WO2020066184A1 - 駆動制御装置、駆動装置およびパワーステアリング装置 - Google Patents

駆動制御装置、駆動装置およびパワーステアリング装置 Download PDF

Info

Publication number
WO2020066184A1
WO2020066184A1 PCT/JP2019/025352 JP2019025352W WO2020066184A1 WO 2020066184 A1 WO2020066184 A1 WO 2020066184A1 JP 2019025352 W JP2019025352 W JP 2019025352W WO 2020066184 A1 WO2020066184 A1 WO 2020066184A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
inverter
drive control
control device
temperature
Prior art date
Application number
PCT/JP2019/025352
Other languages
English (en)
French (fr)
Inventor
知幸 ▲高▼田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020547994A priority Critical patent/JPWO2020066184A1/ja
Publication of WO2020066184A1 publication Critical patent/WO2020066184A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component

Definitions

  • the present invention relates to a drive control device, a drive device, and a power steering device.
  • Patent Document 1 discloses a structure in which overheating is suppressed by distributing an output to each system according to system temperature in a two-system configuration including two inverters.
  • an object of the present invention is to suppress a decrease in output of a motor while suppressing overheating of an inverter when only one system is driven.
  • One aspect of the drive control device is a drive control device that controls driving of a motor, wherein at least two inverters each of which supplies power to the motor and both the two inverters are operated to operate the motor. And a control unit that selectively executes a second drive control that drives one of the two inverters and drives the motor by operating one of the two inverters.
  • the operation of the one inverter uses the first operation method in the first temperature state, and the second temperature in which heat radiation from the one inverter to the other inverter is smaller than that in the first temperature state. In the state, the second operation mode that generates less heat than the first operation mode is used.
  • one mode of the driving device includes the driving control device and a motor whose driving is controlled by the driving control device.
  • One embodiment of a power steering device includes the drive control device, a motor whose drive is controlled by the drive control device, and a power steering mechanism driven by the motor.
  • FIG. 1 is an exploded perspective view of the motor drive unit according to the present embodiment.
  • FIG. 2 is a diagram schematically illustrating a block configuration of one system of the motor drive unit.
  • FIG. 3 is a diagram illustrating an example of a voltage waveform supplied from the inverter 100 to the motor 200.
  • FIG. 4 is a diagram schematically showing a heat distribution when driving by two systems.
  • FIG. 5 is a diagram schematically showing a heat distribution in the case of driving by one system.
  • FIG. 6 is a flowchart illustrating the drive control according to the present embodiment.
  • FIG. 7 is a diagram schematically showing a heat distribution when room for heat radiation is reduced by driving one system.
  • FIG. 8 is a diagram illustrating a control change in the first specific example of the temperature condition.
  • FIG. 1 is an exploded perspective view of the motor drive unit according to the present embodiment.
  • FIG. 2 is a diagram schematically illustrating a block configuration of one system of the motor drive unit.
  • FIG. 3 is
  • FIG. 9 is a diagram illustrating an example of a rise rate of the measured temperature.
  • FIG. 10 is a diagram illustrating a first specific example of the “driving method with low heat generation”.
  • FIG. 11 is a diagram illustrating a second specific example of the “driving method with low heat generation”.
  • FIG. 12 is a diagram illustrating a third specific example of the “driving method with low heat generation”.
  • FIG. 13 is a diagram illustrating a fourth specific example of the “driving method with low heat generation”.
  • FIG. 14 is a diagram illustrating a fifth specific example of the “driving method with low heat generation”.
  • FIG. 15 is a diagram schematically illustrating the configuration of the power steering device according to the present embodiment.
  • FIG. 1 is an exploded perspective view of a motor drive unit 1000 according to the present embodiment.
  • the motor drive unit 1000 includes a motor 200, a heat sink 1001, a power board 1002, a control board 1003, and a cover 1004.
  • the motor 200 includes two systems of three-phase (U-phase, V-phase, and W-phase) coils independently of each other.
  • the heat sink 1001 is formed integrally with a bearing holder of the motor 200.
  • the control board 1003 is provided with two drive control circuits 300 for controlling the two inverters 100, respectively.
  • the cover 1004 covers the power board 1002 and the control board 1003, and is fixed to the heat sink 1001 and the motor 200.
  • the motor drive unit 1000 is assembled as a so-called electromechanical integrated motor.
  • FIG. 2 is a diagram schematically showing a block configuration of one system of the motor drive unit 1000.
  • the motor drive unit 1000 includes an inverter 100, a control circuit 310, and a drive circuit 320 for each system.
  • the control circuit 310 and the drive circuit 320 are included in the drive control circuit 300 described above.
  • the motor 200 is, for example, a three-phase AC motor, and includes U-phase, V-phase, and W-phase coils 210, 220, and 230 for each system.
  • the winding method of the coil is, for example, concentrated winding or distributed winding.
  • the coils 210, 220, and 230 of each phase of the motor 200 are connected to each other at a neutral point 240, and the neutral point 240 is also formed independently for each system. Then, a voltage or a current is supplied for driving from one end of each of the coils 210, 220, 230 that is not connected to the neutral point 240.
  • connection between parts (components) means an electrical connection unless otherwise specified.
  • the motor according to the present invention may have the neutral point 240 connected to each other, or may have only one coil, and each of the two ends of the coil may be connected to one inverter at each end.
  • the motor drive unit 1000 can convert the electric power from the power supply 501 into the electric power to be supplied to the motor 200 by the inverter 100.
  • the inverter 100 can convert DC power into three-phase AC power that is a pseudo-sine wave of U-phase, V-phase, and W-phase.
  • the power supply 501 for example, a DC power supply is used.
  • the power supply 501 may be an AC-DC converter or a DC-DC converter, or may be a battery (rechargeable battery).
  • the motor drive unit 1000 may include a power supply inside.
  • a power supply separation switch 502 is provided between the power supply 501 and the inverter 100.
  • the power supply separation switch 502 can switch connection / disconnection between the power supply 501 and the inverter 100.
  • a phase separation switch 610 is provided between the inverter 100 and the motor 200.
  • the phase separation switch 610 can switch between connection and disconnection between the inverter 100 and the motor 200.
  • the power separation switch 502 and the phase separation switch 610 electrically disconnect the one system from the motor 200 and the power supply 501 when an abnormality occurs in one of the two inverters 100 and the like.
  • a capacitor 503 is connected to the power supply terminal via a power supply separation switch 502.
  • the capacitor 503 is connected in parallel with the inverter 100 to a power supply 501 that supplies power to the inverter 100.
  • the capacitor 503 is a so-called smoothing capacitor, and suppresses voltage ripple by absorbing a circulating current.
  • the capacitor 503 is, for example, an electrolytic capacitor, and the capacity and the number of capacitors to be used are appropriately determined according to design specifications and the like.
  • the motor drive unit 1000 is provided with a thermistor 600, which is a type of temperature sensor, and the temperature of the inverter 100 is measured for each system and input to the control circuit 310. It should be noted that the control circuit 310 of each system receives not only the measured value from the own system but also the measured value from the other system.
  • Inverter 100 includes switching elements 101 to 106 connected to coils (windings) ⁇ 210, 220, 230 ⁇ of motor 200, and supplies power to motor 200 by on / off operations of switching elements 101 to 106. More specifically, the inverter 100 includes, as switch elements, high-side switch elements 101, 103, and 105 for switching connection / disconnection of a current path through which a current flows from the power supply 501 to the motor 200, and the motor 200 to ground. Low-side switch elements 102, 104, and 106 for switching connection / disconnection of a current path through which current flows are provided.
  • FIG. 3 is a diagram illustrating an example of a voltage waveform supplied from the inverter 100 to the motor 200.
  • the horizontal axis in FIG. 3 indicates the electrical angle, and the vertical axis indicates the voltage value.
  • the inverter 100 is driven by the PWM control to convert a DC voltage from the power supply 501 into an AC voltage having a curved waveform as shown in FIG.
  • the motor 200 When the AC voltage having such a waveform is supplied to the motor 200, the motor 200 generates a smooth rotational output with little torque ripple.
  • the motor drive unit 1000 includes the two-system drive control circuit 300 (the control circuit 310 and the drive circuit 320) and the inverter 100. Therefore, even if an abnormality occurs in one system, one normal system Thus, the driving of the motor 200 can be continued.
  • the motor 200 when the motor 200 is driven by one system, heat is biased to the inverter 100 of the one system.
  • FIG. 4 is a diagram schematically showing the heat distribution when driven by two systems
  • FIG. 5 is a diagram schematically showing the heat distribution when driven by one system.
  • the power board 1002 comes into contact with the heat sink 1001, and the heat of the inverter 100 is radiated to the heat sink 1001.
  • the temperatures of the inverters 100 measured by the thermistor 600 are almost the same as indicated by oblique lines in the figure, and the temperature difference is small.
  • FIG. 6 is a flowchart showing drive control in the present embodiment.
  • step S101 it is determined whether an abnormality has occurred in one of the two systems.
  • a method for determining the occurrence of an abnormality any conventionally known arbitrary determination method is employed.
  • the target of the abnormality determination may be the inverter 100, the drive circuit 320, or the control circuit 310.
  • step S101 If no abnormality has occurred in either of the two systems (both are normal) (step S101; NO), normal driving using both of the two systems is continued. If an abnormality has occurred in one of the two systems (step S101; YES), the process proceeds to step S102, and the control circuit 310, the drive circuit 320, and the inverter 100 are stopped for the system in which the abnormality has occurred. Then, the driving is continued by one normal system.
  • steps S101 to S102 the first drive control for driving the motor 200 by operating both of the two inverters 100 and the second drive control for driving the motor 200 by operating one of the two inverters 100 are performed.
  • 2 drive control is selectively executed.
  • the drive of one system is, for example, the drive by the voltage waveform shown in FIG. 3, and the power supply for two systems is performed by one system.
  • the output of the motor 200 is also maintained.
  • the heat generated by the one system is higher than the heat generated by one system when driven by both the two systems, and as shown in FIG. Heat is biased to inverter 100_OK.
  • the unbalanced heat is radiated to the heat sink 1001, but when the abnormal inverter 100_NG is stopped, a function of radiating heat from the normal inverter 100_OK to the abnormal inverter 100_NG occurs. That is, the stopped inverter 100_NG side functions as an additional heat radiating unit.
  • the temperature condition requiring a control change is a temperature condition under which heat radiation to the stopped inverter 100_NG side is reduced. Specific conditions will be described later.
  • Step S104 While the temperature condition requiring the control change is not reached (Step S103; NO), the drive of one system that generates high heat is continued, and when the temperature condition requiring the control change is reached (Step S103; YES), Step S104 is performed. And the driving method is changed to a driving method with low heat generation. That is, in steps S103 to S104, the first operation (driving) method is used in the first temperature state, and the second temperature in which heat dissipation from one inverter to the other inverter is smaller than that in the first temperature state. In the state, a second operation (drive) method that generates less heat than the first operation (drive) method is used.
  • the driving method with low heat generation performed in step S104 maintains the output of the motor 200 while suppressing generation of torque ripple by suppressing heat generation. It is a driving method. After shifting to such a driving method in which heat generation is low, it is determined whether or not a temperature condition that requires overheating protection has been reached (step S105).
  • the temperature condition that requires overheating protection is, for example, a temperature that exceeds a threshold temperature at which overheating protection starts.
  • step S105 While the temperature condition that requires overheat protection is not reached (step S105; NO), the above-described drive method with low heat generation is continued, and when the temperature condition that requires overheat protection is reached (step S105; YES), the process proceeds to step S106. Then, the current is limited by the overheat protection, so that the heat generation of the inverter 100 is suppressed. As described above, in the overheat protection, the heat generation is suppressed and the output of the motor 200 is also suppressed. That is, in steps S105 to S106, the power supply to the motor 200 is limited in the third temperature state in which heat radiation from one inverter to the other inverter is smaller than in the second temperature state described above.
  • the output of the motor 200 is maintained as much as possible by using the drive system with low heat generation before the overheat protection is performed.
  • a specific example of the above-mentioned “temperature condition requiring control change” will be described.
  • the second operation method is used in the second temperature state in which the temperature difference between the two inverters is smaller than the first temperature state. That is, when the difference between the temperatures measured by the thermistor 600 for each of the two systems falls below a predetermined threshold, a driving method that generates less heat is used.
  • FIG. 7 is a diagram schematically showing a heat distribution when room for heat radiation is reduced by driving one system.
  • FIG. 8 is a diagram illustrating a control change in the first specific example of the temperature condition.
  • the horizontal axis of FIG. 8 indicates the passage of time, and the vertical axis indicates the temperature difference.
  • the temperature difference between the two systems decreases over time.
  • the driving method is changed to a low heat generation driving method and driving is continued.
  • the temperature difference also stops decreasing, and there is room for heat radiation, so that the output can be maintained.
  • a low heat generation driving method Is preferably used.
  • the temperature of one of the driven inverters exceeds a predetermined temperature, and the temperature rise of the one inverter is higher than the first temperature state.
  • the second operation mode is used. That is, when the measured temperature of the thermistor 600 exceeds a predetermined threshold value and the rate of increase of the measured temperature exceeds the predetermined threshold value, a low heat generation driving method is used.
  • the temperature state is determined only by the temperature on the driving side, wiring and the like for obtaining a measured value of the system on the other side become unnecessary, and cost reduction is expected.
  • FIG. 9 is a diagram showing an example of the rate of rise of the measured temperature. ⁇ The horizontal axis in FIG. 9 indicates the passage of time, and the vertical axis indicates the temperature measured by the thermistor 600 on the drive side.
  • the graph of FIG. 9 shows a line L1 representing an example with a large temperature rise rate and a line L2 representing an example with a small temperature rise rate. If the rate of temperature rise is large, the same temperature rise occurs in a short time. For this reason, if the driving method of high heat generation is continued, there is a possibility that the temperature may reach the threshold temperature TV2 for overheating protection and the current may be limited. Therefore, it is desirable to change to a drive system that generates less heat before reaching overheat protection.
  • the state of heat radiation can be determined based on the temperature rise rate, and the drive system can be appropriately changed. (Specific example of drive system)
  • the drive system can be appropriately changed.
  • the two-system inverter 100 includes switch elements 101 to 106 in each of the inverters 100, and supplies power to the motor 200 by turning on and off the switch elements 101 to 106.
  • the switching elements 101 to 106 are turned on and off less frequently than in the first operation (driving) method. Since the switch elements 101 to 106 generate heat with the on / off operation (switching), the frequency of the on / off operation of the switch elements 101 to 106 is reduced, so that the heat generation of the inverter 100 is reduced. Further, as described below, the output of the motor 200 can be maintained even if the frequency of the on / off operation is reduced.
  • FIG. 10 is a diagram showing a first specific example of the “driving method with low heat generation”.
  • the driving method that generates the voltage waveform shown in FIG. 3 is called a three-phase modulation method, and the driving method shown in FIG. 10 is called a two-phase modulation method. That is, in the driving method shown in FIG. 10, the V-phase is maintained at the voltage 0 from the electrical angle of 0 ° to 90 °, and the V-phase switch element is fixed to the on / off state indicating the voltage of 0. Therefore, the on / off operation of the PWM control is stopped for the V-phase switch element from the electrical angle of 0 ° to 90 °. (4) The voltage of the W-phase is maintained at 0 from the electrical angle of 90 ° to 210 °, and the ON / OFF operation of the PWM control is stopped for the W-phase switch element.
  • the U phase is maintained at the voltage 0 from 210 ° to 330 ° of the electrical angle, and the ON / OFF operation of the PWM control is stopped for the U phase switch element.
  • the V phase is maintained at the voltage 0 from the electrical angle of 330 ° to 360 ° (0 °), and the ON / OFF operation of the PWM control is stopped for the V phase switch element.
  • the on / off operation is performed only in two phases at a time among the three phases of the motor 200, and the on / off operation is always stopped in any one phase.
  • the on-off operation of the switch element is reduced by about one third in the two-phase modulation method as compared with the three-phase modulation method shown in FIG.
  • FIG. 11 is a diagram showing a second specific example of the “driving method with low heat generation”.
  • the inverter 100 turns on and off the switching elements 101 to 106 at the set carrier frequency, and the second operation (drive) method has a carrier frequency higher than that of the first operation (drive) method. Low.
  • the left side of FIG. 11 illustrates an example of the carrier frequency in the first operation mode, and the right side of FIG. 11 illustrates the example of the carrier frequency in the second operation mode.
  • the drive circuit 320 is set to, for example, 20 kHz as a carrier frequency in the PWM control by the control circuit 310, and the drive circuit 320 is set to 20 kHz at the set 20 kHz when driving with two systems or in a drive system with high heat generation by one system.
  • the switch elements 101 to 106 of the inverter 100 are turned on and off.
  • the drive circuit 320 sets a carrier frequency of, for example, 16 kHz by the control circuit 310, and the drive circuit 320 turns on and off the switch elements 101 to 106 of the inverter 100 at 16 kHz.
  • the carrier frequency can be changed independently of the power waveform by the inverter 100. Therefore, for example, the voltage waveform shown in FIG. 3 may be used in both the high heat generation drive method and the low heat generation drive method. That is, in the second specific example shown in FIG. 11, the heat generation of the inverter 100 is suppressed even if the voltage waveform is not changed between the high heat generation drive method and the low heat generation drive method.
  • the second specific example shown in FIG. 11 may be employed in combination with the first specific example shown in FIG. That is, in the driving method of high heat generation, for example, the voltage waveform shown in FIG. 3 and the carrier frequency of 20 kHz are used, and in the driving method of low heat generation, the voltage waveform shown in FIG. 10 and the carrier frequency of 16 kHz are used. Similarly, the second specific example shown in FIG. 11 may be employed in combination with another specific example described later.
  • FIG. 12 is a diagram showing a third specific example of the “driving method with low heat generation”.
  • a sine wave power waveform is formed by the on / off operation of the switch element
  • the switch element is used in the second operation (drive) method of low heat generation.
  • a trapezoidal wave is formed by the on / off operation of.
  • the left side of FIG. 12 shows a sine wave which is a power waveform in the first operation mode
  • the right side of FIG. 12 shows a trapezoidal wave which is a power waveform in the second operation mode.
  • FIG. 13 is a diagram showing a fourth specific example of the “driving method with low heat generation”.
  • a sine wave power waveform is formed by the on / off operation of the switch element
  • the switch element A rectangular wave is formed by the on / off operation of.
  • the left side of FIG. 13 shows a sine wave which is a power waveform in the first operation mode
  • the right side of FIG. 13 shows a rectangular wave which is a power waveform in the second operation mode.
  • FIG. 14 is a diagram showing a fifth specific example of the “driving method with low heat generation”.
  • both the high-side switch element and the low-side switch element perform on / off operations in parallel
  • the high-side switch element And the low-side switch element has a lower on / off frequency than the other. More specifically, in FIG. 14, a solid-on operation (that is, an operation fixed to an ON state in a partial section) is used as an on-off operation in the high-side switch element, and an on-off operation of PWM control is used in the low-side switch element. An example is shown.
  • the high-side switch element that performed the PWM control on / off operation in parallel with the low-side switch element in the drive system with high heat generation stops almost on-off operation by the solid-on operation in the drive system with low heat generation. Therefore, in the drive system with low heat generation, the on / off operation of the switch element is reduced by almost half as a whole, and the heat generation of the inverter 100 is suppressed.
  • the fifth specific example shown in FIG. 14 may be combined with the second specific example described above. Further, the fifth specific example shown in FIG. 14 may be combined with the above-described first, third, and fourth specific examples and also with the above-described second specific example. (Embodiment of power steering device)
  • Vehicles such as automobiles generally include a power steering device.
  • the power steering device generates an assist torque for assisting a steering torque of a steering system generated by a driver operating a steering handle.
  • the auxiliary torque is generated by the auxiliary torque mechanism, and can reduce the burden of the driver's operation.
  • FIG. 15 is a diagram schematically illustrating a configuration of a power steering device 2000 according to the present embodiment.
  • the electric power steering apparatus 2000 includes a steering system 520 and an auxiliary torque mechanism 540.
  • the steering system 520 is, for example, a steering handle 521, a steering shaft 522 (also referred to as a “steering column”), a universal joint 523A, 523B, and a rotating shaft 524 (also referred to as a “pinion shaft” or “input shaft”). ).
  • the steering system 520 includes, for example, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A. 529B.
  • a rack and pinion mechanism 525 for example, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A. 529B.
  • the steering handle 521 is connected to a rotating shaft 524 via a steering shaft 522 and universal shaft joints 523A and 523B.
  • a rack shaft 526 is connected to the rotation shaft 524 via a rack and pinion mechanism 525.
  • the rack and pinion mechanism 525 has a pinion 531 provided on the rotation shaft 524 and a rack 532 provided on the rack shaft 526.
  • the right steering wheel 529A is connected to the right end of the rack shaft 526 via a ball joint 552A, a tie rod 527A, and a knuckle 528A in this order.
  • the left steering wheel 529B is connected to the left end of the rack shaft 526 via a ball joint 552B, a tie rod 527B, and a knuckle 528B in this order.
  • the right side and the left side respectively correspond to the right side and the left side viewed from the driver sitting on the seat.
  • a steering torque is generated and transmitted to the left and right steering wheels 529A and 529B via the rack and pinion mechanism 525.
  • the driver can operate the left and right steering wheels 529A, 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, a mechanical and electric integrated motor 543, and a speed reduction mechanism 544.
  • the auxiliary torque mechanism 540 applies an auxiliary torque to a steering system 520 from the steering handle 521 to the left and right steering wheels 529A, 529B.
  • the auxiliary torque may be referred to as “additional torque”.
  • the motor drive unit 1000 shown in FIG. 1 is preferably used as the electromechanical integrated motor 543.
  • a mechanism constituted by elements other than the steering torque sensor 541 and the electric and mechanical integrated motor 543 among the elements shown in FIG. 15 corresponds to an example of a power steering mechanism driven by the motor 200.
  • the steering torque sensor 541 detects the steering torque of the steering system 520 given by the steering handle 521.
  • a detection signal (hereinafter, referred to as “torque signal”) from the steering torque sensor 541 is input to the electromechanical integrated motor 543, and a control circuit in the electromechanical integrated motor 543 calculates an auxiliary torque, and the auxiliary torque is calculated. Is generated.
  • the electromechanical integrated motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the assist torque is transmitted to the rotation shaft 524 of the steering system 520 via the speed reduction mechanism 544.
  • the reduction mechanism 544 is, for example, a worm gear mechanism.
  • the auxiliary torque is further transmitted from the rotation shaft 524 to the rack and pinion mechanism 525.
  • the power steering apparatus 2000 is classified into a pinion assist type, a rack assist type, a column assist type, and the like, depending on a position where the assist torque is applied to the steering system 520.
  • FIG. 15 shows a column assist type power steering device 2000.
  • the power steering device 2000 is also applied to a rack assist type, a pinion assist type, and the like.
  • the left and right steering wheels 529A and 529B can be operated by the rack shaft 526 using a combined torque obtained by adding the assisting torque of the electric and mechanical integrated motor 543 to the steering torque of the driver.
  • the motor drive unit 1000 of the above-described embodiment for the electromechanical motor 543 even if an abnormality occurs in one of the two systems, heat generation is suppressed and the assist torque is maintained.
  • a power steering device is exemplified as an example of a method of using the drive control device and the drive device of the present invention.
  • a method of using the drive control device and the drive device of the present invention is not limited to the above. It can be used widely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

駆動制御装置の一態様は、モータの駆動を制御する駆動制御装置において、それぞれが上記モータに電力を供給する少なくとも2つのインバータと、上記2つのインバータの両方を動作させて上記モータを駆動する第1駆動制御と、上記2つのインバータの片方を動作させて上記モータを駆動する第2駆動制御とを選択的に実行する制御部と、を備え、上記制御部が、上記第2駆動制御における上記片方のインバータの動作として、第1の温度状態では第1の動作方式を用い、上記第1の温度状態に較べ、上記片方のインバータから他のインバータへ放熱が少ない第2の温度状態では、上記第1の動作方式よりも発熱が低い第2の動作方式を用いる。

Description

駆動制御装置、駆動装置およびパワーステアリング装置
本発明は、駆動制御装置、駆動装置およびパワーステアリング装置に関する。
従来、モータ駆動において冗長設計としてインバータを複数備える構成が知られている。この時、一方のインバータが故障した場合、他方のインバータで駆動を継続させることができる。これにより、例えばパワーステアリング装置のモータ駆動であれば、インバータの故障時にもパワーアシストが継続可能となる。また、インバータの出力が一定の電流値を超えた場合に、素子の発熱によるインバータの過熱を抑えるために過熱保護制御を行う構造が知られている。 
例えば、特許文献1には、インバータを2つ備える2系統の構成において、系統温度に応じて各系統に出力を分配することで過熱を抑制する構造が開示されている。
特開2016-152682号公報
一方のインバータが故障して1系統のみで駆動する場合、通常駆動時の2倍の電流を出力する必要があるため、インバータの熱が片側に集中しやすい。そのため、1系統が故障した際には出力制限による過熱保護制御が考えられる。 
しかし、電流の出力が制限されると、モータの出力が低下するので、例えばパワーステアリング装置のモータ駆動であれば、ドライバーへの操舵力の負荷が高くなり、ドライビング性能の悪化を招く。そこで、本発明は、1系統のみの駆動時に、インバータの過熱を抑えながらもモータの出力低下を抑制することを本発明の目的の一つとする。
本発明に係る駆動制御装置の一態様は、モータの駆動を制御する駆動制御装置において、それぞれが上記モータに電力を供給する少なくとも2つのインバータと、上記2つのインバータの両方を動作させて上記モータを駆動する第1駆動制御と、上記2つのインバータの片方を動作させて上記モータを駆動する第2駆動制御とを選択的に実行する制御部と、を備え、上記制御部が、上記第2駆動制御における上記片方のインバータの動作として、第1の温度状態では第1の動作方式を用い、上記第1の温度状態に較べ、上記片方のインバータから他のインバータへ放熱が少ない第2の温度状態では、上記第1の動作方式よりも発熱が低い第2の動作方式を用いる。 また、本発明に係る駆動装置の一態様は、上記駆動制御装置と、上記駆動制御装置によって駆動が制御されるモータと、を備える。 
また、本発明に係るパワーステアリング装置の一態様は、上記駆動制御装置と、上記駆動制御装置によって駆動が制御されるモータと、上記モータによって駆動されるパワーステアリング機構とを備える。
本発明によれば、1系統のみの駆動時に、インバータの過熱を抑えながらもモータの出力低下を抑制することできる。
図1は、本実施形態によるモータ駆動ユニットの分解斜視図である。 図2は、モータ駆動ユニットの1系統分のブロック構成を模式的に示す図である。 図3は、インバータ100がモータ200に供給する電圧波形の一例を示す図である。 図4は、2系統で駆動する場合の熱分布を模式的に示す図である。 図5は、図5は、1系統で駆動する場合の熱分布を模式的に示す図である。 図6は、本実施形態における駆動制御を示すフローチャートである。 図7は、1系統の駆動で放熱の余地が減少した場合の熱分布を模式的に示す図である。 図8は、温度条件の第1の具体例における制御変更を示す図である。 図9は、測定温度の上昇率の例を示す図である。 図10は、「発熱が低い駆動方式」の第1の具体例を示す図である。 図11は、「発熱が低い駆動方式」の第2の具体例を示す図である。 図12は、「発熱が低い駆動方式」の第3の具体例を示す図である。 図13は、「発熱が低い駆動方式」の第4の具体例を示す図である。 図14は、「発熱が低い駆動方式」の第5の具体例を示す図である。 図15は、本実施形態によるパワーステアリング装置の構成を模式的に示す図である。
以下、添付の図面を参照しながら、本開示の駆動制御装置、駆動装置およびパワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。 
本明細書において、電源からの電力を、三相(U相、V相、W相)の巻線(「コイル」と表記する場合がある。)を有する三相モータに供給する駆動制御装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する駆動制御装置も本開示の範疇である。



(モータ駆動ユニット1000の構造)



 図1は、本実施形態によるモータ駆動ユニット1000の分解斜視図である。 モータ駆動ユニット1000は、モータ200と、ヒートシンク1001と、パワー基板1002と、制御基板1003と、カバー1004とを備える。 モータ200は、三相(U相、V相、W相)のコイルを、互いに独立に2系統備える。 ヒートシンク1001は、モータ200のベアリングホルダと一体に形成される。 
パワー基板1002には、モータ200が備えた2系統のコイルそれぞれに電力を供給する2系統のインバータ100が搭載される。各インバータ100の熱は、共通のヒートシンク1001に放熱される。 制御基板1003には、2系統のインバータ100それぞれを制御する2系統の駆動制御回路300が搭載される。 
カバー1004は、パワー基板1002および制御基板1003を覆ってヒートシンク1001およびモータ200に固定される。これより、モータ駆動ユニット1000はいわゆる機電一体型モータとして組み立てられる。 
本明細書では、構成要素としてモータ200を備えるモータ駆動ユニット1000を説明する。モータ200を備えるモータ駆動ユニット1000は、本発明の駆動装置の一例に相当する。ただし、モータ駆動ユニット1000は、構成要素としてモータ200を備えない、モータ200を駆動するための装置であってもよい。モータ200を備えないモータ駆動ユニット1000は、本発明の駆動制御装置の一例に相当する。 図2は、モータ駆動ユニット1000の1系統分のブロック構成を模式的に示す図である。 
モータ駆動ユニット1000は、インバータ100、制御回路310、駆動回路320を1系統毎に備える。制御回路310と駆動回路320は上述した駆動制御回路300に含まれる。 
モータ200は例えば三相交流モータであり、U相、V相およびW相のコイル210,220,230を1系統毎に備える。コイルの巻き方は、例えば集中巻きまたは分布巻きである。本実施形態では、モータ200の各相のコイル210,220,230は中性点240で互いに接続され、中性点240も1系統毎に独立に形成される。そして、各コイル210,220,230の、中性点240に接続されない一端から駆動のために電圧や電流が供給される。本明細書において、部品(構成要素)同士の「接続」とは、特に断らない限り電気的な接続を意味する。 
なお、本発明にいうモータは、互いに接続された中性点240を有してもよいし、コイルを1系統のみ有してコイルの両端それぞれに各1系統のインバータが接続されてもよい。 
モータ駆動ユニット1000は、インバータ100によって、電源501からの電力をモータ200に供給する電力に変換することが可能である。例えば、インバータ100は、直流電力を、U相、V相およびW相の擬似正弦波である三相交流電力に変換することが可能である。 
電源501としては、例えば直流電源が用いられる。ただし、電源501は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。また、モータ駆動ユニット1000は、内部に電源を備えてもよい。 
電源501とインバータ100との間には、電源分離スイッチ502が備えられる。電源分離スイッチ502は、電源501とインバータ100との接続・非接続を切替えることができる。 
インバータ100とモータ200との間には、相分離スイッチ610が備えられる。相分離スイッチ610は、インバータ100とモータ200との接続・非接続を切替えることができる。 
電源分離スイッチ502および相分離スイッチ610は、2系統のインバータ100などのうち1系統に異常が生じた場合に、当該1系統をモータ200および電源501から電気的に切り離す。 
電源端子には、電源分離スイッチ502を介してコンデンサ503が接続される。コンデンサ503は、インバータ100に電力を供給する電源501に対し、インバータ100と並列に接続される。コンデンサ503は、いわゆる平滑コンデンサであり、環流電流を吸収することで電圧リプルを抑制する。コンデンサ503は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。 
モータ駆動ユニット1000には温度センサの一種であるサーミスタ600が備えられ、インバータ100の温度が1系統毎に測定されて制御回路310に入力される。なお、各系統の制御回路310には、自己の系統からの測定値だけでなく、相手の系統からの測定値も入力される。 
インバータ100は、モータ200のコイル(巻線) 210,220,230 に接続されたスイッチ素子101~106を備え、スイッチ素子101~106のオンオフ動作によってモータ200に電力を供給する。より具体的には、インバータ100は、スイッチ素子として、電源501からモータ200へと電流が流れる電流路の接続・非接続を切替えるハイサイドスイッチ素子101,103,105と、モータ200からグランドへと電流が流れる電流路の接続・非接続を切替えるローサイドスイッチ素子102,104,106とを備える。 
インバータ100に備えられた各スイッチ素子101~106は、駆動回路320によってオンオフ動作され、そのオンオフ動作の結果、モータ200に電力が供給されて出力が生じる。オンオフ動作の制御は、制御回路320によるPWM制御で実行される。即ち、制御回路320は各スイッチ素子101~106のオンオフ動作を制御してモータ200の出力を制御する。



(インバータ100の駆動制御)



 図3は、インバータ100がモータ200に供給する電圧波形の一例を示す図である。 図3の横軸は電気角を示し、縦軸は電圧値を示す。 
インバータ100は、PWM制御によって駆動されることにより、電源501からの直流電圧を、図3に示すような曲線的な波形の交流電圧に変換する。このような波形の交流電圧がモータ200に供給されることにより、モータ200はトルクリップルの少ない滑らかな回転出力を生じる。 
上述したように、モータ駆動ユニット1000は2系統の駆動制御回路300(制御回路310および駆動回路320)とインバータ100を備えるので、1系統に異常が生じた場合であっても、正常な1系統でモータ200の駆動を継続することができる。このように1系統でモータ200が駆動されると、その1系統のインバータ100に熱が偏ることになる。 図4は、2系統で駆動する場合の熱分布を模式的に示す図であり、図5は、1系統で駆動する場合の熱分布を模式的に示す図である。 
パワー基板1002はヒートシンク1001と接触し、インバータ100の熱はヒートシンク1001へと放熱される。2系統のインバータ100の双方が駆動する場合、サーミスタ600で測定される各インバータ100の温度は、図に斜線で示されているようにほぼ同等であり、温度差は小さい。 
2系統のインバータ100のうち、一方のインバータ100_NGに異常が生じると、当該一方のインバータ100_NGは駆動が停止され、正常なもう一方のインバータ100_OKのみが駆動してモータ200に電力を供給する。この結果、図に斜線で示されているように、正常なインバータ100_OKに熱が偏る。但し、このような熱の偏りは、2系統での駆動時から生じている場合もある。 また、例えばパワーステアリング装置などの様に、モータ200の出力維持が求められる装置の場合は、正常なインバータ100_OKで2系統分の電力供給を担うことになり、インバータ100_OKの発熱も増加する。その結果、サーミスタ600で測定されるインバータ100_OKの温度は、2系統のインバータ100の双方が駆動する場合の温度よりも高温となる。 
インバータ100の温度が高くなりすぎると故障の原因となるので、一般に、高温時のインバータ100の制御として過熱保護制御が知られており、電流が制限されることによってインバータ100の発熱が抑制される。しかし、電流の制限によってモータ200への供給電力も制限されることになり、モータ200の出力維持が失われる虞がある。 そこで、本実施形態では、インバータ100の過熱を抑えながらもモータ200の出力低下を抑制するため、以下説明するような駆動制御が実行される。 図6は、本実施形態における駆動制御を示すフローチャートである。 
この駆動制御では、先ずステップS101で、2系統のいずれかに異常が発生したか否かが判定される。異常発生の判定方法としては、従来周知の任意の判定方法が採用される。また、異常の判定対象としては、インバータ100であってもよく、駆動回路320であってもよく、制御回路310であってもよい。 
2系統のいずれにも異常が生じていない(双方とも正常である)場合には(ステップS101;NO)、2系統の双方が用いられる通常の駆動が継続される。そして、2系統のいずれかに異常が発生した場合は(ステップS101;YES)、ステップS102に進み、異常が発生した系統について、制御回路310、駆動回路320およびインバータ100が停止される。そして、正常な1系統で駆動が継続される。 
つまり、ステップS101~ステップS102では、2つのインバータ100の両方を動作させてモータ200を駆動する第1駆動制御と、2つのインバータ100のうち片方のインバータ100を動作させてモータ200を駆動する第2駆動制御とを選択的に実行する。 
2系統双方による駆動から切り替わった場合の1系統の駆動は、例えば図3に示す電圧波形による駆動であり、1系統で2系統分の電力供給が行われる。この結果、モータ200の出力も維持される。また、正常な1系統のみでモータ200が駆動されると、当該1系統での発熱は、2系統双方による駆動時における1系統分の発熱よりも高く、図5に示したように、正常なインバータ100_OKに熱が偏る。その偏った熱は、ヒートシンク1001に放熱されるが、異常なインバータ100_NGが停止している場合には、正常なインバータ100_OK側から異常なインバータ100_NG側へと放熱される作用が生じる。つまり、停止しているインバータ100_NG側が追加の放熱部として機能する。 
1系統による高発熱のモータ200駆動が行われると、その後、制御変更が必要な温度条件に達したか判定される(ステップS103)。ここで、制御変更が必要な温度条件とは、停止しているインバータ100_NG側への放熱が少なくなる温度条件である。具体的な条件については後述する。 
制御変更が必要な温度条件に達しない(ステップS103;NO)間は、高い発熱を生じる1系統の駆動が継続され、制御変更が必要な温度条件に達すると(ステップS103;YES)、ステップS104に進み、発熱が低い駆動方式に変更される。つまり、ステップS103~ステップS104では、第1の温度状態では第1の動作(駆動)方式を用い、第1の温度状態に較べ、片方のインバータから他のインバータへの放熱が少ない第2の温度状態では、第1の動作(駆動)方式よりも発熱が低い第2の動作(駆動)方式を用いる。 
後で具体的な駆動方式について詳述するように、ステップS104で実行される発熱が低い駆動方式は、モータ200の出力を維持する一方でトルクリップルの発生などについては妥協して発熱を抑制する駆動方式である。このような発熱が低い駆動方式に移行した後は、過熱保護が必要な温度条件に達したか判定される(ステップS105)。過熱保護が必要な温度条件とは、例えば過熱保護開始の閾値温度を超える温度などである。 
過熱保護が必要な温度条件に達しない(ステップS105;NO)間は、上述した発熱が低い駆動方式が継続され、過熱保護が必要な温度条件に達すると(ステップS105;YES)、ステップS106に進み、過熱保護によって電流が制限されることによってインバータ100の発熱が抑制される。上述したように、過熱保護では発熱が抑制されると共に、モータ200の出力も抑制される。つまり、ステップS105~ステップS106では、上述した第2の温度状態に較べ、片方のインバータから他のインバータへの放熱が更に少ない第3の温度状態では、モータ200への供給電力を制限する。 このように、本実施形態の駆動制御では、過熱保護に至る前に低発熱の駆動方式が用いられてモータ200の出力ができるだけ維持される。 以下、上述した「制御変更が必要な温度条件」の具体例について説明する。 
第1の具体例では、第1の温度状態よりも2つのインバータの温度差が小さい第2の温度状態では第2の動作方式が用いられる。即ち、2つの系統それぞれについてサーミスタ600で測定された温度の差が所定の閾値を下回った場合に、低発熱の駆動方式が用いられる。 
図5に示されるように、駆動中のインバータ100_OKに熱が偏っている場合には、2つのサーミスタ600による測定値の差(即ち温度差)が大きい。そして、そのような温度差により、停止中のインバータ100_NGが放熱部として機能するので、駆動中のインバータ100_OKは放熱に余裕があり、高い発熱の駆動方式を継続することができる。しかし、駆動中のインバータ100_OKによる高い発熱が続くと、環境温度などによっては放熱の余地が減少する虞がある。 図7は、1系統の駆動で放熱の余地が減少した場合の熱分布を模式的に示す図である。 
駆動中のインバータ100_OKによる高い発熱が続くと、例えば環境温度が高い場合などは、ヒートシンク1001の温度も上昇するとともに停止中のインバータ100_NGの温度も上昇する。その結果、2つのサーミスタ600による測定値の差(即ち温度差)が低下し、停止中のインバータ100_NGによる放熱部としての機能も低下する。従って、放熱の余地が全体として失われ、駆動中のインバータ100_OKが更に高温化する虞がある。 このような温度状態(温度条件)に達した場合には、駆動中のインバータ100_OKにおける駆動方式が、低発熱の駆動方式に変更される。



(温度条件の具体例)



 図8は、温度条件の第1の具体例における制御変更を示す図である。 図8の横軸は時間経過を示し、縦軸は温度差を示す。 
高い発熱の駆動がある程度の高温環境などで継続されると、2つの系統における温度差が時間経過と共に減少する。そして、温度差が閾値TV1を下回ると、低発熱の駆動方式に変更されて駆動が継続される。駆動方式が変更されて発熱が減ることで温度差も下げ止まり、放熱の余地が生まれるので、出力の維持が図られる。 
なお、温度差のみによる判断では、駆動中のインバータ100_OKの発熱が小さくて2つのインバータ100_OK,100_NGが双方とも低温である場合と放熱の余地が少ない場合との区別が困難である。従って、第1の具体例では、望ましくは、駆動中の片方のインバータの温度が所定の温度を超え、かつ、第1の温度状態よりも2つのインバータの温度差が小さい第2の温度状態では第2の動作方式が用いられる。即ち、駆動中の系統におけるサーミスタ600の測定温度が所定の閾値を超え、かつ、2つの系統それぞれについてサーミスタ600で測定された温度の差が所定の閾値を下回った場合に、低発熱の駆動方式が用いられることが望ましい。 
「制御変更が必要な温度条件」の第2の具体例では、駆動中の片方のインバータの温度が所定の温度を超え、かつ、第1の温度状態よりも当該片方のインバータの温度上昇が高い第2の温度状態では第2の動作方式が用いられる。即ち、駆動中の系統について、サーミスタ600の測定温度が所定の閾値を超えるとともに測定温度の上昇率も所定の閾値を超える場合に、低発熱の駆動方式が用いられる。この第2の具体例によれば、駆動側の温度のみで温度状態が決められるので、相手側の系統の測定値を得るための配線などが不要となりコストダウンが見込まれる。 図9は、測定温度の上昇率の例を示す図である。 図9の横軸は時間経過を示し、縦軸は、駆動側の系統のサーミスタ600による測定温度を示す。 
図9のグラフには、温度上昇率が大きい例を表したラインL1と、温度上昇率が小さい例を表したラインL2が示されている。温度上昇率が大きいと、同じ温度上昇が短時間で生じる。このため、仮に高い発熱の駆動方式を継続するならば、過熱保護の閾値温度TV2に到達して電流制限が掛かる虞がある。従って、過熱保護に至る前に、低発熱の駆動方式に変更することが望ましい。 
一方、温度上昇率が小さいと、同じ温度上昇が生じるのに長時間を要し、その間にヒートシンク1001や停止中のインバータ100_NGへと放熱も進む。このため、高い発熱の駆動方式を継続しても過熱保護の閾値温度TV2には到達せずに温度の上昇が頭打ちとなることが期待される。 このように、温度上昇率によって放熱の状況が判定可能であり、駆動方式の適切な変更も可能となる。



(駆動方式の具体例)



 以下、上述した「発熱が低い駆動方式」の具体例について説明する。 
2系統のインバータ100は、各インバータ100にそれぞれスイッチ素子101~106を備え、当該スイッチ素子101~106のオンオフ動作によってモータ200に電力を供給する。発熱が低い第2の動作(駆動)方式は、第1の動作(駆動)方式よりもスイッチ素子101~106のオンオフの頻度が少ない。スイッチ素子101~106は、オンオフ動作(スイッチング)に伴って発熱を生じるので、スイッチ素子101~106におけるオンオフ動作の頻度が減ることでインバータ100の発熱が低減される。また、以下説明するように、オンオフ動作の頻度が減ってもモータ200の出力を維持することができる。 図10は、「発熱が低い駆動方式」の第1の具体例を示す図である。 
第1の動作(駆動)方式で、n相(例えば3相)のそれぞれについて並行でオンオフ動作を行うのに対し、図10に示す第2の動作(駆動)方式では、n相のうちオンオフ動作が停止している相が、どの時点においても1つ以上存在する。 
図3に示す電圧波形を生じる駆動方式を3相変調方式と称し、図10に示す駆動方式を2相変調方式と称する。即ち、図10に示す駆動方式では、電気角の0°から90°まではV相が電圧0に維持され、V相のスイッチ素子は電圧0を示すオンオフ状態に固定される。従って、電気角の0°から90°まではV相のスイッチ素子についてはPWM制御のオンオフ動作が停止する。 また、電気角の90°から210°まではW相が電圧0に維持され、W相のスイッチ素子についてはPWM制御のオンオフ動作が停止する。 更に、電気角の210°から330°まではU相が電圧0に維持され、U相のスイッチ素子についてはPWM制御のオンオフ動作が停止する。 更にまた、電気角の330°から360°(0°)まではV相が電圧0に維持され、V相のスイッチ素子についてはPWM制御のオンオフ動作が停止する。 
このように、図10に示す駆動方式では、モータ200の3相のうち、一時には2相のみでオンオフ動作が実行され、常にいずれか1相はオンオフ動作が停止される。この結果、図3に示す3相変調方式に対して2相変調方式ではスイッチ素子のオンオフ動作が約3分の1低減され、スイッチングに伴う発熱も低減される。 
一方で、モータ200の出力は、図10に示す電圧波形によって供給される電力によって決まるが、供給電力は図3に示す電圧波形による供給電力とほぼ同等である。従って、モータ200の出力は、3相変調方式から2相変調方式になってもほぼ維持されることになる。 図11は、「発熱が低い駆動方式」の第2の具体例を示す図である。 
図11に示す例では、インバータ100が、設定されたキャリア周波数でスイッチ素子101~106をオンオフ動作し、第2の動作(駆動)方式は、第1の動作(駆動)方式よりもキャリア周波数が低い。図11の左方には、第1の動作方式におけるキャリア周波数の例が示され、図11の右方には、第2の動作方式におけるキャリア周波数の例が示される。 
即ち、駆動回路320は制御回路310により、PWM制御におけるキャリア周波数として例えば20kHzが設定され、2系統での駆動時や、1系統による高い発熱の駆動方式では、設定された20kHzで駆動回路320がインバータ100のスイッチ素子101~106をオンオフ動作させる。 
これに対して低発熱の駆動方式では、駆動回路320は制御回路310により、キャリア周波数として例えば16kHzが設定され、駆動回路320がインバータ100のスイッチ素子101~106を16kHzでオンオフ動作させる。 
このようにキャリア周波数が低周波数に変更されることでスイッチ素子101~106のオンオフ動作の頻度が容易に低減され、インバータ100の発熱も抑制される。なお、キャリア周波数は、インバータ100による電力波形とは独立に変更可能である。従って、高い発熱の駆動方式と低発熱の駆動方式との双方で、例えば図3に示す電圧波形が用いられてもよい。つまり、図11に示す第2の具体例では、高い発熱の駆動方式と低発熱の駆動方式とで電圧波形が変更されなくてもインバータ100の発熱が抑制される。 
図11に示す第2の具体例は、図10に示す第1の具体例と組み合わせで採用されてもよい。即ち、高い発熱の駆動方式では、例えば、図3に示す電圧波形と20kHzのキャリア周波数が用いられ、低発熱の駆動方式では、図10に示す電圧波形と16kHzのキャリア周波数が用いられる。 同様に、図11に示す第2の具体例は、後述する他の具体例と組み合わせで採用されてもよい。 図12は、「発熱が低い駆動方式」の第3の具体例を示す図である。 
図12に示す例では、高い発熱の第1の動作(駆動)方式では、スイッチ素子のオンオフ動作で正弦波の電力波形を形成し、低発熱の第2の動作(駆動)方式では、スイッチ素子のオンオフ動作で台形波を形成する。図12の左方には、第1の動作方式における電力波形である正弦波が示され、図12の右方には、第2の動作方式における電力波形である台形波が示される。 
電力波形が滑らかな曲線である正弦波では、PWM制御によるスイッチ素子のオンオフ動作が絶えず行われることで波形が形成されるが、台形波の場合には、振幅が一定の区間でオンオフ動作が停止可能となる。従って、台形波では、一部区間でオンオフ動作が停止されることにより、インバータの発熱が抑制される。 図13は、「発熱が低い駆動方式」の第4の具体例を示す図である。 
図13に示す例では、高い発熱の第1の動作(駆動)方式では、スイッチ素子のオンオフ動作で正弦波の電力波形を形成し、低発熱の第2の動作(駆動)方式では、スイッチ素子のオンオフ動作で矩形波を形成する。図13の左方には、第1の動作方式における電力波形である正弦波が示され、図13の右方には、第2の動作方式における電力波形である矩形波が示される。 
電力波形が滑らかな曲線である正弦波では、PWM制御によるスイッチ素子のオンオフ動作が絶えず行われることで波形が形成されるが、矩形波の場合には振幅が一定であるので、極性が逆転する箇所を除くと、任意の区間でオンオフ動作が停止可能となる。従って、矩形波では、任意の区間でオンオフ動作が停止されることにより、インバータの発熱が抑制される。 図14は、「発熱が低い駆動方式」の第5の具体例を示す図である。 
図14に示す例では、第1の動作(駆動)方式で、ハイサイドスイッチ素子とローサイドスイッチ素子との双方が並行してオンオフ動作し、第2の動作(駆動)方式では、ハイサイドスイッチ素子とローサイドスイッチ素子とのうち一方が他方よりオンオフ頻度が低い。より詳細には、図14には、ハイサイドスイッチ素子におけるオンオフ動作としてベタオン動作(即ち一部区間でオン状態に固定された動作)が用いられ、ローサイドスイッチ素子でPWM制御のオンオフ動作が用いられる例が示される。 
高い発熱の駆動方式ではローサイドスイッチ素子と並行でPWM制御のオンオフ動作を行っていたハイサイドスイッチ素子が、低発熱の駆動方式ではベタオン動作によって殆どオンオフ動作を停止する。従って、低発熱の駆動方式では、全体としてスイッチ素子のオンオフ動作がほぼ半減することになり、インバータ100の発熱が抑制される。 
なお、ハイサイドスイッチ素子とローサイドスイッチ素子との一方のみのPWM制御であっても、電力波形としては任意の電力波形が形成可能である。従って、図14に示す第5の具体例は、上述した第3,第4の具体例との組み合わせが可能である。 
また、ハイサイドスイッチ素子とローサイドスイッチ素子との一方のみのPWM制御であっても、キャリア周波数としては任意の周波数が採用可能である。従って、図14に示す第5の具体例は、上述した第2の具体例と組み合わされてもよい。 更には、図14に示す第5の具体例は、上述した第1,第3,第4の具体例と組み合わされた上に、上述した第2の具体例とも組み合わされてもよい。



(パワーステアリング装置の実施形態)


自動車等の車両は一般的に、パワーステアリング装置を備えている。パワーステアリング装置は、運転者がステアリングハンドルを操作することによって発生するステアリング系の操舵トルクを補助するための補助トルクを生成する。補助トルクは、補助トルク機構によって生成され、運転者の操作の負担を軽減することができる。 
上記実施形態のモータ駆動ユニット1000は、パワーステアリング装置に好適に利用される。図15は、本実施形態によるパワーステアリング装置2000の構成を模式的に示す図である。 電動パワーステアリング装置2000は、ステアリング系520および補助トルク機構540を備える。 
ステアリング系520は、例えば、ステアリングハンドル521、ステアリングシャフト522(「ステアリングコラム」とも称される。)、自在軸継手523A、523B、および回転軸524(「ピニオン軸」または「入力軸」とも称される。)を備える。 
また、ステアリング系520は、例えば、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪(例えば左右の前輪)529A、529Bを備える。 
ステアリングハンドル521は、ステアリングシャフト522と自在軸継手523A、523Bとを介して回転軸524に連結される。回転軸524にはラックアンドピニオン機構525を介してラック軸526が連結される。ラックアンドピニオン機構525は、回転軸524に設けられたピニオン531と、ラック軸526に設けられたラック532とを有する。ラック軸526の右端には、ボールジョイント552A、タイロッド527Aおよびナックル528Aをこの順番で介して右の操舵車輪529Aが連結される。右側と同様に、ラック軸526の左端には、ボールジョイント552B、タイロッド527Bおよびナックル528Bをこの順番で介して左の操舵車輪529Bが連結される。ここで、右側および左側は、座席に座った運転者から見た右側および左側にそれぞれ一致する。 
ステアリング系520によれば、運転者がステアリングハンドル521を操作することによって操舵トルクが発生し、ラックアンドピニオン機構525を介して左右の操舵車輪529A、529Bに伝わる。これにより、運転者は左右の操舵車輪529A、529Bを操作することができる。 
補助トルク機構540は、例えば、操舵トルクセンサ541、機電一体型モータ543、減速機構544を備える。補助トルク機構540は、ステアリングハンドル521から左右の操舵車輪529A、529Bに至るステアリング系520に補助トルクを与える。なお、補助トルクは「付加トルク」と称されることがある。 機電一体型モータ543としては、例えば図1に示されたモータ駆動ユニット1000が好適に用いられる。 
図15に示された各要素のうち、操舵トルクセンサ541および機電一体型モータ543を除いた要素で構成された機構は、モータ200によって駆動されるパワーステアリング機構の一例に相当する。 
操舵トルクセンサ541は、ステアリングハンドル521によって付与されたステアリング系520の操舵トルクを検出する。操舵トルクセンサ541からの検出信号(以下、「トルク信号」と表記する。)は、機電一体型モータ543に入力され、機電一体型モータ543内の制御回路で補助トルクが算出され、その補助トルクを示した駆動信号が生成される。機電一体型モータ543は、操舵トルクに応じた補助トルクを駆動信号に基づいて発生する。補助トルクは、減速機構544を介してステアリング系520の回転軸524に伝達される。減速機構544は、例えばウォームギヤ機構である。補助トルクはさらに、回転軸524からラックアンドピニオン機構525に伝達される。 
パワーステアリング装置2000は、補助トルクがステアリング系520に付与される箇所によって、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等に分類される。図15には、コラムアシスト型のパワーステアリング装置2000が示されている。ただし、パワーステアリング装置2000は、ラックアシスト型、ピニオンアシスト型等にも適用される。 
パワーステアリング装置2000によれば、運転者の操舵トルクに機電一体型モータ543の補助トルクを加えた複合トルクを利用してラック軸526によって左右の操舵車輪529A、529Bを操作することができる。特に、機電一体型モータ543に、上記実施形態のモータ駆動ユニット1000が利用されることにより、2系統の一方に異常が生じた場合であっても発熱が抑制されてアシストトルクが維持される。 
なお、ここでは、本発明の駆動制御装置、駆動装置における使用方法の一例としてパワーステアリング装置が挙げられるが、本発明の駆動制御装置、駆動装置の使用方法は上記に限定されず、ポンプ、コンプレッサなど広範囲に使用可能である。 
上述した実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
100  :インバータ101,103,105  :ハイサイドスイッチ素子102,104,106  :ローサイドスイッチ素子200  :モータ210,220,230  :コイル310  :制御回路320  :駆動回路501  :電源503  :コンデンサ600  :サーミスタ1000  :モータ駆動ユニット1001  :ヒートシンク1002  :パワー基板1003  :制御基板2000  :パワーステアリング装置

Claims (14)

  1. モータの駆動を制御する駆動制御装置において、



     それぞれが前記モータに電力を供給する少なくとも2つのインバータと、



     前記2つのインバータの両方を動作させて前記モータを駆動する第1駆動制御と、前記2つのインバータのうち片方のインバータを動作させて前記モータを駆動する第2駆動制御とを選択的に実行する制御部と、



    を備え、



     前記制御部が、前記第2駆動制御における前記片方のインバータの動作として、



     第1の温度状態では第1の動作方式を用い、



     前記第1の温度状態に較べ、前記片方のインバータから他のインバータへの放熱が少ない第2の温度状態では、前記第1の動作方式よりも発熱が低い第2の動作方式を用いる駆動制御装置。
  2. 前記第1の温度状態よりも前記2つのインバータの温度差が小さい前記第2の温度状態では前記第2の動作方式を用いる請求項1に記載の駆動制御装置。
  3. 前記片方のインバータの温度が所定の温度を超え、かつ、前記第1の温度状態よりも前記2つのインバータの温度差が小さい前記第2の温度状態では前記第2の動作方式を用いる請求項1または2に記載の駆動制御装置。
  4. 前記片方のインバータの温度が所定の温度を超え、かつ、前記第1の温度状態よりも当該片方のインバータの温度上昇が高い前記第2の温度状態では前記第2の動作方式を用いる請求項1に記載の駆動制御装置。
  5. 前記制御部が、



     前記第2の温度状態に較べ、前記片方のインバータから他のインバータへの放熱が更に少ない第3の温度状態では、前記モータへの供給電力を制限する請求項1から4のいずれか1項に記載の駆動制御装置。
  6. 前記インバータは、各インバータにそれぞれスイッチ素子を備え、当該スイッチ素子のオンオフ動作によって前記モータに電力を供給し、



     前記第2の動作方式は、前記第1の動作方式よりも前記スイッチ素子のオンオフの頻度が少ない請求項1から5のいずれか1項に記載の駆動制御装置。
  7. 前記インバータが、設定されたキャリア周波数で前記スイッチ素子をオンオフ動作させ、



     前記第2の動作方式は、前記第1の動作方式よりもキャリア周波数が低い請求項6に記載の駆動制御装置。
  8. 前記モータが、3以上のn相の巻線を有し、



     前記第1の動作方式では、前記n相のそれぞれについて並行でオンオフ動作を行い、



     前記第2の動作方式では、前記n相のうちオンオフ動作が停止している相が、どの時点においても1つ以上存在する請求項6または7に記載の駆動制御装置。
  9. 前記制御部が、



     前記第1の動作方式では、前記スイッチ素子のオンオフ動作で正弦波の電力波形を形成し、



     前記第2の動作方式では、前記スイッチ素子のオンオフ動作で矩形波もしくは台形波を形成する請求項6から8のいずれか1項に記載の駆動制御装置。
  10. 前記インバータが、前記スイッチ素子として、電源から前記モータへと電流が流れる電流路の接続・非接続を切替える電源側スイッチ素子と、前記モータからグランドへと電流が流れる電流路の接続・非接続を切替えるグランド側スイッチ素子とを備え、



     前記第1の動作方式では、前記電源側スイッチ素子と前記グランド側スイッチ素子との双方が並行してオンオフ動作し、



     前記第2の動作方式では、前記電源側スイッチ素子と前記グランド側スイッチ素子とのうち一方が他方よりオンオフ頻度が低い請求項5から9のいずれか1項に記載の駆動制御装置。
  11. 前記2つのインバータが共通に放熱するヒートシンクを更に備えた請求項1から10のいずれか1項に記載の駆動制御装置。
  12. 前記2つのインバータそれぞれの温度を検出する2つの温度センサを更に備えた請求項1から11のいずれか1項に記載の駆動制御装置。
  13. 請求項1から12のいずれか1項に記載の駆動制御装置と、



     前記駆動制御装置によって駆動が制御されるモータと、



    を備える駆動装置。
  14. 請求項1から12のいずれか1項に記載の駆動制御装置と、



     前記駆動制御装置によって駆動が制御されるモータと、



     前記モータによって駆動されるパワーステアリング機構と、



    を備えるパワーステアリング装置。
PCT/JP2019/025352 2018-09-27 2019-06-26 駆動制御装置、駆動装置およびパワーステアリング装置 WO2020066184A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020547994A JPWO2020066184A1 (ja) 2018-09-27 2019-06-26 駆動制御装置、駆動装置およびパワーステアリング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018181854 2018-09-27
JP2018-181854 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066184A1 true WO2020066184A1 (ja) 2020-04-02

Family

ID=69952529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025352 WO2020066184A1 (ja) 2018-09-27 2019-06-26 駆動制御装置、駆動装置およびパワーステアリング装置

Country Status (2)

Country Link
JP (1) JPWO2020066184A1 (ja)
WO (1) WO2020066184A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050131A1 (ja) * 2020-09-04 2022-03-10 株式会社安川電機 電力変換装置、昇降装置及び電力変換方法
JP2023073575A (ja) * 2021-11-16 2023-05-26 三菱電機株式会社 電力変換装置
WO2024005116A1 (ja) * 2022-06-30 2024-01-04 新電元工業株式会社 モータ制御装置及びモータ制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153588A (ja) * 2001-11-09 2003-05-23 Nissan Motor Co Ltd モータ駆動装置
JP2015061458A (ja) * 2013-09-20 2015-03-30 株式会社デンソー モータ制御装置
JP2016152682A (ja) * 2015-02-17 2016-08-22 株式会社デンソー 制御装置
JP2016153624A (ja) * 2015-02-20 2016-08-25 株式会社豊田自動織機 電動圧縮機
JP2017060304A (ja) * 2015-09-16 2017-03-23 株式会社デンソー 回転電機システムの制御装置
JP2017135818A (ja) * 2016-01-27 2017-08-03 株式会社日立製作所 電力変換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153588A (ja) * 2001-11-09 2003-05-23 Nissan Motor Co Ltd モータ駆動装置
JP2015061458A (ja) * 2013-09-20 2015-03-30 株式会社デンソー モータ制御装置
JP2016152682A (ja) * 2015-02-17 2016-08-22 株式会社デンソー 制御装置
JP2016153624A (ja) * 2015-02-20 2016-08-25 株式会社豊田自動織機 電動圧縮機
JP2017060304A (ja) * 2015-09-16 2017-03-23 株式会社デンソー 回転電機システムの制御装置
JP2017135818A (ja) * 2016-01-27 2017-08-03 株式会社日立製作所 電力変換装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050131A1 (ja) * 2020-09-04 2022-03-10 株式会社安川電機 電力変換装置、昇降装置及び電力変換方法
JP7473659B2 (ja) 2020-09-04 2024-04-23 株式会社安川電機 電力変換装置、昇降装置及び電力変換方法
JP2023073575A (ja) * 2021-11-16 2023-05-26 三菱電機株式会社 電力変換装置
JP7313416B2 (ja) 2021-11-16 2023-07-24 三菱電機株式会社 電力変換装置
WO2024005116A1 (ja) * 2022-06-30 2024-01-04 新電元工業株式会社 モータ制御装置及びモータ制御方法

Also Published As

Publication number Publication date
JPWO2020066184A1 (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
US10998842B2 (en) Power conversion device, motor drive unit, and electric power steering device
US10742137B2 (en) Power conversion device, motor drive unit, and electric power steering device
JP6874758B2 (ja) 電力変換装置、モータ駆動ユニット、電動パワーステアリング装置およびリレーモジュール
WO2020066184A1 (ja) 駆動制御装置、駆動装置およびパワーステアリング装置
WO2018173424A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP2016019330A (ja) 回転機の制御装置
JPWO2017150638A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US10829147B2 (en) Power conversion device, motor drive unit, and electric power steering device
US20200244206A1 (en) Power converter, motor driving unit, and electric power steering device
JP7236248B2 (ja) モータ制御装置
JP5605334B2 (ja) 多相回転機の制御装置
JP6977766B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US20200251966A1 (en) Motor module, and electric power steering device
JPWO2018180238A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7010282B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
CN111034005B (zh) 逆变器的控制方法、马达驱动单元、马达模块以及电动助力转向装置
WO2019151308A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
US11420672B2 (en) Power conversion device, motor drive unit, and electric power steering device
US20200198697A1 (en) Power conversion device, motor module, electric power steering device
JP7331778B2 (ja) モータ制御装置
WO2019150912A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2019053974A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019049449A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP2019134550A (ja) モータ制御装置
WO2020066182A1 (ja) 駆動制御装置、駆動装置およびパワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547994

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867109

Country of ref document: EP

Kind code of ref document: A1