WO2020063279A1 - 一种道岔表示装置 - Google Patents

一种道岔表示装置 Download PDF

Info

Publication number
WO2020063279A1
WO2020063279A1 PCT/CN2019/104327 CN2019104327W WO2020063279A1 WO 2020063279 A1 WO2020063279 A1 WO 2020063279A1 CN 2019104327 W CN2019104327 W CN 2019104327W WO 2020063279 A1 WO2020063279 A1 WO 2020063279A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch
acquisition
positioning
turnout
Prior art date
Application number
PCT/CN2019/104327
Other languages
English (en)
French (fr)
Inventor
张�浩
刘晓冬
吕媛媛
周英才
张夫松
祁颖
李思然
Original Assignee
北京全路通信信号研究设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京全路通信信号研究设计院集团有限公司 filed Critical 北京全路通信信号研究设计院集团有限公司
Priority to RS20220408A priority Critical patent/RS63169B1/sr
Priority to EA202091839A priority patent/EA202091839A1/ru
Priority to EP19780134.3A priority patent/EP3656640B1/en
Publication of WO2020063279A1 publication Critical patent/WO2020063279A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/10Locking mechanisms for points; Means for indicating the setting of points
    • B61L5/107Locking mechanisms for points; Means for indicating the setting of points electrical control of points position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/06Electric devices for operating points or scotch-blocks, e.g. using electromotive driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/06Electric devices for operating points or scotch-blocks, e.g. using electromotive driving means
    • B61L5/062Wiring diagrams

Definitions

  • the invention relates to the technical field of rail transit, and in particular to a turnout display device.
  • the computer interlocking system currently in use is a system in which the computer completes the interlocking operation and the gravity relay circuit completes the driving and representation at the driver execution level.
  • a large number of gravity relays are used in the system.
  • the AC turnout control system includes a large number of components such as a circuit breaker RD, a phase failure protector DBQ, and a relay DQJ.
  • the wiring is very complicated and there are many solder joints; in actual layout, due to the complicated structure, the area is large; when in use, the control process and current flow are complicated; when a fault occurs, find and Locating faults is complex and requires regular maintenance.
  • the current flow of the turnout circuit is:
  • the phase sequence of the switch motor is W-U-V, which rotates clockwise to drive the sharp rail to position.
  • the turnout indicates that the current flow of the positive half-cycle circuit of the power supply in the circuit is:
  • Transformer BD terminal 3 ⁇ resistance R1 ⁇ 2DQJ 22-21 ⁇ 2DQJ 131-132 ⁇ 1DQJF 13-11 ⁇ 2DQJ 111-112 ⁇ switch machine contact 33-34 ⁇ switch machine contact 15-16 ⁇ rectifier diode Z ⁇ resistance R ⁇ switch machine contact 35-36 ⁇ motor coil U ⁇ motor coil W ⁇ 1DQJ 11-13 ⁇ indicates transformer BD terminal 4.
  • the turnout indicates that the current flow of the negative half-cycle circuit of the power supply in the circuit is:
  • Transformer BD terminal 3 Resistor R1 ⁇ 1DQJ 22-21 ⁇ 2DQJ 131-132 ⁇ DBJ 4-1 ⁇ Switch machine contact 11-12 ⁇ Motor coil V ⁇ Motor coil W ⁇ 1DQJ 11-13 ⁇ Transformer BD terminal 4 .
  • the existing turnout control system can obtain the status information of the switch machine, but the error probability is high, which increases the risk of the switch machine control.
  • the present invention proposes an AC turnout indicating component, which improves the reliability of turnout control.
  • a turnout display device includes a display electric control circuit, a display acquisition and control circuit, wherein:
  • the indication electrical control circuit is connected to the indication acquisition and control circuit and is used to provide power to the indication acquisition and control circuit;
  • the representation acquisition and control circuit includes a positioning circuit, an inversion circuit, and a switch circuit.
  • the positioning circuit and the inversion circuit are connected to the switch machine through the switch to obtain the indication information of the switch machine.
  • the representation acquisition and control circuit can obtain the indication information of the multi-wire switch machine
  • the positioning circuit is connected to the switching circuit, and when the switch machine is positioned, the switch machine indicates that the diode can be connected to the positioning circuit;
  • the inversion circuit is connected to the switch circuit.
  • the switch machine When the switch machine is in the inverse position, the switch machine indicates that the diode can be connected to the inversion circuit.
  • the electric control circuit is a transformer circuit, and the transformer circuit includes a primary coil, a first secondary coil, and a second secondary coil;
  • the positioning circuit includes a positioning acquisition circuit and a positioning acquisition self-test circuit, and the inversion circuit includes an inversion acquisition circuit and an inversion acquisition self-test circuit;
  • the switch circuit has a plurality of switch branches, a first switch branch of the plurality of switch branches is connected to a first end of the first secondary coil, and a second switch branch of the plurality of switch branches And the third switch branch of the plurality of switch branches is connected to the first end of the second secondary coil through the positioning acquisition circuit, and the The fourth switching branch of the plurality of switching branches is connected to the second end of the second secondary coil through the inverse acquisition circuit.
  • the positioning circuit further includes a positioning acquisition self-test circuit, the positioning acquisition self-test circuit is connected between the first switch branch and the second switch branch, and is used to determine whether the positioning circuit works normally;
  • the inversion circuit further includes an inversion bit acquisition self-test circuit, the inversion bit acquisition self-test circuit is connected between the third switch branch and the fourth switch branch, and is used to determine whether the inversion circuit is working normal.
  • the switching circuit includes a switching component, a control component, and an acquisition component, wherein:
  • the control circuit is used to control the on / off of each switch branch in the switch component
  • the acquisition component is configured to acquire an open / close state of each switch branch in the switch component.
  • the AC turnout module can send an AC sinusoidal signal to an outdoor switch machine respectively through the positioning circuit and the inversion circuit;
  • the positioning acquisition circuit collects the negative half-wave current of the sinusoidal signal, and the inverse acquisition circuit collects the sinusoidal current, and it is determined that the switch machine is in a positioning state; the The inverse acquisition circuit collects the positive half-wave current of the sinusoidal signal, and the positioning acquisition circuit acquires the sinusoidal current, it is judged that the switch machine is in an inverse state; otherwise, it is judged that the switch machine is in a four-open state;
  • the positioning acquisition circuit collects the positive half wave current of the sinusoidal signal, and the inverse acquisition circuit collects no current, it is determined that the switch machine is in a positioning state; the The inverse acquisition circuit collects the positive half-wave current of the sinusoidal signal and the positioning acquisition circuit collects no current, it is judged that the switch machine is in an inverse state; otherwise, it is judged that the switch machine is in a four-open state.
  • the positioning acquisition self-check circuit can simultaneously collect the positive and negative half-wave signals of the sine wave, otherwise it is judged that the positioning acquisition circuit is faulty;
  • the inverse acquisition circuit can simultaneously collect the positive and negative half-wave signals of the sine wave, otherwise it is judged that the inverse acquisition circuit is faulty.
  • the indication information includes positioning information, inverse information, or quadruple information.
  • Figure 1 shows a schematic diagram of an AC turnout control system according to the prior art
  • FIG. 2 shows a structural block diagram of an AC turnout module according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a logic part in an AC turnout according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a driving unit in an AC turnout according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing a structure of a display part in an AC turnout according to an embodiment of the present invention
  • FIG. 6 shows a dual-system hot standby AC turnout system according to an embodiment of the present invention.
  • FIG. 2 shows a structural block diagram of an AC turnout module according to an embodiment of the present invention.
  • the AC turnout module in the embodiment of the present invention adopts a two-by-two structure design method, and includes two switch machine control sections and a logic section.
  • Each switch machine control section includes a drive section and a Display department.
  • the upper and lower switch machine control units including the drive unit and the display unit are respectively connected to the security processing module in the logic module.
  • the two switch machine control units have the same principle but are physically independent.
  • the AC turnout module mainly includes a driving part, a display part, and a logic part, wherein the driving part and the display part are independent of each other.
  • FIG. 3 is a schematic diagram of a logic part of a 2 by 2 and 2 structure according to an embodiment of the present invention. As shown in FIG. 3, there are two security processing modules in the logic section: a security processing module I and a security processing module II. Each of the two security processing modules uses two security CPU chips: a security CPU chip. 1 and security CPU chip 2.
  • the safety CPU chip 1 and the safety CPU chip 2 in the safety processing module I implement data connection, and the safety CPU chip 1 and the safety CPU chip 2 are respectively connected to the control network A and the maintenance network A.
  • the structure of the security processing module II is the same as the structure of the security processing module I, and each security CPU chip in the security processing module I and the security processing module II implements data interconnection.
  • the drive unit is powered by three-phase alternating current (AC380V) and is connected to the internal motor of the switch machine. During use, the drive can be controlled based on the control instructions of the safety CPU chip in the logic unit.
  • the rut machine performs a fixed rotation action or a reverse rotation action. It mainly includes three-phase power switch circuit, three-phase current isolation acquisition circuit, three-phase electronic switch circuit, commutation and wire conversion circuit.
  • FIG. 4 is a schematic diagram illustrating a further structure of a driving unit according to an embodiment of the present invention.
  • the three-phase power switch circuit includes a safety relay, a safety AND gate and a safety acquisition unit respectively connected to the safety relay.
  • the safety AND gate in the three-phase power switch circuit controls the safety relay in the three-phase power switch circuit to implement control of the three-phase electric on-off.
  • the safety AND gate receives dynamic signals of different frequencies sent by each of the safety CPU chips in the safety processing module, so as to control the opening and closing of the safety relay.
  • the safety relay may adopt switching devices such as a 3 open and 1 closed small safety relay, and the three-phase power of AC380V is accessed through 3 normally open contacts of the 3 open and 1 closed safety relay, respectively.
  • the switch machine When the switch machine operates, the three normally open contacts of the three-open and one-close safety relay are closed.
  • the two safety CPU chips in the logic part can send dynamic control signals of different frequencies to the safety AND gate to realize the opening and closing control of the safety relay, and ensure that AC380V power output can be cut off when any CPU fails.
  • the safety acquisition unit in the three-phase power switch circuit can be implemented by a dynamic code acquisition unit that collects the state of the normally closed contact of the safety relay connected to it to ensure that the normally closed contact is closed. Safely collect and send the collected data to a secure CPU chip in the secure processing module.
  • the safety AND gate in the three-phase power switch circuit can control the opening and closing of the safety relay to realize the on-off control of the AC380V current.
  • the safety The AND gate controls the 3 open and 1 closed relays to execute the action to cut off the power supply of the 380VAC power supply;
  • the safety acquisition circuit monitors the safety relays, obtains the open and closed states of the normally closed contacts of the safety relays, and obtains The open / closed state data is sent to the logic unit.
  • the two safety processing modules in the logic section simultaneously receive the open and close status data to grasp the current status of the relay.
  • the three-phase current isolation acquisition circuit realizes the collection of the current of each phase line in the three-phase power, and obtains the current amount data (including the current magnitude and phase data) of the three-phase power to determine whether each phase line is An abnormal situation of phase loss, power failure, or overcurrent, and sending the obtained current amount data to the safety CPU chip in the safety processing module I and the safety processing module II.
  • the outdoor AC switch machine is driven by AC380V three-phase electricity (U, V, W). Any abnormality in one phase will cause the switch machine to fail to drive normally (the motor or the circuit inside the board may be burned out when overcurrent occurs).
  • an independent current detection circuit is designed for each phase (such as the three-phase current isolation acquisition module in FIG. 4), which is used to determine whether the phase line is lacking in phase, power failure, and overcurrent. Once detected, If it is abnormal, it will stop outputting three-phase power of 380V, that is, disconnect the three-phase power switch, and issue an alarm instruction to the safety CPU chip to control the drive unit to the safe side.
  • the three-phase electronic switch circuit includes three independent electronic switches for controlling three-phase electrical on-off.
  • three independent solid-state relays can be used to control the on-off of the three-phase electricity in parallel.
  • the three-phase electronic switch is conducive to improving the reliability and life of the contacts of the safety relay before and after the stage. When the output is required to drive the switch machine, the switch is finally closed or opened, so that the front and rear safety relays can be opened and closed without power.
  • the three-phase electronic switch circuit further includes an electronic switch control section that implements a data connection with a secure CPU chip in the secure processing module.
  • the safety CPU chip can send a control instruction to the electronic switch control section. After receiving the control instruction, the electronic switch control section controls the opening and closing of the electronic switch, thereby controlling the on-off in the three-phase power.
  • the commutation and wire conversion circuit includes one or more switch circuits, and the switch circuit includes a safety relay, a safety AND gate and a safety acquisition unit respectively connected to the safety relay.
  • the switch circuit includes a safety relay, a safety AND gate and a safety acquisition unit respectively connected to the safety relay.
  • the two switch circuits are respectively connected to the two-phase line, so that two phases in the three-phase current are converted into four wires, and finally the driving circuit is converted into a five-wire system.
  • the safety acquisition unit in the switch circuit collects status data of normally open contacts and normally closed contacts in the safety relay, and these status data include normally open contacts, normally closed contacts opened or closed, or whether adhesion occurs
  • the state of the relay such as the status of the normally open contact and normally closed contact of the safety relay, is compared with the current relay control signal to determine the status of the relay contact.
  • the collected state data is sent to the security CPU chip in the security processing module. In the embodiment of the present invention, it can be sent to the security CPU chip 1 and the security CPU chip 2 at the same time.
  • the safety AND gate in the commutation and wire conversion circuit further implements a data connection with a safety CPU chip in the safety processing module, and implements on-off control of the line based on a control instruction of the safety CPU chip.
  • each of the two safety CPU chips in the safety processing module may send a control signal to one or two of the two safety AND gates.
  • the commutation and wire conversion circuit of the drive unit is connected to the internal motor of the switch machine through an electromagnetic compatibility protection circuit.
  • the display unit is connected to an internal switch of the switch.
  • the display unit collects the display state information of the switch machine, and sends the collected display state information of the switch machine to the security CPU chip of the logic unit. It mainly includes the electric control circuit and the acquisition and control circuit.
  • FIG. 5 is a structural diagram of a display unit according to an embodiment of the present invention.
  • the display electrical control circuit of the display unit can be implemented by a transformer, and specifically, AC220V can be converted into two AC48V voltage outputs through a power frequency transformer, and the AC48V voltage is output to the display acquisition and control circuit.
  • the indication acquisition and control circuit of the indication unit includes a indication acquisition circuit, a indication acquisition self-test circuit, and a safety relay, which are connected to the internal switch of the switch machine through an electromagnetic compatibility protection circuit. As shown in FIG.
  • the display part of the embodiment of the present invention adopts a four-wire system, wherein the first and second wires are respectively connected to the first and second ends of the first secondary coil of the transformer, and the third wire The and fourth wires are connected to the first and second ends of the second secondary coil of the transformer, respectively.
  • the four wires are connected to the switching branches of the safety relay, respectively.
  • the indication acquisition and control circuit is connected with the internal switch of the switch machine, and the state information of the switch machine can be collected during operation. As shown in FIG. 5, the circuit in which the first secondary coil of the transformer is located forms a first loop, and the circuit in which the second secondary coil is located forms a second loop.
  • the first circuit includes a positioning circuit and the second circuit includes an inversion circuit.
  • the positioning circuit includes a positioning acquisition circuit and a positioning acquisition self-test circuit; the inversion circuit includes an inversion acquisition circuit and an inversion acquisition self-test circuit.
  • the positioning circuit and the inversion circuit are used to judge the representation information of the turnout, that is, to obtain the information that the turnout is in the positioning, inversion, or four-way opening state.
  • the positioning acquisition circuit is connected to the second line, and the positioning acquisition self-test circuit is connected between the first line and the second line; the inverse acquisition circuit is connected to the third line, and the inverse acquisition A self-test circuit is connected between the third and fourth lines.
  • the positioning circuit and the inversion circuit determine whether the turnout is in the positioning, inversion or four-open state through its positioning acquisition circuit and inversion acquisition circuit.
  • an AC switch controls a five-wire switch machine, and the switch machine is in position, the switch inside the switch connects the positioning circuit with the switch diode, and the inversion circuit is short-circuited.
  • the AC turnout module sends an AC sinusoidal signal to an outdoor switch machine through a positioning circuit and an inversion circuit.
  • the AC sinusoidal signal of the positioning circuit returns a negative half-wave sinusoidal current after indicating the diode.
  • the inversion circuit returns a sinusoidal current due to the short circuit of the switch. .
  • the positioning acquisition circuit collects the negative half-wave sine current, and at the same time the inverse acquisition circuit collects the sine current, it is judged that the switch is in the positioning state.
  • the inverse acquisition circuit acquires the positive half-wave sine current
  • the positioning acquisition circuit collects a sinusoidal current
  • the switch machine is in an inverse state
  • the internal switch of the switch machine connects the positioning circuit with the switch diode, and the inversion circuit is in an open state.
  • the AC turnout module sends an AC sinusoidal signal to the outdoor switch machine through a positioning circuit and an inversion circuit.
  • the AC sinusoidal signal of the positioning circuit returns a positive half-wave sinusoidal current after indicating the diode.
  • the inversion circuit has no return current because the switch is disconnected. .
  • the positioning acquisition circuit collects a positive half-wave sinusoidal current, and at the same time the inverse acquisition circuit collects no current, it is judged that the switch is in a positioning state.
  • the inverse acquisition circuit acquires a positive half-wave sinusoidal current
  • the positioning acquisition circuit collects no current, it is judged that the switch machine is in an inverse state; when other combinations or abnormal currents are collected, it is judged that the switch machine is in a four-open state.
  • the acquisition and self-test circuits are all in a real-time working state and periodically submit status information to the logic department.
  • the positioning / inversion acquisition self-check circuit is used to determine whether the positioning / inversion acquisition self-test circuit is working normally. After the positioning / inversion acquisition self-test circuit judges that the operation is abnormal, the turnout module is directed to the safe side, that is, the judgment display unit. After the abnormality, the positioning and collecting self-test circuit sends instructions to the safety CPU chip, and the safety CPU chip controls the driving circuit to guide the turnout to the safety side.
  • the positioning acquisition self-test circuit and the inverted bit acquisition self-test circuit can perform a self-test at a certain period, so as to realize the periodic detection of abnormal working of the display unit.
  • the positioning acquisition self-test circuit is used to determine whether the positioning acquisition circuit works normally. Based on the control instruction sent by the safety CPU chip, the positioning acquisition self-test circuit controls the on or off of the branch where the circuit is located. When the branch where the positioning acquisition self-test circuit is connected is turned on, it short-circuits the external circuit and enters a self-test state. Under normal circumstances, the positioning acquisition self-test circuit should simultaneously collect valid positive and negative half-wave signals, otherwise, the positioning acquisition circuit is judged Failure; when the branch where the positioning acquisition self-check circuit is located is disconnected, the switch point machine enters the acquisition state, and the signal collected by the positioning acquisition circuit is a true representation of the external switch point machine.
  • the reverse bit acquisition self-test circuit works the same as the positioning acquisition self-test circuit.
  • the positioning circuit and the inversion circuit are connected to the safety relay.
  • the first line, the second line, the third line, and the fourth line are respectively connected to the contacts of the four switching branches of the safety relay to implement the positioning circuit and
  • the inversion circuit is connected to the safety relay.
  • the safety relay is controlled by a control circuit to realize the control of each line.
  • the safety CPU chip in the safety processing module sends a control instruction to the control circuit so that the control circuit controls the safety.
  • an acquisition circuit is connected to the safety relay to collect the status of the normally open contact and the normally closed contact in each branch of the safety relay to determine whether each branch of the safety relay Can work normally, mainly used to judge whether the coil is open or the contact is stuck, etc., and send the collected status data (including normally open contacts, normally closed contacts open or closed) to the safety processing module Security CPU chip.
  • the positioning acquisition circuit is connected in parallel, and the first end of the parallel-connected circuit is connected to the first end of the first secondary coil, wherein the positioning acquisition circuit is used for acquiring the state indicated by the turnout.
  • the positioning acquisition self-test circuit is connected between the first line and the second line, and is connected to the positioning acquisition circuit.
  • an inverted bit acquisition circuit in the inverted bit circuit is connected between a third line and a fourth line, and is connected to the inverted bit acquisition circuit.
  • the safety relay is connected to the internal switch of the switch machine through a protective circuit of the rear plate.
  • the positioning acquisition self-check circuit and the inverted bit acquisition self-check circuit receive control instructions of the safety CPU chip in the security processing module, and based on the control instruction, the positioning acquisition circuit and the inverted bit acquisition circuit perform acquisition and self-check to control.
  • the present invention provides a dual-system hot standby AC turnout system.
  • the dual-system hot standby AC turnout system includes two AC turnout modules: an I-series AC turnout module and an II-series AC turnout module.
  • Each series of turnout modules includes one logic section as described above and two switch machine control sections as described above.
  • the first switch machine control unit in the I series AC turnout module and the first switch machine control unit in the II series turnout module form a square structure, which is controlled by the electromagnetic compatibility protection circuit and the outdoor distribution board in the system.
  • Switch machine; the second switch machine control unit in the I series AC turnout module and the second switch machine control unit in the II series turnout module are also formed as a square structure, and jointly pass the electromagnetic compatibility protection circuit in the system And the outdoor distribution board controls another switch machine.
  • Each safety CPU in the logic part of the two-series AC turnout module realizes data communication through the inter-system communication line.
  • This dual-system hot standby AC turnout system further effectively improves the safety, reliability and availability of turnout control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种道岔表示装置,包括表示电控制电路、表示采集及控制电路,其中,表示电控制电路,与表示采集及控制电路连接,用于向表示采集及控制电路提供电力;表示采集及控制电路包括定位电路、反位电路和开关电路,定位电路和反位电路通过开关与转辙机连接,来获取转辙机的表示信息。道岔表示装置有效地提高了交流道岔控制的可靠性,保证了行车安全。

Description

一种道岔表示装置
本申请要求在2018年9月28日提交中国专利局、申请号为201811139271.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及轨道交通技术领域,具体涉及一种道岔表示装置。
背景技术
当前投入使用的计算机联锁***是一种由计算机完成联锁运算,在驱动执行层由重力继电器电路完成驱动和表示的***。***中是使用了大量的重力继电器,如图1所示的根据现有技术的交流道岔控制***,包括大量的断路器RD、断相保护器DBQ和继电器DQJ等部件,结构非常复杂。在制造时,由于电子器件多,接线非常复杂而且焊点也多;在实际布置时,由于结构复杂,占地面积较大;在使用时,控制流程和电流流向复杂;发生故障时,查找和定位故障复杂,且需要定期维护。
如图1所示,道岔动作电路的电流流向为:
1)道岔动作电源A→断路器RD1→断相保护器DBQ-S 11-21→启动继电器1DQJ 12-11→转辙机电动机W线圈。
2)道岔动作电源B→断路器RD2→断相保护器DBQ-S 31-41→启动继电器1DQJF 12-11→启动继电器2DQJ 111-112→转辙机接点43-44→遮断开关K→转辙机电动机U线圈。
3)道岔动作电源C→断路器RD3→断相保护器DBQ-S 51-61→1DQJF 22-21→2DQJ 121-122→转辙机接点41-42→转辙机电动机V线圈。
4)转辙机电动机相序为W-U-V,顺时针方向转动,带动尖轨向定位移动。
道岔表示电路中电源正半周电路的电流流向为:
表示变压器BD端3→电阻R1→2DQJ 22-21→2DQJ 131-132→1DQJF 13-11→2DQJ 111-112→转辙机接点33-34→转辙机接点15-16→整流二极管Z→电阻R→转辙机接点35-36→电动机线圈U→电动机线圈W→1DQJ 11-13→表示变压器BD端 4。
道岔表示电路中电源负半周电路的电流流向为:
表示变压器BD端3→电阻R1→1DQJ 22-21→2DQJ 131-132→DBJ 4-1→转辙机接点11-12→电动机线圈V→电动机线圈W→1DQJ 11-13→表示变压器BD端4。
现有的道岔控制***,能够获得转辙机的状态信息,但是出错概率较高,这加大了对转辙机控制出现的风险。
发明内容
针对现有技术中存在的上述技术问题,本发明提出了一种交流道岔表示部件,提高了对道岔控制的可靠性。
一种道岔表示装置,包括表示电控制电路、表示采集及控制电路,其中,
所述表示电控制电路,与所述表示采集及控制电路连接,用于向所述表示采集及控制电路提供电力;
所述表示采集及控制电路包括定位电路、反位电路和开关电路,所述定位电路和反位电路通过所述开关与转辙机连接,来获取转辙机的表示信息。
进一步地,
所述表示采集及控制电路能够获取多线制转辙机表示信息;
所述定位电路与所述开关电路连接,当转辙机处于定位时,转辙机表示二极管能够与所述定位电路实现连接;
所述反位电路与所述开关电路连接,当转辙机处于反位时,转辙机表示二极管能够与所述反位电路实现连接。
进一步地,
表示电控制电路为变压器电路,所述变压器电路包括初级线圈、第一次级线圈和第二次级线圈;
所述定位电路包括定位采集电路和定位采集自检电路,所述反位电路包括反位采集电路和反位采集自检电路;
所述开关电路具有多条开关支路,所述多条开关支路的第一开关支路与所述第一次级线圈的第一端相连,所述多条开关支路的第二开关支路通过所述定位采集电路与所述第一次级线圈的第二端相连;所述多条开关支路的第三开关支路与所述第二次级线圈的第一端相连,所述多条开关支路的第四开关支路通 过所述反位采集电路与所述第二次级线圈的第二端相连。
进一步地,
所述定位电路还包括定位采集自检电路,所述定位采集自检电路连接在所述第一开关支路和所述第二开关支路之间,用于判断定位电路是否工作正常;
所述反位电路还包括反位采集自检电路,所述反位采集自检电路连接在所述第三开关支路和所述第四开关支路之间,用于判断反位电路是否工作正常。
进一步地,所述开关电路包括开关部件、控制部件和采集部件,其中,
所述控制电路,用于控制所述开关部件中每条开关支路的通断;
所述采集部件,用于采集所述开关部件中每条开关支路的开闭状态。
进一步地,
所述交流道岔模块能够通过所述定位电路和所述反位电路分别向室外转辙机发送交流正弦信号;
当交流道岔模块控制五线制转辙机时,所述定位采集电路采集到所述正弦信号的负半波电流、反位采集电路采集到正弦电流,则判断转辙机处于定位状态;所述反位采集电路采集到所述正弦信号的正半波电流、定位采集电路采集到正弦电流,则判断转辙机处于反位状态;否则,则判断转辙机处于四开状态;
进一步地,
当交流道岔模块控制七线制转辙机时,所述定位采集电路采集到所述正弦信号的正半波电流、反位采集电路采集到无电流,则判断转辙机处于定位状态;所述反位采集电路采集到所述正弦信号的正半波电流、定位采集电路采集到无电流,则判断转辙机处于反位状态;否则,则判断转辙机处于四开状态。
进一步地,定位采集自检电路能够同时采集到正弦波的正负半波信号,否则判断定位采集电路出现故障;
反位采集电路能够同时采集到正弦波的正负半波信号,否则判断反位采集电路出现故障。
进一步地,所述表示信息包括定位信息、反位信息或四开信息。
通过本发明的技术方案,能够有效地提高了道岔控制的可靠性,保证了轨道车辆的运行安全。本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所指出的结构来实现和获 得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据现有技术的交流道岔控制***示意图;
图2示出了根据本发明实施例的交流道岔模块结构框图;
图3示出了根据本发明实施例的交流道岔中逻辑部的结构框图;
图4示出了根据本发明实施例的交流道岔中驱动部的结构框图;
图5示出了根据本发明实施例的交流道岔中表示部的结构框图;
图6示出了根据本发明实施例的双系热备交流道岔***。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2示出了根据本发明实施例的交流道岔模块的结构框图。如图2所示,本发明实施例中的交流道岔模块采用了二乘二取二的结构设计方式,包括两个转辙机控制部和逻辑部,每个转辙机控制部包括驱动部和表示部。其中包括驱动部和表示部的上下两个转辙机控制部分别与逻辑模块中的安全处理模块数据连接。两个转辙机控制部原理相同但物理上独立。
本发明实施例中,所述交流道岔模块主要包括驱动部、表示部和逻辑部,其中所述驱动部和表示部相互独立。在本发明实施例中,下面分别对逻辑部、驱动部和表示部进行介绍:
逻辑部
逻辑部与控制网和维护网实现数据交互,完成通信交互、控制输出及采集、 安全运算的功能,由2取2主控制单元组成,并与另一系逻辑单元配合,形成2乘2取2结构。如图3示出了根据本发明实施例的2乘2取2结构的逻辑部示意图。如图3所示,所述逻辑部中有两个安全处理模块:安全处理模块I和安全处理模块II,该两个安全处理模块中的每一个都采用了两个安全CPU芯片:安全CPU芯片1和安全CPU芯片2。安全处理模块I中的安全CPU芯片1与安全CPU芯片2实现数据连接,并且安全CPU芯片1和安全CPU芯片2分别与控制网A和维护网A连接。安全处理模块II的结构与所述安全处理模块I的结构相同,并且所述安全处理模块I和安全处理模块II中的各个安全CPU芯片实现数据互连。
驱动部
如图2所示,所述驱动部由三相交流电(AC380V)提供电力,并与转辙机的内部电机连接,在使用过程中,可以基于逻辑部中的安全CPU芯片的控制指令来控制转辙机执行定转动作或反转动作。其主要包括三相电源开关电路、三相电流隔离采集电路、三相电子开关电路、换相及线制转换电路。如图4示出了根据本发明实施例的驱动部进一步的结构示意图。
如图4所示,所述三相电源开关电路包括安全继电器、分别与所述安全继电器连接的安全与门和安全采集单元。其中,所述三相电源开关电路中的所述安全与门对所述三相电源开关电路中的所述安全继电器进行控制,以实现对所述三相电通断的控制。所述安全与门接收安全处理模块中每个安全CPU芯片发送的不同频率的动态信号,以实现对所述安全继电器开闭的控制。
本发明实施例中,所述安全继电器可以采用3开1闭小型安全继电器等开关管器件,AC380V的三相电分别通过所述3开1闭安全继电器的3个常开触点接入,在转辙机动作时所述3开1闭安全继电器的3个常开触点闭合,在发生故障时,要保证断开对该继电器的驱动。所述逻辑部中的两个安全CPU芯片能够向所述安全与门发出不同频率的动态控制信号,实现对所述安全继电器的开闭控制,确保任意CPU发生故障时均能切断AC380V电源输出。所述三相电源开关电路中的所述安全采集单元可以由动态发码采集单元实现,其采集与之相连的所述安全继电器常闭触点的状态,以确保对常闭触点闭合状态的安全采集,并将采集到的数据发送给所述安全处理模块中的安全CPU芯片。
其中,所述三相电源开关电路中的所述安全与门作为控制部件能够对所述 安全继电器的开闭进行控制,实现对上述AC380V电流的通断控制,例如发生安全故障时,所述安全与门控制所述3开1闭继电器执行动作实现切断380VAC电源的供电;所述安全采集电路对所述安全继电器进行监控,获取所述安全继电器的常闭触点的开闭状态,并将获得的所述开闭状态数据发送给所述逻辑部。逻辑部中的两个安全处理模块同时接收到所述开闭状态数据,以掌握继电器的当前状态。
所述三相电流隔离采集电路,实现对三相电中每一条相线的电流的采集,获得三相电的电流量数据(包括电流的大小、相位等数据),以确定每条相线是否缺相、断电或过流的异常情况,并将获得的所述电流量数据发送给所述安全处理模块I和安全处理模块II中的安全CPU芯片。
室外交流转辙机由AC380V三相电(U、V、W)驱动,任何一相的异常将导致转辙机无法正常驱动(过流时甚至可能出现烧毁电机或板内电路的情况),因此本发明实施例中针对每一相设计了独立的电流检测电路(如图4中的三相电流隔离采集模块),用于判断该相线路是否缺相、断电和过流等,一旦检测到异常,即停止输出380V的三相电,即断开三相电源的开关,并向安全CPU芯片发出报警指令,以控制驱动部导向安全侧。
所述三相电子开关电路包括三路独立的电子开关,用于对三相电通断进行控制。示例性地,可以采用三个独立的固态继电器通过并联方式分别对三相电的通断进行控制。该三相电子开关有利于提高前后级安全继电器触点的可靠性和寿命。当需要输出驱动转辙机转动时,该开关最后闭合或断开,可使得前后安全继电器不带电开闭。
如图4所示,本发明实施例中在三相电中的线路上分别布置有三个电子开关。所述三相电子开关电路还包括电子开关控制部分,其与所述安全处理模块中的安全CPU芯片实现数据连接。所述安全CPU芯片能够向所述电子开关控制部分发送控制指令,所述电子开关控制部分接收到所述控制指令后,控制所述电子开关的开合,进而控制三相电中的通断。
所述换相及线制转换电路包括一个或多个开关电路,所述开关电路包括安全继电器、分别与所述安全继电器连接的安全与门和安全采集单元。如图4所示,在所述换相及线制转换电路中,通过两个开关电路实现了三相线路到五线的转换,并实现了换相。其中,所述两个开关电路分别连接到所述两相线路中, 从而将三相电流中的两相转换为四线,最终使得驱动电路转换为5线制。所述开关电路中的安全采集单元,采集安全继电器中的常开触点和常闭触点的状态数据,这些状态数据包括常开触点、常闭触点打开或闭合的状态或者是否发生粘连的状态等,通过采集安全继电器的常开触点和常闭触点的状态,并与当前继电器控制信号比较,判断继电器触点状态。同时并将采集到的上述状态数据发送给所述安全处理模块中的安全CPU芯片,本发明实施例中,可以同时发送给安全CPU芯片1和安全CPU芯片2。所述换相及线制转换电路中的所述安全与门还与所述安全处理模块中的安全CPU芯片实现数据连接,并基于所述安全CPU芯片的控制指令实现对线路通断的控制。具体地,所述安全处理模块中的两个安全CPU芯片均可以向两个所述安全与门中的一个或两个发送控制信号。
所述驱动部的换相及线制转换电路通过电磁兼容防护电路与转辙机的内部电机连接。
表示部
如图2所示,所述表示部与转辙机的内部开闭器连接。在运行中,所述表示部采集转辙机的表示状态信息,并将采集的转辙机的表示状态信息发送给所述逻辑部的安全CPU芯片。其主要包括表示电控制电路和表示采集及控制电路。
如图5示出了根据本发明实施例的表示部的结构图。所述表示部的表示电控制电路可以通过一个变压器实现,具体可以通过一个工频变压器将AC220V转换为两路AC48V电压输出,将AC48V电压输出到所述表示采集及控制电路中。所述表示部的表示采集及控制电路包括表示采集电路、表示采集自检电路和安全继电器,其通过电磁兼容防护电路与转辙机的内部开闭器连接。如图5所示,本发明实施例的表示部采用了四线制,其中所述第一线和第二线分别与变压器第一次级线圈的第一端和第二端相连,所述第三线和第四线分别与变压器第二次级线圈的第一端和第二端相连。上述四线分别与所述安全继电器的开关支路连接。
所述表示采集及控制电路与转辙机的内部开闭器连接,运行过程中可以采集转辙机的表示状态信息。如图5中所示,变压器第一次级线圈所在的电路形成了第一回路、第二次级线圈所在的电路形成了第二回路。第一回路包括了定位电路、第二回路包括了反位电路。
其中所述定位电路包括定位采集电路、定位采集自检电路;所述反位电路 包括反位采集电路、反位采集自检电路。所述定位电路和反位电路用于判断道岔的表示信息,即获取道岔处于定位、反位或四开的状态信息。其中,所述定位采集电路连接在所述第二线上,定位采集自检电路连接在所述第一线和第二线之间;所述反位采集电路连接在所述第三线上,反位采集自检电路连接在所述第三线和第四线之间。
所述定位电路和反位电路通过其定位采集电路、反位采集电路来判断道岔处于定位、反位或是四开状态。当交流道岔控制五线制转辙机,转辙机处于定位时,转辙机内部开闭器将定位电路与转辙机表示二极管连接,而反位电路处于短路状态。所述交流道岔模块通过定位电路和反位电路分别向室外转辙机发送交流正弦信号,定位电路交流正弦信号通过表示二极管后返回负半波正弦电流,反位电路由于转辙机短路返回正弦电流。此时定位采集电路采集到负半波正弦电流,同时反位采集电路采集到正弦电流,则判断转辙机处于定位状态;与定位采集原理相同,当反位采集电路采集到正半波正弦电流,同时定位采集电路采集到正弦电流,则判断转辙机处于反位状态;当采集到其他组合或采集到异常电流,则判断转辙机处于四开状态。当交流道岔控制七线制转辙机,转辙机处于定位时,转辙机内部开闭器将定位电路与转辙机表示二极管连接,而反位电路处于断路状态。所述交流道岔模块通过定位电路和反位电路分别向室外转辙机发送交流正弦信号,定位电路交流正弦信号通过表示二极管后返回正半波正弦电流,反位电路由于转辙机断路没有返回电流。此时定位采集电路采集到正半波正弦电流,同时反位采集电路采集到没有电流,则判断转辙机处于定位状态;与定位采集原理相同,当反位采集电路采集到正半波正弦电流,同时定位采集电路采集到没有电流,则判断转辙机处于反位状态;当采集到其他组合或采集到异常电流,则判断转辙机处于四开状态。所述采集和自检电路均实时处于工作状态,并周期向逻辑部提交表示状态信息。
所述定/反位采集自检电路用于判断定/反位电路是否工作正常,当所述定/反位采集自检电路判断工作异常后,道岔模块即导向安全侧,即:判断表示部异常后,定位采集自检电路向安全CPU芯片发送指令,由安全CPU芯片控制驱动电路将道岔导向到安全侧。定位采集自检电路和反位采集自检电路可以以一定的周期进行自检,以实现对表示部工作异常的周期性检测。
所述定位采集自检电路用于判断所述定位采集电路的是否工作正常。基于 安全CPU芯片发送的控制指令,所述定位采集自检电路控制其所在支路的导通或断开。所述定位采集自检电路所在支路导通时,其将外部电路短路,进入自检状态,正常情况下,定位采集自检电路应同时采集到有效正负半波信号,否则判断定位采集电路故障;所述定位采集自检电路所在支路断开时,进入转辙机表示采集状态,定位采集电路采集到的信号是外部转辙机真实的表示。反位采集自检电路与定位采集自检电路工作原理相同。
所述定位电路和反位电路与所述安全继电器连接,具体地,第一线、第二线、第三线和第四线分别连接到安全继电器四条开关支路的触点上,来实现定位电路和反位电路与所述安全继电器的连接。所述安全继电器由一控制电路进行控制,实现对各条线路通断的控制,所述安全处理模块中的安全CPU芯片向所述控制电路发送控制指令,以使得所述控制电路控制所述安全继电器的触点的开闭;一采集电路与所述安全继电器连接,以采集所述安全继电器各条支路中常开触点和常闭触点的状态,判断所述安全继电器各条支路是否能够正常工作,主要用于判断线圈断路或触点是否出现粘连等问题,并将采集的状态数据(包括常开触点、常闭触点打开或闭合的状态)发送给所述安全处理模块中的安全CPU芯片。所述定位采集电路并联,并联后的电路的第一端连接于第一次级线圈的第一端,其中所述定位采集电路用于对道岔表示状态的采集。定位采集自检电路连接在第一线和第二线之间,并与所述定位采集电路连接。与所述定位电路对应,所述反位电路中的反位采集电路连接在第三线和第四线之间,并与所述反位采集电路连接。所述安全继电器通过后板防护电路与转辙机内部开闭器连接。
所述定位采集自检电路和所述反位采集自检电路接收所述安全处理模块中安全CPU芯片的控制指令,基于该控制指令定位采集电路和反位采集电路执行采集和自检进行控制。
基于上述交流道岔模块,本发明提供了一种双系热备交流道岔***,如图6所示,所述双系热备交流道岔***包括两个交流道岔模块:I系交流道岔模块和II系交流道岔模块。每系交流道岔模块均包括一个如上所述的逻辑部和两个如上所述的转辙机控制部。
I系交流道岔模块中的第一个转辙机控制部和II系交流道岔模块中的第一个转辙机控制部形成二乘结构,共同通过***内电磁兼容防护电路和室外分线盘 控制转辙机;I系交流道岔模块中的第二个转辙机控制部和II系交流道岔模块中的第二个转辙机控制部也形成为二乘结构,共同通过***内电磁兼容防护电路和室外分线盘控制另一个转辙机。
两系交流道岔模块中逻辑部中的各个安全CPU通过系间通信线路实现数据通信。这种双系热备交流道岔***,进一步有效提高了对道岔控制的安全性、可靠性和可用性。
尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

  1. 一种道岔表示装置,包括表示电控制电路、表示采集及控制电路,其中,
    所述表示电控制电路,与所述表示采集及控制电路连接,用于向所述表示采集及控制电路提供电力;
    所述表示采集及控制电路包括定位电路、反位电路和开关电路,所述定位电路和反位电路通过所述开关与转辙机连接,来获取转辙机的表示信息。
  2. 根据权利要求1所述的道岔表示装置,其中,
    所述表示采集及控制电路能够获取多线制转辙机表示信息;
    所述定位电路与所述开关电路连接,当转辙机处于定位时,转辙机表示二极管能够与所述定位电路实现连接;
    所述反位电路与所述开关电路连接,当转辙机处于反位时,转辙机表示二极管能够与所述反位电路实现连接。
  3. 根据权利要求1所述的道岔表示装置,其中,
    表示电控制电路为变压器电路,所述变压器电路包括初级线圈、第一次级线圈和第二次级线圈;
    所述定位电路包括定位采集电路和定位采集自检电路,所述反位电路包括反位采集电路和反位采集自检电路;
    所述开关电路具有多条开关支路,所述多条开关支路的第一开关支路与所述第一次级线圈的第一端相连,所述多条开关支路的第二开关支路通过所述定位采集电路与所述第一次级线圈的第二端相连;所述多条开关支路的第三开关支路与所述第二次级线圈的第一端相连,所述多条开关支路的第四开关支路通过所述反位采集电路与所述第二次级线圈的第二端相连。
  4. 根据权利要求3所述的道岔表示装置,其中,
    所述定位电路还包括定位采集自检电路,所述定位采集自检电路连接在所述第一开关支路和所述第二开关支路之间,用于判断定位电路是否工作正常;
    所述反位电路还包括反位采集自检电路,所述反位采集自检电路连接在所述第三开关支路和所述第四开关支路之间,用于判断反位电路是否工作正常。
  5. 根据权利要求3所述的道岔表示装置,所述开关电路包括开关部件、控制部件和采集部件,其中,
    所述控制部件,用于控制所述开关部件中每条开关支路的通断;
    所述采集部件,用于采集所述开关部件中每条开关支路的开闭状态。
  6. 根据权利要求4所述的道岔表示装置,其中,
    所述道岔表示装置能够通过所述定位电路和所述反位电路分别向室外转辙机发送交流正弦信号;
    当所述道岔表示装置控制五线制转辙机时,所述定位采集电路采集到所述正弦信号的负半波电流、反位采集电路采集到正弦电流,则判断转辙机处于定位状态;所述反位采集电路采集到所述正弦信号的正半波电流、定位采集电路采集到正弦电流,则判断转辙机处于反位状态;否则,则判断转辙机处于四开状态。
  7. 根据权利要求4所述的道岔表示装置,其中,
    所述道岔表示装置能够通过所述定位电路和所述反位电路分别向室外转辙机发送交流正弦信号;
    当所述道岔表示装置控制七线制转辙机时,所述定位采集电路采集到所述正弦信号的正半波电流、反位采集电路采集到无电流,则判断转辙机处于定位状态;所述反位采集电路采集到所述正弦信号的正半波电流、定位采集电路采集到无电流,则判断转辙机处于反位状态;否则,则判断转辙机处于四开状态。
  8. 根据权利要求6或7所述的道岔表示装置,其中,
    定位采集自检电路能够同时采集到正弦波的正负半波信号,否则判断定位采集电路出现故障;
    反位采集电路能够同时采集到正弦波的正负半波信号,否则判断反位采集电路出现故障。
  9. 根据权利要求1所述的道岔表示装置,其中,
    所述表示信息包括定位信息、反位信息或四开信息。
PCT/CN2019/104327 2018-09-28 2019-09-04 一种道岔表示装置 WO2020063279A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RS20220408A RS63169B1 (sr) 2018-09-28 2019-09-04 Indikacioni uređaj skretnice
EA202091839A EA202091839A1 (ru) 2018-09-28 2019-09-04 Устройство индикации переключателя
EP19780134.3A EP3656640B1 (en) 2018-09-28 2019-09-04 Switch indication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811139271.X 2018-09-28
CN201811139271.XA CN109278801B (zh) 2018-09-28 2018-09-28 一种道岔表示装置

Publications (1)

Publication Number Publication Date
WO2020063279A1 true WO2020063279A1 (zh) 2020-04-02

Family

ID=65182386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104327 WO2020063279A1 (zh) 2018-09-28 2019-09-04 一种道岔表示装置

Country Status (5)

Country Link
EP (1) EP3656640B1 (zh)
CN (1) CN109278801B (zh)
EA (1) EA202091839A1 (zh)
RS (1) RS63169B1 (zh)
WO (1) WO2020063279A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109278802B (zh) * 2018-09-28 2020-05-22 北京全路通信信号研究设计院集团有限公司 一种交流道岔装置、***及其控制方法
CN109278801B (zh) * 2018-09-28 2020-05-22 北京全路通信信号研究设计院集团有限公司 一种道岔表示装置
CN113581249B (zh) * 2021-07-15 2023-05-05 中国铁道科学研究院集团有限公司通信信号研究所 基于位移传感器组的道岔转辙机位置“故障-安全”表示装置及其方法
CN113805560B (zh) * 2021-08-13 2023-05-23 交控科技股份有限公司 一种应用于八线制道岔控制电路的道岔监测装置及方法
CN113859301B (zh) * 2021-10-13 2024-04-19 上海电气泰雷兹交通自动化***有限公司 一种五线制交流转辙机位置状态采集电路
CN114013473B (zh) * 2021-10-15 2024-03-01 北京和利时***工程有限公司 一种道岔控制的位置表示电路、装置和检测方法
CN114084197A (zh) * 2021-11-15 2022-02-25 浙江杭海城际铁路有限公司 三开道岔的控制电路和控制方法
CN113928368B (zh) * 2021-11-22 2024-04-26 交控科技股份有限公司 道岔位置指示***及方法
CN114348048B (zh) * 2022-01-06 2023-10-27 北京全路通信信号研究设计院集团有限公司 一种基于继电器的股道双端发码防护电路及***
CN115158396A (zh) * 2022-01-21 2022-10-11 梅满 一种轨道交通道岔电气故障处理***
CN114935729A (zh) * 2022-06-10 2022-08-23 江苏华创微***有限公司 一种基于干节点双侧分时驱采***及其***故障检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428635A (zh) * 2008-11-22 2009-05-13 兰州大成自动化工程有限公司 用于控制三相交流转辙机的电子装置和方法
EP2620347A1 (en) * 2012-01-24 2013-07-31 Alstom Ferroviaria S.P.A. Non trailable switch machine for railroad switches or the like
CN103587553A (zh) * 2013-10-17 2014-02-19 上海亨钧科技有限公司 一种液压道岔的控制以及表示***
CN107891884A (zh) * 2017-09-20 2018-04-10 浙江众合科技股份有限公司 全电子道岔位置检测装置
CN109278802A (zh) * 2018-09-28 2019-01-29 北京全路通信信号研究设计院集团有限公司 一种交流道岔装置、***及其控制方法
CN109278801A (zh) * 2018-09-28 2019-01-29 北京全路通信信号研究设计院集团有限公司 一种道岔表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106740992B (zh) * 2016-11-29 2019-01-08 卡斯柯信号有限公司 一种基于二乘二取二架构的五线制道岔驱动***
CN107985339A (zh) * 2017-11-15 2018-05-04 北京全路通信信号研究设计院集团有限公司 一种交流转辙机电缆线间电容检查方法
CN207889725U (zh) * 2017-11-15 2018-09-21 北京全路通信信号研究设计院集团有限公司 一种道岔控制***
CN108032870A (zh) * 2017-12-06 2018-05-15 南京恩瑞特实业有限公司 道岔控制模块及其全电子化的实现方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428635A (zh) * 2008-11-22 2009-05-13 兰州大成自动化工程有限公司 用于控制三相交流转辙机的电子装置和方法
EP2620347A1 (en) * 2012-01-24 2013-07-31 Alstom Ferroviaria S.P.A. Non trailable switch machine for railroad switches or the like
CN103587553A (zh) * 2013-10-17 2014-02-19 上海亨钧科技有限公司 一种液压道岔的控制以及表示***
CN107891884A (zh) * 2017-09-20 2018-04-10 浙江众合科技股份有限公司 全电子道岔位置检测装置
CN109278802A (zh) * 2018-09-28 2019-01-29 北京全路通信信号研究设计院集团有限公司 一种交流道岔装置、***及其控制方法
CN109278801A (zh) * 2018-09-28 2019-01-29 北京全路通信信号研究设计院集团有限公司 一种道岔表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3656640A4
ZHANG,RUI: "Research on Three-phase AC Switches Control Module of Tram Signal System", MASTER THESIS, 15 April 2016 (2016-04-15), pages 1 - 68, XP009518846, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
EP3656640A1 (en) 2020-05-27
CN109278801B (zh) 2020-05-22
CN109278801A (zh) 2019-01-29
EP3656640A4 (en) 2020-12-30
EP3656640B1 (en) 2022-03-09
RS63169B1 (sr) 2022-05-31
EA202091839A1 (ru) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2020063278A1 (zh) 一种交流道岔装置、***及其控制方法
WO2020063279A1 (zh) 一种道岔表示装置
CN107933613B (zh) 一种基于二乘二取二架构的非国标制式道岔驱动***
JP4159546B2 (ja) 確実な電力を重要な負荷に供給するシステム
CN101428635B (zh) 用于控制三相交流转辙机的电子装置和方法
CN107891884B (zh) 全电子道岔位置检测装置
CN107819357A (zh) 带有故障位置检测的隔离并联ups***
CN109278800A (zh) 一种直流转辙机控制***和控制方法
CN107735917A (zh) 转换器
CN107612138A (zh) 一种低压直流***
CN109981006A (zh) 一种无节点直流转辙机安全驱动方法及驱动模块
CN103595037A (zh) 三相交流相序纠错装置
CN114123500A (zh) 一种电源信号***及其切换控制方法
CN109687569B (zh) 数据中心供电***
RU2194645C2 (ru) Схема для управления и контроля стрелочных приводов
CN109193915B (zh) 转辙机控制电路、***、控制方法和故障检测方法
CN104022492B (zh) 一种长距离矿井巷道低压供电设备短路辅助保护装置
CN109510179A (zh) 分相阻尼mmc与交流断路器配合的直流断流装置和方法
CN109066604B (zh) 百万千瓦级核电站的发电机低电压保护***
CN104092281B (zh) 一种交流双电源切换方法
CN203674688U (zh) 统一电能质量控制器的保护***
JPH038037Y2 (zh)
CN207134865U (zh) 一种低压直流***
KR101707264B1 (ko) 인버터
CN220105169U (zh) 一种相序检测电路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019780134

Country of ref document: EP

Effective date: 20191011

NENP Non-entry into the national phase

Ref country code: DE