WO2020070892A1 - Air conditioner, method for controlling air conditioner, and program - Google Patents

Air conditioner, method for controlling air conditioner, and program

Info

Publication number
WO2020070892A1
WO2020070892A1 PCT/JP2018/037444 JP2018037444W WO2020070892A1 WO 2020070892 A1 WO2020070892 A1 WO 2020070892A1 JP 2018037444 W JP2018037444 W JP 2018037444W WO 2020070892 A1 WO2020070892 A1 WO 2020070892A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
indoor
indoor heat
air conditioner
control
Prior art date
Application number
PCT/JP2018/037444
Other languages
French (fr)
Japanese (ja)
Inventor
烈将 毛塚
孝 田口
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2019502815A priority Critical patent/JP6486586B1/en
Priority to PCT/JP2018/037444 priority patent/WO2020070892A1/en
Priority to ES201990035A priority patent/ES2752726R1/en
Priority to MYPI2019002200A priority patent/MY195097A/en
Priority to CN201880003390.4A priority patent/CN111356881B/en
Priority to TW108113726A priority patent/TWI689688B/en
Priority to FR1904811A priority patent/FR3086998B1/en
Publication of WO2020070892A1 publication Critical patent/WO2020070892A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/003Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/20Safety or protection arrangements; Arrangements for preventing malfunction for preventing development of microorganisms

Definitions

  • the present invention relates to an air conditioner, an air conditioner control method, and a program.
  • Patent Literature 1 states that “The air conditioner includes a refrigeration cycle having a heat exchanger that cools or heats surrounding air, and execution of a heating operation, a cooling operation, a dehumidification operation, and the like. And a controller 130 that controls the refrigeration cycle to perform a cleaning operation for cleaning the surface of the heat exchanger. "
  • Patent Document 1 does not specifically describe the details of driving of a fan such as an indoor unit in a cleaning operation. However, if the driving state of a fan such as an indoor unit is inappropriate, the heat exchanger may not be properly cleaned.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an air conditioner, a method of controlling an air conditioner, and a program that can appropriately clean a heat exchanger in a cleaning operation.
  • an air conditioner of the present invention has a refrigeration cycle including a compressor that compresses a refrigerant, an indoor heat exchanger that cools or heats air in an air conditioning room, and a surface of the indoor heat exchanger.
  • a control device for controlling the refrigeration cycle so as to perform a cleaning operation for cleaning the indoor heat exchanger the control device, when the control device performs the cleaning operation
  • the heat exchanger can be appropriately cleaned in the cleaning operation.
  • FIG. 1 is a system diagram of an air conditioner 100 according to a first embodiment of the present invention. It is a sectional side view of the indoor unit in a 1st embodiment. 5 is a flowchart of a cleaning operation processing routine according to the first embodiment. It is a figure which shows an example of a moisture intake amount table. It is a figure showing an example of the relation between room temperature and relative humidity estimation value in a 2nd embodiment.
  • FIG. 1 is a system diagram of an air conditioner 100 according to a first embodiment of the present invention.
  • the air conditioner 100 includes an outdoor unit 30, an indoor unit 60, and a control device 20 that controls these.
  • the indoor unit 60 sets an operation mode (cooling, heating, dehumidification, ventilation, etc.), an indoor air volume (rapid wind, strong wind, weak wind, etc.), a target indoor temperature, and the like according to a signal input from the remote controller 90.
  • the control device 20 includes hardware as a general computer, such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a RAM (Random Access Memory), and a ROM (Read Only Memory). , A control program executed by the CPU, various data, and the like.
  • the control device 20 controls each unit of the outdoor unit 30 and the indoor unit 60 based on the control program. The details will be described later.
  • the outdoor unit 30 includes a compressor 32, a four-way valve 34, and an outdoor heat exchanger 36.
  • the compressor 32 includes a motor 32a and has a function of compressing the refrigerant flowing through the four-way valve 34.
  • a suction side temperature sensor 41 for detecting the temperature of the refrigerant drawn into the compressor 32 and a suction side pressure sensor 45 for detecting the pressure of the refrigerant drawn into the compressor 32 are provided in the pipe a1.
  • a discharge-side temperature sensor 42 for detecting the temperature of the refrigerant discharged from the compressor 32 and a discharge-side pressure sensor 46 for detecting the pressure of the refrigerant discharged from the compressor 32 are provided in the pipe a2.
  • the compressor 32 is provided with a compressor temperature sensor 43 for detecting the temperature of the compressor 32.
  • the four-way valve 34 has a function of switching the direction of the refrigerant supplied to the indoor unit 60 depending on whether the indoor heat exchanger 64 functions as an evaporator or a condenser.
  • the indoor heat exchanger 64 functions as an evaporator, for example, during a cooling operation
  • the four-way valve 34 is switched to connect the pipes a2 and a3 and connect the pipes a1 and a6 along the path indicated by the solid line.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 32 is cooled by the outdoor heat exchanger 36.
  • the cooled refrigerant is supplied to the indoor unit 60 via the pipe a5.
  • the four-way valve 34 connects the pipes a2 and a6 and connects the pipes a1 and a3 along the path indicated by the broken line. Can be switched.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 32 is supplied to the indoor unit 60 via the pipes a2 and a6.
  • the outdoor fan 48 includes a motor 48 a and sends air to the outdoor heat exchanger 36.
  • the outdoor heat exchanger 36 is a heat exchanger that exchanges heat between the air sent from the outdoor fan 48 and the refrigerant, and is connected to the compressor 32 via the four-way valve 34.
  • the outdoor unit 30 has an outdoor heat exchanger inlet temperature sensor 51 (outside air temperature sensor) for detecting the temperature of the air flowing into the outdoor heat exchanger 36, and detects the temperature of the gas-side refrigerant of the outdoor heat exchanger 36.
  • An outdoor heat exchanger refrigerant gas temperature sensor 53 and an outdoor heat exchanger refrigerant liquid temperature sensor 55 that detects the temperature of the liquid-side refrigerant of the outdoor heat exchanger 36 are mounted.
  • the power supply unit 54 receives a three-phase AC voltage from the commercial power supply 22.
  • the power measurement unit 58 is connected to the power supply unit 54, and the power consumption of the air conditioner 100 is measured by this.
  • the DC voltage output from the power supply unit 54 is supplied to the motor control unit 56.
  • the motor control unit 56 includes an inverter (not shown), and supplies an AC voltage to the motor 32a of the compressor 32 and the motor 48a of the outdoor fan 48. Further, the motor control unit 56 controls the motors 32a and 48a without a sensor, and thereby detects the rotation speed of the motors 32a and 48a.
  • the indoor unit 60 includes a remote control communication unit 68 that performs bidirectional communication among the indoor expansion valve 62, the indoor heat exchanger 64, the indoor fan 66, the motor control unit 67, and the remote control 90 (operation unit).
  • the indoor fan 66 includes a motor 66a and sends air to the indoor heat exchanger 64.
  • the motor control section 67 includes an inverter (not shown) and supplies an AC voltage to the motor 66a. Further, the motor control section 67 controls the motor 66a without a sensor, and thereby detects the rotation speed of the motor 66a.
  • the indoor expansion valve 62 is inserted between the pipes a5 and a7, and has a function of adjusting the flow rate of the refrigerant flowing through the pipes a5 and a7 and depressurizing the refrigerant on the secondary side of the indoor expansion valve 62. doing.
  • the indoor heat exchanger 64 is a heat exchanger that exchanges heat between the indoor air sent from the indoor fan 66 and the refrigerant, and is connected to the indoor expansion valve 62 via a pipe a7.
  • the indoor unit 60 includes an indoor heat exchanger inlet air temperature sensor 70 (temperature sensor), an indoor heat exchanger exhaust air temperature sensor 72, an indoor heat exchanger inlet humidity sensor 74 (humidity sensor), and an indoor heat exchange.
  • a refrigerant gas temperature sensor 25 and an indoor heat exchanger refrigerant gas temperature sensor 26 are provided.
  • the indoor heat exchanger inlet air temperature sensor 70 detects the temperature of the air sucked by the indoor fan 66.
  • the indoor heat exchanger exhaust air temperature sensor 72 detects the temperature of the air exhausted from the indoor heat exchanger 64.
  • the indoor heat exchanger inlet humidity sensor 74 detects the humidity of the air sucked by the indoor fan 66. Further, the indoor heat exchanger refrigerant liquid temperature sensor 25 and the indoor heat exchanger refrigerant gas temperature sensor 26 are provided at a connection point between the indoor heat exchanger 64 and the pipe a6, and measure the temperature of the refrigerant flowing through the connection point. To detect.
  • the compressor 32, the four-way valve 34, the outdoor heat exchanger 36, the indoor expansion valve 62, the indoor heat exchanger 64, and the pipes a1 to a7 form a refrigeration cycle RC.
  • FIG. 2 is a side sectional view of the indoor unit 60.
  • the indoor unit 60 is a so-called “ceiling cassette type” that is buried in the ceiling 130 and exposes the lower surface to the air conditioning room.
  • the indoor heat exchanger 64 is formed in a plate shape bent in a substantially V-shape, and is installed at the center of the indoor unit 60.
  • the indoor fan 66 has fins arranged in a substantially cylindrical shape, and is disposed in front of the indoor heat exchanger 64. Below the indoor heat exchanger 64 and the indoor fan 66, a dew tray 140 for receiving condensed water is arranged below the indoor heat exchanger 64 and the indoor fan 66.
  • An inclined air filter 142 is provided behind the indoor heat exchanger 64.
  • the lower surface of the indoor unit 60 is covered with a decorative plate 143.
  • an air inlet 144 formed by cutting a slit in the decorative plate 143 is formed below the air filter 142.
  • the indoor heat exchanger inlet air temperature sensor 70 is provided between the indoor heat exchanger 64 and the air filter 142.
  • An air blowing passage 146 is formed in front of the indoor fan 66.
  • the left and right wind direction plates 148 are provided in the middle of the air blowing passage 146, and control the direction of the airflow in the left and right direction (perpendicular to the paper surface).
  • the vertical wind direction plate 150 is provided at the outlet of the air blowing passage 146, rotates around the fulcrum 150a, and controls the direction of the air flow in the vertical direction.
  • the left and right wind direction plates 148 and the upper and lower wind direction plates 150 are rotationally driven by the control device 20 (see FIG. 1).
  • the vertical wind direction plate 150 shown by a solid line in FIG. 2 indicates a position when the air conditioner is in a fully opened state.
  • the vertical wind direction plate 150 is rotated to the fully closed position 152 indicated by a dashed line. Further, when performing a cleaning operation described later, the vertical wind direction plate 150 is rotated to a position 156 indicated by a dashed line, and thereafter, is rotated to a cleaning operation position 154. And, as the opening degree of the vertical wind direction plate 150 increases, the pipe resistance of the air blowing passage 146 decreases. However, even when the vertical wind direction plate 150 is closed at the fully closed position 152, a gap FS is formed between the vertical wind direction plate 150 and the decorative plate 143, and there is a slight gap through the gap FS. The air flows.
  • the “cleaning operation” is executed automatically or according to a user's instruction.
  • the “cleaning operation” is an operation in which the surface of the indoor heat exchanger 64 is frosted or dewed and the surface of the indoor heat exchanger 64 is washed with the frosted or dewed water.
  • the case where the cleaning operation is automatically performed is, for example, a case where the cleaning operation is set to be periodically performed at predetermined time intervals.
  • the cleaning operation is classified into a “freezing cleaning operation” and a “condensation cleaning operation”.
  • the control device 20 switches the four-way valve 34 in the direction shown by the solid line so that the indoor heat exchanger 64 becomes an evaporator.
  • the control device 20 controls the air conditioner such as the rotation speed of the compressor 32, the opening degree of the indoor expansion valve 62, and the rotation speed of the indoor fan 66 so that the surface temperature of the indoor heat exchanger 64 is below freezing.
  • the state of each part of 100 is set. If this state is continued, frost will form on the surface of the indoor heat exchanger 64.
  • frost on the surface of the indoor heat exchanger 64 further grows.
  • the rotation speed of the indoor fan 66 in the freeze washing operation will be described.
  • the user of the air conditioner 100 can set the indoor air volume (rapid wind, strong wind, weak wind, etc.) by operating the remote controller 90.
  • the minimum air volume that can be set by the user operating the remote controller 90 is determined, and the user cannot set an air volume lower than this minimum air volume.
  • the rotation speed at the minimum air flow that can be specified by the user is called “user-specified minimum rotation speed”.
  • the control device 20 designates a predetermined “rotation speed during frost” as the rotation speed of the indoor fan 66.
  • the rotation speed during frost formation is a rotation speed lower than the minimum rotation speed specified by the user. The reason why such a low frosting rotation speed is applied is to suppress the cool air or the like leaking into the air-conditioned room when performing the cleaning operation, so that the user does not feel uncomfortable.
  • the controller 20 heats the indoor heat exchanger 64 by switching the four-way valve 34 (see FIG. 1) in the direction shown by the broken line so that the indoor heat exchanger 64 becomes a condenser. Then, the frost formed on the indoor heat exchanger 64 melts, and the surface of the indoor heat exchanger 64 is washed away. After that, the control device 20 stops the refrigeration cycle RC and continues to drive the indoor fan 66 for a predetermined time. Thereby, the surface of the indoor heat exchanger 64 dries. Through the above steps, the freeze washing operation is completed.
  • control device 20 switches the four-way valve 34 in the direction shown by the solid line so that the indoor heat exchanger 64 becomes an evaporator.
  • control device 20 sets the state of each part of air conditioner 100 such that the surface temperature of indoor heat exchanger 64 is lower than the dew point temperature and higher than zero degrees.
  • the control device 20 switches the four-way valve 34 in the direction shown by the broken line so that the indoor heat exchanger 64 becomes a condenser, heats the indoor heat exchanger 64, and continues to drive the indoor fan 66. Thereby, the surface of the indoor heat exchanger 64 dries.
  • FIG. 3 is a flowchart of a cleaning operation processing routine according to the present embodiment.
  • control device 20 performs various data collection. That is, while the refrigeration cycle RC is stopped, the indoor fan 66 is driven, air in the air conditioning room is taken into the indoor unit 60, and various data such as detection results of various sensors shown in FIG. 1 are collected.
  • the detection result of the indoor heat exchanger inlet air temperature sensor 70 is called room temperature T
  • the detection result of the indoor heat exchanger inlet humidity sensor 74 is called relative humidity H
  • the outdoor heat exchanger inlet The detection result of the temperature sensor 51 is called an outside air temperature TD.
  • the vertical wind direction plate 150 (see FIG. 2) is rotated to the position 156.
  • the control device 20 selects an operation type based on the collected data.
  • the selected operation type is “freeze washing operation”, “condensation washing operation”, or “operation stop”. If the freeze washing operation is possible, it is preferable to execute the freeze washing operation. However, if the relative humidity in the air conditioning room is too low, a sufficient amount of frost does not form on the indoor heat exchanger 64, and a sufficient cleaning effect cannot be obtained. Conversely, if the relative humidity H is too high, dew condensation may occur at locations other than the indoor heat exchanger 64 when performing the freeze washing operation.
  • a drain pipe, a drain pump, etc. (not shown) for discharging dew water are attached to the dew tray 140 (see FIG. 2) of the indoor unit 60. If there is a location where the temperature of the condensed water becomes 0 ° C. or lower, the drain pipe or the like may be clogged at that location. Therefore, when the room temperature T or the outside temperature TD is around 0 ° C., it is preferable to stop the cleaning operation. If the room temperature T or the outside temperature TD is high, there is a possibility that the cooling capacity cannot be secured to such an extent that the indoor heat exchanger 64 can be sufficiently frosted.
  • step S102 the control device 20 selects one of the "freezing washing operation", the "condensation washing operation” or the “operation stop” based on the room temperature T, the outside air temperature TD, and the relative humidity H. Select the operation type.
  • step S102 If “stop operation” is selected in step S102, the process proceeds to step S106, and an operation stop process is executed. Here, the indoor fan 66 is stopped, and the processing of this routine ends. If “condensation cleaning operation” is selected in step S102, the process proceeds to step S104, and the condensation cleaning operation is executed. Here, the above-described condensation cleaning operation is performed, and the processing of this routine ends.
  • step S102 If “freeze-washing operation” is selected in step S102, the process proceeds to step S110.
  • the process branches based on the range of the relative humidity H. More specifically, the process is branched based on a comparison result between the relative humidity H and the constants LH and HH.
  • the constant LH is, for example, about “40%”
  • the constant HH is, for example, about “60%”.
  • step S110 if the relative humidity H is in the range of “H ⁇ LH”, the process proceeds to step S130, and “freezing control F1” is executed. If the relative humidity H is in the range of “LH ⁇ H ⁇ HH”, the process proceeds to step S132, and “freezing control F2” is executed. If the relative humidity H is in the range of “HH ⁇ H”, the process proceeds to step S134, and “freezing control F3” is executed.
  • step S138 decompression control is executed. That is, the control device 20 heats the indoor heat exchanger 64 by switching the four-way valve 34 (see FIG. 1) in the direction shown by the broken line so that the indoor heat exchanger 64 becomes a condenser.
  • step S140 drying control is executed.
  • the control device 20 stops the refrigeration cycle RC and keeps driving the indoor fan 66 for a predetermined time. Thereby, the surface of the indoor heat exchanger 64 dries.
  • step S142 an operation stop process is executed. Here, the indoor fan 66 is stopped. Thus, the processing of this routine ends.
  • FIG. 4 is a diagram illustrating an example of the moisture intake amount table. As shown in the drawing, the humidity intake amount PH is uniquely determined with respect to the relative humidity H. It should be noted that the moisture intake table actually stores three points of moisture intake PH at the relative humidities LH, MH, and HH shown in the figure. Then, the control device 20 calculates the moisture intake amounts PH other than these three points by linear interpolation.
  • the moisture intake amount PH is a predetermined value PH1.
  • the moisture intake amount PH is a predetermined value PH3.
  • the moisture intake amount PH becomes a monotonically decreasing function that becomes smaller as the relative humidity H increases. Further, as described above, when the relative humidity constant LH is 40% and the constant HH is 60%, the predetermined value PH1 is 1.5 to 3 times the predetermined value PH3.
  • control device 20 determines the driving conditions of indoor fan 66 so as to realize the moisture intake amount PH obtained from the moisture intake amount table (FIG. 4). Then, the control device 20 drives the indoor fan 66 according to the determined driving conditions.
  • the saturated water vapor amount A is uniquely determined when the room temperature T is determined. Assuming that the fluctuation of the room temperature T can be ignored during the freezing control, the saturated steam amount A can be considered to be a constant.
  • the rotation speed of the indoor fan 66 in the freezing control that is, the above-described rotation speed at the time of frost formation is constant.
  • the position of the vertical wind direction plate 150 is the cleaning operation position 154 shown in FIG.
  • the air volume B can also be considered to be a constant.
  • determining the driving condition of the indoor fan 66 is equivalent to obtaining the air blowing time C proportional to the moisture intake amount PH. Therefore, if the predetermined value PH1 is 1.5 to 3 times the predetermined value PH3, the blowing time C in the freezing control F1 is 1.5 to 3 times the blowing time C in the freezing control F3.
  • the control device 20 switches the four-way valve 34 in the direction shown by the solid line so that the indoor heat exchanger 64 becomes an evaporator. Then, the control device 20 rotates the vertical wind direction plate 150 to the cleaning operation position 154 (see FIG. 2), and controls the rotation speed of the compressor 32 and the indoor temperature so that the surface temperature of the indoor heat exchanger 64 is below freezing. The degree of opening of the expansion valve 62 is set. Next, the control device 20 drives the indoor fan 66 at the frosting rotation speed for a time corresponding to the blowing time C previously obtained. Thereby, frost forms on the indoor heat exchanger 64. When the blowing time C has elapsed, the control device 20 stops the indoor fan 66.
  • the execution time from the start to the end of steps S130, S132, and S134 is the same, and the execution time is referred to as “freezing control time D”.
  • the freezing control time D is, for example, 20 minutes.
  • the blowing time C is, for example, about 7 minutes in the freezing control F1, and is, for example, about 3 minutes in the freezing control F3.
  • the time for stopping the indoor fan 66 and growing the frost is equal to “DC”, and is about 13 to 17 minutes in the example described above.
  • the blowing time C is equal to or less than half of the freezing control time D.
  • the frost formed on the indoor heat exchanger 64 due to the moisture inside the indoor unit 60 can be sufficiently grown in a non-blast state.
  • the period during which the indoor fan 66 is driven is concentrated in the first half of the freeze control time D. This allows operation in the first half with an emphasis on moisture uptake and in the second half with emphasis on frost growth. More specifically, control device 20 stops indoor fan 66 during the latter half of freeze control time D. Thereby, in the latter half period, the growth of frost can be further promoted.
  • the control device 20 stops the indoor fan 66, the frost formed on the indoor heat exchanger 64 cannot be sufficiently grown. Therefore, the rotation speed of the outdoor fan 48 when the indoor fan 66 is stopped may be higher than the rotation speed of the outdoor fan 48 when the indoor fan 66 is being driven. In particular, when the freezing and cleaning operation is performed when the outside air temperature TD is equal to or lower than the predetermined value, by controlling the outdoor fan 48 in this manner, the amount of frost formed on the indoor heat exchanger 64 can be increased.
  • the control device (20) when performing the cleaning operation, causes the indoor heat exchanger (64) to function as an evaporator and adjusts the surface temperature of the indoor heat exchanger (64).
  • a function of stopping the indoor fan (66) (S130, S132, S134). Further, the predetermined period is not more than half of the execution period of the freezing control.
  • the indoor fan (64) is attached to the indoor heat exchanger (64).
  • the frosted frost can be sufficiently grown, and the indoor heat exchanger (64) can be appropriately cleaned.
  • control device (20) is configured to control the driving time of the indoor fan (66) in the latter half of the execution period of the freezing control, as compared with the driving time of the indoor fan (66) in the first half of the execution period of the freezing control.
  • Has the function of shortening Thereby, in the first half, it is possible to operate with an emphasis on the intake of moisture and in the second half, with an emphasis on the growth of frost, so that the indoor heat exchanger (64) can be more appropriately cleaned.
  • the control device (20) stops the indoor fan (66) in the latter half of the execution period of the freezing control. Thereby, in the latter half period, the growth of frost can be further promoted, and the indoor heat exchanger (64) can be more appropriately cleaned.
  • the air conditioner (100) further includes an operation unit (90) for specifying an air volume by a user operation, and the rotation speed of the indoor fan (66) in the cleaning operation is specified by an operation on the operation unit (90). It is lower than the rotation speed at the lowest possible air flow.
  • the air conditioner (100) further includes a humidity sensor (74) for detecting the humidity (H) of the air flowing from the air conditioning room, and the control device (20) determines that the higher the detected humidity, the more the indoor fan ( 66) The drive time is shortened. As described above, as the humidity becomes higher, the driving time of the indoor fan (66) is reduced, so that dew condensation or the like on an undesired portion in the air conditioner (100) can be suppressed.
  • the air conditioner (100) further includes an outdoor fan (48), and the control device (20) increases the rotation speed of the outdoor fan during a period other than the predetermined period during the freezing control. Higher than the speed. Thereby, the amount of frost that forms frost on the indoor heat exchanger (64) can be increased.
  • the air conditioner (100) further includes an outdoor fan (48) and an outside air temperature sensor (51) for detecting an outside air temperature (TD).
  • TD outside air temperature
  • the rotation speed of the outdoor fan during a period other than the predetermined period is made higher than the rotation speed of the outdoor fan during the predetermined period.
  • the amount of frost which forms on the indoor heat exchanger (64) can be further increased.
  • step S100 the control device 20 obtains a value “estimated relative humidity Hest” based on the room temperature T in addition to the processing of the first embodiment. Then, in the processing after step S102, the relative humidity estimated value Hest is applied instead of the relative humidity H in the first embodiment.
  • FIG. 5 is a diagram illustrating an example of the relationship between the room temperature T and the estimated relative humidity Hest.
  • the relative humidity estimated value Hest is a function that monotonically increases as the room temperature T increases.
  • the reason that the estimated relative humidity value Hest can be used instead of the relative humidity H is based on the fact that the temperature and the relative humidity have a correlation corresponding to the area where the air conditioner 100 is installed. For example, assume that the air conditioner 100 is set to Japan. Considering Japan's climate, temperatures tend to be low in winter and high in summer.
  • the temperature sensor (70) that detects the temperature of the air flowing from the air-conditioning room is further provided, and the control device (20) increases the indoor temperature as the detected temperature increases.
  • the drive time of the fan (66) is shortened. Accordingly, the indoor heat exchanger inlet humidity sensor 74 shown in FIGS. 1 and 2 can be omitted, and the cost of the air conditioner can be reduced.
  • the present invention is not limited to the embodiments described above, and various modifications are possible.
  • the above-described embodiments are exemplarily illustrated for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.
  • a part of the configuration of each embodiment can be deleted, or another configuration can be added or replaced.
  • the control lines and information lines shown in the figure indicate those which are considered necessary for the description, and do not necessarily indicate all the control lines and information lines necessary for the product. In fact, it can be considered that almost all components are connected to each other. Possible modifications to the above embodiment are, for example, as follows.
  • processing illustrated in FIG. 3 has been described as software processing using a program in the above embodiment, part or all of the processing is performed by an ASIC (Application Specific Integrated Circuit) or an FPGA. (Field ⁇ Programmable ⁇ Gate ⁇ Array) may be replaced by hardware-based processing.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field ⁇ Programmable ⁇ Gate ⁇ Array
  • the present invention is suitable for use in a ceiling cassette type indoor unit in which a difference between the environment of the air-conditioning room and the environment in the indoor unit is likely to occur, but is not limited by the type of the indoor unit.
  • the present invention may be applied to a wall-mounted indoor unit or a window-type air conditioner in which an indoor unit and an outdoor unit are integrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention enables appropriate cleaning of a heat exchanger of an air conditioner during a cleaning operation. This air conditioner is provided with: a refrigeration cycle having a compressor that compresses a refrigerant and an indoor heat exchanger; a control device that controls the refrigeration cycle so as to carry out a cleaning operation for cleaning the surface of the indoor heat exchanger; and an indoor fan, wherein the control device has functions (S130, S132, S134) for carrying out freezing control so as to cause the indoor heat exchanger to function as an evaporator and reduce the surface temperature of the indoor heat exchanger below freezing point when the cleaning operation is executed, and functions (S130, S132, S134) for, when the freezing control is being carried out, driving the indoor fan in a prescribed period shorter than the execution period of the freezing control and stopping the indoor fan other than the prescribed period.

Description

空気調和機、空気調和機の制御方法およびプログラムAir conditioner, control method and program for air conditioner
 本発明は、空気調和機、空気調和機の制御方法およびプログラムに関する。 The present invention relates to an air conditioner, an air conditioner control method, and a program.
 空気調和機の洗浄運転に関して、下記特許文献1には、「空気調和機は、周囲の空気を冷却または加熱する熱交換器を有する冷凍サイクルと、暖房運転、冷房運転、除湿運転等の実行が可能であるとともに、熱交換器の表面を洗浄する洗浄運転を実行するように冷凍サイクルを制御する制御装置130と、を備える。」と記載されている(要約参照)。 Regarding the cleaning operation of the air conditioner, Patent Literature 1 below states that “The air conditioner includes a refrigeration cycle having a heat exchanger that cools or heats surrounding air, and execution of a heating operation, a cooling operation, a dehumidification operation, and the like. And a controller 130 that controls the refrigeration cycle to perform a cleaning operation for cleaning the surface of the heat exchanger. "
特開第6296633号公報JP-A-6296633
 上記特許文献1には、洗浄運転における室内機等のファンの駆動内容については特に詳述されていない。しかし、室内機等のファンの駆動状態が不適切であれば、熱交換器を適切に洗浄できないことがある。
 この発明は上述した事情に鑑みてなされたものであり、洗浄運転において熱交換器を適切に洗浄できる空気調和機、空気調和機の制御方法およびプログラムを提供することを目的とする。
Patent Document 1 does not specifically describe the details of driving of a fan such as an indoor unit in a cleaning operation. However, if the driving state of a fan such as an indoor unit is inappropriate, the heat exchanger may not be properly cleaned.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an air conditioner, a method of controlling an air conditioner, and a program that can appropriately clean a heat exchanger in a cleaning operation.
 上記課題を解決するため本発明の空気調和機は、冷媒を圧縮する圧縮機と、空調室の空気を冷却または加熱する室内熱交換器と、を有する冷凍サイクルと、前記室内熱交換器の表面を洗浄する洗浄運転を実行するように前記冷凍サイクルを制御する制御装置と、前記室内熱交換器に対して送風する室内ファンと、を備え、前記制御装置は、前記洗浄運転を実行する際に、前記室内熱交換器を蒸発器として機能させ前記室内熱交換器の表面温度を氷点下にする凍結制御を実行する機能と、前記凍結制御の実行中において、前記凍結制御の実行期間の半分以下の時間だけ前記室内ファンを駆動する機能と、を有することを特徴とする。 In order to solve the above problems, an air conditioner of the present invention has a refrigeration cycle including a compressor that compresses a refrigerant, an indoor heat exchanger that cools or heats air in an air conditioning room, and a surface of the indoor heat exchanger. A control device for controlling the refrigeration cycle so as to perform a cleaning operation for cleaning the indoor heat exchanger, the control device, when the control device performs the cleaning operation A function of performing the freezing control to make the indoor heat exchanger function as an evaporator and lower the surface temperature of the indoor heat exchanger to below freezing; and, during the execution of the freezing control, not more than half of the execution period of the freezing control. And a function of driving the indoor fan only for a time.
 本発明によれば、洗浄運転において熱交換器を適切に洗浄できる。 According to the present invention, the heat exchanger can be appropriately cleaned in the cleaning operation.
本発明の第1実施形態による空気調和機100の系統図である。FIG. 1 is a system diagram of an air conditioner 100 according to a first embodiment of the present invention. 第1実施形態における室内機の側断面図である。It is a sectional side view of the indoor unit in a 1st embodiment. 第1実施形態における洗浄運転処理ルーチンのフローチャートである。5 is a flowchart of a cleaning operation processing routine according to the first embodiment. 湿気取込量テーブルの一例を示す図である。It is a figure which shows an example of a moisture intake amount table. 第2実施形態における室温と相対湿度推定値との関係の一例を示す図である。It is a figure showing an example of the relation between room temperature and relative humidity estimation value in a 2nd embodiment.
[第1実施形態]
〈空気調和機の構成〉
 図1は、本発明の第1実施形態による空気調和機100の系統図である。
 空気調和機100は、室外機30と、室内機60と、これらを制御する制御装置20と、を備えている。室内機60は、リモコン90から入力される信号に応じて運転モード(冷房,暖房,除湿、換気等)、室内風量(急風、強風、弱風等)、目標室内温度等を設定する。
[First Embodiment]
<Configuration of air conditioner>
FIG. 1 is a system diagram of an air conditioner 100 according to a first embodiment of the present invention.
The air conditioner 100 includes an outdoor unit 30, an indoor unit 60, and a control device 20 that controls these. The indoor unit 60 sets an operation mode (cooling, heating, dehumidification, ventilation, etc.), an indoor air volume (rapid wind, strong wind, weak wind, etc.), a target indoor temperature, and the like according to a signal input from the remote controller 90.
(制御装置20)
 制御装置20は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、RAM(Random Access Memory)、ROM(Read Only Memory)等、一般的なコンピュータとしてのハードウエアを備えており、ROMには、CPUによって実行される制御プログラムおよび各種データ等が格納されている。制御装置20は、制御プログラムに基づいて、室外機30および室内機60の各部を制御する。なお、その詳細については後述する。
(Control device 20)
The control device 20 includes hardware as a general computer, such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a RAM (Random Access Memory), and a ROM (Read Only Memory). , A control program executed by the CPU, various data, and the like. The control device 20 controls each unit of the outdoor unit 30 and the indoor unit 60 based on the control program. The details will be described later.
(室外機30)
 室外機30は、圧縮機32と、四方弁34と、室外熱交換器36と、を備えている。圧縮機32は、モータ32aを備えており、四方弁34を介して流入する冷媒を圧縮する機能を有している。配管a1には、圧縮機32に吸入される冷媒の温度を検出する吸入側温度センサ41と、圧縮機32に吸入される冷媒の圧力を検出する吸入側圧力センサ45と、が設置されている。また、配管a2には、圧縮機32から吐出される冷媒の温度を検出する吐出側温度センサ42と、圧縮機32から吐出される冷媒の圧力を検出する吐出側圧力センサ46と、が設置されている。また、圧縮機32には、圧縮機32の温度を検出する圧縮機温度センサ43が装着されている。
(Outdoor unit 30)
The outdoor unit 30 includes a compressor 32, a four-way valve 34, and an outdoor heat exchanger 36. The compressor 32 includes a motor 32a and has a function of compressing the refrigerant flowing through the four-way valve 34. A suction side temperature sensor 41 for detecting the temperature of the refrigerant drawn into the compressor 32 and a suction side pressure sensor 45 for detecting the pressure of the refrigerant drawn into the compressor 32 are provided in the pipe a1. . Further, a discharge-side temperature sensor 42 for detecting the temperature of the refrigerant discharged from the compressor 32 and a discharge-side pressure sensor 46 for detecting the pressure of the refrigerant discharged from the compressor 32 are provided in the pipe a2. ing. Further, the compressor 32 is provided with a compressor temperature sensor 43 for detecting the temperature of the compressor 32.
 四方弁34は、室内熱交換器64を蒸発器として機能させるか、凝縮器として機能させるかに応じて、室内機60に供給する冷媒の向きを切り替える機能を有している。室内熱交換器64を蒸発器として機能させる場合、例えば冷房運転時には、四方弁34は、実線の経路に沿って、配管a2,a3を接続するとともに配管a1,a6を接続するように切り替えられる。この場合、圧縮機32から吐出された高温高圧の冷媒は、室外熱交換器36によって冷却される。冷却された冷媒は、配管a5を介して、室内機60に供給される。 The four-way valve 34 has a function of switching the direction of the refrigerant supplied to the indoor unit 60 depending on whether the indoor heat exchanger 64 functions as an evaporator or a condenser. When the indoor heat exchanger 64 functions as an evaporator, for example, during a cooling operation, the four-way valve 34 is switched to connect the pipes a2 and a3 and connect the pipes a1 and a6 along the path indicated by the solid line. In this case, the high-temperature and high-pressure refrigerant discharged from the compressor 32 is cooled by the outdoor heat exchanger 36. The cooled refrigerant is supplied to the indoor unit 60 via the pipe a5.
 また、室内熱交換器64を凝縮器として機能させる場合、例えば暖房運転時には、四方弁34は、破線の経路に沿って、配管a2,a6を接続するとともに、配管a1,a3を接続するように切り替えられる。この場合、圧縮機32から吐出された高温高圧の冷媒は、配管a2,a6を介して、室内機60に供給される。室外ファン48は、モータ48aを備え、室外熱交換器36に対して送風する。 When the indoor heat exchanger 64 functions as a condenser, for example, during a heating operation, the four-way valve 34 connects the pipes a2 and a6 and connects the pipes a1 and a3 along the path indicated by the broken line. Can be switched. In this case, the high-temperature and high-pressure refrigerant discharged from the compressor 32 is supplied to the indoor unit 60 via the pipes a2 and a6. The outdoor fan 48 includes a motor 48 a and sends air to the outdoor heat exchanger 36.
 室外熱交換器36は、室外ファン48から送られてくる空気と、冷媒との熱交換を行う熱交換器であり、四方弁34を介して圧縮機32に接続されている。また、室外機30には、室外熱交換器36に流入する空気の温度を検出する室外熱交換器入口温度センサ51(外気温センサ)と、室外熱交換器36のガス側冷媒の温度を検出する室外熱交換器冷媒ガス温度センサ53と、室外熱交換器36の液側冷媒の温度を検出する室外熱交換器冷媒液温度センサ55と、が装着されている。 The outdoor heat exchanger 36 is a heat exchanger that exchanges heat between the air sent from the outdoor fan 48 and the refrigerant, and is connected to the compressor 32 via the four-way valve 34. The outdoor unit 30 has an outdoor heat exchanger inlet temperature sensor 51 (outside air temperature sensor) for detecting the temperature of the air flowing into the outdoor heat exchanger 36, and detects the temperature of the gas-side refrigerant of the outdoor heat exchanger 36. An outdoor heat exchanger refrigerant gas temperature sensor 53 and an outdoor heat exchanger refrigerant liquid temperature sensor 55 that detects the temperature of the liquid-side refrigerant of the outdoor heat exchanger 36 are mounted.
 電源部54は、商用電源22から三相交流電圧を受電する。電源部54には、電力測定部58が接続されており、これによって空気調和機100の消費電力が計測される。電源部54が出力する直流電圧は、モータ制御部56に供給される。モータ制御部56はインバータを備えており(図示せず)、圧縮機32のモータ32aおよび室外ファン48のモータ48aに交流電圧を供給する。また、モータ制御部56は、モータ32a,48aをセンサレスで制御し、これによってモータ32a,48aの回転速度を検出する。 (4) The power supply unit 54 receives a three-phase AC voltage from the commercial power supply 22. The power measurement unit 58 is connected to the power supply unit 54, and the power consumption of the air conditioner 100 is measured by this. The DC voltage output from the power supply unit 54 is supplied to the motor control unit 56. The motor control unit 56 includes an inverter (not shown), and supplies an AC voltage to the motor 32a of the compressor 32 and the motor 48a of the outdoor fan 48. Further, the motor control unit 56 controls the motors 32a and 48a without a sensor, and thereby detects the rotation speed of the motors 32a and 48a.
(室内機60)
 室内機60は、室内用膨張弁62と、室内熱交換器64と、室内ファン66と、モータ制御部67と、リモコン90(操作部)との間で双方向の通信を行うリモコン通信部68と、を備えている。室内ファン66は、モータ66aを備え、室内熱交換器64に対して送風する。モータ制御部67はインバータを備えており(図示せず)、モータ66aに交流電圧を供給する。また、モータ制御部67は、モータ66aをセンサレスで制御し、これによってモータ66aの回転速度を検出する。
(Indoor unit 60)
The indoor unit 60 includes a remote control communication unit 68 that performs bidirectional communication among the indoor expansion valve 62, the indoor heat exchanger 64, the indoor fan 66, the motor control unit 67, and the remote control 90 (operation unit). And The indoor fan 66 includes a motor 66a and sends air to the indoor heat exchanger 64. The motor control section 67 includes an inverter (not shown) and supplies an AC voltage to the motor 66a. Further, the motor control section 67 controls the motor 66a without a sensor, and thereby detects the rotation speed of the motor 66a.
 室内用膨張弁62は、配管a5,a7の間に挿入され、配管a5,a7を通流する冷媒の流量を調整するとともに、室内用膨張弁62の二次側の冷媒を減圧する機能を有している。室内熱交換器64は、室内ファン66から送られてくる室内空気と冷媒との熱交換を行う熱交換器であり、配管a7を介して室内用膨張弁62に接続されている。 The indoor expansion valve 62 is inserted between the pipes a5 and a7, and has a function of adjusting the flow rate of the refrigerant flowing through the pipes a5 and a7 and depressurizing the refrigerant on the secondary side of the indoor expansion valve 62. doing. The indoor heat exchanger 64 is a heat exchanger that exchanges heat between the indoor air sent from the indoor fan 66 and the refrigerant, and is connected to the indoor expansion valve 62 via a pipe a7.
 また、室内機60は、室内熱交換器入口空気温度センサ70(温度センサ)と、室内熱交換器排出空気温度センサ72と、室内熱交換器入口湿度センサ74(湿度センサ)と、室内熱交換器冷媒液温度センサ25と、室内熱交換器冷媒ガス温度センサ26と、を備えている。ここで、室内熱交換器入口空気温度センサ70は、室内ファン66が吸い込む空気の温度を検出する。また、室内熱交換器排出空気温度センサ72は、室内熱交換器64から排出される空気の温度を検出する。 The indoor unit 60 includes an indoor heat exchanger inlet air temperature sensor 70 (temperature sensor), an indoor heat exchanger exhaust air temperature sensor 72, an indoor heat exchanger inlet humidity sensor 74 (humidity sensor), and an indoor heat exchange. A refrigerant gas temperature sensor 25 and an indoor heat exchanger refrigerant gas temperature sensor 26 are provided. Here, the indoor heat exchanger inlet air temperature sensor 70 detects the temperature of the air sucked by the indoor fan 66. Further, the indoor heat exchanger exhaust air temperature sensor 72 detects the temperature of the air exhausted from the indoor heat exchanger 64.
 また、室内熱交換器入口湿度センサ74は、室内ファン66が吸い込む空気の湿度を検出する。また、室内熱交換器冷媒液温度センサ25、室内熱交換器冷媒ガス温度センサ26は、室内熱交換器64と、配管a6との接続箇所に設けられ、その箇所を通流する冷媒の温度を検出する。このように、圧縮機32、四方弁34、室外熱交換器36、室内用膨張弁62、室内熱交換器64および配管a1~a7は、冷凍サイクルRCを形成している。 (4) The indoor heat exchanger inlet humidity sensor 74 detects the humidity of the air sucked by the indoor fan 66. Further, the indoor heat exchanger refrigerant liquid temperature sensor 25 and the indoor heat exchanger refrigerant gas temperature sensor 26 are provided at a connection point between the indoor heat exchanger 64 and the pipe a6, and measure the temperature of the refrigerant flowing through the connection point. To detect. Thus, the compressor 32, the four-way valve 34, the outdoor heat exchanger 36, the indoor expansion valve 62, the indoor heat exchanger 64, and the pipes a1 to a7 form a refrigeration cycle RC.
 図2は、室内機60の側断面図である。室内機60は、天井130に埋設され、下面を空調室に露出させる「天井カセット型」と呼ばれている物である。
 図2において、室内熱交換器64は、略V字状に折れ曲がった板状に形成され、室内機60の中央部に設置される。室内ファン66は、略円筒状にフィンを配列したものであり、室内熱交換器64の前方に配置されている。室内熱交換器64および室内ファン66の下方には、結露した水を受ける露受皿140が配置されている。
FIG. 2 is a side sectional view of the indoor unit 60. The indoor unit 60 is a so-called “ceiling cassette type” that is buried in the ceiling 130 and exposes the lower surface to the air conditioning room.
In FIG. 2, the indoor heat exchanger 64 is formed in a plate shape bent in a substantially V-shape, and is installed at the center of the indoor unit 60. The indoor fan 66 has fins arranged in a substantially cylindrical shape, and is disposed in front of the indoor heat exchanger 64. Below the indoor heat exchanger 64 and the indoor fan 66, a dew tray 140 for receiving condensed water is arranged.
 室内熱交換器64の後方には、傾斜したエアフィルタ142が設けられている。また、室内機60の下面は化粧板143で覆われている。そして、エアフィルタ142の下方には、化粧板143にスリットを刻んで成る空気吸込み口144が形成されている。室内熱交換器入口空気温度センサ70は、室内熱交換器64とエアフィルタ142との間に設けられている。 傾斜 An inclined air filter 142 is provided behind the indoor heat exchanger 64. The lower surface of the indoor unit 60 is covered with a decorative plate 143. Below the air filter 142, an air inlet 144 formed by cutting a slit in the decorative plate 143 is formed. The indoor heat exchanger inlet air temperature sensor 70 is provided between the indoor heat exchanger 64 and the air filter 142.
 室内ファン66の前方には、空気吹出し通路146が形成されている。左右風向板148は、空気吹出し通路146の途中に設けられ、左右方向(紙面に対する垂直方向)に気流の方向を制御する。上下風向板150は、空気吹出し通路146の出口部分に設けられ、支点150aを中心として回動し、上下方向に気流の方向を制御する。左右風向板148および上下風向板150は、制御装置20(図1参照)によって回動駆動される。図2に実線で示す上下風向板150は、全開状態であるときの位置を示している。 空 気 An air blowing passage 146 is formed in front of the indoor fan 66. The left and right wind direction plates 148 are provided in the middle of the air blowing passage 146, and control the direction of the airflow in the left and right direction (perpendicular to the paper surface). The vertical wind direction plate 150 is provided at the outlet of the air blowing passage 146, rotates around the fulcrum 150a, and controls the direction of the air flow in the vertical direction. The left and right wind direction plates 148 and the upper and lower wind direction plates 150 are rotationally driven by the control device 20 (see FIG. 1). The vertical wind direction plate 150 shown by a solid line in FIG. 2 indicates a position when the air conditioner is in a fully opened state.
 空気調和機100が停止中であるとき、上下風向板150は、一点鎖線で示す全閉位置152に回動される。また、後述する洗浄運転を実行する際には、上下風向板150は、一点鎖線で示す位置156に回動され、その後に洗浄運転位置154に回動される。そして、上下風向板150の開度が大きくなるほど、空気吹出し通路146の管路抵抗が小さくなる。但し、上下風向板150が全閉位置152に閉まっている場合であっても、上下風向板150と、化粧板143との間には隙間FSが形成されており、隙間FSを介して若干の空気が通流するようになっている。 (4) When the air conditioner 100 is stopped, the vertical wind direction plate 150 is rotated to the fully closed position 152 indicated by a dashed line. Further, when performing a cleaning operation described later, the vertical wind direction plate 150 is rotated to a position 156 indicated by a dashed line, and thereafter, is rotated to a cleaning operation position 154. And, as the opening degree of the vertical wind direction plate 150 increases, the pipe resistance of the air blowing passage 146 decreases. However, even when the vertical wind direction plate 150 is closed at the fully closed position 152, a gap FS is formed between the vertical wind direction plate 150 and the decorative plate 143, and there is a slight gap through the gap FS. The air flows.
〈第1実施形態の動作〉
(洗浄運転の概要)
 次に、本実施形態の動作を説明する。
 本実施形態においては、「洗浄運転」が自動的に、またはユーザの指示によって実行される。ここで、「洗浄運転」とは、室内熱交換器64の表面を着霜または結露させ、着霜または結露した水で室内熱交換器64の表面を洗浄する運転である。また、洗浄運転が自動的に実行される場合とは、例えば、洗浄運転を所定時間毎に定期的に実行するように設定した場合である。また、洗浄運転は、「凍結洗浄運転」および「結露洗浄運転」に分類される。
<Operation of First Embodiment>
(Overview of cleaning operation)
Next, the operation of the present embodiment will be described.
In the present embodiment, the “cleaning operation” is executed automatically or according to a user's instruction. Here, the “cleaning operation” is an operation in which the surface of the indoor heat exchanger 64 is frosted or dewed and the surface of the indoor heat exchanger 64 is washed with the frosted or dewed water. The case where the cleaning operation is automatically performed is, for example, a case where the cleaning operation is set to be periodically performed at predetermined time intervals. The cleaning operation is classified into a “freezing cleaning operation” and a “condensation cleaning operation”.
 凍結洗浄運転においては、制御装置20(図1参照)は、室内熱交換器64が蒸発器となるように、四方弁34を実線で示す方向に切り替える。次に、制御装置20は、室内熱交換器64の表面温度が氷点下になるように、圧縮機32の回転速度、室内用膨張弁62の開度、室内ファン66の回転速度等、空気調和機100の各部の状態を設定する。この状態を続けると、室内熱交換器64の表面に霜が着霜してゆく。ここで、室内熱交換器64の表面温度を氷点下に維持しつつ、室内ファン66を停止させると、室内熱交換器64の表面の霜がさらに成長してゆく。 In the freeze washing operation, the control device 20 (see FIG. 1) switches the four-way valve 34 in the direction shown by the solid line so that the indoor heat exchanger 64 becomes an evaporator. Next, the control device 20 controls the air conditioner such as the rotation speed of the compressor 32, the opening degree of the indoor expansion valve 62, and the rotation speed of the indoor fan 66 so that the surface temperature of the indoor heat exchanger 64 is below freezing. The state of each part of 100 is set. If this state is continued, frost will form on the surface of the indoor heat exchanger 64. Here, when the indoor fan 66 is stopped while maintaining the surface temperature of the indoor heat exchanger 64 below freezing, frost on the surface of the indoor heat exchanger 64 further grows.
 ここで、凍結洗浄運転における室内ファン66の回転速度について述べておく。上述したように、空気調和機100のユーザは、リモコン90を操作することによって、室内風量(急風、強風、弱風等)を設定することができる。但し、ユーザがリモコン90を操作することによって設定できる最低風量が定められており、ユーザは、この最低風量よりも低い風量を設定することはできない。ユーザが指定できる最低風量における回転速度を「ユーザ指定最低回転速度」と呼ぶ。 Here, the rotation speed of the indoor fan 66 in the freeze washing operation will be described. As described above, the user of the air conditioner 100 can set the indoor air volume (rapid wind, strong wind, weak wind, etc.) by operating the remote controller 90. However, the minimum air volume that can be set by the user operating the remote controller 90 is determined, and the user cannot set an air volume lower than this minimum air volume. The rotation speed at the minimum air flow that can be specified by the user is called “user-specified minimum rotation speed”.
 一方、凍結洗浄運転において、室内熱交換器64の表面に霜を着霜させる際、制御装置20は、室内ファン66の回転速度として、所定の「着霜時回転速度」を指定する。この着霜時回転速度は、ユーザ指定最低回転速度よりも低い回転速度である。このように低い着霜時回転速度を適用する理由は、洗浄運転を実行する際に、空調室内に漏れる冷気等を抑制し、ユーザがなるべく不快感を抱かないようにするためである。 On the other hand, in the freeze washing operation, when frost is formed on the surface of the indoor heat exchanger 64, the control device 20 designates a predetermined “rotation speed during frost” as the rotation speed of the indoor fan 66. The rotation speed during frost formation is a rotation speed lower than the minimum rotation speed specified by the user. The reason why such a low frosting rotation speed is applied is to suppress the cool air or the like leaking into the air-conditioned room when performing the cleaning operation, so that the user does not feel uncomfortable.
 次に、制御装置20は、室内熱交換器64が凝縮器となるように、四方弁34(図1参照)を破線で示す方向に切り替え、室内熱交換器64を加熱する。すると、室内熱交換器64に着霜した霜が溶け、室内熱交換器64の表面を洗い流す。その後、制御装置20は、冷凍サイクルRCを停止し、室内ファン66を所定時間だけ駆動し続ける。これにより、室内熱交換器64の表面が乾燥する。以上の過程を経て、凍結洗浄運転が終了する。 Next, the controller 20 heats the indoor heat exchanger 64 by switching the four-way valve 34 (see FIG. 1) in the direction shown by the broken line so that the indoor heat exchanger 64 becomes a condenser. Then, the frost formed on the indoor heat exchanger 64 melts, and the surface of the indoor heat exchanger 64 is washed away. After that, the control device 20 stops the refrigeration cycle RC and continues to drive the indoor fan 66 for a predetermined time. Thereby, the surface of the indoor heat exchanger 64 dries. Through the above steps, the freeze washing operation is completed.
 次に、結露洗浄運転について説明する。結露洗浄運転においても、制御装置20(図1参照)は、室内熱交換器64が蒸発器となるように、四方弁34を実線で示す方向に切り替える。次に、制御装置20は、室内熱交換器64の表面温度が露点温度よりも低く、かつ、零度よりも高くなるように、空気調和機100の各部の状態を設定する。 Next, the condensation cleaning operation will be described. Also in the dew condensation cleaning operation, the control device 20 (see FIG. 1) switches the four-way valve 34 in the direction shown by the solid line so that the indoor heat exchanger 64 becomes an evaporator. Next, control device 20 sets the state of each part of air conditioner 100 such that the surface temperature of indoor heat exchanger 64 is lower than the dew point temperature and higher than zero degrees.
 この状態を続けると、室内熱交換器64の表面が結露し、結露した水が室内熱交換器64の表面を洗い流す。その後、制御装置20は、室内熱交換器64が凝縮器となるように、四方弁34を破線で示す方向に切り替え、室内熱交換器64を加熱し、室内ファン66を駆動し続ける。これにより、室内熱交換器64の表面が乾燥する。以上の過程を経て、結露洗浄運転が終了する。 If this state is continued, the surface of the indoor heat exchanger 64 is dewed, and the condensed water rinses the surface of the indoor heat exchanger 64. Thereafter, the control device 20 switches the four-way valve 34 in the direction shown by the broken line so that the indoor heat exchanger 64 becomes a condenser, heats the indoor heat exchanger 64, and continues to drive the indoor fan 66. Thereby, the surface of the indoor heat exchanger 64 dries. Through the above-described steps, the dew condensation cleaning operation ends.
(洗浄運転処理ルーチンによる動作)
 図3は、本実施形態における洗浄運転処理ルーチンのフローチャートである。
 図3において処理がステップS100に進むと、制御装置20は、各種データ収集を行う。すなわち、冷凍サイクルRCを停止した状態で室内ファン66を駆動し、室内機60内に空調室の空気を取り込み、図1に示す各種センサの検出結果等、各種データを収集する。
(Operation by the cleaning operation processing routine)
FIG. 3 is a flowchart of a cleaning operation processing routine according to the present embodiment.
In FIG. 3, when the process proceeds to step S100, control device 20 performs various data collection. That is, while the refrigeration cycle RC is stopped, the indoor fan 66 is driven, air in the air conditioning room is taken into the indoor unit 60, and various data such as detection results of various sensors shown in FIG. 1 are collected.
 以下、収集されるデータのうち、室内熱交換器入口空気温度センサ70の検出結果を室温Tと呼び、室内熱交換器入口湿度センサ74の検出結果を相対湿度Hと呼び、室外熱交換器入口温度センサ51の検出結果を外気温TDと呼ぶ。ステップS100においては、上下風向板150(図2参照)は、位置156まで回動される。 Hereinafter, of the collected data, the detection result of the indoor heat exchanger inlet air temperature sensor 70 is called room temperature T, the detection result of the indoor heat exchanger inlet humidity sensor 74 is called relative humidity H, and the outdoor heat exchanger inlet The detection result of the temperature sensor 51 is called an outside air temperature TD. In step S100, the vertical wind direction plate 150 (see FIG. 2) is rotated to the position 156.
 次に、処理がステップS102に進むと、制御装置20は、収集したデータに基づいて、運転種別を選択する。ここで、選択される運転種別は、「凍結洗浄運転」、「結露洗浄運転」または「運転停止」である。仮に、凍結洗浄運転が可能な場合は、凍結洗浄運転を実行することが好ましい。しかし、空調室における相対湿度が低すぎる場合、には、室内熱交換器64に充分な量の霜が着霜せず、充分な洗浄効果が得られなくなる。逆に、相対湿度Hが高すぎる場合には、凍結洗浄運転を行おうとすると、室内熱交換器64以外の箇所に結露が生じることがある。 Next, when the process proceeds to step S102, the control device 20 selects an operation type based on the collected data. Here, the selected operation type is “freeze washing operation”, “condensation washing operation”, or “operation stop”. If the freeze washing operation is possible, it is preferable to execute the freeze washing operation. However, if the relative humidity in the air conditioning room is too low, a sufficient amount of frost does not form on the indoor heat exchanger 64, and a sufficient cleaning effect cannot be obtained. Conversely, if the relative humidity H is too high, dew condensation may occur at locations other than the indoor heat exchanger 64 when performing the freeze washing operation.
 また、室内機60の露受皿140(図2参照)には、結露水を排出するためのドレインパイプやドレインポンプ等(図示せず)が装着される。仮に、結露水の温度が0℃以下になる箇所が生じると、その箇所でドレインパイプ等が詰まる可能性がある。従って、室温Tまたは外気温TDが0℃付近であれば、洗浄運転を停止することが好ましい。また、室温Tまたは外気温TDが高いと、室内熱交換器64を充分に着霜できる程度にまで冷却能力を確保できない可能性がある。 ド レ イ ン Further, a drain pipe, a drain pump, etc. (not shown) for discharging dew water are attached to the dew tray 140 (see FIG. 2) of the indoor unit 60. If there is a location where the temperature of the condensed water becomes 0 ° C. or lower, the drain pipe or the like may be clogged at that location. Therefore, when the room temperature T or the outside temperature TD is around 0 ° C., it is preferable to stop the cleaning operation. If the room temperature T or the outside temperature TD is high, there is a possibility that the cooling capacity cannot be secured to such an extent that the indoor heat exchanger 64 can be sufficiently frosted.
 従って、かかる場合は、凍結洗浄運転ではなく、結露洗浄運転を選択することが好ましい。また、室温Tまたは外気温TDがさらに高くなると、室内熱交換器64を充分に結露できる程度にまで冷却能力を確保できない可能性がある。かかる場合は、洗浄運転を停止することが好ましい。以上の理由により、ステップS102では、制御装置20は、室温T、外気温TDおよび相対湿度Hに基づいて、「凍結洗浄運転」、「結露洗浄運転」または「運転停止」のうち、何れかの運転種別を選択する。 Therefore, in such a case, it is preferable to select the dew-condensation washing operation instead of the freeze-washing operation. Further, when the room temperature T or the outside temperature TD is further increased, there is a possibility that the cooling capacity cannot be secured to such an extent that the indoor heat exchanger 64 can be sufficiently dewed. In such a case, it is preferable to stop the cleaning operation. For the above reason, in step S102, the control device 20 selects one of the "freezing washing operation", the "condensation washing operation" or the "operation stop" based on the room temperature T, the outside air temperature TD, and the relative humidity H. Select the operation type.
 ステップS102において、「運転停止」が選択されると、処理はステップS106に進み、運転停止処理が実行される。ここでは、室内ファン66が停止され、本ルーチンの処理が終了する。また、ステップS102において「結露洗浄運転」が選択されると、処理はステップS104に進み、結露洗浄運転が実行される。ここでは、上述した結露洗浄運転が実行され、本ルーチンの処理が終了する。 と If “stop operation” is selected in step S102, the process proceeds to step S106, and an operation stop process is executed. Here, the indoor fan 66 is stopped, and the processing of this routine ends. If “condensation cleaning operation” is selected in step S102, the process proceeds to step S104, and the condensation cleaning operation is executed. Here, the above-described condensation cleaning operation is performed, and the processing of this routine ends.
 また、ステップS102において「凍結洗浄運転」が選択されると、処理はステップS110に進む。ここでは、相対湿度Hの範囲に基づいて、処理が分岐される。より詳細には、相対湿度Hと、定数LH,HHとの比較結果に基づいて、処理が分岐される。なお、定数LHは例えば「40%」程度、定数HHは例えば「60%」程度の値である。 If “freeze-washing operation” is selected in step S102, the process proceeds to step S110. Here, the process branches based on the range of the relative humidity H. More specifically, the process is branched based on a comparison result between the relative humidity H and the constants LH and HH. The constant LH is, for example, about “40%”, and the constant HH is, for example, about “60%”.
 ステップS110において、相対湿度Hが「H≦LH」の範囲であれば、処理はステップS130に進み、「凍結制御F1」が実行される。また、相対湿度Hが「LH<H≦HH」の範囲であれば、処理はステップS132に進み、「凍結制御F2」が実行される。また、相対湿度Hが「HH<H」の範囲であれば、処理はステップS134に進み、「凍結制御F3」が実行される。 In step S110, if the relative humidity H is in the range of “H ≦ LH”, the process proceeds to step S130, and “freezing control F1” is executed. If the relative humidity H is in the range of “LH <H ≦ HH”, the process proceeds to step S132, and “freezing control F2” is executed. If the relative humidity H is in the range of “HH <H”, the process proceeds to step S134, and “freezing control F3” is executed.
 これら凍結制御F1,F2,F3の詳細については後述するが、何れにおいても、室内熱交換器64の表面に霜が着霜する。ステップS130,S132,S134が終了すると、次に処理はステップS138に進む。ステップS138では、解凍制御が実行される。すなわち、制御装置20は、室内熱交換器64が凝縮器となるように、四方弁34(図1参照)を破線で示す方向に切り替え、室内熱交換器64を加熱する。 凍結 Details of these freezing controls F1, F2, F3 will be described later, but in any case, frost forms on the surface of the indoor heat exchanger 64. When steps S130, S132, and S134 are completed, the process proceeds to step S138. In step S138, decompression control is executed. That is, the control device 20 heats the indoor heat exchanger 64 by switching the four-way valve 34 (see FIG. 1) in the direction shown by the broken line so that the indoor heat exchanger 64 becomes a condenser.
 これにより、室内熱交換器64に着霜した霜が融解し、室内熱交換器64の表面を洗浄する。次に、処理がステップS140に進むと、乾燥制御が実行される。乾燥制御において、制御装置20は冷凍サイクルRCを停止し、室内ファン66を所定時間だけ駆動し続ける。これにより、室内熱交換器64の表面が乾燥する。次に、処理がステップS142に進むと、運転停止処理が実行される。ここでは、室内ファン66が停止される。以上により、本ルーチンの処理が終了する。 に よ り Thus, the frost formed on the indoor heat exchanger 64 is melted, and the surface of the indoor heat exchanger 64 is cleaned. Next, when the process proceeds to step S140, drying control is executed. In the drying control, the control device 20 stops the refrigeration cycle RC and keeps driving the indoor fan 66 for a predetermined time. Thereby, the surface of the indoor heat exchanger 64 dries. Next, when the process proceeds to step S142, an operation stop process is executed. Here, the indoor fan 66 is stopped. Thus, the processing of this routine ends.
(凍結制御の詳細)
 次に、上述したステップS130,S132,S134における凍結制御F1,F2,F3の詳細について説明する。これらのステップにおいては、相対湿度Hと、制御装置20に記憶されている湿気取込量テーブルと、に基づいて、適用される湿気取込量PHが求められる。
 図4は、湿気取込量テーブルの一例を示す図である。図示のように、相対湿度Hに対して、湿気取込量PHは一意に決定される量である。なお、湿気取込量テーブルには、実際には図示の相対湿度LH,MH,HHにおける3点の湿気取込量PHを記憶している。そして、制御装置20は、これら3点以外の湿気取込量PHは、直線補完によって計算する。
(Details of freeze control)
Next, details of the freeze control F1, F2, F3 in the above-described steps S130, S132, S134 will be described. In these steps, the applied moisture intake PH is determined based on the relative humidity H and the moisture intake table stored in the control device 20.
FIG. 4 is a diagram illustrating an example of the moisture intake amount table. As shown in the drawing, the humidity intake amount PH is uniquely determined with respect to the relative humidity H. It should be noted that the moisture intake table actually stores three points of moisture intake PH at the relative humidities LH, MH, and HH shown in the figure. Then, the control device 20 calculates the moisture intake amounts PH other than these three points by linear interpolation.
 湿気取込量PHは、室温Tにおける飽和水蒸気量をA[g/m3]とし、室内ファン66の風量をB[m3/min]とし、室内ファン66の送風時間をC[min]としたとき、「PH=A×B×C」によって表される量である。凍結制御F1においては、湿気取込量PHは、所定値PH1である。また、凍結制御F3においては、湿気取込量PHは、所定値PH3である。また、凍結制御F2において、湿気取込量PHは、相対湿度Hが大きくなるほど小さくなる、単調減少関数になる。また、上述したように、相対湿度の定数LHを40%とし、定数HHを60%としたとき、所定値PH1は、所定値PH3の1.5~3倍になる。 The moisture intake amount PH is defined as A [g / m 3 ] at room temperature T, A [g / m 3 ] at the room temperature T, B [m 3 / min] at the air flow of the indoor fan 66, and C [min] as the blowing time of the indoor fan 66. Then, it is the amount represented by “PH = A × B × C”. In the freezing control F1, the moisture intake amount PH is a predetermined value PH1. In the freezing control F3, the moisture intake amount PH is a predetermined value PH3. In the freezing control F2, the moisture intake amount PH becomes a monotonically decreasing function that becomes smaller as the relative humidity H increases. Further, as described above, when the relative humidity constant LH is 40% and the constant HH is 60%, the predetermined value PH1 is 1.5 to 3 times the predetermined value PH3.
 上述したステップS130,S132,S134において、制御装置20は、湿気取込量テーブル(図4)から得られた湿気取込量PHを実現するように室内ファン66の駆動条件を決定する。そして、制御装置20は、決定した駆動条件に応じて、室内ファン66を駆動する。
 ここで、飽和水蒸気量Aは、室温Tが決定されると一意に決定される。凍結制御の期間中、室温Tの変動が無視できると考えると、飽和水蒸気量Aは定数であると考えることができる。また、本実施形態においては、凍結制御における室内ファン66の回転速度、すなわち上述した着霜時回転速度が一定であることとしている。また、本実施形態においては、凍結制御において、上下風向板150の位置は、図2に示す洗浄運転位置154であることとしている。
In steps S130, S132, and S134 described above, control device 20 determines the driving conditions of indoor fan 66 so as to realize the moisture intake amount PH obtained from the moisture intake amount table (FIG. 4). Then, the control device 20 drives the indoor fan 66 according to the determined driving conditions.
Here, the saturated water vapor amount A is uniquely determined when the room temperature T is determined. Assuming that the fluctuation of the room temperature T can be ignored during the freezing control, the saturated steam amount A can be considered to be a constant. In the present embodiment, the rotation speed of the indoor fan 66 in the freezing control, that is, the above-described rotation speed at the time of frost formation is constant. Further, in the present embodiment, in the freezing control, the position of the vertical wind direction plate 150 is the cleaning operation position 154 shown in FIG.
 ここで、室内ファン66の着霜時回転速度が一定であり、上下風向板150の位置も洗浄運転位置154であるとすると、風量Bも定数であると考えることができる。このように、飽和水蒸気量Aおよび風量Bを定数であると考えると、室内ファン66の駆動条件を決定することは、湿気取込量PHに比例した送風時間Cを求めることに等しくなる。従って、所定値PH1が所定値PH3の1.5~3倍であれば、凍結制御F1における送風時間Cは、凍結制御F3における送風時間Cの1.5~3倍になる。 Here, assuming that the rotation speed of the indoor fan 66 at the time of frosting is constant and the position of the vertical wind direction plate 150 is also the cleaning operation position 154, the air volume B can also be considered to be a constant. Assuming that the saturated steam amount A and the air amount B are constants, determining the driving condition of the indoor fan 66 is equivalent to obtaining the air blowing time C proportional to the moisture intake amount PH. Therefore, if the predetermined value PH1 is 1.5 to 3 times the predetermined value PH3, the blowing time C in the freezing control F1 is 1.5 to 3 times the blowing time C in the freezing control F3.
 ステップS130,S132,S134において、制御装置20(図1参照)は、室内熱交換器64が蒸発器となるように、四方弁34を実線で示す方向に切り替える。そして、制御装置20は、上下風向板150を洗浄運転位置154(図2参照)まで回動し、室内熱交換器64の表面温度が氷点下になるように、圧縮機32の回転速度、室内用膨張弁62の開度等を設定する。次に、制御装置20は、先に求めた送風時間Cに対応する時間、着霜時回転速度で、室内ファン66を駆動する。これにより、室内熱交換器64に霜が着霜する。そして、送風時間Cが経過すると、制御装置20は、室内ファン66を停止させる。 In steps S130, S132, and S134, the control device 20 (see FIG. 1) switches the four-way valve 34 in the direction shown by the solid line so that the indoor heat exchanger 64 becomes an evaporator. Then, the control device 20 rotates the vertical wind direction plate 150 to the cleaning operation position 154 (see FIG. 2), and controls the rotation speed of the compressor 32 and the indoor temperature so that the surface temperature of the indoor heat exchanger 64 is below freezing. The degree of opening of the expansion valve 62 is set. Next, the control device 20 drives the indoor fan 66 at the frosting rotation speed for a time corresponding to the blowing time C previously obtained. Thereby, frost forms on the indoor heat exchanger 64. When the blowing time C has elapsed, the control device 20 stops the indoor fan 66.
 室内ファン66を停止させると、室内機60の内部に含まれる水蒸気によって、室内熱交換器64に付着した霜が、さらに成長してゆく。本実施形態において、ステップS130,S132,S134が開始して終了するまでの実行時間は同一であり、その実行時間を「凍結制御時間D」と呼ぶ。凍結制御時間Dは、例えば20分である。また、送風時間Cは、凍結制御F1において例えば7分程度、凍結制御F3において例えば3分程度である。室内ファン66を停止して霜を成長させてゆく時間は、「D-C」に等しくなり、上述した例においては、13分~17分程度になる。 When the indoor fan 66 is stopped, the frost attached to the indoor heat exchanger 64 further grows due to the water vapor contained in the indoor unit 60. In the present embodiment, the execution time from the start to the end of steps S130, S132, and S134 is the same, and the execution time is referred to as “freezing control time D”. The freezing control time D is, for example, 20 minutes. Further, the blowing time C is, for example, about 7 minutes in the freezing control F1, and is, for example, about 3 minutes in the freezing control F3. The time for stopping the indoor fan 66 and growing the frost is equal to “DC”, and is about 13 to 17 minutes in the example described above.
 すなわち、送風時間Cは、凍結制御時間Dの半分以下である。これにより、室内機60の内部の湿気によって、室内熱交換器64に着霜した霜を、非送風状態下で充分に成長させることができる。また、室内ファン66を駆動する期間は、凍結制御時間Dのうち前半部分に集中している。これにより、前半においては、湿気の取り込みに重点を置き、後半においては霜の成長に重点を置いた運転が可能になる。さらに詳細には、制御装置20は、凍結制御時間Dのうち後半の期間においては室内ファン66を停止させる。これにより、後半の期間においては、霜の成長を一層促すことができる。
 ここで、外気温TDが低いときに凍結洗浄運転を実行する場合、圧縮機32から吐出される冷媒の圧力と圧縮機32に吸入される冷媒の圧力との差圧が小さくなり、圧縮機32の基準範囲を下回るおそれがある。この状態において、制御装置20が室内ファン66を停止させると、室内熱交換器64に着霜した霜を十分に成長させることができない。そこで、室内ファン66を停止状態にしたときにおける室外ファン48の回転速度を室内ファン66の駆動中における室外ファン48の回転速度よりも高くするとよい。特に、外気温TDが所定値以下で凍結洗浄運転を実行する場合に、室外ファン48をこのように制御することで、室内熱交換器64に着霜する霜の量を増やすことができる。
That is, the blowing time C is equal to or less than half of the freezing control time D. Thus, the frost formed on the indoor heat exchanger 64 due to the moisture inside the indoor unit 60 can be sufficiently grown in a non-blast state. The period during which the indoor fan 66 is driven is concentrated in the first half of the freeze control time D. This allows operation in the first half with an emphasis on moisture uptake and in the second half with emphasis on frost growth. More specifically, control device 20 stops indoor fan 66 during the latter half of freeze control time D. Thereby, in the latter half period, the growth of frost can be further promoted.
Here, when performing the freeze washing operation when the outside air temperature TD is low, the differential pressure between the pressure of the refrigerant discharged from the compressor 32 and the pressure of the refrigerant sucked into the compressor 32 decreases, and the compressor 32 May fall below the reference range. In this state, if the control device 20 stops the indoor fan 66, the frost formed on the indoor heat exchanger 64 cannot be sufficiently grown. Therefore, the rotation speed of the outdoor fan 48 when the indoor fan 66 is stopped may be higher than the rotation speed of the outdoor fan 48 when the indoor fan 66 is being driven. In particular, when the freezing and cleaning operation is performed when the outside air temperature TD is equal to or lower than the predetermined value, by controlling the outdoor fan 48 in this manner, the amount of frost formed on the indoor heat exchanger 64 can be increased.
〈第1実施形態の効果〉
 以上のように本実施形態によれば、制御装置(20)は、洗浄運転を実行する際に、室内熱交換器(64)を蒸発器として機能させ室内熱交換器(64)の表面温度を氷点下にする凍結制御を実行する機能(S130,S132,S134)と、凍結制御の実行中において、凍結制御の実行期間よりも短い所定期間では室内ファン(66)を駆動し、所定期間以外では、室内ファン(66)を停止状態とする機能(S130,S132,S134)と、を有する。また、所定期間は凍結制御の実行期間の半分以下である。
 このように、凍結制御の実行期間よりも短い所定期間、より好ましくは、凍結制御の実行期間の半分以下の時間だけ室内ファン(66)を駆動することにより、室内熱交換器(64)に着霜した霜を充分に成長させることができ、室内熱交換器(64)を適切に洗浄することができる。
<Effect of First Embodiment>
As described above, according to the present embodiment, when performing the cleaning operation, the control device (20) causes the indoor heat exchanger (64) to function as an evaporator and adjusts the surface temperature of the indoor heat exchanger (64). The function (S130, S132, S134) of executing the freezing control to make the temperature below the freezing point, and during the execution of the freezing control, the indoor fan (66) is driven for a predetermined period shorter than the execution period of the freezing control. A function of stopping the indoor fan (66) (S130, S132, S134). Further, the predetermined period is not more than half of the execution period of the freezing control.
As described above, by driving the indoor fan (66) for a predetermined period shorter than the execution period of the freezing control, more preferably, for a period of time equal to or less than half of the execution period of the freezing control, the indoor fan (64) is attached to the indoor heat exchanger (64). The frosted frost can be sufficiently grown, and the indoor heat exchanger (64) can be appropriately cleaned.
 また、制御装置(20)は、凍結制御の実行期間のうち前半の期間における室内ファン(66)の駆動時間よりも、凍結制御の実行期間のうち後半の期間における室内ファン(66)の駆動時間を短くする機能を有する。これにより、前半においては、湿気の取り込みに重点を置き、後半においては霜の成長に重点を置いた運転が可能になるため、室内熱交換器(64)を一層適切に洗浄することができる。 Further, the control device (20) is configured to control the driving time of the indoor fan (66) in the latter half of the execution period of the freezing control, as compared with the driving time of the indoor fan (66) in the first half of the execution period of the freezing control. Has the function of shortening Thereby, in the first half, it is possible to operate with an emphasis on the intake of moisture and in the second half, with an emphasis on the growth of frost, so that the indoor heat exchanger (64) can be more appropriately cleaned.
 また、制御装置(20)は、凍結制御の実行期間のうち後半の期間においては室内ファン(66)を停止させる。これにより、後半の期間においては、霜の成長を一層促すことができ、室内熱交換器(64)を一層適切に洗浄することができる。 (4) The control device (20) stops the indoor fan (66) in the latter half of the execution period of the freezing control. Thereby, in the latter half period, the growth of frost can be further promoted, and the indoor heat exchanger (64) can be more appropriately cleaned.
 また、空気調和機(100)は、ユーザの操作によって風量を指定する操作部(90)をさらに有し、洗浄運転における室内ファン(66)の回転速度は、操作部(90)に対する操作によって指定可能な最低風量における回転速度よりも低い。これにより、洗浄運転を実行する際に、空調室内に漏れる冷気を抑制でき、ユーザの不快感を抑制することができる。 In addition, the air conditioner (100) further includes an operation unit (90) for specifying an air volume by a user operation, and the rotation speed of the indoor fan (66) in the cleaning operation is specified by an operation on the operation unit (90). It is lower than the rotation speed at the lowest possible air flow. Thereby, when performing the cleaning operation, it is possible to suppress the cool air leaking into the air-conditioned room, and it is possible to suppress user discomfort.
 また、空気調和機(100)は、空調室から流入する空気の湿度(H)を検出する湿度センサ(74)をさらに備え、制御装置(20)は、検出した湿度が高いほど、室内ファン(66)の駆動時間を短くする。このように、湿度が高いほど、室内ファン(66)の駆動時間を短くすることにより、空気調和機(100)内の不本意な箇所への結露等を抑制することができる。 The air conditioner (100) further includes a humidity sensor (74) for detecting the humidity (H) of the air flowing from the air conditioning room, and the control device (20) determines that the higher the detected humidity, the more the indoor fan ( 66) The drive time is shortened. As described above, as the humidity becomes higher, the driving time of the indoor fan (66) is reduced, so that dew condensation or the like on an undesired portion in the air conditioner (100) can be suppressed.
 また、空気調和機(100)は、室外ファン(48)をさらに備え、制御装置(20)は、凍結制御の実行中において、所定期間以外における室外ファンの回転速度を所定期間における室外ファンの回転速度よりも高くする。これにより、室内熱交換器(64)に着霜する霜の量を増やすことができる。 The air conditioner (100) further includes an outdoor fan (48), and the control device (20) increases the rotation speed of the outdoor fan during a period other than the predetermined period during the freezing control. Higher than the speed. Thereby, the amount of frost that forms frost on the indoor heat exchanger (64) can be increased.
 また、空気調和機(100)は、室外ファン(48)と、外気温(TD)を検出する外気温センサ(51)と、をさらに備え、制御装置(20)は、凍結制御の実行中において、外気温センサ(51)が検出した外気温(TD)が所定温度以下であるとき、所定期間以外における室外ファンの回転速度を所定期間における室外ファンの回転速度より高くすることを特徴とする。これにより、室内熱交換器(64)に着霜する霜の量を一層増やすことができる。 The air conditioner (100) further includes an outdoor fan (48) and an outside air temperature sensor (51) for detecting an outside air temperature (TD). When the outside air temperature (TD) detected by the outside air temperature sensor (51) is equal to or lower than a predetermined temperature, the rotation speed of the outdoor fan during a period other than the predetermined period is made higher than the rotation speed of the outdoor fan during the predetermined period. Thereby, the amount of frost which forms on the indoor heat exchanger (64) can be further increased.
[第2実施形態]
 次に、本発明の第2実施形態による空気調和機の構成を説明する。なお、以下の説明において、上述した他の実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 本実施形態の構成および動作は、以下述べる点を除いて、第1実施形態のもの(図1~3参照)と同様である。
 まず、本実施形態のステップS100(図3参照)において、制御装置20は、上記第1実施形態の処理に加えて、室温Tに基づいて、「相対湿度推定値Hest」なる値を求める。そして、ステップS102以降の処理においては、第1実施形態における相対湿度Hに代えて、相対湿度推定値Hestが適用される。
[Second embodiment]
Next, the configuration of an air conditioner according to a second embodiment of the present invention will be described. In the following description, portions corresponding to the respective portions of the other embodiments described above are denoted by the same reference numerals, and description thereof may be omitted.
The configuration and operation of the present embodiment are the same as those of the first embodiment (see FIGS. 1 to 3) except for the points described below.
First, in step S100 (see FIG. 3) of the present embodiment, the control device 20 obtains a value “estimated relative humidity Hest” based on the room temperature T in addition to the processing of the first embodiment. Then, in the processing after step S102, the relative humidity estimated value Hest is applied instead of the relative humidity H in the first embodiment.
 図5は、室温Tと相対湿度推定値Hestとの関係の一例を示す図である。
 図示のように、相対湿度推定値Hestは、室温Tが上昇するに従って単調増加する関数になる。ここで、相対湿度Hに代えて、相対湿度推定値Hestを用いることができる理由は、温度と相対湿度とが、空気調和機100の設置地域に応じた相関関係を有することに基づく。例えば、空気調和機100が日本に設定されていると仮定する。日本の気候について考えると、冬季は温度が低く、夏季は温度が高くなる傾向がある。
FIG. 5 is a diagram illustrating an example of the relationship between the room temperature T and the estimated relative humidity Hest.
As illustrated, the relative humidity estimated value Hest is a function that monotonically increases as the room temperature T increases. Here, the reason that the estimated relative humidity value Hest can be used instead of the relative humidity H is based on the fact that the temperature and the relative humidity have a correlation corresponding to the area where the air conditioner 100 is installed. For example, assume that the air conditioner 100 is set to Japan. Considering Japan's climate, temperatures tend to be low in winter and high in summer.
 それと同時に、冬季は相対湿度が低く、夏季は相対湿度が高くなる傾向がある。すると、相対湿度は、温度に対して、単調増加傾向の相関関係を有していることになる。従って、相対湿度Hに代えて相対湿度推定値Hestを適用した場合であっても、空気調和機100が適切に動作することが期待できる。 と 同時 に At the same time, relative humidity tends to be low in winter and high in summer. Then, the relative humidity has a monotonically increasing correlation with the temperature. Therefore, even when the estimated relative humidity Hest is applied instead of the relative humidity H, the air conditioner 100 can be expected to operate properly.
 このように、本実施形態の空気調和機によれば、空調室から流入する空気の温度を検出する温度センサ(70)をさらに備え、制御装置(20)は、検出した温度が高いほど、室内ファン(66)の駆動時間を短くする。これにより、図1および図2に示した室内熱交換器入口湿度センサ74を省略することができ、空気調和機のコストダウンを実現することができる。 As described above, according to the air conditioner of the present embodiment, the temperature sensor (70) that detects the temperature of the air flowing from the air-conditioning room is further provided, and the control device (20) increases the indoor temperature as the detected temperature increases. The drive time of the fan (66) is shortened. Accordingly, the indoor heat exchanger inlet humidity sensor 74 shown in FIGS. 1 and 2 can be omitted, and the cost of the air conditioner can be reduced.
[変形例]
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、もしくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
[Modification]
The present invention is not limited to the embodiments described above, and various modifications are possible. The above-described embodiments are exemplarily illustrated for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, a part of the configuration of each embodiment can be deleted, or another configuration can be added or replaced. Further, the control lines and information lines shown in the figure indicate those which are considered necessary for the description, and do not necessarily indicate all the control lines and information lines necessary for the product. In fact, it can be considered that almost all components are connected to each other. Possible modifications to the above embodiment are, for example, as follows.
(1)上記各実施形態においては、相対湿度Hまたは相対湿度推定値Hestに基づいて各種判断を行ったが、これらに代えて、絶対湿度またはその推定値に基づいて各種判断を行ってもよい。 (1) In the above embodiments, various determinations are made based on the relative humidity H or the estimated relative humidity Hest, but instead of these, various determinations may be made based on the absolute humidity or the estimated value thereof. .
(2)上記実施形態における制御装置20のハードウエアは一般的なコンピュータによって実現できるため、図3に示したフローチャートに係るプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。 (2) Since the hardware of the control device 20 in the above embodiment can be realized by a general computer, even if the program and the like according to the flowchart shown in FIG. 3 are stored in a storage medium or distributed via a transmission path. Good.
(3)図3に示した処理は、上記実施形態ではプログラムを用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(Field Programmable Gate Array)等を用いたハードウエア的な処理に置き換えてもよい。 (3) Although the processing illustrated in FIG. 3 has been described as software processing using a program in the above embodiment, part or all of the processing is performed by an ASIC (Application Specific Integrated Circuit) or an FPGA. (Field \ Programmable \ Gate \ Array) may be replaced by hardware-based processing.
(4)本発明は、空調室の環境と室内機内の環境とに差が生じやすい天井カセット型室内機に用いて好適であるが、室内機の種類によって限定されるわけではない。例えば、壁掛け型の室内機や、室内機と室外機とを一体型したウィンドウ型の空気調和機に本発明を適用してもよい。 (4) The present invention is suitable for use in a ceiling cassette type indoor unit in which a difference between the environment of the air-conditioning room and the environment in the indoor unit is likely to occur, but is not limited by the type of the indoor unit. For example, the present invention may be applied to a wall-mounted indoor unit or a window-type air conditioner in which an indoor unit and an outdoor unit are integrated.
20 制御装置
32 圧縮機
48 室外ファン
51 室外熱交換器入口温度センサ(外気温センサ)
64 室内熱交換器
66 室内ファン
70 室内熱交換器入口空気温度センサ(温度センサ)
74 室内熱交換器入口湿度センサ(湿度センサ)
90 リモコン(操作部)
100 空気調和機
H 相対湿度(湿度)
RC 冷凍サイクル
Reference Signs List 20 control device 32 compressor 48 outdoor fan 51 outdoor heat exchanger inlet temperature sensor (outside air temperature sensor)
64 Indoor heat exchanger 66 Indoor fan 70 Indoor heat exchanger inlet air temperature sensor (temperature sensor)
74 Indoor heat exchanger inlet humidity sensor (humidity sensor)
90 Remote control (operation unit)
100 Air conditioner H Relative humidity (humidity)
RC refrigeration cycle

Claims (11)

  1.  冷媒を圧縮する圧縮機と、室内熱交換器と、を有する冷凍サイクルと、
     前記室内熱交換器の表面を洗浄する洗浄運転を実行するように前記冷凍サイクルを制御する制御装置と、
     室内ファンと、
     を備え、前記制御装置は、
     前記洗浄運転を実行する際に、前記室内熱交換器を蒸発器として機能させ前記室内熱交換器の表面温度を氷点下にする凍結制御を実行する機能と、前記凍結制御の実行中において、前記凍結制御の実行期間よりも短い所定期間では前記室内ファンを駆動し、前記所定期間以外では、前記室内ファンを停止状態とする機能と、を有する
     ことを特徴とする空気調和機。
    A compressor that compresses the refrigerant, and a refrigeration cycle having an indoor heat exchanger,
    A control device that controls the refrigeration cycle to execute a cleaning operation for cleaning the surface of the indoor heat exchanger,
    With an indoor fan,
    Comprising, the control device,
    A function of causing the indoor heat exchanger to function as an evaporator and performing a freezing control to keep the surface temperature of the indoor heat exchanger below freezing when performing the cleaning operation; and An air conditioner having a function of driving the indoor fan during a predetermined period shorter than the control execution period, and stopping the indoor fan during periods other than the predetermined period.
  2.  前記所定期間は前記凍結制御の実行期間の半分以下である
     ことを特徴とする請求項1に記載の空気調和機。
    The air conditioner according to claim 1, wherein the predetermined period is equal to or shorter than a half of an execution period of the freeze control.
  3.  前記制御装置は、前記凍結制御の実行期間のうち前半の期間における前記室内ファンの駆動時間よりも、前記凍結制御の実行期間のうち後半の期間における前記室内ファンの駆動時間を短くする機能を有する
     ことを特徴とする請求項1に記載の空気調和機。
    The control device has a function of shortening the driving time of the indoor fan in the latter half of the execution period of the freeze control, compared to the driving time of the indoor fan in the first half of the execution period of the freeze control. The air conditioner according to claim 1, wherein:
  4.  前記制御装置は、前記凍結制御の実行期間のうち後半の期間においては前記室内ファンを停止させる
     ことを特徴とする請求項2または3に記載の空気調和機。
    The air conditioner according to claim 2, wherein the control device stops the indoor fan in a latter half of the execution period of the freeze control.
  5.  ユーザの操作によって風量を指定する操作部をさらに有し、
     前記洗浄運転における前記室内ファンの回転速度は、前記操作部に対する操作によって指定可能な最低風量における回転速度よりも低い
     ことを特徴とする請求項1に記載の空気調和機。
    Further comprising an operation unit for designating an air volume by a user operation,
    The air conditioner according to claim 1, wherein a rotation speed of the indoor fan in the cleaning operation is lower than a rotation speed at a minimum air volume that can be specified by an operation on the operation unit.
  6.  空調室から流入する空気の湿度を検出する湿度センサをさらに備え、
     前記制御装置は、
     前記湿度センサが検出した湿度が高いほど、前記室内ファンの駆動時間を短くする
     ことを特徴とする請求項1に記載の空気調和機。
    It further includes a humidity sensor that detects the humidity of the air flowing from the air conditioning room,
    The control device includes:
    The air conditioner according to claim 1, wherein the drive time of the indoor fan is shortened as the humidity detected by the humidity sensor is higher.
  7.  空調室から流入する空気の温度を検出する温度センサをさらに備え、
     前記制御装置は、
     前記温度センサが検出した温度が高いほど、前記室内ファンの駆動時間を短くする
     ことを特徴とする請求項1に記載の空気調和機。
    It further comprises a temperature sensor for detecting the temperature of the air flowing from the air conditioning room,
    The control device includes:
    The air conditioner according to claim 1, wherein the higher the temperature detected by the temperature sensor, the shorter the driving time of the indoor fan.
  8.  室外ファンをさらに備え、
     前記制御装置は、
     前記凍結制御の実行中において、前記所定期間以外における前記室外ファンの回転速度を前記所定期間における前記室外ファンの回転速度よりも高くする
     ことを特徴とする請求項1に記載の空気調和機。
    Further equipped with an outdoor fan,
    The control device includes:
    The air conditioner according to claim 1, wherein, during execution of the freeze control, a rotation speed of the outdoor fan during a period other than the predetermined period is higher than a rotation speed of the outdoor fan during the predetermined period.
  9.  室外ファンと、
     外気温を検出する外気温センサと、
     をさらに備え、
     前記制御装置は、
     前記凍結制御の実行中において、前記外気温センサが検出した外気温が所定温度以下であるとき、前記所定期間以外における前記室外ファンの回転速度を前記所定期間における前記室外ファンの回転速度より高くする
     ことを特徴とする請求項1に記載の空気調和機。
    With an outdoor fan,
    An outside air temperature sensor for detecting an outside air temperature,
    Further comprising
    The control device includes:
    During execution of the freezing control, when the outside air temperature detected by the outside air temperature sensor is equal to or lower than a predetermined temperature, the rotation speed of the outdoor fan other than the predetermined period is set higher than the rotation speed of the outdoor fan during the predetermined period. The air conditioner according to claim 1, wherein:
  10.  冷媒を圧縮する圧縮機と、室内熱交換器と、を有する冷凍サイクルと、
     前記室内熱交換器の表面を洗浄する洗浄運転を実行するように前記冷凍サイクルを制御する制御装置と、
     室内ファンと、
     を備える空気調和機の制御方法であって、
     前記洗浄運転を実行する際に、前記室内熱交換器を蒸発器として機能させ前記室内熱交換器の表面温度を氷点下にする凍結制御を実行する過程と、
     前記凍結制御の実行中において、前記凍結制御の実行期間よりも短い所定期間では前記室内ファンを駆動し、前記所定期間以外では、前記室内ファンを停止状態とする過程と、を有する
     ことを特徴とする空気調和機の制御方法。
    A compressor that compresses the refrigerant, and a refrigeration cycle having an indoor heat exchanger,
    A control device that controls the refrigeration cycle to execute a cleaning operation for cleaning the surface of the indoor heat exchanger,
    With an indoor fan,
    An air conditioner control method comprising:
    When performing the washing operation, a step of performing freezing control to make the indoor heat exchanger function as an evaporator and reduce the surface temperature of the indoor heat exchanger to below freezing;
    During the execution of the freeze control, driving the indoor fan for a predetermined period shorter than the execution period of the freeze control, and stopping the indoor fan during periods other than the predetermined period. Air conditioner control method.
  11.  冷媒を圧縮する圧縮機と、室内熱交換器と、を有する冷凍サイクルと、
     前記室内熱交換器の表面を洗浄する洗浄運転を実行するように前記冷凍サイクルを制御するコンピュータと、
     室内ファンと、
     を備える空気調和機に適用され、前記コンピュータを、
     前記洗浄運転を実行する際に、前記室内熱交換器を蒸発器として機能させ前記室内熱交換器の表面温度を氷点下にする凍結制御を実行する手段、
     前記凍結制御の実行中において、前記凍結制御の実行期間よりも短い所定期間では前記室内ファンを駆動し、前記所定期間以外では、前記室内ファンを停止状態とする手段、
     として機能させるためのプログラム。
    A compressor that compresses the refrigerant, and a refrigeration cycle having an indoor heat exchanger,
    A computer that controls the refrigeration cycle to perform a cleaning operation for cleaning the surface of the indoor heat exchanger,
    With an indoor fan,
    Applied to an air conditioner comprising:
    Means for performing the freezing control to make the indoor heat exchanger function as an evaporator and reduce the surface temperature of the indoor heat exchanger to below freezing, when performing the washing operation;
    During the execution of the freeze control, the indoor fan is driven for a predetermined period shorter than the execution period of the freeze control, and the indoor fan is stopped during a period other than the predetermined period,
    Program to function as
PCT/JP2018/037444 2018-10-05 2018-10-05 Air conditioner, method for controlling air conditioner, and program WO2020070892A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019502815A JP6486586B1 (en) 2018-10-05 2018-10-05 Air conditioner, control method and program for air conditioner
PCT/JP2018/037444 WO2020070892A1 (en) 2018-10-05 2018-10-05 Air conditioner, method for controlling air conditioner, and program
ES201990035A ES2752726R1 (en) 2018-10-05 2018-10-05 AIR CONDITIONER AND METHOD AND PROGRAM FOR CONTROLLING THE AIR CONDITIONER
MYPI2019002200A MY195097A (en) 2018-10-05 2018-10-05 Air Conditioner and Method and Program for Controlling Air Conditioner
CN201880003390.4A CN111356881B (en) 2018-10-05 2018-10-05 Air conditioner and control method thereof
TW108113726A TWI689688B (en) 2018-10-05 2019-04-19 Air conditioner, control method and program of air conditioner
FR1904811A FR3086998B1 (en) 2018-10-05 2019-05-09 Air conditioner and method and program for controlling the air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037444 WO2020070892A1 (en) 2018-10-05 2018-10-05 Air conditioner, method for controlling air conditioner, and program

Publications (1)

Publication Number Publication Date
WO2020070892A1 true WO2020070892A1 (en) 2020-04-09

Family

ID=65802998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037444 WO2020070892A1 (en) 2018-10-05 2018-10-05 Air conditioner, method for controlling air conditioner, and program

Country Status (7)

Country Link
JP (1) JP6486586B1 (en)
CN (1) CN111356881B (en)
ES (1) ES2752726R1 (en)
FR (1) FR3086998B1 (en)
MY (1) MY195097A (en)
TW (1) TWI689688B (en)
WO (1) WO2020070892A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054845A1 (en) * 2020-09-10 2022-03-17 ダイキン工業株式会社 Air conditioner
EP4148348A1 (en) * 2021-09-09 2023-03-15 SHR GmbH Method and apparatus for controlling the cleaning and cooling process of heat exchangers

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194655A1 (en) * 2019-03-28 2020-10-01 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN110173827A (en) * 2019-05-29 2019-08-27 广东美的制冷设备有限公司 Air conditioner and its automatically cleaning control method and computer readable storage medium
JP6914297B2 (en) * 2019-07-01 2021-08-04 日立ジョンソンコントロールズ空調株式会社 Air conditioner and control method
CN110779142B (en) * 2019-10-22 2020-12-01 珠海格力电器股份有限公司 Air conditioner self-cleaning control method, controller and air conditioner
CN111306705B (en) * 2020-03-03 2022-04-19 青岛海尔空调器有限总公司 Self-cleaning method for evaporator in air conditioner and air conditioner
CN111578451B (en) * 2020-04-26 2022-06-14 青岛海尔空调器有限总公司 Method and device for controlling temperature rise and sterilization of air conditioner and air conditioner
JP7064153B2 (en) * 2020-08-03 2022-05-10 ダイキン工業株式会社 Air conditioning indoor unit
CN112254307B (en) * 2020-10-22 2021-10-15 珠海格力电器股份有限公司 Air conditioner cleaning control method, device, equipment and storage medium
WO2022162942A1 (en) * 2021-02-01 2022-08-04 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP7193750B2 (en) * 2021-03-12 2022-12-21 ダイキン工業株式会社 air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014288A (en) * 2008-07-01 2010-01-21 Toshiba Carrier Corp Air conditioner
CN106545975A (en) * 2016-12-08 2017-03-29 美的集团武汉制冷设备有限公司 The heat exchanger cleaning control method of air-conditioner and device
CN106679111A (en) * 2017-01-23 2017-05-17 深圳创维空调科技有限公司 Automatic cleaning treatment method and automatic cleaning treatment system of air-conditioning heat exchanger
CN107514681A (en) * 2017-07-26 2017-12-26 青岛海尔空调器有限总公司 Air conditioner room unit
JP6387197B1 (en) * 2017-04-28 2018-09-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020118A (en) * 2002-06-19 2004-01-22 Fujitsu General Ltd Control method for air conditioning machine
JP2009300030A (en) * 2008-06-16 2009-12-24 Daikin Ind Ltd Air conditioner
CN105605742B (en) * 2016-01-26 2019-02-15 广东美的制冷设备有限公司 The clean method of heat exchanger of air conditioner
CN106322663B (en) * 2016-08-24 2019-02-05 青岛海尔空调器有限总公司 A kind of air-conditioning automatically cleaning control method
CN106594976B (en) * 2016-11-11 2018-12-18 青岛海尔空调器有限总公司 Machine cleaning method inside and outside air-conditioning
CN106679067A (en) * 2016-11-11 2017-05-17 青岛海尔空调器有限总公司 Self-cleaning method for air conditioner heat exchanger
JP6296633B1 (en) * 2017-04-28 2018-03-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN107525216A (en) * 2017-07-26 2017-12-29 青岛海尔空调器有限总公司 Air conditioner and its control method with self-cleaning function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014288A (en) * 2008-07-01 2010-01-21 Toshiba Carrier Corp Air conditioner
CN106545975A (en) * 2016-12-08 2017-03-29 美的集团武汉制冷设备有限公司 The heat exchanger cleaning control method of air-conditioner and device
CN106679111A (en) * 2017-01-23 2017-05-17 深圳创维空调科技有限公司 Automatic cleaning treatment method and automatic cleaning treatment system of air-conditioning heat exchanger
JP6387197B1 (en) * 2017-04-28 2018-09-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN107514681A (en) * 2017-07-26 2017-12-26 青岛海尔空调器有限总公司 Air conditioner room unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054845A1 (en) * 2020-09-10 2022-03-17 ダイキン工業株式会社 Air conditioner
JP2022045997A (en) * 2020-09-10 2022-03-23 ダイキン工業株式会社 Air conditioner
JP7082299B2 (en) 2020-09-10 2022-06-08 ダイキン工業株式会社 Air conditioner
EP4148348A1 (en) * 2021-09-09 2023-03-15 SHR GmbH Method and apparatus for controlling the cleaning and cooling process of heat exchangers

Also Published As

Publication number Publication date
ES2752726A2 (en) 2020-04-06
FR3086998A1 (en) 2020-04-10
CN111356881A (en) 2020-06-30
TWI689688B (en) 2020-04-01
TW202014644A (en) 2020-04-16
CN111356881B (en) 2022-03-04
FR3086998B1 (en) 2021-03-19
JPWO2020070892A1 (en) 2021-02-15
JP6486586B1 (en) 2019-03-20
ES2752726A8 (en) 2020-05-14
MY195097A (en) 2023-01-10
ES2752726R1 (en) 2020-05-18

Similar Documents

Publication Publication Date Title
WO2020070892A1 (en) Air conditioner, method for controlling air conditioner, and program
CN106594976B (en) Machine cleaning method inside and outside air-conditioning
JP6498374B1 (en) Air conditioner, control method and program for air conditioner
JP6534783B1 (en) Air conditioner
US10168067B2 (en) Detecting and handling a blocked condition in the coil
JP6667232B2 (en) Air conditioner
JPWO2020144797A1 (en) Air conditioner
US10520213B2 (en) Air conditioner units and methods of operation
JP3410859B2 (en) Air conditioner
JP3620540B1 (en) Control method of multi-room air conditioner
JP7420562B2 (en) Air conditioners and servers
CN110736142B (en) Air conditioner and rapid dehumidification control method without cooling
JP7266999B2 (en) Air conditioner and its construction method
JP6698221B1 (en) Air conditioner
JP2003294296A (en) Air conditioner
JP3480870B2 (en) Air conditioner
JP2008116136A (en) Air conditioner
WO2022049873A1 (en) Air conditioning device
TWI706088B (en) air conditioner
WO2023042297A1 (en) Air-conditioning device and method
JP2018128177A (en) Air Conditioning System
JP2001280667A (en) Air conditioner
JP2023035611A (en) air conditioner
KR20240079721A (en) Air conditioner and controlling method thereof
CN118031453A (en) Air conditioning system, heating control method, heating control device, heating control equipment and air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019502815

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936030

Country of ref document: EP

Kind code of ref document: A1