WO2020067429A1 - Carbon nanotube dispersion - Google Patents

Carbon nanotube dispersion Download PDF

Info

Publication number
WO2020067429A1
WO2020067429A1 PCT/JP2019/038177 JP2019038177W WO2020067429A1 WO 2020067429 A1 WO2020067429 A1 WO 2020067429A1 JP 2019038177 W JP2019038177 W JP 2019038177W WO 2020067429 A1 WO2020067429 A1 WO 2020067429A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
carbon nanotube
resin
containing composition
present
Prior art date
Application number
PCT/JP2019/038177
Other languages
French (fr)
Japanese (ja)
Inventor
純也 山田
安史 近田
岩佐 成人
芽衣 竹中
小田 実生
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to CN201980056694.1A priority Critical patent/CN112601712A/en
Priority to JP2020549436A priority patent/JP7294346B2/en
Publication of WO2020067429A1 publication Critical patent/WO2020067429A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a carbon nanotube dispersion, a carbon nanotube-containing composition using the dispersion, and a molded article of the carbon nanotube-containing composition.
  • Carbon nanotubes are cylindrical materials composed of only carbon atoms and having a diameter of nanometers, and have properties such as electrical conductivity, thermal conductivity, mechanical strength, and chemical properties derived from their structural characteristics. It is a substance that has attracted attention from various industries, and its practical application is being studied in various fields including the electronics and energy fields.
  • SWNTs single-walled single-walled nanotubes
  • MWNTs multi-walled multi-walled nanotubes
  • DWNTs double-walled double-walled nanotubes
  • the carbon nanotube has a long tubular shape, it is entangled and has a string shape. Therefore, it is a major issue whether carbon nanotubes can be dispersed and stabilized.
  • Patent Documents 1 and 2 and the like describe the dispersion state of carbon nanotubes in a resin, but do not describe in detail a specific method for dispersion.
  • An object of the present invention is to provide a carbon nanotube dispersion liquid for forming a molded article having high transparency and a low surface resistance value, and a carbon nanotube-containing composition using the dispersion liquid.
  • the present inventors have conducted various studies in order to solve the above-mentioned problems.
  • the weight loss by heating up to 900 ° C. in thermogravimetry is 80% or more, and the G / D ratio in Raman spectrometry is 30 or more.
  • the nanotube (A) is dispersed in the dispersion medium (B)
  • the dispersion having a specific Feret length and the carbon nanotube-containing composition using the dispersion have high transparency and low surface resistance. It has been found that a molded article can be obtained.
  • the present invention can be described as follows.
  • Item 1 The weight loss by heating up to 900 ° C. in thermogravimetry is 80% or more;
  • a dispersion of a carbon nanotube (A) having a G / D ratio of 30 or more in Raman spectrometry and a dispersion medium (B) A dispersion satisfying the following requirement (1).
  • (1) The dispersion according to item 1, wherein the ratio of particles having a ferrite length of 50 ⁇ m or more of the carbon nanotubes to all particles is 5% or less.
  • 2 The dispersion according to item 1, wherein the average ferret length of the carbon nanotube (A) is 0.8 to 75 ⁇ m.
  • Item 4. A carbon nanotube-containing composition containing the dispersion liquid according to any one of Items 1 to 3 and a resin (C).
  • Item 5. The carbon nanotube-containing composition according to Item 4, wherein the resin (C) is a resin having a thickness of 10 mm or less and a total light transmittance of 80% or more.
  • Item 6 A molded article of the carbon nanotube-containing composition according to Item 4 or 5.
  • the molded article according to Item 6 wherein the molded article has a volume resistivity of 5.0 ⁇ 10 10 ⁇ ⁇ cm or less and a total light transmittance at a thickness of 1 mm of 5% or more.
  • Item 8 A surface resistance value of 1.0 ⁇ 10 13 ⁇ / sq. Item 7.
  • the dispersion of the present invention since a high dispersibility is obtained when containing the resin, the dispersion, and a molded article produced from the resin-containing carbon nanotube-containing composition has high transparency, and It has a low surface resistance, and is usefully used in various fields such as electric equipment, mechanical parts, and automobile parts.
  • the dispersion of the present invention is a dispersion of a carbon nanotube (A) and a dispersion medium (B) having a weight loss by heating up to 900 ° C. in thermogravimetry of 80% or more and a G / D ratio in Raman spectroscopy of 30 or more. Liquid. That is, the dispersion of the present invention is a dispersion containing the carbon nanotubes (A) and the dispersion medium (B). In the present invention, “carbon nanotube” may be described as “CNT”.
  • the carbon nanotube (A) in the dispersion of the present invention has a weight loss by heating at 30 ° C. at 900 ° C. measured at a heating rate of 10 ° C./min of 80% or more, and 90% or more. Preferably, it is 98% or more.
  • the carbon nanotubes (A) in the dispersion of the present invention were heated at a rate of 10 ° C./min from 900 ° C. at a rate of 10 ° C./min.
  • the weight loss rate at 500 ° C. measured in minutes is preferably 20% or less, more preferably 15% or less, and particularly preferably 10% or less.
  • the intensity ratio G / D of the G band and the D band of the carbon nanotube (A) in the dispersion of the present invention is 30 or more, preferably 50 or more, more preferably 90 or more, and more preferably 100 or more. Is particularly preferred.
  • G / D is measured by Raman spectroscopy device, calculated by the peak intensity ratio of the Raman spectrum measured by resonance Raman scattering (excitation wavelength 532 nm), G-band (1590 cm -1 vicinity) and D-band (1300 cm around -1) Is done. The higher the G / D ratio, the smaller the amount of defects in the structure of the carbon nanotube.
  • the diameter of the carbon nanotube (A) is not particularly limited, but the diameter of the carbon nanotube is preferably 0.4 nm to 10 nm, and particularly preferably in the range of 1.0 to 5.0 nm.
  • the surface and the terminal of the carbon nanotube may be modified with a functional group or an alkyl group.
  • the functional group include a carboxyl group and a hydroxyl group.
  • the carbon nanotubes (A) in the dispersion of the present invention may be single-walled carbon nanotubes or multi-walled carbon nanotubes, but are preferably single-walled carbon nanotubes, and more than 60% of the carbon nanotubes. It is preferably a single-walled carbon nanotube.
  • the origin of the carbon nanotubes (A) in the dispersion of the present invention is not limited, and any production method may be used. Examples thereof include an arc discharge method, a laser evaporation method, and a chemical vapor deposition (CVD) method. It is preferable to use a chemical vapor deposition (CVD) method.
  • the chemical vapor deposition (CVD) method can be exemplified by a gas phase flow method and a substrate growth method, and is preferably a gas phase flow method.
  • the ratio of the carbon nanotube particles having a Feret length of 50 ⁇ m or more to the total particles observed from 0.8 ⁇ m to 1000 ⁇ m is 5% or less, preferably 3% or less, and more preferably 2% or less. It is particularly preferred that:
  • the average Feret length of carbon nanotubes observed from 0.8 ⁇ m to 1000 ⁇ m is preferably 0.8 ⁇ m or more, more preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more. It is particularly preferably at least 20 ⁇ m, more preferably at most 75 ⁇ m, particularly preferably at most 50 ⁇ m.
  • the “ferret length” is defined as a ferret diameter orthogonal to the minimum ferret diameter of a particle, and the measurement is made by an image analysis particle size distribution meter.
  • the following can be exemplified as a method of measuring the ferret length.
  • Image analysis Using a particle size distribution analyzer (manufactured by Jusco International Co., Ltd., trade name: CF-3000), images were taken with a 6.6-megapixel camera while circulating the dispersion liquid. Measure the diameter. 0.02 mL of the dispersion is diluted with isopropanol so that the concentration of carbon nanotubes becomes 3 ⁇ 10 ⁇ 5 mass%, 150 mL of the dispersion is flowed, and 0.1 mL thereof is measured.
  • the observed distribution of carbon nanotube particles is represented by a histogram with the vertical axis representing the volume fraction. Further, in the Feret length distribution, a ratio at which the Feret length becomes 50 ⁇ m or more is evaluated.
  • the average Feret length can be calculated as the Feret length when the cumulative volume fraction from 0.8 ⁇ m reaches 50% in the distribution measurement with the image analysis particle size distribution analyzer from 0.8 ⁇ m to 1000 ⁇ m. Yes, determined on average of three.
  • the content of the carbon nanotube (A) is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 0.2% by mass or more. It is particularly preferable that it is at least 1.0 mass%, more preferably at most 1.0 mass%, more preferably at most 0.5 mass%, particularly preferably at most 0.3 mass%. It is preferable to use these ranges in terms of the dispersibility of the carbon nanotube and the use of the dispersion.
  • the dispersion medium (B) in the dispersion of the present invention is not particularly limited as long as the carbon nanotubes (A) can be dispersed, and the shear viscosity of the solvent at 30 ° C. at 100 [1 / s] is 1 [mPa ⁇ s]. It is preferably at least 10 [mPa ⁇ s], more preferably at most 200 [mPa ⁇ s].
  • the solubility parameter calculated by the Fedors equation is preferably in the range of 7 to 25, and more preferably in the range of 8 to 20.
  • the dispersion medium (B) in the dispersion of the present invention is not particularly limited, and may be, for example, any of water, a halogen-based solvent, alcohols, phenols, amides, allyls, ketones, and a plasticizer for rubber. Examples include those containing one type or a mixed dispersion medium of at least two types among these.
  • Examples of the halogen-based solvent include chloroform and dichloromethane.
  • Examples of the alcohols include methanol, ethanol, isopropyl alcohol, n-butyl alcohol, and polycarbonate diol.
  • Examples of phenols include bisphenol, trisphenol, and polyphenol.
  • Examples of amides include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylformamide, N, N-diethylformamide, , N-dimethylacetamide, N, N-diethylacetamide, dimethylsulfoxide.
  • allyls examples include diallyl phthalate, triallyl trimesate, triallyl trimellitate, 1,3,5,7-tetraallylnaphthalene and the like.
  • ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Plasticizers for rubber include phthalic acid derivatives, tetrahydrophthalic acid derivatives, adipic acid derivatives, azelaic acid derivatives, sebacic acid derivatives, dodecane-2-acid derivatives, maleic acid derivatives, fumaric acid derivatives, trimellitic acid derivatives, pyromellitic derivatives Acid derivatives, citric acid derivatives, oleic acid derivatives, ricinoleic acid derivatives, stearic acid derivatives, fatty acid derivatives, sulfonic acid derivatives, phosphoric acid derivatives, glutaric acid derivatives, glycolic acid derivatives, glycerin derivatives, paraffin derivatives, epoxy derivatives, monoesters Plasticizers, polyester-based plasticizers, polyether-based plasticizers, paraffin-based mineral oils, naphthenic-based mineral oils, aromatic-based mineral oils, vegetable oil-based plasticizers, and other plasticizers.
  • a dispersant may be added as needed.
  • the dispersant is not particularly limited, but specifically, a polymer dispersant such as carboxymethylcellulose, polyvinylbutyral, polyvinylpyrrolidone, and polyvinyl acetal, and fatty acid sodium, fatty acid potassium, sodium alkylbenzenesulfonate, sodium alkylnaphthalenesulfonate, and alkyl sulfate.
  • the content of the dispersant is not particularly limited, but is preferably 10 parts by mass or more, more preferably 50 parts by mass or more, and more preferably 100 parts by mass or more with respect to 100 parts by mass of the carbon nanotube (A). It is particularly preferable that the amount is 1000 parts by mass or less, more preferably 500 parts by mass or less, and particularly preferably 300 parts by mass or less.
  • the dispersion of the present invention can be produced by a homogenizer, a bead mill, a ball mill, a basket mill, an attrition mill, a universal stirrer, a clear mixer, an ultrasonic wave, a jet mill, a shearing dispersion treatment, or the like.
  • an apparatus such as a product name “NanoJet Pal JN20” (manufactured by Jokko Co., Ltd.) or a product name “NanoVita L-ES” (manufactured by Yoshida Kikai Kogyo Co., Ltd.) can be used.
  • the carbon nanotube-containing composition of the present invention contains the dispersion and the resin (C).
  • the resin (C) of the present invention includes styrene resins such as polystyrene resins and ABS resins, acrylic resins, polyvinyl chloride resins, polymethylpentene resins, syndiotactic polystyrene resins, polyacetal resins, polyamide resins, and polyethylene terephthalate resins.
  • styrene resins such as polystyrene resins and ABS resins, acrylic resins, polyvinyl chloride resins, polymethylpentene resins, syndiotactic polystyrene resins, polyacetal resins, polyamide resins, and polyethylene terephthalate resins.
  • Olefins such as polyethylene naphthalate resin, polyimide resin, polyphenylene sulfide resin, aramid resin, polylactic acid, polycarbonate resin, polyacrylonitrile resin, polymethyl methacrylate resin, alicyclic acrylic resin, polyethylene resin, polypropylene resin, cycloolefin resin Resin, modified polyphenylene ether resin, polyphenylene sulfide resin, polyamide imide resin, polyether sulfone resin, polysulfone resin, polyether ether Ton resin, liquid crystal resin, aromatic polyimide resins, epoxy resins, phenolic resins, fluorocarbon resins, silicone resins. In addition, these may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the resin (C) of the present invention is preferably a resin having a thickness of 10 mm or less and a total light transmittance of 80% or more, and a styrene resin, an acrylic resin, a polyvinyl chloride resin, an olefin resin, and a polycarbonate resin. Examples can be given.
  • the upper limit of the total light transmittance is not particularly limited, but is 99% or less.
  • the total light transmittance is measured according to JIS K7361-1. Specifically, it can be calculated using an ultraviolet-visible spectrophotometer or the like.
  • the content of the carbon nanotube (A) in the carbon nanotube-containing composition of the present invention is preferably at least 0.001 part by mass, more preferably at least 0.005 part by mass, based on 100 parts by mass of the resin (C). More preferably, it is more preferably not less than 0.01 part by mass, more preferably not more than 10 parts by mass, more preferably not more than 1.0 part by mass, and not more than 0.05 part by mass. More preferably,
  • the carbon nanotube-containing composition of the present invention may contain a conductive additive.
  • a conductive assistant there is no particular limitation on the conductive assistant, and a general conductive assistant can be used.
  • an electron conductive material natural graphite, graphite such as artificial graphite, acetylene black, Ketjen black, carbon black such as furnace black, carbon material such as graphene and fullerene, metal powder such as copper and nickel
  • the conductive polymer include metal fibers, polyaniline, polypyrrole, polythiophene, polyacetylene, and a polyphenylene derivative. In addition, these may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the carbon nanotube-containing composition of the present invention as long as the effects of the present invention are not impaired, other compounding agents may be contained, and an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a crosslinking agent, Examples include pigments, colorants, foaming agents, antistatic agents, flame retardants, lubricants, softeners, tackifiers, plasticizers, release agents, deodorants, fragrances, and the like.
  • the carbon nanotube-containing composition of the present invention can be produced by mixing (kneading) various materials, and the mixing (kneading) method is not particularly limited, and examples thereof include an open roll, an intensive mixer, and an internal mixer.
  • a melt kneading method using a kneader such as a mixer, a co-kneader, a continuous kneader equipped with a twin-screw rotor, or an extruder may be used.
  • the extruder either a single-screw or twin-screw extruder can be used.
  • a molded article of the carbon nanotube-containing composition of the present invention is obtained by molding the above-described carbon nanotube-containing composition.
  • methods such as injection molding, injection compression molding, extrusion molding, blow molding, inflation molding, vacuum molding, press molding, and cast film molding can be used.
  • the molded article of the present invention preferably has a volume resistivity of 5.0 ⁇ 10 10 ⁇ ⁇ cm, more preferably 1.0 ⁇ 10 9 ⁇ ⁇ cm or less, and more preferably 1.0 ⁇ 10 8 ⁇ . Cm or less, more preferably 1.0 ⁇ 10 7 ⁇ ⁇ cm or less.
  • the lower limit is not particularly limited, but is, for example, 1.0 ⁇ 10 ⁇ ⁇ cm or more.
  • the molded article of the present invention has a surface resistance of 1.0 ⁇ 10 13 ⁇ / sq. Or less, preferably 1.0 ⁇ 10 12 ⁇ / sq. And more preferably 5.0 ⁇ 10 11 ⁇ / sq. It is particularly preferred that:
  • the lower limit is not particularly limited, but is 1.0 ⁇ 10 3 ⁇ / sq. That is all.
  • the molded article of the present invention preferably has a total light transmittance of 5% or more, more preferably 10% or more, and particularly preferably 20% or more when the transmittance is 1 mm.
  • the upper limit is not particularly limited, but is 80% or less.
  • the total light transmittance is measured in accordance with JIS K7361-1. Specifically, it can be calculated using an ultraviolet-visible spectrophotometer or the like.
  • the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist of the present invention.
  • the compounding amount means parts by mass.
  • the carbon nanotube (A) was evaluated using the following analyzer.
  • Thermogravimetric analysis Approximately 7 mg of a sample was heated from 30 ° C to 900 ° C at a rate of 10 ° C / min from an air flow rate of 200 cc / min using a differential thermogravimetric simultaneous measurement device (Hitachi High-Tech Science STA7200RV). The rate of weight loss in the temperature range of 900 ° C. was evaluated. Further, the ratio of the weight loss at 500 ° C. measured from 30 ° C. at a rate of 10 ° C./min to the weight loss at 900 ° C. measured at a rate of 10 ° C./min from 30 ° C. is “500 ° C. Weight loss ratio up to ".
  • Transmission electron microscope observation Observation was performed at an accelerating voltage of 200 kV using a transmission electron microscope (a transmission electron microscope with a FEG manufactured by Hitachi High-Technologies HF-2000).
  • the observation sample was prepared by dispersing in an alcohol-based solvent, fixing the dispersion to a microgrid by blotting, and drying in vacuum.
  • the field of view was magnified 1,000,000 times, and the diameter (average value) and the ratio of a single layer to multiple layers (two or more layers) were determined from the 50 observed carbon nanotubes.
  • the dispersion medium (B) was evaluated below.
  • Shear viscosity The viscosity of the dispersion medium was measured using a rheometer (trade name: HAAKE MARSIII, manufactured by Thermo Fisher Scientific). Temperature conditions were unified at 30 ° C., and C60 / 2 ° was used for the cone. The shear viscosity at a shear rate of 100 [1 / s] was used as a representative value.
  • Total light transmittance The total light transmittance is measured according to JIS K7361-1. Using an ultraviolet-visible spectrophotometer (trade name: V-780, manufactured by JASCO Corporation), the light transmittance in the visible light range of the injection-molded product (thickness: 10 mm) was measured. The higher the light transmittance, the more transparent.
  • the dispersion was evaluated as follows. (Ferre length distribution) The Feret length distribution of the carbon nanotube particles in the carbon nanotube dispersion from 0.8 ⁇ m to 1000 ⁇ m was evaluated using an image analysis particle size distribution meter (trade name: CF-3000, manufactured by Jusco International Co., Ltd.). In this method, the dispersion is circulated and photographed with a 6.60 megapixel camera, and the particle size of the particles in the range of 0.8 ⁇ m to 1 mm is measured. 0.02 mL of the dispersion was diluted with isopropanol so that the concentration of the carbon nanotubes became 3 ⁇ 10 ⁇ 5 mass%, 150 mL of the dispersion was flowed, and 0.1 mL thereof was measured.
  • the number of particles observed was approximately 4000-6000.
  • the distribution of the observed particles is shown by a histogram in which the volume fraction is taken on the vertical axis. Further, in the Feret length distribution, a ratio at which the Feret length becomes 50 ⁇ m or more is evaluated.
  • the average Feret length can be calculated as the Feret length when the cumulative volume fraction from 0.8 ⁇ m becomes 50% in the distribution measurement with the image analysis particle size distribution analyzer from 0.8 ⁇ m to 1000 ⁇ m, three times. Is determined by the average of
  • volume Resistance Measurement Under standard conditions (23 ° C., 50% RH), a 10 mm ⁇ 2 mm ⁇ 1 mm sample piece was cut out from the center of the carbon nanotube / polycarbonate molded article with the injection direction being long, and silver was placed at both ends in the long direction. The paste was applied, and the volume resistance was measured by a two-terminal method using a semiconductor parameter analyzer (manufactured by Keylight).
  • Total light transmittance The total light transmittance is measured according to JIS K7361-1. Using an ultraviolet-visible spectrophotometer (trade name: V-780, manufactured by JASCO Corporation), the light transmittance in the visible light region of the injection-molded product (thickness: 1 mm) was measured. The higher the light transmittance, the more transparent.
  • the dispersion is produced as follows.
  • Dispersion 2 was replaced with carbon nanotube (A-2), Dispersion 3 was replaced with carbon nanotube (A-3), and Dispersion 4 was replaced with carbon nanotube (A-4) instead of carbon nanotube (A-1).
  • FIG. 1 shows the Feret length distribution, the average Feret length, and the ratio at which the Feret length becomes 50 ⁇ m or more.
  • the carbon nanotube-containing composition and the molded article are produced as follows. Each raw material was charged into a hopper of a twin-screw extruder with a vent (model number “TEM-18SS”, manufactured by Toshiba Machine Co., Ltd.) with the composition shown in Table 1, and a carbon nanotube-containing composition was obtained. Each test piece was molded from the above-mentioned carbon nanotube-containing composition using an injection molding machine (model number “FNX80III-9A”, manufactured by Nissei Plastic Industry Co., Ltd.) under the conditions of a cylinder temperature of 280 ° C. and a mold temperature of 110 ° C. The resistance value, surface resistance value, and total light transmittance were measured. Table 1 shows the results.
  • the molded articles of Examples 1 and 2 using the dispersion of the present invention have a low surface resistance value while maintaining high transparency.
  • the molded articles of Example 1 are: It was shown to have low volume resistivity and lower surface resistivity.
  • the molded product of the carbon nanotube-containing composition containing the dispersion liquid and the resin of the present invention has high transparency and low surface resistance, and is useful in various fields such as electric equipment, mechanical parts, and automobile parts.

Abstract

The present invention addresses the problem of providing a dispersion of carbon nanotubes for forming molded articles that have high transparency and a low surface resistance value, and a carbon-nanotube-containing composition in which the dispersion is used. Provided is a dispersion having a specific Feret length when carbon nanotubes (A) are dispersed in a dispersion medium (B), the carbon nanotubes (A) having a weight loss on heating to 900°C of 80% or greater in thermogravimetric measurement and a G/D ratio of 30 or higher in Raman spectroscopy. A molded article having high transparency and a low surface resistance value is obtained using a carbon-nanotube-containing composition in which the dispersion is used.

Description

カーボンナノチューブ分散液Carbon nanotube dispersion
 本発明は、カーボンナノチューブの分散液、前記分散液を用いたカーボンナノチューブ含有組成物、前記カーボンナノチューブ含有組成物の成形体に関する。 The present invention relates to a carbon nanotube dispersion, a carbon nanotube-containing composition using the dispersion, and a molded article of the carbon nanotube-containing composition.
 カーボンナノチューブは、炭素原子のみで構成される直径がナノメートルサイズの筒状の物質であり、その構造的な特徴に由来する、導電性、熱伝導性、機械的強度、化学的性質などの特性から注目を集めている物質であり、エレクトロニクス分野やエネルギー分野をはじめ、様々な用途で実用化が検討されている。 Carbon nanotubes are cylindrical materials composed of only carbon atoms and having a diameter of nanometers, and have properties such as electrical conductivity, thermal conductivity, mechanical strength, and chemical properties derived from their structural characteristics. It is a substance that has attracted attention from various industries, and its practical application is being studied in various fields including the electronics and energy fields.
 カーボンナノチューブの種類は多岐に亘り、例えば、単層のシングルウォールナノチューブ(以下SWNTと略す)、多層のマルチウォールナノチューブ(以下MWNTと略す)、MWNTの範疇に入る二層のダブルウォールナノチューブ(以下DWNTと略す)などがあり、また、その両端が封鎖されているものから、片末端が封鎖されているもの、両末端とも開いているものがあり、また、その丸め方の構造としてアームチェアー型などの構造にも種類がある。 There are various types of carbon nanotubes. For example, single-walled single-walled nanotubes (hereinafter abbreviated as SWNTs), multi-walled multi-walled nanotubes (hereinafter abbreviated as MWNTs), and double-walled double-walled nanotubes (hereinafter referred to as DWNTs) falling under the category of MWNTs Abbreviations), and others whose ends are blocked, those whose one end is blocked, those whose both ends are open, and whose rounding structure is an armchair type etc. There are also different types of structures.
 しかし、カーボンナノチューブは長いチューブ状であるがゆえに絡み合いが生じ、糸鞠状になっている。そこで、カーボンナノチューブを分散して安定化できるかということが大きな課題となっている。 However, since the carbon nanotube has a long tubular shape, it is entangled and has a string shape. Therefore, it is a major issue whether carbon nanotubes can be dispersed and stabilized.
  具体的には、カーボンナノチューブを樹脂などと混練する場合、十分な分散が得られず、また、分散不良により、カーボンナノチューブの添加量に応じた性能が十分発揮されていないことがあった。 Specifically, when carbon nanotubes are kneaded with a resin or the like, sufficient dispersion may not be obtained, and due to poor dispersion, the performance according to the added amount of carbon nanotubes may not be sufficiently exhibited.
  そこで、例えば、特許文献1、2等には樹脂におけるカーボンナノチューブの分散状態について記載されているが、分散のための具体的な手法については、詳細に記載されていない。 Therefore, for example, Patent Documents 1 and 2 and the like describe the dispersion state of carbon nanotubes in a resin, but do not describe in detail a specific method for dispersion.
特開2006-193649公報JP 2006-193649 A 特開2008-308583公報JP 2008-308583 A
 本発明は、高い透明性、及び低い表面抵抗値を有する成形体とするためのカーボンナノチューブの分散液、前記分散液を用いたカーボンナノチューブ含有組成物を提供することを課題とする。 と す る An object of the present invention is to provide a carbon nanotube dispersion liquid for forming a molded article having high transparency and a low surface resistance value, and a carbon nanotube-containing composition using the dispersion liquid.
 本発明者らは、上記課題を解決するため、種々検討を重ねたところ、熱重量測定における900℃までの加熱重量減少が80%以上、ラマン分光測定におけるG/D比が30以上であるカーボンナノチューブ(A)を分散媒(B)に分散させた際に、特定のフェレー長を有する分散液、前記分散液を用いたカーボンナノチューブ含有組成物により、高い透明性、及び低い表面抵抗値を有する成形体が得られることを見出した。 The present inventors have conducted various studies in order to solve the above-mentioned problems. As a result, the weight loss by heating up to 900 ° C. in thermogravimetry is 80% or more, and the G / D ratio in Raman spectrometry is 30 or more. When the nanotube (A) is dispersed in the dispersion medium (B), the dispersion having a specific Feret length and the carbon nanotube-containing composition using the dispersion have high transparency and low surface resistance. It has been found that a molded article can be obtained.
 即ち、本発明については、以下のように記載することができる。
項1 熱重量測定における900℃までの加熱重量減少が80%以上、
 ラマン分光測定におけるG/D比が30以上であるカーボンナノチューブ(A)と
 分散媒(B)との分散液において、
 以下(1)の要件を満たす分散液。
 (1)カーボンナノチューブのフェレー長50μm以上の粒子の全粒子に対する比率が5%以下
項2 カーボンナノチューブ(A)の平均フェレー長が0.8~75μmである項1記載の分散液。
項3 カーボンナノチューブ(A)のラマン分光測定におけるG/D比が90以上である項1又は、2記載の分散液。
項4 項1~3いずれかに記載の分散液と樹脂(C)とを含有するカーボンナノチューブ含有組成物。
項5 樹脂(C)が厚さ10mm以下での全光線透過率80%以上の樹脂である項4に記載のカーボンナノチューブ含有組成物。
項6 項4又は5に記載のカーボンナノチューブ含有組成物の成形体。
項7 体積抵抗値が5.0×1010Ω・cm以下、1mm厚での全光線透過率が5%以上である項6に記載の成形体。
項8 表面抵抗値が1.0×1013Ω/sq.以下である項6に記載の成形体。
That is, the present invention can be described as follows.
Item 1 The weight loss by heating up to 900 ° C. in thermogravimetry is 80% or more;
In a dispersion of a carbon nanotube (A) having a G / D ratio of 30 or more in Raman spectrometry and a dispersion medium (B),
A dispersion satisfying the following requirement (1).
(1) The dispersion according to item 1, wherein the ratio of particles having a ferrite length of 50 μm or more of the carbon nanotubes to all particles is 5% or less. 2 The dispersion according to item 1, wherein the average ferret length of the carbon nanotube (A) is 0.8 to 75 μm.
Item 3. The dispersion according to Item 1 or 2, wherein the carbon nanotube (A) has a G / D ratio of 90 or more in Raman spectrometry.
Item 4. A carbon nanotube-containing composition containing the dispersion liquid according to any one of Items 1 to 3 and a resin (C).
Item 5. The carbon nanotube-containing composition according to Item 4, wherein the resin (C) is a resin having a thickness of 10 mm or less and a total light transmittance of 80% or more.
Item 6 A molded article of the carbon nanotube-containing composition according to Item 4 or 5.
Item 7. The molded article according to Item 6, wherein the molded article has a volume resistivity of 5.0 × 10 10 Ω · cm or less and a total light transmittance at a thickness of 1 mm of 5% or more.
Item 8: A surface resistance value of 1.0 × 10 13 Ω / sq. Item 7. The molded article according to item 6, which is as follows.
 本発明の分散液を用いることにより、樹脂と含有した際に高い分散性が得られるために、分散液、及び樹脂を含有するカーボンナノチューブ含有組成物より作製される成形体は高い透明性、及び低い表面抵抗値となり、電気機器、機械部品、自動車部品等の様々な分野で有用に用いられる。 By using the dispersion of the present invention, since a high dispersibility is obtained when containing the resin, the dispersion, and a molded article produced from the resin-containing carbon nanotube-containing composition has high transparency, and It has a low surface resistance, and is usefully used in various fields such as electric equipment, mechanical parts, and automobile parts.
実施例1,2、比較例1,2の分散液のフェレー長の分布を図示する。The distribution of Feret lengths of the dispersion liquids of Examples 1 and 2 and Comparative Examples 1 and 2 are illustrated.
[1.分散液]
 本発明の分散液は、熱重量測定における900℃までの加熱重量減少が80%以上、ラマン分光測定におけるG/D比が30以上であるカーボンナノチューブ(A)と分散媒(B)との分散液である。すなわち、本発明の分散液は、カーボンナノチューブ(A)と分散媒(B)を含む分散液である。尚、本発明においては、「カーボンナノチューブ」を「CNT」と記載することがある。
[1. Dispersion]
The dispersion of the present invention is a dispersion of a carbon nanotube (A) and a dispersion medium (B) having a weight loss by heating up to 900 ° C. in thermogravimetry of 80% or more and a G / D ratio in Raman spectroscopy of 30 or more. Liquid. That is, the dispersion of the present invention is a dispersion containing the carbon nanotubes (A) and the dispersion medium (B). In the present invention, “carbon nanotube” may be described as “CNT”.
 本発明の分散液におけるカーボンナノチューブ(A)は、熱重量測定において、30℃から昇温速度10℃/分で測定した900℃での加熱重量減少量が80%以上であり、90%以上であることが好ましく、98%以上であることが特に好ましい。 In the thermogravimetric measurement, the carbon nanotube (A) in the dispersion of the present invention has a weight loss by heating at 30 ° C. at 900 ° C. measured at a heating rate of 10 ° C./min of 80% or more, and 90% or more. Preferably, it is 98% or more.
 本発明の分散液におけるカーボンナノチューブ(A)は、熱重量測定において、30℃から昇温速度10℃/分で測定した900℃での加熱重量減少分に対する、30℃から昇温速度10℃/分で測定した500℃での加熱重量減少割合が20%以下であることが好ましく、15%以下であることが好ましく、10%以下であることが特に好ましい。 In the thermogravimetric measurement, the carbon nanotubes (A) in the dispersion of the present invention were heated at a rate of 10 ° C./min from 900 ° C. at a rate of 10 ° C./min. The weight loss rate at 500 ° C. measured in minutes is preferably 20% or less, more preferably 15% or less, and particularly preferably 10% or less.
 本発明の分散液におけるカーボンナノチューブ(A)のGバンドとDバンドの強度比G/Dは30以上であり、50以上であることが好ましく、90以上であることが更に好ましく、100以上であることが特に好ましい。G/Dはラマン分光装置により測定され、共鳴ラマン散乱法(励起波長532nm)で測定したラマンスペクトルにおいて、Gバンド(1590cm-1付近)とDバンド(1300cm-1付近)のピーク強度比で算出される。G/D比の高いほど、カーボンナノチューブの構造における欠陥量が少ないことが示される。 The intensity ratio G / D of the G band and the D band of the carbon nanotube (A) in the dispersion of the present invention is 30 or more, preferably 50 or more, more preferably 90 or more, and more preferably 100 or more. Is particularly preferred. G / D is measured by Raman spectroscopy device, calculated by the peak intensity ratio of the Raman spectrum measured by resonance Raman scattering (excitation wavelength 532 nm), G-band (1590 cm -1 vicinity) and D-band (1300 cm around -1) Is done. The higher the G / D ratio, the smaller the amount of defects in the structure of the carbon nanotube.
  カーボンナノチューブ(A)の直径は、特に限定されないが、カーボンナノチューブの直径は0.4nm~10nmであることが好ましく、1.0~5.0nmの範囲内であるものが特に好ましい。 直径 The diameter of the carbon nanotube (A) is not particularly limited, but the diameter of the carbon nanotube is preferably 0.4 nm to 10 nm, and particularly preferably in the range of 1.0 to 5.0 nm.
  カーボンナノチューブは表面や末端が官能基やアルキル基で修飾されていてもよい。官能基としてはカルボキシル基、水酸基等を例示することができる。 The surface and the terminal of the carbon nanotube may be modified with a functional group or an alkyl group. Examples of the functional group include a carboxyl group and a hydroxyl group.
 本発明の分散液におけるカーボンナノチューブ(A)は、単層カーボンナノチューブであっても良いし、多層カーボンナノチューブであってもよいが、単層カーボンナノチューブでることが好ましく、カーボンナノチューブの60%以上が単層カーボンナノチューブであることが好ましい。 The carbon nanotubes (A) in the dispersion of the present invention may be single-walled carbon nanotubes or multi-walled carbon nanotubes, but are preferably single-walled carbon nanotubes, and more than 60% of the carbon nanotubes. It is preferably a single-walled carbon nanotube.
 本発明の分散液におけるカーボンナノチューブ(A)の由来は限定せず、いかなる製法であってもよいが、アーク放電法、レーザー蒸発法、化学気相成長法(CVD)法を例示することができ、化学気相成長法(CVD)法であることが好ましい。化学気相成長法(CVD)法は、気相流動法、基板成長法を例示することができ、気相流動法であることが好ましい。 The origin of the carbon nanotubes (A) in the dispersion of the present invention is not limited, and any production method may be used. Examples thereof include an arc discharge method, a laser evaporation method, and a chemical vapor deposition (CVD) method. It is preferable to use a chemical vapor deposition (CVD) method. The chemical vapor deposition (CVD) method can be exemplified by a gas phase flow method and a substrate growth method, and is preferably a gas phase flow method.
 本発明の分散液においては、カーボンナノチューブのフェレー長50μm以上の粒子の0.8μm~1000μmまでで観測される全粒子に対する比率が5%以下であり、3%以下であることが好ましく、2%以下であることが特に好ましい。 In the dispersion of the present invention, the ratio of the carbon nanotube particles having a Feret length of 50 μm or more to the total particles observed from 0.8 μm to 1000 μm is 5% or less, preferably 3% or less, and more preferably 2% or less. It is particularly preferred that:
 本発明の分散液においては、0.8μm~1000μmまでで観測されるカーボンナノチューブの平均フェレー長は0.8μm以上であることが好ましく、5μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることが特に好ましく、75μm以下であることが好ましく、50μm以下であることが特に好ましい。 In the dispersion of the present invention, the average Feret length of carbon nanotubes observed from 0.8 μm to 1000 μm is preferably 0.8 μm or more, more preferably 5 μm or more, and more preferably 10 μm or more. It is particularly preferably at least 20 μm, more preferably at most 75 μm, particularly preferably at most 50 μm.
 本発明において、「フェレー長」は粒子の最小フェレー径に直交するフェレー径と定義され、その測定は画像解析粒度分布計でなされる。 に お い て In the present invention, the “ferret length” is defined as a ferret diameter orthogonal to the minimum ferret diameter of a particle, and the measurement is made by an image analysis particle size distribution meter.
 本発明おいて、フェレー長の測定方法としては、以下を例示することができる。
 画像解析粒度分布計(ジャスコインタナショナル(株)製、商品名:CF-3000)を用いて、分散液を循環させながら660万画素カメラで撮影し、0.8μm~1mmの範囲の粒子の粒径を測定する。分散液0.02mLをイソプロパノールによって、カーボンナノチューブ濃度が3×10-5質量%になるよう希釈し、150mLを流動させ、その内0.1mL分を測定する。
In the present invention, the following can be exemplified as a method of measuring the ferret length.
Image analysis Using a particle size distribution analyzer (manufactured by Jusco International Co., Ltd., trade name: CF-3000), images were taken with a 6.6-megapixel camera while circulating the dispersion liquid. Measure the diameter. 0.02 mL of the dispersion is diluted with isopropanol so that the concentration of carbon nanotubes becomes 3 × 10 −5 mass%, 150 mL of the dispersion is flowed, and 0.1 mL thereof is measured.
 また、本発明おいては、観察されたカーボンナノチューブ粒子の分布は縦軸にその体積分率を取ったヒストグラムで示す。また、フェレー長分布において、フェレー長が50μm以上となる割合を評価する。 分布 In the present invention, the observed distribution of carbon nanotube particles is represented by a histogram with the vertical axis representing the volume fraction. Further, in the Feret length distribution, a ratio at which the Feret length becomes 50 μm or more is evaluated.
 本発明において、平均フェレー長は、0.8μmから1000μmにおける画像解析粒度分布計における分布測定において、0.8μmからの体積分率の累計が50%になった時のフェレー長として算出することができ、3回の平均で決定される。 In the present invention, the average Feret length can be calculated as the Feret length when the cumulative volume fraction from 0.8 μm reaches 50% in the distribution measurement with the image analysis particle size distribution analyzer from 0.8 μm to 1000 μm. Yes, determined on average of three.
 本発明の分散液においては、カーボンナノチューブ(A)の含有量は特に限定されないが、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることが特に好ましく、1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.3質量%以下であることが特に好ましい。これらの範囲とすることで、カーボンナノチューブの分散性、及び分散液の利用の点で好ましい。 In the dispersion of the present invention, the content of the carbon nanotube (A) is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 0.2% by mass or more. It is particularly preferable that it is at least 1.0 mass%, more preferably at most 1.0 mass%, more preferably at most 0.5 mass%, particularly preferably at most 0.3 mass%. It is preferable to use these ranges in terms of the dispersibility of the carbon nanotube and the use of the dispersion.
 本発明の分散液における分散媒(B)はカーボンナノチューブ(A)を分散することができれば、特に限定されないが、30℃における溶媒の100[1/s]のせん断粘度が1[mPa・s]以上であることが好ましく、10[mPa・s]以上であることがより好ましく、200[mPa・s]以下であることが好ましい。また、特に限定されないが、例えば、Fedorsの計算式で算出される溶解パラメーターとして、7~25の範囲であることが好ましく、8~20の範囲であることがより好ましい。 The dispersion medium (B) in the dispersion of the present invention is not particularly limited as long as the carbon nanotubes (A) can be dispersed, and the shear viscosity of the solvent at 30 ° C. at 100 [1 / s] is 1 [mPa · s]. It is preferably at least 10 [mPa · s], more preferably at most 200 [mPa · s]. Although not particularly limited, for example, the solubility parameter calculated by the Fedors equation is preferably in the range of 7 to 25, and more preferably in the range of 8 to 20.
 本発明の分散液における分散媒(B)としては、特に限定されないが、例えば水、ハロゲン系溶媒、アルコール類、フェノール類、アミド類、アリル類、ケトン類、ゴム用可塑剤のうち、いずれか1種を含むもの、またはこれらのうち少なくとも2種類以上の混合分散媒が挙げられる。 The dispersion medium (B) in the dispersion of the present invention is not particularly limited, and may be, for example, any of water, a halogen-based solvent, alcohols, phenols, amides, allyls, ketones, and a plasticizer for rubber. Examples include those containing one type or a mixed dispersion medium of at least two types among these.
 ハロゲン系溶媒としては、クロロホルム、ジクロロメタンなどが挙げられる。アルコール類としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-ブチルアルコール、ポリカーボネートジオール等が挙げられる。フェノール類としてはビスフェノール、トリスフェノール、ポリフェノールなどが挙げられる。アミド類としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、ジメチルスルホキシドが挙げられる。アリル類としてはフタル酸ジアリル、トリメシン酸トリアリル、トリメリット酸トリアリル、1,3,5,7-テトラアリルナフタレン等が挙げられる。また、ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。ゴム用可塑剤としては、フタル酸誘導体、テトラヒドロフタル酸誘導体、アジピン酸誘導体、アゼライン酸誘導体、セバシン酸誘導体、ドデカン-2-酸誘導体、マレイン酸誘導体、フマル酸誘導体、トリメリット酸誘導体、ピロメリット酸誘導体、クエン酸誘導体、オレイン酸誘導体、リシノール酸誘導体、ステアリン酸誘導体、脂肪酸誘導体、スルホン酸誘導体、リン酸誘導体、グルタール酸誘導体、グリコール酸誘導体、グリセリン誘導体、パラフィン誘導体、エポキシ誘導体、モノエステル系可塑剤、ポリエステル系可塑剤、ポリエーテル系可塑剤、パラフィン系鉱物油、ナフテン系鉱物油、芳香族系鉱物油、植物油系可塑剤、その他可塑剤等が挙げられる。 Examples of the halogen-based solvent include chloroform and dichloromethane. Examples of the alcohols include methanol, ethanol, isopropyl alcohol, n-butyl alcohol, and polycarbonate diol. Examples of phenols include bisphenol, trisphenol, and polyphenol. Examples of amides include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylformamide, N, N-diethylformamide, , N-dimethylacetamide, N, N-diethylacetamide, dimethylsulfoxide. Examples of the allyls include diallyl phthalate, triallyl trimesate, triallyl trimellitate, 1,3,5,7-tetraallylnaphthalene and the like. Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Plasticizers for rubber include phthalic acid derivatives, tetrahydrophthalic acid derivatives, adipic acid derivatives, azelaic acid derivatives, sebacic acid derivatives, dodecane-2-acid derivatives, maleic acid derivatives, fumaric acid derivatives, trimellitic acid derivatives, pyromellitic derivatives Acid derivatives, citric acid derivatives, oleic acid derivatives, ricinoleic acid derivatives, stearic acid derivatives, fatty acid derivatives, sulfonic acid derivatives, phosphoric acid derivatives, glutaric acid derivatives, glycolic acid derivatives, glycerin derivatives, paraffin derivatives, epoxy derivatives, monoesters Plasticizers, polyester-based plasticizers, polyether-based plasticizers, paraffin-based mineral oils, naphthenic-based mineral oils, aromatic-based mineral oils, vegetable oil-based plasticizers, and other plasticizers.
 本発明の分散液においては、必要に応じて分散剤を添加しても構わない。分散剤は特に限定しないが、具体的にはカルボキシメチルセルロース、ポリビニルブチラール、ポリビニルピロリドン、ポリビニルアセタール等の高分子系分散剤と脂肪酸ナトリウム、脂肪酸カリウム、アルキルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、アルキル硫酸エステルナトリウム、アルキルスルホン酸ナトリウム、アルキルエーテル硫酸エステルナトリウム、モノアルキルリン酸エステル、ポリオキシエチレンアルキルエーテルリン酸エステルナトリウム、脂肪酸エステルスルホン酸ナトリウム、脂肪酸エステル硫酸エステルナトリウム、脂肪酸アルキロースアミド硫酸エステルナトリウム、脂肪酸アミドスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、塩化アルキルメチルアンモニウム、塩化アルキルトリメチルアンモニウム、塩化ジアルキルジメチルアンモニウム、塩化アルキルジメチルベンジルアンモニウム、塩化アルキルピリジニウム等の低分子系分散剤を例示することができる。分散剤の含有量は特に限定されないが、カーボンナノチューブ(A)100質量部に対して、10質量部以上であることが好ましく、50質量部以上であることがより好ましく、100質量部以上であることが特に好ましく、1000質量部以下であることが好ましく、500質量部以下であることがより好ましく、300質量部以下であることが特に好ましい。 分散 In the dispersion of the present invention, a dispersant may be added as needed. The dispersant is not particularly limited, but specifically, a polymer dispersant such as carboxymethylcellulose, polyvinylbutyral, polyvinylpyrrolidone, and polyvinyl acetal, and fatty acid sodium, fatty acid potassium, sodium alkylbenzenesulfonate, sodium alkylnaphthalenesulfonate, and alkyl sulfate. Sodium ester, sodium alkyl sulfonate, sodium alkyl ether sulfate, monoalkyl phosphate, sodium polyoxyethylene alkyl ether phosphate, sodium fatty acid ester sulfonate, sodium fatty acid ester sulfate, sodium fatty acid alkylose amide sulfate, Sodium fatty acid amide sulfonate, polyoxyethylene alkyl ether, polyoxyethylene alkyl Aryl ethers, alkyl methyl ammonium chloride, alkyl trimethyl ammonium chloride, dialkyl dimethyl ammonium chloride, alkyl dimethyl benzyl ammonium chloride, can be exemplified a low molecular weight dispersing agent such as alkyl chloride pyridinium. The content of the dispersant is not particularly limited, but is preferably 10 parts by mass or more, more preferably 50 parts by mass or more, and more preferably 100 parts by mass or more with respect to 100 parts by mass of the carbon nanotube (A). It is particularly preferable that the amount is 1000 parts by mass or less, more preferably 500 parts by mass or less, and particularly preferably 300 parts by mass or less.
 本発明の分散液は、ホモジナイザー、ビーズミル、ボールミル、バスケットミル、アトリションミル、万能攪拌機、クリアミキサー、超音波、ジェットミル、剪断分散処理等により、製造することができる。 分散 The dispersion of the present invention can be produced by a homogenizer, a bead mill, a ball mill, a basket mill, an attrition mill, a universal stirrer, a clear mixer, an ultrasonic wave, a jet mill, a shearing dispersion treatment, or the like.
 剪断分散処理は、製品名「ナノジェットパルJN20」(株式会社常光製) 、製品名「ナノヴェイタL-ES」(吉田機械興業株式会社製)等の装置を用いることができる。 For the shear dispersion treatment, an apparatus such as a product name “NanoJet Pal JN20” (manufactured by Jokko Co., Ltd.) or a product name “NanoVita L-ES” (manufactured by Yoshida Kikai Kogyo Co., Ltd.) can be used.
[2.カーボンナノチューブ含有組成物]
 本発明のカーボンナノチューブ含有組成物は前記分散液と樹脂(C)を含有する。
[2. Carbon nanotube-containing composition]
The carbon nanotube-containing composition of the present invention contains the dispersion and the resin (C).
 本発明の樹脂(C)は、ポリスチレン樹脂、ABS樹脂等のスチレン系樹脂、アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリメチルペンテン樹脂、シンジオタクチックポリスチレン樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリイミド樹脂、ポリフェニレンスルフィド樹脂、アラミド樹脂、ポリ乳酸、ポリカーボネート樹脂、ポリアクリロニトリル樹脂、ポリメタクリル酸メチル樹脂、脂環式アクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シクロオレフィン樹脂等のオレフィン系樹脂、変性ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリアミドイミド樹脂、ポリエーテルスルフォン樹脂、ポリスルフォン樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂、芳香族ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、フッ素樹脂、シリコーン系樹脂等を挙げられる。なお、これらは、1種を単独で用いても2種以上を組み合わせて用いてもよい。 The resin (C) of the present invention includes styrene resins such as polystyrene resins and ABS resins, acrylic resins, polyvinyl chloride resins, polymethylpentene resins, syndiotactic polystyrene resins, polyacetal resins, polyamide resins, and polyethylene terephthalate resins. Olefins such as polyethylene naphthalate resin, polyimide resin, polyphenylene sulfide resin, aramid resin, polylactic acid, polycarbonate resin, polyacrylonitrile resin, polymethyl methacrylate resin, alicyclic acrylic resin, polyethylene resin, polypropylene resin, cycloolefin resin Resin, modified polyphenylene ether resin, polyphenylene sulfide resin, polyamide imide resin, polyether sulfone resin, polysulfone resin, polyether ether Ton resin, liquid crystal resin, aromatic polyimide resins, epoxy resins, phenolic resins, fluorocarbon resins, silicone resins. In addition, these may be used individually by 1 type, or may be used in combination of 2 or more types.
 本発明の樹脂(C)は、厚さ10mm以下で全光線透過率80%以上の樹脂であることが好ましく、スチレン系樹脂、アクリル系樹脂、ポリ塩化ビニル系樹脂、オレフィン系樹脂、ポリカーボネート樹脂を例示することができる。全光線透過率の上限は特に限定されないが、99%以下である。全光線透過率の測定については、JIS  K7361-1に準拠して測定する。具体的には紫外可視分光光度計等を用いて算出する事ができる。 The resin (C) of the present invention is preferably a resin having a thickness of 10 mm or less and a total light transmittance of 80% or more, and a styrene resin, an acrylic resin, a polyvinyl chloride resin, an olefin resin, and a polycarbonate resin. Examples can be given. The upper limit of the total light transmittance is not particularly limited, but is 99% or less. The total light transmittance is measured according to JIS K7361-1. Specifically, it can be calculated using an ultraviolet-visible spectrophotometer or the like.
 本発明のカーボンナノチューブ含有組成物におけるカーボンナノチューブ(A)の含有量は、樹脂(C)100質量部に対して、0.001質量部以上とすることが好ましく、0.005質量部以上とすることがより好ましく、0.01質量部以上とすることが更に好ましく、また、10質量部以下とすることが好ましく、1.0質量部以下とすることがより好ましく、0.05質量部以下とすることが更に好ましい。 The content of the carbon nanotube (A) in the carbon nanotube-containing composition of the present invention is preferably at least 0.001 part by mass, more preferably at least 0.005 part by mass, based on 100 parts by mass of the resin (C). More preferably, it is more preferably not less than 0.01 part by mass, more preferably not more than 10 parts by mass, more preferably not more than 1.0 part by mass, and not more than 0.05 part by mass. More preferably,
 本発明のカーボンナノチューブ含有組成物においては導電助剤を含有してもよい。導電助剤としては、特に制限はなく、一般的な導電助剤を用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛等の黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラック等のカーボンブラック類、グラフェンやフラーレン等の炭素材料、銅、ニッケルなどの金属粉、金属繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体等の導電性高分子を挙げることができる。なお、これらは、1種を単独で用いても2種以上を組み合わせて用いてもよい。 カ ー ボ ン The carbon nanotube-containing composition of the present invention may contain a conductive additive. There is no particular limitation on the conductive assistant, and a general conductive assistant can be used. For example, an electron conductive material, natural graphite, graphite such as artificial graphite, acetylene black, Ketjen black, carbon black such as furnace black, carbon material such as graphene and fullerene, metal powder such as copper and nickel, Examples of the conductive polymer include metal fibers, polyaniline, polypyrrole, polythiophene, polyacetylene, and a polyphenylene derivative. In addition, these may be used individually by 1 type, or may be used in combination of 2 or more types.
 本発明のカーボンナノチューブ含有組成物においては、本発明の効果を損なわない限り、他の配合剤を含有してもよく、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、架橋剤、顔料、着色剤、発泡剤、帯電防止剤、難燃剤、滑剤、軟化剤、粘着付与剤、可塑剤、離型剤、防臭剤、香料などを挙げることができる。 In the carbon nanotube-containing composition of the present invention, as long as the effects of the present invention are not impaired, other compounding agents may be contained, and an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a crosslinking agent, Examples include pigments, colorants, foaming agents, antistatic agents, flame retardants, lubricants, softeners, tackifiers, plasticizers, release agents, deodorants, fragrances, and the like.
  本発明のカーボンナノチューブ含有組成物は、各種材料を混合(混練)することにより製造することができ、混合(混練)方法としては、特に限定されず、例えば、オープンロール、インテシブミキサー、インターナルミキサー、コニーダー、二軸ローター付の連続混練機、押出機等の混和機を用いた溶融混練方法が挙げられる。押出機としては、単軸又は二軸の押出機のいずれを用いることもできる。 The carbon nanotube-containing composition of the present invention can be produced by mixing (kneading) various materials, and the mixing (kneading) method is not particularly limited, and examples thereof include an open roll, an intensive mixer, and an internal mixer. A melt kneading method using a kneader such as a mixer, a co-kneader, a continuous kneader equipped with a twin-screw rotor, or an extruder may be used. As the extruder, either a single-screw or twin-screw extruder can be used.
[3.成形体]
  本発明のカーボンナノチューブ含有組成物の成形体は、前記のカーボンナノチューブ含有組成物を成形することにより得られる。カーボンナノチューブ含有組成物の成形には、例えば射出成形、射出圧縮成形、押出成形、ブロー成形、インフレーション成形、真空成形、プレス成形、キャストフィルム成形等の方法を用いることができる。
[3. Molded body]
A molded article of the carbon nanotube-containing composition of the present invention is obtained by molding the above-described carbon nanotube-containing composition. For molding the carbon nanotube-containing composition, for example, methods such as injection molding, injection compression molding, extrusion molding, blow molding, inflation molding, vacuum molding, press molding, and cast film molding can be used.
  本発明の成形体は、体積抵抗値が5.0×1010Ω・cmであることが好ましく、1.0×109Ω・cm以下であることがより好ましく、1.0×108Ω・cm以下であることが更に好ましく、1.0×107Ω・cm以下であることが特に好ましい。下限は特に限定されないが、例えば1.0×10Ω・cm以上である。 The molded article of the present invention preferably has a volume resistivity of 5.0 × 10 10 Ω · cm, more preferably 1.0 × 10 9 Ω · cm or less, and more preferably 1.0 × 10 8 Ω. Cm or less, more preferably 1.0 × 10 7 Ω · cm or less. The lower limit is not particularly limited, but is, for example, 1.0 × 10 Ω · cm or more.
  本発明の成形体は、表面抵抗値が1.0×1013Ω/sq.以下であることが好ましく、1.0×1012Ω/sq.以下であることがより好ましく、5.0×1011Ω/sq.以下であることが特に好ましい。下限は特に限定されないが、1.0×103Ω/sq.以上である。 The molded article of the present invention has a surface resistance of 1.0 × 10 13 Ω / sq. Or less, preferably 1.0 × 10 12 Ω / sq. And more preferably 5.0 × 10 11 Ω / sq. It is particularly preferred that: The lower limit is not particularly limited, but is 1.0 × 10 3 Ω / sq. That is all.
  本発明の成形体は、透過率が1mm厚での全光線透過率が5%以上であることが好ましく、10%以上であることがより好ましく、20%以上であることが特に好ましい。上限は特に限定されないが、80%以下である。全光線透過率については、JIS  K7361-1に準拠して測定する。具体的には紫外可視分光光度計等を用いて算出する事ができる。 (4) The molded article of the present invention preferably has a total light transmittance of 5% or more, more preferably 10% or more, and particularly preferably 20% or more when the transmittance is 1 mm. The upper limit is not particularly limited, but is 80% or less. The total light transmittance is measured in accordance with JIS K7361-1. Specifically, it can be calculated using an ultraviolet-visible spectrophotometer or the like.
  以下、実施例により、本発明を更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、以下の実施例および比較例において、配合量は質量部を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist of the present invention. In addition, in the following Examples and Comparative Examples, the compounding amount means parts by mass.
 以下の分析装置を用いてカーボンナノチューブ(A)の評価を行った。 カ ー ボ ン The carbon nanotube (A) was evaluated using the following analyzer.
(熱重量分析)
 示差熱熱重量同時測定装置((株)日立ハイテクサイエンス STA7200RV)を用いて、空気流量200cc/分で試料約7mgを30℃から900℃まで昇温速度10℃/分で加熱し、30℃から900℃の温度範囲での重量減少割合を評価した。
 また、30℃から昇温速度10℃/分で測定した900℃での加熱重量減少分に対する、30℃から昇温速度10℃/分で測定した500℃での加熱重量減少割合を「500℃までの重量減少割合」として評価した。
(Thermogravimetric analysis)
Approximately 7 mg of a sample was heated from 30 ° C to 900 ° C at a rate of 10 ° C / min from an air flow rate of 200 cc / min using a differential thermogravimetric simultaneous measurement device (Hitachi High-Tech Science STA7200RV). The rate of weight loss in the temperature range of 900 ° C. was evaluated.
Further, the ratio of the weight loss at 500 ° C. measured from 30 ° C. at a rate of 10 ° C./min to the weight loss at 900 ° C. measured at a rate of 10 ° C./min from 30 ° C. is “500 ° C. Weight loss ratio up to ".
(ラマン分光装置)
 レーザーラマン顕微鏡(ナノフォトン(株) RAMANtouch VIS-NIR-DIS)を用いて、レーザー波長532nmで測定を行った。カーボンナノチューブの直径方向振動に由来するシグナルであるRBM(100cm-1から300cm-1付近)より、直径を算出した。なお、本方法では直径が2.5nmを超えるようなカーボンナノチューブは検出できないため、後述する透過型電子顕微鏡による観察と合わせて直径を算出した。カーボンナノチューブの結晶性を表すGバンドとDバンドの強度比G/Dは、Gバンド(1590cm-1付近)とDバンド(1300cm-1付近)のピーク強度比より算出した。
(Raman spectrometer)
The measurement was performed at a laser wavelength of 532 nm using a laser Raman microscope (Nanophoton Corporation RAMANtouch VIS-NIR-DIS). The diameter was calculated from RBM (around 100 cm -1 to 300 cm -1 ), which is a signal derived from the vibration in the diameter direction of the carbon nanotube. In this method, since a carbon nanotube having a diameter exceeding 2.5 nm cannot be detected, the diameter was calculated together with observation by a transmission electron microscope described later. Intensity ratio G / D of G band to D band representing the crystallinity of the carbon nanotube, was calculated from the peak intensity ratio of G-band (1590 cm -1 vicinity) and D-band (1300 cm around -1).
(透過型電子顕微鏡観察)
 透過型電子顕微鏡(日立ハイテクノロジーズ製FEG付透過型電子顕微鏡HF-2000)を用いて、加速電圧200kVで観察を行った。観察試料はアルコール系溶媒に分散させ、分散液をマイクログリッドにブロッティングにて固定し、真空乾燥することで作製した。視野を100万倍に拡大し、観察された50本のカーボンナノチューブから、その直径(平均値)と、単層と多層(二層以上)の割合を求めた。
(Transmission electron microscope observation)
Observation was performed at an accelerating voltage of 200 kV using a transmission electron microscope (a transmission electron microscope with a FEG manufactured by Hitachi High-Technologies HF-2000). The observation sample was prepared by dispersing in an alcohol-based solvent, fixing the dispersion to a microgrid by blotting, and drying in vacuum. The field of view was magnified 1,000,000 times, and the diameter (average value) and the ratio of a single layer to multiple layers (two or more layers) were determined from the 50 observed carbon nanotubes.
 以下で分散媒(B)の評価を行った。 The dispersion medium (B) was evaluated below.
(せん断粘度)
 レオメーター(Thermo Fisher Scientific社製、商品名:HAAKE MARSIII)を用いて、分散媒の粘度を測定した。温度条件は30℃で統一し、コーンはC60/2°を用いた。また、せん断速度が100[1/s]の時のせん断粘度を代表値とした。
(Shear viscosity)
The viscosity of the dispersion medium was measured using a rheometer (trade name: HAAKE MARSIII, manufactured by Thermo Fisher Scientific). Temperature conditions were unified at 30 ° C., and C60 / 2 ° was used for the cone. The shear viscosity at a shear rate of 100 [1 / s] was used as a representative value.
(溶解パラメーター)
 Fedorsの計算式で算出する。
SP値(δ)=[ΣEcoh/ΣV]1/2
ΣEcohは凝集エネルギーを、ΣVはモル分子容を表し、Fedorsによって置換基の種類によって定数としてそれぞれ提案されている。
(Dissolution parameters)
It is calculated by the formula of Fedors.
SP value (δ) = [ΣEcoh / ΣV] 1
ΣEcoh indicates cohesive energy, ΣV indicates molar molecular volume, and is proposed by Fedors as a constant depending on the type of substituent.
 以下で樹脂(C)の評価を行った。 樹脂 The resin (C) was evaluated below.
(全光線透過率)
 全光線透過率の測定については、JIS  K7361-1に準拠して測定する。紫外可視分光光度計(日本分光(株)製、商品名:V-780)を用いて、射出成形体(厚さ10mm)の可視光域の光線透過率を測定した。この光線透過率が高いほど透明である。
(Total light transmittance)
The total light transmittance is measured according to JIS K7361-1. Using an ultraviolet-visible spectrophotometer (trade name: V-780, manufactured by JASCO Corporation), the light transmittance in the visible light range of the injection-molded product (thickness: 10 mm) was measured. The higher the light transmittance, the more transparent.
 以下で分散液の評価を行った。
(フェレー長分布)
 画像解析粒度分布計(ジャスコインタナショナル(株)製、商品名:CF-3000)を用いて、カーボンナノチューブ分散液中のカーボンナノチューブ粒子の0.8μmから1000μmにおけるフェレー長分布を評価した。本方法は、分散液を循環させながら660万画素カメラで撮影し、0.8μm~1mmの範囲の粒子の粒径を測定するものである。分散液0.02mLをイソプロパノールによって、カーボンナノチューブの濃度が3×10-5質量%になるよう希釈し、150mLを流動させ、その内0.1mL分を測定した。観察された粒子数はおよそ4000~6000個であった。また、観察された粒子の分布は縦軸にその体積分率を取ったヒストグラムで示した。また、フェレー長分布において、フェレー長が50μm以上となる割合を評価する。
The dispersion was evaluated as follows.
(Ferre length distribution)
The Feret length distribution of the carbon nanotube particles in the carbon nanotube dispersion from 0.8 μm to 1000 μm was evaluated using an image analysis particle size distribution meter (trade name: CF-3000, manufactured by Jusco International Co., Ltd.). In this method, the dispersion is circulated and photographed with a 6.60 megapixel camera, and the particle size of the particles in the range of 0.8 μm to 1 mm is measured. 0.02 mL of the dispersion was diluted with isopropanol so that the concentration of the carbon nanotubes became 3 × 10 −5 mass%, 150 mL of the dispersion was flowed, and 0.1 mL thereof was measured. The number of particles observed was approximately 4000-6000. The distribution of the observed particles is shown by a histogram in which the volume fraction is taken on the vertical axis. Further, in the Feret length distribution, a ratio at which the Feret length becomes 50 μm or more is evaluated.
(平均フェレー長)
 平均フェレー長は、0.8μmから1000μmにおける画像解析粒度分布計における分布測定において、0.8μmからの体積分率の累計が50%になった時のフェレー長として算出することができ、3回の平均で決定される。
(Average ferret length)
The average Feret length can be calculated as the Feret length when the cumulative volume fraction from 0.8 μm becomes 50% in the distribution measurement with the image analysis particle size distribution analyzer from 0.8 μm to 1000 μm, three times. Is determined by the average of
 以下で成形体の評価を行った。 成形 The molded body was evaluated below.
体積抵抗値測定
 標準条件(23℃、50%RH)において、カーボンナノチューブ/ポリカーボネート成形体の中心部分から射出方向を長尺として10mm×2mm×1mmのサンプル片を切り出し、長尺方向の両端に銀ペーストを塗り、半導体パラメーターアナライザー(Keyshight社製)を用いて二端子法にて体積抵抗値を測定した。
Volume Resistance Measurement Under standard conditions (23 ° C., 50% RH), a 10 mm × 2 mm × 1 mm sample piece was cut out from the center of the carbon nanotube / polycarbonate molded article with the injection direction being long, and silver was placed at both ends in the long direction. The paste was applied, and the volume resistance was measured by a two-terminal method using a semiconductor parameter analyzer (manufactured by Keylight).
表面抵抗値測定
 標準条件(23℃、50%RH)において、カーボンナノチューブ/ポリカーボネート成形体の表面に対して、高抵抗抵抗率計ハイレスタ-UX MCP-HT800(三菱ケミカルアナリティック社製)を用いてUSRプローブMCP-HTP14を1kgの荷重で押し当てて定電圧印可/漏洩電流測定法にて表面抵抗値を測定した。
Surface Resistance Measurement Under a standard condition (23 ° C., 50% RH), a high resistivity meter Hiresta-UX MCP-HT800 (manufactured by Mitsubishi Chemical Analytic) was used for the surface of the carbon nanotube / polycarbonate molded body. The USR probe MCP-HTP14 was pressed with a load of 1 kg, and the surface resistance was measured by a constant voltage application / leakage current measurement method.
全光線透過率
 全光線透過率の測定については、JIS  K7361-1に準拠して測定する。紫外可視分光光度計(日本分光(株)製、商品名:V-780)を用いて、射出成形体(厚さ1mm)の可視光域の光線透過率を測定した。この光線透過率が高いほど透明である。
Total light transmittance The total light transmittance is measured according to JIS K7361-1. Using an ultraviolet-visible spectrophotometer (trade name: V-780, manufactured by JASCO Corporation), the light transmittance in the visible light region of the injection-molded product (thickness: 1 mm) was measured. The higher the light transmittance, the more transparent.
 実施例および比較例に用いた原料について、以下に記載する。 原料 The raw materials used in Examples and Comparative Examples are described below.
[カーボンナノチューブ(A)]
<カーボンナノチューブ(A-1)>
直径 2.0nm
単層:多層=96:4
熱重量測定における900℃までの加熱重量減少 99%
500℃までの重量減少割合          15%
ラマン分光測定におけるG/D比        142
[Carbon nanotube (A)]
<Carbon nanotube (A-1)>
2.0nm diameter
Single layer: Multilayer = 96: 4
Heat weight reduction to 900 ° C in thermogravimetry 99%
Weight loss rate up to 500 ° C 15%
G / D ratio in Raman spectroscopy 142
<カーボンナノチューブ(A-2)>
直径 1.3nm
単層:多層=86:14
熱重量測定における900℃までの加熱重量減少 83%
500℃までの重量減少割合          8%
ラマン分光測定におけるG/D比         50
<Carbon nanotube (A-2)>
1.3nm diameter
Single layer: Multilayer = 86: 14
83% of weight reduction by heating to 900 ° C in thermogravimetry
8% weight loss up to 500 ° C
G / D ratio in Raman spectroscopy 50
<カーボンナノチューブ(A-3)>
直径 2.0nm
単層:多層=96:4
熱重量測定における900℃までの加熱重量減少 93%
500℃までの重量減少割合          17%
ラマン分光測定におけるG/D比         98
<Carbon nanotube (A-3)>
2.0nm diameter
Single layer: Multilayer = 96: 4
93% decrease in heating weight up to 900 ° C in thermogravimetry
Weight loss rate up to 500 ° C 17%
G / D ratio in Raman spectroscopy 98
<カーボンナノチューブ(A-4)>
直径 3.7nm
単層:多層=96:4
熱重量測定における900℃までの加熱重量減少 99%
500℃までの重量減少割合          3%
ラマン分光測定におけるG/D比         7.8
<Carbon nanotube (A-4)>
3.7nm diameter
Single layer: Multilayer = 96: 4
Heat weight reduction to 900 ° C in thermogravimetry 99%
Weight loss rate up to 500 ° C 3%
G / D ratio in Raman spectroscopy 7.8
[分散媒(B)]
フタル酸ジアリル
せん断粘度:12.3[mPa・s](30℃、せん断速度100[1/s])
溶解パラメーター:10.5
[Dispersion medium (B)]
Diallyl phthalate shear viscosity: 12.3 [mPa · s] (30 ° C., shear rate 100 [1 / s])
Dissolution parameters: 10.5
[樹脂(C)]
ポリカーボネート樹脂(製品名「パンライト1225Y」)
全光線透過率:92%
[Resin (C)]
Polycarbonate resin (Product name "Panlite 1225Y")
Total light transmittance: 92%
(分散液の製造)
 分散液は以下のように製造する。
(Production of dispersion liquid)
The dispersion is produced as follows.
(分散液1)
 ナノヴェイタL-ES(吉田機械興業株式会社製)を用いて、カーボンナノチューブ(A-1)の濃度が0.2質量%となるように、カーボンナノチューブ(A-1)とフタル酸ジアリルを分散させ、分散液1を製造した。フェレー長分布を図1に示す。フェレー長分布における、フェレー長が50μm以上となる割合は1%であり、平均フェレー長は42μmであった。
(Dispersion liquid 1)
Carbon nanotubes (A-1) and diallyl phthalate were dispersed using NanoVita L-ES (manufactured by Yoshida Kikai Kogyo Co., Ltd.) such that the concentration of carbon nanotubes (A-1) became 0.2% by mass. A dispersion 1 was produced. Fig. 1 shows the Feret length distribution. In the Feret length distribution, the ratio of the Feret length of 50 μm or more was 1%, and the average Feret length was 42 μm.
(分散液2~4)
 カーボンナノチューブ(A-1)に代えて、分散液2はカーボンナノチューブ(A-2)、分散液3はカーボンナノチューブ(A-3)、分散液4はカーボンナノチューブ(A-4)を用いた以外は分散液1と同様に製造を行い、分散液2~4を製造した。フェレー長分布、平均フェレー長、フェレー長が50μm以上となる割合は図1に示す。
(Dispersions 2 to 4)
Dispersion 2 was replaced with carbon nanotube (A-2), Dispersion 3 was replaced with carbon nanotube (A-3), and Dispersion 4 was replaced with carbon nanotube (A-4) instead of carbon nanotube (A-1). Was prepared in the same manner as in Dispersion 1, and Dispersions 2 to 4 were produced. FIG. 1 shows the Feret length distribution, the average Feret length, and the ratio at which the Feret length becomes 50 μm or more.
(カーボンナノチューブ含有組成物、成形体の製造)
 カーボンナノチューブ含有組成物、成形体は以下のように製造する。
 ベント付き2軸押出機(型番「TEM-18SS」、東芝機械株式会社製)のホッパーに表1に示す配合にて各原料を投入し、カーボンナノチューブ含有組成物を得た。
 上記カーボンナノチューブ含有組成物を射出成形機(型番「FNX80III-9A型」、日精樹脂工業株式会社製)を用い、シリンダー温度280℃、金型温度110℃の条件で各試験片を成形し、体積抵抗値、表面抵抗値、全光線透過率を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(Production of carbon nanotube-containing composition and molded article)
The carbon nanotube-containing composition and the molded article are produced as follows.
Each raw material was charged into a hopper of a twin-screw extruder with a vent (model number “TEM-18SS”, manufactured by Toshiba Machine Co., Ltd.) with the composition shown in Table 1, and a carbon nanotube-containing composition was obtained.
Each test piece was molded from the above-mentioned carbon nanotube-containing composition using an injection molding machine (model number “FNX80III-9A”, manufactured by Nissei Plastic Industry Co., Ltd.) under the conditions of a cylinder temperature of 280 ° C. and a mold temperature of 110 ° C. The resistance value, surface resistance value, and total light transmittance were measured. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の分散液を用いた実施例1,2の成形体は、高い透明性を維持しつつ、低い表面抵抗値を有しており、中でも、実施例1の成形体は、低い体積抵抗値とより低い表面抵抗値を有していることが示された。 From Table 1, the molded articles of Examples 1 and 2 using the dispersion of the present invention have a low surface resistance value while maintaining high transparency. Among them, the molded articles of Example 1 are: It was shown to have low volume resistivity and lower surface resistivity.
 本発明の分散液、及び樹脂を含有するカーボンナノチューブ含有組成物の成形体は高い透明性、及び低い表面抵抗値となり、電気機器、機械部品、自動車部品等の様々な分野で有用に用いられる。 成形 The molded product of the carbon nanotube-containing composition containing the dispersion liquid and the resin of the present invention has high transparency and low surface resistance, and is useful in various fields such as electric equipment, mechanical parts, and automobile parts.

Claims (8)

  1.  熱重量測定における900℃までの加熱重量減少が80%以上、
     ラマン分光測定におけるG/D比が30以上であるカーボンナノチューブ(A)と
     分散媒(B)との分散液において、
     以下(1)の要件を満たす分散液。
     (1)カーボンナノチューブのフェレー長50μm以上の粒子の全粒子に対する比率が5%以下
    80% or more decrease in heating weight up to 900 ° C in thermogravimetry
    In a dispersion of a carbon nanotube (A) having a G / D ratio of 30 or more in Raman spectrometry and a dispersion medium (B),
    A dispersion satisfying the following requirement (1).
    (1) The ratio of the carbon nanotube particles having a Feret length of 50 μm or more to all particles is 5% or less.
  2.  カーボンナノチューブ(A)の平均フェレー長が0.8~75μmである請求項1記載の分散液。 The dispersion according to claim 1, wherein the average Feret length of the carbon nanotube (A) is 0.8 to 75 μm.
  3.  カーボンナノチューブ(A)のラマン分光測定におけるG/D比が90以上である請求項1又は、2記載の分散液。 3. The dispersion according to claim 1, wherein the carbon nanotube (A) has a G / D ratio of 90 or more in Raman spectrometry.
  4.  請求項1~3いずれかに記載の分散液と樹脂(C)とを含有するカーボンナノチューブ含有組成物。 (4) A carbon nanotube-containing composition containing the dispersion according to any one of (1) to (3) and a resin (C).
  5.  樹脂(C)が厚さ10mm以下での全光線透過率80%以上の樹脂である請求項4に記載のカーボンナノチューブ含有組成物。 (5) The carbon nanotube-containing composition according to (4), wherein the resin (C) is a resin having a thickness of 10 mm or less and a total light transmittance of 80% or more.
  6.  請求項4又は5に記載のカーボンナノチューブ含有組成物の成形体。 A molded article of the carbon nanotube-containing composition according to claim 4.
  7.  体積抵抗値が5.0×1010Ω・cm以下、1mm厚での全光線透過率が5%以上である請求項6に記載の成形体。 The molded article according to claim 6, wherein the molded article has a volume resistivity of 5.0 × 10 10 Ω · cm or less and a total light transmittance at a thickness of 1 mm of 5% or more.
  8.  表面抵抗値が1.0×1013Ω/sq.以下である請求項6に記載の成形体。 When the surface resistance is 1.0 × 10 13 Ω / sq. The molded article according to claim 6, which is:
PCT/JP2019/038177 2018-09-28 2019-09-27 Carbon nanotube dispersion WO2020067429A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980056694.1A CN112601712A (en) 2018-09-28 2019-09-27 Carbon nanotube dispersion liquid
JP2020549436A JP7294346B2 (en) 2018-09-28 2019-09-27 carbon nanotube dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-186072 2018-09-28
JP2018186072 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067429A1 true WO2020067429A1 (en) 2020-04-02

Family

ID=69953512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038177 WO2020067429A1 (en) 2018-09-28 2019-09-27 Carbon nanotube dispersion

Country Status (3)

Country Link
JP (1) JP7294346B2 (en)
CN (1) CN112601712A (en)
WO (1) WO2020067429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064939A1 (en) * 2020-09-24 2022-03-31 日本ゼオン株式会社 Carbon nanotube aqueous dispersion, conductive film, electrode, and solar cell and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109294B (en) * 2022-07-18 2023-11-17 苏州纳普乐思纳米材料有限公司 Antistatic film and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314407A (en) * 2006-04-25 2007-12-06 Tetsuo Hino Reaction product of carbon material and phenylene derivative, conductive composition using the same and method of manufacturing reaction product
JP2011148674A (en) * 2009-12-25 2011-08-04 Toray Ind Inc Carbon nanotube-containing composition and method for producing the same
JP2015020939A (en) * 2013-07-22 2015-02-02 東レ株式会社 Carbon nanotube assembly, method for synthesizing carbon nanotube assembly, resin composition, electroconductive elastomer and dispersion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343228B2 (en) * 2006-09-22 2013-11-13 大塚化学株式会社 Carbon nanotube-supported metal oxide particles and granular carbon nanotubes
JP5560572B2 (en) * 2009-03-04 2014-07-30 東レ株式会社 CATALYST FOR CARBON NANOTUBE PRODUCING, METHOD FOR PRODUCING THE SAME, METHOD FOR PRODUCING CARBON NANOTUBE-CONTAINING COMPOSITION, AND CARBON NANOTUBE-CONTAINING COMPOSITION
KR101683931B1 (en) * 2009-03-04 2016-12-07 도레이 카부시키가이샤 Composition containing carbon nanotubes, catalyst for producing carbon nanotubes, and aqueous dispersion of carbon nanotubes
JP6767668B2 (en) * 2016-05-18 2020-10-14 戸田工業株式会社 Carbon nanotube dispersion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314407A (en) * 2006-04-25 2007-12-06 Tetsuo Hino Reaction product of carbon material and phenylene derivative, conductive composition using the same and method of manufacturing reaction product
JP2011148674A (en) * 2009-12-25 2011-08-04 Toray Ind Inc Carbon nanotube-containing composition and method for producing the same
JP2015020939A (en) * 2013-07-22 2015-02-02 東レ株式会社 Carbon nanotube assembly, method for synthesizing carbon nanotube assembly, resin composition, electroconductive elastomer and dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064939A1 (en) * 2020-09-24 2022-03-31 日本ゼオン株式会社 Carbon nanotube aqueous dispersion, conductive film, electrode, and solar cell and method for producing same

Also Published As

Publication number Publication date
JPWO2020067429A1 (en) 2021-09-02
JP7294346B2 (en) 2023-06-20
CN112601712A (en) 2021-04-02

Similar Documents

Publication Publication Date Title
Abdel-Goad et al. Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites
Castillo et al. Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes
Pötschke et al. Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene
Krause et al. A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing
Socher et al. The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites
Rosca et al. Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling
JP6047569B2 (en) Nanotube and finely pulverized carbon fiber polymer composite composition and production method
Krause et al. Melt mixed SWCNT-polypropylene composites with very low electrical percolation
Du et al. Coagulation method for preparing single‐walled carbon nanotube/poly (methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability
Shrivastava et al. Development of electrical conductivity with minimum possible percolation threshold in multi-wall carbon nanotube/polystyrene composites
Sumfleth et al. A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD-and arc-grown multi-wall carbon nanotubes
US20030158323A1 (en) Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
TWI705103B (en) Composite resin material and molded article
Calisi et al. Factors affecting the dispersion of MWCNTs in electrically conducting SEBS nanocomposites
WO2020067429A1 (en) Carbon nanotube dispersion
Sathyanarayana et al. Compounding of MWCNTs with PS in a twin‐screw extruder with varying process parameters: Morphology, interfacial behavior, thermal stability, rheology, and volume resistivity
He et al. A graphene oxide–polyvinylidene fluoride mixture as a precursor for fabricating thermally reduced graphene oxide–polyvinylidene fluoride composites
Yourdkhani et al. A systematic study on dispersion stability of carbon nanotube-modified epoxy resins
Kim et al. Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube–polymer composites
Yamamoto et al. A simple and fast method to disperse long single-walled carbon nanotubes introducing few defects
Agarwal et al. PET-SWNT nanocomposites through ultrasound assisted dissolution-evaporation
KR20120079597A (en) Dispersant composition for carbon nanotubes, carbon nanotube composite comprising the dispersant composition and polymer composite material produced using the carbon nanotube composite
Osazuwa et al. Characterization of non-covalently, non-specifically functionalized multi-wall carbon nanotubes and their melt compounded composites with an ethylene–octene copolymer
Johnson et al. Dispersion and film properties of carbon nanofiber pigmented conductive coatings
Quigley et al. Enhanced electrical properties of polycarbonate/carbon nanotube nanocomposites prepared by a supercritical carbon dioxide aided melt blending method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865980

Country of ref document: EP

Kind code of ref document: A1