WO2020066114A1 - Sputtering target and powder for producing sputtering target - Google Patents

Sputtering target and powder for producing sputtering target Download PDF

Info

Publication number
WO2020066114A1
WO2020066114A1 PCT/JP2019/019571 JP2019019571W WO2020066114A1 WO 2020066114 A1 WO2020066114 A1 WO 2020066114A1 JP 2019019571 W JP2019019571 W JP 2019019571W WO 2020066114 A1 WO2020066114 A1 WO 2020066114A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
powder
composite oxide
boron
melting point
Prior art date
Application number
PCT/JP2019/019571
Other languages
French (fr)
Japanese (ja)
Inventor
靖幸 岩淵
佐藤 敦
彰 下宿
清水 正義
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to MYPI2021001557A priority Critical patent/MY197929A/en
Priority to SG11202102759VA priority patent/SG11202102759VA/en
Priority to JP2020547948A priority patent/JP7072664B2/en
Priority to CN201980060775.9A priority patent/CN112739846A/en
Publication of WO2020066114A1 publication Critical patent/WO2020066114A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present disclosure relates to a sputtering target and a powder for producing the sputtering target. More specifically, the present invention relates to a sputtering target containing Ru and a powder for producing the sputtering target.
  • materials based on ferromagnetic metals such as Co, Fe, or Ni are used as materials for magnetic thin films for recording.
  • ferromagnetic metals such as Co, Fe, or Ni
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording system.
  • Patent Document 1 discloses an underlayer of a Ru—xCoO alloy. Further, in Patent Document 1, a crystal grain boundary is formed by an oxide in the second underlayer 150b, which promotes the separation between particles and the crystal orientation of Ru constituting the underlayer 150 and the main recording layer 160. It is disclosed that it also has the effect of improving
  • Patent Document 2 discloses a perpendicular magnetic recording medium including a nonmagnetic intermediate layer and a magnetic layer.
  • Patent Document 2 discloses Ru as a first nonmagnetic intermediate layer and a CoCr alloy as a second nonmagnetic intermediate layer.
  • Patent Document 3 a perpendicular magnetic layer in which at least a first magnetic layer and a second magnetic layer are alternately laminated on a non-magnetic substrate is provided via a base layer.
  • a recording medium is disclosed.
  • Patent Document 3 discloses that the underlayer is made of Ru containing oxygen.
  • Patent Document 4 discloses a sputtering target capable of forming a Ru film or a Ru oxide thin film having a small specific resistance when used as an electrode and having high adhesion to a base such as a plug or a barrier metal.
  • the intermediate layer below the magnetic recording layer plays an important role in improving the separability. If Ru crystal grains exist in the intermediate layer, the crystal grains of the magnetic recording layer grow starting from the Ru crystal grains. Further, when Ru oxide and Ru—B are used as the intermediate layer, the magnetic recording characteristics are improved. Based on these findings, the present inventors have studied combinations of Ru and boron oxide. The purpose of this is to obtain a structure in which boron oxide is arranged around Ru crystal grains.
  • a method of co-sputtering Ru and boron oxide is also conceivable, a single sputtering target containing both is advantageous in terms of a manufacturing process.
  • an object of the present disclosure is to provide a sputtering target containing Ru and boron oxide.
  • the present inventors have further studied and found that when a specific composite boron oxide is used instead of B 2 O 3 , boron remains in the sintered body. It is considered that the reason for this remaining is that the use of boron oxide having a higher melting point than B 2 O 3 could reduce the amount lost during the HP and / or HIP treatment.
  • the present invention has been completed based on the above findings, and in one aspect, includes the following inventions.
  • (Invention 1) A sputtering target containing Ru as a main component and having a melting point higher than that of B 2 O 3 and containing a composite oxide containing boron.
  • (Invention 2) The sputtering target according to the first aspect, wherein the content of B is 0.01 wt% or more.
  • (Invention 3) The sputtering target according to the invention 1 or 2, wherein the relative density is 90% or more.
  • (Invention 4) The sputtering target according to any one of Inventions 1 to 3, further comprising at least one selected from Co, Cr, Mn, and Ti as a constituent element in addition to Ru, B, and O. target.
  • (Invention 5) The sputtering target according to any one of Inventions 1 to 4, wherein the melting point of the composite oxide is 750 ° C. or higher.
  • (Invention 6) The sputtering target according to any one of Inventions 1 to 5, wherein the composite oxide is selected from the group consisting of Co 2 B 2 O 5 , CrBO 3 , TiBO 3 and Mn 3 B 2 O 6. The target that is at least species.
  • (Invention 7) A powder of a composite oxide for use in manufacturing a sputtering target, wherein the composite oxide is a composite oxide having a melting point higher than that of B 2 O 3 and containing boron.
  • invention 8 The powder according to claim 7, wherein the melting point of the composite oxide is 750 ° C or more.
  • invention 9 The powder according to invention 7 or 8, wherein the composite oxide is at least one selected from the group consisting of Co 2 B 2 O 5 , CrBO 3 , TiBO 3 and Mn 3 B 2 O 6. , The powder.
  • invention 10 The powder according to any one of inventions 7 to 9, wherein the powder has a specific surface area of 0.5 to 80 m 2 / g, a particle size of 0.3 to 15 ⁇ m, and / or a concentration as an impurity.
  • the powder having a content of 10,000 wtppm or less.
  • the sputtering target of the present disclosure includes Ru and B. This eliminates the need for co-sputtering, which is advantageous in the manufacturing process.
  • FIG. 4 is a SEM photograph of a target manufactured using Ru powder and Co 2 B 2 O 5 powder in one embodiment. The squares represent a portion of the oxide analyzed by EDS.
  • the present disclosure relates to a sputtering target.
  • the sputtering target contains at least Ru and a composite oxide.
  • Ru is a main component of the sputtering target.
  • the main component means an element having the largest content (at%) among the metal elements. Typically, the main component may mean 50 at% or more.
  • the composite oxide is a compound containing boron and having a higher melting point than B 2 O 3 .
  • B more B can be left in the sintered body than in a case where a sputtering target is manufactured using B 2 O 3 . Therefore, the crystal separability of Ru after sputtering is improved.
  • the Ru content may be 80.0-99.8 wt%.
  • the content is 80.0 wt% or more, Ru crystal grains necessary for growing the crystal grains of the recording layer can be sufficiently secured in the intermediate layer after film formation.
  • the content is 99.8 wt% or less, a sufficient B content for separating Ru crystal grains can be secured in the intermediate layer after film formation.
  • the lower limit of the Ru content is preferably at least 90.0 wt%, more preferably at least 95 wt%.
  • the upper limit of the Ru content is preferably 99.5 wt% or less, more preferably 99.0 wt% or less.
  • the content of B is 0.01 wt% or more.
  • the upper limit of the B content is not particularly limited, but may be typically 3.0 wt% or less from the viewpoint of maintaining the characteristics of Ru.
  • the lower limit of the B content is preferably 0.05 wt% or more, and more preferably 0.15 wt% or more.
  • the sputtering target may include one or more selected from Co, Cr, Mn, and Ti. These elements can form a complex oxide with B. Further, the composite oxide has a higher melting point than B 2 O 3 . Therefore, there is a low possibility of melting and loss due to heat treatment (eg, HIP, HP, etc.) during manufacturing.
  • heat treatment eg, HIP, HP, etc.
  • the content of one or more elements selected from Co, Cr, Mn, and Ti is not particularly limited, but is preferably a content according to a stoichiometric ratio for forming a composite oxide with B.
  • the content of O is not particularly limited, but is preferably a content according to a stoichiometric ratio for forming a composite oxide with B.
  • the composite oxide is Co 2 B 2 O 5
  • Co is 53.70 wt%
  • B is 9.85 wt%
  • O is 36.45 wt%.
  • the weight of the entire sputtering target is 100% and the content of B in the entire sputtering target is 0.01 wt% or more
  • Co is 0.054 wt% or more
  • O is 0.036 wt% or more.
  • the sputtering target may be composed of the following elements: Ru; B; O, one or more selected from Co, Cr, Mn, and Ti;
  • the sputtering target may contain unavoidable impurities in addition to the elements described above.
  • the content as an inevitable impurity is 10,000 wtppm or less, preferably 5000 wtppm or less (the total amount of all the inevitable impurity elements).
  • Elemental analysis (and quantification) of the sputtering target can be performed by a method known in the art. For example, it can be performed by the following method.
  • the sputtering target itself or the scraps of the sintered body (the surplus pieces when processing into the shape of the sputtering target) can be used as the sample.
  • a sample of about 5 g collected from a location as close to the center of the sputtering target as possible is powdered.
  • O, N, and C can be measured using an infrared absorption method (TC600 manufactured by LECO) after heating and gasifying the powder.
  • the powder is dissolved with an acid or the like and analyzed using an ICP emission spectrometer (SPS3100HV manufactured by Hitachi High-Tech Science).
  • the constituent elements may be analyzed by EDS (S-3700N manufactured by Hitachi High-Technologies Corporation) or EPMA (JXA-8500F manufactured by JEOL Ltd.).
  • the complex oxide containing boron in the sputtering target includes a complex oxide composed of B, O, and a metal element.
  • the reason for using such a composite oxide is that it has a higher melting point than B 2 O 3 described above, and is less likely to be lost by heat treatment. More preferably, the melting point of the composite oxide containing boron may be 750 ° C. or higher (preferably 1000 ° C. or higher).
  • the upper limit is not particularly limited, but is typically 1300 ° C. or lower.
  • the metal element constituting the composite oxide containing boron preferably includes, but is not limited to, one or more selected from Co, Cr, Mn, and Ti.
  • the reason why these metal elements are preferable is that it is unlikely to adversely affect the crystallinity of Ru.
  • Co has the same hcp crystal structure as Ru, it does not affect the crystallinity of Ru.
  • Cr, Ti, and Mn are rich in Ru, they do not react with Ru and do not affect the crystallinity of Ru.
  • boron-containing composite oxide examples include, but are not limited to, one or more selected from the group consisting of Co 2 B 2 O 5 , CrBO 3 , TiBO 3 and Mn 3 B 2 O 6 .
  • the relative density of the sputtering target may be 90% or more, preferably 98% or more. Thereby, the occurrence of arcing is further suppressed.
  • the relative density referred to in the present specification indicates a ratio between the measured density and the theoretical density.
  • the measured density refers to a value measured by the Archimedes method using pure water as a solvent.
  • the theoretical density is obtained by multiplying each of the elementary densities of the raw materials by the mixing mass ratio and summing up the obtained values.
  • Theoretical density ⁇ (theoretical density of component n ⁇ mixing mass ratio) ⁇
  • the present disclosure relates to powders for manufacturing sputtering targets, and uses of the powders.
  • the component of the powder is a composite oxide containing boron.
  • the melting point of the composite oxide containing boron is 750 ° C. or higher (more preferably, 1000 ° C. or higher).
  • the upper limit is not particularly limited, but is typically 1300 ° C. or lower.
  • the metal element constituting the composite oxide containing boron in the powder includes, but is not limited to, one or more selected from Co, Cr, Mn, and Ti.
  • Specific examples of the boron-containing composite oxide include, but are not limited to, one or more selected from the group consisting of Co 2 B 2 O 5 , CrBO 3 , TiBO 3, and Mn 3 B 2 O 6. Not done.
  • the powder may have a particle size D50 of 0.3 to 15 ⁇ m. With these sizes, a high-quality sputtering target can be manufactured.
  • the lower limit of D50 is preferably 0.8 ⁇ m or more, and more preferably 1.0 ⁇ m or more.
  • the upper limit of D50 is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the particle size of the powder means a particle size at an integrated value of 50% (D50) based on a volume value in a particle size distribution obtained by a laser diffraction / scattering method.
  • the particle size can be measured by dispersing the powder in a solvent of ethanol using a particle size distribution analyzer of model LA-920 manufactured by HORIBA.
  • the powder has a low impurity concentration.
  • impurities include Ti (only in the case of a composite oxide of Co, Cr, or Mn), Al, N, and C. Their total concentration may be up to 10,000 wtppm, preferably up to 5000 wtppm.
  • the impurity concentration can be analyzed using the above-described infrared absorption method, ICP emission spectrometer, GDMS (glow discharge mass spectrometry), or the like.
  • the specific surface area of the powder may be from 0.5 to 80 m 2 / g. With these specific surface areas, a high-quality sputtering target can be manufactured.
  • the lower limit of the specific surface area is preferably at least 0.8 m 2 / g, more preferably at least 1.5 m 2 / g.
  • the upper limit of the specific surface area is preferably 50 m 2 / g or less, more preferably 35 m 2 / g or less.
  • the specific surface area indicates a value measured by the following procedure: Degassing of the target substance at 200 ° C. for 2 hours. Measurement by BET method (one-point method) using Monosorb made by Cantachrome Co., using a mixed gas of 70 at% of He and 230 at% of N as an adsorption gas.
  • the manufacturing method the first composite oxide powder containing boron is prepared Co, Cr, and powder of oxides comprising an oxide and B containing at least one of Ti and Mn. Commercially available products may be used for these powders. These powders are produced by mixing and then performing a heat treatment at a temperature equal to or lower than the melting point. Further, a pulverizing step can be performed after the synthesis in order to obtain a powder suitable for manufacturing a sputtering target.
  • the method of mixing and pulverizing is not particularly limited, and a known means such as mortar mixing and a ball mill may be used.
  • the heat treatment step may use a known means.
  • the present disclosure relates to a method for manufacturing a sputtering target.
  • the method includes at least the following steps. -Step of mixing Ru powder and powder of a complex oxide containing boron-Step of pressure-sintering the mixed powder
  • a powder of composite oxide containing Ru powder and boron A commercially available Ru powder may be used.
  • a powder suitable for manufacturing a sputtering target is used (for example, low impurities).
  • a composite oxide containing boron having a melting point of 750 ° C. or more preferably 1000 ° C. or more may be used.
  • the method of mixing both is not particularly limited, and a known means such as mortar mixing and a ball mill may be used.
  • the above mixed powder can be filled in a mold or the like and sintered.
  • a pressing method at the time of sintering hot pressing (HP) and / or hot isostatic pressing (HIP) may, for example, be mentioned.
  • the processing temperature during hot pressing may be 750 to 1200 ° C.
  • the lower limit of the processing temperature may be preferably 900 ° C. or higher.
  • the upper limit of the processing temperature may be preferably 1100 ° C. or less.
  • the holding pressure during sintering is preferably in a pressure range of 150 kgf / cm 2 or more.
  • the processing temperature during hot isostatic pressing may be 750 to 1200 ° C.
  • the lower limit of the processing temperature may be preferably 900 ° C. or higher.
  • the upper limit of the processing temperature may be preferably 1100 ° C. or less.
  • the holding pressure during sintering is preferably in a pressure range of 1000 kgf / cm 2 or more.
  • machining may be further performed to finish it into a desired shape.
  • sputtering target 4-1 Film formation A film can be formed using the sputtering target obtained in the above step.
  • the conditions for sputtering may be those known in the art, and are typically as follows.
  • An intermediate layer for a magnetic recording layer can be formed by sputtering under the above conditions.
  • a magnetic recording medium can be manufactured. For example, it can be manufactured by the following procedure. First, a substrate is prepared. A layer containing NiW or NiFeW as a component is formed on a substrate. Next, a pure Ru layer is formed on the NiW layer or the NiFeW layer. Then, by sputtering using the above-described sputtering target, a layer composed of Ru and a composite oxide containing boron can be formed as an intermediate layer. Then, a magnetic recording layer is formed on the intermediate layer.
  • layers known in the art such as a protective layer and a lubricating layer, can be provided.
  • a protective layer and a lubricating layer can be provided below the NiW layer.
  • an adhesion layer mainly composed of CrTi or NiTa an adhesion layer mainly composed of CrTi or NiTa, a soft magnetic layer mainly composed of FeCoTa, FeCoNb, FeCoMo, etc., and a Ru layer which promotes antiferromagnetic coupling between the soft magnetic layers And other layers known in the art.
  • the unevenness of Ru and the recording layer interface is relatively small, the magnetic separation between the magnetic particles of the recording layer is good, and the magnetic anisotropy of the magnetic particles is increased. Therefore, the recording density of the HDD using the same can be improved.
  • Example 5-1 Production of Sputtering Target Ruthenium powder (purity 99.9 wt%) and a composite oxide powder containing boron (purity 99 wt%) were prepared. Regarding the composite oxide containing boron, four types of Co 2 B 2 O 5 , CrBO 3 , TiBO 3 , and Mn 3 B 2 O 6 (Examples 1 to 4), and B 2 O 3 (Comparative Example) was prepared. The ruthenium powder and the boron-containing composite oxide powder were mixed such that the content of the boron-containing composite oxide became “B target composition value wt%” shown in Table 1. Next, the mixture was filled in a carbon mold and hot pressed.
  • the hot pressing conditions were an Ar atmosphere, a sintering temperature of 1000 ° C., a sintering pressure of 300 kg / cm 2 , and a sintering time of 2 hours.
  • the sintered body removed from the hot press mold was subjected to hot isostatic sintering (HIP).
  • the conditions of the hot isostatic sintering were a holding temperature of 1100 ° C. and a holding time of 2 hours.
  • the gas pressure of Ar gas was gradually increased from the start of the temperature increase, and the pressure was increased at 1500 kgf / cm 2 during the holding at 1100 ° C. .
  • the obtained sintered body was cut into desired dimensions to obtain a disk-shaped sputtering target.
  • a sputtering target was obtained by using only ruthenium powder (purity: 99.9 wt%) under the same conditions as described above (Reference Example).
  • Example 1 the sputtering target was manufactured by mixing the B content to be 0.55 wt%.
  • the B content in the resulting sputtering target was 0.49 wt%. Therefore, it was shown that B remained even after hot pressing and hot isostatic sintering. Examples 2 to 4 showed the same tendency.
  • Example 1 Co, B, and O were detected in the same section. Therefore, it was shown that a composite oxide of Co 2 B 2 O 5 was present. Similarly, in Examples 2 to 4, it was shown that desired composite oxides (CrBO 3 , TiBO 3 and Mn 3 B 2 O 6 ) were present.

Abstract

The present invention provides a sputtering target which contains Ru and boron. A sputtering target which contains Ru as a main component, while containing a composite oxide that contains boron and has a higher melting point than B2O3.

Description

スパッタリングターゲット及びスパッタリングターゲットを製造するための粉体Sputtering target and powder for producing sputtering target
 本開示は、スパッタリングターゲット及びスパッタリングターゲットを製造するための粉体に関する。より具体的には、Ruを含むスパッタリングターゲット及び当該スパッタリングターゲットを製造するための粉体に関する。 The present disclosure relates to a sputtering target and a powder for producing the sputtering target. More specifically, the present invention relates to a sputtering target containing Ru and a powder for producing the sputtering target.
 ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。 In the field of magnetic recording represented by hard disk drives, materials based on ferromagnetic metals such as Co, Fe, or Ni are used as materials for magnetic thin films for recording. For example, a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording system.
 近年ハードディスクドライブ等の磁気記録の高容量化が進んでいる。この高容量化を実現するためには、磁気記録層における結晶粒の分離性を向上させ、これにより、結晶粒間の相互作用を低減させることが重要である。 In recent years, the capacity of magnetic recording such as hard disk drives has been increasing. In order to realize this high capacity, it is important to improve the separability of crystal grains in the magnetic recording layer, thereby reducing the interaction between crystal grains.
 特許文献1では、Ru-xCoO合金の下地層が開示されている。また、特許文献1では、第二下地層150bに酸化物による結晶粒界が形成され、粒子間の分離性が促進されると共に、下地層150を構成するRu及び主記録層160の結晶配向性を向上する作用もあることが開示されている。 Patent Document 1 discloses an underlayer of a Ru—xCoO alloy. Further, in Patent Document 1, a crystal grain boundary is formed by an oxide in the second underlayer 150b, which promotes the separation between particles and the crystal orientation of Ru constituting the underlayer 150 and the main recording layer 160. It is disclosed that it also has the effect of improving
 特許文献2では、非磁性中間層と磁性層とを備える垂直磁気記録媒体が開示されている。また、特許文献2では、第1の非磁性中間層としてRu、及び第2の非磁性中間層としてCoCr合金が開示されている。 Patent Document 2 discloses a perpendicular magnetic recording medium including a nonmagnetic intermediate layer and a magnetic layer. Patent Document 2 discloses Ru as a first nonmagnetic intermediate layer and a CoCr alloy as a second nonmagnetic intermediate layer.
 特許文献3では、非磁性基板上に、少なくとも、第1の磁性層と第2の磁性層とを交互に多層積層して構成された垂直磁性層が下地層を介して備えられている垂直磁気記録媒体が開示されている。また、特許文献3では、下地層が酸素を含有するRuからなることが開示されている。 In Patent Document 3, a perpendicular magnetic layer in which at least a first magnetic layer and a second magnetic layer are alternately laminated on a non-magnetic substrate is provided via a base layer. A recording medium is disclosed. Patent Document 3 discloses that the underlayer is made of Ru containing oxygen.
 特許文献4では、プラグやバリアメタルのような下地に対する密着力が高く、かつ電極として用いた場合、比抵抗が小さいRu膜あるいはRu酸化物の薄膜を形成可能なスパッタリングターゲットが開示されている。 Patent Document 4 discloses a sputtering target capable of forming a Ru film or a Ru oxide thin film having a small specific resistance when used as an electrode and having high adhesion to a base such as a plug or a barrier metal.
特開2012-009086号公報JP 2012-009086 A 特開2009-134804号公報JP 2009-134804 A 特開2005-243093号公報JP 2005-243093 A 特開2002-167668号公報JP-A-2002-167668
 分離性を向上させるためには、磁気記録層の下に存在する中間層が重要な役割を果たす。中間層にRu結晶粒が存在すると、磁気記録層の結晶粒は、Ru結晶粒を起点として成長する。また、Ru酸化物とRu-Bとを中間層として利用すると、磁気記録特性が向上する。こうした知見に基づき、本発明者らは、Ruとホウ素酸化物との組み合わせを検討した。この目的としては、Ru結晶粒の周囲にホウ素酸化物が配置されるような構造を得ることにある。ここで、Ruとホウ素酸化物を共スパッタリングする方法も考えられるものの、両者を含む単独のスパッタリングターゲットの方が、製造工程の点で有利である。 中間 The intermediate layer below the magnetic recording layer plays an important role in improving the separability. If Ru crystal grains exist in the intermediate layer, the crystal grains of the magnetic recording layer grow starting from the Ru crystal grains. Further, when Ru oxide and Ru—B are used as the intermediate layer, the magnetic recording characteristics are improved. Based on these findings, the present inventors have studied combinations of Ru and boron oxide. The purpose of this is to obtain a structure in which boron oxide is arranged around Ru crystal grains. Here, although a method of co-sputtering Ru and boron oxide is also conceivable, a single sputtering target containing both is advantageous in terms of a manufacturing process.
 そこで、本発明者らは、まず、Ruとホウ素酸化物とを含むスパッタリングターゲットを製造することを検討した。その結果、以下の点を見出した。スパッタリングターゲットを製造するためには、ホットプレス(HP)及び/又は熱間等方圧加圧(HIP)等の処理を材料に施す必要がある。この際に、材料は高温にさらされる。本発明者らは、ホウ素酸化物としてB23を使用したところ、B23は融点が低いため、HP及び/又はHIP処理によりB23が材料から流出してしまった。結果として、焼結体中に残存する酸化ホウ素の量が著しく低くなってしまった。従って、Ruとホウ素酸化物とを含むスパッタリングターゲットを製造するにあたって、B23は利用できなかった。以上の経緯に鑑み、本開示は、Ru及びホウ素酸化物を含むスパッタリングターゲットを提供することを目的とする。 Therefore, the present inventors first studied production of a sputtering target containing Ru and boron oxide. As a result, the following points were found. In order to manufacture a sputtering target, it is necessary to apply a process such as hot pressing (HP) and / or hot isostatic pressing (HIP) to the material. At this time, the material is exposed to high temperatures. The present inventors used B 2 O 3 as the boron oxide, and because the melting point of B 2 O 3 was low, B 2 O 3 flowed out of the material due to the HP and / or HIP treatment. As a result, the amount of boron oxide remaining in the sintered body was significantly reduced. Therefore, B 2 O 3 could not be used in producing a sputtering target containing Ru and boron oxide. In view of the above circumstances, an object of the present disclosure is to provide a sputtering target containing Ru and boron oxide.
 本発明者らが、更に検討した結果、B23の代わりに特定の複合ホウ素酸化物を使用すると、焼結体中にホウ素が残存することを見出した。残存する理由として、B23よりも融点の高いホウ素酸化物を使用したことで、HP及び/又はHIP処理の際に失われる量を低減できたことが考えられる。 The present inventors have further studied and found that when a specific composite boron oxide is used instead of B 2 O 3 , boron remains in the sintered body. It is considered that the reason for this remaining is that the use of boron oxide having a higher melting point than B 2 O 3 could reduce the amount lost during the HP and / or HIP treatment.
 本発明は、上記知見に基づいて完成され、一側面において、以下の発明を包含する。
(発明1)
 Ruを主成分とするスパッタリングターゲットであって、B23よりも高い融点をもち且つホウ素を含む複合酸化物を含有する、該ターゲット。
(発明2)
 発明1に記載のスパッタリングターゲットであって、Bの含有量が0.01wt%以上である、該ターゲット。
(発明3)
 発明1又は2に記載のスパッタリングターゲットであって、相対密度が90%以上である、該ターゲット。
(発明4)
 発明1~3のいずれか1つに記載のスパッタリングターゲットであって、RuとBとO以外に、構成元素として、Co、Cr、Mn、及びTiから選択される1種以上を更に含む、該ターゲット。
(発明5)
 発明1~4のいずれか1つに記載のスパッタリングターゲットであって、前記複合酸化物の融点が750℃以上である、該ターゲット。
(発明6)
 発明1~5のいずれか1つに記載のスパッタリングターゲットであって、前記複合酸化物がCo225、CrBO3、TiBO3及びMn326から成る群から選択される1種以上である、該ターゲット。
(発明7)
 スパッタリングターゲットの製造に使用するための複合酸化物の粉体であって、前記複合酸化物が、B23よりも高い融点をもち且つホウ素を含む複合酸化物である、該粉体。
(発明8)
 発明7に記載の粉体であって、前記複合酸化物の融点が750℃以上である、該粉体。
(発明9)
 発明7又は8に記載の粉体であって、前記複合酸化物が、Co225、CrBO3、TiBO3及びMn326から成る群から選択される1種以上である、該粉体。
(発明10)
 発明7~9のいずれか1つに記載の粉体であって、比表面積が0.5~80m2/gである、粒径が0.3~15μmである及び/又は不純物としての濃度が10000wtppm以下である、該粉体。
The present invention has been completed based on the above findings, and in one aspect, includes the following inventions.
(Invention 1)
A sputtering target containing Ru as a main component and having a melting point higher than that of B 2 O 3 and containing a composite oxide containing boron.
(Invention 2)
The sputtering target according to the first aspect, wherein the content of B is 0.01 wt% or more.
(Invention 3)
The sputtering target according to the invention 1 or 2, wherein the relative density is 90% or more.
(Invention 4)
The sputtering target according to any one of Inventions 1 to 3, further comprising at least one selected from Co, Cr, Mn, and Ti as a constituent element in addition to Ru, B, and O. target.
(Invention 5)
5. The sputtering target according to any one of Inventions 1 to 4, wherein the melting point of the composite oxide is 750 ° C. or higher.
(Invention 6)
The sputtering target according to any one of Inventions 1 to 5, wherein the composite oxide is selected from the group consisting of Co 2 B 2 O 5 , CrBO 3 , TiBO 3 and Mn 3 B 2 O 6. The target that is at least species.
(Invention 7)
A powder of a composite oxide for use in manufacturing a sputtering target, wherein the composite oxide is a composite oxide having a melting point higher than that of B 2 O 3 and containing boron.
(Invention 8)
The powder according to claim 7, wherein the melting point of the composite oxide is 750 ° C or more.
(Invention 9)
The powder according to invention 7 or 8, wherein the composite oxide is at least one selected from the group consisting of Co 2 B 2 O 5 , CrBO 3 , TiBO 3 and Mn 3 B 2 O 6. , The powder.
(Invention 10)
The powder according to any one of inventions 7 to 9, wherein the powder has a specific surface area of 0.5 to 80 m 2 / g, a particle size of 0.3 to 15 μm, and / or a concentration as an impurity. The powder having a content of 10,000 wtppm or less.
 一側面において、本開示のスパッタリングターゲットは、RuとBとを含む。これにより、共スパッタリングする必要がなく、製造工程において、有利となる。 に お い て In one aspect, the sputtering target of the present disclosure includes Ru and B. This eliminates the need for co-sputtering, which is advantageous in the manufacturing process.
一実施形態において、Ru粉末とCo225粉末とを用いて製造したターゲットにおけるSEM写真である。四角の部分は、EDSで分析する酸化物の一部を表す。4 is a SEM photograph of a target manufactured using Ru powder and Co 2 B 2 O 5 powder in one embodiment. The squares represent a portion of the oxide analyzed by EDS.
 以下、本開示の発明を実施するための具体的な実施形態について説明する。以下の説明は、本開示の発明の理解を促進するためのものである。即ち、本発明の範囲を限定することを意図するものではない。 Hereinafter, specific embodiments for carrying out the present disclosure will be described. The following description is provided to facilitate understanding of the present disclosure. That is, it is not intended to limit the scope of the present invention.
1.スパッタリングターゲット
 一実施形態において、本開示は、スパッタリングターゲットに関する。
1. In one embodiment of the sputtering target , the present disclosure relates to a sputtering target.
1-1.スパッタリングターゲットの組成
 一実施形態において、スパッタリングターゲットは、Ruと複合酸化物とを少なくとも含む。そして、Ruは、スパッタリングターゲットの主成分である。
1-1. Composition of Sputtering Target In one embodiment, the sputtering target contains at least Ru and a composite oxide. Ru is a main component of the sputtering target.
 ここで、主成分とは、金属元素のなかで、最も含有量(at%)が大きい元素を意味する。典型的には、主成分とは、50at%以上を意味してもよい。 主 成分 Here, the main component means an element having the largest content (at%) among the metal elements. Typically, the main component may mean 50 at% or more.
 また、上記複合酸化物は、ホウ素を含み、且つB23よりも融点が高い化合物である。これにより、B23を用いてスパッタリングターゲットを製造した場合と比べて、Bを焼結体中に、より多く残存させることができる。従って、スパッタ後のRuの結晶分離性が向上する。 Further, the composite oxide is a compound containing boron and having a higher melting point than B 2 O 3 . Thereby, more B can be left in the sintered body than in a case where a sputtering target is manufactured using B 2 O 3 . Therefore, the crystal separability of Ru after sputtering is improved.
 一実施形態において、Ruの含有量は、80.0~99.8wt%であってもよい。80.0wt%以上であることにより、成膜後の中間層において、記録層の結晶粒の成長に必要なRuの結晶粒を十分に確保することができる。99.8wt%以下であることにより、成膜後の中間層において、Ruの結晶粒を分離するのに十分なBの含有量を確保することができる。Ruの含有量の下限値は、好ましくは、90.0wt%以上、更に好ましくは、95wt%以上である。Ruの含有量の上限値は、好ましくは、99.5wt%以下、更に好ましくは、99.0wt%以下である。 In one embodiment, the Ru content may be 80.0-99.8 wt%. When the content is 80.0 wt% or more, Ru crystal grains necessary for growing the crystal grains of the recording layer can be sufficiently secured in the intermediate layer after film formation. When the content is 99.8 wt% or less, a sufficient B content for separating Ru crystal grains can be secured in the intermediate layer after film formation. The lower limit of the Ru content is preferably at least 90.0 wt%, more preferably at least 95 wt%. The upper limit of the Ru content is preferably 99.5 wt% or less, more preferably 99.0 wt% or less.
 一実施形態において、Bの含有量は、0.01wt%以上である。0.01wt%以上であることにより、成膜後の中間層において、Ruの結晶粒を分離するのに十分なBの含有量を確保することができる。Bの含有量の上限値は、特に限定されないが、Ruの特性を維持する観点から、典型的には、3.0wt%以下であってもよい。Bの含有量の下限値は、好ましくは、0.05wt%以上、更に好ましくは、0.15wt%以上である。 に お い て In one embodiment, the content of B is 0.01 wt% or more. When the content is 0.01 wt% or more, it is possible to secure a sufficient B content for separating the Ru crystal grains in the intermediate layer after film formation. The upper limit of the B content is not particularly limited, but may be typically 3.0 wt% or less from the viewpoint of maintaining the characteristics of Ru. The lower limit of the B content is preferably 0.05 wt% or more, and more preferably 0.15 wt% or more.
 一実施形態において、上述したRu、B及びOに加えて、スパッタリングターゲットは、Co、Cr、Mn、及びTiから選択される1種以上を含むことができる。これらの元素は、Bと複合酸化物を形成することができる。そして、当該複合酸化物は、B23と比べて、高い融点を有する。従って、製造時の熱処理(例;HIP、HP等)で溶解してロスする可能性が低い。 In one embodiment, in addition to Ru, B, and O described above, the sputtering target may include one or more selected from Co, Cr, Mn, and Ti. These elements can form a complex oxide with B. Further, the composite oxide has a higher melting point than B 2 O 3 . Therefore, there is a low possibility of melting and loss due to heat treatment (eg, HIP, HP, etc.) during manufacturing.
 Co、Cr、Mn、及びTiから選択される1種以上の元素の含有量は、特に限定されないが、Bと複合酸化物を形成する量論比に従った含有量であることが好ましい。 含有 The content of one or more elements selected from Co, Cr, Mn, and Ti is not particularly limited, but is preferably a content according to a stoichiometric ratio for forming a composite oxide with B.
 同様に、Oの含有量についても、特に限定されないが、Bと複合酸化物を形成する量論比に従った含有量であることが好ましい。
 例えば、複合酸化物がCo225の場合、複合酸化物全体の重量を100%とした場合、Coは53.70wt%、Bは9.85wt%、Oは36.45wt%となる。従って、スパッタリングターゲット全体の重量を100%、且つスパッタリングターゲット全体に占めるBの含有量が0.01wt%以上の場合を仮定すると、Coは0.054wt%以上、Oは、0.036wt%以上となる。
Similarly, the content of O is not particularly limited, but is preferably a content according to a stoichiometric ratio for forming a composite oxide with B.
For example, when the composite oxide is Co 2 B 2 O 5 , when the total weight of the composite oxide is 100%, Co is 53.70 wt%, B is 9.85 wt%, and O is 36.45 wt%. . Therefore, assuming that the weight of the entire sputtering target is 100% and the content of B in the entire sputtering target is 0.01 wt% or more, Co is 0.054 wt% or more and O is 0.036 wt% or more. Become.
 一実施形態において、スパッタリングターゲットは、以下の元素から構成されてもよい:
Ru;
B;
Co、Cr、Mn、及びTiから選択される1種以上;及び
O。
In one embodiment, the sputtering target may be composed of the following elements:
Ru;
B;
O, one or more selected from Co, Cr, Mn, and Ti;
 一実施形態において、スパッタリングターゲットは、上述した元素以外に、不可避的不純物が含まれてもよい。不可避的不純物としての含有量は、10000wtppm以下、好ましくは5000wtppm以下(全ての不可避的不純物元素の合計量)である。 に お い て In one embodiment, the sputtering target may contain unavoidable impurities in addition to the elements described above. The content as an inevitable impurity is 10,000 wtppm or less, preferably 5000 wtppm or less (the total amount of all the inevitable impurity elements).
 スパッタリングターゲットの元素分析(及び定量)は、当分野で公知の手法で行うことができる。例えば、以下の手法で行うことができる。例えば、スパッタリングターゲット自身、又は焼結体の端材(スパッタリングターゲット形状に加工する際に余った切れ端)を試料として利用することができる。まず、なるべくスパッタリングターゲット中心に近い箇所から採取した5g程度の試料を粉末化する。OやNやCについては粉末を加熱しガス化した後に赤外吸光法(LECO社製のTC600)を用いて測定を行うことができる。ホウ素及び金属元素については粉末を酸などで溶解し、ICP発光分光分析装置(日立ハイテクサイエンス社製のSPS3100HV)を用いて分析をする。あるいは、EDS(日立ハイテクノロジーズ社製のS-3700N)、又はEPMA(日本電子社製のJXA-8500F)により構成元素を分析してもよい。 元素 Elemental analysis (and quantification) of the sputtering target can be performed by a method known in the art. For example, it can be performed by the following method. For example, the sputtering target itself or the scraps of the sintered body (the surplus pieces when processing into the shape of the sputtering target) can be used as the sample. First, a sample of about 5 g collected from a location as close to the center of the sputtering target as possible is powdered. O, N, and C can be measured using an infrared absorption method (TC600 manufactured by LECO) after heating and gasifying the powder. For boron and metal elements, the powder is dissolved with an acid or the like and analyzed using an ICP emission spectrometer (SPS3100HV manufactured by Hitachi High-Tech Science). Alternatively, the constituent elements may be analyzed by EDS (S-3700N manufactured by Hitachi High-Technologies Corporation) or EPMA (JXA-8500F manufactured by JEOL Ltd.).
1-2.スパッタリングターゲットにおけるホウ素を含む複合酸化物
 一実施形態において、ホウ素を含む複合酸化物は、BとOと金属元素とから成る複合酸化物が含まれる。こうした複合酸化物を用いる理由としては、上述したB23よりも融点が高く、熱処理により失われてしまう可能性が低いからである。より好ましくは、ホウ素を含む複合酸化物の融点は750℃以上(好ましくは1000℃以上)であってもよい。上限値は特に限定されないが、典型的には、1300℃以下である。
1-2. In one embodiment of the complex oxide containing boron in the sputtering target, the complex oxide containing boron includes a complex oxide composed of B, O, and a metal element. The reason for using such a composite oxide is that it has a higher melting point than B 2 O 3 described above, and is less likely to be lost by heat treatment. More preferably, the melting point of the composite oxide containing boron may be 750 ° C. or higher (preferably 1000 ° C. or higher). The upper limit is not particularly limited, but is typically 1300 ° C. or lower.
 ホウ素を含む複合酸化物を構成する金属元素としては、好ましくは、Co、Cr、Mn、及びTiから選択される1種以上が挙げられるがこれらに限定されない。これらの金属元素が好ましい理由は、Ruの結晶性に悪影響を与える可能性が低いからである。例えば、Coは、Ruと同じhcp結晶構造をとるので、Ruの結晶性には影響しない。Cr、Ti、Mnは、Ruが豊富に含まれる場合、Ruと反応せず、Ruの結晶性には影響しない。 金属 The metal element constituting the composite oxide containing boron preferably includes, but is not limited to, one or more selected from Co, Cr, Mn, and Ti. The reason why these metal elements are preferable is that it is unlikely to adversely affect the crystallinity of Ru. For example, since Co has the same hcp crystal structure as Ru, it does not affect the crystallinity of Ru. When Cr, Ti, and Mn are rich in Ru, they do not react with Ru and do not affect the crystallinity of Ru.
 ホウ素を含む複合酸化物の具体例としては、Co225、CrBO3、TiBO3及びMn326から成る群から選択される1種以上が挙げられるがこれらに限定されない。 Specific examples of the boron-containing composite oxide include, but are not limited to, one or more selected from the group consisting of Co 2 B 2 O 5 , CrBO 3 , TiBO 3 and Mn 3 B 2 O 6 .
 なお、上述したホウ素を含む複合酸化物の存在の有無は、EDS又はEPMAにより確認可能である。 Note that the presence or absence of the above-described boron-containing composite oxide can be confirmed by EDS or EPMA.
1-3.スパッタリングターゲットの相対密度
 一実施形態において、スパッタリングターゲットの相対密度は、90%以上であってもよく、好ましくは、98%以上である。これにより、アーキングの発生が更に抑制される。なお、本明細書で言及する相対密度は、実測密度と理論密度との比を指す。実測密度については、純水を溶媒として用いたアルキメデス法にて測定を行った値を指す。理論密度は、下記の通り、原料の単体密度それぞれに混合質量比を掛け、得られた値の総和とする。
理論密度=Σ{(成分nの理論密度×混合質量比)}
1-3. Relative Density of Sputtering Target In one embodiment , the relative density of the sputtering target may be 90% or more, preferably 98% or more. Thereby, the occurrence of arcing is further suppressed. Note that the relative density referred to in the present specification indicates a ratio between the measured density and the theoretical density. The measured density refers to a value measured by the Archimedes method using pure water as a solvent. As described below, the theoretical density is obtained by multiplying each of the elementary densities of the raw materials by the mixing mass ratio and summing up the obtained values.
Theoretical density = {(theoretical density of component n × mixing mass ratio)}
 相対密度が高いスパッタリングターゲットを製造するためには、後述するように高温で圧力をかける必要がある。しかし、B23のような低い融点のB化合物が材料中に含まれている場合には、B23が熱処理に伴って融解し、ロスしてしまう。一方で、圧力を低くすれば、相対密度が低くなってしまい、製品の要求水準をパスできない。こうしたことから、Bを含み且つ相対密度が高いスパッタリングターゲットを実現できることは、意義深い。 In order to manufacture a sputtering target having a high relative density, it is necessary to apply pressure at a high temperature as described later. However, when a B compound having a low melting point, such as B 2 O 3 , is contained in the material, the B 2 O 3 is melted by the heat treatment and is lost. On the other hand, if the pressure is lowered, the relative density is lowered, and the product cannot meet the required level. Therefore, it is significant that a sputtering target containing B and having a high relative density can be realized.
2.スパッタリングターゲットの粉体
2-1.粉体の特性
 一実施形態において、本開示はスパッタリングターゲットを製造するための粉体、及び当該粉体の使用に関する。前記粉体の成分は、ホウ素を含む複合酸化物である。好ましくは、ホウ素を含む複合酸化物の融点は750℃以上(更に、好ましくは1000℃以上)である。上限値は特に限定されないが、典型的には、1300℃以下である。粉体のホウ素を含む複合酸化物を構成する金属元素としては、好ましくは、Co、Cr、Mn、及びTiから選択される1種以上が挙げられるがこれらに限定されない。また、ホウ素を含む複合酸化物の具体例としては、Co225、CrBO3、TiBO3及びMn326から成る群から選択される1種以上が挙げられるがこれらに限定されない。
2. Sputtering target powder
2-1. Powder Properties In one embodiment, the present disclosure relates to powders for manufacturing sputtering targets, and uses of the powders. The component of the powder is a composite oxide containing boron. Preferably, the melting point of the composite oxide containing boron is 750 ° C. or higher (more preferably, 1000 ° C. or higher). The upper limit is not particularly limited, but is typically 1300 ° C. or lower. Preferably, the metal element constituting the composite oxide containing boron in the powder includes, but is not limited to, one or more selected from Co, Cr, Mn, and Ti. Specific examples of the boron-containing composite oxide include, but are not limited to, one or more selected from the group consisting of Co 2 B 2 O 5 , CrBO 3 , TiBO 3, and Mn 3 B 2 O 6. Not done.
 一実施形態において、粉体は、粒径D50が0.3~15μmであってもよい。これらのサイズであることで、良質なスパッタリングターゲットを製造することができる。D50の下限値は、好ましくは、0.8μm以上であり、より好ましくは、1.0μm以上である。D50の上限値は、好ましくは、10μm以下であり、より好ましくは、5μm以下である。 In one embodiment, the powder may have a particle size D50 of 0.3 to 15 μm. With these sizes, a high-quality sputtering target can be manufactured. The lower limit of D50 is preferably 0.8 μm or more, and more preferably 1.0 μm or more. The upper limit of D50 is preferably 10 μm or less, more preferably 5 μm or less.
 なお、粉体の粒径は、レーザー回折・散乱法によって求めた粒度分布における体積値基準での積算値50%(D50)での粒径を意味する。例えば、粒径は、HORIBA社製の型式LA-920の粒度分布測定装置を使用し、粉末をエタノールの溶媒中に分散させて測定することができる。 粒径 The particle size of the powder means a particle size at an integrated value of 50% (D50) based on a volume value in a particle size distribution obtained by a laser diffraction / scattering method. For example, the particle size can be measured by dispersing the powder in a solvent of ethanol using a particle size distribution analyzer of model LA-920 manufactured by HORIBA.
 一実施形態において、粉体は、不純物濃度が低い。この理由として、不純物が製造後のスパッタリングターゲットに悪影響を与えるからである。例えば、不純物として、Ti(Co、Cr、又はMnの複合酸化物の場合に限る)、Al、N、C等が挙げられる。これらの合計濃度は、10000wtppm以下、好ましくは、5000wtppm以下であってもよい。不純物濃度は、上述した赤外吸光法、ICP発光分光分析装置、及びGDMS(グロー放電質量分析)等を用いて分析することができる。 粉体 In one embodiment, the powder has a low impurity concentration. The reason for this is that impurities have an adverse effect on the manufactured sputtering target. For example, the impurities include Ti (only in the case of a composite oxide of Co, Cr, or Mn), Al, N, and C. Their total concentration may be up to 10,000 wtppm, preferably up to 5000 wtppm. The impurity concentration can be analyzed using the above-described infrared absorption method, ICP emission spectrometer, GDMS (glow discharge mass spectrometry), or the like.
 一実施形態において、粉体の比表面積は、0.5~80m2/gであってもよい。これらの比表面積であることで、良質なスパッタリングターゲットを製造することができる。比表面積の下限値は、好ましくは、0.8m2/g以上であり、より好ましくは、1.5m2/g以上である。比表面積の上限値は、好ましくは、50m2/g以下であり、より好ましくは、35m2/g以下である。 In one embodiment, the specific surface area of the powder may be from 0.5 to 80 m 2 / g. With these specific surface areas, a high-quality sputtering target can be manufactured. The lower limit of the specific surface area is preferably at least 0.8 m 2 / g, more preferably at least 1.5 m 2 / g. The upper limit of the specific surface area is preferably 50 m 2 / g or less, more preferably 35 m 2 / g or less.
 なお、本明細書における、比表面積は、以下の手順で測定した値を指す:
・対象物質を200℃で2時間脱気
・カンタクローム社製のMonosorbにて、吸着ガスとしてHe70at%-N230at%混合ガスを使用し、BET法(1点法)にて測定する。
In the present specification, the specific surface area indicates a value measured by the following procedure:
Degassing of the target substance at 200 ° C. for 2 hours. Measurement by BET method (one-point method) using Monosorb made by Cantachrome Co., using a mixed gas of 70 at% of He and 230 at% of N as an adsorption gas.
2-2.ホウ素を含む複合酸化物紛体の製造方法
 最初に、Co、Cr、TiおよびMnのうち少なくとも一つを含む酸化物とBを含む酸化物の粉体とを準備する。これら粉体は、市販の物を利用してもよい。これらの粉末を、混合したのち融点以下で熱処理を行うことで作製する。さらに、スパッタリングターゲットの製造に適した粉体とするため、合成後に粉砕工程を入れることができる。
2-2. The manufacturing method the first composite oxide powder containing boron, is prepared Co, Cr, and powder of oxides comprising an oxide and B containing at least one of Ti and Mn. Commercially available products may be used for these powders. These powders are produced by mixing and then performing a heat treatment at a temperature equal to or lower than the melting point. Further, a pulverizing step can be performed after the synthesis in order to obtain a powder suitable for manufacturing a sputtering target.
 混合、粉砕する方法は、特に限定されず、乳鉢混合、ボールミル等の公知の手段を用いてもよい。 方法 The method of mixing and pulverizing is not particularly limited, and a known means such as mortar mixing and a ball mill may be used.
 熱処理を行う工程は公知の手段を用いてもよい。 工程 The heat treatment step may use a known means.
3.スパッタリングターゲットの製造方法
 一実施形態において、本開示は、スパッタリングターゲットの製造方法に関する。前記方法は、少なくとも以下の工程を含む。
・Ru粉体と、ホウ素を含む複合酸化物の粉体とを混合する工程
・混合した粉末を加圧焼結する工程
3. In one embodiment, the present disclosure relates to a method for manufacturing a sputtering target. The method includes at least the following steps.
-Step of mixing Ru powder and powder of a complex oxide containing boron-Step of pressure-sintering the mixed powder
3-1.混合
 最初に、Ru粉体とホウ素を含む複合酸化物の粉体とを準備する。Ru粉体は、市販の物を利用してもよい。好ましくは、スパッタリングターゲットの製造に適した粉体を使用する(例えば、低不純物等)。一方、ホウ素を含む複合酸化物の粉体については、上述したように、融点が750℃以上(好ましくは1000℃以上)のホウ素を含む複合酸化物を使用してもよい。
3-1. Initially mixed, to prepare a powder of composite oxide containing Ru powder and boron. A commercially available Ru powder may be used. Preferably, a powder suitable for manufacturing a sputtering target is used (for example, low impurities). On the other hand, as for the powder of the composite oxide containing boron, as described above, a composite oxide containing boron having a melting point of 750 ° C. or more (preferably 1000 ° C. or more) may be used.
 両者を混合する方法は、特に限定されず、乳鉢混合、ボールミル等の公知の手段を用いてもよい。 方法 The method of mixing both is not particularly limited, and a known means such as mortar mixing and a ball mill may be used.
3-2.加圧焼結
 上述の混合粉末は、型等に充填し、焼結することができる。焼結する際の加圧方法としては、ホットプレス(HP)及び/又は熱間等方圧加圧(HIP)等が挙げられる。
3-2. Pressure Sintering The above mixed powder can be filled in a mold or the like and sintered. As a pressing method at the time of sintering, hot pressing (HP) and / or hot isostatic pressing (HIP) may, for example, be mentioned.
 ホットプレス時の処理温度は、750~1200℃であってもよい。処理温度の下限値は、好ましくは900℃以上であってもよい。処理温度の上限値は、好ましくは1100℃以下であってもよい。焼結時の保持圧力は、150kgf/cm2以上の圧力範囲とするのが好ましい。 The processing temperature during hot pressing may be 750 to 1200 ° C. The lower limit of the processing temperature may be preferably 900 ° C. or higher. The upper limit of the processing temperature may be preferably 1100 ° C. or less. The holding pressure during sintering is preferably in a pressure range of 150 kgf / cm 2 or more.
 熱間等方圧加圧時の処理温度は、750~1200℃であってもよい。処理温度の下限値は、好ましくは900℃以上であってもよい。処理温度の上限値は、好ましくは1100℃以下であってもよい。焼結時の保持圧力は、1000kgf/cm2以上の圧力範囲とするのが好ましい。 The processing temperature during hot isostatic pressing may be 750 to 1200 ° C. The lower limit of the processing temperature may be preferably 900 ° C. or higher. The upper limit of the processing temperature may be preferably 1100 ° C. or less. The holding pressure during sintering is preferably in a pressure range of 1000 kgf / cm 2 or more.
3-3.その他
 上記混合及び焼結を経た後は、更に、機械加工を施して、所望の形状に仕上げてもよい。
3-3. In addition , after the above-mentioned mixing and sintering, machining may be further performed to finish it into a desired shape.
4.スパッタリングターゲットの使用
4-1.成膜
 上記工程で得られたスパッタリングターゲットを用いて、成膜することができる。スパッタリングの条件は、当分野で公知の条件を採用してもよく、典型的には、以下の通りである。
スパッタ条件
スパッタ装置: Canon Anelva社製 C3010
投入電力 100~1kW(例えば、1kW)、
Arガス圧 1~10Pa(例えば、1.7Pa)、
プレスパッタリング 0.5~2kWhr(例えば、2kWhr)
4. Use of sputtering target
4-1. Film formation A film can be formed using the sputtering target obtained in the above step. The conditions for sputtering may be those known in the art, and are typically as follows.
Sputtering conditions Sputtering apparatus: C3010 manufactured by Canon Anelva
Input power 100-1 kW (for example, 1 kW),
Ar gas pressure 1 to 10 Pa (for example, 1.7 Pa),
Pre-sputtering 0.5 to 2 kWhr (for example, 2 kWhr)
4-2.磁気記録媒体
 上記条件でスパッタすることにより、磁気記録層のための中間層を形成することができる。これを応用することで、磁気記録媒体を製造することができる。
 例えば、以下の手順で製造することができる。最初に、基板を準備する。基板上に、NiW又はNiFeWを成分とする層を形成する。次に、NiW層又はNiFeW層の上に、純Ru層を形成する。その後、上述したスパッタリングターゲットを用いてスパッタすることにより、Ruとホウ素を含む複合酸化物とから構成される層を中間層として形成することができる。そして、中間層の上に磁気記録層を形成する。磁気記録層の上には、保護層、及び潤滑層等の当分野で公知の層を設けることができる。また、NiWの層の下には、CrTiやNiTaを主成分とする密着層、FeCoTaやFeCoNb,FeCoMoなどを主成分とする軟磁性層、軟磁性層の中間に反強磁性結合を促すRu層等の当分野で公知の層を設けることができる。
4-2. Magnetic recording medium An intermediate layer for a magnetic recording layer can be formed by sputtering under the above conditions. By applying this, a magnetic recording medium can be manufactured.
For example, it can be manufactured by the following procedure. First, a substrate is prepared. A layer containing NiW or NiFeW as a component is formed on a substrate. Next, a pure Ru layer is formed on the NiW layer or the NiFeW layer. Then, by sputtering using the above-described sputtering target, a layer composed of Ru and a composite oxide containing boron can be formed as an intermediate layer. Then, a magnetic recording layer is formed on the intermediate layer. On the magnetic recording layer, layers known in the art, such as a protective layer and a lubricating layer, can be provided. Below the NiW layer, an adhesion layer mainly composed of CrTi or NiTa, a soft magnetic layer mainly composed of FeCoTa, FeCoNb, FeCoMo, etc., and a Ru layer which promotes antiferromagnetic coupling between the soft magnetic layers And other layers known in the art.
 上記の方法で得られた垂直磁気記録媒体において、Ruと記録層界面の凹凸が比較的少なくて且つ記録層の磁性粒子間の磁気的分離が良く、かつ磁性粒子の磁気異方性を高くすることができるので、これを用いたHDDの記録密度を向上することができる。 In the perpendicular magnetic recording medium obtained by the above-mentioned method, the unevenness of Ru and the recording layer interface is relatively small, the magnetic separation between the magnetic particles of the recording layer is good, and the magnetic anisotropy of the magnetic particles is increased. Therefore, the recording density of the HDD using the same can be improved.
5.実施例
5-1.スパッタリングターゲットの製造
 ルテニウム粉末(純度99.9wt%)と、ホウ素を含む複合酸化物粉末(純度99wt%)とを準備した。ホウ素を含む複合酸化物については、Co225、CrBO3、TiBO3、及びMn326の4種類(実施例1~4)と、B23(比較例)とを準備した。ホウ素を含む複合酸化物の含有量が、表1に記載の「B狙い組成値wt%」になるように、ルテニウム粉末とホウ素を含む複合酸化物粉末とを混合した。次に、混合物をカーボン製の型に充填し、ホットプレスした。ホットプレス条件は、Ar雰囲気、焼結温度1000℃、焼結圧力300kg/cm2、焼結時間2時間とした。ホットプレスの型から取り出した焼結体に熱間静水圧焼結(HIP)を施した。熱間静水圧焼結の条件は、保持温度1100℃、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100℃保持中は1500kgf/cm2で加圧した。得られた焼結体を所望の寸法に切削加工し、円盤状のスパッタリングターゲットを得た。
5. Example
5-1. Production of Sputtering Target Ruthenium powder (purity 99.9 wt%) and a composite oxide powder containing boron (purity 99 wt%) were prepared. Regarding the composite oxide containing boron, four types of Co 2 B 2 O 5 , CrBO 3 , TiBO 3 , and Mn 3 B 2 O 6 (Examples 1 to 4), and B 2 O 3 (Comparative Example) Was prepared. The ruthenium powder and the boron-containing composite oxide powder were mixed such that the content of the boron-containing composite oxide became “B target composition value wt%” shown in Table 1. Next, the mixture was filled in a carbon mold and hot pressed. The hot pressing conditions were an Ar atmosphere, a sintering temperature of 1000 ° C., a sintering pressure of 300 kg / cm 2 , and a sintering time of 2 hours. The sintered body removed from the hot press mold was subjected to hot isostatic sintering (HIP). The conditions of the hot isostatic sintering were a holding temperature of 1100 ° C. and a holding time of 2 hours. The gas pressure of Ar gas was gradually increased from the start of the temperature increase, and the pressure was increased at 1500 kgf / cm 2 during the holding at 1100 ° C. . The obtained sintered body was cut into desired dimensions to obtain a disk-shaped sputtering target.
 また、ルテニウム粉末(純度99.9wt%)のみを用いて、上記と同様の条件で製造し、スパッタリングターゲットを得た(参考例)。 ス パ ッ タ リ ン グ In addition, a sputtering target was obtained by using only ruthenium powder (purity: 99.9 wt%) under the same conditions as described above (Reference Example).
 ホットプレス直後、及び熱間静水圧焼結直後に、焼結体の密度を測定し、相対密度を算出した。 密度 Immediately after hot pressing and immediately after hot isostatic sintering, the density of the sintered body was measured, and the relative density was calculated.
 また、ホウ素の量を、ICP発光分光分析装置(日立ハイテクサイエンス社製のSPS3100HV)を用いて分析した。 ホ ウ 素 The amount of boron was analyzed using an ICP emission spectrometer (SPS3100HV manufactured by Hitachi High-Tech Science Corporation).
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
 実施例1では、B量を0.55wt%になるように混合してスパッタリングターゲットを製造した。結果物としてのスパッタリングターゲットにおけるB含有量は0.49wt%であった。従って、ホットプレス及び熱間静水圧焼結を経た後でも、Bが残存していることが示された。実施例2~4でも同様の傾向が示された。 In Example 1, the sputtering target was manufactured by mixing the B content to be 0.55 wt%. The B content in the resulting sputtering target was 0.49 wt%. Therefore, it was shown that B remained even after hot pressing and hot isostatic sintering. Examples 2 to 4 showed the same tendency.
5-2.ホウ素を含む複合酸化物の存在
 実施例1~4について、SEMでスパッタリングターゲット組織を観察した(図1)。また、観察される酸化物の一部(図1の四角部分)について、EDS(日立ハイテクノロジーズ社製のS-3700N)を用いて定量分析を実施した。結果を表2に示す。
5-2. Presence of composite oxide containing boron Regarding Examples 1 to 4, the structure of the sputtering target was observed by SEM (FIG. 1). In addition, a quantitative analysis was performed on a part of the observed oxide (square part in FIG. 1) using EDS (S-3700N manufactured by Hitachi High-Technologies Corporation). Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1では、同一の区画においてCo、B及びOが検出された。従って、Co225の複合酸化物が存在することが示された。以下同様に、実施例2~4でも、所望の複合酸化物(CrBO3、TiBO3及びMn326)が存在することが示された。 In Example 1, Co, B, and O were detected in the same section. Therefore, it was shown that a composite oxide of Co 2 B 2 O 5 was present. Similarly, in Examples 2 to 4, it was shown that desired composite oxides (CrBO 3 , TiBO 3 and Mn 3 B 2 O 6 ) were present.
 以上、本発明の具体的な実施形態について説明してきた。上記実施形態は、本発明の具体例に過ぎず、本発明は上記実施形態に限定されない。例えば、上述の実施形態の1つに開示された技術的特徴は、他の実施形態に適用することができる。また、特記しない限り、特定の方法については、一部の工程を他の工程の順序と入れ替えることも可能であり、特定の2つの工程の間に更なる工程を追加してもよい。本発明の範囲は、特許請求の範囲によって規定される。 The specific embodiments of the present invention have been described above. The above embodiment is merely a specific example of the present invention, and the present invention is not limited to the above embodiment. For example, the technical features disclosed in one of the above embodiments can be applied to other embodiments. Unless otherwise specified, for a particular method, some steps may be interchanged with the order of the other steps, and additional steps may be added between the particular two steps. The scope of the present invention is defined by the appended claims.

Claims (10)

  1.  Ruを主成分とするスパッタリングターゲットであって、B23よりも高い融点をもち且つホウ素を含む複合酸化物を含有する、該ターゲット。 A sputtering target containing Ru as a main component and having a melting point higher than that of B 2 O 3 and containing a composite oxide containing boron.
  2.  請求項1に記載のスパッタリングターゲットであって、Bの含有量が0.01wt%以上である、該ターゲット。 <4> The sputtering target according to claim 1, wherein the content of B is 0.01 wt% or more.
  3.  請求項1又は2に記載のスパッタリングターゲットであって、相対密度が90%以上である、該ターゲット。 (4) The sputtering target according to (1) or (2), wherein the relative density is 90% or more.
  4.  請求項1~3のいずれか1項に記載のスパッタリングターゲットであって、RuとBとO以外に、構成元素として、Co、Cr、Mn、及びTiから選択される1種以上を更に含む、該ターゲット。 The sputtering target according to any one of claims 1 to 3, further comprising at least one selected from Co, Cr, Mn, and Ti as a constituent element in addition to Ru, B, and O. The target.
  5.  請求項1~4のいずれか1項に記載のスパッタリングターゲットであって、前記複合酸化物の融点が750℃以上である、該ターゲット。 (5) The sputtering target according to any one of (1) to (4), wherein the composite oxide has a melting point of 750 ° C. or higher.
  6.  請求項1~5のいずれか1項に記載のスパッタリングターゲットであって、前記複合酸化物がCo225、CrBO3、TiBO3及びMn326から成る群から選択される1種以上である、該ターゲット。 The sputtering target according to any one of claims 1 to 5, wherein the composite oxide is selected from the group consisting of Co 2 B 2 O 5 , CrBO 3 , TiBO 3 and Mn 3 B 2 O 6. The target, which is one or more types.
  7.  スパッタリングターゲットの製造に使用するための複合酸化物の粉体であって、前記複合酸化物が、B23よりも高い融点をもち且つホウ素を含む複合酸化物である、該粉体。 A powder of a composite oxide for use in manufacturing a sputtering target, wherein the composite oxide is a composite oxide having a melting point higher than that of B 2 O 3 and containing boron.
  8.  請求項7に記載の粉体であって、前記複合酸化物の融点が750℃以上である、該粉体。 粉体 The powder according to claim 7, wherein the melting point of the composite oxide is 750 ° C or higher.
  9.  請求項7又は8に記載の粉体であって、前記複合酸化物が、Co225、CrBO3、TiBO3及びMn326から成る群から選択される1種以上である、該粉体。 The powder according to claim 7, wherein the composite oxide is at least one selected from the group consisting of Co 2 B 2 O 5 , CrBO 3 , TiBO 3 and Mn 3 B 2 O 6. The powder.
  10.  請求項7~9のいずれか1項に記載の粉体であって、比表面積が0.5~80m2/gである、粒径が0.3~15μmである及び/又は不純物としての濃度が10000wtppm以下である、該粉体。 The powder according to any one of claims 7 to 9, having a specific surface area of 0.5 to 80 m 2 / g, a particle size of 0.3 to 15 μm, and / or a concentration as an impurity. Is less than 10,000 wtppm.
PCT/JP2019/019571 2018-09-25 2019-05-16 Sputtering target and powder for producing sputtering target WO2020066114A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MYPI2021001557A MY197929A (en) 2018-09-25 2019-05-16 Sputtering target and powder for producing sputtering target
SG11202102759VA SG11202102759VA (en) 2018-09-25 2019-05-16 Sputtering target and powder for producing sputtering target
JP2020547948A JP7072664B2 (en) 2018-09-25 2019-05-16 Sputtering target and manufacturing method of sputtering target
CN201980060775.9A CN112739846A (en) 2018-09-25 2019-05-16 Sputtering target and powder for producing sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-178381 2018-09-25
JP2018178381 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020066114A1 true WO2020066114A1 (en) 2020-04-02

Family

ID=69953061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019571 WO2020066114A1 (en) 2018-09-25 2019-05-16 Sputtering target and powder for producing sputtering target

Country Status (6)

Country Link
JP (1) JP7072664B2 (en)
CN (1) CN112739846A (en)
MY (1) MY197929A (en)
SG (1) SG11202102759VA (en)
TW (1) TWI727334B (en)
WO (1) WO2020066114A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283054A (en) * 2005-03-31 2006-10-19 Hoya Corp Sputtering target, manufacturing method for substrate with multi-layered reflecting film, manufacturing method for reflection type mask blank, and manufacturing method for reflection type mask
JP2008101246A (en) * 2006-10-19 2008-05-01 Asahi Glass Co Ltd Sputtering target used for producing reflection type mask blank for euv lithography
JP2010514921A (en) * 2007-07-17 2010-05-06 ウィリアムズ アドバンスト マテリアルズ インコーポレイティド Method for repairing sputtering target
WO2014178310A1 (en) * 2013-04-30 2014-11-06 Jx日鉱日石金属株式会社 Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body
JP2015155573A (en) * 2014-01-17 2015-08-27 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording media
WO2016013334A1 (en) * 2014-07-25 2016-01-28 Jx日鉱日石金属株式会社 Sputtering target for forming magnetic thin film
WO2016035415A1 (en) * 2014-09-04 2016-03-10 Jx金属株式会社 Sputtering target
WO2018123500A1 (en) * 2016-12-28 2018-07-05 Jx金属株式会社 Magnetic material sputtering target and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075263A1 (en) * 2002-02-28 2003-09-12 Seagate Technology Llc Chemically ordered, cobalt-platinum alloys for magnetic recording
WO2006134743A1 (en) * 2005-06-16 2006-12-21 Nippon Mining & Metals Co., Ltd. Ruthenium-alloy sputtering target
CN108026631B (en) * 2015-02-19 2020-02-28 捷客斯金属株式会社 Sputtering target for forming magnetic thin film
TW201636444A (en) * 2015-04-01 2016-10-16 光洋應用材料科技股份有限公司 Ruthenium-based target and intermediate layer for magnetic recording media

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283054A (en) * 2005-03-31 2006-10-19 Hoya Corp Sputtering target, manufacturing method for substrate with multi-layered reflecting film, manufacturing method for reflection type mask blank, and manufacturing method for reflection type mask
JP2008101246A (en) * 2006-10-19 2008-05-01 Asahi Glass Co Ltd Sputtering target used for producing reflection type mask blank for euv lithography
JP2010514921A (en) * 2007-07-17 2010-05-06 ウィリアムズ アドバンスト マテリアルズ インコーポレイティド Method for repairing sputtering target
WO2014178310A1 (en) * 2013-04-30 2014-11-06 Jx日鉱日石金属株式会社 Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body
JP2015155573A (en) * 2014-01-17 2015-08-27 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording media
WO2016013334A1 (en) * 2014-07-25 2016-01-28 Jx日鉱日石金属株式会社 Sputtering target for forming magnetic thin film
WO2016035415A1 (en) * 2014-09-04 2016-03-10 Jx金属株式会社 Sputtering target
WO2018123500A1 (en) * 2016-12-28 2018-07-05 Jx金属株式会社 Magnetic material sputtering target and method for manufacturing same

Also Published As

Publication number Publication date
TW202012666A (en) 2020-04-01
SG11202102759VA (en) 2021-04-29
JP7072664B2 (en) 2022-05-20
MY197929A (en) 2023-07-25
CN112739846A (en) 2021-04-30
JPWO2020066114A1 (en) 2021-10-21
TWI727334B (en) 2021-05-11

Similar Documents

Publication Publication Date Title
TWI547581B (en) Sintered body sputtering target
JP5705993B2 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
WO2012133166A1 (en) Sputtering target for magnetic recording film
US10325762B2 (en) Sputtering target for forming magnetic recording film and process for producing same
US10090012B2 (en) Fe-bases magnetic material sintered compact
TWI685581B (en) Magnetic material sputtering target and manufacturing method thereof
US20140083847A1 (en) Fe-Pt-C Based Sputtering Target
JP2009074127A (en) Sintered sputtering target material and manufacturing method therefor
WO2013108520A1 (en) Co-Cr-Pt-BASED SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
JP6768575B2 (en) Tungsten silicide target and its manufacturing method
WO2012073882A1 (en) Sputtering target
TWI515316B (en) FePt sputtering target and its manufacturing method
WO2020066114A1 (en) Sputtering target and powder for producing sputtering target
TWI753073B (en) Magnetic material sputtering target and manufacturing method thereof
WO2012023475A1 (en) CrTi-BASED ALLOY AND SPUTTERING TARGET MATERIAL, PERPENDICULAR MAGNETIC RECORDING MEDIUM, AND PROCESSES FOR PRODUCING SAME
TWI605143B (en) Magnetic recording media sputtering target
JP6484276B2 (en) Sputtering target for forming a magnetic recording film and method for producing the same
WO2010098290A1 (en) Sputtering target material, method for manufacturing sputtering target material, and thin film manufactured using the material and the method
JP7014541B2 (en) Sputtering target, manufacturing method of sputtering target and manufacturing method of magnetic medium
TWI567206B (en) Soft magnetic film and soft magnetic film forming sputtering target
JP2005097657A (en) Sputtering target for forming magnetic layer having reduced production of particle
JP7057069B2 (en) Sputtering target
WO2023079856A1 (en) Sputtering target member, sputtering target assembly, and film forming method
JP5973056B2 (en) Manufacturing method of sputtering target for magnetic recording film formation
WO2023079857A1 (en) Fe-Pt-C-BASED SPUTTERING TARGET MEMBER, SPUTTERING TARGET ASSEMBLY, METHOD FOR FORMING FILM, AND METHOD FOR PRODUCING SPUTTERING TARGET MEMBER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867590

Country of ref document: EP

Kind code of ref document: A1