WO2020063557A1 - 一种低能耗无水co2相变吸收剂及再生方法和应用 - Google Patents

一种低能耗无水co2相变吸收剂及再生方法和应用 Download PDF

Info

Publication number
WO2020063557A1
WO2020063557A1 PCT/CN2019/107412 CN2019107412W WO2020063557A1 WO 2020063557 A1 WO2020063557 A1 WO 2020063557A1 CN 2019107412 W CN2019107412 W CN 2019107412W WO 2020063557 A1 WO2020063557 A1 WO 2020063557A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
absorption
absorbent
regeneration
anhydrous
Prior art date
Application number
PCT/CN2019/107412
Other languages
English (en)
French (fr)
Inventor
张青松
李晓朋
李云飞
张娟
蔡依蓉
李安安
金学东
刘鹏飞
陈莉
Original Assignee
天津工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津工业大学 filed Critical 天津工业大学
Priority to US16/959,436 priority Critical patent/US20200368675A1/en
Publication of WO2020063557A1 publication Critical patent/WO2020063557A1/zh
Priority to US17/875,418 priority patent/US20220379258A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/2041Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20421Primary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/40Absorbents explicitly excluding the presence of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/018Natural gas engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/541Absorption of impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to the technical field of carbon dioxide capture, separation, and recovery, and in particular, to a low-energy-consumption anhydrous CO 2 phase change absorbent, a regeneration method, and an application thereof.
  • CO 2 -removing amines commonly used for research include monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and other organic amines.
  • MEA monoethanolamine
  • DEA diethanolamine
  • TEA triethanolamine
  • the conventional amine aqueous solution for CO 2 capture has various disadvantages, such as equipment corrosion, solvent loss, and a large amount of heat for solvent regeneration, and it takes a long time to reach equilibrium.
  • Research and development of new absorbent with fast absorption rate, high absorption capacity and low regeneration energy consumption is the key to perfecting the CO 2 separation and recovery process.
  • Hasib-ur-Rahman et al. [CO 2 Capture in Alkanolamine-RTIL Blends via Carbamate Crystallization: Route to Efficient Regeneration [J] .Environ.Sci.Technol, 2012,46,11443-11450.] This is achieved by replacing the aqueous phase with a more stable and almost non-volatile imidazolium-based room temperature ionic liquid (RTIL); when CO 2 is bubbled through the mixture diethanolamine / DEA-RTIL, 2-amino-2-methyl-1, respectively -In the case of propanol / AMP-RTIL, a carbamate crystal salt product is formed and migrates out of the liquid as a supernatant solid. This can greatly reduce the energy consumption of CO 2 regeneration, and the decomposition temperature of DEA-carbamate ( ⁇ 55 ° C) is lower than that of AMP-carbamate ( ⁇ 75 ° C).
  • RTIL room temperature ionic liquid
  • the CO 2 absorption of the MAPA / DMF solvent (14.8 mg / g solvent) increased by 22%.
  • the time was reduced by 22% to reach CO 2 absorption equilibrium.
  • the maximum CO 2 absorption rate of the MAPA / DMF solvent is 30% higher than that of the MAPA / water solvent, because DMF shows higher CO 2 solubility and lower MAPA-carbamate solubility than water. DMF has certain toxicity characteristics. Not a friendly solvent.
  • Nanhua Group Research Institute CN1354036A discloses a composite amine solvent for recovering low partial pressure CO 2 , which is characterized in that the solvent is a composite aqueous solution of monoethanolamine (MEA) and active amine, and the amine concentration is 1.5-7.5mol / l, preferably 2.5-6mol / l; active amine is a non-linear carbon chain alcohol amine compound with one or more steric hindrance effect on the nitrogen atom, characterized by an amine concentration of 2.5-6mol / l; monoethanolamine and active amine The molar ratio is 1.95-4.65: 1. Compared with traditional MEA solvents, the absorption capacity is increased by 40%, and the energy consumption is reduced by 30%.
  • MEA monoethanolamine
  • the reaction mechanism of active amines and CO 2 is different from that of MEA, the solution absorption capacity is increased, and the energy consumption for regeneration is reduced.
  • the active amines inhibit the amino formaldehyde and amino groups generated by the degradation of MEA and O 2 , CO 2 , and sulfides.
  • Impurities such as acetic acid, glyoxylic acid, oxalic acid, oxazolidinone, 1- (2-hydroxyethyl) -imidazolinone, and N- (2-hydroxyethyl) -ethylenediamine solve the problems caused by degradation products. Amine loss and equipment corrosion issues.
  • a CO 2 absorbent for post-combustion capture which is characterized in that it includes polyethyleneimine (PEI) as the main absorbent, tetraethylenepentamine (TEPA) as the auxiliary absorbent, One or more of ethanolamine (MEA), N-methyldiethanolamine (MDEA), diethanolamine (DEA), and piperazine (PZ); antioxidants, corrosion inhibitors, and water; primary absorbers, absorption aids Both components are organic amine compounds.
  • the mass fraction of each component of the absorbent is: 5-45% of the main absorbent; 5-30% of the auxiliary absorbent; 0.02-0.1% of the antioxidant; 0.02-0.1% of the corrosion inhibitor; the rest is water.
  • the total mass fraction of organic amine is 35-50%.
  • the main feature of the invention is that the primary absorbent molecule has three amine groups: primary amine, secondary amine, and tertiary amine at the same time, and has a higher amine density than other types of organic amines. Therefore, the composite absorption solution has a higher CO 2 absorption, while ensuring a faster absorption rate; the presence of a large number of tertiary amines results in low reaction heat, reducing the energy consumption of regeneration; the composite solution has high stability, combined with antioxidants and corrosion inhibitors, reducing the cycle process Loss of solution.
  • Dalian University of Technology CN101091864A discloses a new type compound decarburization solution, which is composed of a main absorption component, an absorption absorption component, an activation component, a corrosion inhibitor, an antioxidant and water.
  • the main absorption component is hydroxyethyl ethylenediamine (AEE), and the absorption absorption component includes 2-amino-2-methyl-1-propanol (AMP), N-methyldiethanolamine (MDEA) and Ethanolamine (TEA). These three substances can be used alone or in combination, but the total content of the absorption aid component is 5-30% (mass fraction).
  • the addition of the absorption-assisting component mainly reduces the desorption temperature and makes up for the deficiency of the main absorption component.
  • the active components include monoethanolamine (MEA), diethanolamine (DEA), and piperazine (PZ). These three materials can be used alone or in combination, but the total content of the active components is 1-10% (mass fraction) .
  • the activating component mainly functions to activate the absorption-assisting component, so that the absorption-assisting component quickly reaches absorption saturation.
  • the total amount of amines in the decarburization solution according to the invention is 35-55% (mass fraction).
  • the corrosion inhibitor is sodium alumina, and the antioxidants are sodium sulfite and copper acetate.
  • the decarburization solution of the invention has the advantages of large absorption, 60-80Nm 3 / m 3 , high desorption, 45-55Nm 3 / m 3 , and low desorption temperature.
  • the technical problem to be solved by the present invention is to provide a low-energy-consumption anhydrous CO 2 phase change absorbent and a regeneration method and application thereof, which do not contain any auxiliary agents such as water, have fast absorption rate, large absorption capacity, and absorb CO 2 . From liquid to solid, and the temperature required for regeneration is low. Compared with other phase change absorbents, the process of separating CO 2 rich and lean phases is reduced, and the latent heat of the solvent is reduced, thereby effectively reducing energy consumption and CO 2 absorption and separation in industry The field has broad application prospects.
  • the absorbent of the present invention adopts a monovalent diamine compound having both primary amine (NH 2- ) and tertiary amine (-N-).
  • concentration is 100%, and it does not contain any other organic solvents, water and ionic liquids.
  • the amine nitrogen atom is linked with two alkyl branches to form a certain degree of hydrophobicity, and its molecular structure is shown in Formula I:
  • R 1 , R 2 , and R 3 are alkyl chains, and their typical representatives are:
  • N, N'-Dimethylaminoethylamine DMEDA
  • R 1 and R 2 are CH 3-
  • R 3 is -CH 2 -CH 2- . Any one of the preparations;
  • R 1 and R 2 are CH 3 -CH 2- , and R 3 is -CH 2 -CH 2- . preparation;
  • N, N'-Diisopropylethylenediamine DIPEDA
  • R 1 and R 2 are CH 3 -CH (CH 3 )-, and R 3 is -CH 2 -CH 2- , using Any one of the preparations;
  • R 1 and R 2 are CH 3 -CH 2 -CH 2 -CH 2- , and R 3 is -CH 2 -CH 2 -,use Any one of them.
  • the absorbent of the present invention absorbs CO 2
  • the flow rate of CO 2 is 20-40 ml / min
  • the absorption saturation is reached in 8-15 min
  • the CO 2 load of the absorbent is 0.400-0.499 mol CO 2 / mol amine.
  • the absorbent of the present invention undergoes a liquid-solid phase change after absorbing CO 2 and forms a solid white carbamate crystal directly from the liquid phase.
  • the decomposition temperature is 45-60 ° C., which is beneficial to the regeneration of CO 2 .
  • the mechanism of the phase change reaction of the absorbent of the present invention is:
  • the absorbent of the present invention is an anhydrous single absorbent. There is no excess liquid after adsorbing CO 2 , which reduces the CO 2 enrichment phase separation process and reduces energy consumption.
  • the absorption load of the absorbent of the present invention at 50 ° C. is higher than the absorption load of 30 ° C. of 0.01-0.02 mol CO 2 / mol amine.
  • the regeneration method is to generate a chemically reversible reaction through heating.
  • the carbamate solid is decomposed to release CO 2 , and NH 2 -is regenerated.
  • the regenerated and separated high-purity CO 2 can be used subsequently.
  • Low loss of phase change absorbent is to generate a chemically reversible reaction through heating.
  • a method for regenerating a low-energy-consumption anhydrous CO 2 phase change absorbent according to the present invention includes the following steps:
  • Phase change regeneration Place the glass reactor in an oil bath, control the temperature of the oil bath to 90-120 ° C, and pass in N 2 at a rate of 25-45 ml / min;
  • Phase change absorption Place the glass reactor containing the diamine solution after regeneration in a water bath at 20-50 ° C, and pass in CO 2 at a rate of 20-40ml / min;
  • Cyclic implementation Repeat the above regeneration and absorption steps 4 times, and calculate the regeneration efficiency of the diamine and the absorption capacity of CO 2 .
  • the absorption efficiency of the absorbent is 70-85%.
  • Absorbents of the present invention is applied to recovering chemical reaction off-gas, combustion flue gas, and natural gas mixture of CO 2, and the removal of city gas, natural gas in CO 2.
  • the present invention adopts a single organic solution of a diamine compound having both primary amine (NH 2- ) and tertiary amine (-N-). It is a transparent and clear solution before absorbing CO 2 , and a liquid-solid phase change occurs after absorption to form a solid.
  • the crystalline salt product has an absorption capacity of 0.400-0.499mol CO 2 / mol amine, and the absorption reaches saturation quickly in 8-15min. It does not contain liquid solvents, reduces the phase separation process, and can effectively reduce the regeneration process.
  • the latent heat of the solvent reduces energy consumption, thereby effectively overcoming the shortcomings of the traditional organic amine absorption method. It is a new type of economical and efficient CO 2 absorbent with practical application prospects, which is conducive to industrialization.
  • FIG. 1 is a real-time appearance diagram of the present invention for absorbing CO 2 with N, N′-dimethylethylenediamine as an absorbent.
  • FIG. 2 is a dynamic absorption process diagram of the CO 2 absorption capacity and absorption rate of the present invention using N, N′-diethylethylenediamine as an absorbent at 30-50 ° C.
  • the absorbent of the present invention uses a monovalent diamine compound N, N'-dimethylethylenediamine having both primary amine (NH 2- ) and tertiary amine (-N-), with a concentration of 100%, excluding other Any organic solvent, water, and ionic liquids, in which the tertiary amine nitrogen atom is linked to two alkyl branches, forming a certain degree of hydrophobicity, and its molecular structure formula
  • the absorbent N, N'-dimethylethylenediamine of the present invention absorbs CO 2
  • the flow rate of CO 2 is 25 ml / min
  • the absorption saturation is reached in 10 minutes
  • the CO 2 load of the absorbent is 0.465 mol CO 2 /
  • the mechanism of phase change reaction of mol amine is:
  • a method for regenerating a low-energy-consumption anhydrous CO 2 phase change absorbent according to the present invention includes the following steps:
  • Phase change regeneration Place the glass reactor in an oil bath, control the temperature of the oil bath to 100 ° C, and pass in N 2 at a rate of 30 ml / min;
  • Phase change absorption Place the glass reactor containing the diamine solution after regeneration in a 25 ° C water bath, and pass in CO 2 at a rate of 25 ml / min;
  • Cyclic implementation the above steps of regeneration and absorption are repeated 4 times, the regeneration efficiency of the diamine is 77.20%, and the CO 2 absorption is 0.359 mol CO 2 / mol.
  • the absorbent of the present invention is used for recovering CO 2 in various chemical reaction tail gas.
  • the absorbent of the present invention uses a monovalent diamine compound N, N'-diethylethylenediamine having both primary amine (NH 2- ) and tertiary amine (-N-), with a concentration of 100%, excluding other Any organic solvent, water, and ionic liquids, in which the tertiary amine nitrogen atom is linked to two alkyl branches, forming a certain degree of hydrophobicity, and its molecular structure formula
  • the absorbent N, N'-diethylethylenediamine of the present invention absorbs CO 2
  • the flow rate of CO 2 is 30 ml / min
  • the absorption saturation is reached at 12 minutes
  • the CO 2 load of the absorbent is 0.464 mol CO 2 / mol amine
  • the phase change reaction mechanism of this adsorbent is:
  • a method for regenerating a low-energy-consumption anhydrous CO 2 phase change absorbent according to the present invention includes the following steps:
  • Phase change regeneration put the glass reactor in an oil bath, control the temperature of the oil bath to 105 ° C, and pass in N 2 at a rate of 35 ml / min;
  • Phase change absorption put the glass reactor containing the diamine solution after regeneration into a 30 ° C water bath, and pass in CO 2 at a rate of 30 ml / min;
  • the absorbent of the present invention is used to recover CO 2 in the combustion flue gas.
  • the absorbent of the present invention uses a monovalent diamine compound N, N'-diisopropylethylenediamine having both primary amine (NH 2- ) and tertiary amine (-N-).
  • the concentration is 100% and does not contain Any other organic solvents, water and ionic liquids, in which the tertiary amine nitrogen atom is linked to two alkyl branches, forming a certain degree of hydrophobicity, and its molecular structure formula
  • the absorbent N, N'-diisopropylethylenediamine of the present invention absorbs CO 2 , the flow rate of CO 2 is 35 ml / min, the absorption saturation is reached at 9 minutes, and the CO 2 load of the absorbent is 0.413 mol CO 2 / mol amine, the phase change reaction mechanism of this adsorbent is:
  • a method for regenerating a low-energy-consumption anhydrous CO 2 phase change absorbent according to the present invention includes the following steps:
  • Phase change regeneration Place the glass reactor in an oil bath, control the temperature of the oil bath to 110 ° C, and pass in N 2 at a rate of 33 ml / min;
  • Phase-change absorption Place the glass reactor containing the diamine solution after regeneration in a 35 ° C water bath, and pass in CO 2 at a rate of 35 ml / min;
  • the absorbent of the present invention is used for recovering CO 2 in a natural mixed gas.
  • the absorbent of the present invention uses a monovalent diamine compound N, N'-di-n-butylethylenediamine having both primary amine (NH 2- ) and tertiary amine (-N-).
  • the concentration is 100% and does not contain Any other organic solvents, water and ionic liquids, in which the tertiary amine nitrogen atom is linked to two alkyl branches, forming a certain degree of hydrophobicity, and its molecular structure formula
  • the absorbent N, N'-di-n-butylethylenediamine of the present invention absorbs CO 2 , the flow rate of CO 2 is 32 ml / min, the absorption saturation is reached at 13 minutes, and the CO 2 load of the absorbent is 0.493 mol CO 2 / mol amine, the phase change reaction mechanism of this adsorbent is:
  • a method for regenerating a low-energy-consumption anhydrous CO 2 phase change absorbent according to the present invention includes the following steps:
  • Phase change regeneration Place the glass reactor in an oil bath, control the temperature of the oil bath to 115 ° C, and pass in N 2 at a rate of 40 ml / min;
  • Phase-change absorption Place the glass reactor containing the diamine solution after regeneration in a 40 ° C water bath, and pass in CO 2 at a rate of 32 ml / min;
  • the absorbent of the present invention is used to remove CO 2 from city gas, natural gas, and the like.
  • the novel CO 2 phase change absorbent of the present invention has a fast absorption rate, a large absorption load, reduced phase separation process, high short-term regeneration efficiency, an anhydrous solvent, reduced latent heat of solvent, and energy consumption. reduction, can be widely used in a variety of chemical reaction off-gas recovered, and the combustion flue gas of the natural gas mixture CO 2, can also be used for removal of city gas, natural gas in CO 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明公开了一种低能耗无水CO 2相变吸收剂及再生方法和应用,该吸收剂采用具有伯胺(NH 2-)和叔胺(-N-)的单一性二元胺,不含其它任何有机溶剂、水和离子液体,叔胺氮原子上链接有两个烷基支链,构成一定的疏水性,该二元胺吸收CO 2后由液相转变为固相,发生液固相变,形成白色氨基甲酸盐结晶。由于为无水单一吸收剂,有效降低再生过程中溶剂的潜热,减少CO 2富集相分离过程,能耗下降。该吸收剂热分解温度低,通过加热可再生,具体步骤为:1)密封取样、2)相变再生、3)再生计算、4)相变吸收、5)吸收计算、6)循环实施,应用于回收化工反应尾气和燃烧烟道气的CO 2,以及脱除城市煤气、天然气中的CO 2。

Description

一种低能耗无水CO2相变吸收剂及再生方法和应用 技术领域
本发明涉及一种二氧化碳捕集、分离、回收技术领域,具体涉及一种低能耗无水CO 2相变吸收剂及再生方法和应用。
背景技术
由于对气候变化的潜在影响,燃煤电厂和其他工业过程产生的二氧化碳(CO 2)排放作为最重要的人为温室气体(Greenhouse Gas,GHG)引起了全世界的关注。大气CO 2积累对环境的影响之一是全球变暖,导致气候问题,如极地地区融化,海平面上升和更严重的天气模式。人们普遍认为,在更有效的技术或其他可再生能源替代化石燃料之前,需要立即减少燃煤产生的CO 2排放。在2009年的哥本哈根世界气候大会上,我国政府承诺,到2020年单位国内生产总值(GDP)排放的CO 2较2005年下降40-45%,由此对我国相关产业CO 2减排与控制提出了巨大的挑战。在温室气体改良计划中,碳捕集与封存(CCS)已被公认为减少GHG排放的关键技术,研究发现CCS是减少气候变化的成本最低的技术。为此,工业中广泛接受和成熟的CO 2捕获方法是使用胺水溶液的化学吸收。通常用于研究的除去CO 2的胺包括单乙醇胺(MEA),二乙醇胺(DEA),三乙醇胺(TEA)和其它有机胺。然而,用于CO 2捕获的传统胺水溶液具有各种缺点,例如设备腐蚀,溶剂损失和用于溶剂再生的大量热量等,并且需要很长时间才能达到平衡。研发吸收速率快、吸收容量高及再生能耗低的新型吸收剂,是完善CO 2分离与回收工艺的关键。
Hasib-ur-Rahman等[CO 2 Capture in Alkanolamine-RTIL Blends via Carbamate Crystallization:Route to Efficient Regeneration[J].Environ.Sci.Technol,2012,46,11443-11450.]发现氨基甲酸酯的结晶可以通过用更稳定和几乎不挥发的基于咪唑鎓的室温离子液体(RTIL)代替水相来实现;当CO 2分别鼓泡通过混合物二乙醇胺/DEA-RTIL,2-氨基-2-甲基-1-丙醇/AMP-RTIL时,氨基甲酸结晶盐产物形成并作为上清液固体从液体中迁移出来。这可以大大降低CO 2再生的能耗,DEA-氨基甲酸盐(~55℃)的分解温度低于AMP-氨基甲酸盐(~75℃)。
Cheng等[Characterization of CO 2 Absorption and Carbamate Precipitate in Phase-Change N-Methyl-1,3-diaminopropane/N,N-Dimethylformamide Solvent[J].Energy Fuels 2017,31,13972-13978.]制备了N-甲基-1,3-二氨基丙烷(MAPA)和 N,N-二甲基甲酰胺(DMF)的混合溶剂,在该MAPA/DMF溶剂中,在CO 2吸收后形成MAPA-氨基甲酸盐沉淀物,以减少胺再生的能量消耗。与MAPA/水溶剂(12.1mg/g溶剂)相比,MAPA/DMF溶剂(14.8mg/g溶剂)的CO 2吸收增加了22%。对于MAPA/DMF溶剂,时间减少22%以达到CO 2吸收平衡。MAPA/DMF溶剂的最大CO 2吸收速率比MAPA/水溶剂高30%,因为DMF显示出比水更高的CO 2溶解度和更低的MAPA-氨基甲酸盐溶解度,DMF具有一定的毒性特性,并不是一种友好溶剂。
南化集团研究院CN1354036A公开了一种回收低分压CO 2的复合胺溶剂,其特征在于溶剂采用一乙醇胺(MEA)与活性胺的复合水溶液,胺浓度1.5-7.5mol/l,最好为2.5-6mol/l;活性胺是氮原子上带有一个或多个具有空间位阻效应的非线形碳链醇胺化合物,其特征在于胺浓度为2.5-6mol/l;一乙醇胺与活性胺的摩尔比为1.95-4.65:1。与传统MEA溶剂相比,吸收能力提高40%,能耗降低30%。由于活性胺与CO 2的反应机理与MEA不同,因此增大了溶液吸收能力,降低了再生能耗,同时活性胺抑制了MEA与O 2、CO 2、硫化物等降解生成的氨基甲醛、氨基乙酸、乙醛酸、草酸、恶唑烷酮、1-(2-羟乙基)-咪唑啉酮、N-(2-羟乙基)-乙二胺等杂质,解决了由于降解产物导致的胺损耗及设备腐蚀问题。
上海锅炉厂有限公司CN104645782B公开了一种用于燃烧后捕集的CO 2吸收剂,其特征在于,包括主吸收剂聚乙烯亚胺(PEI)、助吸收剂为四乙烯五胺(TEPA)、乙醇胺(MEA)、N-甲基二乙醇胺(MDEA)、二乙醇胺(DEA)以及哌嗪(PZ)中的一种或几种,抗氧化剂、缓蚀剂和水;主吸收剂、助吸收剂两种成分都是有机胺化合物。所述吸收剂的各组分质量分数为:主吸收剂5-45%;助吸收剂5-30%;抗氧化剂0.02-0.1%;缓蚀剂0.02-0.1%;其余为水。其中有机胺的总质量分数为35-50%。其发明主要特点为:主吸收剂分子中同时有伯胺、仲胺和叔胺三种胺基,相比于其它类型的有机胺又具有较高的胺密度,因此,复合吸收溶液具有较高的CO 2吸收量,同时又保证了较快的吸收速率;大量叔胺存在导致低反应热,降低再生能耗;复合溶液具有较高的稳定性,配合抗氧化剂和缓蚀剂,降低循环过程中的溶液损耗。
大连理工大学CN101091864A公开了一种新型的复合脱碳溶液,其由主吸收组分、助吸收组分、活化组分、缓蚀剂、抗氧化剂和水组成。其中主吸收组分 为羟乙基乙二胺(AEE),其中助吸收组分包括2-氨基-2-甲基-1-丙醇(AMP)、N-甲基二乙醇胺(MDEA)和三乙醇胺(TEA),这三种物质可单独或混合使用,但助吸收组分的总含量在5-30%(质量分数)。添加助吸收组分,主要起降低解吸温度的作用,弥补主吸收组分的不足。其中活化组分包括一乙醇胺(MEA)、二乙醇胺(DEA)和哌嗪(PZ),其中这三种物质可单独或混合使用,但活化组分的总含量在1-10%(质量分数)。活化组分主要起活化助吸收组分作用,使助吸收组分快速达到吸收饱和。发明所述的脱碳溶液中胺的总量为35-55%(质量分数)。缓蚀剂为矾酸钠,抗氧化剂为亚硫酸钠和醋酸铜。发明所述的脱碳溶液,具有大吸收量,在60-80Nm 3/m 3,高的解吸量,在45-55Nm 3/m 3,且解吸温度低的优点。
综上,从文献和专利来看,目前报道的化学吸收剂多是由吸收速率快的伯、仲胺和吸收量大的叔胺,配合多以水、N,N-二甲基甲酰胺(DMF)、乙醇、离子液体等作为辅助剂,抗氧化剂和缓蚀剂等组成。这些吸收剂较之前的单组份吸收剂有了很大的改善,但在吸收量、吸收速率和能耗方面仍存在诸多问题,如:分离过程复杂、离子液体成本高、黏度大、再生过程复杂、能耗高、毒性大难以大量应用于工业过程等。因此,有必要提供一种组分简单且能耗低的CO 2吸收剂,在吸收CO 2后具备相转变能力,由液相转为固相,减少分离过程,兼具吸收速率和吸收能力,以优化工艺满足其在工业上的应用。
发明内容
本发明所要解决的技术问题,在于提供一种低能耗无水CO 2相变吸收剂及再生方法和应用,其不含任何水份等辅助剂、吸收速率快、吸收容量大、吸收CO 2后由液态变为固态,且再生所需温度低,相对于其它相变吸收剂减少了CO 2富相与贫相分离过程,减少溶剂的潜热,从而有效降低能耗,在工业上CO 2吸收分离领域具有广泛的应用前景。
本发明的吸收剂采用同时具有伯胺(NH 2-)和叔胺(-N-)的单一性二元胺化合物,浓度为100%,不含其它任何有机溶剂、水和离子液体,其中叔胺氮原子上链接有两个烷基支链,构成一定的疏水性,其分子结构式如式Ⅰ所示:
Figure PCTCN2019107412-appb-000001
其中R 1,R 2,R 3为烷基链,其典型代表为:
N,N'-二甲基乙二胺(N,N-Dimethylaminoethylamine,DMEDA),R 1、R 2为CH 3-,R 3为-CH 2-CH 2-,采用
Figure PCTCN2019107412-appb-000002
Figure PCTCN2019107412-appb-000003
中的任意一种制备;
N,N'-二乙基乙二胺(N,N-Diethylethylenediamine,DEEDA),R 1、R 2为CH 3-CH 2-,R 3为-CH 2-CH 2-,采用
Figure PCTCN2019107412-appb-000004
制备;
N,N'-二异丙基乙二胺(N,N-Diisopropylethylenediamine,DIPEDA),R 1、R 2为CH 3-CH(CH 3)-,R 3为-CH 2-CH 2-,采用
Figure PCTCN2019107412-appb-000005
Figure PCTCN2019107412-appb-000006
中的任意一种制备;
N,N'-二正丁基乙二胺(N,N-Dibutylethylenediamine,DBEDA),R 1、R 2为CH 3-CH 2-CH 2-CH 2-,R 3为-CH 2-CH 2-,采用
Figure PCTCN2019107412-appb-000007
中的任意一种制备。
本发明的吸收剂在吸收CO 2时,CO 2的流速为20-40ml/min,在8-15min达到吸收饱和,吸收剂的CO 2负载量为0.400-0.499mol CO 2/mol胺。
本发明的吸收剂在吸收CO 2后发生液固相变,由液相直接形成固相白色氨基甲酸盐结晶,分解温度45-60℃,利于CO 2的再生。
本发明的吸收剂发生相变反应的机理为:
Figure PCTCN2019107412-appb-000008
本发明的吸收剂为无水单一吸收剂,吸附CO 2后不存在多余液体,减少CO 2富集相分离过程,降低了能耗。
本发明的吸收剂在50℃的吸收负荷高于30℃的吸收负荷0.01-0.02mol CO 2/mol胺。
本发明的吸收剂吸收CO 2后再生方法为通过加热方式发生化学可逆反应,氨基甲酸盐固体分解释放出CO 2,NH 2-得到再生,再生分离出的高纯度的CO 2可进行后续利用,且相变吸收剂损耗低。
本发明的一种低能耗无水CO 2相变吸收剂的再生方法,包括以下步骤:
1)密封取样:取2-4g吸收剂吸收CO 2后的氨基甲酸盐固体于20ml玻璃反应器中,密封;
2)相变再生:将玻璃反应器置于油浴,控制油浴温度为90-120℃,通入N 2,速率为25-45ml/min;
3)再生计算:将玻璃反应器加热40-80min,取出,密封,称重,计算CO 2释放量及再生效率;
4)相变吸收:将再生后含有二元胺溶液玻璃反应器置于20-50℃水浴,通入CO 2,速率为20-40ml/min;
5)吸收计算:相变反应40-60min后取出玻璃反应器,密封,称重,计算CO 2吸收量;
6)循环实施:重复以上再生、吸收步骤4次,计算二元胺的再生效率和对CO 2的吸收能力。
本发明的吸收剂的吸收、再生4次循环过程后,吸收剂的吸收效率为70-85%。
本发明的吸收剂应用于回收化工反应尾气、燃烧烟道气和天然混合气体中的CO 2,以及脱除城市煤气、天然气中的CO 2
本技术方案与背景技术相比,具有如下优点:
本发明采用单一性的同时具有伯胺(NH 2-)和叔胺(-N-)的二元胺化合物有机溶液,吸收CO 2前为透明澄清溶液,吸收后发生液固相变,形成固体结晶盐产物,与传统有机胺水溶液相比,吸收容量为0.400-0.499mol CO 2/mol胺、吸收在8-15min快速达到饱和,不含液体溶剂,减少了相分离过程,能有效降低再生过程的溶剂的潜热,降低能耗,从而有效克服传统有机胺吸收法的缺陷,是一种新型的经济高效,具有实际应用前景的CO 2吸收剂,有利于工业化推广。
附图说明
图1为本发明以N,N'-二甲基乙二胺为吸收剂吸收CO 2实时外观图。
图2为本发明以N,N'-二乙基乙二胺为吸收剂在30-50℃下CO 2吸收容量和吸收速率动态吸收过程图。
具体实施方式
本发明用以下实例说明,但本发明并不限于下述实施例。在不脱离前后所述宗旨的范围下,变化实施都包含在本发明的技术范围内。
实施例1
本发明的吸收剂采用同时具有伯胺(NH 2-)和叔胺(-N-)的单一性二元胺化合物N,N'-二甲基乙二胺,浓度为100%,不含其它任何有机溶剂、水和离子液体,其中叔胺氮原子上链接有两个烷基支链,构成一定的疏水性,其分子结构式
Figure PCTCN2019107412-appb-000009
本发明的吸收剂N,N'-二甲基乙二胺在吸收CO 2时,CO 2的流速为 25ml/min,在10min达到吸收饱和,吸收剂的CO 2负载量为0.465mol CO 2/mol胺,吸收剂发生相变反应的机理为:
Figure PCTCN2019107412-appb-000010
本发明的一种低能耗无水CO 2相变吸收剂的再生方法,包括以下步骤:
1)密封取样:取2.80g吸收剂吸收CO 2后的氨基甲酸盐固体于20ml玻璃反应器中,密封;
2)相变再生:将玻璃反应器置于油浴,控制油浴温度为100℃,通入N 2,速率为30ml/min;
3)再生计算:将玻璃反应器加热45min,取出,密封,称重,计算,CO 2释放量为0.370mol CO 2/mol胺,再生效率为79.57%;
4)相变吸收:将再生后含有二元胺溶液玻璃反应器置于25℃水浴,通入CO 2,速率为25ml/min;
5)吸收计算:相变反应45min后取出玻璃反应器,密封,称重,计算,CO 2吸收量为0.368mol CO 2/mol胺;
6)循环实施:重复以上再生、吸收步骤4次,二元胺的再生效率为77.20%,CO 2吸收量为0.359mol CO 2/mol。
本发明的吸收剂应用于回收多种化工反应尾气中的CO 2
实施例2
本发明的吸收剂采用同时具有伯胺(NH 2-)和叔胺(-N-)的单一性二元胺化合物N,N'-二乙基乙二胺,浓度为100%,不含其它任何有机溶剂、水和离子液体,其中叔胺氮原子上链接有两个烷基支链,构成一定的疏水性,其分子结构式
Figure PCTCN2019107412-appb-000011
本发明的吸收剂N,N'-二乙基乙二胺在吸收CO 2时,CO 2的流速为30ml/min,在12min达到吸收饱和,吸收剂的CO 2负载量为0.464mol CO 2/mol胺,该吸附剂发生相变反应机理为:
Figure PCTCN2019107412-appb-000012
本发明的一种低能耗无水CO 2相变吸收剂的再生方法,包括以下步骤:
1)密封取样:取3.10g吸收剂吸收CO 2后的氨基甲酸盐固体于20ml玻璃反应器中,密封;
2)相变再生:将玻璃反应器置于油浴,控制油浴温度为105℃,通入N 2,速率为35ml/min;
3)再生计算:将玻璃反应器加热50min,取出,密封,称重,计算,CO 2释放量为0.368mol CO 2/mol胺,再生效率为78.66%;
4)相变吸收:将再生后含有二元胺溶液玻璃反应器置于30℃水浴,通入CO 2,速率为30ml/min;
5)吸收计算:相变反应50min后取出玻璃反应器,密封,称重,计算,CO 2吸收量为0.364mol CO 2/mol胺;
6)循环实施:重复以上再生、吸收步骤4次,二元胺的再生效率为76.72%,CO 2吸收量为0.356mol CO 2/mol。
本发明的吸收剂应用于回收燃烧烟道气中的CO 2
实施例3
本发明的吸收剂采用同时具有伯胺(NH 2-)和叔胺(-N-)的单一性二元胺化合物N,N'-二异丙基乙二胺,浓度为100%,不含其它任何有机溶剂、水和离子液体,其中叔胺氮原子上链接有两个烷基支链,构成一定的疏水性,其分子结构式
Figure PCTCN2019107412-appb-000013
本发明的吸收剂N,N'-二异丙基乙二胺在吸收CO 2时,CO 2的流速为35ml/min,在9min达到吸收饱和,吸收剂的CO 2负载量为0.413mol CO 2/mol胺,该吸附剂发生相变反应机理为:
Figure PCTCN2019107412-appb-000014
本发明的一种低能耗无水CO 2相变吸收剂的再生方法,包括以下步骤:
1)密封取样:取3.30g吸收剂吸收CO 2后的氨基甲酸盐固体于20ml玻璃反应器中,密封;
2)相变再生:将玻璃反应器置于油浴,控制油浴温度为110℃,通入N 2,速率为33ml/min;
3)再生计算:将玻璃反应器加热55min,取出,密封,称重,计算,CO 2 释放量为0.341mol CO 2/mol胺,再生效率为82.57%;
4)相变吸收:将再生后含有二元胺溶液玻璃反应器置于35℃水浴,通入CO 2,速率为35ml/min;
5)吸收计算:相变反应55min后取出玻璃反应器,密封,称重,计算,CO 2吸收量为0.339mol CO 2/mol胺;
6)循环实施:重复以上再生、吸收步骤4次,二元胺的再生效率为80.39%,CO 2吸收量为0.332mol CO 2/mol。
本发明的吸收剂应用于回收天然混合气体中的CO 2
实施例4
本发明的吸收剂采用同时具有伯胺(NH 2-)和叔胺(-N-)的单一性二元胺化合物N,N'-二正丁基乙二胺,浓度为100%,不含其它任何有机溶剂、水和离子液体,其中叔胺氮原子上链接有两个烷基支链,构成一定的疏水性,其分子结构式
Figure PCTCN2019107412-appb-000015
本发明的吸收剂N,N'-二正丁基乙二胺在吸收CO 2时,CO 2的流速为32ml/min,在13min达到吸收饱和,吸收剂的CO 2负载量为0.493mol CO 2/mol胺,该吸附剂发生相变反应机理为:
Figure PCTCN2019107412-appb-000016
本发明的一种低能耗无水CO 2相变吸收剂的再生方法,包括以下步骤:
1)密封取样:取3.50g吸收剂吸收CO 2后的氨基甲酸盐固体于20ml玻璃反应器中,密封;
2)相变再生:将玻璃反应器置于油浴,控制油浴温度为115℃,通入N 2,速率为40ml/min;
3)再生计算:将玻璃反应器加热60min,取出,密封,称重,计算,CO 2释放量为0.409mol CO 2/mol胺,再生效率为82.96%;
4)相变吸收:将再生后含有二元胺溶液玻璃反应器置于40℃水浴,通入CO 2,速率为32ml/min;
5)吸收计算:相变反应52min后取出玻璃反应器,密封,称重,计算,CO 2吸收量为0.390mol CO 2/mol胺;
6)循环实施:重复以上再生、吸收步骤4次,二元胺的再生效率为76.87%,CO 2吸收量为0.379mol CO 2/mol。
本发明的吸收剂应用于脱除城市煤气、天然气等中的CO 2
根据以上实施例,本发明所述的新型CO 2相变吸收剂吸收速率快,吸收负载量大,减少了相分离过程,短时间再生效率高,为无水溶剂,降低了溶剂潜热,能耗降低,可广泛应用回收多种化工反应尾气、燃烧烟道气和天然混合气体中的CO 2,也可用于脱除城市煤气、天然气中的CO 2

Claims (10)

  1. 一种低能耗无水CO 2相变吸收剂,其特征在于,所述吸附剂采用同时具有伯胺(NH 2-)和叔胺(-N-)的单一性二元胺化合物,浓度为100%,不含其它任何有机溶剂、水和离子液体,其中叔胺氮原子上链接有两个烷基支链,构成一定的疏水性,其分子结构式如式Ⅰ所示:
    Figure PCTCN2019107412-appb-100001
    其中R 1,R 2,R 3为烷基链,其典型代表为:
    N,N'-二甲基乙二胺(N,N-Dimethylaminoethylamine,DMEDA),R 1、R 2为CH 3-,R 3为-CH 2-CH 2-;
    N,N'-二乙基乙二胺(N,N-Diethylethylenediamine,DEEDA),R 1、R 2为CH 3-CH 2-,R 3为-CH 2-CH 2-;
    N,N'-二异丙基乙二胺(N,N-Diisopropylethylenediamine,DIPEDA),R 1、R 2为CH 3-CH(CH 3)-,R 3为-CH 2-CH 2-;
    N,N'-二正丁基乙二胺(N,N-Dibutylethylenediamine,DBEDA),R 1、R 2为CH 3-CH 2-CH 2-CH 2-,R 3为-CH 2-CH 2-。
  2. 根据权利要求1所述的CO 2相变吸收剂,其特征在于,发生相变反应的机理为:
    Figure PCTCN2019107412-appb-100002
    Figure PCTCN2019107412-appb-100003
  3. 根据权利要求1所述的CO 2相变吸收剂,其特征在于,所述吸收剂在吸收CO 2时,CO 2的流速为20-40ml/min,在8-15min达到吸收饱和,吸收剂的CO 2负载量为0.400-0.499mol CO 2/mol胺。
  4. 根据权利要求1所述的CO 2相变吸收剂,其特征在于,所述吸收剂在吸收CO 2后发生液固相变,由液相直接形成固相白色氨基甲酸盐结晶,分解温度为45-60℃,利于CO 2的再生。
  5. 根据权利要求1所述的CO 2相变吸收剂,其特征在于,所述吸收剂为无水单一吸收剂,吸附CO 2后不存在多余液体,减少CO 2富集相分离过程,降低了能耗。
  6. 根据权利要求1所述的CO 2相变吸收剂,其特征在于,所述吸收剂在50℃的吸收负荷高于30℃的吸收负荷0.01-0.02mol CO 2/mol胺。
  7. 一种低能耗无水CO 2相变吸收剂的再生方法,包括下列步骤:
    1)密封取样:取2-4g吸收剂吸收CO 2后的氨基甲酸盐固体于20ml玻璃反应器中,密封;
    2)相变再生:将玻璃反应器置于油浴,控制油浴温度为90-120℃,通入N 2,速率为25-45ml/min;
    3)再生计算:将玻璃反应器加热40-80min,取出,密封,称重,计算CO 2释放量及再生效率;
    4)相变吸收:将再生后含有二元胺溶液玻璃反应器置于20-50℃水浴,通入CO 2,速率为20-40ml/min;
    5)吸收计算:相变反应40-60min后取出玻璃反应器,密封,称重,计算CO 2吸收量;
    6)循环实施:重复以上再生、吸收步骤4次,计算二元胺的再生效率和对CO 2的吸收能力。
  8. 根据权利要求7所述的一种低能耗无水CO 2相变吸收剂的再生方法,其特征在于,所述吸收剂吸收CO 2后再生方法为通过加热方式发生化学可逆反应,氨基甲酸盐固体分解释放出CO 2,NH 2-得到再生,再生分离出的高纯度的CO 2可进行后续利用,且相变吸收剂损耗低。
  9. 根据权利要求7所述的一种低能耗无水CO 2相变吸收剂的再生方法,其特征在于,吸收剂的吸收、再生4次循环过程中,吸收时间和再生时间控制为40-80min,吸收剂的吸收效率达到70-85%。
  10. 一种低能耗无水CO 2相变吸收剂的应用,其特征在于,所述吸收剂应用于回收化工反应尾气、燃烧烟道气和天然混合气体中的CO 2,以及脱除城市煤气、天然气中的CO 2
PCT/CN2019/107412 2018-09-25 2019-09-24 一种低能耗无水co2相变吸收剂及再生方法和应用 WO2020063557A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/959,436 US20200368675A1 (en) 2018-09-25 2019-09-24 Low energy consumption anhydrous co2 phase change absorption agent, and regeneration method and application thereof
US17/875,418 US20220379258A1 (en) 2018-09-25 2022-07-28 Low energy consumption anhydrous co2 phase change absorption agent, and regeneration method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811103762.9A CN108854459B (zh) 2018-09-25 2018-09-25 一种低能耗无水co2相变吸收剂及再生方法和应用
CN201811103762.9 2018-09-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/959,436 A-371-Of-International US20200368675A1 (en) 2018-09-25 2019-09-24 Low energy consumption anhydrous co2 phase change absorption agent, and regeneration method and application thereof
US17/875,418 Division US20220379258A1 (en) 2018-09-25 2022-07-28 Low energy consumption anhydrous co2 phase change absorption agent, and regeneration method and application thereof

Publications (1)

Publication Number Publication Date
WO2020063557A1 true WO2020063557A1 (zh) 2020-04-02

Family

ID=64324416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107412 WO2020063557A1 (zh) 2018-09-25 2019-09-24 一种低能耗无水co2相变吸收剂及再生方法和应用

Country Status (3)

Country Link
US (2) US20200368675A1 (zh)
CN (1) CN108854459B (zh)
WO (1) WO2020063557A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926290A (zh) * 2020-06-29 2022-01-14 中石化石油工程技术服务有限公司 Co2的相变吸收体系

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854459B (zh) * 2018-09-25 2022-03-15 天津工业大学 一种低能耗无水co2相变吸收剂及再生方法和应用
AU2019443912A1 (en) * 2019-05-02 2021-05-27 Commonwealth Scientific And Industrial Research Organisation Process for regenerating a liquid absorbent
CN110152452B (zh) * 2019-05-13 2021-10-22 华侨大学 一种三元非水固-液相变吸收体系及其应用
CN112076598A (zh) * 2019-06-14 2020-12-15 台州捷能天然气净化有限公司 一种分解和再生胺和酸性气体反应所形成的胺盐方法
CN110448993A (zh) * 2019-07-03 2019-11-15 浙江大学 一种用于捕集二氧化碳的有机胺类少水吸收剂及应用
CN110743326A (zh) * 2019-10-28 2020-02-04 大连理工大学 一类用于捕集二氧化碳的高效节能的非水吸收剂及应用
CN110777091A (zh) * 2019-10-31 2020-02-11 天津大学 一种开发以碳酸氢根为纽带的高效beccs***的方法
CN113082945A (zh) * 2021-04-02 2021-07-09 北京化工大学 一种用于二氧化碳捕集的离子溶剂相变吸收体系的制备
CN114870570B (zh) * 2022-05-31 2023-10-03 西南化工研究设计院有限公司 一种用于二氧化碳分离的液固分相吸收剂
CN117282256A (zh) * 2022-06-20 2023-12-26 四川大学 一种用于捕集二氧化碳的含水混合胺液-液相变吸收剂
CN117298850A (zh) * 2022-06-20 2023-12-29 四川大学 一种用于捕获二氧化碳的无水液-液相变吸收剂
CN115945033A (zh) * 2023-02-01 2023-04-11 中国科学院过程工程研究所 一种吸收co2的低粘液-固相变功能离子型溶剂
CN116139657A (zh) * 2023-03-01 2023-05-23 昆明理工大学 一种用于捕集二氧化碳的胺类非水吸收剂及其使用方法
CN116808784B (zh) * 2023-08-10 2024-01-19 达高工业技术研究院(广州)有限公司 二氧化碳捕捉剂及其制备方法和二氧化碳的捕捉方法
CN117101347B (zh) * 2023-08-15 2024-03-29 中国矿业大学 一种用于co2捕集的离子液体基相变吸收剂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500691A (zh) * 2006-08-03 2009-08-05 多特蒙德大学 从气体混合物中除去co2的方法
CN102500195A (zh) * 2011-11-07 2012-06-20 清华大学 一种两相二氧化碳捕集装置
CN102974203A (zh) * 2012-12-07 2013-03-20 中国科学院过程工程研究所 一种捕集分离二氧化碳的新型吸收剂
CN105289209A (zh) * 2015-10-19 2016-02-03 昆明理工大学 一种通过相变捕集co2、so2酸性气体的混合有机溶液
US20160220947A1 (en) * 2013-10-15 2016-08-04 Mitsubishi Heavy Industries, Ltd. Composite amine absorbent, and apparatus and method for removing co2 and/or h2s
CN108854459A (zh) * 2018-09-25 2018-11-23 天津工业大学 一种低能耗无水co2相变吸收剂及再生方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105669882B (zh) * 2014-11-18 2018-02-23 北京化工大学 一种氮鎓离子化聚(苯乙烯‑b‑异丁烯‑b‑苯乙烯)三嵌段共聚物及其制备方法
US10589214B2 (en) * 2016-02-02 2020-03-17 University Of Kentucky Research Foundation CO2 mass transfer enhancement of aqueous amine solvents by particle additives
CN106621707A (zh) * 2016-11-30 2017-05-10 昆明理工大学 一种co2吸收液
CN109420412A (zh) * 2017-08-23 2019-03-05 中国石油化工股份有限公司 一种相变有机胺吸收剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500691A (zh) * 2006-08-03 2009-08-05 多特蒙德大学 从气体混合物中除去co2的方法
CN102500195A (zh) * 2011-11-07 2012-06-20 清华大学 一种两相二氧化碳捕集装置
CN102974203A (zh) * 2012-12-07 2013-03-20 中国科学院过程工程研究所 一种捕集分离二氧化碳的新型吸收剂
US20160220947A1 (en) * 2013-10-15 2016-08-04 Mitsubishi Heavy Industries, Ltd. Composite amine absorbent, and apparatus and method for removing co2 and/or h2s
CN105289209A (zh) * 2015-10-19 2016-02-03 昆明理工大学 一种通过相变捕集co2、so2酸性气体的混合有机溶液
CN108854459A (zh) * 2018-09-25 2018-11-23 天津工业大学 一种低能耗无水co2相变吸收剂及再生方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926290A (zh) * 2020-06-29 2022-01-14 中石化石油工程技术服务有限公司 Co2的相变吸收体系
CN113926290B (zh) * 2020-06-29 2023-06-06 中国石油化工集团有限公司 Co2的相变吸收体系

Also Published As

Publication number Publication date
CN108854459B (zh) 2022-03-15
US20200368675A1 (en) 2020-11-26
CN108854459A (zh) 2018-11-23
US20220379258A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2020063557A1 (zh) 一种低能耗无水co2相变吸收剂及再生方法和应用
WO2011121633A1 (ja) 酸性ガス吸収剤、酸性ガス除去装置および酸性ガス除去方法
CN101612509A (zh) 捕集混合气体中二氧化碳的复合脱碳溶液
CN108993125B (zh) 一种脱除空气和烟道气中二氧化碳的低共熔溶剂
CN106039936B (zh) 一种用于捕集二氧化碳的两相胺吸收剂及其应用
CN103394277A (zh) 一种脱除燃煤烟气中二氧化碳的有机胺复合吸收剂
JP6095579B2 (ja) 排ガス中の二酸化炭素を効率的に吸収及び回収する水溶液、及びそれを用いた二酸化炭素の回収方法
CN109701362A (zh) 一种用于二氧化碳捕集的液-固相变吸收剂及其应用
CA2749787A1 (en) Hybrid carbon dioxide separation process and system
CA2616271C (en) Highly efficient absorbents for acidic gas separation
BRPI0613800A2 (pt) método e equipamento para redução de energia em processos de captura de gás ácido
WO2012162944A1 (zh) 捕集混合气体中二氧化碳的复合脱碳溶液
CN106621707A (zh) 一种co2吸收液
US20150071840A1 (en) Carbon capture solvents and methods for using such solvents
CN115253599B (zh) 一种用于碳捕集的弱相互作用的氨基功能化离子液体相变吸收剂
CN113797714A (zh) 一种用于捕集和分离纯化二氧化碳的复合吸收剂
CN102284227A (zh) 一种用复合脱碳溶液捕集混合气体中二氧化碳的方法
CN103170216A (zh) 一种含醇胺型离子液体捕集二氧化碳的复合吸收剂
WO2014040473A1 (zh) 三(2-氨乙基)胺作为二氧化碳吸收剂方面的应用
KR100888321B1 (ko) 산성가스 분리용 혼합 흡수제
JPWO2011036712A1 (ja) 炭酸ガス吸収液
CN111821813B (zh) 一种三元低共熔溶剂及其吸附二氧化硫的方法
KR101524458B1 (ko) 아미노산 및 3급 알카놀아민을 포함하는 이산화탄소 흡수제 및 이를 이용한 이산화탄소 포집방법 및 포집장치
CN104524928A (zh) 一种捕集二氧化碳的吸收剂
CN103157369A (zh) 一种回收混合气体中二氧化碳的吸收剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/08/2021).

122 Ep: pct application non-entry in european phase

Ref document number: 19864359

Country of ref document: EP

Kind code of ref document: A1