WO2020067797A1 - Method and apparatus for recovering amide-based compound - Google Patents

Method and apparatus for recovering amide-based compound Download PDF

Info

Publication number
WO2020067797A1
WO2020067797A1 PCT/KR2019/012634 KR2019012634W WO2020067797A1 WO 2020067797 A1 WO2020067797 A1 WO 2020067797A1 KR 2019012634 W KR2019012634 W KR 2019012634W WO 2020067797 A1 WO2020067797 A1 WO 2020067797A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
extraction
distillation
distillation column
amide
Prior art date
Application number
PCT/KR2019/012634
Other languages
French (fr)
Korean (ko)
Inventor
조상환
한중진
김한솔
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190119141A external-priority patent/KR102294876B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/054,729 priority Critical patent/US11970445B2/en
Priority to EP19865996.3A priority patent/EP3766867B1/en
Priority to CN201980029958.4A priority patent/CN112074502B/en
Priority to JP2020563487A priority patent/JP7109851B2/en
Publication of WO2020067797A1 publication Critical patent/WO2020067797A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/40Extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0259Preparatory processes metal hydrogensulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification

Definitions

  • the present invention relates to a method and an apparatus for efficiently recovering an amide compound such as N-methyl-2-pyrrolidone from an aqueous solution containing an amide compound such as N-methyl-2-pyrrolidone.
  • Polyarylene sulfide typified by polyphenylene sulfide (PPS)
  • PPS polyphenylene sulfide
  • PPS resin since it has good fluidity, it is advantageous to use it as a compound by kneading with a filler or reinforcing agent such as glass fiber.
  • NMP N-methyl pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • Amide-based compounds such as N-methyl-2-pyrrolidone used in this way are not only more expensive than conventional organic solvents, but are also known to be the main cause of environmental pollution when discharged in aqueous solutions, and are generally recovered and purified to recycle. Is becoming.
  • amide-based compounds such as N-methyl-2-pyrrolidone have excellent compatibility with water as they have high organic solubility, so they are infinitely mixed with water, and a large amount of inorganic salts are dissolved, such as effluent from the PAS manufacturing process. If it is, it is difficult to distill as it is, various recovery methods have been tried.
  • the present invention is to provide a method and apparatus for efficiently recovering an amide compound such as N-methyl-2-pyrrolidone from an aqueous solution containing an amide compound such as N-methyl-2-pyrrolidone.
  • a separation wall is provided inside, and the interior is divided into a top region and a bottom region where the separation wall is not located, and an intermediate region including the separation wall, and the intermediate region is the separation
  • a step of introducing a mixed solution containing water and an amide-based compound and an extraction solvent into an extraction region of a distillation column divided into an extraction region divided by a wall and a distillation region (first step); In the extraction region of the distillation column, an amide-based compound and an extraction solvent are separated and discharged into an upper flow of the extraction region, and water is separated into a lower flow of the extraction region and is disposed on the extraction region in the bottom region of the distillation column. Separately flowing out to the outlet port (second step), and
  • At least one of the upper stream and the lower stream of the extraction zone is introduced into the distillation zone of the distillation column, and the extraction solvent is separated into the upper stream of the distillation zone and separated and discharged to the second outflow port of the top zone of the distillation column, Water is separated into the middle flow of the distillation zone and flows out through the third outlet port of the distillation zone, and the amide compound is separated into the lower stream of the distillation zone and is disposed on the distillation zone side in the bottom area of the distillation column.
  • a method for recovering an amide-based compound is provided, comprising the step of separating and flowing into a fourth outlet port (third step).
  • an apparatus for recovering an amide compound that can be used in the method as described above.
  • a method for producing polyarylene sulfide including a method comprising the step of recovering an amide-based compound as described above.
  • FIG. 1 is a schematic view showing a recovery device and a recovery process including a dividing wall column according to an embodiment of the present invention by way of example.
  • FIG. 2 is a schematic view showing a recovery device and a recovery process using a conventional distillation process according to Comparative Example 1.
  • FIG. 3 is a schematic view showing a recovery device and a recovery process using a conventional extraction and distillation process according to Comparative Example 2.
  • FIG. 4 is a schematic view showing a recovery device and a recovery process including a dividing wall type distillation column that performs only a distillation process without a separate liquid / liquid extraction region in a conventional manner according to Comparative Example 3.
  • the present invention provides a method and apparatus for efficiently recovering an amide-based compound such as N-methyl-2-pyrrolidone from an aqueous solution containing an amide-based compound such as N-methyl-2-pyrrolidone.
  • the present invention is a polyarylene sulfide (Polyarylene sulfide, PAS) from the waste solution containing a variety of inorganic salts and impurities generated from the manufacturing process, the high-purity amide-based compounds can be efficiently separated, the extraction process and the distillation process At the same time, while improving the separation efficiency performance, it is characterized by minimizing the energy consumption of the entire process and reducing the initial device cost.
  • PAS Polyarylene sulfide
  • the method for recovering the amide-based compound is provided with a separation wall therein, and an inside is a top region and a bottom region where the separation wall is not located, and an intermediate region including the separation wall. Separated, the intermediate region is introduced into the extraction region of the distillation column divided into an extraction region and a distillation region divided by the separation wall (see 107 in FIG. 1), and a mixed solution containing water and an amide compound and an extraction solvent are added.
  • an amide-based compound and an extraction solvent are separated and discharged into an upper flow of the extraction region, and water is separated into a lower flow of the extraction region and is disposed on the extraction region in the bottom region of the distillation column.
  • a liquid / liquid extraction step (second step) and an distillation step (third step) of the obtained extract solution are performed using an extraction solvent for an aqueous solution containing the amide-based compound. It is characterized in that it is carried out simultaneously in a distillation column.
  • the method for recovering the amide-based compound includes a step (first step) of adding a mixed solution containing water and an amide-based compound and an extraction solvent to the extraction region of the dividing wall type distillation column.
  • a separation wall is provided inside, and a top region and a bottom region inside which the separation wall is not located, and an intermediate region including the separation wall It is divided into, and the intermediate region may be performed using a dividing wall type distillation column divided into an extraction region divided by the dividing wall and a distillation region.
  • FIG. 1 is merely exemplary, and the scope of the process and apparatus for recovering the amide compound of the present invention is not limited to the accompanying drawings.
  • the specific type of the dividing wall type distillation column which can be used in the recovery process of the amide compound according to the present invention is not particularly limited.
  • a dividing column having a general structure as shown in FIG. 1 may be used, or a distillation column designed to change the position or shape of a dividing wall in the distillation column in consideration of purification efficiency may be used.
  • the extraction area and the distillation area according to the separation wall are composed of separate columns, and the top and bottom areas where the separation wall is not located are thermodynamically connected by stream-connecting the extraction area and the distillation area in both directions.
  • a Petlyuk distillation column, etc. designed to be changed to form the same space may be used.
  • the area divided by the dividing wall of the dividing wall column has a form of a distillation column replaced by a separate pre-divided column, where the upper product from the pre-divided column Silver may be introduced in the upper portion of the subsequent column (not the dividing wall column), and the lower product from the pre-fractionation column may be introduced in the lower portion of the subsequent column.
  • the pre-fractionation column does not have a heater or condenser with a separation wall, but may be in a form in which liquid from the upper portion of the subsequent column of the pre-fractionation column and steam from the bottom portion of the subsequent column are introduced into the pre-fractionation column.
  • the number of stages and the inner diameter of the distillation column are not particularly limited, and can be set based on, for example, the theoretical number of stages inferred from the distillation curve in consideration of the composition of the mixture to be purified.
  • the dividing wall type distillation column is a device designed for distillation of raw materials containing three components of low boiling point, medium boiling point, and high boiling point, and is similar to each other from the Petroleum distillation column and the thermodynamic point of view.
  • the Petroleum distillation column is a low boiling point, a high boiling point, and a high boiling point in the distillation zone, by first separating the low boiling point and high boiling point materials by adding an extraction solvent from the extraction column, and the top portion of the extraction column flows into the supply stage of the distillation zone. It is designed to separate each material.
  • the dividing wall-type distillation column is a type in which the extraction region and the distillation region are integrated therein by providing a separation wall in the column.
  • the present invention which includes an extraction step and a purification step using a dividing wall type distillation column or a Petroleum distillation column, makes it possible to recover high purity NMP and extraction solvent. This method is simple and economically very advantageous.
  • a dividing-wall column or a petrol distillation column it is possible to reduce the number of distillation columns (reducing distillation column casings, heaters, condensers or internal parts), which reduces the initial investment cost and complexity of the distillation plant. In addition, energy consumption can be significantly reduced.
  • the present invention as described above, to reduce the energy and reduce the equipment cost, to provide the operating conditions of the dividing wall-type distillation column designed to separate the solvent used in the polyphenylene sulfide polymerization process with high purity and high efficiency. You can.
  • the dividing wall column of the present invention may have a structure as shown in FIG. 1.
  • the exemplary dividing wall type distillation column is divided inside by a dividing wall 107.
  • the interior of the dividing wall-type distillation column may be divided into an intermediate region including a dividing wall and an upper region and a lower region not containing the dividing wall, as partitioned in FIG. 1.
  • the intermediate region may be divided into an extraction region and a distillation region divided by a separation wall.
  • the dividing wall-type distillation column includes an extraction region and an extraction solvent for extracting and separating a mixed solution containing water and an amide-based mixture together with an extraction solvent, a top region where a low-boiling flow is discharged, a top bottom region where a high-boiling flow is discharged, It can be divided into distillation zones that separate and flow out as intermediate streams.
  • the "top column" of the dividing wall type distillation column means the uppermost part of the tower of the dividing wall type distillation column, and may be included in the upper region of the dividing wall type distillation column, and the "top bottom" of the dividing wall type distillation column may be It means the bottom part of the tower and may be included in the lower region of the dividing column.
  • the bottom area may be further divided into an area corresponding to an extraction area and an area corresponding to a distillation area based on an extension line below the separation wall.
  • the upper region is used in the same sense as the top region, and the lower region is used in the same sense as the top bottom region.
  • the extraction region and the distillation region may be separated from each other or separated by the separation wall. Accordingly, it is possible to prevent the flow in the extraction region and the flow in the distillation region from mixing with each other.
  • the term "separation” or “isolation” as used herein means that the flow in each region independently flows or exists in the region divided by the separation wall.
  • the dividing wall type distillation column may be configured in such a way that the extraction region and the distillation region are configured as separate columns, and the upper and lower flows of the extraction region and the distillation region are connected to each other in separate streams. .
  • the dividing wall of the dividing wall type distillation column is included in an intermediate region of the dividing wall type distillation column.
  • the separation wall is located at about 20% to about 50%, or about 25% to about 45% of the total number of theoretical plates calculated based on the column top when calculated based on the theoretical number of distillation columns. can do.
  • theoretical stage number means the number of hypothetical regions or stages in which the two phases, such as gas phase and liquid phase, are in equilibrium with each other in the dividing wall column. Since the dividing wall is included in the dividing wall type distillation column in the above range, it is possible to effectively block mixing of the flow in the extraction region and the flow in the distillation region.
  • the dividing wall-type distillation column includes a supply port through which a mixed solution containing water and an amide-based compound and an extraction solvent are introduced, and the supply port of the extraction region is composed of one, so that the mixed solution and the extraction solvent are It may be introduced together, or may be provided as two or more divided into a first supply port into which a mixed solution containing water and an amide-based compound is introduced and a second supply port into which an extraction solvent is introduced.
  • a mixture solution containing water and an amide compound and an extraction solvent are introduced into the extraction region of the separation type distillation column through the supply port.
  • the supply port of the extraction region may be located at 2% to 98% of the theoretical number of plates calculated based on the top of the distillation column.
  • the supply port of the extraction region is divided into a first supply port to which a mixed solution containing water and an amide-based compound is input and a second supply port to which an extraction solvent is input, two or more of the supply ports are provided with water and amide.
  • the first supply port (see streams 101 and 101i in FIG. 1) into which the mixed solution containing the system compound is introduced is within 20% or within 2% to 20%, or within 10% of the theoretical plates calculated based on the top of the distillation column, or Located at 2% to 10%, the second supply port (see streams 102 and 102i in FIG. 1) for introducing the extraction solvent is 80% or more or 80% to 98%, or 90% or more or 90% of the calculated theoretical number To 98%.
  • the present invention efficiently separates amide compounds such as N-methyl-2-pyrrolidone from waste liquids containing various inorganic salts and impurities generated from a process of manufacturing polyarylene sulfide (PAS).
  • PAS polyarylene sulfide
  • the mixed solution introduced into the extraction region of the dividing wall-type distillation column includes water and an amide-based compound as an alkali metal hydrosulfide, an alkali metal sulfide, an alkali metal halide, a dihalogenated aromatic compound, and polyarylene sulfide. It may be to further include one or more selected from the group consisting of.
  • the mixed solution is sodium chloride (NaCl), o-dichlorobenzene (o-DCB), m-dichlorobenzene (m-DCB), p-dichlorobenzene (p-DCB), sodium hydrogen sulfide together with water and an amide compound.
  • NaSH sodium chloride
  • Na 2 S sodium sulfide
  • PPS polyphenylene sulfide
  • the composition of the waste solution after washing in the polyarylene sulfide (PAS) manufacturing process is about 20% to about 70% by weight of an amide compound such as NMP, or about 30% to about 60% by weight.
  • the composition of brine containing sodium chloride (NaCl) may include about 30% to about 80% by weight, or about 40% to about 70% by weight.
  • the waste solution may further include p-DCB, NaSH, Na 2 S and other impurities including dispersed PPS microparticles within about 10% by weight, or within about 5% by weight, based on the total weight of the solution medium. have.
  • impurities include 2-pyrrolidinone, 1-methyl-2,5-pyrrolidione (1-methyl-2,5-pyrrolidione) and 3-chloro-N-methylaniline (3-Chloro- N-Methylaniline) and the like.
  • amide compounds include amide compounds such as N, N-dimethylformamide or N, N-dimethylacetamide; Pyrrolidone compounds such as N-methyl-2-pyrrolidone (NMP) or N-cyclohexyl-2-pyrrolidone; Caprolactam compounds such as N-methyl- ⁇ -caprolactam; Imidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; Urea compounds such as tetramethyl urea; Or a phosphoric acid amide compound, such as hexamethylphosphate triamide, etc. are mentioned, It can be one or more of these.
  • Pyrrolidone compounds such as N-methyl-2-pyrrolidone (NMP) or N-cyclohexyl-2-pyrrolidone
  • Caprolactam compounds such as N-methyl- ⁇ -caprolactam
  • Imidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone
  • Urea compounds such
  • the extraction solvent that is introduced with a mixed solution containing water and an amide-based compound to perform an extraction process is not soluble in water and has a higher breaking point than water, rather than an amide-based compound such as NMP.
  • the extraction solvent has a boiling point of about 200 ° C or less or about 55 ° C to about 200 ° C, or about 180 ° C or less or about 58 ° C to about 180 ° C, or about 160 ° C or less or about 60 ° C to about 160 ° C You can.
  • the extraction solvent does not dissolve in water in terms of effectively liquid / liquid extraction of an amide compound in an aqueous solution, and the boiling point is about 200 ° C. or lower for easy separation from the amide compound in the subsequent distillation process. desirable.
  • the extraction solvent may be one or more selected from the group consisting of aromatic or aliphatic hydrocarbon compounds having 1 to 20 carbon atoms and compounds in which one or more hydrogens of the hydrocarbons are substituted with halogen elements such as chlorine (Cl).
  • halogen elements such as chlorine (Cl).
  • Specific examples of the extraction solvent include benzene (C 6 H 6 ), chlorobenzene (C 6 H 5 Cl), chloroform (CHCl 3 ), and the like, and may be one or more of them.
  • the extraction solvent is about 100 parts by weight to 300 parts by weight, or about 110 parts by weight to 280 parts by weight, or about 120 parts by weight to 250 parts by weight based on 100 parts by weight of the total weight of the mixed solution containing water and the amide compound. Can be put into.
  • the present invention uses an extraction solvent as described above in the front end region in the distillation column, and the separated extract is distilled in the rear end region in the same distillation column, so that the amide compound can be separated with high purity while minimizing overall energy consumption.
  • a mixed solution containing water and an amide-based compound and an extraction solvent may be introduced into a distillation column under normal temperature and normal pressure conditions.
  • the normal temperature means room temperature and may be about 20 ° C to about 30 ° C
  • the normal pressure means atmospheric pressure and may be about 0.8 to 1.2 kgf / cm 2 . .
  • the amide compound and the extraction solvent are separated into an upper flow of the extraction area through an extraction process. It is discharged, and water is separated into a lower stream of the extraction region and separated and discharged from the bottom region of the distillation column to the first discharge port (refer to stream 106 and outlet port 106o in FIG. 1) disposed on the extraction region side (second step). ).
  • the extraction process may be composed of about 3 to about 10 stages, preferably about 4 to about 7 stages, or about 5 to about 6 stages.
  • the equilibrium stage number of the extraction process is determined according to the degree of extraction of the desired solute and can be set based on the equilibrium stage number discharged from a given mixed-to-feed flow rate.
  • the extraction process can be operated at about 20 to 30 °C under atmospheric pressure conditions.
  • specific process conditions related to the extraction process may be applied differently depending on the composition and flow rate or flow rate of water and amide compounds, and the type and amount of the extraction solvent.
  • the water separated into the lower stream through liquid / liquid separation in the extraction region is separated and discharged from the first outlet port (refer to 106o in FIG. 1) disposed at the extraction region in the bottom region of the distillation column to the outside of the distillation column. It may be discharged or recycled to the mixed liquid of the first step.
  • the content of water in the total component discharged from the first outlet port disposed in the extraction zone in the bottom area of the distillation column is about 90% by weight or more or about 90% by weight to about 99.9% by weight, or about 95% by weight or more It may be from about 95% to about 99.9% by weight.
  • the remaining amount other than water among the total components flowing out from the first outlet port disposed in the extraction region in the bottom region of the distillation column may be an amide compound.
  • the first outlet port disposed at the extraction region side is provided with one or two or more, and is discharged to the outside or recycled to the mixed solution of the first step according to the content of water included in the lower flow. Can be subdivided into
  • the extraction stage extraction stage and the theoretical stage of the distillation region are optimized and configured, and process conditions such as distillation temperature and reflux ratio are optimized in the distillation region, so that the liquid / liquid separated water in the extraction region is distilled in the bottom region. It can also be configured to be separated and discharged to the outside as much as possible through the fourth discharge port (see FIG. 1, 105o in FIG. 1), which is disposed on the side of the region, that is, a separation wall composed of a separation wall, that is, not a distillation region or an extraction region. At this time, the lower flow of the extraction region (see 106 in FIG. 1) may be discharged to the outside without encountering the distillation region as pure water.
  • the fourth discharge port see FIG. 1, 105o in FIG. 1
  • At least one or more of the upper flow and the lower flow of the extraction zone is introduced into the distillation zone of the distillation column, and the extraction solvent is separated into the upper stream of the distillation zone to determine the top region of the distillation column.
  • a second effluent port see stream 103 and effluent port 103o in FIG. 1
  • water is separated into the middle stream of the distillation zone and a third effluent port of the distillation zone (stream 104 and effluent port of FIG. 1) 104o)
  • the amide-based compound is separated into a lower stream of the distillation zone to a fourth effluent port (see stream 105 and effluent port 105o in FIG. 1) disposed at the bottom of the distillation column towards the distillation zone.
  • the theoretical stage number of the distillation process may be composed of about 9 to about 25 stages, or about 12 to about 20 stages, or about 14 to about 16 stages.
  • the theoretical number of stages in the distillation region may be set based on the theoretical number of stages inferred from the distillation curve considering the raw material composition.
  • a second outlet port for mainly distilling the distillate containing the extraction solvent is located at the top region
  • a fourth outlet port for distilling the distillate mainly containing an amide compound ( 1, 105o) is located at the bottom of the column
  • a third outlet port (see 104o of FIG. 1) that flows distillate mainly containing water from the middle region of the distillation column is the theoretical number of stages calculated based on the top of the distillation column. About 40% to about 65%, or about 45% to about 60%.
  • the distillate mainly containing the extraction solvent flowing out from the second outlet port of the tower top see 103o in FIG.
  • the distillate mainly containing water flowing from the middle region of the distillation column to the third outlet port of the distillation region may be separately discharged to the outside or recycled to the mixed liquid of the first step.
  • the distillate mainly containing an amide-based compound discharged from the fourth outlet port of the tower top (see 105o in FIG.
  • the content of the amide-based compound in the total components flowing out of the second outlet port of the top of the distillation column is about 10% by weight or less, or about 0.1% to about 10% by weight, or about 5% by weight or less Or about 0.1% to about 5% by weight.
  • the remaining amount other than the amide-based compound among all the components flowing out from the second outlet port of the top region of the distillation column may be an extraction solvent or a mixture of extraction solvent and water.
  • the distillate discharged from the top outlet port may be separately discharged to the outside or recycled to the extraction region or the distillation region.
  • the content of the amide-based compound in the total component discharged from the fourth outlet port disposed on the side of the distillation column in the bottom area of the distillation column is about 90% by weight or more, or about 90% by weight to about 99.9% by weight, or about 95% by weight % Or about 95% to about 99.9% by weight.
  • the remaining amount of the remaining components other than the amide compound among the total components flowing out from the first outlet port disposed in the extraction region in the bottom region of the distillation column may be water.
  • one or two or more outflow photos disposed in the top, bottom, and middle areas are respectively provided, and are discharged to the outside or recycled to the extraction area or distillation area depending on the composition of the distillate. Can be subdivided for use.
  • the temperature and pressure conditions inside the distillation column may be controlled to a specific range in order to leach the amide-based compound in a specific content range from the top and bottom areas as described above from the mixed solution containing water and the amide-based compound as described above. You can.
  • the temperature of the top region of the dividing wall-type distillation column may be adjusted to about 50 ° C to about 90 ° C, or about 50 ° C to about 80 ° C, or about 50 ° C to about 65 ° C.
  • the temperature of the bottom area of the dividing wall-type distillation column may be adjusted to about 180 ° C to 220 ° C, or about 185 ° C to 215 ° C, or about 190 ° C to 210 ° C.
  • the distillation process may be performed under atmospheric pressure without additional pressure reduction or pressure conditions.
  • the reflux ratio of the overhead flow refluxed to the top region of the dividing wall type distillation column among the overhead flows of the dividing wall type distillation column is about 1.0 or less or about 0.1 to about 1.0, or about 0.8 or less or about 0.15 to about 0.8 , Or about 0.6 or less, or about 0.2 to about 0.6.
  • the "reflux ratio” means the ratio of the flow rate (kg / hr) reflux to the flow rate (kg / hr) flowing out of the distillation column.
  • the extraction process of the second step and the distillation process of the third step are performed by one distillation column, and the temperature, pressure, and reflux ratio applied to the top and bottom areas of the distillation column are equally applied.
  • an apparatus for recovering an amide compound that can be used in the method as described above.
  • the amide-based compound recovery apparatus includes a distillation column provided with a separation wall;
  • the distillation column is divided into a top region and a bottom region where the separation wall is not located, and an intermediate region including the separation wall, and the intermediate region is divided into an extraction region and a distillation region divided by the separation wall.
  • the extraction zone includes one or more supply ports (see 101i and 102i in FIG. 1) for introducing a mixed solution containing water and an amide-based compound and an extraction solvent, and one or more first outlet ports for discharging a liquid / liquid separation solution including water. (See 106o in FIG. 1);
  • the outlet port on the distillation zone consists of three streams, and one or more second outlet ports (see 103o in FIG.
  • a mixed solution and an extraction solvent containing water and an amide-based compound flow into a supply port of the extraction region, and the mixed solution and the extraction solvent have an amide-based compound and an extraction solvent. It is characterized in that it is separated and discharged as an upper flow of the extraction region, and water is separated as a lower flow of the extraction region and separated and discharged from the bottom region of the distillation column to the first discharge port disposed at the extraction region side.
  • the recovery device of the amide-based compound at least one or more of the upper and lower streams of the extraction zone is introduced into the distillation zone of the distillation column, and the extraction solvent is separated into the upper stream of the distillation zone to form the top of the distillation column.
  • the apparatus for recovering an amide compound according to the present invention is composed of a distillation column including an extraction area and a distillation area, minimizing the number of distillation columns (distillation column casings, heaters, condensers, or internal parts, etc.) used in the purification process and purifying
  • the overall process efficiency can be maximized by simplifying the process and minimizing energy consumption. This can reduce the initial investment cost and complexity of the distillation process, and also significantly reduce energy consumption.
  • the configuration of the dividing wall-type distillation column and the features related to the dividing wall, the supply port, the outflow port, and the like, water and amide compounds, and extraction solvent are as described above, and detailed description is omitted.
  • the amide-based compound recovery device may further include a condenser, a reboiler, and the like.
  • the "condenser” is a device installed separately from the distillation column, and may mean a device for cooling the material discharged from the main body by contacting with cooling water introduced from the outside.
  • the condenser 108 may be a device for condensing the overhead flow 103 flowing out of the top region of the dividing wall type distillation column.
  • the "reboiler” is a heating device installed on the outside of the distillation column, and may mean a device for heating and evaporating a high boiling point flow again.
  • the reboiler 109 in the apparatus for recovering the amide compound illustrated in FIG. 1 may be a device for heating the bottom flow 105 flowing out of the outlet port disposed toward the distillation region in the bottom region of the dividing wall type distillation column. have.
  • the amide-based compound recovery device may be modified by additionally having conventionally changeable device (s) known to be usable for extraction or distillation devices.
  • Preparing a sulfur source comprising a mixed solvent of the compound (first step of the manufacturing process); Adding a dihalogenated aromatic compound and an amide compound to the reactor containing the sulfur source, and polymerizing to synthesize polyarylene sulfide (second step of the manufacturing process); Washing the polymerization reaction product containing the polyarylene sulfide with at least one selected from the group consisting of amide compounds and water (third step of the manufacturing process);
  • the mixture and extraction solvent containing water and the amide-based compound obtained in the washing step are provided with a separation wall therein, and a top region and a bottom region in which the separation wall is not located, and an intermediate region including the separation wall.
  • the intermediate region is introduced into an extraction region of a distillation column divided into an extraction region divided by the dividing wall and a distillation region (fourth step of the manufacturing process);
  • an amide-based compound and an extraction solvent are separated and discharged into an upper flow of the extraction region, and water is separated into a lower flow of the extraction region and is disposed on the extraction region in the bottom region of the distillation column.
  • the first step of the manufacturing process described above is a step of preparing a sulfur source.
  • the sulfur source is prepared by performing dehydration of an alkali metal hydroxide, an alkali metal hydroxide in a mixed solvent of water and an amide compound.
  • the sulfur source may include a mixed solvent of water and an amide compound remaining after the dehydration reaction, together with the sulfide of the alkali metal produced by the reaction of the alkali metal hydroxide and the hydroxide of the alkali metal.
  • the sulfide of the alkali metal may be determined according to the type of the alkali metal hydrosulfide used in the reaction, and specific examples thereof include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide or cesium sulfide, and any one of them or Mixtures of two or more can be included.
  • alkali metal hydrosulfide When preparing a sulfur source by reaction of the alkali metal hydroxide and the hydroxide of the alkali metal, specific examples of the alkali metal hydrosulfide include sodium hydrogen sulfide, sodium hydrogen sulfide, potassium hydrogen sulfide, rubidium hydrogen sulfide, or cesium hydrogen sulfide. have. Any one or a mixture of two or more of these may be used, and anhydrides or hydrates of these may also be used.
  • alkali metal hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, or cesium hydroxide, and any one or a mixture of two or more thereof may be used.
  • the hydroxide of the alkali metal may be used in an equivalent ratio of 0.90 to 2.0, more specifically in an equivalent ratio of 1.0 to 1.5, and more specifically in an equivalent ratio of 1.0 to 1.2, per 1 equivalent of the sulfide of the alkali metal.
  • equivalent weight means molar equivalent weight (eq / mol).
  • an organic acid salt of an alkali metal capable of increasing the polymerization degree of polyarylene sulfide in a short time by promoting a polymerization reaction as a polymerization aid is added.
  • the organic acid salt of the alkali metal may be lithium acetate or sodium acetate, and any one or a mixture of two or more of them may be used.
  • the organic acid salt of the alkali metal may be used in an equivalent ratio of 0.01 to 1.0, more specifically 0.01 to 0.8, and even more specifically 0.05 to 0.5 based on 1 equivalent of the hydrosulfide of the alkali metal.
  • the reaction of the alkali metal hydroxide with the alkali metal hydroxide may be performed in a mixed solvent of water and an amide compound, wherein specific examples of the amide compound are N, N-dimethylformamide or N, N -Amide compounds such as dimethylacetamide; Pyrrolidone compounds such as N-methyl-2-pyrrolidone (NMP) or N-cyclohexyl-2-pyrrolidone; Caprolactam compounds such as N-methyl- ⁇ -caprolactam; Imidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; Urea compounds such as tetramethyl urea; Or phosphate amide compounds such as hexamethylphosphate triamide, and any one or a mixture of two or more of them can be used.
  • the amide-based compound may be more specifically N-methyl-2-pyrrolidone (NMP) in consideration of reaction efficiency and cosolvent effect as a polymerization solvent during polymerization for amide
  • the water may be used in an equivalent ratio of about 1 to 8 with respect to 1 equivalent of the amide compound, more specifically about 1.5 to 5, and even more specifically about 2.5 to 5.
  • a reactant containing an alkali metal hydrosulfide and an alkali metal hydroxide may generate sulfide of an alkali metal through dehydration.
  • the dehydration reaction may be performed by stirring at a rate of about 100 to 500 rpm in a temperature range of about 130 to 205 ° C. More specifically, it may be performed by stirring at a rate of about 100 to 300 rpm in a temperature range of about 175 to 200 ° C. At this time, the time of the dehydration reaction may be performed within about 30 minutes to 6 hours, or about 1 hour to 3 hours.
  • a solvent such as water may be removed through distillation, etc., and a part of the amide compound is discharged together with water, and some sulfur contained in the sulfur source reacts with water by heat during the dehydration process. It can be volatilized as a hydrogen sulfide gas.
  • the alkali metal sulfide is precipitated as a solid in a mixed solvent of water and an amide compound. Accordingly, when a polyarylene sulfide according to the present invention is used as a sulfur source, when a sulfur source prepared by reacting the above-mentioned alkali metal hydrosulfide with an alkali metal hydroxide is used, the molar ratio of the sulfur source is the alkali metal injected during the reaction. Let the molar ratio of the sulfides of
  • a dehydration process is performed to remove a solvent such as water in the reaction product containing the sulfide of the alkali metal produced as a result of the above-described reaction.
  • the dehydration process can be performed according to a method well known in the art, the conditions are not greatly limited, and specific process conditions are as described above.
  • sulfur contained in the sulfur source reacts with water to generate hydrogen sulfide and alkali metal hydroxide, and the hydrogen sulfide produced is volatilized, so that it remains in the system after the dehydration process by hydrogen sulfide volatilized out of the system during the dehydration process.
  • the amount of sulfur in the sulfur source can be reduced.
  • the amount of sulfur remaining in the system after the dehydration process is equal to a value obtained by subtracting the molar amount of hydrogen sulfide volatilized out of the system from the amount of sulfur in the input sulfur source. .
  • the dehydration process may be performed until water becomes a molar ratio of 1 to 5, more specifically 1.5 to 4, and more specifically 1.75 to 3.5 with respect to 1 mole of effective sulfur.
  • water can be adjusted by adding water prior to the polymerization process.
  • the sulfur source prepared by the reaction and dehydration of the alkali metal hydroxide and the alkali metal hydroxide may include a mixed solvent of water and an amide compound, together with the alkali metal sulfide,
  • the water may be specifically included in a molar ratio of 1.75 to 3.5 with respect to 1 mole of sulfur contained in the sulfur source.
  • the sulfur source may further include an alkali metal hydroxide produced by the reaction of sulfur and water.
  • the second step of the manufacturing process is a step of preparing a polyarylene sulfide by polymerizing the sulfur source with a dihalogenated aromatic compound.
  • the dihalogenated aromatic compound usable for the production of the polyarylene sulfide is a compound in which two hydrogens in the aromatic ring are substituted with halogen atoms, and specific examples include o-dihalobenzene, m-dihalobenzene, and p-dihal Robenzene, dihalotoluene, dihalonaphthalene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenylsulfone, dihalodiphenylsulfoxide or dihalodiphenyl ketone, etc. Mixtures of two or more can be used.
  • the halogen atom may be fluorine, chlorine, bromine or iodine.
  • p-DCB p-dichlorobenzene
  • the dihalogenated aromatic compound may be added in an amount of about 0.8 to 1.2 based on 1 equivalent of the sulfur source.
  • polyarylene sulfide having excellent physical properties can be prepared without fear of a decrease in the melt viscosity of the polyarylene sulfide produced and an increase in the chlorine content present in the polyarylene sulfide.
  • the dihalogenated aromatic compound may be added in an equivalent weight of about 0.9 to 1.1.
  • it may further include the step of lowering the temperature of the reactor containing the sulfur source to a temperature of about 150 to 200 °C to prevent the vaporization of the dihalogenated aromatic compound.
  • the polymerization reaction of the above-mentioned sulfur source with a dihalogenated aromatic compound is an aprotic polar organic solvent, and can be carried out in a solvent of an amide-based compound that is stable to alkali at high temperatures.
  • the amide-based compound is N-methyl-2-pyrrolidone (NMP) or N-cyclo It may be a pyrrolidone compound such as hexyl-2-pyrrolidone.
  • the amide compound added in the second step of the manufacturing process is water (H2O) for the amide compound present in the polymerization reaction system. May be added in an amount such that the molar ratio of (molar ratio of water / amide compound) is about 0.85 or more.
  • additives for controlling the polymerization reaction or molecular weight such as a molecular weight modifier and a crosslinking agent, may be further added in a content within a range that does not degrade the physical properties and production yield of the final polyarylene sulfide.
  • the polymerization reaction of the sulfur source and the dihalogenated aromatic compound may be performed at about 200 to 300 ° C. Alternatively, it may be performed in multiple steps while changing the temperature within the above-described temperature range. Specifically, after the first polymerization reaction at about 200 ° C or more and less than about 250 ° C, the second polymerization reaction is performed at a temperature higher than the temperature at the time of the first polymerization, specifically, at about 250 ° C to 300 ° C. You can.
  • the third step of the manufacturing process is an alkali metal halide such as an oligomer (oligomer) or sodium chloride (NaCl) generated after polymerization among reaction products produced as a result of the polymerization reaction.
  • an alkali metal halide such as an oligomer (oligomer) or sodium chloride (NaCl) generated after polymerization among reaction products produced as a result of the polymerization reaction.
  • it is a step of washing using at least one of an amide compound and water.
  • the amide-based compound is as described above, and when considering washing efficiency among the exemplified compounds, the amide-based compound may be N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the washing process using an amide compound or water may be performed according to a method well known in the art, and the conditions are not particularly limited.
  • the mixed solution obtained through the washing process is to remove an alkali metal halide such as an oligomer or sodium chloride (NaCl), or finely dispersed polyarylene sulfide particles, etc. before being put into a distillation column to be described later.
  • an alkali metal halide such as an oligomer or sodium chloride (NaCl), or finely dispersed polyarylene sulfide particles, etc.
  • a filtering step may be additionally performed. This filtering process can be performed according to methods well known in the art, and the conditions are not particularly limited.
  • steps 4 to 6 of the manufacturing process is a step of separating and recovering an amide compound from a mixture of water and an amide compound obtained in the washing process.
  • the specific production method of the polyarylene sulfide and the specific separation and recovery method of the amide-based compound may refer to Examples described later.
  • the method for producing polyarylene sulfide or the method for separating and recovering an amide-based compound is not limited to the contents described herein, and the method for producing and separating and recovering is generally employed in the technical field to which the present invention pertains.
  • step (s) of the above-described manufacturing method and separation and recovery method may be changed by the step (s), which is usually changeable.
  • sodium sulfide is prepared by mixing 70% sodium hydrogen sulfide (NaSH) and sodium hydroxide (NaOH) in a ratio of 1: 1.05.
  • NaSH sodium hydrogen sulfide
  • NaOH sodium hydroxide
  • 0.33 equivalents of sodium acetate (CH 3 COONa) powder, 1.65 equivalents of N-methyl-2-pyrrolidone (NMP), and 4.72 equivalents of deionized water (DI water) were added to the reactor.
  • equivalent weight means molar equivalent weight (eq / mol).
  • the solid reagent was first added and then added in the order of NMP and DI water. Then, the reactor was stirred at about 150 rpm and dehydrated by heating to about 215 ° C.
  • reaction product was rinsed once with DI water and NMP at about 90 ° C. and filtered to remove residual unreacted substances or by-products. This washing and filtration process was repeated two more times, and the final product, linear polyphenylene sulfide (PPS), and an aqueous medium containing NMP were recovered as waste liquid after washing.
  • PPS linear polyphenylene sulfide
  • the waste solution after washing contained NMP-containing aqueous medium, brine (NaCl aqueous solution), wherein the composition of NMP was about 20-70% by weight and the composition of brine containing NaCl was about 30-80% by weight. Became.
  • the waste solution contains about 10 weights of other impurities including microparticles such as p-DCB, NaSH, Na 2 S, differential PPS, and 2-pyrrolidinone, relative to the total weight of the solvent of NMP and brine. %.
  • the waste solution and the extraction solvent which are a mixture solution containing water and NMP, were introduced into respective supply ports provided in the extraction area at the front end of the dividing wall type distillation column, and an extraction process was performed in the extraction area.
  • the mixed solution is introduced into the top of the extraction region arranged at the front of the separation wall (107 in FIG. 1) in a dividing wall type distillation column at a flow rate of 700 kg / hr (stream 101 in FIG. 1), and chloroform (extract solvent).
  • CHCl 3 was introduced to the bottom of the extraction area at a rate of 1300 kg / hr (stream 102 of FIG. 1).
  • the temperature of the mixed solution and the extraction solvent was 25 ° C.
  • the extraction solvent was added in an amount of about 185 parts by weight based on 100 parts by weight of the total weight of the mixed solution.
  • the mixed solution and the extraction solvent were introduced at the front end of the dividing wall-type distillation column to proceed with liquid / liquid extraction.
  • the extraction process consisted of 5 stages and was operated at about 20 to 30 ° C. under atmospheric pressure. Specifically, the top temperature of the extraction region was 24.57 ° C, and the bottom bottom temperature was 31.74 ° C.
  • the extraction process proceeds, a low boiling point and a medium boiling point mixture as an upper flow of the extraction region, that is, water and an extraction solvent are separated and moved to the top of the tower, and a high boiling point and a medium boiling point mixture, that is, a lower flow of the extraction region,
  • the NMP and the extraction solvent were separated and moved to the bottom of the column to enter the distillation zone at the rear end of the dividing wall type column.
  • the water separated by the liquid / liquid extraction in the extraction region was discharged to the outside through an outlet port disposed toward the extraction region in the bottom region (stream 106 of FIG. 1).
  • the distillation process in the distillation zone of the dividing wall column was performed under atmospheric pressure.
  • a distillation zone arranged at the rear end of a dividing wall distillation column having 15 theoretical stages a distillation process was performed by introducing a mixture of amide-based compounds separated from liquid / liquid in the extraction region of the front end and an extraction solvent.
  • the operating temperature of the top region of the dividing wall type distillation column was adjusted to be 54.36 ° C
  • the operating temperature of the top bottom region was adjusted to 202.12 ° C.
  • the reflux ratio of the top region of the dividing wall type distillation column was 0.4, and the bottom rate was 140 kg / hr (stream 105 in FIG. 1).
  • the distillation process proceeds, and mainly the extraction solvent is separated into an upper stream of the distillation zone and is separated by flowing to a second outlet port of the top of the distillation column (stream 103 in FIG. 1) and recycled to the extraction step.
  • the middle portion of the distillation zone is mainly made of distillate containing water (stream 104 of FIG. 1), and discharged to the outlet port of the distillation zone located at the 8th stage of the dividing wall-type distillation column, after which the raw material is introduced Can be recycled.
  • the NMP was separated into the lower stream of the distillation zone, and was discharged from the bottom area of the distillation column to the distillation zone (stream 105 in FIG. 1) and stored. At this time, the content of NMP in the overhead stream (stream 103 in FIG.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • the mixed solution containing water and NMP (stream 201 in FIG. 2) is introduced into a mixed liquid supply port located at the 8th stage of a conventional distillation column having 15 theoretical stages at a flow rate of 633 kg / hr without a separate extraction solvent.
  • the separation process was performed.
  • the distillation process was performed under the conditions of the column top temperature of 100.02 °C and the column bottom temperature of 173.88 °C.
  • the content of NMP in the overhead flow (stream 202 of FIG. 2) is 1% by weight relative to the total components included in the overhead flow, and the content of NMP in the bottom flow (stream 203 of FIG. 2) is included in the bottom flow It confirmed that it was 98 weight% with respect to the whole component.
  • the mixture solution containing water and NMP (stream 301 in FIG. 3) and chloroform (stream 302 in FIG. 3) were added to the extraction column as an extraction solvent, and an extraction process was performed at atmospheric pressure of about 25 ° C.
  • the extraction solvent was added in a content of 185 parts by weight based on 100 parts by weight of the total weight of the mixed solution.
  • the liquid / liquid separation is completed, and the extraction liquid (stream 304 of FIG. 3) containing NMP, water, and extraction solvent flowing out to the top of the extraction column is a total flow rate of 1439 kg / hr.
  • the distillation process was further performed by flowing into an extraction solution supply port located at the 8th stage of the distillation column. At this time, the distillation process was performed under atmospheric pressure at about 203 ° C.
  • an effluent (stream 303 in FIG. 3) containing 99% by weight or more of water was discharged to the bottom of the tower of the extraction process.
  • the NMP, the extraction solvent, and the water introduced into the distillation column are separated from the distillation column, and 99% or more of the extraction solvent is discharged as a flow (stream 305 in FIG. 3) at the top of the distillation column and recycled to the extraction step, and the flow at the bottom of the distillation column (FIG. 3) Stream 306) discharged pure NMP at a concentration of 99%.
  • NMP N-methyl-2-pyrrolidone
  • the waste solution and the extraction solvent which are a mixture solution containing water and NMP, are introduced into respective supply ports provided at the front end of the dividing wall-type distillation column (streams 401 and 402 in FIG. 4), and without liquid / liquid extraction, Example 1
  • the water and the extraction solvent are mainly discharged together as an upper stream in the top region (stream 403 in FIG. 4), and the distillate mainly containing the extraction solvent is discharged in an intermediate flow (FIG. 4).
  • Stream 404 In the lower stream of the bottom area, mainly NMP and some water were discharged together (stream 405 in FIG. 4). At this time, the content of NMP in the overhead stream (stream 403 in FIG.
  • NMP N-methyl-2-pyrrolidone
  • Example 5 As shown in Table 5, the total amount of energy used in the purification process of Example 1 according to the present invention was significantly reduced compared to the total amount of energy used in the purification process using the distillation apparatus of Comparative Example 1-2 can confirm.
  • the total energy consumption is about 2.88 ⁇ 10 6 kJ than the purification process using the distillation column in the conventional manner according to Comparative Example 1 / hr, and can save about 76.2% of energy.
  • the total energy consumption is reduced by about 0.13 ⁇ 10 6 kJ / hr, and the energy by about 12.6%. Savings can be achieved.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • Example 2 As shown in Table 6 below, except that the composition was differently used as the feedstock stream (Feed) stream, NMP 280 kg / hr, and water 420 kg / hr, and the top temperature and the bottom temperature were different, Example 2 and In the same manner, a separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) was performed. At this time, the bottoms rate was 277 kg / hr.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • the dividing wall-type distillation column consists of only 20 distillation zones without separate extraction zones, that is, 20 stages including 5 stages of a prefractionator and 15 stages of a distillation progress zone, and the reflux ratio is 0.2 and bottoms.
  • the rate was 135 kg / hr.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • first outlet port for discharging the liquid / liquid separation stream of the dividing wall column

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)

Abstract

The present invention provides a method and an apparatus for efficiently recovering an amide-based compound, such as N-methyl-2-pyrrolidone, from an aqueous solution containing an amide-based compound, such as N-methyl-2-pyrrolidone.

Description

아미드계 화합물의 회수 방법 및 장치Method and apparatus for recovering amide compounds
관련 출원들과의 상호 인용Mutual citations with related applications
본 출원은 2018년 9월 28일자 한국 특허 출원 제10-2018-0116449호 및 2019년 9월 26일자 한국 특허 출원 제10-2019-0119141호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0116449 on September 28, 2018 and Korean Patent Application No. 10-2019-0119141 on September 26, 2019. All content disclosed in the literature is incorporated as part of this specification.
본 발명은 N-메틸-2-피롤리돈 등의 아미드계 화합물을 포함하는 수용액으로부터 N-메틸-2-피롤리돈 등의 아미드계 화합물을 효율적으로 회수하는 방법 및 회수 장치에 관한 것이다.The present invention relates to a method and an apparatus for efficiently recovering an amide compound such as N-methyl-2-pyrrolidone from an aqueous solution containing an amide compound such as N-methyl-2-pyrrolidone.
폴리페닐렌설파이드(Polyphenylene sulfide; PPS)로 대표되는 폴리아릴렌 설파이드(Polyarylene sulfide, PAS)는 우수한 강도, 내열성, 난연성 및 가공성으로 인해 자동자, 전기ㆍ전자 제품, 기계류 등에서 금속, 특히 알루미늄이나 아연과 같은 다이캐스팅(die casting) 금속을 대체하는 소재로 폭 넓게 사용되고 있다. 특히, PPS 수지의 경우, 유동성이 좋기 때문에 유리섬유 등의 필러나 보강제와 혼련하여 컴파운드로 사용하기에 유리하다.Polyarylene sulfide (PAS), typified by polyphenylene sulfide (PPS), is used in metals, especially aluminum or zinc, in automobiles, electrical and electronic products, machinery, etc. due to its excellent strength, heat resistance, flame retardancy, and processability. It is widely used as a material to replace the same die casting metal. Particularly, in the case of PPS resin, since it has good fluidity, it is advantageous to use it as a compound by kneading with a filler or reinforcing agent such as glass fiber.
일반적으로 PAS 중합 공정에서 N-메틸 피롤리돈(NMP)과 같은 아미드계 화합물을 용매로 사용하는 방법이 공업적으로 널리 알려져 있다. 또한, PAS를 중합한 후에도, 잔류하는 미반응 물질을 N-메틸-2-피롤리돈(NMP)과 같은 아미드계 화합물이나 물로 세척하여 제거하고 있다. 이렇게 사용된 N-메틸-2-피롤리돈 등의 아미드계 화합물은 통상의 유기 용매보다 고가일 뿐만 아니라, 수용액으로 배출했을 경우 환경 오염의 주원인이 되는 것으로 알려져 있어, 일반적으로 회수 정제하여 순환 재이용되고 있다.In general, a method of using an amide compound such as N-methyl pyrrolidone (NMP) as a solvent in a PAS polymerization process is widely known in the industry. In addition, even after polymerizing the PAS, residual unreacted substances are removed by washing with an amide compound such as N-methyl-2-pyrrolidone (NMP) or water. Amide-based compounds such as N-methyl-2-pyrrolidone used in this way are not only more expensive than conventional organic solvents, but are also known to be the main cause of environmental pollution when discharged in aqueous solutions, and are generally recovered and purified to recycle. Is becoming.
그러나, N-메틸-2-피롤리돈 등의 아미드계 화합물은 유기물 용해성이 높은 만큼 물과의 상용성도 우수하여 물과 무한대로 혼합하고, 또한 PAS 제조 공정으로부터의 유출액과 같이 무기 염이 다량 용해되어 있을 경우에는 그대로 증류하는 것도 어렵기 때문에 다양한 회수 방법이 시도되어 왔다.However, amide-based compounds such as N-methyl-2-pyrrolidone have excellent compatibility with water as they have high organic solubility, so they are infinitely mixed with water, and a large amount of inorganic salts are dissolved, such as effluent from the PAS manufacturing process. If it is, it is difficult to distill as it is, various recovery methods have been tried.
특히, 기존에 알려진 증류 공정의 경우에, N-메틸-2-피롤리돈 등의 아미드계 화합물은 아 미드계 화합물을 고순도로 분리 회수하기 위해서는 증류탑의 이론 단수를 높이기 위한 장치 비용이 많이 소요되고 에너지 소모가 많다는 단점이 있다. 또한, PAS 제조 공정으로부터의 유출액과 같이 무기 염이 용해되어 있을 경우에는 증류탑내의 유동성을 확보하기 위하여 많은 아미드계 화합물을 남겨두어야 하므로 잔류 성분으로의 손실이 많아 처리 비용이 커진다고 하는 단점이 있다. 이러한 증류 공정의 단점을 극복하기 위하여, 추출 공정이나 멤브레인 공정 개발이 시도되었으나, 추출 용매에 불순물로 포함된 무기염이 혼입되어 추가로 물로 추출하고 이 과정에서 아미드계 화합물이 역추출되는 일이 발생하는 등, 아직까지 분리 효율 성능이 좋지 않아 해당 기술이 만료 또는 폐기되어 널리 쓰이지 않고 있다.In particular, in the case of a known distillation process, in order to separate and recover an amide compound such as N-methyl-2-pyrrolidone with high purity, a device cost for increasing the theoretical number of distillation columns is high. There is a disadvantage of high energy consumption. In addition, when the inorganic salt is dissolved, such as the effluent from the PAS manufacturing process, many amide-based compounds must be left in order to secure the fluidity in the distillation column, so there is a disadvantage that there is a lot of loss to the residual components and the treatment cost increases. In order to overcome the disadvantages of the distillation process, an extraction process or a membrane process development has been attempted, but an inorganic salt contained as an impurity is mixed into the extraction solvent to extract with water and reversely extracting the amide compound in this process. However, since the separation efficiency performance is still poor, the technology has not expired or been widely used.
이에 따라, 전체 공정의 에너지 소모를 최소화하고 초기 장치 비용을 줄일 수 있으며, 고순도의 화합물을 분리할 수 있는 아미드계 화합물의 회수 공정에 대한 개발이 지속적으로 요구되고 있다.Accordingly, development of a process for recovering an amide-based compound capable of minimizing energy consumption of the entire process, reducing initial equipment cost, and separating high-purity compounds is continuously required.
본 발명은 N-메틸-2-피롤리돈 등의 아미드계 화합물을 포함하는 수용액에서 N-메틸-2-피롤리돈 등의 아미드계 화합물을 효율적으로 회수하는 방법 및 장치를 제공하고자 한다.The present invention is to provide a method and apparatus for efficiently recovering an amide compound such as N-methyl-2-pyrrolidone from an aqueous solution containing an amide compound such as N-methyl-2-pyrrolidone.
발명의 일 구현예에 따르면, 내부에 분리벽이 구비되고, 내부가 상기 분리벽이 위치하지 않는 탑정 영역 및 탑저 영역과, 상기 분리벽을 포함하는 중간 영역으로 구분되고, 상기 중간 영역은 상기 분리벽에 의하여 나뉘어지는 추출 영역과 증류 영역으로 구분되는 증류탑의 추출 영역에, 물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매를 투입하는 단계 (제1 단계); 상기 증류탑의 추출 영역에서, 아미드계 화합물과 추출 용매를 상기 추출 영역의 상부 흐름으로 분리 유출하고, 물은 상기 추출 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트로 분리 유출하는 단계 (제2 단계), 및According to an embodiment of the present invention, a separation wall is provided inside, and the interior is divided into a top region and a bottom region where the separation wall is not located, and an intermediate region including the separation wall, and the intermediate region is the separation A step of introducing a mixed solution containing water and an amide-based compound and an extraction solvent into an extraction region of a distillation column divided into an extraction region divided by a wall and a distillation region (first step); In the extraction region of the distillation column, an amide-based compound and an extraction solvent are separated and discharged into an upper flow of the extraction region, and water is separated into a lower flow of the extraction region and is disposed on the extraction region in the bottom region of the distillation column. Separately flowing out to the outlet port (second step), and
상기 추출 영역의 상부 흐름 및 하부 흐름 중 적어도 하나 이상은 상기 증류탑의 증류 영역에 유입되고, 추출 용매는 상기 증류 영역의 상부 흐름으로 분리되어 상기 증류탑의 탑정 영역의 제2 유출 포트로 분리 유출하고, 물은 상기 증류 영역의 중간부 흐름으로 분리되어 상기 증류 영역의 제3 유출 포트로 분리 유출하고, 아미드계 화합물은 상기 증류 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트로 분리 유출하는 단계 (제3 단계)를 포함하는, 아미드계 화합물의 회수 방법이 제공된다.At least one of the upper stream and the lower stream of the extraction zone is introduced into the distillation zone of the distillation column, and the extraction solvent is separated into the upper stream of the distillation zone and separated and discharged to the second outflow port of the top zone of the distillation column, Water is separated into the middle flow of the distillation zone and flows out through the third outlet port of the distillation zone, and the amide compound is separated into the lower stream of the distillation zone and is disposed on the distillation zone side in the bottom area of the distillation column. A method for recovering an amide-based compound is provided, comprising the step of separating and flowing into a fourth outlet port (third step).
또한, 발명의 다른 일 구현예에 따르면, 상술한 바와 같은 방법에 사용할 수 있는 아미드계 화합물의 회수 장치가 제공된다.In addition, according to another embodiment of the invention, there is provided an apparatus for recovering an amide compound that can be used in the method as described above.
또한, 발명의 또다른 일 구현예에 따르면, 상술한 바와 같은 아미드계 화합물의 회수 단계를 포함하는 방법을 포함하는 폴리아릴렌 설파이드의 제조 방법이 제공된다.In addition, according to another embodiment of the invention, a method for producing polyarylene sulfide is provided, including a method comprising the step of recovering an amide-based compound as described above.
상술한 바와 같이, 본 발명에 따르면 추출 공정과 증류 공정을 동시에 수행하며 분리 효율 성능을 향상시키면서, 전체 공정의 에너지 소모를 최소화하고 초기 장치 비용을 줄일 수 있으며, N-메틸-2-피롤리돈 등의 아미드계 화합물을 포함하는 수용액에서 고순도의 아미드계 화합물을 효율적으로 분리 회수할 수 있는 우수한 효과가 있다.As described above, according to the present invention, while performing an extraction process and a distillation process simultaneously, and improving the separation efficiency performance, it is possible to minimize the energy consumption of the entire process and reduce the initial device cost, and N-methyl-2-pyrrolidone It has an excellent effect of efficiently separating and recovering a high-purity amide-based compound from an aqueous solution containing an amide-based compound.
도 1은 본 발명의 일 구현예에 따른 분리벽형 증류탑을 포함하는 회수 장치와 회수 공정을 예시적으로 보여주는 모식도이다.1 is a schematic view showing a recovery device and a recovery process including a dividing wall column according to an embodiment of the present invention by way of example.
도 2는 비교예 1에 따른 종래의 증류 공정을 이용한 회수 장치와 회수 공정을 예시적으로 보여주는 모식도이다.2 is a schematic view showing a recovery device and a recovery process using a conventional distillation process according to Comparative Example 1.
도 3은 비교예 2에 따른 종래의 추출 및 증류 공정을 이용한 회수 장치와 회수 공정을 예시적으로 보여주는 모식도이다.3 is a schematic view showing a recovery device and a recovery process using a conventional extraction and distillation process according to Comparative Example 2.
도 4는 비교예 3에 따른 기존의 방식으로 별도의 액/액 추출 영역 없이 증류 공정만을 수행하는 분리벽형 증류탑을 포함하는 회수 장치와 회수 공정을 예시적으로 보여주는 모식도이다.4 is a schematic view showing a recovery device and a recovery process including a dividing wall type distillation column that performs only a distillation process without a separate liquid / liquid extraction region in a conventional manner according to Comparative Example 3.
본 발명에서, 제1, 제2, 제3, 제4 등의 용어는 다양한 구성요소들을 설명하는 데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.In the present invention, terms such as first, second, third, fourth, and the like are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In addition, the terms used in this specification are only used to describe exemplary embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, the terms "include", "have" or "have" are intended to indicate the presence of implemented features, numbers, steps, elements or combinations thereof, one or more other features or It should be understood that the existence or addition possibilities of numbers, steps, elements, or combinations thereof are not excluded in advance.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention can be applied to various changes and may have various forms, and specific embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosure form, and it should be understood that all modifications, equivalents, and substitutes included in the spirit and scope of the present invention are included.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 N-메틸-2-피롤리돈 등의 아미드계 화합물을 포함하는 수용액에서 N-메틸-2-피롤리돈 등의 아미드계 화합물을 효율적으로 회수하는 방법 및 장치가 제공된다.The present invention provides a method and apparatus for efficiently recovering an amide-based compound such as N-methyl-2-pyrrolidone from an aqueous solution containing an amide-based compound such as N-methyl-2-pyrrolidone.
특히, 본 발명은 폴리아릴렌 설파이드(Polyarylene sulfide, PAS) 제조 공정으로부터 생성되는 다양한 무기 염과 불순물이 포함되어 있는 폐액으로부터 고순도의 아미드계 화합물을 효율적으로 분리할 수 있도록, 추출 공정과 증류 공정을 동시에 이용하여 분리 효율 성능을 향상시키면서, 전체 공정의 에너지 소모를 최소화하고 초기 장치 비용도 절감할 수 있도록 하는 것을 특징으로 한다.In particular, the present invention is a polyarylene sulfide (Polyarylene sulfide, PAS) from the waste solution containing a variety of inorganic salts and impurities generated from the manufacturing process, the high-purity amide-based compounds can be efficiently separated, the extraction process and the distillation process At the same time, while improving the separation efficiency performance, it is characterized by minimizing the energy consumption of the entire process and reducing the initial device cost.
발명의 일 구현예에 따르면, 상기 아미드계 화합물의 회수 방법은, 내부에 분리벽이 구비되고, 내부가 상기 분리벽이 위치하지 않는 탑정 영역 및 탑저 영역과, 상기 분리벽을 포함하는 중간 영역으로 구분되고, 상기 중간 영역은 상기 분리벽(도 1의 107 참조)에 의하여 나뉘어지는 추출 영역과 증류 영역으로 구분되는 증류탑의 추출 영역에, 물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매를 투입하는 단계 (제1 단계, 도 1의 스트림 101 및 102 참조); 상기 증류탑의 추출 영역에서, 아미드계 화합물과 추출 용매를 상기 추출 영역의 상부 흐름으로 분리 유출하고, 물은 상기 추출 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트로 분리 유출하는 단계 (제2 단계, 도 1의 스트림 106 참조), 및 상기 추출 영역의 상부 흐름 및 하부 흐름 중 적어도 하나 이상은 상기 증류탑의 증류 영역에 유입되고, 추출 용매는 상기 증류 영역의 상부 흐름으로 분리되어 상기 증류탑의 탑정 영역의 제2 유출 포트로 분리 유출하고(도 1의 스트림 103 참조), 물은 상기 증류 영역의 중간부 흐름으로 분리되어 상기 증류 영역의 제3 유출 포트로 분리 유출하고(도 1의 스트림 104 참조), 아미드계 화합물은 상기 증류 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트로 분리 유출하는 단계 (제3 단계, 도 1의 스트림 105 참조)를 포함한다.According to one embodiment of the invention, the method for recovering the amide-based compound is provided with a separation wall therein, and an inside is a top region and a bottom region where the separation wall is not located, and an intermediate region including the separation wall. Separated, the intermediate region is introduced into the extraction region of the distillation column divided into an extraction region and a distillation region divided by the separation wall (see 107 in FIG. 1), and a mixed solution containing water and an amide compound and an extraction solvent are added. Step (first step, see streams 101 and 102 of Figure 1); In the extraction region of the distillation column, an amide-based compound and an extraction solvent are separated and discharged into an upper flow of the extraction region, and water is separated into a lower flow of the extraction region and is disposed on the extraction region in the bottom region of the distillation column. Separately flowing out to an outlet port (second step, see stream 106 of FIG. 1), and at least one or more of the upper and lower streams of the extraction zone enter the distillation zone of the distillation column, and the extraction solvent is the distillation zone It is separated into the upper stream of the distillation column and the second outlet port of the top of the distillation column (see stream 103 of FIG. 1), water is separated into the middle flow of the distillation zone to the third outlet port of the distillation zone Separation and effluent (see stream 104 in FIG. 1), the amide compound is separated into a lower stream of the distillation zone to the bottom of the distillation column. And a separate effluent to a fourth effluent port disposed on the side of the distillation zone (third step, see stream 105 of FIG. 1).
상기 아미드계 화합물의 회수 방법은, 아미드계 화합물을 포함하는 수용액에 대하여 추출용매를 사용하여 액/액 추출하는 단계(제2 단계), 및 수득된 추출액의 증류단계(제3 단계)를 하나의 증류탑내에서 동시에 수행하는 것을 특징으로 한다.In the method for recovering the amide-based compound, a liquid / liquid extraction step (second step) and an distillation step (third step) of the obtained extract solution are performed using an extraction solvent for an aqueous solution containing the amide-based compound. It is characterized in that it is carried out simultaneously in a distillation column.
구체적으로는, 상기 아미드계 화합물의 회수 방법은 물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매를 상기 분리벽형 증류탑의 추출 영역에 투입하는 단계(제1 단계)를 포함한다.Specifically, the method for recovering the amide-based compound includes a step (first step) of adding a mixed solution containing water and an amide-based compound and an extraction solvent to the extraction region of the dividing wall type distillation column.
특히, 상기 아미드계 화합물의 회수 방법은, 도 1에 나타낸 바와 같이, 내부에 분리벽이 구비되고, 내부가 상기 분리벽이 위치하지 않는 탑정 영역 및 탑저 영역과, 상기 분리벽을 포함하는 중간 영역으로 구분되고, 상기 중간 영역은 상기 분리벽에 의하여 나뉘어지는 추출 영역과 증류 영역으로 구분되는 분리벽형 증류탑을 이용하여 수행할 수 있다.Particularly, in the method for recovering the amide-based compound, as shown in FIG. 1, a separation wall is provided inside, and a top region and a bottom region inside which the separation wall is not located, and an intermediate region including the separation wall It is divided into, and the intermediate region may be performed using a dividing wall type distillation column divided into an extraction region divided by the dividing wall and a distillation region.
다만, 도 1은 단지 예시적인 것으로, 본 발명의 아미드계 화합물의 회수 공정 및 장치의 범위가 첨부된 도면에 제한되는 것은 아니다.However, FIG. 1 is merely exemplary, and the scope of the process and apparatus for recovering the amide compound of the present invention is not limited to the accompanying drawings.
본 발명에 따른 아미드계 화합물의 회수 공정에서 사용할 수 있는 분리벽형 증류탑의 구체적인 종류는 특별히 제한되지 않는다. 예를 들면, 도 1에 나타난 바와 같은 일반적인 구조의 분리벽형(dividing-wall) 증류탑을 사용하거나, 정제 효율을 고려하여 증류탑 내의 분리벽의 위치나 형태가 변경 설계된 증류탑의 사용도 가능하다. 또한, 경우에 따라, 분리벽에 따른 추출 영역과 증류 영역을 별도의 컬럼으로 구성하며, 분리벽이 위치하지 않은 탑정 영역과 탑저 영역은 상기 추출 영역과 증류 영역을 상호 양 방향으로 스트림 연결하여 열역학적으로 동일 공간을 형성하는 형태로 변경 설계된 페트류크(Petlyuk) 증류탑 등을 사용할 수도 있다. 일예로, 페트류크 증류탑을 분리벽형 증류탑의 대안으로 사용하는 경우, 분리벽형 증류탑의 분리벽으로 구분되는 영역이 별개의 예비분류탑에 의해 대체된 증류탑 형태를 가지며, 이때 예비분류탑으로부터의 상부 생성물은 (분리벽형 증류탑이 아닌) 후속 탑의 상부 부분에 도입되고, 예비분류탑으로부터의 하부 생성물은 후속 탑의 저부 부분에 도입되는 형태가 될 수 있다. 여기서, 예비분류탑은 분리벽과 함께 가열기 또는 응축기를 구비하지 않지만, 예비분류탑의 후속 탑의 상부 부분으로부터의 액체와 후속 탑의 저부 부분으로부터의 증기가 예비분류탑에 도입되는 형태일 수 있다. 또한, 증류탑의 단수 및 내경 등도 특별히 제한되지 않으며, 예를 들면, 정제하고자 하는 혼합액의 조성을 고려한 증류 곡선으로부터 유추되는 이론 단수 등을 기반으로 설정할 수 있다.The specific type of the dividing wall type distillation column which can be used in the recovery process of the amide compound according to the present invention is not particularly limited. For example, a dividing column having a general structure as shown in FIG. 1 may be used, or a distillation column designed to change the position or shape of a dividing wall in the distillation column in consideration of purification efficiency may be used. In addition, in some cases, the extraction area and the distillation area according to the separation wall are composed of separate columns, and the top and bottom areas where the separation wall is not located are thermodynamically connected by stream-connecting the extraction area and the distillation area in both directions. As a form, a Petlyuk distillation column, etc. designed to be changed to form the same space may be used. In one example, when using the Petroleum distillation column as an alternative to the dividing wall column, the area divided by the dividing wall of the dividing wall column has a form of a distillation column replaced by a separate pre-divided column, where the upper product from the pre-divided column Silver may be introduced in the upper portion of the subsequent column (not the dividing wall column), and the lower product from the pre-fractionation column may be introduced in the lower portion of the subsequent column. Here, the pre-fractionation column does not have a heater or condenser with a separation wall, but may be in a form in which liquid from the upper portion of the subsequent column of the pre-fractionation column and steam from the bottom portion of the subsequent column are introduced into the pre-fractionation column. . In addition, the number of stages and the inner diameter of the distillation column are not particularly limited, and can be set based on, for example, the theoretical number of stages inferred from the distillation curve in consideration of the composition of the mixture to be purified.
구체적으로, 상기 분리벽형 증류탑은 저비점, 중비점, 고비점의 3성분을 포함하는 원료의 증류를 위해 고안된 장치로 페트류크 증류탑과 열역학적 관점에서 서로 유사한 장치이며 페트류크 증류탑은 분리벽형 증류탑의 대한 대안으로 사용할 수 있다. 일예로, 상기 페트류크 증류탑은 저비점 및 고비점 물질을 1차적으로 추출탑에서 추출용매를 넣어 분리하고 추출컬럼의 탑정 부분이 증류영역의 공급단으로 유입되어 증류영역에서 저비점, 중비점 그리고 고비점 물질을 각각 분리하도록 고안되었다. 이에 대하여, 분리벽형 증류탑은 탑내에 분리벽을 설치함으로써 추출영역과 증류영역을 내부에 통합시킨 형태이다. 추출단계 및 분리벽형 증류탑 또는 페트류크 증류탑 등을 사용한 정제 단계를 포함하는 본 발명은 고순도의 NMP 및 추출 용매를 회수 가능케 한다. 본 방법은 단순하면서도 경제적으로 매우 유리하다. 분리벽형 증류탑 또는 페트류크 증류탑을 사용함으로써, 증류탑의 개수를 줄이는 것(증류탑 케이싱, 가열기, 응축기 또는 내부 부품을 줄이는 것)이 가능해지며, 이는 증류공장의 최초 투자비와 복잡성을 완화시킨다. 또한 에너지소비를 현저히 절감할 수 있다.Specifically, the dividing wall type distillation column is a device designed for distillation of raw materials containing three components of low boiling point, medium boiling point, and high boiling point, and is similar to each other from the Petroleum distillation column and the thermodynamic point of view. Can be used as As an example, the Petroleum distillation column is a low boiling point, a high boiling point, and a high boiling point in the distillation zone, by first separating the low boiling point and high boiling point materials by adding an extraction solvent from the extraction column, and the top portion of the extraction column flows into the supply stage of the distillation zone. It is designed to separate each material. On the other hand, the dividing wall-type distillation column is a type in which the extraction region and the distillation region are integrated therein by providing a separation wall in the column. The present invention, which includes an extraction step and a purification step using a dividing wall type distillation column or a Petroleum distillation column, makes it possible to recover high purity NMP and extraction solvent. This method is simple and economically very advantageous. By using a dividing-wall column or a petrol distillation column, it is possible to reduce the number of distillation columns (reducing distillation column casings, heaters, condensers or internal parts), which reduces the initial investment cost and complexity of the distillation plant. In addition, energy consumption can be significantly reduced.
특히, 분리벽형 증류탑의 경우, 페트류크 증류탑과는 다르게 설계가 정해지면 내부순환 흐름량을 조절할 수 없는 구조적 특성으로 인해 운전조건 변동에 대한 유연성이 떨어지므로 증류탑의 초기 설계 단계에서 다양한 외란(disturbance)에 대한 정확한 모사와 용이한 제어가 가능한 제어 구조의 결정이 필요하며 특히, 증류하려는 대상 화합물의 성질에 따라 증류탑의 단수, 공급단 및 유출단의 위치 등의 설계구조 및 증류온도, 압력 및 환류비 등의 운전 조건이 특별하게 변경되어야 한다. 이에, 본 발명은 전술한 바와 같이, 에너지를 절감하고 설비비를 줄일 수 있도록, 폴리페닐렌설파이드 중합 과정에서 사용되는 용매를 고순도 및 고효율로 분리하기에 적합하게 설계된 분리벽형 증류탑의 운전 조건을 제공할 수 있다.Particularly, in the case of a dividing wall type distillation column, if the design is different from that of a petrol distillation column, the flexibility of operating conditions fluctuates due to structural characteristics that cannot control the amount of internal circulating flow, so various disturbances are caused in the initial design stage of the distillation column. It is necessary to determine the exact structure and control structure that can be easily controlled. In particular, the design structure and the distillation temperature, pressure and reflux ratio, etc. The operating conditions have to be specially changed. Accordingly, the present invention, as described above, to reduce the energy and reduce the equipment cost, to provide the operating conditions of the dividing wall-type distillation column designed to separate the solvent used in the polyphenylene sulfide polymerization process with high purity and high efficiency. You can.
하나의 예시에서, 본 발명의 분리벽형 증류탑은, 도 1과 같은 구조를 가질 수 있다. 도 1에 나타난 바와 같이, 예시적인 분리벽형 증류탑은 내부가 분리벽(107)에 의해 분할되어 있다. 또한, 분리벽형 증류탑의 내부는 도 1에서 구획되어 있는 바와 같이, 분리벽을 포함하는 중간 영역과, 상기 분리벽을 포함하지 않는 상부 영역 및 하부 영역으로 구분될 수 있다. 또한, 상기 중간 영역은 분리벽에 의해 나누어지는 추출 영역 및 증류 영역으로 구분될 수 있다. 예를 들면, 상기 분리벽형 증류탑은, 저비점 흐름이 배출되는 탑정 영역, 고비점 흐름이 배출되는 탑저 영역, 물과 아미드계 혼합물을 포함하는 혼합액을 추출 용매와 함께 추출 분리하는 추출 영역 및 추출 용매를 중간 흐름으로 분리 유출하는 증류 영역으로 구분될 수 있다. 상기 분리벽형 증류탑의 "탑정"은 상기 분리벽형 증류탑의 탑의 가장 꼭대기 부분을 의미하며, 전술한 분리벽형 증류탑의 상부 영역에 포함될 수 있고, 상기 분리벽형 증류탑의 "탑저"는 상기 분리벽형 증류탑의 탑의 가장 바닥 부분을 의미하며, 전술한 분리벽형 증류탑의 하부 영역에 포함될 수 있다. 이 때, 상기 탑저 영역은 분리벽의 하방 연장선을 기준으로 추출 영역에 해당하는 쪽과 증류 영역 쪽에 해당하는 영역으로 추가로 구분될 수 있다. 본 명세서에서 특별히 달리 정의하지 않는 한, 상부 영역은 탑정 영역과 동일한 의미로 사용되고, 하부 영역은 탑저 영역과 동일한 의미로 사용된다.In one example, the dividing wall column of the present invention may have a structure as shown in FIG. 1. As shown in FIG. 1, the exemplary dividing wall type distillation column is divided inside by a dividing wall 107. In addition, the interior of the dividing wall-type distillation column may be divided into an intermediate region including a dividing wall and an upper region and a lower region not containing the dividing wall, as partitioned in FIG. 1. In addition, the intermediate region may be divided into an extraction region and a distillation region divided by a separation wall. For example, the dividing wall-type distillation column includes an extraction region and an extraction solvent for extracting and separating a mixed solution containing water and an amide-based mixture together with an extraction solvent, a top region where a low-boiling flow is discharged, a top bottom region where a high-boiling flow is discharged, It can be divided into distillation zones that separate and flow out as intermediate streams. The "top column" of the dividing wall type distillation column means the uppermost part of the tower of the dividing wall type distillation column, and may be included in the upper region of the dividing wall type distillation column, and the "top bottom" of the dividing wall type distillation column may be It means the bottom part of the tower and may be included in the lower region of the dividing column. At this time, the bottom area may be further divided into an area corresponding to an extraction area and an area corresponding to a distillation area based on an extension line below the separation wall. Unless specifically defined otherwise in this specification, the upper region is used in the same sense as the top region, and the lower region is used in the same sense as the top bottom region.
본 발명에서 상기 분리벽형 증류탑은, 상기 추출 영역 및 증류 영역이 상기 분리벽에 의하여 서로 분리(separation) 또는 고립(isolation)되어 있을 수 있다. 이에 따라, 상기 추출 영역 내의 흐름과 상기 증류 영역 내의 흐름이 서로 혼합되는 것을 방지할 수 있다. 본 명세서에서 용어 "분리(separation)" 또는 "고립(isolation)"은, 각 영역에서의 흐름이 분리벽에 의해 나뉘어지는 영역에서 독립적으로 흐르거나 존재하는 것을 의미한다. 특히, 이러한 추출 영역과 증류 영역을 별도의 컬럼으로 구성하며, 상기 추출 영역과 증류 영역의 상부 흐름과 하부 흐름을 별도의 스트림으로 서로 연결한 형태로 변경 설계된 방식으로 분리벽형 증류탑이 구성될 수도 있다. 하나의 예시에서, 상기 분리벽형 증류탑의 분리벽은 상기 분리벽형 증류탑의 중간 영역에 포함된다. 구체적으로, 상기 분리벽은 상기 분리벽형 증류탑의 이론 단수를 기준으로 산출하였을 때, 상기 탑정을 기준으로 산출된 전체 이론 단수의 약 20% 내지 약 50%, 혹은 약 25% 내지 약 45%에 위치할 수 있다. 여기서, "이론단수"는 상기 분리벽형 증류탑에서 기상 및 액상과 같은 2개의 상이 서로 평형을 이루는 가상적인 영역 또는 단의 수를 의미한다. 상기 분리벽이 상기 범위로 상기 분리벽형 증류탑의 내부에 포함됨으로써, 추출 영역 내의 흐름과 증류 영역 내의 흐름이 혼합되는 것을 효과적으로 차단할 수 있다.In the present invention, in the dividing wall-type distillation column, the extraction region and the distillation region may be separated from each other or separated by the separation wall. Accordingly, it is possible to prevent the flow in the extraction region and the flow in the distillation region from mixing with each other. The term "separation" or "isolation" as used herein means that the flow in each region independently flows or exists in the region divided by the separation wall. Particularly, the dividing wall type distillation column may be configured in such a way that the extraction region and the distillation region are configured as separate columns, and the upper and lower flows of the extraction region and the distillation region are connected to each other in separate streams. . In one example, the dividing wall of the dividing wall type distillation column is included in an intermediate region of the dividing wall type distillation column. Specifically, the separation wall is located at about 20% to about 50%, or about 25% to about 45% of the total number of theoretical plates calculated based on the column top when calculated based on the theoretical number of distillation columns. can do. Here, "theoretical stage number" means the number of hypothetical regions or stages in which the two phases, such as gas phase and liquid phase, are in equilibrium with each other in the dividing wall column. Since the dividing wall is included in the dividing wall type distillation column in the above range, it is possible to effectively block mixing of the flow in the extraction region and the flow in the distillation region.
발명의 일 구현예에 있어서, 상기 분리벽형 증류탑은 물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매가 투입하는 공급 포트를 포함하며, 상기 추출 영역의 공급 포트는 하나로 구성되어 상기 혼합액과 추출 용매가 함께 유입될 수도 있고, 물과 아미드계 화합물을 포함하는 혼합액이 투입되는 제1 공급 포트와 추출 용매가 투입되는 제2 공급 포트로 구분되어 2개 이상으로 구비될 수도 있다. 상기 공급 포트를 통해 물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매가 상기 분리형 증류탑의 추출 영역에 투입된다.In one embodiment of the invention, the dividing wall-type distillation column includes a supply port through which a mixed solution containing water and an amide-based compound and an extraction solvent are introduced, and the supply port of the extraction region is composed of one, so that the mixed solution and the extraction solvent are It may be introduced together, or may be provided as two or more divided into a first supply port into which a mixed solution containing water and an amide-based compound is introduced and a second supply port into which an extraction solvent is introduced. A mixture solution containing water and an amide compound and an extraction solvent are introduced into the extraction region of the separation type distillation column through the supply port.
이때, 상기 증류탑에서, 추출 영역의 공급 포트는 증류탑의 탑정을 기준으로 산출된 이론 단수의 2% 내지 98%에 위치할 수 있다. 또한, 상기 추출 영역의 공급 포트가, 물과 아미드계 화합물을 포함하는 혼합액이 투입되는 제1 공급 포트와 추출 용매가 투입되는 제2 공급 포트로 구분되어 2개 이상으로 구비되는 경우, 물과 아미드계 화합물을 포함하는 혼합액이 투입되는 제1 공급 포트(도 1의 스트림 101 및 101i 참조)는 증류탑의 탑정을 기준으로 산출된 이론 단수의 20% 이내 또는 2% 내지 20%, 혹은 10% 이내 또는 2% 내지 10%에 위치하고, 추출용매를 투입하는 제2 공급 포트(도 1의 스트림 102 및 102i 참조)는 산출된 이론단수의 80% 이상 또는 80% 내지 98%, 혹은 90% 이상 또는 90% 내지 98%에 위치할 수 있다.At this time, in the distillation column, the supply port of the extraction region may be located at 2% to 98% of the theoretical number of plates calculated based on the top of the distillation column. In addition, when the supply port of the extraction region is divided into a first supply port to which a mixed solution containing water and an amide-based compound is input and a second supply port to which an extraction solvent is input, two or more of the supply ports are provided with water and amide. The first supply port (see streams 101 and 101i in FIG. 1) into which the mixed solution containing the system compound is introduced is within 20% or within 2% to 20%, or within 10% of the theoretical plates calculated based on the top of the distillation column, or Located at 2% to 10%, the second supply port (see streams 102 and 102i in FIG. 1) for introducing the extraction solvent is 80% or more or 80% to 98%, or 90% or more or 90% of the calculated theoretical number To 98%.
본 발명은 특히, 폴리아릴렌 설파이드(Polyarylene sulfide, PAS) 제조 공정으로부터 생성되는 다양한 무기 염과 불순물이 포함되어 있는 폐액으로부터, N-메틸-2-피롤리돈 등의 아미드계 화합물을 효율적으로 분리하고자 하는 것이다. 이에 따라, 상기 분리벽형 증류탑의 추출 영역에 투입되는 혼합액은 물과 아미드계 화합물과 함께 알칼리 금속의 수황화물, 알칼리 금속의 황화물, 알칼리 금속의 할로겐화물, 디할로겐화 방향족 화합물, 및 폴리아릴렌 설파이드로 이루어진 군에서 선택되는 1종 이상을 추가로 포함하는 것일 수 있다. 구체적으로, 상기 혼합액은 물과 아미드계 화합물과 함께 염화나트륨(NaCl), o-디클로로벤젠(o-DCB), m-디클로로벤젠(m-DCB), p-디클로로벤젠(p-DCB), 황화수소 나트륨(NaSH), 황화나트륨(Na2S), 및 폴리페닐렌 설파이드(PPS)로 이루어진 군에서 선택되는 1종 이상을 추가로 포함하는 것일 수도 있다.In particular, the present invention efficiently separates amide compounds such as N-methyl-2-pyrrolidone from waste liquids containing various inorganic salts and impurities generated from a process of manufacturing polyarylene sulfide (PAS). Is what you want. Accordingly, the mixed solution introduced into the extraction region of the dividing wall-type distillation column includes water and an amide-based compound as an alkali metal hydrosulfide, an alkali metal sulfide, an alkali metal halide, a dihalogenated aromatic compound, and polyarylene sulfide. It may be to further include one or more selected from the group consisting of. Specifically, the mixed solution is sodium chloride (NaCl), o-dichlorobenzene (o-DCB), m-dichlorobenzene (m-DCB), p-dichlorobenzene (p-DCB), sodium hydrogen sulfide together with water and an amide compound. (NaSH), sodium sulfide (Na 2 S), and polyphenylene sulfide (PPS) may further include one or more selected from the group consisting of.
일예로, 폴리아릴렌 설파이드(Polyarylene sulfide, PAS) 제조 공정에서 세척 후 폐액의 조성은 NMP 등의 아미드계 화합물을 약 20 중량% 내지 약 70 중량%, 또는 약 30 중량% 내지 약 60 중량%를 포함하며, 염화나트륨(NaCl)이 포함된 브라인의 조성은 약 30 중량% 내지 약 80 중량%, 또는 약 40 중량% 내지 약 70 중량%를 포함할 수 있다. 또한, 상기 폐액에는 p-DCB, NaSH, Na2S 및 분산된 PPS 미세입자를 포함하는 기타 불순물을 상기 용액 매질의 총 중량 대비 약 10 중량% 이내, 또는 약 5 중량% 이내로 추가로 포함할 수 있다. 기타 불순물에는 2-피롤리디논 (2-pyrrolidinone), 1-메틸-2,5-피롤리디돈 (1-methyl-2,5-pyrrolidione) 그리고 3-클로로-N-메틸아닐린 (3-Chloro-N-Methylaniline) 등이 있고, 이들 중 하나 이상이 될 수 있다.For example, the composition of the waste solution after washing in the polyarylene sulfide (PAS) manufacturing process is about 20% to about 70% by weight of an amide compound such as NMP, or about 30% to about 60% by weight. The composition of brine containing sodium chloride (NaCl) may include about 30% to about 80% by weight, or about 40% to about 70% by weight. In addition, the waste solution may further include p-DCB, NaSH, Na 2 S and other impurities including dispersed PPS microparticles within about 10% by weight, or within about 5% by weight, based on the total weight of the solution medium. have. Other impurities include 2-pyrrolidinone, 1-methyl-2,5-pyrrolidione (1-methyl-2,5-pyrrolidione) and 3-chloro-N-methylaniline (3-Chloro- N-Methylaniline) and the like.
여기서, 상기 아미드계 화합물의 구체적인 예로는 N,N-디메틸포름아미드 또는 N,N-디메틸아세트아미드 등의 아미드 화합물; N-메틸-2-피롤리돈(NMP) 또는 N-시클로헥실-2-피롤리돈 등의 피롤리돈 화합물; N-메틸-ε-카프로락탐 등의 카프로락탐 화합물; 1,3-디알킬-2-이미다졸리디논 등의 이미다졸리디논 화합물; 테트라메틸 요소 등의 요소 화합물; 또는 헥사메틸인산 트리아미드 등의 인산 아미드 화합물 등을 들 수 있고, 이들 중 하나 이상이 될 수 있다.Here, specific examples of the amide compounds include amide compounds such as N, N-dimethylformamide or N, N-dimethylacetamide; Pyrrolidone compounds such as N-methyl-2-pyrrolidone (NMP) or N-cyclohexyl-2-pyrrolidone; Caprolactam compounds such as N-methyl-ε-caprolactam; Imidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; Urea compounds such as tetramethyl urea; Or a phosphoric acid amide compound, such as hexamethylphosphate triamide, etc. are mentioned, It can be one or more of these.
또한, 상기 분리벽형 증류탑의 추출 영역에, 물과 아미드계 화합물을 포함하는 혼합액과 함께 투입되어 추출 공정을 수행하는 추출 용매로는 물에 용해되지 않으며 물보다는 끊는점이 높고 NMP 등의 아미드계 화합물보다는 끊는점이 낮은 물질을 사용할 수 있다. 구체적으로, 상기 추출 용매는 끓는점이 약 200 ℃ 이하 또는 약 55 ℃ 내지 약 200 ℃, 혹은 약 180 ℃ 이하 또는 약 58 ℃ 내지 약 180 ℃, 혹은 약 160 ℃ 이하 또는 약 60 ℃ 내지 약 160 ℃일 수 있다. 상기 추출 용매는 수용액 중에서 아미드계 화합물을 효과적으로 액/액 추출하는 측면에서 물에 용해되지 않으면서, 후단의 증류 공정에서 추가로 아미드계 화합물과 용이한 분리를 위하여 끓는점이 약 200 ℃ 이하가 되는 것이 바람직하다.In addition, in the extraction region of the dividing wall-type distillation column, the extraction solvent that is introduced with a mixed solution containing water and an amide-based compound to perform an extraction process is not soluble in water and has a higher breaking point than water, rather than an amide-based compound such as NMP. Substances with low breakpoints can be used. Specifically, the extraction solvent has a boiling point of about 200 ° C or less or about 55 ° C to about 200 ° C, or about 180 ° C or less or about 58 ° C to about 180 ° C, or about 160 ° C or less or about 60 ° C to about 160 ° C You can. The extraction solvent does not dissolve in water in terms of effectively liquid / liquid extraction of an amide compound in an aqueous solution, and the boiling point is about 200 ° C. or lower for easy separation from the amide compound in the subsequent distillation process. desirable.
또한, 상기 추출 용매로는 탄소수 1 내지 20의 방향족 또는 지방족 탄화수소 화합물 및 상기 탄화수소의 수소 하나 이상이 염소(Cl) 등의 할로겐 원소로 치환된 화합물로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 추출 용매의 구체적인 일례로는, 벤젠(C6H6), 클로로벤젠(C6H5Cl) 및 클로로포름(CHCl3) 등을 들 수 있으며, 이들 중 하나 이상이 될 수 있다.Further, the extraction solvent may be one or more selected from the group consisting of aromatic or aliphatic hydrocarbon compounds having 1 to 20 carbon atoms and compounds in which one or more hydrogens of the hydrocarbons are substituted with halogen elements such as chlorine (Cl). Specific examples of the extraction solvent include benzene (C 6 H 6 ), chlorobenzene (C 6 H 5 Cl), chloroform (CHCl 3 ), and the like, and may be one or more of them.
상기 추출 용매는, 물과 아미드계 화합물을 포함하는 혼합액의 총중량 100 중량부를 기준으로 약 100 중량부 내지 300 중량부, 또는 약 110 중량부 내지 280 중량부, 또는 약 120 중량부 내지 250 중량부의 함량으로 투입할 수 있다.The extraction solvent is about 100 parts by weight to 300 parts by weight, or about 110 parts by weight to 280 parts by weight, or about 120 parts by weight to 250 parts by weight based on 100 parts by weight of the total weight of the mixed solution containing water and the amide compound. Can be put into.
본 발명은 증류탑내의 전단 영역에서 상술한 바와 같은 추출 용매를 사용하고, 분리된 추출액을 동일한 증류탑내의 후단 영역에서 증류하여 아미드계 화합물을 전체 에너지 소모를 최소화하며 고순도로 분리해낼 수 있다.The present invention uses an extraction solvent as described above in the front end region in the distillation column, and the separated extract is distilled in the rear end region in the same distillation column, so that the amide compound can be separated with high purity while minimizing overall energy consumption.
일 예로, 상기 제1 단계에서, 물과 아미드계 화합물을 포함하는 혼합액과 추출 용매는 상온 및 상압 조건 하에서 증류탑에 투입될 수 수 있다. 여기서, 상온이라 함은 실온(room temperature)을 의미하고 약 20 ℃ 내지 약 30 ℃가 될 수 있으며, 상압이라 함은 대기압 (atmospheric pressure)을 의미하고 약 0.8 내지 1.2 kgf/cm2가 될 수 있다.For example, in the first step, a mixed solution containing water and an amide-based compound and an extraction solvent may be introduced into a distillation column under normal temperature and normal pressure conditions. Here, the normal temperature means room temperature and may be about 20 ° C to about 30 ° C, and the normal pressure means atmospheric pressure and may be about 0.8 to 1.2 kgf / cm 2 . .
발명의 일 구현예에서, 상기 분리벽형 증류탑의 추출 영역에 물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매를 투입한 후에, 추출 공정을 통해 아미드 화합물과 추출 용매가 상기 추출 영역의 상부 흐름으로 분리 유출되고, 물이 상기 추출 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트(도 1의 스트림 106 및 유출 포트 106o 참조)로 분리 유출된다(제2 단계).In one embodiment of the invention, after the mixture and the extraction solvent containing water and an amide-based compound is added to the extraction area of the dividing wall column, the amide compound and the extraction solvent are separated into an upper flow of the extraction area through an extraction process. It is discharged, and water is separated into a lower stream of the extraction region and separated and discharged from the bottom region of the distillation column to the first discharge port (refer to stream 106 and outlet port 106o in FIG. 1) disposed on the extraction region side (second step). ).
이때, 상기 제2 단계에서, 추출 공정은 약 3단 내지 약 10단으로 구성될 수 있으며, 바람직하게는 약 4단 내지 약 7단, 또는 약 5단 내지 약 6단으로 구성할 수 있다. 상기 추출 공정의 평형 단수는 원하는 용질의 추출 정도에 따라 결정되며 주어진 혼합액 대지 추출용매(solvent-to-feed) 유량비로부터 유출되는 평형 단수를 기반으로 설정할 수 있다. 또한, 상기 추출 공정은 대기압 조건 하에서 약 20 내지 30 ℃로 운전할 수 있다. 다만, 상기 추출 공정 관련 구체적인 공정 조건은 물과 아미드계 화합물의 조성 및 유량이나 유속(flow rate), 추출 용매의 종류와 투입량에 따라 달리 적용할 수 있다.At this time, in the second step, the extraction process may be composed of about 3 to about 10 stages, preferably about 4 to about 7 stages, or about 5 to about 6 stages. The equilibrium stage number of the extraction process is determined according to the degree of extraction of the desired solute and can be set based on the equilibrium stage number discharged from a given mixed-to-feed flow rate. In addition, the extraction process can be operated at about 20 to 30 ℃ under atmospheric pressure conditions. However, specific process conditions related to the extraction process may be applied differently depending on the composition and flow rate or flow rate of water and amide compounds, and the type and amount of the extraction solvent.
한편, 추출 영역에서 액/액 분리를 통해 하부 흐름으로 분리된 물은, 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트(도 1의 106o 참조)에서 분리 유출되어 증류탑의 외부로 토출되거나 상기 제1 단계의 혼합액으로 재순환될 수 있다. 이때, 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트에서 유출되는 전체 성분 중 물의 함량은 약 90 중량% 이상 또는 약 90 중량% 내지 약 99.9 중량%, 혹은 약 95 중량% 이상 또는 약 95 중량% 내지 약 99.9 중량%일 수 있다. 여기서, 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트에서 유출되는 전체 성분 중 물 이외의 나머지 잔량은 아미드계 화합물이 될 수 있다.On the other hand, the water separated into the lower stream through liquid / liquid separation in the extraction region is separated and discharged from the first outlet port (refer to 106o in FIG. 1) disposed at the extraction region in the bottom region of the distillation column to the outside of the distillation column. It may be discharged or recycled to the mixed liquid of the first step. At this time, the content of water in the total component discharged from the first outlet port disposed in the extraction zone in the bottom area of the distillation column is about 90% by weight or more or about 90% by weight to about 99.9% by weight, or about 95% by weight or more It may be from about 95% to about 99.9% by weight. Here, the remaining amount other than water among the total components flowing out from the first outlet port disposed in the extraction region in the bottom region of the distillation column may be an amide compound.
상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트는 1개 또는 2개 이상으로 구비되어, 하부 흐름에 포함된 물의 함량에 따라 외부로 토출되거나 상기 제1 단계의 혼합액으로 재순환되는 용도로 세분화할 수 있다.In the bottom area of the distillation column, the first outlet port disposed at the extraction region side is provided with one or two or more, and is discharged to the outside or recycled to the mixed solution of the first step according to the content of water included in the lower flow. Can be subdivided into
또한, 본 발명에서는 추출 영역 추출 단수와 증류 영역의 이론단수를 최적화하여 구성하고 증류 영역에서 증류 온도와 환류비 등의 공정 조건을 최적화하여, 상기 추출 영역에서 액/액 분리된 물은 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트(도 1에서 105o 참조)를 통해 분리벽으로 구성된 분리 영역, 즉, 증류 영역이나 추출 영역이 아닌 외부로 최대한 분리 배출될 수 있도록 구성할 수도 있다. 이때, 상기 추출 영역의 하부 흐름(도 1에서 106 참조)은 순수한 물로서 증류 영역과 만나지 않고 외부로 토출될 수 있다.In addition, in the present invention, the extraction stage extraction stage and the theoretical stage of the distillation region are optimized and configured, and process conditions such as distillation temperature and reflux ratio are optimized in the distillation region, so that the liquid / liquid separated water in the extraction region is distilled in the bottom region. It can also be configured to be separated and discharged to the outside as much as possible through the fourth discharge port (see FIG. 1, 105o in FIG. 1), which is disposed on the side of the region, that is, a separation wall composed of a separation wall, that is, not a distillation region or an extraction region. At this time, the lower flow of the extraction region (see 106 in FIG. 1) may be discharged to the outside without encountering the distillation region as pure water.
한편, 발명의 일 구현예에서, 상기 추출 영역의 상부 흐름 및 하부 흐름 중 적어도 하나 이상은 상기 증류탑의 증류 영역에 유입되고, 추출 용매는 상기 증류 영역의 상부 흐름으로 분리되어 상기 증류탑의 탑정 영역의 제2 유출 포트(도 1의 스트림 103 및 유출 포트 103o 참조)로 분리 유출하고, 물은 상기 증류 영역의 중간부 흐름으로 분리되어 상기 증류 영역의 제3 유출 포트(도 1의 스트림 104 및 유출 포트 104o 참조)로 분리 유출하고, 아미드계 화합물은 상기 증류 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트(도 1의 스트림 105 및 유출 포트 105o 참조)로 분리 유출된다(제3 단계).On the other hand, in one embodiment of the invention, at least one or more of the upper flow and the lower flow of the extraction zone is introduced into the distillation zone of the distillation column, and the extraction solvent is separated into the upper stream of the distillation zone to determine the top region of the distillation column. Separately effluent to a second effluent port (see stream 103 and effluent port 103o in FIG. 1), water is separated into the middle stream of the distillation zone and a third effluent port of the distillation zone (stream 104 and effluent port of FIG. 1) 104o), and the amide-based compound is separated into a lower stream of the distillation zone to a fourth effluent port (see stream 105 and effluent port 105o in FIG. 1) disposed at the bottom of the distillation column towards the distillation zone. Separately effluent (third step).
상기 제3 단계에서, 증류 공정의 이론단수는 약 9단 내지 약 25단, 또는 약 12단 내지 약 20단, 또는 약 14단 내지 약 16단으로 구성될 수 있다. 상기 증류 영역의 이론단수는 원료 조성을 고려한 증류 곡선으로부터 유추되는 이론 단수 등을 기반으로 설정할 수 있다.In the third step, the theoretical stage number of the distillation process may be composed of about 9 to about 25 stages, or about 12 to about 20 stages, or about 14 to about 16 stages. The theoretical number of stages in the distillation region may be set based on the theoretical number of stages inferred from the distillation curve considering the raw material composition.
상기 증류 영역에서, 주로 추출 용매를 포함하는 증류액을 유출하는 제2 유출 포트(도 1의 103o 참조)는 탑정 영역에 위치하고, 주로 아미드계 화합물을 포함하는 증류액을 유출하는 제4 유출 포트(도 1의 105o 참조)는 탑저 영역에 위치하고, 증류탑의 중간 영역에서 주로 물을 포함하는 증류액을 유출하는 제3 유출 포트(도 1의 104o 참조)는 상기 증류탑의 탑정을 기준으로 산출된 이론 단수의 약 40% 내지 약 65%, 또는 약 45% 내지 약 60%에 위치할 수 있다. 여기서, 상기 탑정의 제2 유출 포트(도 1의 103o 참조)에서 유출되는 주로 추출 용매를 포함하는 증류액은 별도로 외부에 토출되거나 추출 영역으로 재순환될 수 있으며 이때 상기 제2 유출 포트에서 배출되는 스트림 중 일부가 응축기(도 1의 108 참조)를 거쳐 재순환용 추가 공급 포트 (도 1의 103i 참조)를 통해 분리벽형 증류탑의 탑정 영역에 투입될 수 있다. 또한, 증류탑의 중간 영역에서 증류 영역의 제3 유출 포트(도 1의 104o 참조)로 유출되는 주로 물을 포함하는 증류액은 별도로 외부에 토출되거나 상기 제1 단계의 혼합액으로 재순환될 수 있다. 또, 상기 탑정의 제4 유출 포트(도 1의 105o 참조)에서 유출되는 주로 아미드계 화합물을 포함하는 증류액은 별도로 외부에 토출되거나 증류 영역으로 재순환될 수 있으며 이때 상기 제4 유출 포트에서 배출되는 스트림 중 일부가 응축기(도 1의 109 참조)를 거쳐 재순환용 추가 공급 포트(도 1의 105i 참조)를 통해 분리벽형 증류탑의 탑저 영역에 투입될 수 있다.In the distillation zone, a second outlet port (see 103o in FIG. 1) for mainly distilling the distillate containing the extraction solvent is located at the top region, and a fourth outlet port for distilling the distillate mainly containing an amide compound ( 1, 105o) is located at the bottom of the column, and a third outlet port (see 104o of FIG. 1) that flows distillate mainly containing water from the middle region of the distillation column is the theoretical number of stages calculated based on the top of the distillation column. About 40% to about 65%, or about 45% to about 60%. Here, the distillate mainly containing the extraction solvent flowing out from the second outlet port of the tower top (see 103o in FIG. 1) can be discharged separately or recycled to the extraction region, and at this time, the stream discharged from the second outlet port Some of them can be introduced to the top of the dividing wall distillation column through a condenser (see 108 in FIG. 1) through an additional supply port for recirculation (see 103i in FIG. 1). In addition, the distillate mainly containing water flowing from the middle region of the distillation column to the third outlet port of the distillation region (see 104o in FIG. 1) may be separately discharged to the outside or recycled to the mixed liquid of the first step. In addition, the distillate mainly containing an amide-based compound discharged from the fourth outlet port of the tower top (see 105o in FIG. 1) may be separately discharged to the outside or recycled to the distillation zone, wherein the fourth outlet port is discharged from the outlet port. A portion of the stream can be fed to the bottom area of the dividing wall distillation column via a condenser (see 109 in FIG. 1) through an additional feed port for recirculation (see 105i in FIG. 1).
이러한 증류 공정을 거치면, 상기 증류탑의 탑정 영역의 제2 유출 포트에서 유출되는 전체 성분 중 아미드계 화합물의 함량은 약 10 중량% 이하 또는 약 0.1 중량% 내지 약 10 중량%, 혹은 약 5 중량% 이하 또는 약 0.1 중량% 내지 약 5 중량%일 수 있다. 여기서, 상기 증류탑의 탑정 영역의 제2 유출 포트에서 유출되는 전체 성분 중 아미드계 화합물 이외의 나머지 잔량은 추출 용매이거나 또는 추출 용매와 물의 혼합액이 될 수 있다. 이러한 탑정 유출 포트에서 유출되는 증류액은 별도로 외부에 토출되거나 추출 영역이나 증류 영역으로 재순환될 수 있다. 또한, 상기 증류탑의 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트에서 유출되는 전체 성분 중 아미드계 화합물의 함량은 약 90 중량% 이상 또는 약 90 중량% 내지 약 99.9 중량%, 혹은 약 95 중량% 이상 또는 약 95 중량% 내지 약 99.9 중량%일 수 있다. 여기서, 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트에서 유출되는 전체 성분 중 아미드계 화합물 이외의 나머지 잔량은 물이 될 수 있다.After such a distillation process, the content of the amide-based compound in the total components flowing out of the second outlet port of the top of the distillation column is about 10% by weight or less, or about 0.1% to about 10% by weight, or about 5% by weight or less Or about 0.1% to about 5% by weight. Here, the remaining amount other than the amide-based compound among all the components flowing out from the second outlet port of the top region of the distillation column may be an extraction solvent or a mixture of extraction solvent and water. The distillate discharged from the top outlet port may be separately discharged to the outside or recycled to the extraction region or the distillation region. In addition, the content of the amide-based compound in the total component discharged from the fourth outlet port disposed on the side of the distillation column in the bottom area of the distillation column is about 90% by weight or more, or about 90% by weight to about 99.9% by weight, or about 95% by weight % Or about 95% to about 99.9% by weight. Here, the remaining amount of the remaining components other than the amide compound among the total components flowing out from the first outlet port disposed in the extraction region in the bottom region of the distillation column may be water.
상기 증류탑의 증류 영역에서 탑정 영역, 탑저 영역, 중간 영역에 배치되어 있는 유출 포토는 각각 1개 또는 2개 이상으로 구비되어, 해당 증류액의 조성에 따라 외부로 토출되거나 추출 영역이나 증류 영역으로 재순환되는 용도로 세분화할 수 있다.In the distillation area of the distillation column, one or two or more outflow photos disposed in the top, bottom, and middle areas are respectively provided, and are discharged to the outside or recycled to the extraction area or distillation area depending on the composition of the distillate. Can be subdivided for use.
또한, 상기와 같이 물과 아미드계 화합물을 포함하는 혼합액으로부터 상술한 바와 같이 탑정 영역 및 탑저 영역에서 특정 함량 범위로 아미드계 화합물을 유출시키기 위하여, 증류탑 내부의 온도 및 압력 조건은 특정 범위로 제어될 수 있다.In addition, the temperature and pressure conditions inside the distillation column may be controlled to a specific range in order to leach the amide-based compound in a specific content range from the top and bottom areas as described above from the mixed solution containing water and the amide-based compound as described above. You can.
상기 분리벽형 증류탑의 탑정 영역의 온도는 약 50 ℃ 내지 약 90 ℃, 또는 약 50 ℃ 내지 약 80 ℃, 또는 약 50 ℃ 내지 약 65 ℃로 조절할 수 있다. 또한, 상기 분리벽형 증류탑의 탑저 영역의 온도는 약 180 ℃ 내지 220 ℃, 또는 약 185 ℃ 내지 215 ℃, 또는 약 190 ℃ 내지 210 ℃로 조절할 수 있다.The temperature of the top region of the dividing wall-type distillation column may be adjusted to about 50 ° C to about 90 ° C, or about 50 ° C to about 80 ° C, or about 50 ° C to about 65 ° C. In addition, the temperature of the bottom area of the dividing wall-type distillation column may be adjusted to about 180 ° C to 220 ° C, or about 185 ° C to 215 ° C, or about 190 ° C to 210 ° C.
이때, 상기 제3 단계는, 증류 공정은 별도의 감압이나 가압 조건 없이 대기압 조건 하에서 수행할 수 있다.At this time, in the third step, the distillation process may be performed under atmospheric pressure without additional pressure reduction or pressure conditions.
상기 분리벽형 증류탑의 탑정 흐름 중 상기 분리벽형 증류탑의 탑정 영역으로 환류되는 탑정 흐름의 환류비는 환류되는 탑정 흐름의 환류비는 약 1.0 이하 또는 약 0.1 내지 약 1.0, 혹은 약 0.8 이하 또는 약 0.15 내지 약 0.8, 혹은 약 0.6 이하 또는 약 0.2 내지 약 0.6일 수 있다. 여기서, "환류비"는 상기 증류탑에서 유출되는 유출 유량(kg/hr)에 대하여 환류되는 유량(kg/hr)의 비를 의미한다.The reflux ratio of the overhead flow refluxed to the top region of the dividing wall type distillation column among the overhead flows of the dividing wall type distillation column is about 1.0 or less or about 0.1 to about 1.0, or about 0.8 or less or about 0.15 to about 0.8 , Or about 0.6 or less, or about 0.2 to about 0.6. Here, the "reflux ratio" means the ratio of the flow rate (kg / hr) reflux to the flow rate (kg / hr) flowing out of the distillation column.
일 예로, 상기 제2 단계의 추출 공정과 제3 단계의 증류 공정은 하나의 증류탑으로 수행하는 것으로, 증류탑의 탑정 및 탑저 영역에 적용하는 온도, 압력, 환류비를 동일하게 적용된다.For example, the extraction process of the second step and the distillation process of the third step are performed by one distillation column, and the temperature, pressure, and reflux ratio applied to the top and bottom areas of the distillation column are equally applied.
한편, 발명의 다른 일 구현예에 따르면, 상술한 바와 같은 방법에 사용할 수 있는 아미드계 화합물의 회수 장치가 제공된다.On the other hand, according to another embodiment of the invention, there is provided an apparatus for recovering an amide compound that can be used in the method as described above.
상기 아미드계 화합물의 회수 장치는 분리벽이 구비된 증류탑을 포함하고; 상기 증류탑은 내부가 상기 분리벽이 위치하지 않는 탑정 영역 및 탑저 영역과, 상기 분리벽을 포함하는 중간 영역으로 구분되고, 상기 중간 영역은 상기 분리벽에 의하여 나뉘어지는 추출 영역과 증류 영역으로 구분되며; 상기 추출 영역은 물과 아미드계 화합물을 포함하는 혼합액과 추출 용매를 유입하는 하나 이상의 공급 포트(도 1의 101i 및 102i 참조)와 물을 포함한 액/액 분리액을 배출하는 하나 이상의 제1 유출 포트(도 1의 106o 참조)를 포함하고; 상기 증류 영역 쪽의 유출 포트는 3 개의 스트림으로 구성되며, 추출 용매를 포함한 상부 흐름의 분리액을 배출하는 하나 이상의 제2 유출 포트(도 1의 103o 참조), 물을 포함한 중간 흐름의 분리액을 배출하는 하나 이상의 제3 유출 포트(도 1의 104o 참조), 및 아미드계 화합물은 포함한 하부 흐름의 분리액을 배출하는 하나 이상의 제4 유출 포트(도 1의 105o 참조)를 포함하는 것을 특징으로 한다.The amide-based compound recovery apparatus includes a distillation column provided with a separation wall; The distillation column is divided into a top region and a bottom region where the separation wall is not located, and an intermediate region including the separation wall, and the intermediate region is divided into an extraction region and a distillation region divided by the separation wall. ; The extraction zone includes one or more supply ports (see 101i and 102i in FIG. 1) for introducing a mixed solution containing water and an amide-based compound and an extraction solvent, and one or more first outlet ports for discharging a liquid / liquid separation solution including water. (See 106o in FIG. 1); The outlet port on the distillation zone consists of three streams, and one or more second outlet ports (see 103o in FIG. 1) for discharging the upper stream separation liquid containing the extraction solvent, the intermediate flow separation liquid. Characterized in that it comprises at least one third outlet port (see 104o in FIG. 1) for discharging, and at least one fourth outlet port (see 105o in FIG. 1) for discharging the lower-stream separating liquid containing the amide compound. .
구체적으로, 상기 아미드계 화합물의 회수 장치는, 물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매가 상기 추출 영역의 공급 포트로 유입되고, 유입된 상기 혼합액과 추출 용매는 아미드계 화합물과 추출 용매가 상기 추출 영역의 상부 흐름으로 분리 유출되고, 물은 상기 추출 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트로 분리 유출되는 것을 특징으로 한다. 또, 상기 아미드계 화합물의 회수 장치는, 상기 추출 영역의 상부 흐름 및 하부 흐름 중 적어도 하나 이상은 상기 증류탑의 증류 영역에 유입되고, 추출 용매는 상기 증류 영역의 상부 흐름으로 분리되어 상기 증류탑의 탑정 영역의 제2 유출 포트로 분리 유출되고, 물은 상기 증류 영역의 중간부 흐름으로 분리되어 상기 증류 영역의 제3 유출 포트로 분리 유출되고, 아미드계 화합물은 상기 증류 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트로 분리 유출되는 것을 특징으로 한다.Specifically, in the apparatus for recovering the amide-based compound, a mixed solution and an extraction solvent containing water and an amide-based compound flow into a supply port of the extraction region, and the mixed solution and the extraction solvent have an amide-based compound and an extraction solvent. It is characterized in that it is separated and discharged as an upper flow of the extraction region, and water is separated as a lower flow of the extraction region and separated and discharged from the bottom region of the distillation column to the first discharge port disposed at the extraction region side. In addition, the recovery device of the amide-based compound, at least one or more of the upper and lower streams of the extraction zone is introduced into the distillation zone of the distillation column, and the extraction solvent is separated into the upper stream of the distillation zone to form the top of the distillation column. Separately effluent to the second effluent port of the zone, water is separated into the middle stream of the distillation zone and separated effluent to the third effluent port of the distillation zone, and the amide compound is separated into the lower stream of the distillation zone to It is characterized in that it is separated and discharged from the bottom area of the distillation column to the fourth outlet port disposed on the side of the distillation area.
특히, 본 발명에 따른 아미드계 화합물의 회수 장치는 추출 영역과 증류 영역을 포함하는 증류탑으로 구성되어, 정제 공정에서 사용되는 증류탑의 개수(증류탑 케이싱, 가열기, 응축기 또는 내부 부품 등)를 최소화하며 정제 공정을 단순화시키고 에너지 소비를 최소화하여 전체 공정 효율을 극대화할 수 있다. 이로써, 증류 공정의 최초 투자비와 복잡성을 완화시키고, 또한 에너지 소비를 현저히 절감할 수 있다.In particular, the apparatus for recovering an amide compound according to the present invention is composed of a distillation column including an extraction area and a distillation area, minimizing the number of distillation columns (distillation column casings, heaters, condensers, or internal parts, etc.) used in the purification process and purifying The overall process efficiency can be maximized by simplifying the process and minimizing energy consumption. This can reduce the initial investment cost and complexity of the distillation process, and also significantly reduce energy consumption.
본 발명의 다른 일 구현예에서, 상기 분리벽형 증류탑의 구성 및 분리벽, 공급 포트, 유출 포트 등과 물과 아미드계 화합물, 추출 용매 관련한 특징은 전술한 바와 같으며, 구체적인 설명은 생략한다.In another embodiment of the present invention, the configuration of the dividing wall-type distillation column and the features related to the dividing wall, the supply port, the outflow port, and the like, water and amide compounds, and extraction solvent are as described above, and detailed description is omitted.
상기 아미드계 화합물의 회수 장치는 응축기, 재비기 등을 추가로 포함할 수 있다. 상기 "응축기"는 증류탑과 별도로 설치된 장치로서, 상기 본체에서 유출된 물질을 외부에서 유입된 냉각수와 접촉시키는 등의 방식으로 냉각시키기 위한 장치를 의미할 수 있다. 예를 들어, 도 1에 예시한 아미드계 화합물의 회수 장치에서 응축기(108)는 상기 분리벽형 증류탑의 탑정 영역에서 유출되는 탑정 흐름(103)을 응축시키는 장치일 수 있다. 또한, 상기 "재비기"는 증류탑의 외부에 설치된 가열 장치이고, 끓는점이 높은 흐름을 다시 가열 및 증발시키기 위한 장치를 의미할 수 있다. 예를 들어, 도 1에 예시한 아미드계 화합물의 회수 장치에서 재비기(109)는 상기 분리벽형 증류탑의 탑저 영역에서 증류 영역쪽에 배치된 유출 포트 유출되는 탑저 흐름(105)을 가열하는 장치일 수 있다.The amide-based compound recovery device may further include a condenser, a reboiler, and the like. The "condenser" is a device installed separately from the distillation column, and may mean a device for cooling the material discharged from the main body by contacting with cooling water introduced from the outside. For example, in the recovery device for the amide-based compound illustrated in FIG. 1, the condenser 108 may be a device for condensing the overhead flow 103 flowing out of the top region of the dividing wall type distillation column. In addition, the "reboiler" is a heating device installed on the outside of the distillation column, and may mean a device for heating and evaporating a high boiling point flow again. For example, the reboiler 109 in the apparatus for recovering the amide compound illustrated in FIG. 1 may be a device for heating the bottom flow 105 flowing out of the outlet port disposed toward the distillation region in the bottom region of the dividing wall type distillation column. have.
상기 아미드계 화합물의 회수 장치는, 추출 장치나 증류 장치에 사용 가능한 것으로 알려진 통상적으로 변경 가능한 장치(들)을 부가적으로 구비하여 변경될 수 있다.The amide-based compound recovery device may be modified by additionally having conventionally changeable device (s) known to be usable for extraction or distillation devices.
한편, 발명의 또다른 일 구현예에 따르면, 상술한 바와 같은 아미드계 화합물의 회수 공정을 포함하는 폴리아릴렌 설파이드의 제조 방법이 제공된다.On the other hand, according to another embodiment of the invention, there is provided a method for producing polyarylene sulfide comprising a process for recovering an amide-based compound as described above.
상기 폴리아릴렌 설파이드의 제조 방법은, 알칼리 금속의 수황화물 및 알칼리 금속의 수산화물을, 물 및 아미드계 화합물의 혼합 용매 중에서 탈수 반응(dehydration)을 수행하여, 알칼리 금속의 황화물, 및 물과 아미드계 화합물의 혼합 용매를 포함하는 황 공급원을 제조하는 단계(제조 공정의 제1 단계); 상기 황 공급원을 포함하는 반응기에 디할로겐화 방향족 화합물 및 아미드계 화합물을 첨가하고, 중합 반응시켜 폴리아릴렌 설파이드를 합성하는 단계(제조 공정의 제2 단계); 상기 폴리아릴렌 설파이드를 포함하는 중합 반응 생성물을 아미드계 화합물 및 물로 이루어진 군에서 선택된 1종 이상으로 세척하는 단계(제조 공정의 제3 단계); 상기 세척 단계에서 얻어진 물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매를, 내부에 분리벽이 구비되고, 내부가 상기 분리벽이 위치하지 않는 탑정 영역 및 탑저 영역과, 상기 분리벽을 포함하는 중간 영역으로 구분되고, 상기 중간 영역은 상기 분리벽에 의하여 나뉘어지는 추출 영역과 증류 영역으로 구분되는 증류탑의 추출 영역에 투입하는 단계 (제조 공정의 제4 단계); 상기 증류탑의 추출 영역에서, 아미드계 화합물과 추출 용매를 상기 추출 영역의 상부 흐름으로 분리 유출하고, 물은 상기 추출 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트로 분리 유출하는 단계 (제조 공정의 제5 단계); 및 상기 추출 영역의 상부 흐름 및 하부 흐름 중 적어도 하나 이상은 상기 증류탑의 증류 영역에 유입되고, 추출 용매는 상기 증류 영역의 상부 흐름으로 분리되어 상기 증류탑의 탑정 영역의 제2 유출 포트로 분리 유출하고, 물은 상기 증류 영역의 중간부 흐름으로 분리되어 상기 증류 영역의 제3 유출 포트로 분리 유출하고, 아미드계 화합물은 상기 증류 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트로 분리 유출하는 단계(제조 공정의 제6 단계);를 포함하는 것을 특징으로 한다.In the method for preparing the polyarylene sulfide, dehydration of an alkali metal hydrosulfide and an alkali metal hydroxide in a mixed solvent of water and an amide compound is performed, followed by sulfide of the alkali metal, and water and amides. Preparing a sulfur source comprising a mixed solvent of the compound (first step of the manufacturing process); Adding a dihalogenated aromatic compound and an amide compound to the reactor containing the sulfur source, and polymerizing to synthesize polyarylene sulfide (second step of the manufacturing process); Washing the polymerization reaction product containing the polyarylene sulfide with at least one selected from the group consisting of amide compounds and water (third step of the manufacturing process); The mixture and extraction solvent containing water and the amide-based compound obtained in the washing step are provided with a separation wall therein, and a top region and a bottom region in which the separation wall is not located, and an intermediate region including the separation wall. Divided into regions, and the intermediate region is introduced into an extraction region of a distillation column divided into an extraction region divided by the dividing wall and a distillation region (fourth step of the manufacturing process); In the extraction region of the distillation column, an amide-based compound and an extraction solvent are separated and discharged into an upper flow of the extraction region, and water is separated into a lower flow of the extraction region and is disposed on the extraction region in the bottom region of the distillation column. Separating and flowing into the outlet port (the fifth step of the manufacturing process); And at least one of an upper stream and a lower stream of the extraction zone is introduced into the distillation zone of the distillation column, and the extraction solvent is separated into an upper stream of the distillation zone and separated and discharged to a second outlet port of the top zone of the distillation column. , Water is separated into the middle flow of the distillation zone and separated and discharged to the third outlet port of the distillation zone, and the amide-based compound is separated into the lower stream of the distillation zone and disposed on the distillation zone side in the bottom area of the distillation column. It characterized in that it comprises a; step (separately flowing out of the manufacturing process) to the fourth outlet port.
본 발명의 다른 일 구현예에 따른 상기 폴리아릴렌 설파이드의 제조방법에 있어서, 각 단계별로 설명하고자 한다.In the method for preparing the polyarylene sulfide according to another embodiment of the present invention, each step will be described.
상술한 제조 공정의 제1 단계는 황 공급원을 준비하는 단계이다.The first step of the manufacturing process described above is a step of preparing a sulfur source.
상기 황 공급원은 알칼리 금속의 수황화물, 알칼리 금속의 수산화물을, 물 및 아미드계 화합물의 혼합용매 중에서 탈수 반응(dehydration)을 수행하여 제조된 것이다. 따라서, 상기 황 공급원은 알칼리 금속의 수황화물과 알칼리 금속의 수산화물의 반응에 의해 생성된 알칼리 금속의 황화물과 함께, 탈수 반응 후 잔류하는 물, 아미드계 화합물의 혼합 용매를 포함할 수 있다.The sulfur source is prepared by performing dehydration of an alkali metal hydroxide, an alkali metal hydroxide in a mixed solvent of water and an amide compound. Accordingly, the sulfur source may include a mixed solvent of water and an amide compound remaining after the dehydration reaction, together with the sulfide of the alkali metal produced by the reaction of the alkali metal hydroxide and the hydroxide of the alkali metal.
상기 알칼리 금속의 황화물은 반응시 사용되는 알칼리 금속의 수황화물의 종류에 따라 결정될 수 있으며, 구체적인 예로는 황화리튬, 황화나트륨, 황화칼륨, 황화루비듐 또는 황화세슘 등을 들 수 있으며 이들 중 어느 하나 또는 둘 이상의 혼합물이 포함될 수 있다.The sulfide of the alkali metal may be determined according to the type of the alkali metal hydrosulfide used in the reaction, and specific examples thereof include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide or cesium sulfide, and any one of them or Mixtures of two or more can be included.
상기 알칼리 금속의 수황화물과 알칼리 금속의 수산화물의 반응에 의한 황 공급원의 제조시, 사용 가능한 알칼리 금속의 수황화물은 구체적인 예로는 황화수소리튬, 황화수소나트륨, 황화수소칼륨, 황화수소루비듐 또는 황화수소세슘 등을 들 수 있다. 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있으며, 이들의 무수물 또는 수화물도 사용 가능하다.When preparing a sulfur source by reaction of the alkali metal hydroxide and the hydroxide of the alkali metal, specific examples of the alkali metal hydrosulfide include sodium hydrogen sulfide, sodium hydrogen sulfide, potassium hydrogen sulfide, rubidium hydrogen sulfide, or cesium hydrogen sulfide. have. Any one or a mixture of two or more of these may be used, and anhydrides or hydrates of these may also be used.
또한, 상기 알칼리 금속의 수산화물의 구체적인 예로는 수산화리튬, 수산화나트륨, 수산화칼륨, 수산화루비듐, 또는 수산화세슘 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 알칼리 금속의 수산화물은 알칼리 금속의 수황화물 1 당량에 대하여 0.90 내지 2.0의 당량비, 보다 구체적으로는 1.0 내지 1.5의 당량비, 보다 더 구체적으로는 1.0 내지 1.2의 당량비로 사용될 수 있다.In addition, specific examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, or cesium hydroxide, and any one or a mixture of two or more thereof may be used. The hydroxide of the alkali metal may be used in an equivalent ratio of 0.90 to 2.0, more specifically in an equivalent ratio of 1.0 to 1.5, and more specifically in an equivalent ratio of 1.0 to 1.2, per 1 equivalent of the sulfide of the alkali metal.
한편, 본 발명에 있어서, 당량은 몰 당량(eq/mol)을 의미한다.On the other hand, in the present invention, equivalent weight means molar equivalent weight (eq / mol).
또한, 상기 알칼리 금속의 수황화물과 알칼리 금속의 수산화물의 반응에 의한 황 공급원의 제조시, 중합 조제로서 중합반응을 촉진시켜 단시간 내에 폴리아릴렌 설파이드의 중합도를 높일 수 있는 알칼리 금속의 유기산염이 투입될 수 있다. 상기 알칼리 금속의 유기산염은 구체적으로, 아세트산 리튬, 또는 아세트산 나트륨 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 알칼리 금속의 유기산염은 알칼리 금속의 수황화물 1 당량에 대해 0.01 내지 1.0, 보다 구체적으로는 0.01 내지 0.8, 보다 더 구체적으로는 0.05 내지 0.5의 당량비로 사용될 수 있다.In addition, in the production of a sulfur source by the reaction of the alkali metal hydroxide and the hydroxide of the alkali metal, an organic acid salt of an alkali metal capable of increasing the polymerization degree of polyarylene sulfide in a short time by promoting a polymerization reaction as a polymerization aid is added. Can be. Specifically, the organic acid salt of the alkali metal may be lithium acetate or sodium acetate, and any one or a mixture of two or more of them may be used. The organic acid salt of the alkali metal may be used in an equivalent ratio of 0.01 to 1.0, more specifically 0.01 to 0.8, and even more specifically 0.05 to 0.5 based on 1 equivalent of the hydrosulfide of the alkali metal.
상기한 알칼리 금속의 수황화물과 알칼리 금속의 수산화물의 반응은, 물과 아미드계 화합물의 혼합용매 중에서 수행될 수 있는데, 이때 상기 아미드계 화합물의 구체적인 예로는 N,N-디메틸포름아미드 또는 N,N-디메틸아세트아미드 등의 아미드 화합물; N-메틸-2-피롤리돈(NMP) 또는 N-시클로헥실-2-피롤리돈 등의 피롤리돈 화합물; N-메틸-ε-카프로락탐 등의 카프로락탐 화합물; 1,3-디알킬-2-이미다졸리디논 등의 이미다졸리디논 화합물; 테트라메틸 요소 등의 요소 화합물; 또는 헥사메틸인산 트리아미드 등의 인산 아미드 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 반응 효율 및 폴리아릴렌 설파이드 제조를 위한 중합시 중합용매로의 공용매 효과를 고려할 때 상기 아미드계 화합물은 보다 구체적으로 N-메틸-2-피롤리돈(NMP)일 수 있다.The reaction of the alkali metal hydroxide with the alkali metal hydroxide may be performed in a mixed solvent of water and an amide compound, wherein specific examples of the amide compound are N, N-dimethylformamide or N, N -Amide compounds such as dimethylacetamide; Pyrrolidone compounds such as N-methyl-2-pyrrolidone (NMP) or N-cyclohexyl-2-pyrrolidone; Caprolactam compounds such as N-methyl-ε-caprolactam; Imidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; Urea compounds such as tetramethyl urea; Or phosphate amide compounds such as hexamethylphosphate triamide, and any one or a mixture of two or more of them can be used. Among these, the amide-based compound may be more specifically N-methyl-2-pyrrolidone (NMP) in consideration of reaction efficiency and cosolvent effect as a polymerization solvent during polymerization for preparing polyarylene sulfide.
또한, 상기 물은 아미드계 화합물 1 당량에 대하여 약 1 내지 8의 당량비로 사용될 수 있으며, 보다 구체적으로는 약 1.5 내지 5, 보다 더 구체적으로는 약 2.5 내지 5의 당량비로 사용될 수 있다.In addition, the water may be used in an equivalent ratio of about 1 to 8 with respect to 1 equivalent of the amide compound, more specifically about 1.5 to 5, and even more specifically about 2.5 to 5.
한편, 상기 제1 단계에서, 알칼리 금속의 수황화물 및 알칼리 금속의 수산화물 등을 포함하는 반응물은 탈수 반응(dehydration)을 통해 알칼리 금속의 황화물을 생성시킬 수 있다. 이 때, 상기 탈수 반응은 약 130 내지 205 ℃의 온도 범위에서, 약 100 내지 500 rpm의 속도로 교반하여 수행될 수 있다. 보다 구체적으로는 약 175 내지 200 ℃의 온도 범위에서 약 100 내지 300 rpm의 속도로 교반하여 수행될 수 있다. 이 때, 상기 탈수 반응의 시간은 약 30 분에서 6 시간 이내, 또는 약 1 시간에서 3 시간 이내로 수행될 수 있다.On the other hand, in the first step, a reactant containing an alkali metal hydrosulfide and an alkali metal hydroxide may generate sulfide of an alkali metal through dehydration. At this time, the dehydration reaction may be performed by stirring at a rate of about 100 to 500 rpm in a temperature range of about 130 to 205 ° C. More specifically, it may be performed by stirring at a rate of about 100 to 300 rpm in a temperature range of about 175 to 200 ° C. At this time, the time of the dehydration reaction may be performed within about 30 minutes to 6 hours, or about 1 hour to 3 hours.
이러한 탈수 공정 동안에 반응물 중 물 등의 용매가 증류 등을 통해 제거될 수 있으며, 물과 함께 아미드계 화합물의 일부가 배출되고, 또 황 공급원 내 포함된 일부 황이 탈수 공정 동안의 열에 의해 물과 반응하여 황화수소 기체로서 휘산될 수 있다.During the dehydration process, a solvent such as water may be removed through distillation, etc., and a part of the amide compound is discharged together with water, and some sulfur contained in the sulfur source reacts with water by heat during the dehydration process. It can be volatilized as a hydrogen sulfide gas.
한편, 상기와 같은 알칼리 금속의 수황화물, 알칼리 금속의 수산화물 및 알칼리 금속염의 반응 결과로, 알칼리 금속의 황화물이 물과 아미드계 화합물의 혼합 용매 중에 고체상으로 석출된다. 이에 따라 본 발명에 따른 폴리아릴렌 설파이드 제조시 황 공급원으로, 상기한 알칼리 금속의 수황화물과 알칼리 금속의 수산화물을 반응시켜 제조한 황 공급원이 사용될 경우, 황 공급원의 몰비는 반응 시 투입한 알칼리 금속의 수황화물의 몰비로 한다.On the other hand, as a result of the reaction of the alkali metal hydroxide, alkali metal hydroxide and alkali metal salt, the alkali metal sulfide is precipitated as a solid in a mixed solvent of water and an amide compound. Accordingly, when a polyarylene sulfide according to the present invention is used as a sulfur source, when a sulfur source prepared by reacting the above-mentioned alkali metal hydrosulfide with an alkali metal hydroxide is used, the molar ratio of the sulfur source is the alkali metal injected during the reaction. Let the molar ratio of the sulfides of
이어서, 상기한 반응 결과로 생성된 알칼리 금속의 황화물을 포함한 반응 생성물 중의 물 등의 용매를 제거하기 위해, 탈수 공정이 수행된다. 상기 탈수 공정은 이 분야에 잘 알려진 방법에 따라 수행될 수 있는 바, 그 조건이 크게 제한되지 않으며, 구체적인 공정 조건은 전술한 바와 같다.Subsequently, a dehydration process is performed to remove a solvent such as water in the reaction product containing the sulfide of the alkali metal produced as a result of the above-described reaction. The dehydration process can be performed according to a method well known in the art, the conditions are not greatly limited, and specific process conditions are as described above.
또한, 상기 탈수 공정 동안에 황 공급원내 포함된 황이 물과 반응하여 황화수소와 알칼리 금속 수산화물이 생성되고, 생성된 황화수소는 휘산되기 때문에, 탈수 공정 동안에 계 외로 휘산하는 황화수소에 의해 탈수 공정 후 계내에 잔존하는 황 공급원 중의 황의 양은 감소될 수 있다. 일례로, 알칼리 금속 수황화물을 주성분으로 하는 황 공급원을 사용할 경우, 탈수 공정 후에 계내에 잔존하는 황의 양은, 투입한 황 공급원 내 황의 몰 양에서 계 외로 휘산한 황화수소의 몰 양을 뺀 값과 동일하다. 이에 따라 계 외로 휘산한 황화수소의 양으로부터 탈수 공정 후 계내에 잔존하는 황 공급원 중에 포함된 유효 황의 양을 정량하는 것이 필요하다. 구체적으로, 상기 탈수 공정은 유효 황 1몰에 대하여 물이 1 내지 5의 몰비, 보다 구체적으로는 1.5 내지 4, 보다 더 구체적으로는 1.75 내지 3.5의 몰비가 될 때까지 수행될 수 있다. 상기 탈수 공정에 의해 황 공급원내 수분량이 지나치게 감소하는 경우에는 중합 공정에 앞서 물을 첨가하여 수분량을 조절할 수 있다.In addition, during the dehydration process, sulfur contained in the sulfur source reacts with water to generate hydrogen sulfide and alkali metal hydroxide, and the hydrogen sulfide produced is volatilized, so that it remains in the system after the dehydration process by hydrogen sulfide volatilized out of the system during the dehydration process. The amount of sulfur in the sulfur source can be reduced. As an example, when using a sulfur source containing alkali metal hydrosulfide as a main component, the amount of sulfur remaining in the system after the dehydration process is equal to a value obtained by subtracting the molar amount of hydrogen sulfide volatilized out of the system from the amount of sulfur in the input sulfur source. . Accordingly, it is necessary to quantify the amount of effective sulfur contained in the sulfur source remaining in the system after the dehydration process from the amount of hydrogen sulfide volatilized out of the system. Specifically, the dehydration process may be performed until water becomes a molar ratio of 1 to 5, more specifically 1.5 to 4, and more specifically 1.75 to 3.5 with respect to 1 mole of effective sulfur. When the amount of moisture in the sulfur source is excessively reduced by the dehydration process, water can be adjusted by adding water prior to the polymerization process.
이에 따라, 상기한 바와 같은 알칼리 금속의 수황화물과 알칼리 금속의 수산화물의 반응 및 탈수에 의해 제조된 황 공급원은, 알칼리 금속의 황화물과 함께, 물 및 아미드계 화합물의 혼합용매를 포함할 수 있으며, 상기 물은 황 공급원내 포함된 황 1몰에 대해 구체적으로 1.75 내지 3.5의 몰비로 포함될 수 있다. 또한, 상기 황 공급원은 황과 물의 반응에 의해 생성된 알칼리 금속의 수산화물을 더 포함할 수 있다.Accordingly, the sulfur source prepared by the reaction and dehydration of the alkali metal hydroxide and the alkali metal hydroxide may include a mixed solvent of water and an amide compound, together with the alkali metal sulfide, The water may be specifically included in a molar ratio of 1.75 to 3.5 with respect to 1 mole of sulfur contained in the sulfur source. Further, the sulfur source may further include an alkali metal hydroxide produced by the reaction of sulfur and water.
한편, 본 발명의 일 구현예에 따라, 상기 제조 공정의 제2 단계는 상기 황 공급원을 디할로겐화 방향족 화합물과 중합반응시켜 폴리아릴렌 설파이드를 제조하는 단계이다.Meanwhile, according to an embodiment of the present invention, the second step of the manufacturing process is a step of preparing a polyarylene sulfide by polymerizing the sulfur source with a dihalogenated aromatic compound.
상기 폴리아릴렌 설파이드의 제조를 위해 사용 가능한 디할로겐화 방향족 화합물은, 방향족 고리에서의 두 개의 수소가 할로겐 원자로 치환된 화합물로서, 구체적인 예로는 o-디할로벤젠, m-디할로벤젠, p-디할로벤젠, 디할로톨루엔, 디할로나프탈렌, 디할로비페닐, 디할로벤조산, 디할로디페닐에테르, 디할로디페닐설폰, 디할로디페닐설폭사이드 또는 디할로디페닐 케톤 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 디할로겐화 방향족 화합물에 있어서, 할로겐 원자는 불소, 염소, 브롬 또는 요오드일 수 있다. 이중에서도 폴리아릴렌 설파이드 제조시 반응성 및 부반응 생성 감소 효과 등을 고려할 때, p-디클로로벤젠(p-DCB)이 사용될 수 있다.The dihalogenated aromatic compound usable for the production of the polyarylene sulfide is a compound in which two hydrogens in the aromatic ring are substituted with halogen atoms, and specific examples include o-dihalobenzene, m-dihalobenzene, and p-dihal Robenzene, dihalotoluene, dihalonaphthalene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenylsulfone, dihalodiphenylsulfoxide or dihalodiphenyl ketone, etc. Mixtures of two or more can be used. In the dihalogenated aromatic compound, the halogen atom may be fluorine, chlorine, bromine or iodine. Of these, p-dichlorobenzene (p-DCB) may also be used when considering the effect of reducing reactivity and side reaction production when preparing polyarylene sulfide.
상기 디할로겐화 방향족 화합물은 황 공급원 1 당량을 기준으로 약 0.8 내지 1.2의 당량으로 투입될 수 있다. 상기한 함량 범위 내로 투입될 경우, 제조되는 폴리아릴렌 설파이드의 용융점도 저하 및 폴리아릴렌 설파이드 내에 존재하는 클로린 함량의 증가에 대한 우려 없이, 우수한 물성적 특징을 갖는 폴리아릴렌 설파이드를 제조할 수 있다. 황 공급원과 디할로겐화 방향족 화합물의 첨가량 제어에 따른 개선 효과의 우수함을 고려할 때, 보다 구체적으로는 디할로겐화 방향족 화합물은 약 0.9 내지 1.1의 당량으로 투입될 수 있다.The dihalogenated aromatic compound may be added in an amount of about 0.8 to 1.2 based on 1 equivalent of the sulfur source. When it is added within the above-mentioned content range, polyarylene sulfide having excellent physical properties can be prepared without fear of a decrease in the melt viscosity of the polyarylene sulfide produced and an increase in the chlorine content present in the polyarylene sulfide. have. Considering the superiority of the improvement effect according to the sulfur source and the control amount of the dihalogenated aromatic compound, more specifically, the dihalogenated aromatic compound may be added in an equivalent weight of about 0.9 to 1.1.
또한, 상기 제조 공정의 제2 단계를 진행하기 전에, 디할로겐화 방향족 화합물의 기화를 막기 위해 상기 황 공급원을 포함하는 반응기의 온도를 약 150 내지 200 ℃의 온도로 하강시키는 단계를 더 포함할 수 있다.In addition, before proceeding to the second step of the manufacturing process, it may further include the step of lowering the temperature of the reactor containing the sulfur source to a temperature of about 150 to 200 ℃ to prevent the vaporization of the dihalogenated aromatic compound. .
또한, 상기한 황 공급원과 디할로겐화 방향족 화합물의 중합반응은 비프로톤성 극성 유기용매로서, 고온에서 알칼리에 대해 안정적인 아미드계 화합물의 용매 중에서 수행될 수 있다.In addition, the polymerization reaction of the above-mentioned sulfur source with a dihalogenated aromatic compound is an aprotic polar organic solvent, and can be carried out in a solvent of an amide-based compound that is stable to alkali at high temperatures.
상기 아미드계 화합물의 구체적인 예는 앞서 설명한 바와 같으며, 예시된 화합물들 중에서도 반응 효율 등을 고려할 때, 보다 구체적으로 상기 아미드계 화합물은 N-메틸-2-피롤리돈(NMP) 또는 N-시클로헥실-2-피롤리돈 등의 피롤리돈 화합물일 수 있다.Specific examples of the amide-based compound are as described above, and when considering reaction efficiency among the exemplified compounds, more specifically, the amide-based compound is N-methyl-2-pyrrolidone (NMP) or N-cyclo It may be a pyrrolidone compound such as hexyl-2-pyrrolidone.
상기 제1 단계에서의 황 공급원 중에 포함된 아미드계 화합물이 공용매로서 작용할 수 있으므로, 상기 제조 공정의 제2 단계에서 첨가되는 아미드계 화합물은 중합반응계 내에 존재하는 아미드계 화합물에 대한 물(H2O)의 몰비(물/아미드계 화합물의 몰비)가 약 0.85 이상이 되도록 하는 양으로 첨가될 수 있다.Since the amide compound contained in the sulfur source in the first step may act as a co-solvent, the amide compound added in the second step of the manufacturing process is water (H2O) for the amide compound present in the polymerization reaction system. May be added in an amount such that the molar ratio of (molar ratio of water / amide compound) is about 0.85 or more.
또한, 상기 중합반응시 분자량 조절제, 가교제 등 중합반응이나 분자량을 조절하기 위한 기타 첨가제가 최종 제조되는 폴리아릴렌 설파이드의 물성 및 제조 수율을 저하시키지 않는 범위 내의 함량으로 더 첨가될 수도 있다.In addition, other additives for controlling the polymerization reaction or molecular weight, such as a molecular weight modifier and a crosslinking agent, may be further added in a content within a range that does not degrade the physical properties and production yield of the final polyarylene sulfide.
상기 황 공급원과 디할로겐화 방향족 화합물의 중합 반응은 약 200 내지 300 ℃에서 수행될 수 있다. 또는 상기한 온도 범위 내에서 온도를 변화시키며 다단계로 수행될 수도 있다. 구체적으로는 약 200 ℃ 이상 약 250 ℃ 미만에서의 1차 중합반응 후, 연속하여 1차 중합반응시의 온도보다 높은 온도에서, 구체적으로는 약 250 ℃ 내지 300 ℃에서 2차 중합반응이 수행될 수 있다.The polymerization reaction of the sulfur source and the dihalogenated aromatic compound may be performed at about 200 to 300 ° C. Alternatively, it may be performed in multiple steps while changing the temperature within the above-described temperature range. Specifically, after the first polymerization reaction at about 200 ° C or more and less than about 250 ° C, the second polymerization reaction is performed at a temperature higher than the temperature at the time of the first polymerization, specifically, at about 250 ° C to 300 ° C. You can.
한편, 본 발명의 일 구현예에 따라, 상기 제조 공정의 제3 단계는 상기 중합 반응의 결과로 생성된 반응 생성물 중에서 중합 후 생성되는 올리고머(oligomer) 등이나 염화나트륨(NaCl)과 같은 알칼리금속 할로겐화물 등의 불순물 제거를 위하여 아미드계 화합물 및 물 중에서 1종 이상을 사용하여 세척하는 단계이다.On the other hand, according to one embodiment of the present invention, the third step of the manufacturing process is an alkali metal halide such as an oligomer (oligomer) or sodium chloride (NaCl) generated after polymerization among reaction products produced as a result of the polymerization reaction. In order to remove impurities such as, it is a step of washing using at least one of an amide compound and water.
상기 아미드계 화합물의 구체적인 예는 앞서 설명한 바와 같으며, 예시된 화합물들 중에서도 세척 효율 등을 고려할 때, 보다 구체적으로 상기 아미드계 화합물은 N-메틸-2-피롤리돈(NMP)일 수 있다.Specific examples of the amide-based compound are as described above, and when considering washing efficiency among the exemplified compounds, the amide-based compound may be N-methyl-2-pyrrolidone (NMP).
이렇게 아미드계 화합물이나 물을 사용한 세척 공정은 이 분야에 잘 알려진 방법에 따라 수행될 수 있는 바, 그 조건이 크게 제한되지 않는다.The washing process using an amide compound or water may be performed according to a method well known in the art, and the conditions are not particularly limited.
또한, 상기 세척 공정을 통해 얻어진 혼합액은 후술되는 증류탑에 투입하기에 앞서, 올리고머(oligomer) 등이나 염화나트륨(NaCl)과 같은 알칼리금속 할로겐화물, 또는 미분의 분산된 폴리아릴렌 설파이드 입자 등을 제거하기 위하여 필터링 단계를 추가로 수행할 수 있다. 이러한 필터링 공정은 이 분야에 잘 알려진 방법에 따라 수행될 수 있는 바, 그 조건이 크게 제한되지 않는다.In addition, the mixed solution obtained through the washing process is to remove an alkali metal halide such as an oligomer or sodium chloride (NaCl), or finely dispersed polyarylene sulfide particles, etc. before being put into a distillation column to be described later. To this end, a filtering step may be additionally performed. This filtering process can be performed according to methods well known in the art, and the conditions are not particularly limited.
한편, 본 발명의 일 구현예에 따라, 상기 제조 공정의 제4 단계 내지 제6단계는 상기 세척 공정 등에서 얻어진 물과 아미드계 화합물의 혼합액으로부터 아미드계 화합물을 분리 회수하는 단계이다.On the other hand, according to an embodiment of the present invention, steps 4 to 6 of the manufacturing process is a step of separating and recovering an amide compound from a mixture of water and an amide compound obtained in the washing process.
본 발명의 다른 일 구현예에서, 물과 아미드계 화합물의 혼합액으로부터 아미드계 화합물을 분리 회수하는 공정 관련한 특징은 전술한 바와 같으며, 구체적인 설명은 생략한다.In another embodiment of the present invention, features related to the process of separating and recovering an amide compound from a mixture of water and an amide compound are as described above, and detailed description is omitted.
상기 폴리아릴렌 설파이드의 구체적인 제조 방법 및 상기 아미드계 화합물의 구체적인 분리 회수 방법은 후술하는 실시예를 참고할 수 있다. 그러나, 폴리아릴렌 설파이드의 제조 방법이나 아미드계 화합물의 분리 회수 방법이 본 명세서에 기술한 내용에 한정되는 것은 아니며, 상기 제조 방법 및 분리 회수 방법은 본 발명이 속한 기술분야에서 통상적으로 채용하는 단계를 추가로 채용할 수 있고, 상기 제조 방법 및 분리 회수 방법의 단계(들)는 통상적으로 변경 가능한 단계(들)에 의하여 변경될 수 있다.The specific production method of the polyarylene sulfide and the specific separation and recovery method of the amide-based compound may refer to Examples described later. However, the method for producing polyarylene sulfide or the method for separating and recovering an amide-based compound is not limited to the contents described herein, and the method for producing and separating and recovering is generally employed in the technical field to which the present invention pertains. In addition, step (s) of the above-described manufacturing method and separation and recovery method may be changed by the step (s), which is usually changeable.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments are provided to help understanding of the present invention. However, the following examples are only provided to more easily understand the present invention, and the contents of the present invention are not limited thereby.
<폴리페닐렌설파이드의 제조><Production of polyphenylene sulfide>
제조예 1Preparation Example 1
PPS 폴리머를 만들기 위해 70% 황화수소 나트륨 (NaSH)과 수산화 나트륨 (NaOH)를 1:1.05 비율로 혼합하여 황화 나트륨을 제조한다. 이 때, 0.33 당량의 아세트산 나트륨(CH3COONa) 분말 및 1.65 당량의 N-메틸-2-파이롤리돈(NMP), 4.72 당량의 탈이온수(DI water)를 반응기에 첨가하였다. 여기서, 당량은 몰 당량(eq/mol)을 의미한다. 이 때, 고체 시약을 먼저 넣고 NMP, DI water 순으로 투입하였다. 그리고나서, 반응기를 약 150 rpm으로 교반하고, 약 215 ℃까지 가열하여 탈수시켰다. 그 후 황화수소 나트륨보다 1.04 배 많은 당량의 파라-디클로로벤젠(p-DCB)와 1.65 당량의 N-메틸-2-파이롤리돈(NMP)을 반응기에 첨가하였다. 이 후 반응 혼합물은, 전단 반응으로는 약 230 ℃까지 가열하여 약 2 시간 동안 반응시키고, 다시 후단 반응으로 약 255 ℃까지 가열하여 약 2 시간 반응시킨 후 증류수를 첨가하고 2 시간 이상 교반하고, 그 반응 생성물인 PPS 폴리머를 얻었다.To make a PPS polymer, sodium sulfide is prepared by mixing 70% sodium hydrogen sulfide (NaSH) and sodium hydroxide (NaOH) in a ratio of 1: 1.05. At this time, 0.33 equivalents of sodium acetate (CH 3 COONa) powder, 1.65 equivalents of N-methyl-2-pyrrolidone (NMP), and 4.72 equivalents of deionized water (DI water) were added to the reactor. Here, equivalent weight means molar equivalent weight (eq / mol). At this time, the solid reagent was first added and then added in the order of NMP and DI water. Then, the reactor was stirred at about 150 rpm and dehydrated by heating to about 215 ° C. Then 1.04 times more equivalents of para-dichlorobenzene (p-DCB) and 1.65 equivalents of N-methyl-2-pyrrolidone (NMP) than sodium hydrogen sulfide were added to the reactor. Thereafter, the reaction mixture is heated to about 230 ° C. for a shear reaction, reacted for about 2 hours, and heated to about 255 ° C. for a subsequent reaction, reacted for about 2 hours, then distilled water is added and stirred for 2 hours or more. The reaction product, PPS polymer, was obtained.
상기 중합 공정을 마친 후, 반응 생성물은 잔류하는 미반응 물질이나 부산물을 제거하기 위하여 약 90 ℃의 DI water와 NMP를 이용하여 각각 한번씩 헹군 후 여과시켰다. 이러한 세척과 여과 과정을 두 차례 더 반복 실시하고, 최종 생성물인 선형 폴리페닐렌 설파이드(PPS)와 세척후 폐액으로 NMP를 포함하는 수성 매질을 회수하였다.After completing the polymerization process, the reaction product was rinsed once with DI water and NMP at about 90 ° C. and filtered to remove residual unreacted substances or by-products. This washing and filtration process was repeated two more times, and the final product, linear polyphenylene sulfide (PPS), and an aqueous medium containing NMP were recovered as waste liquid after washing.
이 때, 상기 세척 후 폐액에는 NMP 함유의 수성매질인 브라인(NaCl 수용액)이 포함되어 있었으며, 여기서 NMP 조성이 약 20-70 중량%이고 NaCl이 포함된 브라인의 조성이 약 30-80 중량%가 되었다. 또한, 상기 폐액에는 NMP와 브라인의 용매 총 중량 대비 p-DCB, NaSH, Na2S, 미분 PPS, 및 2-피롤리디논 (2-pyrrolidinone) 등의 미세입자를 포함하는 기타 불순물을 약 10 중량% 이내를 포함하고 있었다.At this time, the waste solution after washing contained NMP-containing aqueous medium, brine (NaCl aqueous solution), wherein the composition of NMP was about 20-70% by weight and the composition of brine containing NaCl was about 30-80% by weight. Became. In addition, the waste solution contains about 10 weights of other impurities including microparticles such as p-DCB, NaSH, Na 2 S, differential PPS, and 2-pyrrolidinone, relative to the total weight of the solvent of NMP and brine. %.
<N-메틸-2-파이롤리돈의 분리 회수><N-methyl-2-pyrrolidone separation and recovery>
실시예 1Example 1
제조예 1의 PPS 중합 후 세척 공정으로부터 얻어진 폐액에 대하여 여과(filter) 등의 전처리 과정을 통해 NaCl 및 PPS 등의 미분을 제거하고, NMP 20 중량% 및 물 80 중량%를 포함하는 조성의 혼합액을, 도 1에 나타낸 바와 같이 분리벽이 구비된 분리벽형 증류탑에 도입하여, N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행하였다.After the PPS polymerization of Preparation Example 1, fines such as NaCl and PPS are removed through a pretreatment process such as filtration with respect to the waste solution obtained from the washing process, and a mixed solution having a composition comprising 20% by weight of NMP and 80% by weight of water is used. , Introduced into a dividing wall-type distillation column equipped with a dividing wall, as shown in FIG. 1, to perform a separation and purification recovery process of N-methyl-2-pyrrolidone (NMP).
먼저, 물과 NMP를 포함하는 혼합액인 상기 폐액과 추출 용매를, 상기 분리벽형 증류탑의 전단에 있는 추출 영역에 구비된 각각의 공급 포트로 투입하여, 상기 추출 영역에서 추출 공정을 수행하였다. 여기서, 상기 혼합액은 700 kg/hr의 유량으로 분리벽형 증류탑에서 분리벽(도 1의 107)을 중심으로 전단에 배치된 추출영역 최상단으로 투입하고(도 1의 스트림 101), 추출 용매인 클로로포름(CHCl3)은 1300 kg/hr의 속도로 추출영역 최하단으로 투입하였다(도 1의 스트림 102). 상기 혼합액과 추출 용매의 온도는 25 ℃ 이었다. 또한, 상기 추출 용매는 상기 혼합액의 총중량 100 중량부를 기준으로 약 185 중량부의 함량으로 투입하였다. 상기 혼합액과 추출 용매는 분리벽형 증류탑의 전단에 도입되어 액/액 추출을 진행하였다.First, the waste solution and the extraction solvent, which are a mixture solution containing water and NMP, were introduced into respective supply ports provided in the extraction area at the front end of the dividing wall type distillation column, and an extraction process was performed in the extraction area. Here, the mixed solution is introduced into the top of the extraction region arranged at the front of the separation wall (107 in FIG. 1) in a dividing wall type distillation column at a flow rate of 700 kg / hr (stream 101 in FIG. 1), and chloroform (extract solvent). CHCl 3 ) was introduced to the bottom of the extraction area at a rate of 1300 kg / hr (stream 102 of FIG. 1). The temperature of the mixed solution and the extraction solvent was 25 ° C. In addition, the extraction solvent was added in an amount of about 185 parts by weight based on 100 parts by weight of the total weight of the mixed solution. The mixed solution and the extraction solvent were introduced at the front end of the dividing wall-type distillation column to proceed with liquid / liquid extraction.
상기 추출 영역에서 추출 공정은 5단으로 구성되고 대기압 조건으로 약 20 내지 30 ℃으로 운전하였다. 구체적으로 추출 영역의 탑정 온도는 24.57 ℃이고, 탑저 온도는 31.74 ℃이었다. 상기 추출 공정이 진행되며, 상기 추출 영역의 상부 흐름으로 저비점과 중비점 혼합물, 즉, 물과 추출 용매가 분리되어 탑 상부로 이동하고, 상기 추출 영역 하부 흐름으로 고비점과 중비점 혼합물, 즉, NMP와 추출 용매가 분리되어 탑 하부로 이동하여, 상기 분리벽형 증류탑의 후단에 있는 증류 영역으로 유입되었다. 이 때, 상기 추출 영역에서 액/액 추출로 분리된 물은, 탑저 영역에서 추출 영역쪽에 배치되어 있는 유출 포트를 통해 외부로 배출하였다(도 1의 스트림 106).In the extraction region, the extraction process consisted of 5 stages and was operated at about 20 to 30 ° C. under atmospheric pressure. Specifically, the top temperature of the extraction region was 24.57 ° C, and the bottom bottom temperature was 31.74 ° C. The extraction process proceeds, a low boiling point and a medium boiling point mixture as an upper flow of the extraction region, that is, water and an extraction solvent are separated and moved to the top of the tower, and a high boiling point and a medium boiling point mixture, that is, a lower flow of the extraction region, The NMP and the extraction solvent were separated and moved to the bottom of the column to enter the distillation zone at the rear end of the dividing wall type column. At this time, the water separated by the liquid / liquid extraction in the extraction region was discharged to the outside through an outlet port disposed toward the extraction region in the bottom region (stream 106 of FIG. 1).
상기 분리벽형 증류탑의 증류 영역에서 증류 공정은 대기압 조건 하에서 수행하였다. 이론단수가 15단인 분리벽형 증류탑의 후단에 배치되어 있는 증류 영역으로, 전단의 추출영역에서 액/액 분리된 아미드계 화합물과 추출용매의 혼합액이 유입되어 증류 공정을 수행하였다. 한편, 상기 분리벽형 증류탑의 탑정 영역의 운전 온도는 54.36 ℃가 되도록 조절하였으며, 탑저 영역의 운전 온도는 202.12 ℃로 조절하였다. 상기 분리벽형 증류탑의 탑정 영역의 환류비는 0.4, Bottom rate는 140 kg/hr (도 1의 스트림 105)이었다.The distillation process in the distillation zone of the dividing wall column was performed under atmospheric pressure. As a distillation zone arranged at the rear end of a dividing wall distillation column having 15 theoretical stages, a distillation process was performed by introducing a mixture of amide-based compounds separated from liquid / liquid in the extraction region of the front end and an extraction solvent. Meanwhile, the operating temperature of the top region of the dividing wall type distillation column was adjusted to be 54.36 ° C, and the operating temperature of the top bottom region was adjusted to 202.12 ° C. The reflux ratio of the top region of the dividing wall type distillation column was 0.4, and the bottom rate was 140 kg / hr (stream 105 in FIG. 1).
상기 증류 공정이 진행되며, 주로 추출 용매는 상기 증류 영역의 상부 흐름으로 분리되어 상기 증류탑의 탑정 영역의 제2 유출 포트로 유출하여 분리되고(도 1의 스트림 103), 추출 단계로 재순환된다. 또한, 상기 증류 영역의 중간부 흐름은 주로 물을 포함하는 증류액으로 이뤄지며(도 1의 스트림 104), 상기 분리벽형 증류탑의 8 단에 위치하는 증류 영역의 유출 포트로 배출되며, 이후에 원료 투입으로 재순환될 수 있다. NMP는 상기 증류 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 증류 영역 쪽으로 배치되어 있는 유출 포트로 유출하여(도 1의 스트림 105) 분리하여 저장하였다. 이때, 상기 탑정 흐름(도 1의 스트림 103) 내의 NMP의 함량은 상기 탑정 흐름에 포함되는 전체 성분에 대하여 0.1 중량% 이내이며, 상기 탑 하부로 배출되는 하부 흐름(도 1의 스트림 105) 내의 NMP의 함량은 상기 탑저 흐름에 포함되는 전체 성분에 대하여 99.26 중량%의 순수(99% 이상) NMP임을 확인하였다.The distillation process proceeds, and mainly the extraction solvent is separated into an upper stream of the distillation zone and is separated by flowing to a second outlet port of the top of the distillation column (stream 103 in FIG. 1) and recycled to the extraction step. In addition, the middle portion of the distillation zone is mainly made of distillate containing water (stream 104 of FIG. 1), and discharged to the outlet port of the distillation zone located at the 8th stage of the dividing wall-type distillation column, after which the raw material is introduced Can be recycled. The NMP was separated into the lower stream of the distillation zone, and was discharged from the bottom area of the distillation column to the distillation zone (stream 105 in FIG. 1) and stored. At this time, the content of NMP in the overhead stream (stream 103 in FIG. 1) is within 0.1% by weight relative to the total components included in the overhead stream, NMP in the lower stream discharged to the bottom of the tower (stream 105 in FIG. 1) It was confirmed that the content of 99.26% by weight of pure (over 99%) NMP with respect to the total components included in the bottom flow.
실시예 1에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행함에 있어서, 도 1에 도시한 각 스트림에 따른 조성(단위: 중량%) 및 온도, 총유량은 하기 표 1에 나타낸 바와 같다.In performing the separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Example 1, the composition (unit: wt%), temperature, and total flow rate according to each stream shown in FIG. 1 are as follows. As shown in Table 1.
Figure PCTKR2019012634-appb-T000001
Figure PCTKR2019012634-appb-T000001
비교예 1Comparative Example 1
제조예 1의 PPS 중합 후 세척 공정으로부터 얻어진 폐액에 대하여 여과(filter) 등의 전처리 과정을 통해 NaCl 및 PPS 등의 미분을 제거하고, NMP 19.12 중량% 및 물 80.88 중량%를 포함하는 조성의 혼합액을, 도 2에 나타낸 바와 같은 기존의 증류탑을 이용하여 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행하였다.After the PPS polymerization of Preparation Example 1, fines such as NaCl and PPS are removed through a pretreatment process such as filtration with respect to the waste solution obtained from the washing process, and a mixed solution having a composition comprising 19.12% by weight of NMP and 80.88% by weight of water is used. , The separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) was performed using an existing distillation column as shown in FIG. 2.
먼저, 물과 NMP를 포함하는 상기 혼합액(도 2의 스트림 201)을 별도의 추출 용매 없이 633 kg/hr의 유량으로 이론단수가 15 단인 기존의 증류탑의 8 단에 위치하는 혼합액 공급 포트로 유입하여 분리 공정을 수행하였다. 이때, 증류 공정은 탑상부 온도를 100.02 ℃로 하고 탑 하부 온도를 173.88 ℃ 조건으로 수행하였다.First, the mixed solution containing water and NMP (stream 201 in FIG. 2) is introduced into a mixed liquid supply port located at the 8th stage of a conventional distillation column having 15 theoretical stages at a flow rate of 633 kg / hr without a separate extraction solvent. The separation process was performed. At this time, the distillation process was performed under the conditions of the column top temperature of 100.02 ℃ and the column bottom temperature of 173.88 ℃.
상기 탑정 흐름(도 2의 스트림 202) 내의 NMP의 함량은 상기 탑정 흐름에 포함되는 전체 성분에 대하여 1 중량%이며, 상기 탑저 흐름(도 2의 스트림 203) 내의 NMP의 함량은 상기 탑저 흐름에 포함되는 전체 성분에 대하여 98 중량%임을 확인하였다.The content of NMP in the overhead flow (stream 202 of FIG. 2) is 1% by weight relative to the total components included in the overhead flow, and the content of NMP in the bottom flow (stream 203 of FIG. 2) is included in the bottom flow It confirmed that it was 98 weight% with respect to the whole component.
비교예 1에 따라 별도의 추출 공정 없이 증류 공정만을 수행하여 메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행함에 있어서, 도 2에 도시한 각 스트림에 따른 조성(단위: 중량%) 및 온도, 총유량은 하기 표 2에 나타낸 바와 같다.In performing a separate purification recovery process of methyl-2-pyrrolidone (NMP) by performing only a distillation process without a separate extraction process according to Comparative Example 1, the composition according to each stream shown in FIG. 2 (unit: wt% ) And temperature, the total flow rate is as shown in Table 2 below.
Figure PCTKR2019012634-appb-T000002
Figure PCTKR2019012634-appb-T000002
비교예 2Comparative Example 2
제조예 1의 PPS 중합 후 세척 공정으로부터 얻어진 폐액에 대하여 여과(filter) 등의 전처리 과정을 통해 NaCl 및 PPS 등의 미분을 제거하고, NMP 20 중량% 및 물 80 중량%를 포함하는 조성의 혼합액을, 도 3에 나타낸 바와 같이 추출 용매를 투입하여 추출 공정을 수행한 후에 별도 증류 장치를 이용하여 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행하였다.After the PPS polymerization of Preparation Example 1, fines such as NaCl and PPS are removed through a pretreatment process such as filtration with respect to the waste solution obtained from the washing process, and a mixed solution having a composition comprising 20% by weight of NMP and 80% by weight of water is used. , After performing the extraction process by adding an extraction solvent as shown in Figure 3 was performed a separate purification recovery process of N-methyl-2-pyrrolidone (NMP) using a separate distillation apparatus.
먼저, 물과 NMP를 포함하는 상기 혼합액(도 3의 스트림 301)과 추출 용매로 클로로포름(도 3의 스트림 302)을 함께 추출탑에 투입하여, 약 25 ℃의 대기압 조건에서 추출 공정을 수행하였다. 이때, 상기 추출 용매는 상기 혼합액의 총중량 100 중량부를 기준으로 185 중량부의 함량으로 투입하였다. 이러한 추출 공정을 통해 액/액 분리가 끝나고, 추출탑의 상부로 유출되는 NMP, 물, 추출 용매를 포함하는 추출액(도 3의 스트림 304)은 총유량 1439 kg/hr으로 이론단수가 15 단인 기존의 증류탑의 8 단에 위치하는 추출액 공급 포트로 유입하여 증류 공정을 추가로 수행하였다. 이때, 증류 공정은 약 203 ℃로 대기압 조건으로 수행하였다.First, the mixture solution containing water and NMP (stream 301 in FIG. 3) and chloroform (stream 302 in FIG. 3) were added to the extraction column as an extraction solvent, and an extraction process was performed at atmospheric pressure of about 25 ° C. At this time, the extraction solvent was added in a content of 185 parts by weight based on 100 parts by weight of the total weight of the mixed solution. Through this extraction process, the liquid / liquid separation is completed, and the extraction liquid (stream 304 of FIG. 3) containing NMP, water, and extraction solvent flowing out to the top of the extraction column is a total flow rate of 1439 kg / hr. The distillation process was further performed by flowing into an extraction solution supply port located at the 8th stage of the distillation column. At this time, the distillation process was performed under atmospheric pressure at about 203 ° C.
한편, 상기 추출 공정의 탑 하부로 99 중량% 이상의 물을 포함하는 유출액(도 3의 스트림 303)이 토출되었다. 증류탑으로 도입된 NMP, 추출용매 그리고 물은 증류탑에서 분리되어, 증류탑 상부의 흐름(도 3의 스트림 305)으로 99% 이상의 추출용매가 배출되어 추출단계로 재순환되고, 증류탑 하부의 흐름(도 3의 스트림 306)으로 순수한 NMP가 99% 농도로 배출되었다. Meanwhile, an effluent (stream 303 in FIG. 3) containing 99% by weight or more of water was discharged to the bottom of the tower of the extraction process. The NMP, the extraction solvent, and the water introduced into the distillation column are separated from the distillation column, and 99% or more of the extraction solvent is discharged as a flow (stream 305 in FIG. 3) at the top of the distillation column and recycled to the extraction step, and the flow at the bottom of the distillation column (FIG. 3) Stream 306) discharged pure NMP at a concentration of 99%.
비교예 2에 따라 추출 용매를 투입하여 추출 공정을 수행한 후에 별도 증류 장치를 이용하여 메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행함에 있어서, 도 3에 도시한 각 스트림에 따른 조성(단위: 중량%) 및 온도, 총유량은 하기 표 3에 나타낸 바와 같다.After performing the extraction process by adding the extraction solvent according to Comparative Example 2, using a separate distillation apparatus in performing the separation and purification recovery process of methyl-2-pyrrolidone (NMP), each stream shown in FIG. According to the composition (unit: wt%), temperature, and total flow rate are shown in Table 3 below.
Figure PCTKR2019012634-appb-T000003
Figure PCTKR2019012634-appb-T000003
비교예 3Comparative Example 3
도 4에 나타낸 바와 같이 분리벽이 구비된 분리벽형 증류탑을 사용하되, 기존의 방식과 같이 전단 영역에서 액/액 추출 공정을 수행하는 추출 영역 없이, 분리벽의 전단 및 후단 모두에서 증류 공정만을 수행한 것으로 제외하고는, 실시예 1과 동일한 조건 및 방법으로 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행하였다.As shown in FIG. 4, a dividing wall-type distillation column equipped with a dividing wall is used, but only a distillation process is performed at both the front end and the rear end of the dividing wall, without an extraction region performing a liquid / liquid extraction process in a shear region as in the conventional method. The separation and purification of N-methyl-2-pyrrolidone (NMP) was carried out in the same conditions and methods as in Example 1, except for one.
구체적으로, 물과 NMP를 포함하는 혼합액인 상기 폐액과 추출 용매를 분리벽형 증류탑의 전단에 구비된 각각 공급 포트로 투입하고(도 4의 스트림 401 및 402) 별도의 액/액 추출 없이 실시예 1과 동일한 조건으로 증류 공정을 수행하여, 탑정 영역의 상부 흐름으로 주로 물과 추출 용매가 함께 배출되고(도 4의 스트림 403), 주로 추출 용매를 포함하는 증류액은 중간 흐름으로 배출되고(도 4의 스트림 404) 탑저 영역의 하부 흐름으로는 주로 NMP와 일부 물이 함께 배출되었다(도 4의 스트림 405). 이때, 상기 탑정 흐름(도 4의 스트림 403) 내의 NMP의 함량은 상기 탑정 흐름에 포함되는 전체 성분에 대하여 1 중량% 이내로 실시예 1과 유사한 정도이었으나, 상기 탑 하부로 배출되는 하부 흐름(도 4의 스트림 405) 내의 NMP의 함량은 상기 탑저 흐름에 포함되는 전체 성분에 대하여 82.1 중량%에 불과한 것으로 나타났다.Specifically, the waste solution and the extraction solvent, which are a mixture solution containing water and NMP, are introduced into respective supply ports provided at the front end of the dividing wall-type distillation column (streams 401 and 402 in FIG. 4), and without liquid / liquid extraction, Example 1 By performing the distillation process under the same conditions as, the water and the extraction solvent are mainly discharged together as an upper stream in the top region (stream 403 in FIG. 4), and the distillate mainly containing the extraction solvent is discharged in an intermediate flow (FIG. 4). Stream 404) In the lower stream of the bottom area, mainly NMP and some water were discharged together (stream 405 in FIG. 4). At this time, the content of NMP in the overhead stream (stream 403 in FIG. 4) was less than 1% by weight relative to the total components included in the overhead stream, similar to Example 1, but the lower stream discharged to the bottom of the tower (FIG. 4 It was found that the content of NMP in stream 405) was only 82.1% by weight relative to the total components included in the bottoms stream.
비교예 3에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행함에 있어서, 도 4에 도시한 각 스트림에 따른 조성(단위: 중량%) 및 온도, 총유량은 하기 표 4에 나타낸 바와 같다.In performing the separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Comparative Example 3, the composition (unit: wt%), temperature, and total flow rate according to each stream shown in FIG. 4 are as follows. As shown in Table 4.
Figure PCTKR2019012634-appb-T000004
Figure PCTKR2019012634-appb-T000004
<시험예 1><Test Example 1>
실시예 1 및 비교예 1-2에 따른 메틸-2-파이롤리돈(NMP)의 분리 정제 회수 공정에서 에너지 소비량과 최종 제품의 순도는 다음과 같은 방법으로 평가하였으며 측정 결과는 하기 표 5에 나타낸 바와 같다.The energy consumption and purity of the final product in the separation and purification recovery process of methyl-2-pyrrolidone (NMP) according to Example 1 and Comparative Example 1-2 were evaluated in the following manner, and the measurement results are shown in Table 5 below. As it is.
1) 총 에너지 사용량 (×106 kJ/hr)1) Total energy consumption (× 10 6 kJ / hr)
동등한 원료 투입량과 최종 회수된 제품의 순도를 기준으로, 실시예 및 비교예의 정제 공정에 사용된 총 에너지 사용량을 시간 단위로 측정하였다.Based on the equivalent raw material input and the purity of the final recovered product, the total energy used in the purification process of Examples and Comparative Examples was measured in units of hours.
2) 최종 회수된 제품의 순도(%)2) Purity of the final recovered product (%)
동등한 원료 투입량을 기준으로 최종 회수된 제품 중에서 NMP 및 물의 순도(%)를 측정하였다.The purity (%) of NMP and water was measured among the products finally recovered based on the equivalent raw material input.
Figure PCTKR2019012634-appb-T000005
Figure PCTKR2019012634-appb-T000005
상기 표 5에 나타낸 바와 같이, 본 발명에 따른 실시예 1의 정제 공정에서 사용된 에너지 총량은 비교예 1-2의 증류 장치를 이용한 정제공정에서 사용된 에너지 총량에 비해 총 에너지 소비량이 현저히 감소하였음을 확인할 수 있다.As shown in Table 5, the total amount of energy used in the purification process of Example 1 according to the present invention was significantly reduced compared to the total amount of energy used in the purification process using the distillation apparatus of Comparative Example 1-2 can confirm.
구체적으로, 본 발명의 실시예 1에 따른 분리벽형 증류탑을 사용하여 NMP와 물을 분리할 경우, 비교예 1에 따라 기존의 방식대로 증류탑을 이용한 정제 공정보다 총 에너지 사용량을 약 2.88 × 106 kJ/hr 절감하며, 약76.2%의 에너지 절감 효과를 얻을 수 있다. 또한, 실시예 1의 정제 공정에 따르면, 비교예 2에 따라 추출 및 증류 공정을 별도로 가동시킨 정제 공정에 비해서도, 총 에너지 사용량을 약 0.13 × 106 kJ/hr를 절감하며, 약 12.6%의 에너지 절감 효과를 얻을 수 있다.Specifically, when separating NMP and water using the dividing wall distillation column according to the first embodiment of the present invention, the total energy consumption is about 2.88 × 10 6 kJ than the purification process using the distillation column in the conventional manner according to Comparative Example 1 / hr, and can save about 76.2% of energy. Further, according to the purification process of Example 1, compared to the purification process in which the extraction and distillation processes were separately operated according to Comparative Example 2, the total energy consumption is reduced by about 0.13 × 10 6 kJ / hr, and the energy by about 12.6%. Savings can be achieved.
실시예 2Example 2
하기 표 6에 나타낸 바와 같은 조건 하에서, 분리벽형 증류탑에 원료 투입(Feed) 스트림으로 폐액인 NMP 140 kg/hr, 물 560 kg/hr을 45 ℃ 3.5 atm으로 투입하고, 추출제 스트림으로 클로로벤젠(C6H5Cl, Chlorobenzene) 4800 kg/hr을 55 ℃, 3.5 atm으로 투입한 것을 제외하고는, 실시예 1과 동일한 조건 및 방법으로 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행하였다. 이때, 분리벽형 증류탑은 추출영역이 5단, 증류영역 15단으로 구성되고, 환류비(reflux ratio)는 0.2, bottoms rate는 135 kg/hr이었다.Under the conditions as shown in Table 6, the feedstock (Feed) stream into the separation wall type distillation column (Feed) NMP 140 kg / hr of water, 560 kg / hr of water at 45 ℃ 3.5 atm was added, and the chlorobenzene (extractant stream) C 6 H 5 Cl, Chlorobenzene) Separate purification of N-methyl-2-pyrrolidone (NMP) in the same conditions and methods as in Example 1, except that 4800 kg / hr was added at 55 ° C and 3.5 atm. The recovery process was performed. At this time, the dividing wall-type distillation column was composed of 5 stages of extraction and 15 stages of distillation, and the reflux ratio was 0.2 and the bottoms rate was 135 kg / hr.
실시예 2에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행한 결과, 탑저 영역에서 추출 영역쪽에 배치되어 있는 유출 포트를 통해 순도 99.8 mol%의 물이 552.6 kg/hr 회수되었다(도 1의 스트림 106). 이때, 물의 회수율(%)은 98.7% 이었으며, 상기 물의 회수율(%)은 '회수된 물의 양(kg)'을 '원료 투입된 물의 양(kg)'으로 나눈 값이다. 또한, 상기 탑정 흐름(도 1의 스트림 103) 내의 NMP의 함량은 상기 탑정 흐름에 포함되는 전체 성분에 대하여 0.1 중량% 이내이고, 상기 탑 하부로 배출되는 탑저 흐름을 통해 순도 99.6 mol%의 NMP가 134.4 kg/hr 회수되었다(도 1의 스트림 105). 이때, NMP의 회수율(%)은 96%이었으며, 상기 물의 회수율(%)은 '회수된 물의 양(kg)'을 '원료 투입된 물의 양(kg)'으로 나눈 값이다.As a result of performing a separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Example 2, 552.6 kg / water of 99.8 mol% purity was discharged through an outlet port disposed toward the extraction region in the bottom region. hr was recovered (stream 106 in FIG. 1). At this time, the water recovery rate (%) was 98.7%, and the water recovery rate (%) is a value obtained by dividing the 'recovered water amount (kg)' by the 'received water amount (kg)'. In addition, the content of NMP in the column top stream (stream 103 of FIG. 1) is within 0.1 wt% with respect to the total components included in the column top stream, and NMP of 99.6 mol% purity is obtained through a column bottom stream discharged to the bottom of the column. 134.4 kg / hr was recovered (stream 105 in FIG. 1). At this time, the recovery rate (%) of NMP was 96%, and the recovery rate (%) of water is a value obtained by dividing the 'recovered water amount (kg)' by the 'received water amount (kg)'.
실시예 2에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정에서 사용된 소모 에너지 양은 1338.3 kW이었다.The amount of energy consumed in the separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Example 2 was 1338.3 kW.
실시예 3Example 3
하기 표 6에 나타낸 바와 같이, 원료 투입(Feed) 스트림으로 폐액인 NMP 280 kg/hr, 물 420 kg/hr 으로 조성을 다르게 사용하며 탑정온도, 탑저 온도를 달리한 것을 제외하고는, 실시예 2와 동일한 방법으로 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행하였다. 이때, bottoms rate는 277 kg/hr이었다.As shown in Table 6 below, except that the composition was differently used as the feedstock stream (Feed) stream, NMP 280 kg / hr, and water 420 kg / hr, and the top temperature and the bottom temperature were different, Example 2 and In the same manner, a separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) was performed. At this time, the bottoms rate was 277 kg / hr.
실시예 4에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행한 결과, 탑저 영역에서 추출 영역쪽에 배치되어 있는 유출 포트를 통해 순도 99.8 mol%의 물이 406.74 kg/hr 회수되었다(도 1의 스트림 106). 이때, 물의 회수율(%)은 96.8% 이었다. 또한, 상기 탑정 흐름(도 1의 스트림 103) 내의 NMP의 함량은 상기 탑정 흐름에 포함되는 전체 성분에 대하여 0.1 중량% 이내이고, 상기 탑 하부로 배출되는 탑저 흐름을 통해 순도 99.6 mol%의 NMP가 275.8 kg/hr 회수되었다(도 1의 스트림 105). 이때, NMP의 회수율(%)은 98.5%이었다.As a result of performing a separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Example 4, water having a purity of 99.8 mol% was 406.74 kg / through an outlet port disposed toward the extraction region in the bottom region. hr was recovered (stream 106 in FIG. 1). At this time, the water recovery rate (%) was 96.8%. In addition, the content of NMP in the column top stream (stream 103 of FIG. 1) is within 0.1 wt% with respect to the total components included in the column top stream, and NMP of 99.6 mol% purity is obtained through a column bottom stream discharged to the bottom of the column. 275.8 kg / hr were recovered (stream 105 in FIG. 1). At this time, the recovery rate (%) of NMP was 98.5%.
실시예 3에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정에서 사용된 소모 에너지 양은 392.9 kW이었다.The amount of energy consumed in the separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Example 3 was 392.9 kW.
실시예 4Example 4
하기 표 6에 나타낸 바와 같이, 원료 투입(Feed) 스트림으로 폐액인 NMP 560 kg/hr, 물 140 kg/hr으로 조성을 다르게 사용하며 탑정온도, 탑저 온도를 달리한 것을 제외하고는, 실시예 2와 동일한 방법으로 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행하였다. 이때, bottoms rate는 555 kg/hr이었다.As shown in Table 6 below, except that the composition was differently used as the feedstock stream (Feed) stream, NMP 560 kg / hr, and water 140 kg / hr, and the top temperature and the bottom temperature were different. In the same manner, a separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) was performed. At this time, the bottoms rate was 555 kg / hr.
실시예 4에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행한 결과, 탑저 영역에서 추출 영역쪽에 배치되어 있는 유출 포트를 통해 순도 99.8 mol%의 물이 105.6 kg/hr 회수되었다(도 1의 스트림 106). 이때, 물의 회수율(%)은 96.8% 이었다. 또한, 상기 탑정 흐름(도 1의 스트림 103) 내의 NMP의 함량은 상기 탑정 흐름에 포함되는 전체 성분에 대하여 0.1 중량% 이내이고, 상기 탑 하부로 배출되는 탑저 흐름을 통해 순도 99.9 mol%의 NMP가 554.9 kg/hr 회수되었다(도 1의 스트림 105). 이때, NMP의 회수율(%)은 98.5%이었다.As a result of performing a separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Example 4, water having a purity of 99.8 mol% was 105.6 kg /% through an outlet port disposed in the extraction region in the bottom area. hr was recovered (stream 106 in FIG. 1). At this time, the water recovery rate (%) was 96.8%. In addition, the content of NMP in the column top stream (stream 103 of FIG. 1) is within 0.1 wt% with respect to the total components included in the column top stream, and the NMP with a purity of 99.9 mol% is discharged to the bottom of the column. 554.9 kg / hr was recovered (stream 105 in FIG. 1). At this time, the recovery rate (%) of NMP was 98.5%.
실시예 4에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정에서 사용된 소모 에너지 양은 712.1 kW이었다.The amount of energy consumed in the separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Example 4 was 712.1 kW.
비교예 4Comparative Example 4
하기 표 6에 나타낸 바와 같은 조건 하에서, 분리벽형 증류탑에 원료 투입(Feed) 스트림으로 폐액인 NMP 140 kg/hr, 물 560 kg/hr을 45 ℃ 3.5 atm으로 투입하고, 추출제 스트림으로 C6H5Cl 4800 kg/hr을 55℃, 3.5 atm으로 투입한 것을 제외하고는, 비교예 3과 동일한 방법으로 액/액 추출 공정 없이 분리벽형 증류탑으로 증류 공정만을 수행하며, N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행하였다. 이때, 분리벽형 증류탑은 별도 추출 영역 없이 증류영역만 20단으로 구성, 즉, 예비분리영역(prefractionator) 5단과 증류진행영역 15단을 포함한 20단으로 구성되고, 환류비(reflux ratio)는 0.2, bottoms rate는 135 kg/hr이었다.Under the conditions as shown in Table 6, the feedstock (Feed) stream into the separation wall type distillation column (Feed) NMP 140 kg / hr of water, 560 kg / hr of water was added at 45 ℃ 3.5 atm, C 6 H as the extractant stream 5 Cl 4800 kg / hr was carried out at 55 ° C and 3.5 atm, except that the distillation process was performed only with a dividing wall type distillation column without the liquid / liquid extraction process in the same manner as in Comparative Example 3. A separate purification recovery process of lollidon (NMP) was performed. At this time, the dividing wall-type distillation column consists of only 20 distillation zones without separate extraction zones, that is, 20 stages including 5 stages of a prefractionator and 15 stages of a distillation progress zone, and the reflux ratio is 0.2 and bottoms. The rate was 135 kg / hr.
비교예 4에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정을 수행한 결과, 순도 98.6 mol%의 물이 552.5 kg/hr 회수되었다(도 4의 스트림 403). 이때, 물의 회수율(%)은 98.7%이었다. 또한, 탑 하부로 배출되는 탑저 흐름을 통해 순도 94.2 mol%의 NMP가 131 kg/hr 회수되었다(도 4의 스트림 405). 이때, NMP의 회수율(%)은 94.2%이었다.As a result of performing a separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Comparative Example 4, 552.5 kg / hr of water having a purity of 98.6 mol% was recovered (stream 403 in FIG. 4). At this time, the water recovery rate (%) was 98.7%. In addition, 131 kg / hr of NMP with a purity of 94.2 mol% was recovered through the bottom bottom discharged to the bottom of the tower (stream 405 in FIG. 4). At this time, the recovery rate (%) of NMP was 94.2%.
비교예 4에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정에서 사용된 소모 에너지 양은 1802.5 kW이었다.The amount of energy consumed in the separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Comparative Example 4 was 1802.5 kW.
<시험예 2><Test Example 2>
실시예 2 내지 4 및 비교예 4에 따라 N-메틸-2-파이롤리돈 (NMP)의 분리 정제 회수 공정에 대한 주요 공정 조건 및 회수된 물과 NMP의 순도와 회수율, 메틸-2-파이롤리돈(NMP)의 분리 정제 회수 공정에서 에너지 소비량은 시험예 1와 전술한 바와 동일한 방법으로 측정하고 평가하였으며, 그 측정 결과는 하기 표 6에 나타낸 바와 같다.Main process conditions for the separation and purification recovery process of N-methyl-2-pyrrolidone (NMP) according to Examples 2 to 4 and Comparative Example 4, and the purity and recovery rate of recovered water and NMP, methyl-2-pyrrolid. The energy consumption in the separation and purification recovery process of money (NMP) was measured and evaluated in the same manner as in Test Example 1, and the measurement results are shown in Table 6 below.
Figure PCTKR2019012634-appb-T000006
Figure PCTKR2019012634-appb-T000006
상기 표 6에 나타낸 바와 같이, 본 발명에 따른 실시예 2 내지 4는 추출영역을 통해 분리된 물이 하부 스트림으로 배출되어 비교예 4에 비해 물이 재혼합(back mixing)되지 않으며 회수된 아미드 화합물과 물, 추출 용매 등의 순도가 높으며 회수된 각 성분의 분리 효율이 우수함을 알 수 있다. 특히, 실시예 2 내지 4의 경우에 동일한 환류비로 증류 공정을 수행한 비교예 4에 비해 회수된 물과 NMP의 순도와 회수율이 모두 높게 나타날 뿐만 아니라, 에너지 소모량 또한 현저히 감소되었음을 알 수 있다.As shown in Table 6, in Examples 2 to 4 according to the present invention, water separated through an extraction region is discharged to a lower stream, so that water is not mixed back, and the recovered amide compound is compared to Comparative Example 4 It can be seen that the purity of water, extraction solvent, etc. is high and the separation efficiency of each recovered component is excellent. In particular, it can be seen that, in the case of Examples 2 to 4, not only the recovered water and NMP exhibited high purity and recovery rates, but also significantly reduced energy consumption compared to Comparative Example 4 in which the distillation process was performed at the same reflux ratio.
[부호의 설명][Description of codes]
101: 분리벽형 증류탑의 혼합액 투입 스트림101: the mixed liquid input stream of the dividing wall column
101i: 분리벽형 증류탑의 혼합액 투입용 제1 공급 포트101i: First supply port for input of mixed liquid in the dividing column
102: 분리벽형 증류탑의 추출 용매 투입 스트림102: input stream of extraction solvent in a dividing column
102i: 분리벽형 증류탑의 추출 용매 투입용 제2 공급 포트102i: Second supply port for input of extraction solvent in dividing wall type distillation column
103: 분리벽형 증류탑의 탑정 스트림 103: overhead stream of a dividing wall column
103i: 분리벽형 증류탑의 탑정 스트림 재순환용 추가 공급 포트103i: Additional supply port for recirculation of the overhead stream in a dividing column
103o: 분리벽형 증류탑의 탑정 Vapor 유출 스트림 분리 배출용 제2 유출 포트103o: A second outlet port for separating and discharging a top vapor vapor stream of a dividing wall column
104: 분리벽형 증류탑의 사이드 스트림104: side stream of a dividing wall column
104o: 분리벽형 증류탑의 사이드 스트림 분리 배출용 제3 유출 포트104o: third outlet port for side stream separation and discharge of a dividing wall column
105: 분리벽형 증류탑의 탑저 스트림105: bottom stream of a dividing column
105o: 분리벽형 증류탑의 탑저 스트림 분리 배출용 제4 유출 포트 105o: 4th outlet port for separating and discharging the bottom of the distillation column
105i: 분리벽형 증류탑의 탑저 스트림 재순환용 추가 공급 포트105i: Additional supply port for recirculating the bottoms stream of the dividing wall column
106: 분리벽형 증류탑의 액/액 분리 배출 스트림106: liquid / liquid separation discharge stream of a dividing wall column
106o: 분리벽형 증류탑의 액/액 분리 스트림 배출용 제1 유출 포트106o: first outlet port for discharging the liquid / liquid separation stream of the dividing wall column
107: 분리벽형 증류탑의 분리벽107: dividing wall dividing column
201: 증류탑의 혼합액 투입 스트림201: distillation column mixed liquid input stream
202: 증류탑의 탑정 스트림202: top stream of the distillation column
203: 증류탑의 탑저 스트림203: bottom column stream of the distillation column
301: 추출탑의 혼합액 투입 스트림301: mixed liquid input stream of the extraction column
302: 추출탑의 추출 용매 투입 스트림302: extraction solvent input stream of the extraction column
303: 추출탑의 탑저 스트림303: bottom column of the extraction column
304: 증류탑의 추출액 투입 스트림304: distillation column extract input stream
305: 증류탑의 탑정 스트림305: distillation column top stream
306: 증류탑의 탑저 스트림306: bottom bottom stream of the distillation column
401: 분리벽형 증류탑의 혼합액 투입 스트림401: mixed liquid input stream of the dividing wall column
402: 분리벽형 증류탑의 추출 용매 투입 스트림402: distillation column distillation column of the extraction solvent input stream
403: 분리벽형 증류탑의 탑정 스트림 403: overhead stream of a dividing wall column
404: 분리벽형 증류탑의 사이드 스트림404: side stream of a dividing wall column
405: 분리벽형 증류탑의 탑저 스트림405: bottom-bottom stream of a dividing wall column
407: 분리벽형 증류탑의 분리벽407: dividing wall dividing column
108, 204, 307, 408: 증류탑의 응축기108, 204, 307, 408: condenser in distillation column
109, 205, 308, 409: 증류탑의 재비기109, 205, 308, 409: reboiling the distillation column

Claims (23)

  1. 내부에 분리벽이 구비되고, 내부가 상기 분리벽이 위치하지 않는 탑정 영역 및 탑저 영역과, 상기 분리벽을 포함하는 중간 영역으로 구분되고, 상기 중간 영역은 상기 분리벽에 의하여 나뉘어지는 추출 영역과 증류 영역으로 구분되는 증류탑의 추출 영역에, 물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매를 투입하는 단계 (제1 단계),A separation wall is provided inside, and the inside is divided into a top area and a bottom area where the separation wall is not located, and an intermediate area including the separation wall, and the intermediate area includes an extraction area divided by the separation wall. Injecting a mixed solution containing water and an amide-based compound and an extraction solvent into the extraction region of the distillation column divided into a distillation region (first step),
    상기 증류탑의 추출 영역에서, 아미드계 화합물과 추출 용매를 상기 추출 영역의 상부 흐름으로 분리 유출하고, 물은 상기 추출 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트로 분리 유출하는 단계 (제2 단계), 및In the extraction region of the distillation column, an amide-based compound and an extraction solvent are separated and discharged into an upper flow of the extraction region, and water is separated into a lower flow of the extraction region and is disposed on the extraction region in the bottom region of the distillation column. Separately flowing out to the outlet port (second step), and
    상기 추출 영역의 상부 흐름 및 하부 흐름 중 적어도 하나 이상은 상기 증류탑의 증류 영역에 유입되고, 추출 용매는 상기 증류 영역의 상부 흐름으로 분리되어 상기 증류탑의 탑정 영역의 제2 유출 포트로 분리 유출하고, 물은 상기 증류 영역의 중간부 흐름으로 분리되어 상기 증류 영역의 제3 유출 포트로 분리 유출하고, 아미드계 화합물은 상기 증류 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트로 분리 유출하는 단계 (제3 단계),At least one of the upper stream and the lower stream of the extraction zone is introduced into the distillation zone of the distillation column, and the extraction solvent is separated into the upper stream of the distillation zone and separated and discharged to the second outflow port of the top zone of the distillation column, Water is separated into the middle flow of the distillation zone and flows out through the third outlet port of the distillation zone, and the amide compound is separated into the lower stream of the distillation zone and is disposed on the distillation zone side in the bottom area of the distillation column. Separately flowing to the fourth outlet port (third step),
    를 포함하는,Containing,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  2. 제1항에 있어서,According to claim 1,
    상기 증류탑의 탑정 영역은 추출 영역의 상부 흐름과 증류 영역의 상부 흐름이 함께 공존하고, 상기 증류탑의 탑저 영역은 추출 영역의 하부 흐름과 증류 영역의 하부 흐름이 함께 공존하는 것을 특징으로 하는,The top region of the distillation column is characterized in that the upper flow of the extraction region and the upper flow of the distillation region co-exist, the bottom region of the distillation column co-exist with the lower flow of the extraction region and the lower flow of the distillation region,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  3. 제1항에 있어서,According to claim 1,
    상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트에서 유출되는 전체 성분 중 물의 함량은 90 중량% 이상이고, 상기 증류탑의 탑정 영역의 제2 유출 포트에서 유출되는 전체 성분 중 아미드계 화합물의 함량은 10 중량% 이하이고, 상기 증류탑의 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트에서 유출되는 전체 성분 중 아미드계 화합물의 함량은 90 중량% 이상인 것을 특징으로 하는,The amide-based compound in the total amount of water out of the total components discharged from the first outlet port disposed at the extraction region in the bottom area of the distillation column is 90% by weight or more, and out of the total components discharged from the second outlet port in the top region of the distillation column The content of is less than 10% by weight, characterized in that the content of the amide-based compound in the total outflow from the fourth outlet port disposed on the side of the distillation zone in the bottom area of the distillation column is 90% by weight or more,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  4. 제1항에 있어서,According to claim 1,
    상기 아미드계 화합물은 N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈(NMP), N-시클로헥실-2-피롤리돈, N-메틸-ε-카프로락탐, 1,3-디알킬-2-이미다졸리디논, 및 테트라메틸 요소로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는,The amide compound is N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), N-cyclohexyl-2-pyrrolidone, N-methyl-ε -Caprolactam, 1,3-dialkyl-2-imidazolidinone, and characterized in that at least one member selected from the group consisting of tetramethyl urea,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  5. 제1항에 있어서,According to claim 1,
    상기 추출 용매는 끓는점이 200 ℃ 이하인 것을 특징으로 하는,The extraction solvent is characterized in that the boiling point is 200 ℃ or less,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  6. 제1항에 있어서,According to claim 1,
    상기 추출 용매는 벤젠, 클로로벤젠, 및 클로로포름으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는,The extraction solvent is characterized in that at least one selected from the group consisting of benzene, chlorobenzene, and chloroform,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  7. 제1항에 있어서,According to claim 1,
    상기 혼합액은 폴리아릴렌 설파이드의 합성 및 세척 공정에서 생성되는 폐액인 것을 특징으로 하는,The mixed solution is characterized in that the waste solution produced in the process of synthesis and washing of polyarylene sulfide,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  8. 제1항에 있어서,According to claim 1,
    상기 제1 단계에서, 추출 용매는 물과 아미드계 화합물을 포함하는 혼합액의 총중량 100 중량부를 기준으로 100 중량부 내지 300 중량부의 함량으로 투입하는 것을 특징으로 하는,In the first step, characterized in that the extraction solvent is added in an amount of 100 parts by weight to 300 parts by weight based on 100 parts by weight of the total weight of the mixed solution containing water and the amide compound,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  9. 제1항에 있어서,According to claim 1,
    상기 제2 단계는, 20 ℃ 내지 35 ℃ 조건 하에서 추출 공정을 수행하는 것을 특징으로 하는,The second step, characterized in that performing the extraction process under the conditions of 20 ℃ to 35 ℃,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  10. 제1항에 있어서,According to claim 1,
    상기 제2 단계는, 추출단수가 3단 내지 10단이 되도록 하여 추출 공정을 수행하는 것을 특징으로 하는,The second step, characterized in that to perform the extraction process by making the number of extraction stages 3 to 10 stages,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  11. 제1항에 있어서,According to claim 1,
    상기 증류탑에서 탑정 영역의 온도를 50 ℃ 내지 90 ℃로 조절하는 것을 특징으로 하는,In the distillation column, characterized in that the temperature of the column top region is adjusted to 50 ℃ to 90 ℃,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  12. 제1항에 있어서,According to claim 1,
    상기 증류탑에서 탑저 영역의 온도를 180 ℃ 내지 220 ℃로 조절하는 것을 특징으로 하는,In the distillation column, characterized in that the temperature of the column bottom region is adjusted to 180 ℃ to 220 ℃,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  13. 제1항에 있어서,According to claim 1,
    상기 증류탑의 이론단수는 9단 내지 25단이 되도록 하여 증류 공정을 수행하는 것을 특징으로 하는,The number of theoretical stages of the distillation column is characterized in that to perform a distillation process to be 9 to 25 stages,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  14. 제1항에 있어서,According to claim 1,
    상기 증류탑에서 탑정 영역의 환류비를 1.0 이하로 조절하는 것을 특징으로 하는,In the distillation column, characterized in that the reflux ratio of the top region is adjusted to 1.0 or less,
    아미드계 화합물의 회수 방법.Method for recovery of amide compounds.
  15. 분리벽이 구비된 증류탑을 포함하고,Distillation column is provided with a dividing wall,
    상기 증류탑은 내부가 상기 분리벽이 위치하지 않는 탑정 영역 및 탑저 영역과, 상기 분리벽을 포함하는 중간 영역으로 구분되고, 상기 중간 영역은 상기 분리벽에 의하여 나뉘어지는 추출 영역과 증류 영역으로 구분되며,The distillation column is divided into a top region and a bottom region where the separation wall is not located, and an intermediate region including the separation wall, and the intermediate region is divided into an extraction region and a distillation region divided by the separation wall. ,
    상기 추출 영역은 물과 아미드계 화합물을 포함하는 혼합액과 추출 용매를 유입하는 하나 이상의 공급 포트와 물을 포함한 액/액 분리액을 배출하는 하나 이상의 제1 유출 포트를 포함하고,The extraction region includes a mixture solution containing water and an amide compound, at least one supply port for introducing the extraction solvent, and at least one first outlet port for discharging the liquid / liquid separation solution including water,
    상기 증류 영역 쪽의 유출 포트는 3 개의 스트림으로 구성되며, 추출 용매를 포함한 상부 흐름의 분리액을 배출하는 하나 이상의 제2 유출 포트, 물을 포함한 중간 흐름의 분리액을 배출하는 하나 이상의 제3 유출 포트, 및 아미드계 화합물은 포함한 하부 흐름의 분리액을 배출하는 하나 이상의 제4 유출 포트를 포함하는,The distillation zone side outlet port consists of three streams, one or more second outlet ports for discharging the upper stream separation liquid containing the extraction solvent, and one or more third outlet outlets for the intermediate flow separation liquid containing water. A port, and an amide-based compound comprising at least one fourth outlet port for discharging a bottom stream separation liquid,
    아미드계 화합물의 회수 장치.Equipment for recovering amide compounds.
  16. 제15항에 있어서,The method of claim 15,
    물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매가 상기 추출 영역의 공급 포트로 유입되고, 유입된 상기 혼합액과 추출 용매는 아미드계 화합물과 추출 용매가 상기 추출 영역의 상부 흐름으로 분리 유출되고, 물은 상기 추출 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트로 분리 유출되는 것을 특징으로 하는,A mixture solution and an extraction solvent containing water and an amide compound are introduced into a supply port of the extraction region, and the mixed solution and an extraction solvent in which the amide compound and the extraction solvent are separated and flow out into the upper flow of the extraction region, and water Is separated into the lower flow of the extraction region is characterized in that it is separated and discharged from the top bottom region of the distillation column to the first outlet port disposed in the extraction region side,
    아미드계 화합물의 회수 장치.Equipment for recovering amide compounds.
  17. 제15항에 있어서,The method of claim 15,
    상기 추출 영역의 상부 흐름 및 하부 흐름 중 적어도 하나 이상은 상기 증류탑의 증류 영역에 유입되고, 추출 용매는 상기 증류 영역의 상부 흐름으로 분리되어 상기 증류탑의 탑정 영역의 제1 유출 포트로 분리 유출되고, 물은 상기 증류 영역의 중간부 흐름으로 분리되어 상기 증류 영역의 제2 유출 포트로 분리 유출되고, 아미드계 화합물은 상기 증류 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트로 분리 유출되는 것을 특징으로 하는,At least one of the upper flow and the lower flow of the extraction zone is introduced into the distillation zone of the distillation column, and the extraction solvent is separated into the upper stream of the distillation zone and separated and discharged to the first outflow port of the top zone of the distillation column, Water is separated into the middle flow of the distillation zone and flows out through the second outlet port of the distillation zone, and the amide compound is separated into the lower stream of the distillation zone and is disposed on the distillation zone side in the bottom area of the distillation column. Characterized in that the separated out to the fourth outlet port,
    아미드계 화합물의 회수 장치.Equipment for recovering amide compounds.
  18. 제15항에 있어서,The method of claim 15,
    상기 증류탑에서, 분리벽은 증류탑의 탑정을 기준으로 산출된 이론 단수의 20% 내지 50%에 위치하는 것을 특징으로 하는,In the distillation column, the separation wall is characterized in that located at 20% to 50% of the theoretical number of stages calculated based on the top of the distillation column,
    아미드계 화합물의 회수 장치.Equipment for recovering amide compounds.
  19. 제15항에 있어서,The method of claim 15,
    상기 증류탑에서, 추출 영역의 공급 포트는 증류탑의 탑정을 기준으로 산출된 이론 단수의 2% 내지 98%에 위치하는 것을 특징으로 하는,In the distillation column, the supply port of the extraction region is characterized in that located at 2% to 98% of the theoretical number of stages calculated based on the top of the distillation column,
    아미드계 화합물의 회수 장치.Equipment for recovering amide compounds.
  20. 제15항에 있어서,The method of claim 15,
    상기 증류탑에서 추출 영역의 공급 포트는, 물과 아미드계 화합물을 포함하는 혼합액이 투입되는 제1 공급 포트와 추출 용매가 투입되는 제2 공급 포트로 구분되어 2개 이상 구비된 것을 특징으로 하는,In the distillation column, the supply port of the extraction region is divided into a first supply port through which a mixed solution containing water and an amide-based compound is introduced and a second supply port through which an extraction solvent is introduced, characterized in that two or more are provided.
    아미드계 화합물의 회수 장치.Equipment for recovering amide compounds.
  21. 제20항에 있어서,The method of claim 20,
    상기 물과 아미드계 화합물을 포함하는 혼합액이 투입되는 제1 공급 포트는 증류탑의 탑정을 기준으로 산출된 이론 단수의 20% 이내에 위치하고,The first supply port into which the mixed solution containing the water and the amide compound is introduced is located within 20% of the theoretical number of plates calculated based on the top of the distillation column,
    상기 추출 용매가 투입되는 제2 공급 포트는 증류탑의 탑정을 기준으로 산출된 이론 단수의 90% 이상에 위치하는 것을 특징으로 하는,The second supply port into which the extraction solvent is introduced is characterized in that it is located at 90% or more of the theoretical number of stages calculated based on the top of the distillation column,
    아미드계 화합물의 회수 장치.Equipment for recovering amide compounds.
  22. 제15항에 있어서,The method of claim 15,
    상기 증류탑에서,In the distillation column,
    추출 영역 쪽의 제1 유출 포트는 탑 하부의 탑저 영역에 고정되어 있고,The first outlet port toward the extraction area is fixed to the bottom area at the bottom of the tower,
    증류 영역 쪽의 제2 유출 포트 및 제4 유출 포트는 각각 탑 상부의 탑정 영역과 탑 하부의 탑저 영역은 고정되어 있고, 제3 유출 포트는 증류탑의 탑정을 기준으로 산출된 이론 단수의 40% 내지 65%에 위치하는 것을 특징으로 하는,The second effluent port and the fourth effluent port on the distillation zone are fixed at the top of the tower and at the bottom of the tower, respectively, and the third effluent port is 40% to 40% of the theoretical number calculated based on the top of the distillation column. Characterized in that located at 65%,
    아미드계 화합물의 회수 장치.Equipment for recovering amide compounds.
  23. 알칼리 금속의 수황화물 및 알칼리 금속의 수산화물을, 물 및 아미드계 화합물의 혼합 용매 중에서 탈수 반응(dehydration)을 수행하여, 알칼리 금속의 황화물, 및 물과 아미드계 화합물의 혼합 용매를 포함하는 황 공급원을 제조하는 단계;Dehydration of an alkali metal hydroxide and an alkali metal hydroxide in a mixed solvent of water and an amide compound is performed to obtain a sulfur source comprising an alkali metal sulfide and a mixed solvent of water and an amide compound. Manufacturing;
    상기 황 공급원을 포함하는 반응기에 디할로겐화 방향족 화합물 및 아미드계 화합물을 첨가하고, 중합 반응시켜 폴리아릴렌 설파이드를 합성하는 단계;Adding a dihalogenated aromatic compound and an amide compound to the reactor containing the sulfur source and polymerizing to synthesize polyarylene sulfide;
    상기 폴리아릴렌 설파이드를 포함하는 중합 반응 생성물을 아미드계 화합물 및 물로 이루어진 군에서 선택된 1종 이상으로 세척하는 단계;Washing the polymerization reaction product containing the polyarylene sulfide with at least one selected from the group consisting of amide compounds and water;
    상기 세척 단계에서 얻어진 물과 아미드계 화합물을 포함하는 혼합액 및 추출 용매를, 내부에 분리벽이 구비되고, 내부가 상기 분리벽이 위치하지 않는 탑정 영역 및 탑저 영역과, 상기 분리벽을 포함하는 중간 영역으로 구분되고, 상기 중간 영역은 상기 분리벽에 의하여 나뉘어지는 추출 영역과 증류 영역으로 구분되는 증류탑의 추출 영역에 투입하는 단계;The mixture and extraction solvent containing water and the amide-based compound obtained in the washing step are provided with a separation wall therein, and a top region and a bottom region in which the separation wall is not located, and an intermediate region including the separation wall. Dividing into regions and introducing the intermediate region into an extraction region of a distillation column divided into an extraction region divided by the dividing wall and a distillation region;
    상기 증류탑의 추출 영역에서, 아미드계 화합물과 추출 용매를 상기 추출 영역의 상부 흐름으로 분리 유출하고, 물은 상기 추출 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 추출 영역 쪽에 배치되어 있는 제1 유출 포트로 분리 유출하는 단계; 및In the extraction region of the distillation column, an amide-based compound and an extraction solvent are separated and discharged into an upper flow of the extraction region, and water is separated into a lower flow of the extraction region and is disposed on the extraction region in the bottom region of the distillation column. Separating and flowing into the outlet port; And
    상기 추출 영역의 상부 흐름 및 하부 흐름 중 적어도 하나 이상은 상기 증류탑의 증류 영역에 유입되고, 추출 용매는 상기 증류 영역의 상부 흐름으로 분리되어 상기 증류탑의 탑정 영역의 제2 유출 포트로 분리 유출하고, 물은 상기 증류 영역의 중간부 흐름으로 분리되어 상기 증류 영역의 제3 유출 포트로 분리 유출하고, 아미드계 화합물은 상기 증류 영역의 하부 흐름으로 분리되어 상기 증류탑의 탑저 영역에서 증류 영역 쪽에 배치되어 있는 제4 유출 포트로 분리 유출하는 단계;At least one of the upper stream and the lower stream of the extraction zone is introduced into the distillation zone of the distillation column, and the extraction solvent is separated into the upper stream of the distillation zone and separated and discharged to the second outflow port of the top zone of the distillation column, Water is separated into the middle stream of the distillation zone and flows out to the third outlet port of the distillation zone, and the amide compound is separated into the lower stream of the distillation zone and is disposed on the distillation zone side in the bottom zone of the distillation column. Separating and flowing into the fourth outlet port;
    를 포함하는, 폴리아릴렌 설파이드의 제조 방법.The method of manufacturing a polyarylene sulfide containing.
PCT/KR2019/012634 2018-09-28 2019-09-27 Method and apparatus for recovering amide-based compound WO2020067797A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/054,729 US11970445B2 (en) 2018-09-28 2019-09-27 Method and apparatus for recovering amide-based compound
EP19865996.3A EP3766867B1 (en) 2018-09-28 2019-09-27 Method for recovering amide-based compound
CN201980029958.4A CN112074502B (en) 2018-09-28 2019-09-27 Method and apparatus for recovering amide-based compounds
JP2020563487A JP7109851B2 (en) 2018-09-28 2019-09-27 METHOD AND APPARATUS FOR COLLECTION OF AMIDE COMPOUNDS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180116449 2018-09-28
KR10-2018-0116449 2018-09-28
KR10-2019-0119141 2019-09-26
KR1020190119141A KR102294876B1 (en) 2018-09-28 2019-09-26 Process for recovering amide compounds and recovering device thereof

Publications (1)

Publication Number Publication Date
WO2020067797A1 true WO2020067797A1 (en) 2020-04-02

Family

ID=69953161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012634 WO2020067797A1 (en) 2018-09-28 2019-09-27 Method and apparatus for recovering amide-based compound

Country Status (1)

Country Link
WO (1) WO2020067797A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045960A1 (en) * 2020-08-28 2022-03-03 Sui Jianjun Method and device for purification of p-dichlorobenzene
CN114432728A (en) * 2022-04-11 2022-05-06 天津中福环保科技股份有限公司 System and process for purifying NMP

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060137967A1 (en) * 2002-12-04 2006-06-29 Henry Kister Distillation systems
KR20140092785A (en) * 2013-01-16 2014-07-24 주식회사 엘지화학 Manufacturing device for alkanol
KR20160144102A (en) * 2015-06-08 2016-12-16 주식회사 엘지화학 Distillation device
KR101728905B1 (en) * 2014-09-26 2017-05-02 한화케미칼 주식회사 Dividing wall column and method of purificaiton for neopentyl glycol using the same
US20170158820A1 (en) * 2014-08-06 2017-06-08 Kureha Corporation Polyarylene sulfide production method and polyarylene sulfide produced using production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060137967A1 (en) * 2002-12-04 2006-06-29 Henry Kister Distillation systems
KR20140092785A (en) * 2013-01-16 2014-07-24 주식회사 엘지화학 Manufacturing device for alkanol
US20170158820A1 (en) * 2014-08-06 2017-06-08 Kureha Corporation Polyarylene sulfide production method and polyarylene sulfide produced using production method
KR101728905B1 (en) * 2014-09-26 2017-05-02 한화케미칼 주식회사 Dividing wall column and method of purificaiton for neopentyl glycol using the same
KR20160144102A (en) * 2015-06-08 2016-12-16 주식회사 엘지화학 Distillation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3766867A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045960A1 (en) * 2020-08-28 2022-03-03 Sui Jianjun Method and device for purification of p-dichlorobenzene
CN114432728A (en) * 2022-04-11 2022-05-06 天津中福环保科技股份有限公司 System and process for purifying NMP

Similar Documents

Publication Publication Date Title
WO2020067797A1 (en) Method and apparatus for recovering amide-based compound
WO2017095174A1 (en) Polymeric composition
WO2017003247A1 (en) Distillation apparatus
WO2016159707A1 (en) Distillation apparatus
KR100737542B1 (en) A process for producing polyarylene sulfide
WO2020130367A1 (en) Method of recovering amide-based compounds
WO2020009481A1 (en) Method for preparing polyarylene sulfide
WO2019132470A1 (en) Method for separating unreacted monomer from mixed solution comprising unreacted monomer
WO2023177133A1 (en) Method for separating water from mixture of pgme, pgmea, and water
WO2022158766A1 (en) High-purity hydrogen hexacyanocobaltate compound and method for preparing same
WO2024071915A1 (en) Polymerization raw material comprising recycled bis(2-hydroxyethyl) terephthalate, and production method for same
KR102294876B1 (en) Process for recovering amide compounds and recovering device thereof
KR102608800B1 (en) Method for preparing polyphenylene sulfide and apparatus for preparing polyphenylene sulfide
WO2022146093A1 (en) Isocyanate compound preparation method
WO2021015541A1 (en) Method of recovering unreacted ethylene in ethylene oligomerization process
WO2016068676A1 (en) Distillation apparatus
WO2022010311A1 (en) Polyarylene sulfide copolymer, production method thereof, and molded article produced therefrom
JP4738684B2 (en) Methanol extraction of polar organic and modifier compounds from poly (arylene sulfide) polymers and oligomer streams
KR20020056887A (en) Recovery of modifier compounds and polar organic compounds from a poly(arylene sulfide) recycle mixture
WO2022255576A1 (en) Method for preparing isopropyl alcohol
WO2022146091A1 (en) Method for preparing isocyanate compound
WO2024039022A1 (en) Method for preparing isopropyl alcohol
WO2020222410A1 (en) Method for continuously preparing tetraalkoxysilane
WO2023163481A1 (en) Method for preparing recycled bis(2-hydroxyethyl) terephthalate through multi-step depolymerization
WO2022260430A1 (en) Isolation method for lactide racemate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019865996

Country of ref document: EP

Effective date: 20201016

ENP Entry into the national phase

Ref document number: 2020563487

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE