WO2020066835A1 - 手袋の製造方法 - Google Patents

手袋の製造方法 Download PDF

Info

Publication number
WO2020066835A1
WO2020066835A1 PCT/JP2019/036750 JP2019036750W WO2020066835A1 WO 2020066835 A1 WO2020066835 A1 WO 2020066835A1 JP 2019036750 W JP2019036750 W JP 2019036750W WO 2020066835 A1 WO2020066835 A1 WO 2020066835A1
Authority
WO
WIPO (PCT)
Prior art keywords
dip
weight
acid
latex
glove
Prior art date
Application number
PCT/JP2019/036750
Other languages
English (en)
French (fr)
Inventor
昌 北川
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020548594A priority Critical patent/JPWO2020066835A1/ja
Publication of WO2020066835A1 publication Critical patent/WO2020066835A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/04Appliances for making gloves; Measuring devices for glove-making
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex

Definitions

  • the present invention relates to a method for producing gloves, and more particularly, to a method for producing gloves in which coloring is suppressed, tensile strength is high, elongation is high, and a soft texture and a high stress retention are provided.
  • a dip molded product used in contact with the human body such as a nipple, a balloon, a glove, a balloon, and a sack is known by dip molding a latex composition containing a natural latex represented by a natural rubber latex.
  • a natural latex represented by a natural rubber latex.
  • natural latex contains a protein that causes allergic symptoms to the human body
  • problems with dip molded articles, particularly gloves, which come into direct contact with a living mucous membrane or an organ Therefore, use of synthetic nitrile rubber latex has been studied.
  • Patent Document 1 contains a latex of a conjugated diene rubber containing a carboxyl group and a metal compound containing a divalent or higher valent metal, and does not substantially contain sulfur and / or a sulfur-containing compound as a crosslinking agent.
  • a glove manufacturing method is disclosed which includes a step of forming a dip-formed layer by dip-forming a latex composition, and a step of irradiating the dip-formed layer with radiation.
  • Patent Literature 1 gloves having high tensile strength, large elongation, a soft touch and a high stress retention rate can be manufactured, but gloves obtained by the manufacturing method described in Patent Literature 1 require radiation irradiation. As a result, there is a problem that coloring occurs and its commercial value is reduced.
  • the present invention has been made in view of such circumstances, and a method for producing gloves in which occurrence of coloring is suppressed, tensile strength is high, elongation is large, a soft texture and a high stress retention rate are provided.
  • the purpose is to provide.
  • the present inventors have conducted intensive studies to solve the above-described problems, and as a result of producing a glove by irradiating a radiation to a dip-formed layer obtained by dip-forming the latex composition, as a latex composition.
  • a latex of a conjugated diene rubber containing a carboxyl group and a metal compound containing a divalent or higher valent metal a compound containing a hindered phenolic antioxidant is used, and contained in gloves after irradiation.
  • the content of the hindered phenol-based antioxidant in the range of 5,000 ppm by weight or more and 70,000 ppm by weight or less, it is possible to suppress the occurrence of coloring in the obtained glove, and The resulting glove can have high tensile strength, high elongation, soft texture and high stress retention Found that, it has led to the completion of the present invention.
  • the present invention contains a latex of a carboxyl group-containing conjugated diene-based rubber (A), a metal compound containing a divalent or higher-valent metal (B), and a hindered phenol-based antioxidant (C).
  • a step of forming a dip-molded layer by dip-forming the latex composition A step of irradiating the dip-formed layer with radiation, comprising: There is provided a method for producing a glove in which the content of the hindered phenolic antioxidant (C) contained in the glove after irradiation is 5,000 to 70,000 ppm by weight.
  • the yellowness (YI) indicating the yellow color of the glove after irradiation is 10 or less.
  • the content of the hindered phenolic antioxidant (C) in the latex composition is preferably 0.1 part by weight based on 100 parts by weight of the carboxyl group-containing conjugated diene rubber (A). It is preferable that the amount is in the range of 5 to 8.5 parts by weight, and the irradiation of the dip-formed layer is performed within 40 days after the formation of the dip-formed layer.
  • the step of forming the dip-forming layer includes the step of dip-forming the latex composition and then performing a heat treatment to thereby form the metal compound (B) containing the divalent or higher-valent metal.
  • the metal compound (B) containing the divalent or higher-valent metal Preferably, it is a step of performing crosslinking.
  • the hindered phenolic antioxidant (C) is a compound obtained by butylating a condensate of p-cresol and dicyclopentadiene.
  • the hindered phenolic antioxidant (C) is a compound represented by the following general formula (1).
  • the latex of the carboxyl group-containing conjugated diene rubber (A) is preferably a latex of a carboxyl group-containing nitrile rubber (a1).
  • the metal compound (B) containing a divalent or higher valent metal is a metal compound containing a trivalent or higher valent metal
  • the latex composition contains a saccharide (d1), a sugar alcohol ( It is preferable that the composition further contains at least one alcoholic hydroxyl group-containing compound (D) selected from d2), a hydroxy acid (d3) and a hydroxy acid salt (d4).
  • the present invention it is possible to provide a method for producing gloves in which the occurrence of coloring is suppressed, the tensile strength is high, the elongation is large, the texture is soft, and the stress retention is high.
  • the method for producing gloves of the present invention comprises a latex of a conjugated diene rubber containing a carboxyl group (A), a metal compound containing a divalent or higher valent metal (B), and a hindered phenol antioxidant (C).
  • a step of irradiating the dip-formed layer with radiation comprising: The content of the hindered phenolic antioxidant (C) contained in the glove after irradiation is controlled to 5,000 to 70,000 ppm by weight.
  • the latex composition used in the production method of the present invention contains a latex of a carboxyl group-containing conjugated diene rubber (A), a metal compound containing a divalent or higher valent metal (B), and a hindered phenolic antioxidant (C). Is what you do.
  • A carboxyl group-containing conjugated diene rubber
  • B metal compound containing a divalent or higher valent metal
  • C hindered phenolic antioxidant
  • the latex of the carboxyl group-containing conjugated diene rubber (A) may be a copolymer latex obtained by copolymerizing a conjugated diene monomer and an ethylenically unsaturated carboxylic acid monomer. It is preferably a latex of at least one rubber selected from rubber (a1), carboxyl group-containing styrene-butadiene rubber (a2) and carboxyl group-containing butadiene rubber (a3).
  • the latex of the carboxyl group-containing nitrile rubber (a1) is a latex of a copolymer obtained by copolymerizing an ethylenically unsaturated nitrile monomer in addition to a conjugated diene monomer and an ethylenically unsaturated carboxylic acid monomer.
  • a latex of a copolymer obtained by copolymerizing another ethylenically unsaturated monomer copolymerizable therewith, which is used as necessary, may be used.
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene, and chloroprene. Can be Of these, 1,3-butadiene is preferred. These conjugated diene monomers can be used alone or in combination of two or more.
  • the content ratio of the conjugated diene monomer unit formed by the conjugated diene monomer in the carboxyl group-containing nitrile rubber (a1) is preferably 56 to 78% by weight, more preferably 56 to 73% by weight, More preferably, it is 56 to 70% by weight.
  • the monomer unit derived from isoprene may cause softening deterioration due to irradiation with radiation as described below, and thus may be included in the carboxyl group-containing nitrile rubber (a1).
  • the content ratio of the monomer unit derived from isoprene is preferably 5% by weight or less, more preferably 2.5% by weight or less, further preferably 1% by weight or less, and isoprene-derived It is particularly preferred that the monomer unit is not substantially contained.
  • the content of monomer units derived from isoprene in these carboxyl group-containing conjugated diene rubbers is preferably 5% by weight or less, more preferably 2.5% by weight or less, and further preferably 1% by weight or less, It is particularly preferred that it does not substantially contain a monomer unit derived from isoprene.
  • the ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a carboxyl group.
  • a single monomer of ethylenically unsaturated monocarboxylic acid such as acrylic acid and methacrylic acid is used.
  • Ethylenically unsaturated polycarboxylic acid monomers such as itaconic acid, maleic acid and fumaric acid; ethylenically unsaturated polycarboxylic acid anhydrides such as maleic anhydride and citraconic anhydride; monobutyl fumarate, maleic acid Ethylenically unsaturated polyvalent carboxylic acid partial ester monomers such as monobutyl and mono-2-hydroxypropyl maleate; and the like.
  • ethylenically unsaturated monocarboxylic acids are preferred, and methacrylic acid is particularly preferred.
  • These ethylenically unsaturated carboxylic acid monomers can also be used as alkali metal salts or ammonium salts.
  • the ethylenically unsaturated carboxylic acid monomers can be used alone or in combination of two or more.
  • the content ratio of the ethylenically unsaturated carboxylic acid monomer unit formed by the ethylenically unsaturated carboxylic acid monomer in the carboxyl group-containing nitrile rubber (a1) is preferably 2 to 6.5% by weight. , More preferably 2 to 6% by weight, still more preferably 2 to 5% by weight, still more preferably 2 to 4.5% by weight, particularly preferably 2.5 to 4.5% by weight.
  • the glove obtained by the production method of the present invention has a satisfactory tensile strength while having a sufficient tensile strength, and the elongation is further increased. It can be.
  • the ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a nitrile group.
  • acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloroacrylonitrile, ⁇ -cyanoethylacrylonitrile And the like acrylonitrile and methacrylonitrile are preferred, and acrylonitrile is more preferred.
  • These ethylenically unsaturated nitrile monomers can be used alone or in combination of two or more.
  • the content ratio of the ethylenically unsaturated nitrile monomer unit formed by the ethylenically unsaturated nitrile monomer in the carboxyl group-containing nitrile rubber (a1) is preferably from 20 to 40% by weight, more preferably It is 25 to 40% by weight, more preferably 30 to 40% by weight.
  • ethylenically unsaturated monomers copolymerizable with conjugated diene monomers, ethylenically unsaturated carboxylic acid monomers and ethylenically unsaturated nitrile monomers include, for example, styrene, alkylstyrene, vinylnaphthalene Vinyl aromatic monomers such as fluoroethyl vinyl ether; (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide; Ethylenically unsaturated amide monomers such as N-propoxymethyl (meth) acrylamide; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; Trifluoroethyl (meth) acrylate, ( T)
  • the content of other monomer units formed by other ethylenically unsaturated monomers in the carboxyl group-containing nitrile rubber (a1) is preferably 10% by weight or less, more preferably 5% by weight. Or less, more preferably 3% by weight or less.
  • the latex of the carboxyl group-containing nitrile rubber (a1) can be obtained by copolymerizing a monomer mixture containing the above-mentioned monomers, but a method of copolymerizing by emulsion polymerization is preferable.
  • a method of copolymerizing by emulsion polymerization is preferable.
  • the emulsion polymerization method a conventionally known method can be employed.
  • polymerization auxiliary materials such as an emulsifier, a polymerization initiator, and a molecular weight modifier can be used.
  • the method for adding these polymerization auxiliary materials is not particularly limited, and any method such as an initial batch addition method, a divided addition method, and a continuous addition method may be used.
  • emulsifiers include, but are not particularly limited to, nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, and polyoxyethylene sorbitan alkyl ester; potassium dodecylbenzenesulfonate, dodecylbenzene Anionic emulsifiers such as alkylbenzene sulfonates such as sodium sulfonate, higher alcohol sulfates and alkylsulfosuccinates; cationic emulsifiers such as alkyltrimethylammonium chloride, dialkylammonium chloride and benzylammonium chloride; ⁇ , ⁇ -unsaturated Such as sulfoesters of carboxylic acids, sulfate esters of ⁇ , ⁇ -unsaturated carboxylic acids, and sulfoalkylaryl ethers Or the like can be mentioned
  • anionic emulsifiers are preferred, alkylbenzene sulfonates are more preferred, and potassium dodecylbenzenesulfonate and sodium dodecylbenzenesulfonate are particularly preferred.
  • These emulsifiers can be used alone or in combination of two or more.
  • the amount of the emulsifier used is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the monomer mixture.
  • polymerization initiator examples include, but are not particularly limited to, inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, di- ⁇ - Organic peroxides such as cumyl peroxide, acetyl peroxide, isobutyryl peroxide and benzoyl peroxide; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile and methyl azobisisobutyrate; Can be mentionedThese polymerization initiators can be used alone or in combination of two or more. The amount of the amount
  • the peroxide initiator can be used as a redox polymerization initiator in combination with a reducing agent.
  • the reducing agent is not particularly limited, but a compound containing a metal ion in a reduced state such as ferrous sulfate and cuprous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine compound such as dimethylaniline And the like. These reducing agents can be used alone or in combination of two or more.
  • the amount of the reducing agent used is preferably 3 to 1000 parts by weight based on 100 parts by weight of the peroxide.
  • the amount of water used in the emulsion polymerization is preferably from 80 to 600 parts by weight, particularly preferably from 100 to 200 parts by weight, based on 100 parts by weight of all monomers used.
  • Examples of the method of adding the monomer include a method of adding the monomers used in the reaction vessel all at once, a method of adding the monomers continuously or intermittently according to the progress of the polymerization, and a method of adding a part of the monomers. To a specific conversion, and then the remaining monomer is added continuously or intermittently to carry out polymerization. Either method may be adopted.
  • the composition of the mixture may be constant or may vary. Further, each monomer may be added to the reaction vessel after previously mixing various monomers to be used, or may be separately added to the reaction vessel.
  • auxiliary polymerization materials such as a chelating agent, a dispersant, a pH adjuster, a deoxidizer, and a particle size adjuster can be used, and these are not particularly limited in kind or amount.
  • the polymerization temperature at the time of emulsion polymerization is not particularly limited, but is usually 3 to 95 ° C, preferably 5 to 60 ° C.
  • the polymerization time is about 5 to 40 hours.
  • Emulsion polymerization of the monomer mixture as described above and when a predetermined polymerization conversion is reached, the polymerization system is cooled or a polymerization terminator is added to stop the polymerization reaction.
  • the polymerization conversion when terminating the polymerization reaction is preferably at least 90% by weight, more preferably at least 93% by weight.
  • polymerization terminator examples include, but are not limited to, hydroxylamine, hydroxyamine sulfate, diethylhydroxylamine, hydroxyaminesulfonic acid and alkali metal salts thereof, sodium dimethyldithiocarbamate, hydroquinone derivatives, catechol derivatives, and hydroxydimethyl
  • examples include aromatic hydroxydithiocarboxylic acids such as benzenethiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid, and hydroxydibutylbenzenedithiocarboxylic acid, and alkali metal salts thereof.
  • the amount of the polymerization terminator to be used is preferably 0.05 to 2 parts by weight based on 100 parts by weight of the monomer mixture.
  • an antioxidant a preservative, an antibacterial agent, a dispersant, and the like may be appropriately added to the latex of the carboxyl group-containing nitrile rubber (a1) as necessary.
  • the number average particle diameter of the latex of the carboxyl group-containing nitrile rubber (a1) is preferably from 60 to 300 nm, more preferably from 80 to 150 nm.
  • the particle diameter can be adjusted to a desired value by a method such as adjusting the amounts of the emulsifier and the polymerization initiator.
  • the latex of the styrene-butadiene rubber (a2) containing a carboxyl group is prepared by copolymerizing styrene in addition to 1,3-butadiene as a conjugated diene monomer and an ethylenically unsaturated carboxylic acid monomer. It is a polymer latex, and in addition to these, a latex of a copolymer obtained by copolymerizing other ethylenically unsaturated monomers copolymerizable therewith may be used as necessary. .
  • the content ratio of the butadiene unit formed by 1,3-butadiene in the carboxyl group-containing styrene-butadiene rubber (a2) is preferably from 56 to 78% by weight, more preferably from 56 to 73% by weight, and still more preferably. Is from 56 to 68% by weight.
  • the ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is a carboxyl group-containing ethylenically unsaturated monomer.
  • the same as the above-described latex of the carboxyl group-containing nitrile rubber (a1) Can be used.
  • the content ratio of the ethylenically unsaturated carboxylic acid monomer unit formed by the ethylenically unsaturated carboxylic acid monomer in the carboxyl group-containing styrene-butadiene rubber (a2) is preferably from 2 to 6.5% by weight.
  • the glove obtained by the production method of the present invention has a satisfactory tensile strength while having a sufficient tensile strength, and the elongation is further increased. It can be.
  • the content ratio of styrene units formed by styrene in the carboxyl group-containing styrene-butadiene rubber (a2) is preferably 20 to 40% by weight, more preferably 25 to 40% by weight, and further preferably 30 to 40% by weight. % By weight.
  • 1,3-butadiene as a conjugated diene monomer, ethylenically unsaturated carboxylic acid monomers and other ethylenically unsaturated monomers copolymerizable with styrene include the above-mentioned carboxyl group-containing nitrile rubbers.
  • a1 excluding styrene
  • isoprene 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and chloroprene
  • conjugated diene monomers other than 1,3-butadiene are examples of 1,3-butadiene as a conjugated diene monomer, ethylenically unsaturated carboxylic acid monomers and other ethylenically unsaturated monomers copolymerizable with styrene.
  • the content of other monomer units formed by other ethylenically unsaturated monomers in the carboxyl group-containing styrene-butadiene rubber (a2) is preferably 10% by weight or less, more preferably 5% by weight or less. % By weight, more preferably 3% by weight or less.
  • the latex of the carboxyl group-containing styrene-butadiene rubber (a2) used in the present invention can be obtained by copolymerizing a monomer mixture containing the above-mentioned monomers. preferable.
  • the same polymerization auxiliary material as in the case of the carboxyl group-containing nitrile rubber (a1) may be used, and the polymerization may be performed by the same method.
  • the carboxyl group-containing styrene-butadiene rubber (a2) latex used in the present invention may optionally contain an antioxidant, a preservative, an antibacterial agent, a dispersant, and the like.
  • the number average particle size of the latex of the carboxyl group-containing styrene-butadiene rubber (a2) used in the present invention is preferably from 60 to 300 nm, more preferably from 80 to 150 nm.
  • the particle diameter can be adjusted to a desired value by a method such as adjusting the amounts of the emulsifier and the polymerization initiator.
  • the latex of the carboxyl group-containing conjugated diene rubber (a3) is a latex of a copolymer obtained by copolymerizing a conjugated diene monomer and an ethylenically unsaturated carboxylic acid monomer.
  • a latex of a copolymer obtained by copolymerizing another ethylenically unsaturated monomer copolymerizable therewith may be used.
  • the content ratio of the conjugated diene monomer unit formed by the conjugated diene monomer in the carboxyl group-containing conjugated diene rubber (a3) is preferably 80 to 98% by weight, more preferably 90 to 98% by weight, More preferably, it is 95 to 97.5% by weight.
  • the ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is a carboxyl group-containing ethylenically unsaturated monomer.
  • the same as the above-described latex of the carboxyl group-containing nitrile rubber (a1) Can be used.
  • the content ratio of the ethylenically unsaturated carboxylic acid monomer unit formed by the ethylenically unsaturated carboxylic acid monomer in the carboxyl group-containing conjugated diene rubber (a3) is preferably 2 to 10% by weight.
  • the glove obtained by the production method of the present invention has a satisfactory tensile strength while having a sufficient tensile strength, and the elongation is further increased. It can be.
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene, and chloroprene.
  • the conjugated diene monomer any of these may be used alone, or two or more may be used in combination. Of these, 1,3-butadiene is preferred.
  • Examples of other ethylenically unsaturated monomers copolymerizable with the conjugated diene monomer and the ethylenically unsaturated carboxylic acid monomer include, for example, the same as the above-mentioned latex of the carboxyl group-containing nitrile rubber (a1). (Excluding styrene).
  • the content of other monomer units formed by other ethylenically unsaturated monomers in the carboxyl group-containing conjugated diene rubber (a3) is preferably 10% by weight or less, more preferably 5% by weight. Or less, more preferably 3% by weight or less.
  • the latex of the carboxyl group-containing conjugated diene rubber (a3) used in the present invention can be obtained by copolymerizing a monomer mixture containing the above-mentioned monomer, but a method of copolymerizing by emulsion polymerization is preferable.
  • the emulsion polymerization method the same polymerization auxiliary material as in the case of the carboxyl group-containing nitrile rubber (a1) may be used, and the polymerization may be performed by the same method.
  • the latex composition used in the present invention contains a metal compound (B) containing a divalent or higher valent metal, in addition to the latex of the carboxyl group-containing conjugated diene rubber (A) described above.
  • the metal compound (B) containing a divalent or higher valent metal forms a crosslinked structure by reacting with the carboxyl group contained in the carboxyl group-containing conjugated diene rubber (A) to form a metal ion bond. And thereby act as a crosslinking agent.
  • the metal compound (B) containing a divalent or higher valent metal is not particularly limited, but may be a zinc compound, a magnesium compound, a titanium compound, a calcium compound, a lead compound, an iron compound, a tin compound, a chromium compound, a cobalt compound, a zirconium compound, Aluminum compounds and the like can be mentioned.
  • These metal compounds (B) containing a divalent or higher metal can be used alone or in combination of two or more.
  • a metal compound containing a trivalent or higher metal is preferable, and an aluminum compound is particularly preferable, from the viewpoint that the glove obtained by the production method of the present invention can be more excellent in stress retention.
  • Examples of the aluminum compound include aluminum oxide, aluminum chloride, aluminum hydroxide, aluminum nitrate, aluminum sulfate, aluminum metal, aluminum ammonium sulfate, aluminum bromide, aluminum fluoride, aluminum / potassium sulfate, aluminum / isopropoxide, and aluminum.
  • Examples thereof include sodium silicate, potassium aluminate, and sodium aluminum sulfite. Of these, sodium aluminate is preferred.
  • a metal compound containing a divalent metal When a metal compound containing a trivalent or higher valent metal is used as the metal compound containing a divalent or higher valent metal (B), a metal compound containing a divalent metal may be used in combination.
  • the metal compound containing a divalent metal is preferably a zinc compound, a magnesium compound, a calcium compound, or a lead compound. , A zinc compound is more preferred, and zinc oxide is particularly preferred.
  • the content ratio of the metal compound (B) containing a divalent or higher valent metal in the latex composition used in the present invention is preferably based on 100 parts by weight of the carboxyl group-containing conjugated diene rubber (A) contained in the latex. Is 0.1 to 5 parts by weight, more preferably 0.5 to 2.5 parts by weight, still more preferably 0.5 to 2.0 parts by weight.
  • the content of the metal compound containing a trivalent or higher metal in the latex composition is as follows: From the viewpoint of the stability and crosslinkability of the latex composition, the content is 0.1 to 1.5 parts by weight based on 100 parts by weight of the carboxyl group-containing conjugated diene rubber (A) contained in the latex. It is preferably 0.1 to 1.25 parts by weight, more preferably 0.1 to 1.0 part by weight.
  • the content ratio of the metal compound containing a divalent or higher valent metal is determined by the latex composition
  • the weight ratio of “the metal compound containing a trivalent or higher metal: the metal compound containing a divalent metal” is preferably in the range of 100: 0 to 0: 100, Preferably it is in the range of 10:90 to 90:10.
  • the latex composition used in the present invention is a hindered phenol-based antioxidant in addition to the latex of the carboxyl group-containing conjugated diene-based rubber (A) and the metal compound containing a divalent or higher valent metal (B). (C) is contained.
  • the hindered phenolic antioxidant (C) has a phenol structure, and has a bulky group (for example, t-butyl group) at one of the ortho positions of the OH group (phenolic hydroxyl group) constituting the phenol structure. ), And is not particularly limited.
  • hindered phenolic antioxidant (C) examples include compounds obtained by butylation of a condensate of p-cresol and dicyclopentadiene, 2,6-di-t-butyl-p-cresol, 3-t -Butyl-4-hydroxyanisole, 2-t-butyl-4-hydroxyanisole, 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6- t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), n-octadecyl-3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate, , 3,5-Tris (3,5-di-t-butyl-4-hydroxybenzyl) -s-triazine-2,4,6- (1H, 3H, 5H) trione, Taerythrityl-tetrakis (3- (3, 3-
  • a compound obtained by butylation of a condensate of p-cresol and dicyclopentadiene OH group (phenol constituting p-cresol) A compound obtained by butylating the ortho position of the hydroxyl group), and a compound obtained by t-butylating a condensate of p-cresol and dicyclopentadiene (p in the condensate of p-cresol and dicyclopentadiene).
  • n represents an integer.
  • a dip-formed layer formed by dip-forming a latex composition containing such a hindered phenol-based antioxidant (C) and dip-forming such a latex composition.
  • a hindered phenol-based antioxidant (C) contained in the gloves after the irradiation is 5,000 ppm by weight or more. , 70,000 ppm by weight or less. And thereby, it is possible to make the resulting glove excellent in the occurrence of coloring, high tensile strength, large elongation, soft texture and high stress retention.
  • the content of the hindered phenolic antioxidant (C) is determined by the content of the hindered phenolic antioxidant (C) contained in the glove after irradiation.
  • the amount may be within the above range, but the content of the hindered phenol-based antioxidant (C) with respect to 100 parts by weight of the carboxyl group-containing conjugated diene-based rubber (A) in the latex composition used in the present invention.
  • the amount is preferably 0.5 to 8.5 parts by weight, more preferably 0.8 to 7.5 parts by weight, still more preferably more than 1.5 parts by weight, and even more preferably 7.5 parts by weight or less. Is 1.6 to 6.0 parts by weight.
  • the composition used in the present invention when a metal compound containing a trivalent or more metal is used as the metal compound containing a divalent or more metal (B), the saccharide (d1), it is preferable that the composition further contains at least one alcoholic hydroxyl group-containing compound (D) selected from alcohol (d2), hydroxy acid (d3) and hydroxy acid salt (d4).
  • D alcoholic hydroxyl group-containing compound
  • the dispersibility of a metal compound containing a trivalent or higher valent metal in the latex composition can be further increased, and as a result, a latex composition Can have good stability. And as a result, the stress retention of the glove obtained by the manufacturing method of the present invention can be more appropriately increased.
  • the alcoholic hydroxyl group-containing compound (D) used in the present invention is at least one selected from saccharides (d1), sugar alcohols (d2), hydroxy acids (d3) and hydroxy acid salts (d4). From the viewpoint that the effects of the present invention can be further enhanced, it is preferable to use at least one selected from sugar alcohols (d2) and hydroxy acid salts (d4).
  • alcoholic hydroxyl group-containing compounds (D) When two or more alcoholic hydroxyl group-containing compounds (D) are used in combination, at least one selected from a saccharide (d1) and a sugar alcohol (d2), a hydroxy acid (d3) and a hydroxy acid salt It is preferable to use a combination of at least one selected from (d4), and it is more preferable to use a combination of a sugar alcohol (d2) and a hydroxy acid salt (d4).
  • the saccharide (d1) is not particularly limited as long as it is a monosaccharide or a polysaccharide in which two or more monosaccharides are linked by a glycosidic bond.
  • the sugar alcohol (d2) may be a monosaccharide or polysaccharide sugar alcohol, and is not particularly limited.
  • examples thereof include tritol such as glycerin; tetritol such as erythritol, D-threitol, and L-threitol; D-arabinitol; Pentitols such as L-arabinitol, xylitol, ribitol and pentaerythritol; pentaerythritol; hexitols such as sorbitol, D-iditol, galactitol, D-glucitol, mannitol; heptitols such as boreitol and perseitol; D-erythro-D- Octitol such as galacto-octitol; and the like. These may be used alone or in combination of two or more. Among these, hexitol which is a
  • the hydroxy acid (d3) may be any carboxylic acid having a hydroxyl group, and is not particularly limited. Examples thereof include glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, and ⁇ -hydroxy acid.
  • Aliphatic acids such as butyric acid, malic acid, 3-methylmalic acid, tartaric acid, citramalic acid, citric acid, isocitric acid, leucic acid, mevalonic acid, pantoic acid, ricinoleic acid, ricineraidic acid, cerebronic acid, quinic acid, shikimic acid, and serine Hydroxy acids; salicylic acid, creosoteric acid (homosalicylic acid, hydroxy (methyl) benzoic acid), vanillic acid, syringic acid, hydroxypropanoic acid, hydroxypentanoic acid, hydroxyhexanoic acid, hydroxyheptanoic acid, hydroxyoctanoic acid, hydroxynonanoic acid, Hydroxide Monohydroxys such as acid, hydroxyundecanoic acid, hydroxydododecanoic acid, hydroxytridecanoic acid, hydroxytetradecanoic acid, hydroxypentadecanoic acid, hydroxyhept
  • aliphatic hydroxy acids are preferred, aliphatic ⁇ -hydroxy acids are more preferred, glycolic acid, lactic acid, tartronic acid, glyceric acid, malic acid, tartaric acid, and citric acid are more preferred, and glycolic acid is particularly preferred.
  • the hydroxy acid salt (d4) is not particularly limited as long as it is a salt of a hydroxy acid, and examples thereof include metal salts of the hydroxy acid exemplified as specific examples of the hydroxy acid (d3). And salts of alkaline earth metals such as calcium and magnesium.
  • the hydroxy acid salt (d4) one type may be used alone, or two or more types may be used in combination.
  • an alkali metal salt of a hydroxy acid is preferred, and a sodium salt of the hydroxy acid is preferred.
  • the hydroxy acid constituting the hydroxy acid salt (d4) is preferably an aliphatic hydroxy acid, more preferably an aliphatic ⁇ -hydroxy acid, and is glycolic acid, lactic acid, tartronic acid, glyceric acid, malic acid, tartaric acid, or citric acid. Acids are more preferred, and glycolic acid is particularly preferred. That is, sodium glycolate is particularly suitable as the hydroxy acid salt (d4).
  • the content of the alcoholic hydroxyl group-containing compound (D) is more than that of the metal compound containing a trivalent or higher-valent metal.
  • the amount is preferably in the range of 1: 0.1 to 1:50, more preferably in the range of 1: 0.2 to 1:45, more preferably in the ratio by weight of compound (D). Is an amount ranging from 1: 0.3 to 1:30.
  • the latex composition used in the present invention includes, for example, a latex of a carboxyl group-containing conjugated diene rubber (A), a metal compound containing a divalent or higher valent metal (B), a hindered phenolic antioxidant (C), Further, it can be obtained by blending an alcoholic hydroxyl group-containing compound (D) used as required.
  • the latex of the carboxyl group-containing conjugated diene rubber (A) contains a metal compound containing a divalent or higher valent metal (B), a hindered phenolic antioxidant (C), and optionally contains an alcoholic hydroxyl group.
  • the method for compounding the compound (D) is not particularly limited.
  • the metal compound (B) containing a metal having a valency of 2 or more can be favorably dispersed in the obtained latex composition.
  • the metal compound (B) containing the above metal is preferably dissolved in water or alcohol together with the alcoholic hydroxyl group-containing compound (D) used as necessary, and added in the form of an aqueous solution or alcohol solution.
  • the hindered phenolic antioxidant (C) is also in the form of a solution or dispersion dissolved or dispersed in water or alcohol from the viewpoint of improving dispersibility in the obtained latex composition. Is preferably added.
  • the latex composition used in the present invention includes a latex of the above-mentioned carboxy group-containing conjugated diene rubber (A), a metal compound containing a divalent or higher valent metal (B), and a hindered phenolic antioxidant (C). ), And, in addition to the alcoholic hydroxyl group-containing compound (D) used as necessary, a crosslinking agent other than the metal compound (B) containing a divalent or higher valent metal (B), a filler, a pH adjuster, and a thickener, if desired. , An antioxidant other than the hindered phenolic antioxidant (C), a dispersant, a pigment, a filler, a softener, and the like.
  • Examples of the crosslinking agent other than the metal compound (B) containing a divalent or higher valent metal include sulfur and / or a sulfur-containing compound.
  • the sulfur as a cross-linking agent is substantially composed of only sulfur atoms, and is used as a cross-linking agent for cross-linking various rubbers. In particular, carbon-carbon double of a conjugated diene monomer unit is used. Elemental sulfur acting on the binding portion, specific examples of which include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur.
  • Examples of the sulfur-containing compound as a cross-linking agent include compounds containing a sulfur atom and used for a cross-linking agent for cross-linking various rubbers, particularly, a carbon-carbon double bond of a conjugated diene monomer unit.
  • Compounds acting on moieties such as sulfur monochloride, sulfur dichloride, 4,4'-dithiodimorpholine, alkylphenol disulfide, 6-methylquinoxaline-2,3-dithiocarbonate, caprolactam disulfide, dibutyl Examples include zinc dithiocarbamate, phosphorus-containing polysulfide, and high-molecular polysulfide.
  • the content of sulfur and / or the sulfur-containing compound as a cross-linking agent is based on 100 parts by weight of the carboxyl group-containing conjugated diene rubber (A) contained in the latex.
  • the total amount of the sulfur-containing compounds is preferably more than 0 parts by weight and 4 parts by weight or less, more preferably more than 0 parts by weight and 2.5 parts by weight or less, still more preferably more than 0 parts by weight and 1.5 parts by weight or less. It is.
  • the solid content of the latex composition used in the present invention is preferably 10 to 40% by weight, more preferably 15 to 35% by weight.
  • the pH of the latex composition used in the present invention is preferably 7.5 to 12.0, more preferably 7.5 to 11.0, further preferably 7.5 to 9.4, and particularly preferably 7. 5 to 9.2.
  • the glove manufacturing method of the present invention includes a step of forming a dip-formed layer by dip-forming the above-described latex composition, and a step of irradiating the formed dip-formed layer with radiation.
  • a glove-shaped mold (glove mold) is immersed in the latex composition, the latex composition is deposited on the surface of the glove mold, and then the glove mold is pulled up from the latex composition, and then the glove mold is placed on the surface of the glove mold.
  • This is a method of drying the deposited latex composition.
  • the glove mold before dipping in the latex composition may be preheated.
  • a coagulant may be used as necessary.
  • the method of using the coagulant include a method of dipping a glove mold before dipping in the latex composition into a solution of the coagulant to adhere the coagulant to the glove mold (anode coagulation dipping method), a method of using a latex composition Is immersed in a coagulant solution ( convinced adhesion immersion method), but the anodic adhesion immersion method is preferred in that a dip-formed layer with less thickness unevenness can be obtained.
  • the coagulant examples include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; nitrates such as barium nitrate, calcium nitrate and zinc nitrate; and acetic acids such as barium acetate, calcium acetate and zinc acetate. Salts; sulfates such as calcium sulfate, magnesium sulfate, and aluminum sulfate; and the like. Of these, calcium chloride and calcium nitrate are preferred.
  • the coagulant is typically used as a solution in water, alcohol, or a mixture thereof.
  • the coagulant concentration is usually 5 to 50% by weight, preferably 10 to 35% by weight.
  • the obtained dip-formed layer is subjected to a heat treatment to perform crosslinking with the metal compound (B) containing a divalent or higher-valent metal.
  • the crosslinking at this time proceeds by reacting the metal compound (B) containing a divalent or higher-valent metal with the carboxyl group contained in the carboxyl group-containing conjugated diene rubber (A), thereby forming a metal ion bond.
  • the dip-formed layer is immersed in water, preferably 30 to 70 ° C. for about 1 to 60 minutes to remove water-soluble impurities (eg, excess emulsifier and coagulant). It may be removed.
  • the operation of removing the water-soluble impurities may be performed after the heat treatment of the dip-formed layer, but is preferably performed before the heat treatment because water-soluble impurities can be more efficiently removed.
  • the cross-linking of the dip-formed layer with the metal compound (B) containing a divalent or higher valent metal is usually performed by performing a heat treatment at a temperature of 80 to 150 ° C., preferably for 10 to 130 minutes.
  • a heating method a method of external heating with infrared rays or heated air or internal heating with high frequency can be adopted. Of these, external heating with heated air is preferred.
  • the crosslinked dip molding layer is detached from the glove mold to obtain a dip molding before irradiation.
  • a method of peeling off from the glove mold by hand or a method of peeling off by water pressure or compressed air pressure can be adopted.
  • heat treatment may be further performed at a temperature of 60 to 120 ° C. for 10 to 120 minutes.
  • the obtained pre-irradiation dip-formed body is irradiated with radiation to obtain gloves (dip-formed body after irradiation).
  • the glove obtained by the production method of the present invention is obtained by irradiating the dip-formed layer (dip-formed body before irradiation) formed from the above-described latex composition with radiation. While having a large elongation and a soft texture, the tensile strength can be greatly improved, and further, a high stress holding ratio can be obtained.
  • gloves obtained by dip molding, such as surgical gloves have high tensile strength and large elongation, and in addition to this, the feeling of use when wearing and working is important. .
  • the glove obtained by the manufacturing method of the present invention has a high tensile strength, a high elongation, and an excellent stress (feel) at the time of elongation of 500%. It can provide a high stress retention.
  • the conjugated diene of the carboxyl group-containing conjugated diene rubber (A) contained in the latex composition is irradiated by irradiation. It is considered that the carbon-carbon double bond portion of the monomer unit can be crosslinked, and a high stress retention can be realized by forming such a crosslink.
  • irradiation of a dip-forming layer (a dip-formed body before irradiation) formed from a latex composition with radiation is included in gloves after irradiation, and a hindered phenol-based anti-aging agent is included.
  • the operation is performed so that the content of the agent (C) is in the range of 5,000 to 70,000 ppm by weight.
  • the coloring of the obtained glove is controlled. Generation, especially coloring due to radiation irradiation can be effectively suppressed.
  • the content of the hindered phenolic antioxidant (C) contained in the glove after the irradiation is not less than 5,000 wt ppm, not more than 70,000 wt ppm, preferably not less than 9,000 wt ppm, 70,000 wt ppm or less, more preferably 10,000 wt ppm or more, 50,000 wt ppm or less, still more preferably 10,000 wt ppm or more, 30,000 wt ppm or less, still more preferably 15,000 wt ppm. More than 30,000 ppm by weight.
  • the content of the hindered phenolic antioxidant (C) contained in the glove after irradiation is determined by the content of the hindered phenolic antioxidant (C) contained in the latex composition used for dip molding.
  • a method of irradiating with radiation is preferably performed within 40 days, more preferably within 20 days, further preferably within 10 days.
  • Antioxidants such as hindered phenolic antioxidants (C) often gradually deactivate with storage time after crosslinking by heating.
  • the hindered phenolic anti-aging agent (C) contained in the glove later in the above range the hindered phenol-based aging contained in the latex composition used for dip molding is preferred. It is preferable that the content of the inhibitor (C) be within the above range, and the timing of performing radiation irradiation after obtaining the dip molded body before irradiation be within the above range.
  • the radiation to be applied examples include electromagnetic radiation such as ⁇ -rays and X-rays, and particle radiations such as electron beams and ⁇ -rays.
  • the obtained gloves have tensile strength, elongation, stress at 500% elongation, and stress retention. From the viewpoint that the effect of improving the efficiency and the like can be further enhanced, ⁇ -rays or electron beams are preferred, and ⁇ -rays are most preferred.
  • the absorbed dose upon irradiation with radiation such as ⁇ -ray is preferably in the range of 1 to 500 kGy, more preferably in the range of 5 to 300 kGy, and still more preferably in the range of 10 to 100 kGy.
  • the irradiation energy and time when performing ⁇ -ray irradiation may be set to appropriate conditions in consideration of a target absorbed dose in irradiation of ⁇ -rays or the like and the resistance of the irradiation object to radiation such as ⁇ -rays. desirable.
  • Irradiation energy of ⁇ -rays or the like may be in the range of 0.1 to 10 MeV, preferably 1.17 MeV and 1.33 MeV when cobalt 60 is used as a radiation source, or cesium 137 is used as radiation source. An energy of 0.66 MeV is sometimes desirable.
  • the irradiation time of ⁇ -rays or the like is not particularly limited because it is a time required for obtaining a target absorbed dose of irradiation of ⁇ -rays or the like.
  • the glove obtained by the production method of the present invention has a suppressed coloring, a high tensile strength, a large elongation, a soft texture and a high stress retention.
  • the glove obtained by the production method of the present invention has a yellowness (YI; yellow index) indicating a yellow tint, preferably 10 or less, more preferably 8 or less, and still more preferably 7 or less. The occurrence has been appropriately suppressed.
  • the degree of yellowness (YI) can be measured for gloves obtained by the production method of the present invention, for example, using a color difference meter in accordance with JIS K7103.
  • the glove thus obtained by the production method of the present invention is suitable for gloves used for various applications by utilizing such characteristics, and particularly suitable for surgical gloves.
  • ⁇ Amount of hindered phenolic antioxidant> Approximately 0.5 g of a test piece was cut out from the rubber glove after gamma irradiation obtained in Examples and Comparative Examples, and the weight of the cut out test piece was precisely weighed. The hindered phenolic antioxidant was extracted by Soxhlet extraction under the conditions of 8 hours, and the extract was filtered through a 0.2 ⁇ m disk filter. The amount of hindered phenolic antioxidants contained in rubber gloves after gamma irradiation by measuring the amount of phenolic antiaging by reverse phase high performance liquid chromatography (HPLC) under the following conditions: Was measured.
  • HPLC reverse phase high performance liquid chromatography
  • ⁇ Production Example 1 (Production of latex of carboxyl group-containing nitrile rubber (a1-1))>
  • a pressure-resistant polymerization reactor equipped with a stirrer, 63 parts of 1,3-butadiene, 34 parts of acrylonitrile, 3 parts of methacrylic acid, 0.25 part of t-dodecylmercaptan as a chain transfer agent, 132 parts of deionized water, sodium dodecylbenzenesulfonate 3 parts, 1 part of sodium formalin condensate of ⁇ -naphthalenesulfonic acid, 0.3 part of potassium persulfate, and 0.005 part of sodium ethylenediaminetetraacetate were charged, and polymerization was started at a polymerization temperature of 37 ° C.
  • Example 1 (Preparation of latex composition) To 250 parts of the latex of the carboxyl group-containing nitrile rubber (a1-1) obtained in Production Example 1 (100 parts in terms of the carboxyl group-containing nitrile rubber (a1-1), 100 parts), 0.2 parts of sodium aluminate and 0.1 part of sorbitol.
  • a coagulant aqueous solution was prepared by mixing 30 parts of calcium nitrate, 0.05 parts of polyethylene glycol octyl phenyl ether as a nonionic emulsifier, and 70 parts of water.
  • a ceramic glove mold previously heated to 70 ° C. was immersed in the aqueous solution of coagulant for 5 seconds, pulled up, dried at 70 ° C. for 10 minutes, and allowed to adhere to the glove mold.
  • the glove mold to which the coagulant has been adhered is dipped in the latex composition obtained above for 10 seconds, pulled up, and then dipped in 50 ° C.
  • a dip molding layer was formed on a glove mold.
  • the glove mold on which the dip molding layer is formed is heat-treated at a temperature of 125 ° C. for 25 minutes to crosslink the dip molding layer, the crosslinked dip molding layer is peeled off from the glove mold, and the dip molded body before ⁇ -ray irradiation is formed. I got
  • Example 2 The amount of the aqueous solution of the hindered phenolic antioxidant (trade name “Wingstay L”, manufactured by Goodyear) was 4.57 parts (1 in terms of the hindered phenolic antioxidant represented by the general formula (1)). Latex composition, a dip molded body before ⁇ -ray irradiation, and a rubber glove after ⁇ -ray irradiation were manufactured and evaluated in the same manner as in Example 1 except that the composition was changed to .6 parts). Table 1 shows the results.
  • Example 3 The amount of the aqueous solution of the hindered phenolic antioxidant (trade name “Wingstay L”, manufactured by Goodyear) was 14.3 parts (5 in terms of the hindered phenolic antioxidant represented by the general formula (1)). Part), a latex composition, a dip-formed body before ⁇ -ray irradiation, and a rubber glove after ⁇ -ray irradiation were produced in the same manner as in Example 1, and evaluated in the same manner. Table 1 shows the results.
  • ⁇ Comparative Example 1> The amount of the aqueous solution of the hindered phenol antioxidant (trade name “Wingstay L”, manufactured by Goodyear) is 0.71 part (0 in terms of the hindered phenol antioxidant represented by the general formula (1)). .25 parts), a latex composition, a dip-formed body before ⁇ -ray irradiation, and a rubber glove after ⁇ -ray irradiation were produced in the same manner as in Example 1 and evaluated in the same manner. Table 1 shows the results.
  • ⁇ Reference Example 1> Using the latex composition obtained in the same manner as in Example 1, a dip-formed body before ⁇ -ray irradiation was obtained in the same manner as in Example 1, and this was used as a rubber glove to obtain yellowness (YI), tensile strength, Each of elongation at break, stress at 500% elongation, and stress retention was measured. That is, in Reference Example 1, a rubber glove was obtained in the same manner as in Example 1 except that ⁇ -ray irradiation was not performed. Table 1 shows the results.
  • ⁇ Reference Example 2> Using the latex composition obtained in the same manner as in Example 2, a dip-formed body before ⁇ -ray irradiation was obtained in the same manner as in Example 2, and this was used as a rubber glove to obtain yellowness (YI), tensile strength, Each of elongation at break, stress at 500% elongation, and stress retention was measured. That is, in Reference Example 2, a rubber glove was obtained in the same manner as in Example 2, except that ⁇ -ray irradiation was not performed.
  • YI yellowness
  • tensile strength Each of elongation at break, stress at 500% elongation, and stress retention was measured. That is, in Reference Example 2, a rubber glove was obtained in the same manner as in Example 2, except that ⁇ -ray irradiation was not performed.
  • ⁇ Reference Example 3> Using the latex composition obtained in the same manner as in Comparative Example 2, a dip molded body before ⁇ -irradiation was obtained in the same manner as in Comparative Example 2, and this was used as a rubber glove to obtain yellowness (YI), tensile strength, Each of elongation at break, stress at 500% elongation, and stress retention was measured. That is, in Reference Example 3, a rubber glove was obtained in the same manner as in Comparative Example 2 except that ⁇ -ray irradiation was not performed.
  • YI yellowness
  • tensile strength Each of elongation at break, stress at 500% elongation, and stress retention was measured. That is, in Reference Example 3, a rubber glove was obtained in the same manner as in Comparative Example 2 except that ⁇ -ray irradiation was not performed.
  • a latex containing a latex of a carboxyl group-containing conjugated diene-based rubber (A), a metal compound containing a divalent or higher valent metal (B), and a hindered phenol-based antioxidant (C) A glove is manufactured by irradiating a radiation to a dip-formed layer obtained by dip-forming the composition, and the content of the hindered phenolic antioxidant (C) contained in the glove after the radiation is determined.
  • the content is controlled at 5,000 ppm or more and 70,000 ppm or less, the resulting glove has a low yellowness (YI), is suppressed from coloring, and has a high tensile strength.
  • Example 1 High elongation, soft texture and high stress retention (Examples 1-3). Further, as is clear from the comparison between Example 1 and Reference Example 1 and the comparison between Example 2 and Reference Example 2, according to the production method of the present invention, the yellowness (YI) before and after ⁇ -ray irradiation was measured. ) Is small, and it can be confirmed that the occurrence of coloring due to ⁇ -ray irradiation is effectively suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Gloves (AREA)

Abstract

カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、2価以上の金属を含む金属化合物(B)と、ヒンダードフェノール系老化防止剤(C)とを含有するラテックス組成物をディップ成形することで、ディップ成形層を形成する工程と、前記ディップ成形層に、放射線を照射する工程と、を備える手袋の製造方法であって、放射線照射後の手袋中に含まれる、前記ヒンダードフェノール系老化防止剤(C)の含有量を5,000重量ppm以上、70,000重量ppm以下とする手袋の製造方法が提供される。

Description

手袋の製造方法
 本発明は、手袋の製造方法に関し、さらに詳しくは、着色の発生が抑制され、引張強度が高く、伸びが大きく、柔軟な風合いおよび高い応力保持率を備える手袋を製造するための方法に関する。
 従来、天然ゴムのラテックスに代表される天然ラテックスを含有するラテックス組成物をディップ成形して、乳首、風船、手袋、バルーン、サック等の人体と接触して使用されるディップ成形品が知られている。しかしながら、天然ラテックスは、人体にアレルギー症状を引き起こすような蛋白質を含有するため、生体粘膜または臓器と直接接触するディップ成形品、特に手袋としては問題がある場合が多かった。そこで、合成のニトリルゴムのラテックスを用いる検討がされている。
 たとえば、特許文献1には、カルボキシル基含有共役ジエン系ゴムのラテックスと、2価以上の金属を含む金属化合物とを含有し、架橋剤としての硫黄および/または含硫黄化合物を実質的に含有しないラテックス組成物をディップ成形することで、ディップ成形層を形成する工程と、前記ディップ成形層に、放射線を照射する工程と、を備える手袋の製造方法が開示されている。
 特許文献1によれば、引張強度が高く、伸びが大きく、柔軟な風合いおよび高い応力保持率を備える手袋を製造することができるものの、特許文献1記載の製造方法により得られる手袋は、放射線照射により、着色が発生してしまい、その商品価値が低下してしまうという課題があった。
国際公開第2017/146239号
 本発明は、このような実状に鑑みてなされたものであり、着色の発生が抑制され、引張強度が高く、伸びが大きく、柔軟な風合いおよび高い応力保持率を備える手袋を製造するための方法を提供することを目的とする。
 本発明者等は、上記課題を解決すべく鋭意研究した結果、ラテックス組成物をディップ成形することにより得られるディップ成形層に、放射線を照射することにより手袋を製造する際に、ラテックス組成物として、カルボキシル基含有共役ジエン系ゴムのラテックスと、2価以上の金属を含む金属化合物とに加えて、ヒンダードフェノール系老化防止剤を含有するものを用い、かつ、放射線照射後の手袋中に含まれる、ヒンダードフェノール系老化防止剤の含有量を5,000重量ppm以上、70,000重量ppm以下の範囲に制御することにより、得られる手袋における、着色の発生の抑制が可能であり、しかも、得られる手袋を、引張強度が高く、伸びが大きく、柔軟な風合いおよび高い応力保持率を備えるものとすることができることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、2価以上の金属を含む金属化合物(B)と、ヒンダードフェノール系老化防止剤(C)とを含有するラテックス組成物をディップ成形することで、ディップ成形層を形成する工程と、
 前記ディップ成形層に、放射線を照射する工程と、を備える手袋の製造方法であって、
 放射線照射後の手袋中に含まれる、前記ヒンダードフェノール系老化防止剤(C)の含有量を5,000重量ppm以上、70,000重量ppm以下とする手袋の製造方法が提供される。
 本発明の手袋の製造方法において、放射線照射後の手袋の黄色味を示す黄色度(YI)が10以下であることが好ましい。
 本発明の手袋の製造方法において、前記ラテックス組成物中における、前記カルボキシル基含有共役ジエン系ゴム(A)100重量部に対する、前記ヒンダードフェノール系老化防止剤(C)の含有量を、0.5~8.5重量部の範囲とし、前記ディップ成形層に対する、放射線の照射を、前記ディップ成形層を形成した後、40日以内に行うことが好ましい。
 本発明の手袋の製造方法において、前記ディップ成形層を形成する工程が、前記ラテックス組成物をディップ成形した後、加熱処理を施すことで、前記2価以上の金属を含む金属化合物(B)による架橋を行う工程であることが好ましい。
 本発明の手袋の製造方法において、前記ヒンダードフェノール系老化防止剤(C)が、p-クレゾールとジシクロペンタジエンとの縮合物をブチル化してなる化合物であることが好ましい。
 本発明の手袋の製造方法において、前記ヒンダードフェノール系老化防止剤(C)が、下記一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 (式中、nは整数を表す。)
 本発明の手袋の製造方法において、前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスが、カルボキシル基含有ニトリルゴム(a1)のラテックスであることが好ましい。
 本発明の手袋の製造方法において、前記2価以上の金属を含む金属化合物(B)が、3価以上の金属を含む金属化合物であり、前記ラテックス組成物が、糖類(d1)、糖アルコール(d2)、ヒドロキシ酸(d3)およびヒドロキシ酸塩(d4)から選択される少なくとも1種のアルコール性水酸基含有化合物(D)をさらに含有することが好ましい。
 本発明によれば、着色の発生が抑制され、引張強度が高く、伸びが大きく、柔軟な風合いおよび高い応力保持率を備える手袋を製造するための方法を提供することができる。
 本発明の手袋の製造方法は、カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、2価以上の金属を含む金属化合物(B)と、ヒンダードフェノール系老化防止剤(C)とを含有するラテックス組成物をディップ成形することで、ディップ成形層を形成する工程と、
 前記ディップ成形層に、放射線を照射する工程と、を備える手袋の製造方法であって、
 放射線照射後の手袋中に含まれる、前記ヒンダードフェノール系老化防止剤(C)の含有量を5,000重量ppm以上、70,000重量ppm以下に制御するものである。
<ラテックス組成物>
 まず、本発明の製造方法に用いるラテックス組成物について、説明する。
 本発明で用いるラテックス組成物は、カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、2価以上の金属を含む金属化合物(B)と、ヒンダードフェノール系老化防止剤(C)とを含有するものである。
 カルボキシル基含有共役ジエンゴム(A)のラテックスとしては、共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を共重合して得られる共重合体のラテックスであればよいが、カルボキシル基含有ニトリルゴム(a1)、カルボキシル基含有スチレン-ブタジエンゴム(a2)およびカルボキシル基含有ブタジエンゴム(a3)から選択される少なくとも1種のゴムのラテックスであることが好ましい。
 カルボキシル基含有ニトリルゴム(a1)のラテックスは、共役ジエン単量体およびエチレン性不飽和カルボン酸単量体に加えて、エチレン性不飽和ニトリル単量体を共重合してなる共重合体のラテックスであり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体のラテックスであってもよい。
 共役ジエン単量体としては、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエンおよびクロロプレンなどが挙げられる。これらのなかでも、1,3-ブタジエンが好ましい。これらの共役ジエン単量体は、単独で、または2種以上を組合せて用いることができる。カルボキシル基含有ニトリルゴム(a1)中における、共役ジエン単量体により形成される共役ジエン単量体単位の含有割合は、好ましくは56~78重量%であり、より好ましくは56~73重量%、さらに好ましくは56~70重量%である。共役ジエン単量体単位の含有量を上記範囲とすることにより、本発明の製造方法により得られる手袋を、引張強度を十分なものとしながら、風合いにより優れ、伸びがより増大されたものとすることができる。
 また、共役ジエン単量体由来の単量体単位のなかでも、イソプレン由来の単量体単位は、後述する放射線照射により軟化劣化を生じるおそれがあるため、カルボキシル基含有ニトリルゴム(a1)中における、イソプレン由来の単量体単位の含有割合は、5重量%以下とすることが好ましく、2.5重量%以下とすることがより好ましく、1重量%以下とすることがさらに好ましく、イソプレン由来の単量体単位を実質的に含有しないことが特に好ましい。なお、後述するカルボキシル基含有スチレン-ブタジエンゴム(a2)のラテックス、カルボキシル基含有ブタジエンゴム(a3)のラテックス、さらには、これら以外のカルボキシル基含有共役ジエンゴム(A)のラテックスにおいても、同様の理由より、これらカルボキシル基含有共役ジエンゴム中における、イソプレン由来の単量体単位の含有割合は、好ましくは5重量%以下、より好ましくは2.5重量%以下、さらに好ましくは1重量%以下であり、イソプレン由来の単量体単位を実質的に含有しないことが特に好ましい。
 エチレン性不飽和カルボン酸単量体としては、カルボキシル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、アクリル酸、メタクリル酸などのエチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸等のエチレン性不飽和多価カルボン酸単量体;無水マレイン酸、無水シトラコン酸等のエチレン性不飽和多価カルボン酸無水物;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ-2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸部分エステル単量体;などが挙げられる。これらのなかでも、エチレン性不飽和モノカルボン酸が好ましく、メタクリル酸が特に好ましい。これらのエチレン性不飽和カルボン酸単量体はアルカリ金属塩またはアンモニウム塩として用いることもできる。また、エチレン性不飽和カルボン酸単量体は単独で、または2種以上を組合せて用いることができる。カルボキシル基含有ニトリルゴム(a1)中における、エチレン性不飽和カルボン酸単量体により形成されるエチレン性不飽和カルボン酸単量体単位の含有割合は、好ましくは2~6.5重量%であり、より好ましくは2~6重量%、さらに好ましくは2~5重量%、さらにより好ましくは2~4.5重量%、特に好ましくは2.5~4.5重量%である。エチレン性不飽和カルボン酸単量体単位の含有量を上記範囲とすることにより、本発明の製造方法により得られる手袋を、引張強度を十分なものとしながら、風合いにより優れ、伸びがより増大されたものとすることができる。
 エチレン性不飽和ニトリル単量体としては、ニトリル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリロニトリルなどが挙げられる。なかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。これらのエチレン性不飽和ニトリル単量体は、単独で、または2種以上を組合せて用いることができる。カルボキシル基含有ニトリルゴム(a1)中における、エチレン性不飽和ニトリル単量体により形成されるエチレン性不飽和ニトリル単量体単位の含有割合は、好ましくは20~40重量%であり、より好ましくは25~40重量%、さらに好ましくは30~40重量%である。エチレン性不飽和ニトリル単量体単位の含有量を上記範囲とすることにより、本発明の製造方法により得られる手袋を、引張強度を十分なものとしながら、風合いにより優れ、伸びがより増大されたものとすることができる。
 共役ジエン単量体、エチレン性不飽和カルボン酸単量体およびエチレン性不飽和ニトリル単量体と共重合可能なその他のエチレン性不飽和単量体としては、たとえば、スチレン、アルキルスチレン、ビニルナフタレン等のビニル芳香族単量体;フルオロエチルビニルエーテル等のフルオロアルキルビニルエーテル;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド等のエチレン性不飽和アミド単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸テトラフルオロプロピル、マレイン酸ジブチル、フマル酸ジブチル、マレイン酸ジエチル、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸メトキシエトキシエチル、(メタ)アクリル酸シアノメチル、(メタ)アクリル酸-2-シアノエチル、(メタ)アクリル酸-1-シアノプロピル、(メタ)アクリル酸-2-エチル-6-シアノヘキシル、(メタ)アクリル酸-3-シアノプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル単量体;ジビニルベンゼン、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート等の架橋性単量体;などを挙げることができる。これらのエチレン性不飽和単量体は単独で、または2種以上を組み合わせて使用することができる。
 カルボキシル基含有ニトリルゴム(a1)中における、その他のエチレン性不飽和単量体により形成されるその他の単量体単位の含有割合は、好ましくは10重量%以下であり、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。
 カルボキシル基含有ニトリルゴム(a1)のラテックスは、上述した単量体を含有してなる単量体混合物を共重合することにより得られるが、乳化重合により共重合する方法が好ましい。乳化重合方法としては、従来公知の方法を採用することができる。
 上述した単量体を含有してなる単量体混合物を乳化重合する際には、通常用いられる、乳化剤、重合開始剤、分子量調整剤等の重合副資材を使用することができる。これら重合副資材の添加方法は特に限定されず、初期一括添加法、分割添加法、連続添加法などいずれの方法でもよい。
 乳化剤としては、特に限定されないが、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、アルキルスルホコハク酸塩等のアニオン性乳化剤;アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライド等のカチオン性乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性乳化剤などを挙げることができる。なかでも、アニオン性乳化剤が好ましく、アルキルベンゼンスルホン酸塩がより好ましく、ドデシルベンゼンスルホン酸カリウムおよびドデシルベンゼンスルホン酸ナトリウムが特に好ましい。これらの乳化剤は、単独で、または2種以上を組合せて用いることができる。乳化剤の使用量は、単量体混合物100重量部に対して、好ましくは0.1~10重量部である。
 重合開始剤としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-α-クミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;などを挙げることができる。これらの重合開始剤は、それぞれ単独で、または2種類以上を組み合わせて使用することができる。重合開始剤の使用量は、単量体混合物100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.01~2重量部である。
 また、過酸化物開始剤は還元剤との組み合わせで、レドックス系重合開始剤として使用することができる。この還元剤としては、特に限定されないが、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸化合物;ジメチルアニリン等のアミン化合物;などが挙げられる。これらの還元剤は単独で、または2種以上を組合せて用いることができる。還元剤の使用量は、過酸化物100重量部に対して3~1000重量部であることが好ましい。
 乳化重合する際に使用する水の量は、使用する全単量体100重量部に対して、80~600重量部が好ましく、100~200重量部が特に好ましい。
 単量体の添加方法としては、たとえば、反応容器に使用する単量体を一括して添加する方法、重合の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残りの単量体を連続的または断続的に添加して重合する方法等が挙げられ、いずれの方法を採用してもよい。単量体を混合して連続的または断続的に添加する場合、混合物の組成は、一定としても、あるいは変化させてもよい。また、各単量体は、使用する各種単量体を予め混合してから反応容器に添加しても、あるいは別々に反応容器に添加してもよい。
 さらに、必要に応じて、キレート剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることができ、これらは種類、使用量とも特に限定されない。
 乳化重合を行う際の重合温度は、特に限定されないが、通常、3~95℃、好ましくは5~60℃である。重合時間は5~40時間程度である。
 以上のように単量体混合物を乳化重合し、所定の重合転化率に達した時点で、重合系を冷却したり、重合停止剤を添加したりして、重合反応を停止する。重合反応を停止する際の重合転化率は、好ましくは90重量%以上、より好ましくは93重量%以上である。
 重合停止剤としては、特に限定されないが、たとえば、ヒドロキシルアミン、ヒドロキシアミン硫酸塩、ジエチルヒドロキシルアミン、ヒドロキシアミンスルホン酸およびそのアルカリ金属塩、ジメチルジチオカルバミン酸ナトリウム、ハイドロキノン誘導体、カテコール誘導体、ならびに、ヒドロキシジメチルベンゼンチオカルボン酸、ヒドロキシジエチルベンゼンジチオカルボン酸、ヒドロキシジブチルベンゼンジチオカルボン酸などの芳香族ヒドロキシジチオカルボン酸およびこれらのアルカリ金属塩などが挙げられる。重合停止剤の使用量は、単量体混合物100重量部に対して、好ましくは0.05~2重量部である。
 重合反応を停止した後、所望により、未反応の単量体を除去し、固形分濃度やpHを調整することで、カルボキシル基含有ニトリルゴム(a1)のラテックスを得ることができる。
 また、カルボキシル基含有ニトリルゴム(a1)のラテックスには、必要に応じて、老化防止剤、防腐剤、抗菌剤、分散剤などを適宜添加してもよい。
 カルボキシル基含有ニトリルゴム(a1)のラテックスの数平均粒子径は、好ましくは60~300nm、より好ましくは80~150nmである。粒子径は、乳化剤および重合開始剤の使用量を調節するなどの方法により、所望の値に調整することができる。
 また、カルボキシル基含有スチレン-ブタジエンゴム(a2)のラテックスは、共役ジエン単量体としての1,3-ブタジエンおよびエチレン性不飽和カルボン酸単量体に加えて、スチレンを共重合してなる共重合体のラテックスであり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体のラテックスであってもよい。
 カルボキシル基含有スチレン-ブタジエンゴム(a2)中における、1,3-ブタジエンにより形成されるブタジエン単位の含有割合は、好ましくは56~78重量%であり、より好ましくは56~73重量%、さらに好ましくは56~68重量%である。ブタジエン単位の含有量を上記範囲とすることにより、本発明の製造方法により得られる手袋を、引張強度を十分なものとしながら、風合いにより優れ、伸びがより増大されたものとすることができる。
 エチレン性不飽和カルボン酸単量体としては、カルボキシル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のものを用いることができる。カルボキシル基含有スチレン-ブタジエンゴム(a2)中における、エチレン性不飽和カルボン酸単量体により形成されるエチレン性不飽和カルボン酸単量体単位の含有割合は、好ましくは2~6.5重量%であり、より好ましくは2~6重量%、さらに好ましくは2~5重量%、さらにより好ましくは2~4.5重量%、特に好ましくは2.5~4.5重量%である。エチレン性不飽和カルボン酸単量体単位の含有量を上記範囲とすることにより、本発明の製造方法により得られる手袋を、引張強度を十分なものとしながら、風合いにより優れ、伸びがより増大されたものとすることができる。
 カルボキシル基含有スチレン-ブタジエンゴム(a2)中における、スチレンにより形成されるスチレン単位の含有割合は、好ましくは20~40重量%であり、より好ましくは25~40重量%、さらに好ましくは30~40重量%である。スチレン単位の含有量を上記範囲とすることにより、本発明の製造方法により得られる手袋を、引張強度を十分なものとしながら、風合いにより優れ、伸びがより増大されたものとすることができる。
 共役ジエン単量体としての1,3-ブタジエン、エチレン性不飽和カルボン酸単量体およびスチレンと共重合可能なその他のエチレン性不飽和単量体としては、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のもの(ただし、スチレンを除く)の他、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエンおよびクロロプレンなどの1,3-ブタジエン以外の共役ジエン単量体などが挙げられる。カルボキシル基含有スチレン-ブタジエンゴム(a2)中における、その他のエチレン性不飽和単量体により形成されるその他の単量体単位の含有割合は、好ましくは10重量%以下であり、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。
 本発明で用いるカルボキシル基含有スチレン-ブタジエンゴム(a2)のラテックスは、上述した単量体を含有してなる単量体混合物を共重合することにより得られるが、乳化重合により共重合する方法が好ましい。乳化重合方法としては、カルボキシル基含有ニトリルゴム(a1)の場合と同様の重合副資材を用い、同様の方法にて重合を行えばよい。
 また、本発明で用いるカルボキシル基含有スチレン-ブタジエンゴム(a2)のラテックスには、必要に応じて、老化防止剤、防腐剤、抗菌剤、分散剤などを適宜添加してもよい。
 本発明で用いるカルボキシル基含有スチレン-ブタジエンゴム(a2)のラテックスの数平均粒子径は、好ましくは60~300nm、より好ましくは80~150nmである。粒子径は、乳化剤および重合開始剤の使用量を調節するなどの方法により、所望の値に調整することができる。
 また、カルボキシル基含有共役ジエンゴム(a3)のラテックスは、共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を共重合してなる共重合体のラテックスであり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体のラテックスであってもよい。
 カルボキシル基含有共役ジエンゴム(a3)中における、共役ジエン単量体により形成される共役ジエン単量体単位の含有割合は、好ましくは80~98重量%であり、より好ましくは90~98重量%、さらに好ましくは95~97.5重量%である。共役ジエン単量体単位の含有量を上記範囲とすることにより、本発明の製造方法により得られる手袋を、引張強度を十分なものとしながら、風合いにより優れ、伸びがより増大されたものとすることができる。
 エチレン性不飽和カルボン酸単量体としては、カルボキシル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のものを用いることができる。カルボキシル基含有共役ジエンゴム(a3)中における、エチレン性不飽和カルボン酸単量体により形成されるエチレン性不飽和カルボン酸単量体単位の含有割合は、好ましくは2~10重量%であり、より好ましくは2~7.5重量%、さらに好ましくは2~6.5重量%であり、さらにより好ましくは2~6重量%、特に好ましくは2~5重量%、最も好ましくは2.5~5重量%である。エチレン性不飽和カルボン酸単量体単位の含有量を上記範囲とすることにより、本発明の製造方法により得られる手袋を、引張強度を十分なものとしながら、風合いにより優れ、伸びがより増大されたものとすることができる。
 共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエンおよびクロロプレンなどが挙げられ、共役ジエン単量体としてはこれらの何れかを単独で用いても、2種以上を組み合わせて用いてもよい。これらのなかでも、1,3-ブタジエンが好ましい。
 共役ジエン単量体およびエチレン性不飽和カルボン酸単量体と共重合可能なその他のエチレン性不飽和単量体としては、たとえば、上述したカルボキシル基含有ニトリルゴム(a1)のラテックスと同様のもの(ただし、スチレンを除く)が挙げられる。カルボキシル基含有共役ジエンゴム(a3)中における、その他のエチレン性不飽和単量体により形成されるその他の単量体単位の含有割合は、好ましくは10重量%以下であり、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。
 本発明で用いるカルボキシル基含有共役ジエンゴム(a3)のラテックスは、上述した単量体を含有してなる単量体混合物を共重合することにより得られるが、乳化重合により共重合する方法が好ましい。乳化重合方法としては、カルボキシル基含有ニトリルゴム(a1)の場合と同様の重合副資材を用い、同様の方法にて重合を行えばよい。
 本発明で用いるラテックス組成物は、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックスに加えて、2価以上の金属を含む金属化合物(B)を含有する。
 2価以上の金属を含む金属化合物(B)は、上述したカルボキシル基含有共役ジエン系ゴム(A)に含まれるカルボキシル基と反応することにより、金属イオン結合することで、架橋構造を形成することができ、これにより架橋剤として作用するものである。
 2価以上の金属を含む金属化合物(B)としては、特に限定されないが、亜鉛化合物、マグネシウム化合物、チタン化合物、カルシウム化合物、鉛化合物、鉄化合物、錫化合物、クロム化合物、コバルト化合物、ジルコニウム化合物、アルミニウム化合物などが挙げられる。これら2価以上の金属を含む金属化合物(B)は、単独で、または2種以上を組合せて用いることができる。これらのなかでも、本発明の製造方法により得られる手袋を、応力保持率により優れたものとすることができるという観点より、3価以上の金属を含む金属化合物が好ましく、アルミニウム化合物が特に好ましい。
 アルミニウム化合物としては、たとえば、酸化アルミニウム、塩化アルミニウム、水酸化アルミニウム、硝酸アルミウム、硫酸アルミニウム、アルミニウム金属、硫酸アルミニウムアンモニウム、臭化アルミニウム、フッ化アルミニウム、硫酸アルミニウム・カリウム、アルミニウム・イソプロポキシド、アルミン酸ナトリウム、アルミン酸カリウム、亜硫酸アルミウムナトリウムなどが挙げられ、これらのなかでも、アルミン酸ナトリウムが好ましい。これらアルミニウム化合物は、単独で、または2種以上を組合せて用いることができる。
 また、2価以上の金属を含む金属化合物(B)として、3価以上の金属を含む金属化合物を使用する場合には、2価の金属を含む金属化合物を併用してもよく、2価の金属を含む金属化合物を併用することで、本発明の製造方法により得られる手袋の引張強度をより高めることができる。3価以上の金属を含む金属化合物と、2価の金属を含む金属化合物とを併用する場合における、2価の金属を含む金属化合物としては、亜鉛化合物、マグネシウム化合物、カルシウム化合物、鉛化合物が好ましく、亜鉛化合物がより好ましく、酸化亜鉛が特に好ましい。
 本発明で用いるラテックス組成物中における、2価以上の金属を含む金属化合物(B)の含有割合は、ラテックス中に含まれるカルボキシル基含有共役ジエン系ゴム(A)100重量部に対して、好ましくは0.1~5重量部であり、より好ましくは0.5~2.5重量部、さらに好ましくは0.5~2.0重量部である。2価以上の金属を含む金属化合物(B)の含有割合を上記範囲とすることにより、ラテックス組成物としての安定性を良好なものとしながら、架橋を行う際における、架橋を十分なものとすることができる。また2価以上の金属を含む金属化合物(B)として、3価以上の金属を含む金属化合物を使用する場合における、ラテックス組成物中における、3価以上の金属を含む金属化合物の含有割合は、ラテックス組成物としての安定性および架橋性の観点から、ラテックス中に含まれるカルボキシル基含有共役ジエン系ゴム(A)100重量部に対して、0.1~1.5重量部の範囲とすることが好ましく、より好ましくは0.1~1.25重量部、さらに好ましくは0.1~1.0重量部である。さらに、2価以上の金属を含む金属化合物(B)として、3価以上の金属を含む金属化合物と、2価の金属を含む金属化合物とを併用する場合における、これらの含有割合は、ラテックス組成物としての安定性および架橋性の観点から、「3価以上の金属を含む金属化合物:2価の金属を含む金属化合物」の重量比で、好ましくは100:0~0:100の範囲、より好ましくは10:90~90:10の範囲である。
 また、本発明で用いるラテックス組成物は、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックス、および2価以上の金属を含む金属化合物(B)に加えて、ヒンダードフェノール系老化防止剤(C)を含有する。
 ヒンダードフェノール系老化防止剤(C)としては、フェノール構造を有し、かつ、フェノール構造を構成するOH基(フェノール性水酸基)のオルト位の一方に、嵩高の基(たとえば、t-ブチル基)を有する化合物であればよく、特に限定されない。
 ヒンダードフェノール系老化防止剤(C)としては、たとえば、p-クレゾールとジシクロペンタジエンとの縮合物をブチル化してなる化合物、2,6-ジ-t-ブチル-p-クレゾール、3-t-ブチル-4-ヒドロキシアニソール、2-t-ブチル-4-ヒドロキシアニソール、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4‘-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、n-オクタデシル-3-(3’,5’-ジーt-ブチル-4’-ヒドロキシフェニル)プロピオネート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ハイドロキシベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン、ペンタエリスリチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナミド)、およびトリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイトなどが挙げられる。これらのなかでも、得られる手袋の着色の発生をより適切に抑制できるという観点より、p-クレゾールとジシクロペンタジエンとの縮合物をブチル化してなる化合物(p-クレゾールを構成するOH基(フェノール性水酸基)のオルト位をブチル化してなる化合物)が好ましく、p-クレゾールとジシクロペンタジエンとの縮合物をt-ブチル化してなる化合物(p-クレゾールとジシクロペンタジエンとの縮合物中のp-クレゾールを構成するOH基(フェノール性水酸基)のオルト位に、t-ブチル基を導入してなる化合物)がより好ましく、下記一般式(1)で表される化合物が特に好ましい。下記一般式(1)で表される化合物は、たとえば、p-クレゾールとジシクロペンタジエンとの縮合物を得た後、イソブチレンを反応させることにより、得ることができる。
Figure JPOXMLDOC01-appb-C000003
 (式中、nは整数を表す。)
 本発明においては、ラテックス組成物として、このようなヒンダードフェノール系老化防止剤(C)を含有するものを用い、かつ、このようなラテックス組成物をディップ成形することで、形成したディップ成形層に、放射線を照射することにより手袋を製造するものであり、この際に、放射線照射後の手袋中に含まれる、ヒンダードフェノール系老化防止剤(C)の含有量を5,000重量ppm以上、70,000重量ppm以下に制御するものである。そして、これにより、得られる手袋を、着色の発生が抑制され、引張強度が高く、伸びが大きく、柔軟な風合いおよび高い応力保持率に優れたものとすることができるものである。
 そのため、本発明で用いるラテックス組成物中における、ヒンダードフェノール系老化防止剤(C)の含有量としては、放射線照射後の手袋中に含まれる、ヒンダードフェノール系老化防止剤(C)の含有量が上記範囲となる量とすればよいが、本発明で用いるラテックス組成物中における、カルボキシル基含有共役ジエン系ゴム(A)100重量部に対する、ヒンダードフェノール系老化防止剤(C)の含有量は、好ましくは0.5~8.5重量部であり、より好ましくは0.8~7.5重量部、さらに好ましくは1.5重量部超、7.5重量部以下、さらにより好ましくは1.6~6.0重量部である。
 また、本発明で用いるラテックス組成物において、2価以上の金属を含む金属化合物(B)として、3価以上の金属を含む金属化合物を含むものを使用する場合には、糖類(d1)、糖アルコール(d2)、ヒドロキシ酸(d3)およびヒドロキシ酸塩(d4)から選択される少なくとも1種のアルコール性水酸基含有化合物(D)をさらに含有することが好ましい。このようなアルコール性水酸基含有化合物(D)をさらに含有させることで、ラテックス組成物中における、3価以上の金属を含む金属化合物の分散性をより高めることができ、これにより、ラテックス組成物としての安定性を良好なものとすることができる。そして、結果として、本発明の製造方法により得られる手袋の応力保持率をより適切に高めることができる。
 本発明で用いるアルコール性水酸基含有化合物(D)は、糖類(d1)、糖アルコール(d2)、ヒドロキシ酸(d3)およびヒドロキシ酸塩(d4)から選択される少なくとも1種であり、これらの中でも、本発明の作用効果をより高めることができるという観点より、糖アルコール(d2)およびヒドロキシ酸塩(d4)から選択される少なくとも1種を用いることが好ましい。また、アルコール性水酸基含有化合物(D)として、2種以上を併用する場合には、糖類(d1)および糖アルコール(d2)から選択される少なくとも1種と、ヒドロキシ酸(d3)およびヒドロキシ酸塩(d4)から選択される少なくとも1種とを組み合わせて用いることが好ましく、糖アルコール(d2)とヒドロキシ酸塩(d4)とを組み合わせて用いることがより好ましい。
 糖類(d1)としては、単糖類、あるいは、2以上の単糖がグリコシド結合によって結合した多糖類であればよく特に限定されないが、たとえば、エリスロース、スレオース、リボース、リキソース、キシロース、アラビノース、アロース、タロース、グロース、アルトロース、ガラクトース、イドース、エリスルロース、キシルロース、リブロース、プシコース、フルクトース、ソルボース、タガトースなどの単糖類;トレハロース、マルトース、イソマルトース、セロビオース、ゲンチオビオース、メリビオース、ラクトース、スクロース、パラチノースなどの二糖類;マルトトリオース、イソマルトトリオース、パノース、セロトリオース、マンニノトリオース、ソラトリオース、メレジトース、プランテオース、ゲンチアノース、ウンベリフェロース、ラクトスクロース、ラフィノースなどの三糖類;マルトテトラオース、イソマルトテトラオースなどのホモオリゴ糖;スタキオース、セロテトラオース、スコロドース、リキノース、パノースなどの四糖類;マルトペンタオース、イソマルトペンタオースなどの五糖類;マルトヘキサオース、イソマルトヘキサオースなどの六糖類;などが挙げられる。これらは1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。
 糖アルコール(d2)としては、単糖あるいは多糖類の糖アルコールであればよく、特に限定されないが、たとえば、グリセリンなどのトリトール;エリスリトール、D-スレイトール、L-スレイトールなどのテトリトール;D-アラビニトール、L-アラビニトール、キシリトール、リビトール、ペンタエリスリトールなどのペンチトール;ペンタエリスリトール;ソルビトール、D-イジトール、ガラクチトール、D-グルシトール、マンニトールなどのヘキシトール;ボレミトール、ペルセイトールなどのへプチトール;D-エリトロ-D-ガラクト-オクチトールなどのオクチトール;などが挙げられる。これらは1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。これらのなかでも、炭素数6の糖アルコールであるヘキシトールが好ましく、ソルビトールがより好ましい。
 ヒドロキシ酸(d3)としては、ヒドロキシル基を有するカルボン酸であればよく、特に限定されないが、たとえば、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、リンゴ酸、3-メチリンゴ酸、酒石酸、シトラマル酸、クエン酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸、リシノール酸、リシネライジン酸、セレブロン酸、キナ酸、シキミ酸、セリンなどの脂肪族ヒドロキシ酸;サリチル酸、クレオソート酸(ホモサリチル酸、ヒドロキシ(メチル)安息香酸)、バニリン酸、シリング酸、ヒドロキシプロパン酸、ヒドロキシペンタン酸、ヒドロキシヘキサン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸、ヒドロキシノナン酸、ヒドロキシデカン酸、ヒドロキシウンデカン酸、ヒドロキシドドデカン酸、ヒドロキシトリデカン酸、ヒドロキシテトラデカン酸、ヒドロキシペンタデカン酸、ヒドロキシヘプタデカン酸、ヒドロキシオクタデカン酸、ヒドロキシノナデカン酸、ヒドロキシイコサン酸、リシノール酸などのモノヒドロキシ安息香酸誘導体、ピロカテク酸、レソルシル酸、プロトカテク酸、ゲンチジン酸、オルセリン酸などのジヒドロキシ安息香酸誘導体、没食子酸などのトリヒドロキシ安息香酸誘導体、マンデル酸、ベンジル酸、アトロラクチン酸などのフェニル酢酸誘導体、メリロト酸、フロレト酸、クマル酸、ウンベル酸、コーヒー酸、フェルラ酸、シナピン酸等のケイヒ酸・ヒドロケイヒ酸誘導体などの芳香族ヒドロキシ酸;などが挙げられる。これらは1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。これらのなかでも、脂肪族ヒドロキシ酸が好ましく、脂肪族α-ヒドロキシ酸がより好ましく、グリコール酸、乳酸、タルトロン酸、グリセリン酸、リンゴ酸、酒石酸、クエン酸がさらに好ましく、グリコール酸が特に好ましい。
 ヒドロキシ酸塩(d4)としては、ヒドロキシ酸の塩であればよく、特に限定されず、ヒドロキシ酸(d3)の具体例として例示したヒドロキシ酸の金属塩などが挙げられ、たとえば、ナトリウム、カリウムなどのアルカリ金属の塩;カルシウム、マグネシウムなどのアルカリ土類金属の塩が挙げられる。ヒドロキシ酸塩(d4)としては、1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。ヒドロキシ酸塩(d4)としては、ヒドロキシ酸のアルカリ金属塩が好ましく、ヒドロキシ酸のナトリウム塩が好ましい。また、ヒドロキシ酸塩(d4)を構成するヒドロキシ酸としては、脂肪族ヒドロキシ酸が好ましく、脂肪族α-ヒドロキシ酸がより好ましく、グリコール酸、乳酸、タルトロン酸、グリセリン酸、リンゴ酸、酒石酸、クエン酸がさらに好ましく、グリコール酸が特に好ましい。すなわち、ヒドロキシ酸塩(d4)としては、グリコール酸ナトリウムが特に好適である。
 本発明で用いるラテックス組成物中における、アルコール性水酸基含有化合物(D)の含有量は、3価以上の金属を含む金属化合物に対し、「3価以上の金属を含む金属化合物:アルコール性水酸基含有化合物(D)」の重量比で、1:0.1~1:50の範囲となる量とすることが好ましく、より好ましくは1:0.2~1:45の範囲となる量、さらに好ましくは1:0.3~1:30の範囲となる量である。アルコール性水酸基含有化合物(D)の含有量を上記範囲とすることにより、ラテックス組成物の安定性をより高めることができる。
 本発明で用いるラテックス組成物は、たとえば、カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、2価以上の金属を含む金属化合物(B)、およびヒンダードフェノール系老化防止剤(C)、ならびに必要に応じて用いられるアルコール性水酸基含有化合物(D)を配合することにより得ることができる。カルボキシル基含有共役ジエン系ゴム(A)のラテックスに、2価以上の金属を含む金属化合物(B)、およびヒンダードフェノール系老化防止剤(C)、ならびに必要に応じて用いられるアルコール性水酸基含有化合物(D)を配合する方法としては、特に限定されないが、得られるラテックス組成物中に、2価以上の金属を含む金属化合物(B)を良好に分散させることができるという点より、2価以上の金属を含む金属化合物(B)については、必要に応じて用いられるアルコール性水酸基含有化合物(D)とともに水またはアルコールに溶解し、水溶液またはアルコール溶液の状態で添加することが好ましい。また、ヒンダードフェノール系老化防止剤(C)についても、得られるラテックス組成物中における分散性を良好なものとするという観点より、水またはアルコールに溶解あるいは分散させた、溶液あるいは分散液の状態で添加することが好ましい。
 また、本発明で用いるラテックス組成物には、上述したカルボキシル基含有共役ジエン系ゴム(A)のラテックス、2価以上の金属を含む金属化合物(B)、およびヒンダードフェノール系老化防止剤(C)、ならびに必要に応じて用いられるアルコール性水酸基含有化合物(D)に加えて、所望により、2価以上の金属を含む金属化合物(B)以外の架橋剤、充填剤、pH調整剤、増粘剤、ヒンダードフェノール系老化防止剤(C)以外の老化防止剤、分散剤、顔料、充填剤、軟化剤等を配合してもよい。
 2価以上の金属を含む金属化合物(B)以外の架橋剤としては、たとえば、硫黄および/または含硫黄化合物などが挙げられる。架橋剤としての硫黄としては、実質的に硫黄原子のみから構成され、かつ、各種ゴムを架橋させるための架橋剤用途に用いられる単体硫黄、特に、共役ジエン単量体単位の炭素-炭素二重結合部分に作用する単体硫黄であり、その具体例としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などが挙げられる。また、架橋剤としての含硫黄化合物としては、硫黄原子を含有し、かつ、各種ゴムを架橋させるための架橋剤用途に用いられる化合物、特に、共役ジエン単量体単位の炭素-炭素二重結合部分に作用する化合物であり、その具体例としては、一塩化硫黄、二塩化硫黄、4,4’-ジチオジモルホリン、アルキルフェノールジスルフィド、6-メチルキノキサリン-2、3-ジチオカーボネート、カプロラクタムジスルフィド、ジブチルジチオカルバミン酸亜鉛、含リンポリスルフィド、高分子多硫化物などが挙げられる。
 本発明で用いるラテックス組成物中における、架橋剤としての硫黄および/または含硫黄化合物の含有割合は、ラテックス中に含まれるカルボキシル基含有共役ジエン系ゴム(A)100重量部に対して、硫黄および含硫黄化合物の合計で、好ましくは0重量部超、4重量部以下であり、より好ましくは0重量部超、2.5重量部以下、さらに好ましくは0重量部超、1.5重量部以下である。
 本発明で用いるラテックス組成物の固形分濃度は、好ましくは10~40重量%、より好ましくは15~35重量%である。また、本発明で用いるラテックス組成物のpHは、好ましくは7.5~12.0、より好ましくは7.5~11.0、さらに好ましくは7.5~9.4、特に好ましくは7.5~9.2である。
<手袋の製造方法>
 本発明の手袋の製造方法は、上述したラテックス組成物をディップ成形することで、ディップ成形層を形成する工程と、形成されたディップ成形層に、放射線を照射する工程と、を備える。
 ディップ成形は、ラテックス組成物に手袋形状の型(手袋型)を浸漬し、手袋型の表面にラテックス組成物を沈着させ、次に手袋型をラテックス組成物から引き上げ、その後、手袋型の表面に沈着したラテックス組成物を乾燥させる方法である。なお、ラテックス組成物に浸漬される前の手袋型は予熱しておいてもよい。また、手袋型をラテックス組成物に浸漬する前、または、手袋型をラテックス組成物から引き上げた後に、必要に応じて凝固剤を使用してもよい。
 凝固剤の使用方法の具体例としては、ラテックス組成物に浸漬する前の手袋型を凝固剤の溶液に浸漬して手袋型に凝固剤を付着させる方法(アノード凝着浸漬法)、ラテックス組成物を沈着させた手袋型を凝固剤溶液に浸漬する方法(ティーグ凝着浸漬法)などがあるが、厚みムラの少ないディップ成形層が得られる点で、アノード凝着浸漬法が好ましい。
 凝固剤としては、たとえば、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウム等のハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛等の硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛等の酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム等の硫酸塩;等が挙げられる。なかでも、塩化カルシウムおよび硝酸カルシウムが好ましい。
 凝固剤は、通常、水、アルコール、またはそれらの混合物の溶液として使用する。凝固剤濃度は、通常、5~50重量%、好ましくは10~35重量%である。
 そして、得られたディップ成形層に対し、加熱処理を施すことで、2価以上の金属を含む金属化合物(B)による架橋を行う。この際の架橋は、2価以上の金属を含む金属化合物(B)が、カルボキシル基含有共役ジエン系ゴム(A)に含まれるカルボキシル基と反応することにより、金属イオン結合することで進行する。また、加熱処理を施す前には、ディップ成形層を、水、好ましくは30~70℃の温水に、1~60分程度浸漬し、水溶性不純物(たとえば、余剰の乳化剤や凝固剤等)を除去してもよい。水溶性不純物の除去操作は、ディップ成形層を加熱処理した後に行なってもよいが、より効率的に水溶性不純物を除去できる点から、加熱処理前に行なうことが好ましい。
 ディップ成形層の2価以上の金属を含む金属化合物(B)による架橋は、通常、80~150℃の温度で、好ましくは10~130分の加熱処理を施すことにより行われる。加熱の方法としては、赤外線や加熱空気による外部加熱または高周波による内部加熱による方法が採用できる。なかでも、加熱空気による外部加熱が好ましい。
 そして、架橋したディップ成形層を手袋型から脱着することによって、放射線照射前ディップ成形体を得る。脱着方法としては、手で手袋型から剥したり、水圧や圧縮空気の圧力により剥したりする方法を採用することができる。なお、脱着後、更に60~120℃の温度で、10~120分の加熱処理を行なってもよい。
 次いで、得られた放射線照射前ディップ成形体に対し、放射線照射を行うことで、手袋(放射線照射後ディップ成形体)を得る。本発明の製造方法によれば、上述したラテックス組成物から形成されるディップ成形層(放射線照射前ディップ成形体)に対し、放射線照射を行うことにより、本発明の製造方法により得られる手袋を、伸びが大きく、柔軟な風合いを備えたものとしながら、引張強度が大きく向上されたものとすることができ、さらには、高い応力保持率を有するものとすることができるものである。特に、手術用手袋などのディップ成形により得られる手袋においては、引張強度が高く、伸びが大きいことに加え、これを装着し、作業を行った際における使用感が重要となってくるものである。具体的には、風合い(500%伸長時の応力)に加えて、装着してから時間経過とともに緩みやたるみが発生することを有効に防止できること(すなわち、手袋を100%伸張した引張応力M100(0)に対する、伸張を停止してから6分経過後の応力M100(6)の百分率で示される応力保持率が高いこと)が望ましい。これに対し、本発明によれば、本発明の製造方法により得られる手袋を、引張強度が高く、伸びが大きいこと、および、500%伸長時の応力(風合い)に優れていることに加え、高い応力保持率を備えるものとすることができるものである。
 なお、本発明の製造方法において、高い応力保持率を実現できる理由としては、必ずしも明らかではないが、放射線照射により、ラテックス組成物中に含まれるカルボキシル基含有共役ジエン系ゴム(A)の共役ジエン単量体単位の炭素-炭素二重結合部分を架橋させることができ、このような架橋の形成により、高い応力保持率を実現できるものと考えられる。
 また、本発明の製造方法においては、ラテックス組成物から形成されるディップ成形層(放射線照射前ディップ成形体)に対する、放射線照射を、放射線照射後の手袋中に含まれる、ヒンダードフェノール系老化防止剤(C)の含有量が、5,000重量ppm以上、70,000重量ppm以下の範囲となるように行う。本発明の製造方法によれば、放射線照射後の手袋中に含まれる、ヒンダードフェノール系老化防止剤(C)の含有量が上記範囲となるように制御することにより、得られる手袋における着色の発生、特に、放射線照射による着色を有効に抑制できるものである。なお、放射線照射後の手袋中に含まれる、ヒンダードフェノール系老化防止剤(C)の含有量は、5,000重量ppm以上、70,000重量ppm以下、好ましくは9,000重量ppm以上、70,000重量ppm以下、より好ましくは10,000重量ppm以上、50,000重量ppm以下、さらに好ましくは10,000重量ppm以上、30,000重量ppm以下、さらにより好ましくは15,000重量ppm超、30,000重量ppm以下である。
 なお、放射線照射後の手袋中に含まれる、ヒンダードフェノール系老化防止剤(C)の含有量は、ディップ成形に用いるラテックス組成物中に含有させるヒンダードフェノール系老化防止剤(C)の含有量を上記範囲に制御する方法、また、これに加えて、放射線照射前ディップ成形体を得た後(2価以上の金属を含む金属化合物(B)による加熱による架橋を行った後)、保存条件を室温下とした場合に、好ましくは40日以内、より好ましくは20日以内、さらに好ましくは10日以内に、放射線照射を行う方法などが挙げられる。なお、ヒンダードフェノール系老化防止剤(C)などの老化防止剤は、加熱による架橋を行った後においては、保管時間に伴い徐々に失活していく場合が多く、これに対し、放射線照射後の手袋中に含まれる、ヒンダードフェノール系老化防止剤(C)の含有量を上記範囲に好適に制御するという観点からは、ディップ成形に用いるラテックス組成物中に含有させるヒンダードフェノール系老化防止剤(C)の含有量を上記範囲とし、かつ、放射線照射前ディップ成形体を得た後における、放射線照射を行うタイミングを上記範囲内とすることが好ましい。
 また、照射する放射線としては、γ線やX線などの電磁放射線、電子線やβ線などの粒子放射線などが挙げられるが、得られる手袋の引張強度、伸び、500%伸長時応力及び応力保持率などの向上効果をより高めることができる観点より、γ線または電子線が好ましく、γ線が最も好ましい。γ線などの放射線照射における吸収線量が、好ましくは1~500kGyとなる範囲であり、より好ましくは5~300kGyとなる範囲であり、さらに好ましくは10~100kGyとなる範囲である。また、γ線照射を行う際における照射エネルギーと時間は、γ線などの放射線照射における目的とする吸収線量および被照射物のγ線などの放射線に対する耐性を鑑みて、適当な条件にすることが望ましい。γ線などの放射線照射エネルギーについては0.1~10MeVの範囲であればよく、好ましくはコバルト60を線源とした時に照射されるエネルギー1.17MeVと1.33MeVやセシウム137を線源とした時に照射されるエネルギー0.66MeVが望ましい。γ線などの放射線照射時間については、目的とするγ線などの放射線照射吸収線量にするにあたり必要な時間であるため、特に限定されない。
 このようにして、本発明の製造方法により得られる手袋は、着色の発生が抑制され、引張強度が高く、伸びが大きく、柔軟な風合いおよび高い応力保持率を備えるものである。特に、本発明の製造方法により得られる手袋は、黄色味を示す黄色度(YI;イエローインデックス)が、好ましくは10以下、より好ましくは8以下、さらに好ましくは7以下と低く抑えられ、着色の発生が適切に抑制されたものである。なお、黄色度(YI)は、たとえば、本発明の製造方法により得られる手袋について、色差計を用いて、JIS K7103に準じて、測定することができる。
 そして、このようにして、本発明の製造方法により得られる手袋は、このような特性を活かして、各種用途に用いられる手袋として好適であり、とりわけ、手術用手袋に特に好適である。
 以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。なお、以下の「部」は、特に断りのない限り、重量基準である。なお、各種の物性は以下のように測定した。
<ヒンダードフェノール系老化防止剤量>
 実施例および比較例において得られたγ線照射後のゴム手袋から約0.5gの試験片を切り出し、切り出した試験片の重量を精秤した後、試験片をメタノールを用いて、85℃、8時間の条件でソックスレー抽出することで、ヒンダードフェノール系老化防止剤を抽出し、抽出液を0.2μmのディスクフィルターによりろ過した後、ろ過後の抽出液を用いて、抽出されたヒンダードフェノール系老化防止の量を逆相高速液体クロマトグラフィー(HPLC)により、下記の条件にて測定することで、γ線照射後のゴム手袋中に含まれる、ヒンダードフェノール系老化防止剤の含有量を測定した。
  カラム:商品名「ZORBOX XDB-C18 1.8μ」(アジレント・テクノロジー社製)
  カラム温度:40℃
  流速:0.75mL/min
  検出器:DAD(ダイオードアレイ検出) 280nm
  注入量:2μL
<黄色度(YI)>
 実施例および比較例において得られたγ線照射後のゴム手袋、および参考例で得られたゴム手袋の手の甲部分の外側表面について、色差計(製品名「SE-2000」、日本電色工業社製)を用いて、JIS K7103に準じて、測定した。
<引張強度、破断時伸び、500%伸長時の応力>
 実施例および比較例において得られたγ線照射後のゴム手袋、および参考例で得られたゴム手袋から、ASTM D-412に準じてダンベル(Die-C:ダンベル社製)を用いて、ダンベル形状の試験片を作製した。次いで、得られた試験片を、引張速度500mm/分で引っ張り、破断時の引張強度、破断時の伸び、および500%伸長時の応力を測定した。引張強度および破断時伸びは高いほど好ましく、また、500%伸長時の応力が小さいほど、柔軟な風合いとなるため、好ましい。
<応力保持率>
 実施例および比較例において得られた放射線照射後のゴム手袋、および参考例で得られたゴム手袋から、ASTM D-412に準じてダンベル(Die-C:ダンベル社製)を用いて、ダンベル形状の試験片を作製し、該試験片の両端に速度500mm/分にて引張応力をかけ、該試験片の標準区間20mmが2倍(100%)に伸張した時点で伸張を止めると共に引張応力M100(0)を測定し、また、そのまま6分間経過した後の引張応力M100(6)を測定した。そして、M100(0)に対するM100(6)の百分率(すなわち、M100(6)/M100(0)の百分率)を応力保持率とした。応力保持率は大きいほど、手袋の使用に伴うへたり(緩みやたるみ)が起きにくいため好ましい。
<製造例1(カルボキシル基含有ニトリルゴム(a1-1)のラテックスの製造)>
 攪拌機付きの耐圧重合反応容器に、1,3-ブタジエン63部、アクリロニトリル34部、メタクリル酸3部、連鎖移動剤としてt-ドデシルメルカプタン0.25部、脱イオン水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム1部、過硫酸カリウム0.3部、およびエチレンジアミン四酢酸ナトリウム0.005部を仕込み、重合温度を37℃に保持して重合を開始した。そして、重合転化率が70%になった時点で、重合温度を43℃に昇温し、継続して重合転化率が95%になるまで反応させ、その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。そして、得られた共重合体のラテックスから、未反応単量体を減圧にして留去した後、固形分濃度とpHとを調整することで、固形分濃度40重量%、pH8.0のカルボキシル基含有ニトリルゴム(a1-1)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(a1-1)の組成は、1,3-ブタジエン単位63重量%、アクリロニトリル単位34重量%、メタクリル酸単位3重量%であった。
<実施例1>
(ラテックス組成物の調製)
 製造例1で得られたカルボキシル基含有ニトリルゴム(a1-1)のラテックス250部(カルボキシル基含有ニトリルゴム(a1-1)換算で100部)に、アルミン酸ナトリウム0.2部、ソルビトール0.4部、およびグリコール酸ナトリウム0.4部を水溶させた混合水溶液、およびヒンダードフェノール系老化防止剤の水溶液(商品名「Wingstay L」、グッドイヤー社製、下記一般式(1)で示されるヒンダードフェノール系老化防止剤を35重量%の割合で含む水溶液)2.29部(下記一般式(1)で示されるヒンダードフェノール系老化防止剤換算で0.8部)を加えた。そして、これに脱イオン水を加えて、固形分濃度を30重量%に調整することで、ラテックス組成物を得た。
Figure JPOXMLDOC01-appb-C000004
<γ線照射前ディップ成形体の製造>
 硝酸カルシウム30部、ノニオン性乳化剤であるポリエチレングリコールオクチルフェニルエーテル0.05部および水70部を混合することにより、凝固剤水溶液を調製した。次いで、この凝固剤水溶液に、予め70℃に加温したセラミック製手袋型を5秒間浸漬し、引上げた後、温度70℃、10分間の条件で乾燥して、凝固剤を手袋型に付着させた。そして、凝固剤を付着させた手袋型を、上記にて得られたラテックス組成物に10秒間浸漬し、引上げた後、50℃の温水に90秒間浸漬して、水溶性不純物を溶出させて、手袋型にディップ成形層を形成した。次いで、ディップ成形層を形成した手袋型を、温度125℃、25分間の条件で加熱処理してディップ成形層を架橋させ、架橋したディップ成形層を手袋型から剥し、γ線照射前ディップ成形体を得た。
<γ線照射後のゴム手袋の製造>
 上記にて得られたγ線照射前ディップ成形体を10日間、室温において保管した後、10日間保管した後のγ線照射前ディップ成形体に対して、コバルト60を線源としたγ線を照射し、吸収線量が30kGyに達するまで照射した。照射時間は3時間であった。このようにして、γ線照射後のディップ成形体(手袋)を得た。そして、得られたγ線照射後のディップ成形体(手袋)について、上記方法にしたがって、ヒンダードフェノール系老化防止剤量、黄色度(YI)、引張強度、破断時伸び、500%伸長時の応力、および応力保持率の各測定を行った。結果を表1に示す。
<実施例2>
 ヒンダードフェノール系老化防止剤の水溶液(商品名「Wingstay L」、グッドイヤー社製)の使用量を、4.57部(上記一般式(1)で示されるヒンダードフェノール系老化防止剤換算で1.6部)に変更した以外は、実施例1と同様にして、ラテックス組成物、γ線照射前ディップ成形体、およびγ線照射後のゴム手袋を製造し、同様に評価を行った。結果を表1に示す。
<実施例3>
 ヒンダードフェノール系老化防止剤の水溶液(商品名「Wingstay L」、グッドイヤー社製)の使用量を、14.3部(上記一般式(1)で示されるヒンダードフェノール系老化防止剤換算で5部)に変更した以外は、実施例1と同様にして、ラテックス組成物、γ線照射前ディップ成形体、およびγ線照射後のゴム手袋を製造し、同様に評価を行った。結果を表1に示す。
<比較例1>
 ヒンダードフェノール系老化防止剤の水溶液(商品名「Wingstay L」、グッドイヤー社製)の使用量を、0.71部(上記一般式(1)で示されるヒンダードフェノール系老化防止剤換算で0.25部)に変更した以外は、実施例1と同様にして、ラテックス組成物、γ線照射前ディップ成形体、およびγ線照射後のゴム手袋を製造し、同様に評価を行った。結果を表1に示す。
<比較例2>
 ヒンダードフェノール系老化防止剤の水溶液(商品名「Wingstay L」、グッドイヤー社製)の使用量を、28.6部(上記一般式(1)で示されるヒンダードフェノール系老化防止剤換算で10部)に変更した以外は、実施例1と同様にして、ラテックス組成物、γ線照射前ディップ成形体、およびγ線照射後のゴム手袋を製造し、同様に評価を行った。結果を表1に示す。
<比較例3>
 ヒンダードフェノール系老化防止剤の水溶液(商品名「Wingstay L」、グッドイヤー社製)の使用量を、4.29部(上記一般式(1)で示されるヒンダードフェノール系老化防止剤換算で1.5部)に変更した以外は、実施例1と同様にして、ラテックス組成物、およびγ線照射前ディップ成形体を製造するとともに、γ線照射前ディップ成形体の保存期間を50日に変更した以外は、実施例1と同様にして、γ線照射後のゴム手袋を製造し、同様に評価を行った。結果を表1に示す。
<参考例1>
 実施例1と同様にして得られたラテックス組成物を用い、実施例1と同様にして、γ線照射前ディップ成形体を得て、これをゴム手袋として、黄色度(YI)、引張強度、破断時伸び、500%伸長時の応力、および応力保持率の各測定を行った。すなわち、参考例1においては、γ線照射を行わなかった以外は、実施例1と同様にしてゴム手袋を得た。結果を表1に示す。
<参考例2>
 実施例2と同様にして得られたラテックス組成物を用い、実施例2と同様にして、γ線照射前ディップ成形体を得て、これをゴム手袋として、黄色度(YI)、引張強度、破断時伸び、500%伸長時の応力、および応力保持率の各測定を行った。すなわち、参考例2においては、γ線照射を行わなかった以外は、実施例2と同様にしてゴム手袋を得た。
<参考例3>
 比較例2と同様にして得られたラテックス組成物を用い、比較例2と同様にして、γ線照射前ディップ成形体を得て、これをゴム手袋として、黄色度(YI)、引張強度、破断時伸び、500%伸長時の応力、および応力保持率の各測定を行った。すなわち、参考例3においては、γ線照射を行わなかった以外は、比較例2と同様にしてゴム手袋を得た。
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、2価以上の金属を含む金属化合物(B)と、ヒンダードフェノール系老化防止剤(C)とを含有するラテックス組成物をディップ成形して得られるディップ成形層に、放射線を照射することで手袋を製造するとともに、放射線照射後の手袋中に含まれる、ヒンダードフェノール系老化防止剤(C)の含有量を5,000重量ppm以上、70,000重量ppm以下に制御した場合には、得られる手袋は、黄色度(YI)が低く、着色の発生が抑制されたものであり、また、引張強度が高く、伸びが大きく、柔軟な風合いおよび高い応力保持率を備えるものであった(実施例1~3)。
 また、実施例1と参考例1との比較、および実施例2と参考例2との比較からも明らかなように、本発明の製造方法によれば、γ線照射前後における、黄色度(YI)の変動が小さく、γ線照射による着色の発生が有効に抑制されたものであることが確認できる。
 一方、放射線照射後の手袋中に含まれる、ヒンダードフェノール系老化防止剤(C)の含有量が5,000重量ppm未満である場合には、黄色度(YI)が高くなり、着色の発生が顕著となる結果となった(比較例1,3)。
 また、ヒンダードフェノール系老化防止剤(C)の含有量が70,000重量ppmを超えると、黄色度(YI)を低く抑えることができる一方で、得られる手袋は、引張強度が低く、伸びが小さく、風合いおよび応力保持率に劣るものとなった(比較例2)。

Claims (8)

  1.  カルボキシル基含有共役ジエン系ゴム(A)のラテックスと、2価以上の金属を含む金属化合物(B)と、ヒンダードフェノール系老化防止剤(C)とを含有するラテックス組成物をディップ成形することで、ディップ成形層を形成する工程と、
     前記ディップ成形層に、放射線を照射する工程と、を備える手袋の製造方法であって、
     放射線照射後の手袋中に含まれる、前記ヒンダードフェノール系老化防止剤(C)の含有量を5,000重量ppm以上、70,000重量ppm以下とする手袋の製造方法。
  2.  放射線照射後の手袋の黄色味を示す黄色度(YI)が10以下である請求項1に記載の手袋の製造方法。
  3.  前記ラテックス組成物中における、前記カルボキシル基含有共役ジエン系ゴム(A)100重量部に対する、前記ヒンダードフェノール系老化防止剤(C)の含有量を、0.5~8.5重量部の範囲とし、
     前記ディップ成形層に対する、放射線の照射を、前記ディップ成形層を形成した後、40日以内に行う請求項1または2に記載の手袋の製造方法。
  4.  前記ディップ成形層を形成する工程が、前記ラテックス組成物をディップ成形した後、加熱処理を施すことで、前記2価以上の金属を含む金属化合物(B)による架橋を行う工程である請求項1~3のいずれかに記載の手袋の製造方法。
  5.  前記ヒンダードフェノール系老化防止剤(C)が、p-クレゾールとジシクロペンタジエンとの縮合物をブチル化してなる化合物である請求項1~4のいずれかに記載の手袋の製造方法。
  6.  前記ヒンダードフェノール系老化防止剤(C)が、下記一般式(1)で表される化合物である請求項5に記載の手袋の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (式中、nは整数を表す。)
  7.  前記カルボキシル基含有共役ジエン系ゴム(A)のラテックスが、カルボキシル基含有ニトリルゴム(a1)のラテックスである請求項1~6のいずれかに記載の手袋の製造方法。
  8.  前記2価以上の金属を含む金属化合物(B)が、3価以上の金属を含む金属化合物であり、
     前記ラテックス組成物が、糖類(d1)、糖アルコール(d2)、ヒドロキシ酸(d3)およびヒドロキシ酸塩(d4)から選択される少なくとも1種のアルコール性水酸基含有化合物(D)をさらに含有する請求項1~7のいずれかに記載の手袋の製造方法。
PCT/JP2019/036750 2018-09-26 2019-09-19 手袋の製造方法 WO2020066835A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548594A JPWO2020066835A1 (ja) 2018-09-26 2019-09-19 手袋の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180167 2018-09-26
JP2018180167 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066835A1 true WO2020066835A1 (ja) 2020-04-02

Family

ID=69950619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036750 WO2020066835A1 (ja) 2018-09-26 2019-09-19 手袋の製造方法

Country Status (2)

Country Link
JP (1) JPWO2020066835A1 (ja)
WO (1) WO2020066835A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219063A1 (ja) 2022-05-09 2023-11-16 ミドリ安全株式会社 ディップ成形用組成物及び手袋、並びにディップ成形用組成物及び手袋の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341709A (ja) * 1991-05-16 1992-11-27 Fujikura Ltd 絶縁電線
JP2010528142A (ja) * 2007-05-22 2010-08-19 ランクセス・ドイチュランド・ゲーエムベーハー ニトリルゴム
WO2017146238A1 (ja) * 2016-02-25 2017-08-31 日本ゼオン株式会社 ラテックス組成物および膜成形体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341709A (ja) * 1991-05-16 1992-11-27 Fujikura Ltd 絶縁電線
JP2010528142A (ja) * 2007-05-22 2010-08-19 ランクセス・ドイチュランド・ゲーエムベーハー ニトリルゴム
WO2017146238A1 (ja) * 2016-02-25 2017-08-31 日本ゼオン株式会社 ラテックス組成物および膜成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219063A1 (ja) 2022-05-09 2023-11-16 ミドリ安全株式会社 ディップ成形用組成物及び手袋、並びにディップ成形用組成物及び手袋の製造方法

Also Published As

Publication number Publication date
JPWO2020066835A1 (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
US11058162B2 (en) Method for manufacturing glove
JP2017149925A (ja) ラテックス組成物および膜成形体
JP6969535B2 (ja) 手袋の製造方法
WO2017146238A1 (ja) ラテックス組成物および膜成形体
JP7351289B2 (ja) ラテックス組成物および膜成形体
JP7131540B2 (ja) ラテックス組成物
US20190177517A1 (en) Latex composition and film molded body
JPWO2015146974A1 (ja) ディップ成形品およびディップ成形品の製造方法
WO2020066835A1 (ja) 手袋の製造方法
JP7131255B2 (ja) ディップ成形体の製造方法
JP7400187B2 (ja) ディップ成形体およびその製造方法
WO2017006385A1 (ja) ディップ成形用組成物およびディップ成形品
JP7238879B2 (ja) ディップ成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867369

Country of ref document: EP

Kind code of ref document: A1