WO2020063782A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020063782A1
WO2020063782A1 PCT/CN2019/108277 CN2019108277W WO2020063782A1 WO 2020063782 A1 WO2020063782 A1 WO 2020063782A1 CN 2019108277 W CN2019108277 W CN 2019108277W WO 2020063782 A1 WO2020063782 A1 WO 2020063782A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback information
time
harq feedback
symbol
physical uplink
Prior art date
Application number
PCT/CN2019/108277
Other languages
English (en)
French (fr)
Inventor
张战战
铁晓磊
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020063782A1 publication Critical patent/WO2020063782A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • wireless communication systems have designed a connected-discontinuous reception (C-DRX) mechanism to allow terminal devices to periodically enter the sleep state when they are in a radio resource control (RRC) connection state.
  • RRC radio resource control
  • PDCCH physical downlink control channel
  • the terminal device is woken up from the sleep state to the active state to achieve the purpose of power saving.
  • the terminal device After detecting the PDCCH, the terminal device receives a physical downlink shared channel (PDSCH) according to the downlink scheduling information carried by the PDCCH. After decoding the PDSCH, the terminal device sends a hybrid automatic repeat request (HARQ) to a network device through a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH). )Feedback.
  • PDSCH physical downlink shared channel
  • HARQ hybrid automatic repeat request
  • the terminal device After sending all the symbols of the PUCCH or PUSCH carrying the HARQ feedback information, the terminal device starts a downlink hybrid automatic retransmission request round-trip timer (HARQ-RTT-TimerDL).
  • the length of the HARQ-RTT-TimerDL is configured by the network device according to the processing of HARQ feedback information to determine the time configuration required for the process of retransmitting data.
  • the terminal device can assume that during HARQ-RTT-TimerDL timing, the network device will not schedule downlink control information (DCI) to indicate retransmission data. Therefore, the terminal device may not need to go during HARQ-RTT-TimerDL Listen for PDCCH.
  • DCI downlink control information
  • the terminal device When HARQ-RTT-TimerDL times out, if there is a transmission block (TB) decoding failure in the PDSCH, the terminal device will start the DRX Downlink Retransmission Timer (DRX-RetransmissionTimerDL), which will enter the active state and start blind detection to indicate the downlink retransmission Transmitted PDCCH.
  • DRX-RetransmissionTimerDL DRX Downlink Retransmission Timer
  • the network device After receiving the HARQ feedback information, the network device processes the HARQ feedback information, determines retransmission data, and schedules retransmission DCI when the terminal device is in an activated state.
  • the terminal device starts HARQ-RTT-TimerDL after sending all the symbols of PUCCH or PUSCH, which may cause the HARQ-RTT-TimerDL information to have been processed by the network device, but HARQ-RTT-TimerDL has not timed out, so DRX-RetransmissionTimerDL needs to wait until
  • the HARQ-RTT-TimerDL can be started only after it times out, resulting in a delay in the time when the terminal device enters the active state, which in turn causes the network device to wait for the terminal device to enter the active state after processing the HARQ feedback information. Causes increased data delay.
  • This application provides a communication method and device, which are used to solve the problem that the network equipment cannot schedule the retransmission DCI in time, which causes an increase in data delay.
  • the present application provides a communication method, which can be applied to a terminal device, or a chip on a terminal device, or a chipset on a terminal device, and the like.
  • the communication method includes: in a process of sending a physical uplink channel to the network device (the physical uplink channel carries HARQ feedback information of the hybrid automatic retransmission request), starting a downlink hybrid automatic retransmission request round-trip timer at a first point in time And allowing the terminal device not to monitor the physical downlink control channel during the time period of the downlink hybrid automatic retransmission request round-trip time timer, wherein the first time point is any time point in the first time period, the first time point The start time of the time period is the time when all the symbols carrying the HARQ feedback information are transmitted, and the end time of the first time period is the time when the last symbol of the physical uplink channel is transmitted.
  • the network device starts processing the HARQ feedback information after receiving the HARQ feedback information, and the terminal device starts the HARQ-RTT-TimerDL timer only after sending all symbols of the PUCCH or PUSCH carrying the HARQ feedback information.
  • the terminal device may not have to wait until all the symbols of the PUCCH or PUSCH are transmitted, but may be after the time point when all the symbols carrying the HARQ feedback information are transmitted, and before the time point when the last symbol of the PUCCH or PUSCH is transmitted.
  • the HARQ-RTT-TimerDL timer is started at any time, so that the delay of starting the DRX-RetransmissionTimerDL timer can be reduced, and the delay of the terminal device entering the active state can be reduced. Therefore, after processing the HARQ feedback information, the network device can reduce the waiting time for the terminal device to enter the active state, thereby scheduling the retransmission DCI in time, thereby reducing the data delay.
  • a terminal device sends symbols carrying HARQ feedback information at time t1, and all symbols of PUCCH or PUSCH are sent at time t2 after t1.
  • a terminal device needs to start HARQ-RTT- after time t2.
  • the TimerDL timer In the embodiment of the present application, the terminal device can start the HARQ-RTT-TimerDL timer at any time t3 after t1 and before t2. It can be seen that in the embodiment of the present application, the time at most t2-t3 can be reduced. Delay.
  • the first time point is a first symbol after sending a last symbol carrying the HARQ feedback information.
  • the downlink hybrid automatic retransmission request round trip time timer can minimize the waiting time for scheduling the retransmission DCI , which can minimize the data delay.
  • the terminal device sends the symbols carrying HARQ feedback information at time t1, and all the symbols of PUCCH or PUSCH are sent at time t2 after t1.
  • the terminal device can start the HARQ-RTT-TimerDL timer at time t1, which can reduce the The delay is about t2-t1.
  • the HARQ-RTT-TimerDL timer and the network device can process the HARQ feedback
  • the time of the information matches better, so that the network device can set the size of the HARQ-RTT-TimerDL timer according to the time when the HARQ feedback information is processed, reducing the complexity of the system configuration for the size of the HARQ-RTT-TimerDL timer.
  • the first time point is the first symbol after sending the symbol carrying the HARQ feedback information. If the HARQ feedback information is carried in multiple symbols, the first time point is the first symbol after the last symbol carrying the HARQ feedback information is sent.
  • a downlink hybrid automatic retransmission request round-trip timer is started at the next symbol of the symbol.
  • the last one carries HARQ feedback information. The next symbol of the symbol starts the downlink hybrid automatic retransmission request round-trip timer. In this way, the terminal device can be activated in time, so that the network device can schedule the retransmission DCI in time, which can reduce the data to the greatest extent. Delay.
  • the physical uplink channel may be a physical uplink control channel.
  • the terminal device can send HARQ feedback information on the physical uplink control channel.
  • the physical uplink channel may also be a physical uplink shared channel.
  • the terminal device may also send HARQ feedback information on the physical uplink shared channel.
  • HARQ feedback information may be sent on the physical uplink shared channel when the physical uplink control channel of a single time slot overlaps with the physical uplink shared channel of a single time slot.
  • HARQ feedback information may also be sent on the overlapping timeslot of the physical uplink shared channel.
  • the present application provides a device, which may be a terminal device, or a chip or chipset in the terminal device.
  • the apparatus may include a processing unit and a transceiving unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the terminal device may further include a storage unit, the storage unit may be a memory; the storage unit is used to store instructions, and the processing The unit executes the instructions stored by the storage unit, so that the terminal device performs the corresponding function in the first aspect.
  • the processing unit may be a processor, and the transceiver unit may be an input / output interface, a pin, or a circuit; the processing unit executes instructions stored in the storage unit to Cause the terminal device to perform the corresponding function in the first aspect, the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip or chipset, or may be the chip or chip located in the terminal device A storage unit external to the group (e.g., read-only memory, random access memory, etc.).
  • an apparatus including: a processor, a communication interface, and a memory.
  • the communication interface is used to transfer information, and / or messages, and / or data between the device and other devices.
  • the memory is used to store computer execution instructions. When the device is running, the processor executes the computer execution instructions stored in the memory, so that the device executes the communication method according to the first aspect or any one of the first aspects. .
  • the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on the computer, the computer causes the computer to execute the methods described in the above aspects.
  • the present application also provides a computer program product including instructions that, when run on a computer, causes the computer to execute the methods described in the above aspects.
  • FIG. 1 is a schematic architecture diagram of a communication system provided by this application.
  • FIG. 2 is a schematic diagram of a downlink transmission provided by this application.
  • FIG. 3 is a schematic diagram of another downlink transmission provided by this application.
  • FIG. 5 is a schematic diagram of a downlink transmission provided by this application.
  • FIG. 6 is a schematic diagram of another type of downlink transmission provided by this application.
  • FIG. 7 is a schematic diagram of another type of downlink transmission provided by this application.
  • FIG. 8 is a schematic diagram of another type of downlink transmission provided by this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by the present application.
  • the communication method provided in this application can be applied to a communication system configured with a discontinuous reception (DRX) mechanism.
  • the architecture of the communication system is shown in FIG. 1 and includes network equipment and terminal equipment, and uplink data transmission and downlink data transmission are performed between the network equipment and the terminal equipment.
  • the terminal device performs uplink data transmission based on the scheduling information sent by the network device.
  • the communication system involved in the embodiments of the present application may be various types of communication systems.
  • the communication system may be a long term evolution (LTE), a fifth generation (5G) communication system, or a universal terrestrial wireless access ( universal terrestrial radio access (UTRA), evolved UTRA (E-UTRAN), new wireless technology (new radio, NR), GSM / EDGE radio access network-circuit switched domain (GSM edge radio access network-circuit switched, GERAN- CS), GSM / EDGE wireless access network-data exchange domain (GSM / EDGE / radio / network-packet switched) (GERAN-PS), code division multiple access (CDMA) 2000-1XRTT, and multiple wireless access Multi-RAT (Dual-Connectivity, MR-DC) technology, etc., can also be a hybrid architecture of multiple communication systems, such as LTE and 5G hybrid architectures.
  • LTE long term evolution
  • 5G fifth generation
  • UTRA universal terrestrial radio access
  • E-UTRAN evolved UTRA
  • new wireless technology new radio, NR
  • GSM / EDGE radio access network-circuit switched domain GSM edge
  • the network device may be a common base station (such as Node B or eNB), may be a new wireless controller (new controller, NR controller), may be a gNodeB (gNB) in a 5G system, and may be a centralized network.
  • the central unit can be a new wireless base station, a radio remote module, a micro base station, a relay, a distributed unit, or a reception point. point (TRP) or transmission point (TP) or any other wireless access device, but the embodiment of the present application is not limited thereto.
  • Terminal equipment also known as user equipment (UE) is a device that provides voice and / or data connectivity to users, such as handheld devices with wireless connectivity, vehicle-mounted devices, and so on.
  • UE user equipment
  • Common terminals include, for example, mobile phones, tablet computers, notebook computers, handheld computers, mobile Internet devices (MID), and wearable devices, such as smart watches, smart bracelets, pedometers, and the like.
  • MID mobile Internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • a terminal device when a terminal device is in a radio resource control (RRC) connection state, if there is no DRX mechanism, the terminal device will always monitor the PDCCH subframe.
  • RRC radio resource control
  • the terminal device does not always have information interaction with the network device, but there is a certain time interval. If the terminal device is always listening to the physical downlink control channel (physical downlink control channel) , PDCCH) will cause terminal equipment to consume power. Therefore, under the premise of ensuring effective data transmission, the wireless communication system has designed a DRX mechanism to allow the terminal device to periodically enter the sleep state at some times, instead of monitoring the PDCCH subframe, and when it is necessary to monitor the PDCCH, the terminal device Wake up from sleep to save power.
  • RRC radio resource control
  • the terminal device In the DRX mechanism, if the terminal device is in an active state, the terminal device will continuously monitor the PDCCH.
  • DRX duration timer DRX-onDurationTimer
  • DRX-InactivityTimer DRX inactive timer
  • DRX-RetransmissionTimerDL DRX downlink retransmission timer
  • DRX-RetransmissionTimerUL DRX uplink retransmission timer
  • DRX-InactivityTimer is started when a terminal device receives a PDCCH indication for a downlink or uplink new transmission. During the timing of DRX-InactivityTimer, the terminal device is in the active state. In the downlink transmission process, when the terminal device sends to the network device a physical uplink control channel (physical uplink control channel (PUCCH) or hybrid uplink shared channel (PUCCH) that carries hybrid automatic repeat request (HARQ) feedback information. physical uplink (PUSCH), the downlink HARQ round-trip time timer (HARQ-RTT-TimerDL) will be started.
  • PUCCH physical uplink control channel
  • PUCCH hybrid uplink shared channel
  • HARQ-RTT-TimerDL the downlink HARQ round-trip time timer
  • HARQ-RTT-TimerDL indicates that the network device will not immediately retransmit, so the HARQ-RTT-TimerDL timing period , Allows the terminal device to enter the inactive state, that is, it may not monitor the PDCCH.
  • HARQ-RTT-TimerDL times out, if the terminal device has decoding failure data, DRX-RetransmissionTimerDL is started. During the DRX-RetransmissionTimerDL timing, the terminal device is in the active state.
  • the following is the downlink transmission process of the terminal equipment in the RRC connection state under the DRX mechanism.
  • Step 1 During the DRX-onDurationTimer timing, the terminal device monitors the PDCCH.
  • Step 2 If the terminal device detects that the PDCCH indicates a new downlink transmission during the DRX-onDurationTimer timing, it starts the DRX-InactivityTimer. A new transfer of data indicates the start of a HARQ process.
  • Step 3 The terminal device decodes downlink control information (DCI) in the PDCCH, and receives the PDSCH based on the DCI.
  • DCI downlink control information
  • Step 4 The terminal device sends HARQ feedback information to the network device in the PUCCH or PUSCH.
  • Step 5 The terminal device starts the HARQ-RTT-TimerDL corresponding to the HARQ process after sending all symbols of the PUCCH or PUSCH carrying HARQ feedback information.
  • Step 6 When HARQ-RTT-TimerDL times out, if the previous PDSCH has a transmission block (TB) that failed to decode, the terminal device will start DRX-RetransmissionTimerDL. During the DRX-RetransmissionTimerDL timing period, go to step 7. If all previous PDSCH decoding is successful, the terminal device does not start DRX-RetransmissionTimerDL.
  • TB transmission block
  • Step 7 During the DRX-RetransmissionTimerDL timing, the terminal device is in an active state and starts blind detection of the PDCCH. If the terminal device detects the retransmission DCI during the timing of the DRX-RetransmissionTimerDL, the DRX-RetransmissionTimerDL is turned off and the PDSCH is received based on the retransmission DCI. After the PDSCH is decoded, steps 4 to 7 are performed.
  • the length of the HARQ-RTT-TimerDL is configured by the network device. Specifically, the length of the HARQ-RTT-TimerDL is related to the time K3 when the network device processes the HARQ feedback information, where K3 represents the HARQ feedback information of a certain HARQ process received from the network device and then processes the HARQ feedback information to determine Time to retransmit data.
  • the terminal device starts HARQ-RTT-TimerDL after sending all the symbols of the PUCCH or PUSCH carrying HARQ feedback information, but this may cause the HARQ-RTT-TimerDL startup delay.
  • the symbol carrying the HARQ feedback information is the last symbol of the PUCCH or PUSCH
  • the terminal device will turn on the DRX-RetransmissionTimerDL to make the terminal device enter the active state.
  • the time when the terminal device starts HARQ-RTT-TimerDL and the network device starts processing HARQ feedback information are basically the same.
  • the time for retransmitting the DCI is also basically the same. Therefore, after processing the HARQ feedback information, the network device can send the retransmission DCI to the terminal device.
  • the symbols carrying the HARQ feedback information are some of the symbols starting from the PUCCH or PUSCH, and the time domain length of the PUCCH or PUSCH carrying the HARQ feedback information is longer, as shown in FIG. 3, the terminal device ends the transmission of the PUCCH or PUSCH at the end.
  • HARQ-RTT-TimerDL is started at time t1
  • DRX-RetransmissionTimerDL is started at time t2 and enters the active state.
  • the network device After receiving all the symbols carrying the HARQ feedback information, the network device starts processing the HARQ feedback information at time t3. Because time t1 is later than time t3, that is, the time when the terminal device starts HARQ-RTT-TimerDL is later than the time when the network device starts processing HARQ feedback information, so after the network device has processed the HARQ feedback information, the HARQ-RTT-TimerDL on the terminal device side It has not timed out.
  • the network device needs to wait for the terminal device to start DRX-RetransmissionTimerDL and enter the active state to send a retransmission DCI to the terminal device. This causes the network device to wait for t1-t3. As a result, network devices cannot schedule DCI retransmissions in a timely manner, resulting in increased data delay.
  • the embodiments of the present application provide a communication method and device, which are used to solve the problem that network equipment cannot schedule DCI retransmission in time, which causes an increase in data delay.
  • the terminal device may start a downlink hybrid automatic retransmission request round-trip timer before the time when the last symbol of the physical uplink channel is transmitted after the time when all symbols carrying the HARQ feedback information are transmitted. That is, HARQ-RTT-TimerDL is started at any time t4 between t3 and t1, so that the network device can reduce the delay of t1-t4, thereby reducing the data delay to a certain extent.
  • the method and the device are based on the same inventive concept. Since the principle of the method and the device for solving the problem is similar, the implementation of the device and the method can be referred to each other, and duplicated details will not be repeated.
  • the multiple involved in the embodiments of the present application refers to two or more.
  • the communication method provided in the present application may be applied to a terminal device, or a chip in the terminal device, or a chipset on the terminal device, and the like.
  • the method includes:
  • a terminal device sends a physical uplink channel to a network device, where the physical uplink channel carries HARQ feedback information.
  • the HARQ feedback information may include the decoding result of the terminal device receiving one or more TBs in the PDSCH during a HARQ process.
  • the HARQ feedback information may be TB-based ACK / NACK information, that is, ACK indicates that the corresponding TB decoding is successful, and NACK indicates that the corresponding TB decoding fails.
  • the HARQ feedback information may also be ACK / NACK information based on a code block group (CBG), that is, the TB is divided into multiple code blocks (CBG), and then the multiple CB blocks are divided into several CBG, HARQ
  • CBG code block group
  • the feedback information uses ACK to indicate that all CBs in the corresponding CBG have been decoded successfully, and NACK indicates that there are CBs in the corresponding CBG that have failed to decode.
  • a new transfer of data indicates the start of a HARQ process.
  • the physical uplink channel may be PUCCH, or may also be PUSCH.
  • the PUCCH can be used to carry uplink control information (UCI).
  • the uplink control information can include a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank indicator. (rank, indicator, RI), HARQ feedback information, and other control information.
  • the PUSCH can be used to carry uplink data and / or uplink control information.
  • the terminal device starts a downlink hybrid automatic retransmission request round-trip timer at a first point in time, and allows the terminal device not to monitor a physical downlink control channel during the time period of the downlink hybrid automatic retransmission request round-trip timer.
  • the first time point is an arbitrary time point in the first time period, and the start time of the first time period is the time T1 when all the symbols carrying the HARQ feedback information are sent.
  • the termination time is the time T2 when the last symbol of the physical uplink channel is transmitted.
  • the arbitrary time point may be T1 or T2.
  • HARQ-RTT-TimerDL is configured for network devices based on the time required to process HARQ feedback information.
  • HARQ-RTT-TimerDL indicates that network devices will not immediately have retransmissions. Therefore, during HARQ-RTT-TimerDL timing, you can allow The terminal device enters an inactive state, that is, the terminal device may not be monitoring the PDCCH.
  • the terminal device may start the HARQ feedback information corresponding to the HARQ-RTT-TimerDL of the HARQ process at any time point in T2-T1.
  • the terminal device may start HARQ-RTT-TimerDL when sending any symbol in a time period defined in T2-T1.
  • the HARQ-RTT-TimerDL may be started when the first symbol after all the symbols carrying the HARQ feedback information is sent, or the second one after all the symbols carrying the HARQ feedback information may be sent HARQ-RTT-TimerDL is started when the symbol is displayed.
  • HARQ-RTT-TimerDL can also be started when the fifth symbol after all symbols carrying the HARQ feedback information is sent, and the like in this embodiment of the present application is not detailed here. limited.
  • the embodiment of the present application is described below by using the HARQ-RTT-TimerDL as an example to start the first symbol after all the symbols carrying the HARQ feedback information are sent.
  • the terminal device may start the HARQ-RTT-TimerDL when sending the first symbol after the last symbol carrying the HARQ feedback information. That is, the first time point is the first symbol after sending the last symbol carrying the HARQ feedback information.
  • An exemplary description is that if the HARQ feedback information is carried in one symbol, the terminal device starts the HARQ-RTT-TimerDL when sending the first symbol after the symbol carrying the HARQ feedback information. That is, the first time point is a first symbol after sending a symbol carrying the HARQ feedback information.
  • the terminal device starts the HARQ-RTT- when sending the first symbol after the last symbol carrying the HARQ feedback information.
  • TimerDL That is, the first time point is the first symbol after sending the last symbol carrying the HARQ feedback information.
  • the following takes the network device to configure the length of the HARQ-RTT-TimerDL to the time required to process the HARQ feedback information as an example, and combines the specific application scenario to describe the downlink transmission process in detail.
  • Scenario 1 The terminal device sends the HARQ feedback information of the corresponding HARQ process to the network device on the PUCCH.
  • the terminal device starts a DRX-onDurationTimer when a certain condition is met, and monitors the PDCCH during the timing of the DRX-onDurationTimer.
  • the terminal device starts a DRX-InactivityTimer when detecting a PDCCH indicating a new transmission of downlink data.
  • the terminal device decodes the DCI in the PDCCH and receives the PDSCH based on the DCI.
  • the terminal device carries the HARQ feedback information in the PUCCH and sends it to the network device.
  • the HARQ feedback information may include decoding results of one or more TBs in the PDSCH.
  • the terminal device starts the HARQ-RTT-TimerDL of the HARQ process after sending the first symbol after the last symbol carrying the HARQ feedback information.
  • the network device starts processing the HARQ feedback information after receiving the last symbol carrying the HARQ feedback information.
  • the first symbol after sending this symbol carrying HARQ feedback information starts the HARQ-RTT-TimerDL corresponding to the HARQ process.
  • the first symbol after the last symbol carrying HARQ feedback information is sent to start the HARQ-RTT-TimerDL corresponding to the HARQ process.
  • the terminal device starts DRX-RetransmissionTimerDL, and executes step S507.
  • the data block can be TB, CB, or CBG.
  • the terminal device does not start DRX-RetransmissionTimerDL.
  • the HARQ-RTT-TimerDL on the terminal device side basically ends the timing, that is, the terminal The device enters the active state, so that the network device can send a retransmission DCI after processing the HARQ feedback information. See Figure 5.
  • the terminal device is in an active state and starts blind detection of the PDCCH. If the terminal device detects the retransmission DCI during the timing of the DRX-RetransmissionTimerDL, the DRX-RetransmissionTimerDL is turned off and the PDSCH is received based on the retransmission DCI.
  • S504 to S507 can be continued.
  • Scenario 2 The terminal device sends HARQ feedback information of the corresponding HARQ process to the network device on the PUSCH.
  • a scenario where a terminal device sends HARQ feedback information of a corresponding HARQ process on a PUSCH may include a time slot overlap between a single-slot PUCCH and a single slot PUSCH, and a time slot overlap between a single-slot PUCCH and a multi-slot PUSCH.
  • the terminal device sends HARQ feedback information on a PUSCH resource on the time slot where the PUSCH and the PUCCH overlap.
  • the downlink transmission process when the terminal device sends the HARQ feedback information of the corresponding HARQ process to the network device on the PUSCH is similar to the downlink transmission process when the terminal device sends the HARQ feedback information of the corresponding HARQ process to the network device on the PUCCH.
  • the specific process can refer to step S501 Until S507, the details are not repeated here.
  • the terminal device starts the HARQ-RTT-TimerDL corresponding to the HARQ process when sending the first symbol after the last symbol carrying the HARQ feedback information. Because the length of the HARQ-RTT-TimerDL is equal to the time required for the network device to process the HARQ feedback information based on the process, after the network device has processed the HARQ feedback information, the HARQ-RTT-TimerDL on the terminal device side basically ends the timing, that is, the terminal The device enters the active state, so that the network device can send a retransmission DCI after processing the HARQ feedback information. As shown in Figure 6.
  • the symbol after the symbol where the demodulation reference signal (DMRS) is located may carry the HARQ feedback information. If there is an additional DMRS on the PUSCH, the symbol after the symbol on which the DMRS is attached may also carry HARQ feedback information, so the terminal device can start the HARQ corresponding to the HARQ process when the next symbol of the symbol on which the HARQ feedback information after the additional DMRS is transmitted is sent.
  • -RTT-TimerDL As shown in Figure 7.
  • the terminal device can send all The first symbol after the symbol starts the HARQ-RTT-TimerDL corresponding to the HARQ process. For example, if there are two frequency hopping on the PUSCH, the terminal device may start the HARQ-RTT-TimerDL corresponding to the HARQ process when the first symbol after the last symbol carrying HARQ feedback information is transmitted in the second frequency hopping . As shown in Figure 8.
  • the network device starts processing the HARQ feedback information after receiving the HARQ feedback information, and the terminal device starts the HARQ-RTT-TimerDL timer only after sending all symbols of the PUCCH or PUSCH carrying the HARQ feedback information.
  • the terminal device may not have to wait until all the symbols of the PUCCH or PUSCH are sent, but may start the HARQ-RTT-TimerDL timer after sending the first symbol after carrying the symbols carrying the HARQ feedback information, thereby reducing the start of the DRX-
  • the delay of the RetransmissionTimerDL timer can further reduce the delay of the terminal device entering the active state.
  • the network device can reduce the waiting time for the terminal device to enter the active state, thereby scheduling the retransmission DCI in time, thereby reducing the data delay. For example, in conjunction with FIG. 3 and FIG. 5, it can be seen that the delay of about t1-t3 can be reduced in the embodiment of the present application.
  • the terminal device may start the HARQ-RTT-TimerDL timer after sending the first symbol after the symbol carrying the HARQ feedback information, so that the HARQ-RTT-TimerDL timer and the network device can process the HARQ feedback information.
  • the time is better matched, so that the network device can set the size of the HARQ-RTT-TimerDL timer according to the time when the HARQ feedback information is processed, reducing the complexity of system configuration for the size of the HARQ-RTT-TimerDL timer.
  • an embodiment of the present application provides a communication device, which is specifically configured to implement the method described in the embodiment described in FIG. 4 to FIG. 8.
  • the device may be the communication device itself or a communication device.
  • the structure of the communication device may include a sending unit 901 and a processing unit 902 as shown in FIG. 9.
  • the sending unit 901 is configured to send a physical uplink channel to a network device, where the physical uplink channel carries hybrid automatic repeat request HARQ feedback information.
  • a processing unit 902 configured to start a downlink hybrid automatic retransmission request round-trip time timer at a first time point, and allow a terminal device not to listen to a physical downlink control channel during the timing of the downlink hybrid automatic retransmission request round-trip timer,
  • the first time point is an arbitrary time point in the first time period
  • the start time of the first time period is the time when all the symbols carrying the HARQ feedback information are sent
  • the time is the time when the last symbol of the physical uplink channel is transmitted.
  • the first time point is the first symbol after sending the last symbol carrying the HARQ feedback information.
  • the first time point is the first symbol after sending the symbol carrying the HARQ feedback information; if the HARQ feedback information is carried in multiple symbols , The first time point is the first symbol after sending the last symbol carrying the HARQ feedback information.
  • the physical uplink channel may be a physical uplink control channel or a physical uplink shared channel.
  • the division of the modules in the embodiments of the present application is schematic and is only a logical function division. In actual implementation, there may be another division manner.
  • the functional modules in the embodiments of the present application may be integrated into one process. In the device, it can also exist separately physically, or two or more modules can be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules.
  • the communication device can be as shown in FIG. 10, and the processing unit 902 can be the processor 1002.
  • the processor 1002 may be a central processing module (CPU), or a digital processing module.
  • the sending unit 901 may be a communication interface 1001.
  • the communication interface 1001 may be a transceiver, an interface circuit such as a transceiver circuit, or a transceiver chip.
  • the communication device further includes: a memory 1003, configured to store a program executed by the processor 1002.
  • the memory 1003 may be a non-volatile memory, such as a hard disk (HDD) or a solid-state drive (SSD), etc., or a volatile memory, such as a random access memory (random -access memory, RAM).
  • the memory 1003 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the processor 1002 is configured to execute the program code stored in the memory 1003, and is specifically configured to perform the actions of the processing unit 902, which is not repeatedly described in this application.
  • connection medium between the communication interface 1001, the processor 1002, and the memory 1003 is not limited in the embodiment of the present application.
  • the memory 1003, the processor 1002, and the communication interface 1001 are connected by a bus 1004 in FIG. 10, and the bus is shown by a thick line in FIG. 10.
  • the connection modes between other components are only schematically illustrated. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only a thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • this application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, this application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以解决网络设备不能及时调度重传DCI,造成数据时延增大的问题。该方法包括:向网络设备发送物理上行信道,所述物理上行信道携带混合式自动重传请求HARQ反馈信息。并在第一时间点启动下行混合式自动重传请求往返时间定时器,在所述下行混合式自动重传请求往返时间定时器计时期间允许终端设备不监听物理下行控制信道,所述第一时间点为第一时间段中的任意时间点,所述第一时间段的起始时刻为发送完承载所述HARQ反馈信息的所有符号的时刻,所述第一时间段的终止时刻为发送完所述物理上行信道的最后一个符号的时刻。

Description

一种通信方法及装置
本申请要求在2018年09月27日提交中国专利局、申请号为201811133384.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前,无线通信***设计了连接态的不连续接收(connected-discontinuous reception,C-DRX)机制让终端设备在处于无线资源控制(radio resource control,RRC)连接态时,周期性地进入睡眠状态,不去监听物理下行控制信道(physical downlink control channel,PDCCH),而在需要监听PDCCH的时候,将终端设备从睡眠状态唤醒进入激活状态,达到省电的目的。
在C-DRX机制中,终端设备在检测到PDCCH之后,根据PDCCH携带的下行调度信息接收物理下行共享信道(physical downlink shared shannel,PDSCH)。终端设备在解码PDSCH之后,通过物理上行控制信道(physical uplink control channel,PUCCH)或者物理上行共享信道(physical uplink shared channel,PUSCH)向网络设备发送混合式自动重传请求(hybrid automatic repeat request,HARQ)反馈信息。
终端设备在发送完携带HARQ反馈信息的PUCCH或者PUSCH的所有符号之后启动下行混合式自动重传请求往返时间定时器(HARQ-RTT-TimerDL)。HARQ-RTT-TimerDL的长度由网络设备根据自身处理HARQ反馈信息以确定重传数据的过程所需要的时间配置。终端设备可以假定在HARQ-RTT-TimerDL计时期间网络设备不会调度指示重传数据的重传下行控制信息(downlink control information,DCI),因此,终端设备在HARQ-RTT-TimerDL计时期间可以不去监听PDCCH。当HARQ-RTT-TimerDL超时,若PDSCH中存在传输块(transport block,TB)解码失败,终端设备将启动DRX下行重传定时器(DRX-RetransmissionTimerDL),从而进入激活状态,开始盲检指示下行重传的PDCCH。
网络设备在接收到HARQ反馈信息后对该HARQ反馈信息进行处理,确定重传数据,并在终端设备处于激活状态时调度重传DCI。但是,终端设备在发送完PUCCH或者PUSCH的所有符号之后启动HARQ-RTT-TimerDL,可能会造成在网络设备已经处理完HARQ反馈信息,但是HARQ-RTT-TimerDL还未超时,从而DRX-RetransmissionTimerDL需要等到HARQ-RTT-TimerDL超时之后才可以启动,导致终端设备进入激活状态的时间延迟,进而使网络设备在处理完HARQ反馈信息后需要等待终端设备进入激活态,导致网络设备不能及时调度重传DCI,造成数据时延增大。
发明内容
本申请提供一种通信方法及装置,用以解决网络设备不能及时调度重传DCI,造成数据时延增大的问题。
第一方面,本申请提供了一种通信方法,该方法可以应用于终端设备、或者终端设备上芯片、或者终端设备上的芯片组等等。该通信方法包括:向网络设备发送物理上行信道的过程中(所述物理上行信道携带混合式自动重传请求HARQ反馈信息),在第一时间点启动下行混合式自动重传请求往返时间定时器,在所述下行混合式自动重传请求往返时间定时器计时期间允许终端设备不监听物理下行控制信道,其中,所述第一时间点为第一时间段中的任意时间点,所述第一时间段的起始时刻为发送完承载所述HARQ反馈信息的所有符号的时刻,所述第一时间段的终止时刻为发送完所述物理上行信道的最后一个符号的时刻。
相比于现有技术中网络设备在接收到HARQ反馈信息开始处理HARQ反馈信息,而终端设备在发送携带HARQ反馈信息的PUCCH或者PUSCH的所有符号之后才启动HARQ-RTT-TimerDL定时器,本申请实施例中终端设备可以不必等到PUCCH或者PUSCH的所有符号发送完,而是可以在发送完承载HARQ反馈信息的所有符号时的时间点以后,发送完PUCCH或者PUSCH的最后一个符号时的时间点以前的任一时刻启动HARQ-RTT-TimerDL定时器,从而可以降低启动DRX-RetransmissionTimerDL定时器的延迟,进而可以降低终端设备进入激活态的延迟。因此网络设备在处理完HARQ反馈信息后可以减少等待终端设备进入激活态的时间,从而及时调度重传DCI,进而可以降低数据时延。例如,终端设备在t1时刻发送完承载HARQ反馈信息的符号,而在t1之后的t2时刻发送完PUCCH或者PUSCH的所有符号,现有技术中终端设备需要在t2时刻之后才可以启动HARQ-RTT-TimerDL定时器,而本申请实施例中终端设备可以在t1以后,t2时刻以前的任一时刻t3启动HARQ-RTT-TimerDL定时器,可见,本申请实施例中最多可以降低大约t2-t3的时延。
在一种可能的设计中,所述第一时间点为发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号。上述设计中,在发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号启动时,所述下行混合式自动重传请求往返时间定时器可以最大程度的降低调度重传DCI的等待时间,从而可以最大程度的降低数据时延。例如,终端设备在t1时刻发送完承载HARQ反馈信息的符号,而在t1之后的t2时刻发送完PUCCH或者PUSCH的所有符号,终端设备可以在t1时刻启动HARQ-RTT-TimerDL定时器,从而可以降低大约t2-t1的时延。并且,在发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号启动所述下行混合式自动重传请求往返时间定时器,可以使得HARQ-RTT-TimerDL定时器和网络设备处理HARQ反馈信息的时间更好的匹配,从而网络设备可以根据处理完HARQ反馈信息的时间来设置HARQ-RTT-TimerDL定时器的大小,降低***针对HARQ-RTT-TimerDL定时器大小进行配置的复杂度。
具体地,若所述HARQ反馈信息承载在一个符号中,则所述第一时间点为发送承载所述HARQ反馈信息的符号后的第一个符号。若所述HARQ反馈信息承载在多个符号中,则所述第一时间点为发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号。上述设计中,HARQ反馈信息承载在一个符号中时在该符号的下一个符号启动下行混合式自动重传请求往返时间定时器,HARQ反馈信息承载在多个符号中时在最后一个承载HARQ反馈信息的符号的下一个符号启动下行混合式自动重传请求往返时间定时器,通过这种方式可以使终端设备及时进入激活态,从而使得网络设备可以及时调度重传DCI,从而可以最大程度的降低数据时延。
在一种可能的设计中,所述物理上行信道可以为物理上行控制信道。上述设计中,终端设备可以在物理上行控制信道上发送HARQ反馈信息。
在一种可能的设计中,所述物理上行信道还可以为物理上行共享信道。上述设计中,终端设备还可以在物理上行共享信道上发送HARQ反馈信息。例如,可以在单时隙的物理上行控制信道与单时隙的物理上行共享信道发生时隙重叠的情况下在物理上行共享信道上发送HARQ反馈信息。或者,也可以在单时隙的物理上行控制信道与多时隙的物理上行共享信道发生时隙重叠的情况下在物理上行共享信道的重叠时隙上发送HARQ反馈信息。
第二方面,本申请提供一种装置,该装置可以是终端设备,也可以是终端设备内的芯片或芯片组。该装置可以包括处理单元和收发单元。当该装置是终端设备时,该处理单元可以是处理器,该收发单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行上述第一方面中相应的功能。当该装置是终端设备内的芯片或芯片组时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该终端设备执行上述第一方面中相应的功能,该存储单元可以是该芯片或芯片组内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片或芯片组外部的存储单元(例如,只读存储器、随机存取存储器等)。
第三方面,提供了一种装置,包括:处理器、通信接口和存储器。通信接口用于该装置与其他装置之间传输信息、和/或消息、和/或数据。该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面或第一方面中任一所述的通信方法。
第四方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第五方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本申请提供的通信***的架构示意图;
图2为本申请提供的一种下行传输的示意图;
图3为本申请提供的另一种下行传输的示意图;
图4为本申请提供的一种同通信方法的流程示意图;
图5为本申请提供的一种下行传输的示意图;
图6为本申请提供的另一种下行传输的示意图;
图7为本申请提供的另一种下行传输的示意图;
图8为本申请提供的另一种下行传输的示意图;
图9为本申请提供的一种通信装置的结构示意图;
图10为本申请提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步 地详细描述。
本申请提供的通信方法可以应用于配置了不连续接收(discontinuous reception,DRX)机制的通信***中。该通信***的架构如图1所示,包括网络设备以及终端设备,网络设备与终端设备之间进行上行数据传输以及下行数据传输。在所述通信***中,终端设备基于网络设备发送的调度信息进行上行数据传输。本申请实施例涉及的通信***可以是各类通信***,例如,可以是长期演进(long term evolution,LTE),也可以是第五代(5G)通信***,也可以为通用地面无线接入(universal terrestrial radio access,UTRA)、演进的UTRA(E-UTRAN)、新无线技术(new radio,NR)、GSM/EDGE无线接入网-电路交换域(GSM EDGE radio access network-circuit switched,GERAN-CS)、GSM/EDGE无线接入网-数据交换域(GSM EDGE radio access network–packet switched,GERAN-PS)、码分多址(code division multiple access,CDMA)2000-1XRTT、和多无线接入技术双连接(Multi-RAT Dual-Connectivity,MR-DC)等,还可以是多种通信***的混合架构,如LTE与5G混合架构等。
其中,网络设备,可以是普通的基站(如Node B或eNB),可以是新无线控制器(new radio controller,NR controller),可以是5G***中的gNode B(gNB),可以是集中式网元(centralized unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是中继(relay),可以是分布式网元(distributed unit),可以是接收点(transmission reception point,TRP)或传输点(transmission point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。
终端设备,又称之为用户设备(user equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
在通信***中,当终端设备处于无线资源控制(radio resource control,RRC)连接态时,如果没有DRX机制,终端设备会一直监听PDCCH子帧。而现实中很多业务下,比如网页浏览等业务,终端设备并不会一直和网络设备之间存在信息交互,而是存在一定的时间间隔,如果终端设备一直监听物理下行控制信道(physical downlink control channel,PDCCH)会造成终端设备费电。因此,在保证数据有效传输的前提下,无线通信***设计了DRX机制让终端设备在某些时候周期性地进入睡眠状态,不去监听PDCCH子帧,而在需要监听PDCCH的时候,将终端设备从睡眠状态唤醒,达到省电的目的。
在DRX机制中,如果终端设备处于激活态,终端设备会持续监听PDCCH。当DRX持续时间定时器(DRX-onDurationTimer),DRX非激活态定时器(DRX-InactivityTimer),DRX下行重传定时器(DRX-RetransmissionTimerDL),DRX上行重传定时器(DRX-RetransmissionTimerUL)中任一定时器在运行时,终端设备处于激活态。其中,DRX-onDurationTimer为配置了DRX周期的终端设备在满足一定条件时启动,在DRX-onDurationTimer计时期间,终端设备处于激活态。DRX-InactivityTimer为终端设备收到PDCCH指示下行或上行新传时启动,在DRX-InactivityTimer计时期间,终端设备处于激活态。在下行传输过程中,当终端设备向网络设备发送完携带混合式自动重传请求(hybrid automatic repeat request,HARQ)反馈信息的物理上行控制信道(physical uplink control channel,PUCCH)或者物理上行共享信道(physical uplink shared channel,PUSCH) 时,会启动下行HARQ往返时间定时器(HARQ-RTT-TimerDL),HARQ-RTT-TimerDL表示网络设备并不会立即有重传发生,因此HARQ-RTT-TimerDL计时期间,允许终端设备进入非激活态,即可以不监听PDCCH。当HARQ-RTT-TimerDL超时时,若终端设备存在解码失败的数据,则启动DRX-RetransmissionTimerDL。在DRX-RetransmissionTimerDL计时期间,终端设备处于激活态。
下面为DRX机制下处于RRC连接态的终端设备的下行传输过程。
步骤1:在DRX-onDurationTimer计时期间,终端设备监听PDCCH。
步骤2:若终端设备在DRX-onDurationTimer计时期间检测到PDCCH指示下行新传,则启动DRX-InactivityTimer。一次数据的新传表示一个HARQ进程的开始。
步骤3:终端设备解码PDCCH中的下行控制信息(downlink control information,DCI),并基于DCI接收PDSCH。
步骤4:终端设备在PUCCH或者PUSCH中携带HARQ反馈信息发送给网络设备。
步骤5:终端设备在发送完携带HARQ反馈信息的PUCCH或者PUSCH的所有符号之后的第一个符号启动对应HARQ进程的HARQ-RTT-TimerDL。
步骤6:当HARQ-RTT-TimerDL超时,若之前的PDSCH存在译码失败的传输块(transport block,TB),终端设备将启动DRX-RetransmissionTimerDL,在DRX-RetransmissionTimerDL计时期间,并进入步骤7。若之前的PDSCH全部译码成功,终端设备不启动DRX-RetransmissionTimerDL。
步骤7:在DRX-RetransmissionTimerDL计时期间,终端设备处于激活态并开始盲检PDCCH。若在DRX-RetransmissionTimerDL计时期间终端设备检测到重传DCI,则关闭DRX-RetransmissionTimerDL,并基于重传DCI接收PDSCH。在解码PDSCH之后,执行步骤4至步骤7。
目前,HARQ-RTT-TimerDL的长度由网络设备配置。具体的,HARQ-RTT-TimerDL的长度和网络设备处理HARQ反馈信息的时间K3有关,其中K3表示从网络设备接收到终端设备发来的某个HARQ进程的HARQ反馈信息之后处理HARQ反馈信息,确定重传数据的时间。
目前,终端设备在发送完携带HARQ反馈信息的PUCCH或者PUSCH的所有符号之后启动HARQ-RTT-TimerDL,但是,这样可能会导致HARQ-RTT-TimerDL启动延迟。例如,如下图2所示,如果承载HARQ反馈信息的符号在PUCCH或者PUSCH的最后一个符号,那么在HARQ-RTT-TimerDL超时之后,终端设备会开启DRX-RetransmissionTimerDL使终端设备进入激活态。这种情况下,终端设备启动HARQ-RTT-TimerDL的时刻和网络设备开始处理HARQ反馈信息基本相同,从而终端设备开启DRX-RetransmissionTimerDL定时器的时刻和网络设备在处理完HARQ反馈信息并准备发送指示重传DCI的时刻也基本相同,因此,网络设备在处理完HARQ反馈信息后可以向终端设备发送重传DCI。但是,如果承载HARQ反馈信息的符号在PUCCH或者PUSCH开始的一些符号,且承载HARQ反馈信息的PUCCH或者PUSCH的时域长度较长,如图3所示,终端设备在发送完PUCCH或者PUSCH的最后一个符号时,即t1时刻启动HARQ-RTT-TimerDL,在HARQ-RTT-TimerDL超时时,即t2时刻启动DRX-RetransmissionTimerDL进入激活态。而网络设备在接收到承载HARQ反馈信息的所有符号后即在t3时刻开始处理HARQ反馈信息。由于t1时刻晚于t3时刻,即终端设备启动HARQ-RTT-TimerDL晚于网络设备开始处 理HARQ反馈信息的时刻,因此,网络设备在处理完HARQ反馈信息后,终端设备侧的HARQ-RTT-TimerDL还未超时,此时,如果没有其他条件使终端设备处于激活态,则网络设备需要等待终端设备启动DRX-RetransmissionTimerDL进入激活态后向终端设备发送重传DCI,这样导致网络设备额外等待t1-t3的时长,从而导致网络设备不能及时调度重传DCI,造成数据时延增大。
基于此,本申请实施例提供一种通信方法及装置,用于解决网络设备不能及时调度重传DCI,造成数据时延增大的问题。本申请实施例中终端设备可以在发送完承载所述HARQ反馈信息的所有符号的时刻以后,发送完所述物理上行信道的最后一个符号的时刻以前启动下行混合式自动重传请求往返时间定时器,也就是在t3~t1之间的任一时刻t4启动HARQ-RTT-TimerDL,从而可以使网络设备减少t1-t4的延迟,从而可以在一定程度上降低数据的时延。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面结合附图对本申请实施例提供的通信方法进行具体说明。
参见图4,为本申请提供的通信方法的流程图,本申请提供的通信方法可以用于终端设备、或者终端设备中的芯片、或者终端设备上的芯片组等等。下面以该方法应用于终端设备为例进行说明,该方法包括:
S401,终端设备向网络设备发送物理上行信道,所述物理上行信道携带HARQ反馈信息。其中,HARQ反馈信息可以包括终端设备在一次HARQ进程中接收到PDSCH中一个或多个TB的译码结果。HARQ反馈信息可以是基于TB的ACK/NACK信息,即用ACK表示对应的TB译码成功,NACK表示对应的TB译码失败。HARQ反馈信息也可以是基于编码块组(code block group,CBG)的ACK/NACK信息,即TB分割成多个编码块(code block,CB),然后将多个CB块划分成若干CBG,HARQ反馈信息中用ACK表示对应CBG中的CB全部译码成功,NACK表示对应CBG中存在译码失败的CB。一次数据的新传表示一个HARQ进程的开始。
示例性的,所述物理上行信道可以为PUCCH,或者,也可以为PUSCH。其中,PUCCH可以用于承载上行控制信息(uplink control information,UCI),所述上行控制信息可以包括信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indicator,RI)、HARQ反馈信息等控制信息。PUSCH可以用于承载上行数据和/或上行控制信息。
S402,所述终端设备在第一时间点启动下行混合式自动重传请求往返时间定时器,在所述下行混合式自动重传请求往返时间定时器计时期间允许终端设备不监听物理下行控制信道,所述第一时间点为第一时间段中的任意时间点,所述第一时间段的起始时刻为发送完承载所述HARQ反馈信息的所有符号的时刻T1,所述第一时间段的终止时刻为发送完所述物理上行信道的最后一个符号的时刻T2。这里,该任意一个时间点可以为T1或T2。HARQ-RTT-TimerDL为网络设备基于处理HARQ反馈信息过程所需时间而配置的,HARQ-RTT-TimerDL表示网络设备并不会立即有重传发生,因此在HARQ-RTT-TimerDL计时期间,可以允许终端设备进入非激活态,即允许终端设备可以不监听PDCCH。
一种实现方式中,所述终端设备可以在T2-T1中的任意一个时间点,启动HARQ反馈信息对应HARQ进程的HARQ-RTT-TimerDL。
示例性的,所述终端设备可以在T2-T1中所界定的时间段中发送任意一个符号时启动HARQ-RTT-TimerDL。例如,可以在发送完承载所述HARQ反馈信息的所有符号之后的第一个符号时启动HARQ-RTT-TimerDL,或者,也可以在发送完承载所述HARQ反馈信息的所有符号之后的第二个符号时启动HARQ-RTT-TimerDL,当然,也可以在发送完承载所述HARQ反馈信息的所有符号之后的第五个符号时启动HARQ-RTT-TimerDL等等,本申请实施例在这里不做具体限定。
为了方便描述,下面以在发送完承载所述HARQ反馈信息的所有符号之后的第一个符号时启动HARQ-RTT-TimerDL为例对本申请实施例进行说明。
示例性的,终端设备可以在发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号时,启动所述HARQ-RTT-TimerDL。即所述第一时间点为发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号。
一种示例性说明,若所述HARQ反馈信息承载在一个符号中,则终端设备在发送承载所述HARQ反馈信息的符号后的第一个符号时,启动所述HARQ-RTT-TimerDL。即,所述第一时间点为发送承载所述HARQ反馈信息的符号后的第一个符号。
另一种示例性说明,若所述HARQ反馈信息承载在多个符号中,则终端设备在发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号时,启动所述HARQ-RTT-TimerDL。即,所述第一时间点为发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号。
为了更好地理解本申请实施例,下面以网络设备将HARQ-RTT-TimerDL的长度配置为处理HARQ反馈信息所需的时间为例,结合具体应用场景,对下行传输过程进行具体详细描述。
场景一:终端设备在PUCCH上向网络设备发送相应HARQ进程的HARQ反馈信息。
终端设备与网络设备之间的下行传输过程参见步骤S501至S507。
S501,终端设备在满足一定条件时启动DRX-onDurationTimer,并在DRX-onDurationTimer计时期间,监听PDCCH。
S502,终端设备在检测到指示下行数据新传的PDCCH时启动DRX-InactivityTimer。
S503,终端设备解码PDCCH中的DCI,并基于DCI接收PDSCH。
S504,终端设备在PUCCH中携带HARQ反馈信息发送给网络设备。其中,HARQ反馈信息可以包括PDSCH中一个或多个TB的译码结果。
S505,终端设备在发送完承载HARQ反馈信息的最后一个符号之后的第一个符号启动本次HARQ进程的HARQ-RTT-TimerDL。网络设备在接收到承载HARQ反馈信息的最后一个符号后开始处理HARQ反馈信息。
如果承载HARQ反馈信息的符号只有一个,则在发送完承载HARQ反馈信息的这个符号之后的第一个符号启动对应HARQ进程的HARQ-RTT-TimerDL。
如果承载HARQ反馈信息的符号有多个,则在发送完最后一个承载HARQ反馈信息的符号之后的第一个符号启动对应HARQ进程的HARQ-RTT-TimerDL。
S506,当HARQ-RTT-TimerDL超时,若PDSCH中存在译码失败的数据块,则终端设备启动DRX-RetransmissionTimerDL,并执行步骤S507。其中,数据块可以为TB,也可以 为CB,也可以为CBG。
若PDSCH全部译码成功,终端设备不启动DRX-RetransmissionTimerDL。
由于HARQ-RTT-TimerDL的长度等于网络设备基于处理HARQ反馈信息过程所需要的时间,因此网络设备处理完HARQ反馈信息后,终端设备侧的HARQ-RTT-TimerDL基本上计时结束了,也就是终端设备进入激活态,从而网络设备在处理完HARQ反馈信息后可以发送重传DCI。参阅图5所示。
S507,在DRX-RetransmissionTimerDL计时期间,终端设备处于激活态并开始盲检PDCCH。若在DRX-RetransmissionTimerDL计时期间终端设备检测到重传DCI,则关闭DRX-RetransmissionTimerDL,并基于重传DCI接收PDSCH。
在解码PDSCH之后,可以继续执行S504至S507。
场景二:终端设备在PUSCH上向网络设备发送相应HARQ进程的HARQ反馈信息。终端设备在PUSCH上发送相应HARQ进程的HARQ反馈信息的场景可以包括单时隙PUCCH和单时隙PUSCH发生时隙重叠,以及单时隙PUCCH和多时隙PUSCH发生时隙重叠。其中,当单时隙PUCCH和多时隙PUSCH发生时隙重叠时,终端设备在PUSCH与PUCCH发生重叠的时隙上的PUSCH资源上发送HARQ反馈信息。
终端设备在PUSCH上向网络设备发送相应HARQ进程的HARQ反馈信息时下行传输过程,与终端设备在PUCCH上向网络设备发送相应HARQ进程的HARQ反馈信息时下行传输过程类似,具体过程可以参见步骤S501至S507,这里不再重复赘述。
其中,若PUSCH上承载HARQ反馈信息的符号有一个或者多个,则终端设备在发送最后一个承载HARQ反馈信息的符号之后的第一个符号时启动对应HARQ进程的HARQ-RTT-TimerDL。由于HARQ-RTT-TimerDL的长度等于网络设备基于处理HARQ反馈信息过程所需要的时间,因此网络设备处理完HARQ反馈信息后,终端设备侧的HARQ-RTT-TimerDL基本上计时结束了,也就是终端设备进入激活态,从而网络设备在处理完HARQ反馈信息后可以发送重传DCI。如图6所示。
在PUSCH上发送HARQ反馈信息时,可以在解调参考信号(demodulation reference signal,DMRS)所在符号之后的符号承载HARQ反馈信息。若PUSCH上存在附加的DMRS,则附加DMRS所在符号之后的符号也可能承载HARQ反馈信息,因此终端设备可以在发送完附加DMRS后面的HARQ反馈信息所在符号的下一个符号时启动对应HARQ进程的HARQ-RTT-TimerDL。如图7所示。
若在PUSCH上存在跳频(frequency hopping),而在每一次跳频上DMRS所在符号之后的符号都可能承载HARQ反馈信息,因此终端设备可以在最后一次跳频中发送位于承载HARQ反馈信息的所有符号后的第一个符号时启动对应HARQ进程的HARQ-RTT-TimerDL。例如,若在PUSCH上存在两次跳频,则终端设备可以在第二次跳频中发送完最后一个承载HARQ反馈信息的符号后的第一个符号时启动对应HARQ进程的HARQ-RTT-TimerDL。如图8所示。
相比于现有技术中网络设备在接收到HARQ反馈信息开始处理HARQ反馈信息,而终端设备在发送携带HARQ反馈信息的PUCCH或者PUSCH的所有符号之后才启动HARQ-RTT-TimerDL定时器,本申请实施例中终端设备可以不必等到PUCCH或者PUSCH的所有符号发送完,而是可以在发送完承载HARQ反馈信息的符号后的第一个符号启动 HARQ-RTT-TimerDL定时器,从而可以降低启动DRX-RetransmissionTimerDL定时器的延迟,进而可以降低终端设备进入激活态的延迟。因此网络设备在处理完HARQ反馈信息后可以减少等待终端设备进入激活态的时间,从而及时调度重传DCI,进而可以降低数据时延。例如,结合图3以及图5,可见,本申请实施例中可以降低大约t1-t3的时延。
其次,本申请实施例中终端设备可在发送完承载HARQ反馈信息的符号之后的第一个符号启动HARQ-RTT-TimerDL定时器,可以使得HARQ-RTT-TimerDL定时器和网络设备处理HARQ反馈信息的时间更好的匹配,从而网络设备可以根据处理完HARQ反馈信息的时间来设置HARQ-RTT-TimerDL定时器的大小,降低***针对HARQ-RTT-TimerDL定时器大小进行配置的复杂度。
基于与方法实施例的同一发明构思,本申请实施例提供一种通信装置,具体用于实现图4至图8所述的实施例描述的方法,该设备可以是通信装置本身,也可以是通信装置中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。该通信装置的结构可以如图9所示,包括发送单元901以及处理单元902。其中,发送单元901,用于向网络设备发送物理上行信道,所述物理上行信道携带混合式自动重传请求HARQ反馈信息。处理单元902,用于在第一时间点启动下行混合式自动重传请求往返时间定时器,在所述下行混合式自动重传请求往返时间定时器计时期间允许终端设备不监听物理下行控制信道,所述第一时间点为第一时间段中的任意时间点,所述第一时间段的起始时刻为发送完承载所述HARQ反馈信息的所有符号的时刻,所述第一时间段的终止时刻为发送完所述物理上行信道的最后一个符号的时刻。
示例性的,所述第一时间点为发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号。
具体地,若所述HARQ反馈信息承载在一个符号中,则所述第一时间点为发送承载所述HARQ反馈信息的符号后的第一个符号;若所述HARQ反馈信息承载在多个符号中,则所述第一时间点为发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号。
示例性的,所述物理上行信道可以为物理上行控制信道,也可以为物理上行共享信道。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
其中,集成的模块既可以采用硬件的形式实现时,通信装置可以如图10所示,处理单元902可以为处理器1002。处理器1002,可以是一个中央处理模块(central processing unit,CPU),或者为数字处理模块等等。发送单元901可以为通信接口1001,通信接口1001可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该通信装置还包括:存储器1003,用于存储处理器1002执行的程序。存储器1003可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器1003是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器1002用于执行存储器1003存储的程序代码,具体用于执行上述处理单元902的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口1001、处理器1002以及存储器1003之间的具体连接介质。本申请实施例在图10中以存储器1003、处理器1002以及通信接口1001之间通过总线1004连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (11)

  1. 一种通信方法,其特征在于,包括:
    向网络设备发送物理上行信道,所述物理上行信道携带混合式自动重传请求HARQ反馈信息;
    在第一时间点启动下行混合式自动重传请求往返时间定时器,在所述下行混合式自动重传请求往返时间定时器计时期间允许终端设备不监听物理下行控制信道,所述第一时间点为第一时间段中的任意时间点,所述第一时间段的起始时刻为发送完承载所述HARQ反馈信息的所有符号的时刻,所述第一时间段的终止时刻为发送完所述物理上行信道的最后一个符号的时刻。
  2. 如权利要求1所述的方法,其特征在于,所述第一时间点为发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号。
  3. 如权利要求1或2所述的方法,其特征在于,若所述HARQ反馈信息承载在一个符号中,则所述第一时间点为发送承载所述HARQ反馈信息的符号后的第一个符号;或者若所述HARQ反馈信息承载在多个符号中,则所述第一时间点为发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述物理上行信道为物理上行控制信道。
  5. 如权利要求1至3任一项所述的方法,其特征在于,所述物理上行信道为物理上行共享信道。
  6. 一种通信装置,其特征在于,包括:
    发送单元,用于向网络设备发送物理上行信道,所述物理上行信道携带混合式自动重传请求HARQ反馈信息;
    处理单元,在第一时间点启动下行混合式自动重传请求往返时间定时器,在所述下行混合式自动重传请求往返时间定时器计时期间允许终端设备不监听物理下行控制信道,所述第一时间点为第一时间段中的任意时间点,所述第一时间段的起始时刻为发送完承载所述HARQ反馈信息的所有符号的时刻,所述第一时间段的终止时刻为发送完所述物理上行信道的最后一个符号的时刻。
  7. 如权利要求6所述的装置,其特征在于,所述第一时间点为发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号。
  8. 如权利要求6或7所述的装置,其特征在于,若所述HARQ反馈信息承载在一个符号中,则所述第一时间点为发送承载所述HARQ反馈信息的符号后的第一个符号;或者若所述HARQ反馈信息承载在多个符号中,则所述第一时间点为发送最后一个承载所述HARQ反馈信息的符号之后的第一个符号。
  9. 如权利要求6至7任一项所述的装置,其特征在于,所述物理上行信道为物理上行控制信道。
  10. 如权利要求6至9任一项所述的装置,其特征在于,所述物理上行信道为物理上行共享信道。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储程序, 所述程序在被一个或多个处理器读取并执行时可实现权利要求1至5任一项所述的方法。
PCT/CN2019/108277 2018-09-27 2019-09-26 一种通信方法及装置 WO2020063782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811133384.9A CN110958088B (zh) 2018-09-27 2018-09-27 一种通信方法及装置
CN201811133384.9 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020063782A1 true WO2020063782A1 (zh) 2020-04-02

Family

ID=69953397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108277 WO2020063782A1 (zh) 2018-09-27 2019-09-26 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN110958088B (zh)
WO (1) WO2020063782A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322341A1 (en) * 2021-04-05 2022-10-06 Nokia Technologies Oy Tdra enhancements for 60 ghz scenario

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746604A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 侧行链路的通信方法和通信装置
CN114205920B (zh) * 2020-09-17 2023-12-08 华硕电脑股份有限公司 无线通信***中用于小数据传送程序的方法和设备
WO2022077174A1 (zh) * 2020-10-12 2022-04-21 Oppo广东移动通信有限公司 无线通信方法和设备
CN115398834A (zh) * 2021-03-12 2022-11-25 北京小米移动软件有限公司 非连续接收处理方法、装置、终端设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078299A1 (en) * 2015-11-06 2017-05-11 Lg Electronics Inc. Method for handling of drx timers for multiple repetition transmission in wireless communication system and a device therefor
CN108024320A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 传输信息的方法、网络设备和终端设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533633B (zh) * 2015-09-10 2020-08-04 ***通信集团公司 信息处理方法、用户设备及基站

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078299A1 (en) * 2015-11-06 2017-05-11 Lg Electronics Inc. Method for handling of drx timers for multiple repetition transmission in wireless communication system and a device therefor
CN108024320A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 传输信息的方法、网络设备和终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on the DRX Timers", 3GPP TSG-RAN WG2 #99BIS R2-1710303, 13 October 2017 (2017-10-13), XP051342351 *
INTEL CORPORATION: "Clarification on the start condition of the DL HARQ RTT timer", 3GPP TSG-WG2 MEETING #103 R2-1812246, 24 August 2018 (2018-08-24), XP051521853 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322341A1 (en) * 2021-04-05 2022-10-06 Nokia Technologies Oy Tdra enhancements for 60 ghz scenario
US11576174B2 (en) * 2021-04-05 2023-02-07 Nokia Technologies Oy TDRA enhancements for 60 GHz scenario

Also Published As

Publication number Publication date
CN110958088B (zh) 2021-07-09
CN110958088A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
JP6471919B2 (ja) ユーザ機器(ue)、プログラム、コンピュータ可読記録媒体、方法および装置
WO2020063782A1 (zh) 一种通信方法及装置
WO2021031934A1 (zh) 边链路非连续发送、接收方法与装置及终端设备
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信***
US9363847B2 (en) Method and apparatus for providing for discontinuous reception via cells having different time division duplex subframe configurations
CA3014152C (en) Apparatus and method for drx mechanisms for single harq process operation in nb-iot
BR112018014084A2 (pt) método para controlar operações de drx de modo conectado
US11206709B2 (en) Method for intercepting PDCCH and terminal device
WO2020063896A1 (zh) 信号处理的方法和装置
WO2021004111A1 (zh) 进入睡眠的方法及装置、存储介质、用户设备
WO2020215332A1 (zh) 非连续接收的方法和设备
WO2022083496A1 (zh) 指示信息生效方法及装置、终端及可读存储介质
WO2020143727A1 (zh) 一种通信方法及装置
US20240007229A1 (en) Sidelink communication method and apparatus
WO2020143806A1 (zh) 一种通信方法及装置
CN110769381B (zh) 一种drx实现和配置方法及装置
JP2022549921A (ja) 信号監視方法および装置
US20230074206A1 (en) Communication method, apparatus, and system
WO2022063232A1 (zh) 确定终端行为的方法、指示终端行为的方法及装置
WO2020143751A1 (zh) 通信方法和通信装置
CN114501483A (zh) 信息处理方法、装置及终端
WO2022199369A1 (zh) 一种直通链路激活状态的处理方法及终端
WO2016152804A1 (ja) 無線通信システム、無線通信ネットワーク、無線端末及び無線通信方法
WO2024017094A1 (zh) 非连续接收的管理方法、通信***及装置
WO2024093792A1 (zh) 定时器运行方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864111

Country of ref document: EP

Kind code of ref document: A1