operation of a robot (not shown). The robot may include, for example, a robot arm having a plurality of joint axes, and an end effector attached to a tip of the robot arm.
 図1に示すように、ロボット制御装置10は、その内部構造(例えば、後述する基板30、パワーモジュール40、抵抗素子90及びヒートシンク50等)を収容するための筐体20を備える。筐体20は中空の直方体状である。 As shown in FIG. 1, the robot control device 10 includes a housing 20 for housing its internal structure (for example, a substrate 30, a power module 40, a resistance element 90, a heat sink 50, and the like, which will be described later). The housing 20 has a hollow rectangular parallelepiped shape.
 筐体20は、平面視において矩形状の底板21と、底板21の前端縁に立設される前板22と、底板21の後端縁に立設される背板23とを有する。また、筐体20は、底板21の右端縁に立設される右側板24と、底板21の左端縁に立設される左側板25と、前板22、背板23、右側板24及び左側板25によって形成される箱体に蓋をするように設けられる天板26とをさらに有する。なお、底板21の底面の四隅には、それぞれ、下方に向かうに連れて横断面積が小さくなるテーパ状の載置部80が設けられる。 The housing 20 includes a rectangular bottom plate 21 in plan view, a front plate 22 erected on the front edge of the bottom plate 21, and a back plate 23 erected on the rear edge of the bottom plate 21. The housing 20 includes a right side plate 24 erected on the right end edge of the bottom plate 21, a left side plate 25 erected on the left end edge of the bottom plate 21, a front plate 22, a back plate 23, a right side plate 24, and a left side plate. A top plate provided to cover a box formed by the plate. In addition, at each of the four corners of the bottom surface of the bottom plate 21, a tapered mounting portion 80 whose cross-sectional area decreases toward the bottom is provided.
 図2は、本実施形態に係るヒートシンクを備えるロボット制御装置の要部構造及びその周辺部分を拡大した様子を右側板側から見たときの概略図である。図2に示すように、筐体20は、高さ方向における中央を水平方向に延びる仕切板27をさらに備える。筐体20の内部には、仕切板27を境界として高さ方向において互いに隣接する第1空間28及び第2空間29が設けられる。なお、仕切板27には、平面視において、後述するヒートシンク50のベース部51よりも僅かに小さい面積を有する矩形状の貫通孔27aが穿設される。 FIG. 2 is a schematic view of an enlarged view of a main structure of a robot control device including a heat sink according to the present embodiment and a peripheral portion thereof as viewed from a right side plate. As shown in FIG. 2, the housing 20 further includes a partition plate 27 that extends horizontally at the center in the height direction. A first space 28 and a second space 29 that are adjacent to each other in the height direction with the partition plate 27 as a boundary are provided inside the housing 20. The partition plate 27 is provided with a rectangular through hole 27a having an area slightly smaller than a base portion 51 of the heat sink 50 described later in plan view.
 第1空間28は、仕切板27よりも上側に存する空間であり、外気から遮断されている。第1空間28は、主として、仕切板27の上面、後述するヒートシンク50のベース部51の第1主面52、前板22の上部内面、背板23の上部内面、右側板24の上部内面、左側板25の上部内面、及び、天板26の内面によってその周縁が画定される。第1空間28は、外気から遮断されることで防塵性を有し、例えば、後述する基板30、パワーモジュール40及び抵抗素子90等の精密機械が配置される。 The first space 28 is a space above the partition plate 27 and is shielded from the outside air. The first space 28 mainly includes an upper surface of the partition plate 27, a first main surface 52 of a base portion 51 of the heat sink 50 described later, an upper inner surface of the front plate 22, an upper inner surface of the back plate 23, an upper inner surface of the right plate 24, The peripheral edge is defined by the upper inner surface of the left side plate 25 and the inner surface of the top plate 26. The first space 28 has a dustproof property by being shielded from the outside air, and for example, precision machines such as a substrate 30, a power module 40, and a resistance element 90, which will be described later, are arranged.
 第2空間29は、仕切板27よりも下側に存する空間であり、外気に開放されている。第2空間29は、主として、仕切板27の底面、後述するヒートシンク50のベース部51の第2主面54、底板21の内面、前板22の下部内面、背板23の下部内面、右側板24の下部内面、及び、左側板25の下部内面によってその周縁が画定される。 The second space 29 is a space located below the partition plate 27 and is open to the outside air. The second space 29 mainly includes a bottom surface of the partition plate 27, a second main surface 54 of a base portion 51 of a heat sink 50 described later, an inner surface of the bottom plate 21, a lower inner surface of the front plate 22, a lower inner surface of the back plate 23, and a right side plate. The lower inner surface of the left side plate 24 and the lower inner surface of the left side plate 25 define the periphery thereof.
 ここで、ロボット制御装置10は、ヒートシンク50に対して外気を送風する冷却ファン82をさらに備える。図1に示すように、本実施形態では、当該冷却ファン82が、右側板24の下部内面に沿うように並列して4つ配置される。また、図2に示すように、右側板24の下部には、4つの冷却ファン82に対応した位置に複数の吸気スリット84が穿設される。さらに、左側板25の下部には、複数の吸気スリット84に対応した複数の排気スリット85が穿設される。 Here, the robot controller 10 further includes a cooling fan 82 that blows outside air to the heat sink 50. As shown in FIG. 1, in the present embodiment, four cooling fans 82 are arranged in parallel along the lower inner surface of the right side plate 24. Further, as shown in FIG. 2, a plurality of intake slits 84 are formed in the lower portion of the right side plate 24 at positions corresponding to the four cooling fans 82. Further, a plurality of exhaust slits 85 corresponding to the plurality of intake slits 84 are formed in a lower portion of the left side plate 25.
 このような構造によれば、冷却ファン82が駆動することで、右側板24の吸気スリット84から第2空間29内に外気が吸気され、左側板25の排気スリット85から前記外気が排気される。すなわち、筐体20内の第2空間29には、右側板24から左側板25に向かう方向(後述するX方向)に流れる外気が供給される。そして、第2空間29内には、例えば、後述するヒートシンク50の少なくとも一部等が配置される。ここで、ヒートシンク50の少なくとも一部は、後述するフィン集合体60及びベース部51の第2主面54を含む。 According to such a structure, when the cooling fan 82 is driven, outside air is taken into the second space 29 from the intake slit 84 of the right side plate 24, and the outside air is exhausted from the exhaust slit 85 of the left side plate 25. . That is, the outside air flowing in the direction from the right side plate 24 to the left side plate 25 (X direction described later) is supplied to the second space 29 in the housing 20. In the second space 29, for example, at least a part of a heat sink 50 described later is arranged. Here, at least a part of the heat sink 50 includes a fin assembly 60 and a second main surface 54 of the base 51 described later.
 (要部構造)
 図2~4に基づき、本実施形態に係るヒートシンク50及びそれを備えるロボット制御装置10の要部構造について説明する。上記したように、図2は、本実施形態に係るヒートシンクを備えるロボット制御装置の要部構造を示す概略図である。また、図3は、本実施形態に係るヒートシンクを備えるロボット制御装置の要部構造及びその周辺部分を拡大した様子を右側板側から見たときの概略図である。
(Main structure)
With reference to FIGS. 2 to 4, a description will be given of a main part structure of a heat sink 50 according to the present embodiment and a robot control device 10 including the same. As described above, FIG. 2 is a schematic diagram illustrating a main structure of a robot control device including the heat sink according to the present embodiment. FIG. 3 is a schematic view of a main part structure of a robot control device including a heat sink according to the present embodiment and an enlarged view of a peripheral portion thereof when viewed from a right side plate side.
 そして、図3は、本実施形態に係るヒートシンクとパワーモジュール及び抵抗素子との位置関係を説明するための図であり、(A)がヒートシンクの底面図、(B)が基板及び当該基板に取り付けられたパワーモジュール及び抵抗素子の底面図である。なお、図4(B)において、本実施形態に係るヒートシンク50の要部構造(後述するベース部51、突部77及び熱伝導シート78)が破線で示される。 FIGS. 3A and 3B are diagrams for explaining the positional relationship between the heat sink, the power module, and the resistance element according to the present embodiment. FIG. 3A is a bottom view of the heat sink, and FIG. It is a bottom view of the power module and the resistance element which were obtained. In FIG. 4B, the main structure (a base 51, a protrusion 77, and a heat conductive sheet 78 to be described later) of the heat sink 50 according to the present embodiment is indicated by a broken line.
 (基板30、パワーモジュール40及び抵抗素子90)
 図2~4に示すように、ロボット制御装置10は、基板30と、当該基板30の底面に取り付けられるパワーモジュール40(第1素子)と、当該パワーモジュール40から出力される電流値を測定するための抵抗素子90(第2素子)と、をさらに備える。基板30、パワーモジュール40及び抵抗素子90は、それぞれ、外気から遮断された第1空間28内に配置される。
(Substrate 30, power module 40 and resistance element 90)
As shown in FIGS. 2 to 4, the robot controller 10 measures the substrate 30, a power module 40 (first element) attached to the bottom surface of the substrate 30, and a current value output from the power module 40. And a resistive element 90 (second element). The substrate 30, the power module 40, and the resistance element 90 are each disposed in the first space 28 that is shielded from the outside air.
 基板30は、例えば、ケイ素などの絶縁体で形成された平板と、各々が当該平板の表面及び内部に配置され、互いに電気的に接続される複数の電子部品とを有することで、電子回路として機能してもよい。 The substrate 30 has, for example, a flat plate formed of an insulator such as silicon, and a plurality of electronic components each of which is disposed on the surface and inside of the flat plate and is electrically connected to each other, thereby forming an electronic circuit. May work.
 図2~4に示すように、パワーモジュール40は、略直方体状であり、基板30の底面上に8つ取り付けられる。なお、8つのパワーモジュール40は、それぞれ、互いに同じ形状及び寸法を有する。また、複数のパワーモジュール40は、それぞれ、図4に示すX方向(すなわち、筐体20の右側板24と左側板25とを結ぶ方向)及び当該X方向に直交するY方向に並列されることで行列状に配置される。 パ ワ ー As shown in FIGS. 2 to 4, eight power modules 40 are substantially rectangular parallelepiped, and eight power modules 40 are mounted on the bottom surface of the substrate 30. The eight power modules 40 have the same shape and size as each other. In addition, the plurality of power modules 40 are respectively arranged in the X direction shown in FIG. 4 (that is, the direction connecting the right side plate 24 and the left side plate 25 of the housing 20) and the Y direction orthogonal to the X direction. Are arranged in a matrix.
 具体的には、本実施形態では、X方向に4つのパワーモジュール40が並列され、その集合体がY方向に2つ並列されることで、基板30の底面上に8つのパワーモジュール40が2×4の行列状で取り付けられる。なお、8つのパワーモジュール40は、それぞれ、スペーサ41(図3参照)を介して基板30に取り付けられてもよい。これにより、8つのパワーモジュール40は、それぞれ、その上面が基板30の底面に接触しないように配置されるので、各々で生じた熱が基板30に直接伝わることを防止することができる。 Specifically, in the present embodiment, eight power modules 40 are arranged on the bottom surface of the substrate 30 by arranging four power modules 40 in parallel in the X direction and arranging two of the aggregates in the Y direction. Mounted in a matrix of × 4. Note that each of the eight power modules 40 may be attached to the substrate 30 via a spacer 41 (see FIG. 3). Thus, since the eight power modules 40 are arranged such that the top surfaces thereof do not contact the bottom surface of the substrate 30, it is possible to prevent heat generated in each of the eight power modules from being directly transmitted to the substrate 30.
 8つのパワーモジュール40は、それぞれ、インテリジェントパワーモジュール(Intelligent Power Module、IPM)であってもよく、また、サーボアンプの主要部品であってもよい。そして、例えば、各々がパワーモジュール40を含む複数のサーボアンプそれぞれから、3相モータ用の電流が出力されてもよい。このような構成によって、ロボット制御装置10は、一つのパワーモジュール40によって一つの軸を制御するように構成されてもよい。ここで、前記軸は、例えば、ロボットの関節軸や外部軸などを含んでもよい。 The eight power modules 40 may be intelligent power modules (Intelligent Power Module, IPM), or may be main components of a servo amplifier. Then, for example, a current for a three-phase motor may be output from each of the plurality of servo amplifiers including the power module 40. With such a configuration, the robot controller 10 may be configured to control one axis by one power module 40. Here, the axis may include, for example, a joint axis or an external axis of the robot.
 図2~4に示すように、抵抗素子90は、略直方体状であり、基板30の底面上にパワーモジュール40に対応して8つ実装される。8つの抵抗素子90は、それぞれ、互いに同じ形状及び寸法を有する。また、8つの抵抗素子90は、それぞれ、対応するパワーモジュール40の前後方向(すなわち、前板22と背板23とを結ぶ方向)における外側に存する面に沿うように配置される。 抵抗 As shown in FIGS. 2 to 4, eight resistance elements 90 are substantially rectangular parallelepiped, and eight resistance elements 90 are mounted on the bottom surface of the substrate 30 in correspondence with the power modules 40. Each of the eight resistance elements 90 has the same shape and dimensions as each other. Each of the eight resistance elements 90 is arranged along a surface existing outside the corresponding power module 40 in the front-rear direction (that is, the direction connecting the front plate 22 and the back plate 23).
 すなわち、前板22側においてX方向に並列して配置される4つのパワーモジュール40に対応して実装される抵抗素子90は、それぞれ、前記4つのパワーモジュール40よりも前板22側に実装される。一方、背板23側においてX方向に並列して配置される4つのパワーモジュール40に対応して実装される抵抗素子90は、それぞれ、前記4つのパワーモジュール40よりも背板23側に実装される。4つの抵抗素子90は、それぞれ、対応するパワーモジュール40から出力される電流値を測定するために、当該対応するパワーモジュール40に対して直列接続される。 That is, the resistance elements 90 mounted corresponding to the four power modules 40 arranged in parallel in the X direction on the front plate 22 side are mounted on the front plate 22 side of the four power modules 40, respectively. You. On the other hand, the resistance elements 90 mounted corresponding to the four power modules 40 arranged in parallel in the X direction on the back plate 23 side are mounted on the back plate 23 side of the four power modules 40, respectively. You. Each of the four resistance elements 90 is connected in series to the corresponding power module 40 in order to measure a current value output from the corresponding power module 40.
 図3に示すように、パワーモジュール40の先端(すなわち、図3において底面)は、抵抗素子90の先端(同前)よりも基板30の主面から離れた位置に存する。これにより、本実施形態に係るヒートシンク50のベース部51(の第1主面52)は、パワーモジュール40のみに直接的に(熱的に)接触し、抵抗素子90には接触しない。 (3) As shown in FIG. 3, the tip of the power module 40 (that is, the bottom surface in FIG. 3) is located farther from the main surface of the substrate 30 than the tip (before) of the resistance element 90. As a result, (the first main surface 52 of) the base portion 51 of the heat sink 50 according to the present embodiment directly (thermally) contacts only the power module 40 and does not contact the resistance element 90.
 (ヒートシンク50)
 図2~4に示すように、本実施形態に係るヒートシンク50は、外気に開放された第2空間29内に配置される。ヒートシンク50は、第1主面52及び当該第1主面52と平行に延在する第2主面54を有するように板状に形成され、前記第1主面52が8つのパワーモジュール40それぞれと直接的に接触するように配置されるベース部51と、当該ベース部51の第2主面54上に立設される複数のフィン70とを備える。
(Heat sink 50)
As shown in FIGS. 2 to 4, the heat sink 50 according to the present embodiment is disposed in the second space 29 open to the outside air. The heat sink 50 is formed in a plate shape so as to have a first main surface 52 and a second main surface 54 extending in parallel with the first main surface 52, and the first main surface 52 includes eight power modules 40. And a plurality of fins 70 erected on the second main surface 54 of the base portion 51.
 ベース部51は、平面視において、仕切板27に穿設された貫通孔27aよりも僅かに大きい矩形状に形成される。そして、ベース部51は、その第1主面52の縁部が仕切板27の底面側から貫通孔27aの周縁部に当接した状態で、当該仕切板27の底面に固定される。ベース部51は、このように配置されることで、その第1主面52が外気から遮断された第1空間28の周縁の一部を画定し、且つ、その第2主面54が外気に開放された第2空間29の周縁の一部を画定する。 The base portion 51 is formed in a rectangular shape slightly larger than the through hole 27a formed in the partition plate 27 in a plan view. The base portion 51 is fixed to the bottom surface of the partition plate 27 in a state where the edge portion of the first main surface 52 is in contact with the peripheral edge portion of the through hole 27a from the bottom surface side of the partition plate 27. The base portion 51 is arranged in this manner, so that the first main surface 52 defines a part of the periphery of the first space 28 shielded from the outside air, and the second main surface 54 is connected to the outside air. It defines a part of the periphery of the opened second space 29.
 複数のフィン70は、各々が板状に形成され、且つ、各々の厚み方向がY方向と一致した状態で当該Y方向に並列してベース部51の第2主面54上に立設される。そして、当該複数のフィン70によって、フィン集合体60が構成される。なお、Y方向において互いに隣接するフィン70の間隔は、それぞれ、互いに同一である。 Each of the plurality of fins 70 is formed in a plate shape, and is erected on the second main surface 54 of the base portion 51 in parallel with the Y direction with each thickness direction coinciding with the Y direction. . The plurality of fins 70 form the fin assembly 60. Note that the intervals between the fins 70 adjacent to each other in the Y direction are the same as each other.
 そして、図4に示すように、複数のフィン70が8つのパワーモジュール40に対応した位置に並列して配置されることで、フィン集合体60は、各々がY方向に延び、X方向に並列される複数の畝状部62と、複数の畝状部62のうちX方向において互いに隣接する畝状部62の間をY方向に延びる溝状部64と、を有する。なお、ここでいう複数の畝状部62とは、それぞれ、上記のようにベース部51の第2主面54上に複数のフィン70が立設されることで、当該複数のフィン70全体としてベース部51の第2主面54上をY方向に延びる突条又は突部として構成される部分をいう。 Then, as shown in FIG. 4, the plurality of fins 70 are arranged in parallel at positions corresponding to the eight power modules 40, so that each of the fin assemblies 60 extends in the Y direction and is arranged in parallel in the X direction. A plurality of ridges 62 and a groove 64 extending in the Y direction between the ridges 62 adjacent to each other in the X direction among the plurality of ridges 62. Note that the plurality of ridges 62 referred to herein means that the plurality of fins 70 are erected on the second main surface 54 of the base portion 51 as described above, so that the plurality of fins 70 as a whole A portion configured as a ridge or a protrusion extending in the Y direction on the second main surface 54 of the base portion 51.
 これにより、本実施形態に係るヒートシンク50は、フィン集合体60の溝状部64によって軽量化が図られつつ、フィン集合体60の複数の畝状部62によって複数のパワーモジュール40を十分に冷却することが可能である。 Thus, the heat sink 50 according to the present embodiment is sufficiently cooled by the plurality of ridges 62 of the fin assembly 60 while the weight is reduced by the groove 64 of the fin assembly 60. It is possible to
 なお、本実施形態では、上記のようにX方向に4つのパワーモジュール40が並列されるので、それに対応してX方向に4つの畝状部62が並列される。また、このように4つの畝状部62が並列されるので、これらの間にY方向に延びる計3つの溝状部64が存する。 In the present embodiment, since the four power modules 40 are arranged in the X direction as described above, the four ridges 62 are arranged in the X direction correspondingly. In addition, since the four ridges 62 are arranged in parallel in this manner, there are a total of three groove-like portions 64 extending in the Y direction therebetween.
 図4に示すように、複数のフィン70が8つのパワーモジュール40のうちY方向において互いに隣接するパワーモジュール40の間に対応した位置でも並列して配置されることで、4つの畝状部62は、それぞれ、Y方向において互いに隣接するパワーモジュール40の間に対応した位置でもY方向に延びる。 As shown in FIG. 4, the plurality of fins 62 are arranged in parallel at positions corresponding to the power modules 40 adjacent to each other in the Y direction among the eight power modules 40, so that the four ridges 62 are formed. Extend in the Y direction even at positions corresponding to between the power modules 40 adjacent to each other in the Y direction.
 これにより、ヒートシンク50の表面積が大きくなるので、フィン集合体60の溝状部64によって冷却効率が低下することを抑制することができる。また、Y方向において互いに隣接するパワーモジュール40の間に、同様のパワーモジュール40や他の発熱体がさらに配置されるような場合、これらを十分に冷却することが可能となる。 This increases the surface area of the heat sink 50, so that it is possible to suppress the cooling efficiency from being lowered by the groove-shaped portion 64 of the fin assembly 60. In the case where similar power modules 40 and other heating elements are further arranged between power modules 40 adjacent to each other in the Y direction, these can be sufficiently cooled.
 複数のフィン70は、それぞれ、8つのパワーモジュール40それぞれのX方向における長さに対応した幅を有する。これにより、本実施形態に係るヒートシンク50は、適切に軽量化を図ることができる。それ故に、軽量化(すなわち、フィン集合体60に溝状部64を設けること)によって冷却効率が低下することを抑制することが可能となる。 The plurality of fins 70 each have a width corresponding to the length in the X direction of each of the eight power modules 40. Thus, the heat sink 50 according to the present embodiment can appropriately reduce the weight. Therefore, it is possible to suppress a decrease in cooling efficiency due to a reduction in weight (that is, providing the groove portions 64 in the fin assembly 60).
 また、複数のフィン70は、それぞれ、その厚み方向に見て、X方向に延びる基端側の端縁を下底71とし、X方向に延びる先端側の端縁を上底72とし、且つ、下底71が上底72よりも長い台形状である。これにより、ヒートシンク50全体をダイキャストで一体成形する場合、金型から引き抜く作業を適切に行うことが可能となる。 Further, each of the plurality of fins 70 has a base edge extending in the X direction as a lower bottom 71, a tip edge extending in the X direction as an upper bottom 72 when viewed in the thickness direction, and The lower bottom 71 has a trapezoidal shape longer than the upper bottom 72. Accordingly, when the entire heat sink 50 is integrally formed by die casting, it is possible to appropriately perform the operation of pulling out the heat sink 50 from the mold.
 複数のフィン70のうちX方向(図2において左右方向)において互いに隣接するフィン70の間には、互いに隣接するフィン70同士を接続する接続部74が設けられる。当該接続部74は、ベース部51の第2主面54上に立設され、フィン70と比較して当該第2主面54からの長さが短い。これにより、ヒートシンク50の表面積が大きくなるので、フィン集合体60の溝状部64によって冷却効率が低下することを抑制することができる。 接 続 A connection portion 74 that connects the mutually adjacent fins 70 is provided between the mutually adjacent fins 70 in the X direction (the left and right direction in FIG. 2) among the plurality of fins 70. The connecting portion 74 is erected on the second main surface 54 of the base portion 51 and has a shorter length from the second main surface 54 than the fin 70. This increases the surface area of the heat sink 50, so that it is possible to suppress a decrease in cooling efficiency due to the groove-shaped portions 64 of the fin assembly 60.
 さらに、Y方向において互いに隣接するフィン70の間に形成されX方向に延びる溝と、Y方向において互いに隣接する接続部74の間に形成されX方向に延びる溝とがX方向において連なるので、フィン集合体60においてX方向の一端から他端まで延びる溝が形成される。これにより、冷却ファン82によって第2空間29内に送風されるX方向に流れる外気が、フィン集合体60の内部で拡散することを防止することができるので、ヒートシンク50によって外気の流れが阻害されることを抑制することが可能となる。 Further, the groove formed between the fins 70 adjacent to each other in the Y direction and extending in the X direction and the groove formed between the connecting portions 74 adjacent to each other in the Y direction and extending in the X direction are continuous in the X direction. In the aggregate 60, a groove extending from one end to the other end in the X direction is formed. This prevents the outside air flowing in the X direction, which is blown into the second space 29 by the cooling fan 82, from diffusing inside the fin assembly 60, so that the heat sink 50 inhibits the flow of the outside air. Can be suppressed.
 なお、図2に示すように、4つの畝状部62のうち最も右側板24側に存する畝状部62とX方向(図2において左右方向)において対向するように上記冷却ファン82が配置される。これにより、上記冷却ファン82は、フィン集合体60に対してX方向に流れる外気を送風することができる。 As shown in FIG. 2, the cooling fan 82 is arranged so as to face the ridge 62 on the rightmost plate 24 side of the four ridges 62 in the X direction (the horizontal direction in FIG. 2). You. Thereby, the cooling fan 82 can blow the outside air flowing in the X direction to the fin assembly 60.
 図2~4に示すように、ヒートシンク50は、ベース部51の第1主面52上に突設され、その先端が抵抗素子90と熱的に接触するように配置される突部77をさらに備える。突部77は、抵抗素子90に対応して8つ設けられる。また、8つの突部77は、それぞれ、直方体状に形成され、互いに同じ形状及び寸法を有する。さらに、8つの突部77は、ベース部51及び複数のフィン70と一体的に形成される。 As shown in FIGS. 2 to 4, the heat sink 50 further includes a protrusion 77 projecting from the first main surface 52 of the base portion 51 and arranged so that the tip thereof is in thermal contact with the resistance element 90. Prepare. Eight protrusions 77 are provided corresponding to the resistance elements 90. Each of the eight protrusions 77 is formed in a rectangular parallelepiped shape, and has the same shape and size. Further, the eight protrusions 77 are formed integrally with the base 51 and the plurality of fins 70.
 上記したように、パワーモジュール40の先端(図3において底面)は、抵抗素子90の先端(同前)よりも基板30の主面から離れた位置に存する。ここで、突部77の高さ寸法は、抵抗素子90の先端からパワーモジュール40の先端までの高さ方向における距離(又は抵抗素子90の先端からベース部51の第1主面52までの距離)よりも僅かに小さい。 As described above, the tip (the bottom in FIG. 3) of the power module 40 is located farther from the main surface of the substrate 30 than the tip (the same as before) of the resistance element 90. Here, the height dimension of the protrusion 77 is a distance in the height direction from the tip of the resistance element 90 to the tip of the power module 40 (or the distance from the tip of the resistance element 90 to the first main surface 52 of the base portion 51). ) Slightly smaller than
 これにより、突部77の先端(図3において上面)と抵抗素子90の先端(図3において底面)との間には間隙が形成される。ここで、ヒートシンク50は、突部77の先端に設けられる熱伝導シート78(熱伝導材)をさらに備える。当該熱伝導シート78によって、前記間隙が埋められる。このような構成によれば、突部77は、熱伝導シート78を介して抵抗素子90と熱的に接触するように配置される。なお、熱伝導シート78は、絶縁体であり且つ弾性体である。 Thereby, a gap is formed between the tip of the protrusion 77 (the top surface in FIG. 3) and the tip of the resistance element 90 (the bottom surface in FIG. 3). Here, the heat sink 50 further includes a heat conductive sheet 78 (heat conductive material) provided at the tip of the protrusion 77. The gap is filled with the heat conductive sheet 78. According to such a configuration, the protrusion 77 is arranged so as to be in thermal contact with the resistance element 90 via the heat conductive sheet 78. The heat conductive sheet 78 is an insulator and an elastic body.
 (効果)
 本実施形態に係るヒートシンク50は、その第1主面52がパワーモジュール40と直接的に(熱的に)接触するように配置されるベース部51によって前記パワーモジュール40(第1素子)を冷却することができ、且つ、その先端が抵抗素子90と熱的に接触するように配置される突部77によって前記抵抗素子90(第2素子)を冷却することができる。その結果、各々の先端から基板30までの距離が互いに異なるパワーモジュール40及び抵抗素子90をともに冷却することが可能となる。
(effect)
In the heat sink 50 according to the present embodiment, the power module 40 (first element) is cooled by the base portion 51 arranged so that the first main surface 52 is in direct (thermal) contact with the power module 40. The resistance element 90 (second element) can be cooled by the protrusion 77 arranged so that the tip thereof is in thermal contact with the resistance element 90. As a result, it is possible to cool both the power module 40 and the resistance element 90 having different distances from the respective tips to the substrate 30.
 本実施形態に係るヒートシンク50は、突部77の先端に設けられる熱伝導シート78(熱伝導材)を備えるので、抵抗素子90が発する熱を熱伝導シート78によって突部77へと良好に伝達することができる。 Since the heat sink 50 according to the present embodiment includes the heat conductive sheet 78 (heat conductive material) provided at the tip of the protrusion 77, the heat generated by the resistance element 90 is favorably transmitted to the protrusion 77 by the heat conductive sheet 78. can do.
 本実施形態に係る熱伝導シート78は絶縁体で構成されるので、ヒートシンクの突部と第2素子との間で短絡が生じる虞をなくすことが可能となる。 熱 Since the heat conductive sheet 78 according to the present embodiment is made of an insulator, it is possible to eliminate the possibility that a short circuit occurs between the protrusion of the heat sink and the second element.
 本実施形態に係る熱伝導シート78は弾性体で構成されるので、突部77の先端と抵抗素子90(第2素子)との間に形成される間隙に熱伝導シート78を弾性変形させつつ配置することができる。これにより、容易且つ適切に突部77の先端を抵抗素子90と熱的に接触させることが可能となる。 Since the heat conductive sheet 78 according to the present embodiment is formed of an elastic body, the heat conductive sheet 78 is elastically deformed in a gap formed between the tip of the protrusion 77 and the resistance element 90 (second element). Can be arranged. This makes it possible to easily and appropriately bring the tip of the protrusion 77 into thermal contact with the resistance element 90.
 したがって、例えば、突部77の先端の高さ位置が高くなり過ぎることで、当該突部77が抵抗素子90を押圧してしまうことを防止することが可能となる。その結果、突部77及び抵抗素子90に応力集中が生じないので、これらが破損することを防止することができる。 Therefore, for example, it is possible to prevent the protrusion 77 from pressing the resistance element 90 due to the height of the tip of the protrusion 77 being too high. As a result, since stress concentration does not occur in the protrusion 77 and the resistance element 90, they can be prevented from being damaged.
 本実施形態では、突部77がベース部51及び複数のフィン70と一体的に形成されるので、抵抗素子90が発する熱を突部77からベース部51へと良好に伝達し、且つ、当該ベース部51から複数のフィン70へと良好に伝達することができるので、抵抗素子90を効率良く冷却することが可能となる。また、ヒートシンク50全体をダイキャストで一体成形することができるので、ヒートシンク50の製造を安価に行うことが可能となる。 In the present embodiment, since the protrusion 77 is formed integrally with the base 51 and the plurality of fins 70, the heat generated by the resistance element 90 is transmitted well from the protrusion 77 to the base 51, and Since the power can be transmitted well from the base portion 51 to the plurality of fins 70, the resistance element 90 can be efficiently cooled. In addition, since the entire heat sink 50 can be integrally formed by die casting, it is possible to manufacture the heat sink 50 at low cost.
 本実施形態では、ロボット制御装置10がパワーモジュール40及び抵抗素子90をそれぞれ8つ備え、突部77が抵抗素子90に応じて8つ設けられるので、ベース部51の第1主面52が8つのパワーモジュール40と直接的に接触することによって当該8つのパワーモジュール40を冷却することができ、且つ、8つの突部77それぞれが対応する抵抗素子90に熱的に接触することによって当該8つの抵抗素子90を冷却することができる。 In the present embodiment, since the robot control device 10 includes eight power modules 40 and eight resistance elements 90, and eight protrusions 77 are provided in accordance with the resistance elements 90, the first main surface 52 of the base part 51 is The eight power modules 40 can be cooled by directly contacting the two power modules 40, and the eight power modules 40 can be cooled by each of the eight protrusions 77 thermally contacting the corresponding resistance element 90. The resistance element 90 can be cooled.
 本実施形態に係るヒートシンク50は、複数のフィン70を備えるので、その表面積が大きくなる。これにより、パワーモジュール40及び抵抗素子90を効率良く冷却することが可能となる。 ヒ ー ト シ ン ク Since the heat sink 50 according to the present embodiment includes the plurality of fins 70, the surface area is increased. Thereby, the power module 40 and the resistance element 90 can be efficiently cooled.
 本実施形態に係るロボット制御装置10は、ヒートシンク50を備えることで、各々の先端から基板30までの距離が互いに異なるパワーモジュール40及び抵抗素子90をともに冷却することが可能となる。 ロ ボ ッ ト The robot control device 10 according to the present embodiment includes the heat sinks 50, so that both the power module 40 and the resistance element 90 having different distances from the respective ends to the substrate 30 can be cooled.
 第1素子がパワーモジュール40として構成され、第2素子がパワーモジュール40から出力される電流値を測定するための抵抗素子90として構成されるので、各々の先端から基板30までの距離が互いに異なり、互いに隣接して設けられることに起因してともに冷却することが困難であったパワーモジュール40及び抵抗素子90をともに冷却することが可能となる。 Since the first element is configured as the power module 40 and the second element is configured as the resistance element 90 for measuring the current value output from the power module 40, the distances from the respective tips to the substrate 30 are different from each other. This makes it possible to cool both the power module 40 and the resistance element 90, which have been difficult to cool together due to being provided adjacent to each other.
 本実施形態に係るロボット制御装置10は、ヒートシンク50に対して外気を送風する冷却ファン82を備えることで、パワーモジュール40及び抵抗素子90を効率良く冷却することが可能となる。 The robot control device 10 according to the present embodiment includes the cooling fan 82 that blows outside air to the heat sink 50, so that the power module 40 and the resistance element 90 can be efficiently cooled.
 (変形例)
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
(Modification)
From the above description, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Therefore, the above description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Details of its structure and / or function may be substantially changed without departing from the spirit of the invention.
 上記実施形態では、第1素子が基板30の主面上に取り付けられるパワーモジュール40として構成され、第2素子がパワーモジュール40から出力される電流値を測定するために基板30の主面上に実装される抵抗素子90として構成される場合について説明したが、これに限定されない。すなわち、第1素子及び第2素子は、それぞれ、形状及び寸法のうち少なくとも何れか一方が互いに異なるのであれば、その他の電子部品であってもよい。例えば、第1素子は、基板30の主面上に実装されるICチップであってもよいし、その他の電子部品であってもよい。第2素子についても同様である。 In the above embodiment, the first element is configured as the power module 40 mounted on the main surface of the substrate 30, and the second element is mounted on the main surface of the substrate 30 to measure the current value output from the power module 40. Although the case where the resistor element 90 is mounted is described, the present invention is not limited to this. That is, the first element and the second element may be other electronic components as long as at least one of the shape and the dimension is different from each other. For example, the first element may be an IC chip mounted on the main surface of the substrate 30, or may be another electronic component. The same applies to the second element.
 上記実施形態では、ヒートシンク50のベース部51が、パワーモジュール40(第1素子)と直接的に接触することで当該パワーモジュール40と熱的に接触する場合を説明したが、これに限定されない。例えば、ヒートシンク50のベース部51は、突部77の先端に設けられる熱伝導シート78と同様の部材を介してパワーモジュール40に接触してもよい。 In the above embodiment, the case where the base portion 51 of the heat sink 50 is in direct contact with the power module 40 (first element) to thermally contact the power module 40 has been described, but the present invention is not limited to this. For example, the base portion 51 of the heat sink 50 may contact the power module 40 via a member similar to the heat conductive sheet 78 provided at the tip of the protrusion 77.
 上記実施形態では、熱伝導材が、絶縁体であり且つ弾性体である熱伝導シート78である場合を説明したが、これに限定されない。例えば、熱伝導材は、絶縁体であるが弾性体でない他の熱伝導シートであってもよいし、弾性体であるが絶縁体でない他の熱伝導シートであってもよいし、或いは、その他の熱伝導材であってもよい。なお、熱伝導材が絶縁体でない場合、ヒートシンク50の突部77と抵抗素子90(第2素子)との間で短絡が生じる虞がある。したがって、このような場合、ヒートシンク50の突部77と抵抗素子90(第2素子)との間に、熱伝導材に加えて絶縁体を設けてもよいし、或いは、熱伝導材を設けずに絶縁体のみ設けてもよい。 In the above embodiment, the case where the heat conductive material is the heat conductive sheet 78 which is an insulator and an elastic body has been described, but the present invention is not limited to this. For example, the heat conductive material may be another heat conductive sheet that is an insulator but not an elastic body, or may be another heat conductive sheet that is an elastic body but not an insulator, or Heat conductive material. If the heat conductive material is not an insulator, a short circuit may occur between the protrusion 77 of the heat sink 50 and the resistance element 90 (second element). Therefore, in such a case, an insulator may be provided between the protrusion 77 of the heat sink 50 and the resistance element 90 (second element) in addition to the heat conductive material, or no heat conductive material is provided. May be provided only with an insulator.
 上記実施形態では、8つのパワーモジュール40が2×4の行列状で計8つ並列して配置され、これに対応して抵抗素子90及び突部77がそれぞれ8つずつ並列して配置される場合を説明したが、これに限定されない。すなわち、パワーモジュール40は、1つ以上配置され、これに対応して抵抗素子90及び突部77がそれぞれ1つ以上ずつ並列して配置されてもよい。なお、上記実施形態のようにフィン集合体60が畝状部62及び溝状部64を有する場合、パワーモジュール40は、少なくともX方向に並列して配置されていることを要する。 In the above embodiment, a total of eight power modules 40 are arranged in parallel in a 2 × 4 matrix, and correspondingly, eight resistive elements 90 and eight protrusions 77 are arranged in parallel. Although the case has been described, the present invention is not limited to this. That is, one or more power modules 40 may be arranged, and one or more resistance elements 90 and one or more protrusions 77 may be arranged in parallel corresponding to this. When the fin assembly 60 has the ridge portions 62 and the groove portions 64 as in the above embodiment, the power modules 40 need to be arranged at least in parallel in the X direction.
 上記実施形態では、突部77が直方体状である場合を説明したが、この場合に限定されない。例えば、ベース部51の第1主面52から離間するに連れて横断面積が小さくなるテーパ状であってもよいし、或いは、その他の形状であってもよい。 In the above-described embodiment, the case where the protrusion 77 has a rectangular parallelepiped shape has been described. However, the present invention is not limited to this case. For example, it may have a tapered shape in which the cross-sectional area decreases as the distance from the first main surface 52 of the base portion 51 increases, or may have another shape.
 上記実施形態では、複数のフィン70は、それぞれ、その厚み方向に見て台形状である場合を説明したが、この場合に限定されない。例えば、複数のフィン70は、それぞれ、その厚さ方向に見て、正方形状や長方形状などの他の四角形状であってもよいし、その他の多角形状であってもよいし、或いは、その他の形状であってもよい。 In the above embodiment, the case where each of the plurality of fins 70 has a trapezoidal shape when viewed in the thickness direction has been described. However, the present invention is not limited to this case. For example, each of the plurality of fins 70 may have another square shape such as a square shape or a rectangular shape when viewed in the thickness direction thereof, or may have another polygonal shape. The shape may be as follows.
 上記実施形態では、X方向が右側板24と左側板25を結ぶ方向であり、Y方向が前板22と背板23とを結ぶ方向である場合について説明したが、これに限定されない。例えば、X方向が前板22と背板23とを結ぶ方向であり、Y方向が右側板24と左側板25を結ぶ方向であってもよい。また、複数のパワーモジュール40(発熱体)が鉛直方向に並列される場合、X方向が底板21と天板26とを結ぶ方向であり、Y方向が前板22と背板23とを結ぶ方向であってもよいし、或いは、その逆であってもよい。 In the above embodiment, the case where the X direction is the direction connecting the right side plate 24 and the left side plate 25 and the Y direction is the direction connecting the front plate 22 and the back plate 23 is described, but the present invention is not limited to this. For example, the X direction may be a direction connecting the front plate 22 and the back plate 23, and the Y direction may be a direction connecting the right side plate 24 and the left side plate 25. When a plurality of power modules 40 (heating elements) are arranged in a vertical direction, the X direction is the direction connecting the bottom plate 21 and the top plate 26, and the Y direction is the direction connecting the front plate 22 and the back plate 23. Or vice versa.
 10 ロボット制御装置
 20 筐体
 21 底板
 22 前板
 23 背板
 24 右側板
 25 左側板
 26 天板
 27 仕切板
 27a 貫通孔
 28 第1空間
 29 第2空間
 30 基板
 40 パワーモジュール
 50 ヒートシンク
 51 ベース部
 52 第1主面
 54 第2主面
 60 フィン集合体
 62 畝状部
 64 溝状部
 70 フィン
 71 台形の下底
 72 台形の上底
 74 接続部
 77 突部
 78 熱伝導シート
 80 載置部
 82 冷却ファン
 84 吸気スリット
 85 排気スリット
 90 抵抗素子
REFERENCE SIGNS LIST 10 robot control device 20 housing 21 bottom plate 22 front plate 23 back plate 24 right plate 25 left plate 26 top plate 27 partition plate 27a through hole 28 first space 29 second space 30 substrate 40 power module 50 heat sink 51 base 52 1 main surface 54 second main surface 60 fin assembly 62 ridge portion 64 groove portion 70 fin 71 trapezoidal lower bottom 72 trapezoidal upper bottom 74 connecting portion 77 protrusion 78 thermal conduction sheet 80 mounting portion 82 cooling fan 84 Inlet slit 85 Exhaust slit 90 Resistance element

Claims (10)

  1.  ロボット制御装置に設けられるヒートシンクであって、
     前記ロボット制御装置は、基板と、前記基板の主面上に存する第1素子及び第2素子と、を備え、
     第1主面を有するように板状に形成され、前記第1主面が前記第1素子と熱的に接触するように配置されるベース部と、
     前記ベース部の第1主面上に突設され、その先端が前記第2素子と熱的に接触するように配置される突部と、を備えることを特徴とする、ヒートシンク。
    A heat sink provided in the robot control device,
    The robot control device includes: a substrate; a first element and a second element existing on a main surface of the substrate;
    A base portion formed in a plate shape having a first main surface, the base portion being arranged such that the first main surface is in thermal contact with the first element;
    A protrusion protruding from the first main surface of the base portion and having a distal end disposed in thermal contact with the second element.
  2.  前記突部の先端に設けられる熱伝導材をさらに備え、
     前記突部は、前記熱伝導材を介して前記第2素子と熱的に接触するように配置される、請求項1に記載のヒートシンク。
    Further comprising a heat conductive material provided at the tip of the protrusion,
    The heat sink according to claim 1, wherein the protrusion is arranged to be in thermal contact with the second element via the heat conductive material.
  3.  前記熱伝導材は絶縁体で構成される、請求項2に記載のヒートシンク。 3. The heat sink according to claim 2, wherein the heat conductive material is made of an insulator.
  4.  前記熱伝導材は弾性体で構成される、請求項2又は3に記載のヒートシンク。 4. The heat sink according to claim 2, wherein the heat conductive material is made of an elastic material.
  5.  前記突部は、前記ベース部と一体的に形成される、請求項1乃至4のいずれかに記載のヒートシンク。 The heat sink according to any one of claims 1 to 4, wherein the protrusion is formed integrally with the base.
  6.  前記ロボット制御装置は前記第2素子を複数備え、
     前記突部は、前記第2素子に応じて複数設けられる、請求項1乃至5のいずれかに記載のヒートシンク。
    The robot control device includes a plurality of the second elements,
    The heat sink according to claim 1, wherein a plurality of the protrusions are provided according to the second element.
  7.  各々が前記ベース部の第1主面と平行に延在する第2主面上に立設される複数のフィンをさらに備える、請求項1乃至6のいずれかに記載のヒートシンク。 The heat sink according to any one of claims 1 to 6, further comprising a plurality of fins each standing on a second main surface extending parallel to the first main surface of the base portion.
  8.  請求項1乃至7のいずれかに記載のヒートシンクと、前記基板と、前記第1素子と、前記第2素子と、を備えるロボット制御装置であって、
     外気から遮断された第1空間と、外気に開放された第2空間とがその内部に設けられる筐体をさらに備え、
     前記第1空間内に前記基板、前記第1素子及び前記第2素子が配置され、前記第2空間内に前記ヒートシンクの少なくとも一部が配置されることを特徴とする、ロボット制御装置。
    A robot control device comprising the heat sink according to any one of claims 1 to 7, the substrate, the first element, and the second element,
    A first space that is shielded from outside air, and a second space that is open to outside air, further comprising a housing provided therein;
    The robot control device, wherein the substrate, the first element, and the second element are disposed in the first space, and at least a part of the heat sink is disposed in the second space.
  9.  前記第1素子が前記基板の主面上に取り付けられるパワーモジュールとして構成され、前記第2素子が前記パワーモジュールから出力される電流値を測定するために前記基板の主面上に実装される抵抗素子として構成される、請求項8に記載のロボット制御装置。 The first element is configured as a power module mounted on a main surface of the substrate, and the second element is mounted on the main surface of the substrate to measure a current value output from the power module. The robot control device according to claim 8, wherein the robot control device is configured as an element.
  10.  前記ヒートシンクに対して外気を送風する冷却ファンをさらに備える、請求項8又は9に記載のロボット制御装置。 The robot control device according to claim 8 or 9, further comprising a cooling fan that blows outside air to the heat sink.
PCT/JP2019/038944 2018-10-03 2019-10-02 Heat sink and robot control device provided with same WO2020071431A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980064038.6A CN112789722A (en) 2018-10-03 2019-10-02 Radiator and robot control device with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-188570 2018-10-03
JP2018188570A JP7421264B2 (en) 2018-10-03 2018-10-03 Heat sink and robot control device equipped with the same

Publications (1)

Publication Number Publication Date
WO2020071431A1 true WO2020071431A1 (en) 2020-04-09

Family

ID=70055565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038944 WO2020071431A1 (en) 2018-10-03 2019-10-02 Heat sink and robot control device provided with same

Country Status (3)

Country Link
JP (1) JP7421264B2 (en)
CN (1) CN112789722A (en)
WO (1) WO2020071431A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7168055B1 (en) * 2021-10-12 2022-11-09 富士電機株式会社 Power conversion device, connector fixing structure, and method for manufacturing power conversion device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224334A (en) * 1993-01-26 1994-08-12 Hitachi Ltd Multi-chip module
JPH1197591A (en) * 1997-09-17 1999-04-09 Toshiba Corp Electronic component
JP2012028402A (en) * 2010-07-20 2012-02-09 Denso Corp Power unit
JP2016063064A (en) * 2014-09-18 2016-04-25 シャープ株式会社 Heat dissipation structure, circuit board with heat dissipation structure, and television device
JP2017123700A (en) * 2016-01-04 2017-07-13 三菱電機株式会社 Power conversion device and air conditioner
WO2018155693A1 (en) * 2017-02-27 2018-08-30 川崎重工業株式会社 Robot controller

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479206B2 (en) * 1997-07-09 2003-12-15 北川工業株式会社 Heat conductive spacer
JP4015497B2 (en) 2002-07-30 2007-11-28 日本オプネクスト株式会社 Optical communication device
JP2004289063A (en) 2003-03-25 2004-10-14 Mitsubishi Electric Corp Heat dissipating sheet
JP4238799B2 (en) 2004-08-23 2009-03-18 株式会社デンソー Inverter control board and manufacturing method thereof
JP2008034474A (en) 2006-07-26 2008-02-14 Sharp Corp Heat transfer sheet and substrate device
JP2008305838A (en) 2007-06-05 2008-12-18 Renesas Technology Corp Semiconductor device and mounting structure thereof
JP2009238987A (en) 2008-03-27 2009-10-15 Daihen Corp Fitting structure for cooling fan
CN108028238B (en) * 2015-10-05 2021-03-02 三菱电机株式会社 Electronic control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224334A (en) * 1993-01-26 1994-08-12 Hitachi Ltd Multi-chip module
JPH1197591A (en) * 1997-09-17 1999-04-09 Toshiba Corp Electronic component
JP2012028402A (en) * 2010-07-20 2012-02-09 Denso Corp Power unit
JP2016063064A (en) * 2014-09-18 2016-04-25 シャープ株式会社 Heat dissipation structure, circuit board with heat dissipation structure, and television device
JP2017123700A (en) * 2016-01-04 2017-07-13 三菱電機株式会社 Power conversion device and air conditioner
WO2018155693A1 (en) * 2017-02-27 2018-08-30 川崎重工業株式会社 Robot controller

Also Published As

Publication number Publication date
JP7421264B2 (en) 2024-01-24
CN112789722A (en) 2021-05-11
JP2020057722A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
US7898806B2 (en) Motor controller
US6446708B1 (en) Heat dissipating device
US7957143B2 (en) Motor controller
US9795066B2 (en) Inverter
CN110071585B (en) Motor and heat dissipation device thereof
WO2020071431A1 (en) Heat sink and robot control device provided with same
JP3404907B2 (en) control panel
CN213692028U (en) Efficient radiator module for air-cooled module
JP6941005B2 (en) Electrical equipment
KR101482102B1 (en) Heat dissipation structure of a controller of an air conditioner
JP5260249B2 (en) Semiconductor equipment heatsink
WO2019228420A1 (en) Data processing device
JP6086033B2 (en) Inverter device
JP3840970B2 (en) heatsink
JP2005150454A (en) Cooling structure of electric power conversion system
JP2020057721A (en) Heat sink and robot control device including the same
JP4150647B2 (en) Electronic component cooling system
JP2013131520A (en) Heat dissipation structure of electronic apparatus and electronic apparatus
CN108630640B (en) Integrated radiator with temperature gradient
JP3880913B2 (en) control panel
TWI680629B (en) Motor and heat-dissipation device thereof
JP2021068844A (en) Semiconductor device
KR101996616B1 (en) Electronic device having a heat radiating apparatus
JP4142178B2 (en) Unit type cooling structure for electronic equipment
CN220693617U (en) Heat dissipation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868677

Country of ref document: EP

Kind code of ref document: A1