WO2020069733A1 - Method for treatment of galvanised or galvannealed steel - Google Patents

Method for treatment of galvanised or galvannealed steel

Info

Publication number
WO2020069733A1
WO2020069733A1 PCT/EP2018/076873 EP2018076873W WO2020069733A1 WO 2020069733 A1 WO2020069733 A1 WO 2020069733A1 EP 2018076873 W EP2018076873 W EP 2018076873W WO 2020069733 A1 WO2020069733 A1 WO 2020069733A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
providing
applicator roll
coating liquid
coating
Prior art date
Application number
PCT/EP2018/076873
Other languages
French (fr)
Inventor
Hendrik Bart Van Veldhuizen
Arno Harold René HARMSEN
Marcellinus Theodorus DE WINTER
Original Assignee
Tata Steel Ijmuiden B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tata Steel Ijmuiden B.V. filed Critical Tata Steel Ijmuiden B.V.
Priority to PCT/EP2018/076873 priority Critical patent/WO2020069733A1/en
Priority to EP18782419.8A priority patent/EP3860769A1/en
Publication of WO2020069733A1 publication Critical patent/WO2020069733A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/08Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
    • B05C1/0808Details thereof, e.g. surface characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/08Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
    • B05C1/0826Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line the work being a web or sheets
    • B05C1/0834Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line the work being a web or sheets the coating roller co-operating with other rollers, e.g. dosing, transfer rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/04Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material to opposite sides of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/10Applying the material on both sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/65Adding a layer before coating metal layer

Definitions

  • the invention relates to a method of treating a substrate, comprising:
  • a contact angle Q is defined as the angle, measured -in a static situation- through the coating liquid, where the liquid-vapour interface of the coating liquid meets the solid surface of the applicator roll;
  • ribbing defects are often observed in conventional roll coating processes for liquid coatings, for example, when the coating liquid has a viscosity of about 0.1 mPa.s or greater.
  • the defects may occur as a coating liquid passes through a nip between rolls and the viscous stress at a film split overcomes surface tension forces attempting to maintain a uniform curvature of the interface at the film split.
  • the ribbing defect may according to this document lead to a highly non-uniform coating as the liquid exits the nip. To address this problem it may be necessary to limit line speeds. Other problems are that it may reduce the coating efficiency, and increase the cost of production. Additionally according to this document, as line speeds are increased it can lead to misting, for example, ejection of small droplets in the form of a mist, which can be a concern for the health and safety of the factory environment.
  • the ribbing defect is cured by arranging that the first roll comprises a thin metal shell and a resilient layer, the thin metal shell encases the resilient layer there beneath, and the thin metal shell is capable of deflecting in unison with the resilient layer such that the thin metal shell is elastically deformable at the nip when in contact with the second roll.
  • a method comprising the steps of: - providing that the substrate (5) is a metal strip (5’);
  • Forward coating mode means that the tangential speed of the surface area of the applicator roll and the line speed of the substrate are in the same direction.
  • Reverse coating mode means that the tangential speed of the surface area of the applicator roll and the line speed are in opposite directions.
  • the words“substantially matches” as used in this claim mean that preventing the ribbing defect can be promoted by arranging that the absolute value of the said tangential speed of the surface area of the rolls contacting the substrate differs less than 50 % from the absolute value of the line speed.
  • the inventors have found that controlling the contact angle Q to 97° or below plays a decisive role in the reduction and prevention of the ribbing defect when treating a metal strip.
  • the method comprises:
  • the contact angle Q is 93° or smaller and more preferably:
  • the mentioned 97° is an upper limit; more favourable results are achievable by providing that the contact angle Q is smaller than 93°, more preferably even smaller than 80°. Where the ribbing result at contact angles Q from 93° to 97° varies from good to excellent, it is very good to excellent at 80° or smaller.
  • At least one applicator roll (2, 3) has a polymer cover, wherein the tangential speed of the surface area of the applicator roll (2, 3) differs 30 % or less, preferably 20 % or less, and most preferably 10 % or less up or down with respect to the line speed of the substrate (5).
  • the treatment of the galvanised or galvannealed steel is carried out preferably by arranging that at least one of the applicator rolls has a polymer cover and where the method is used in forward coating mode, that the coating liquid (10) is applied to the substrate (5) as a thin wet film having a thickness of 4 pm or less, preferably 3 pm or less, and where the method is used in reverse coating mode, that the coating liquid (10) is applied to the substrate (5) as a thin wet film of less than 8 pm, preferably less than 6 pm, more preferably less than 4 pm.
  • the invention has been found to work well if the metal substrate is already coated, preferably zinc based coated, e.g. is a galvanised or galvannealed steel substrate or a substrate with a zinc coating alloyed with aluminium and magnesium such as Magizinc®.
  • zinc based coated e.g. is a galvanised or galvannealed steel substrate or a substrate with a zinc coating alloyed with aluminium and magnesium such as Magizinc®.
  • the result of the method of the invention is e.g. a galvanised or galvannealed steel treated with the coating liquid, wherein ribbing defects are effectively avoided.
  • Figure 1 shows an apparatus employing the method according to the invention.
  • Figure 2 shows a diagram explaining the principles determining the contact angle Q.
  • Figure 3 shows contact angles measured using coating liquids designated as 10% and 20% in combination with materials of the surface of the applicator roll designated as rubbers A - N.
  • Figure 1 shows an apparatus 1 comprising a first applicator roll 2, a second applicator roll 3, and a nip 4 between the first and second applicator rolls 2, 3.
  • a substrate 5 in the form of a galvanised or galvannealed steel strip 5’ moves with a predefined speed in the direction of arrow b.
  • the steel strip 5’ is coated on both sides with a coating liquid 10 (normally but not necessarily the same on each side) that is stored in and retrieved from tanks 6, 7.
  • Supporting or pick-up rolls 8, 9 are rotating within the tanks 6, 7 to pick up the coating liquid 10 from these tanks 6, 7.
  • Figure 1 shows that the applicator roll 2 is counter-rotating with a tangential speed as symbolized with arrow c, and which is opposite (reverse coating mode) to the movement direction of the metal strip 5’ symbolized by the arrow b.
  • reverse coating mode the strip will carry almost all (more than 95%) of the coating to the strip.
  • the roll 2 has a tangential speed which is in the same direction as the movement direction b of the metal strip 5 (forward coating mode).
  • Arrow c is then pointing in a direction opposite to the one shown in figure 1.
  • the strip will only carry about 50% of the coating to the strip, the remainder of the coating staying on the applicator roll 2, 3.
  • the contact angle Q is symbolized in figure 2 with the letter O’.
  • the contact angle Q is defined as the angle where -in equilibrium- the liquid-ambient-atmosphere- interface meets the solid surface of the applicator roll (2, 3), see figure 2.
  • the horizontal line represents the solid surface of the applicator roll (2,3) and the curved line represents the abovementioned interface.
  • Practical values for the tangential speed of the surface area of the rolls 2, 3 and the line speed of the substrate 5 are that each speed is set in the range of 50 to 140 m/min.
  • the contact angle Q is 97° or smaller, and more preferably that the contact angle Q is 93° and even more preferably that is is 80° or smaller.
  • the invention is also embodied in a galvanised or galvannealed steel strip 5 treated with a coating liquid 10 as provided on the metal strip 5 in accordance with the method of the invention.

Abstract

A method, comprising: - providing a first roll, a second roll, and a nip between the first and second rolls; - passing a substrate through the nip between the rolls at a predetermined line speed; - supplying a coating liquid to the substrate in the nip, wherein the coating liquid has a predetermined contact angle θ with the substrate; and - smoothing the coating liquid, via the nip, into a substantially uniform layer of liquid coating on the substrate, - providing that the substrate is a galvanised or galvannealed steel strip; - providing that a circumferential speed of a surface area of the rolls contacting the substrate substantially matches the line speed; and - providing that the contact angle θ of the coating liquid with the substrate is smaller than 97.

Description

METHOD FOR TREATMENT OF GALVANISED OR GALVANNEALED STEEL
The invention relates to a method of treating a substrate, comprising:
providing an applicator roll (2,3) contacting the substrate (5) which travels at a certain line speed;
supplying a coating liquid (10) to the applicator roll (2,3) and thereby to the substrate (5),
applying the coating liquid (10) as a substantially uniform layer of liquid coating
(10) onto the substrate (5),
wherein a contact angle Q is defined as the angle, measured -in a static situation- through the coating liquid, where the liquid-vapour interface of the coating liquid meets the solid surface of the applicator roll;
Such a method is known from WO 2016/200866.
According to WO2016/200866 so-called ribbing defects are often observed in conventional roll coating processes for liquid coatings, for example, when the coating liquid has a viscosity of about 0.1 mPa.s or greater. The defects may occur as a coating liquid passes through a nip between rolls and the viscous stress at a film split overcomes surface tension forces attempting to maintain a uniform curvature of the interface at the film split.
WO2016/200866 teaches that the balance of viscous to surface tension forces can be described by a dimensionless capillary number defined by the equation Ca = m U / o, wherein Ca is the capillary number, m is a liquid viscosity, U is an average speed of first and second rolls, and o is the liquid surface tension. The ribbing defect may according to this document lead to a highly non-uniform coating as the liquid exits the nip. To address this problem it may be necessary to limit line speeds. Other problems are that it may reduce the coating efficiency, and increase the cost of production. Additionally according to this document, as line speeds are increased it can lead to misting, for example, ejection of small droplets in the form of a mist, which can be a concern for the health and safety of the factory environment.
The problem of the ribbing defect is a long-lasting one; reference is made to the article“Ribbing Instability of a Two-roll Coater: Newtonian fluids” by J. Greener et al, published in Chem. Eng. Common, Vol. 5, pp. 73 - 83, published by Gordon and Breach, Science Publishers Inc. 1980, in which already an effort is made to understand the physical background of the ribbing defect. Its physical background is however unruly and hard to understand, which explains that the authors of said article exhale in discussing the theory known at the time:“Why does the theory of Savage fit the data so well in the case of the roll rotating near a fixed plate? We are unable to offer an explanation for this.” There are indeed many factors that play a role in the emergence of the ribbing defect. Mention can be made of roll properties such as hardness, Young modulus, viscoelastic, roll layer thickness, compressibility, roll radius etc. Also properties of the applied coating liquid are of importance, such as density, surface tension, viscosity, viscoelasticity. And finally operating conditions such as roll speed, speed ratio, slip, the height of the nip between the rolls and the applied load, temperature and the like all seem to be factors that influence the occurrence of the ribbing defect.
According to WO2016/200866 the ribbing defect is cured by arranging that the first roll comprises a thin metal shell and a resilient layer, the thin metal shell encases the resilient layer there beneath, and the thin metal shell is capable of deflecting in unison with the resilient layer such that the thin metal shell is elastically deformable at the nip when in contact with the second roll.
In the particular field of treating strips of galvanised or galvannealed steel the problems that are observed in WO2016/200866 equally apply, yet the solutions as taught by WO2016/200866 are unfit to be practised in this heavy industrial environment.
It is therefore an object of the invention to counter the ribbing defect when treating a strip of galvanised or galvannealed steel with a coating liquid.
It is another object of the invention to be able to provide a galvanised or galvannealed steel with a coating liquid without reducing the line speed.
According to the invention a method and a galvanised or galvannealed steel substrate treated with a coating liquid is provided in accordance with one or more of the appended claims.
In a first aspect of the invention a method is proposed comprising the steps of: - providing that the substrate (5) is a metal strip (5’);
providing that -in forward coating mode or in reverse coating mode- the absolute value of the tangential speed of a surface area of the applicator roll (2, 3) contacting the substrate (5) substantially matches that of the line speed of the substrate (5);
- providing that the contact angle Q is 97° or smaller.
Forward coating mode means that the tangential speed of the surface area of the applicator roll and the line speed of the substrate are in the same direction. Reverse coating mode means that the tangential speed of the surface area of the applicator roll and the line speed are in opposite directions. The words“substantially matches” as used in this claim mean that preventing the ribbing defect can be promoted by arranging that the absolute value of the said tangential speed of the surface area of the rolls contacting the substrate differs less than 50 % from the absolute value of the line speed. The inventors have found that controlling the contact angle Q to 97° or below plays a decisive role in the reduction and prevention of the ribbing defect when treating a metal strip.
In a further aspect of the invention the method comprises:
- providing that the contact angle Q is 93° or smaller and more preferably:
is 80° or smaller.
The mentioned 97° is an upper limit; more favourable results are achievable by providing that the contact angle Q is smaller than 93°, more preferably even smaller than 80°. Where the ribbing result at contact angles Q from 93° to 97° varies from good to excellent, it is very good to excellent at 80° or smaller.
In a further aspect of the invention a method is proposed comprising:
providing that at least one applicator roll (2, 3) has a polymer cover, wherein the tangential speed of the surface area of the applicator roll (2, 3) differs 30 % or less, preferably 20 % or less, and most preferably 10 % or less up or down with respect to the line speed of the substrate (5).
This leads to a better quality of the surface of the treated substrate and less applicator roll wear.
The treatment of the galvanised or galvannealed steel is carried out preferably by arranging that at least one of the applicator rolls has a polymer cover and where the method is used in forward coating mode, that the coating liquid (10) is applied to the substrate (5) as a thin wet film having a thickness of 4 pm or less, preferably 3 pm or less, and where the method is used in reverse coating mode, that the coating liquid (10) is applied to the substrate (5) as a thin wet film of less than 8 pm, preferably less than 6 pm, more preferably less than 4 pm. This results in a very efficient and effective application of coating liquid without occurrence of the ribbing defect.
The invention has been found to work well if the metal substrate is already coated, preferably zinc based coated, e.g. is a galvanised or galvannealed steel substrate or a substrate with a zinc coating alloyed with aluminium and magnesium such as Magizinc®.
The result of the method of the invention is e.g. a galvanised or galvannealed steel treated with the coating liquid, wherein ribbing defects are effectively avoided.
The invention will hereinafter be further elucidated with reference to the drawing of an exemplary embodiment of an apparatus employing the method according to the invention that is not limiting as to the appended claims.
In the drawing:
Figure 1 shows an apparatus employing the method according to the invention.
Figure 2 shows a diagram explaining the principles determining the contact angle Q. Figure 3 shows contact angles measured using coating liquids designated as 10% and 20% in combination with materials of the surface of the applicator roll designated as rubbers A - N.
Figure 1 shows an apparatus 1 comprising a first applicator roll 2, a second applicator roll 3, and a nip 4 between the first and second applicator rolls 2, 3. Through the nip 4 between the first applicator roll 2 and the second applicator roll 3 a substrate 5 in the form of a galvanised or galvannealed steel strip 5’ moves with a predefined speed in the direction of arrow b. With the first applicator roll 2 and the second applicator roll 3 the steel strip 5’ is coated on both sides with a coating liquid 10 (normally but not necessarily the same on each side) that is stored in and retrieved from tanks 6, 7. Supporting or pick-up rolls 8, 9 are rotating within the tanks 6, 7 to pick up the coating liquid 10 from these tanks 6, 7. As the supporting rolls 8, 9 are in contact with the earlier mentioned first applicator roll 2 and second applicator roll 3 a transfer of the coating liquid 10 from the pick-up rolls 8, 9 to these latter applicator rolls 2, 3 takes place. The applicator rolls 2, 3 can subsequently provide the coating liquid 10 to both sides of the metal strip 5’. It is of course also possible to arrange the apparatus 1 in a way that coating liquid 10 will be provided on only one side of the metal strip 5’. The ways in which this may be implemented are known to a person skilled in the art, so it is not necessary to provide a more detailed description thereof.
With the action of the applicator rolls 2, 3 on the metal strip 5’ a further smoothing of the coating liquid 10 which is passed on to the metal strip 5’ in the nip 4, is arranged which results into a substantially uniform layer of liquid coating 10 on the metal strip 5.
Figure 1 shows that the applicator roll 2 is counter-rotating with a tangential speed as symbolized with arrow c, and which is opposite (reverse coating mode) to the movement direction of the metal strip 5’ symbolized by the arrow b. In reverse coating mode, the strip will carry almost all (more than 95%) of the coating to the strip. Such a reverse operation is however only one possible option, another common option which is within the scope of the invention is that the roll 2 has a tangential speed which is in the same direction as the movement direction b of the metal strip 5 (forward coating mode). Arrow c is then pointing in a direction opposite to the one shown in figure 1. In forward coating mode the strip will only carry about 50% of the coating to the strip, the remainder of the coating staying on the applicator roll 2, 3.
The contact angle Q is symbolized in figure 2 with the letter O’. The contact angle Q is defined as the angle where -in equilibrium- the liquid-ambient-atmosphere- interface meets the solid surface of the applicator roll (2, 3), see figure 2. In figure 2 the horizontal line represents the solid surface of the applicator roll (2,3) and the curved line represents the abovementioned interface. Practical values for the tangential speed of the surface area of the rolls 2, 3 and the line speed of the substrate 5 are that each speed is set in the range of 50 to 140 m/min. The results of the invention are supported by the findings as shown in figure 3 and in the following tables.
A large amount of applicator rolls with surface layers of different rubbers was obtained from different suppliers as follows:
Figure imgf000007_0001
Table 1 Materials for surface of applicator roll As it was expected that the concentration could have an influence this was varied as well. Two concentrations normally used in manufacturing, a so called 10 % concentration and a 20 % concentration were used. The results of the contact angle measurements is shown in figure 3.
Then for applicator rolls with rubbers A, B, E, K and M the ribbing results were established in a commercial line, using the two concentrations mentioned above, with the results as shown in table 2:
Figure imgf000008_0001
Table 2 Ribbing result at 10% resp. 20% concentration In accordance with these results and referring also to figure 3 it is preferred that the contact angle Q is 97° or smaller, and more preferably that the contact angle Q is 93° and even more preferably that is is 80° or smaller.
Although the experiment shows the application of a coating liquid 10 in a single step, it is preferred with a view to achieve best results that different coating liquids may be provided onto the metal strip 5 in subsequent steps, using customary post treatment liquids in customary concentrations of e.g. 10 - 30 %, the remainder being water.
Finally it is remarked that the invention is also embodied in a galvanised or galvannealed steel strip 5 treated with a coating liquid 10 as provided on the metal strip 5 in accordance with the method of the invention.
Although the invention has been discussed in the foregoing with reference to an exemplary embodiment of the method of the invention, the invention is not restricted to this particular embodiment which can be varied in many ways without departing from the invention. The discussed exemplary embodiment shall therefore not be used to construe the appended claims strictly in accordance therewith. On the contrary the embodiment is merely intended to explain the wording of the appended claims without intent to limit the claims to this exemplary embodiment. The scope of protection of the invention shall therefore be construed in accordance with the appended claims only, wherein a possible ambiguity in the wording of the claims shall be resolved using this exemplary embodiment.

Claims

1. A method of treating a substrate, comprising:
providing an applicator roll (2,3) contacting the substrate (5) which travels at a certain line speed;
supplying a coating liquid (10) to the applicator roll (2,3) and thereby to the substrate (5),
applying the coating liquid (10) as a substantially uniform layer of liquid coating (10) onto the substrate (5),
wherein a contact angle Q is defined as the angle, measured -in a static situation- through the coating liquid, where the liquid-vapour interface of the coating liquid meets the solid surface of the applicator roll;
characterized by
providing that the substrate (5) is a metal strip (5’);
providing that -in forward coating mode or in reverse coating mode- the absolute value of the tangential speed of a surface area of the applicator roll (2, 3) contacting the substrate (5) substantially matches that of the line speed of the substrate (5);
providing that the contact angle Q is 97° or smaller.
2. Method according to claim 1 , characterized by providing that the contact angle Q is 93° or smaller.
3. Method according to claim 1 or 2, characterized by providing that the contact angle Q is 80° or smaller.
4. Method according to any one of the previous claims, characterized by providing that at least one applicator roll (2, 3) has a polymer cover, wherein the tangential speed of the surface area of the applicator roll (2, 3) differs 30 % or less, preferably 20 % or less, and most preferably 10 % or less up or down with respect to the line speed of the substrate (5).
5. Method according to any one of the previous claims, wherein the method is used in forward coating mode, characterized by providing that at least one applicator roll (2, 3) has a polymer cover and that the coating liquid (10) is applied to the substrate (5) as a thin wet film having a thickness of 4 pm or less, preferably 3 pm or less.
6. Method according to any one of the previous claims, wherein the method is used in reverse coating mode, characterized by providing that at least one applicator roll (2, 3) has a polymer cover and that the coating liquid (10) is applied to the substrate (5) as a thin wet film of less than 8 pm, preferably less than 6 pm, more preferably less than 4 pm.
7. Method according to any one of the previous claims, wherein the metal substrate is coated, preferably zinc based coated, e.g. is a galvanised or galvannealed steel substrate.
PCT/EP2018/076873 2018-10-02 2018-10-02 Method for treatment of galvanised or galvannealed steel WO2020069733A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/EP2018/076873 WO2020069733A1 (en) 2018-10-02 2018-10-02 Method for treatment of galvanised or galvannealed steel
EP18782419.8A EP3860769A1 (en) 2018-10-02 2018-10-02 Method for treatment of galvanised or galvannealed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/076873 WO2020069733A1 (en) 2018-10-02 2018-10-02 Method for treatment of galvanised or galvannealed steel

Publications (1)

Publication Number Publication Date
WO2020069733A1 true WO2020069733A1 (en) 2020-04-09

Family

ID=63762531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/076873 WO2020069733A1 (en) 2018-10-02 2018-10-02 Method for treatment of galvanised or galvannealed steel

Country Status (2)

Country Link
EP (1) EP3860769A1 (en)
WO (1) WO2020069733A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263870A (en) * 1976-08-12 1981-04-28 Fuji Photo Film Co., Ltd. Coating process
US20090324842A1 (en) * 2005-04-12 2009-12-31 Toray Industries, Inc. Coater of electric insulating sheet and method for producing electric insulating sheet with coated film
WO2016200866A1 (en) 2015-06-12 2016-12-15 3M Innovative Properties Company Liquid coating method and apparatus with a deformable metal roll
US20170120260A1 (en) * 2015-10-30 2017-05-04 The Procter & Gamble Company Equipment and processes for the non-contact printing of actives onto web materials and articles
US10022743B2 (en) * 2014-09-18 2018-07-17 Panasonic Intellectual Property Management Co., Ltd. Coating film production method, coating film production apparatus, coating film, nonaqueous secondary battery electrode plate, and mobile body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263870A (en) * 1976-08-12 1981-04-28 Fuji Photo Film Co., Ltd. Coating process
US20090324842A1 (en) * 2005-04-12 2009-12-31 Toray Industries, Inc. Coater of electric insulating sheet and method for producing electric insulating sheet with coated film
US10022743B2 (en) * 2014-09-18 2018-07-17 Panasonic Intellectual Property Management Co., Ltd. Coating film production method, coating film production apparatus, coating film, nonaqueous secondary battery electrode plate, and mobile body
WO2016200866A1 (en) 2015-06-12 2016-12-15 3M Innovative Properties Company Liquid coating method and apparatus with a deformable metal roll
US20170120260A1 (en) * 2015-10-30 2017-05-04 The Procter & Gamble Company Equipment and processes for the non-contact printing of actives onto web materials and articles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. GREENER; GORDON; BREACH ET AL.: "Chem. Eng. Common", vol. 5, 1980, SCIENCE PUBLISHERS INC., article "Ribbing Instability of a Two-roll Coater: Newtonian fluids", pages: 73 - 83

Also Published As

Publication number Publication date
EP3860769A1 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
US10758931B2 (en) Liquid coating method and apparatus with a deformable metal roll
JP6391279B2 (en) Method of applying aqueous treatment liquid to the surface of moving steel strip
RU2011108551A (en) METAL SHEETS AND PLATES WITH TEXTURED SURFACES REDUCING FRICTION AND METHODS OF THEIR MANUFACTURE
JP6288724B2 (en) Thin film forming method and film forming apparatus
TW201132608A (en) Glass article with an anti-smudge surface and a method of making the same
JP2011507700A5 (en)
MA50349B1 (en) METAL SHEET PROCESSING METHOD
JP2019132432A (en) Device and method of anchoring polymer to substrate
WO2020069733A1 (en) Method for treatment of galvanised or galvannealed steel
EP3381570A1 (en) Method for treatment of galvanized or galvannealed steel
US20030021899A1 (en) Method and apparatus of coating a moving substrate surface
JP2012254445A (en) Coating apparatus
JP4300961B2 (en) Roll coating method
JP2017070927A (en) Die lip edge guide
JP2009233498A (en) Roll coating method and roll coating apparatus
KR101845351B1 (en) Micro pattern applied paper coating system
JP4506450B2 (en) Roll coating method and apparatus
JP5754371B2 (en) Roll coater
AU764135B2 (en) Method and apparatus of coating a moving substrate surface
JP2006263624A (en) Coating method and apparatus for strip
US20210346930A1 (en) Method and apparatus for stretch-bend leveling metal strip
JP6376332B2 (en) Roll coat painting method
JP2024022832A (en) Manufacturing method of painted metal plate
JP2005016233A (en) Painting siding board and its manufacturing method
JP4571909B2 (en) Multilayer coating method for metal plates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18782419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018782419

Country of ref document: EP

Effective date: 20210503