WO2020063224A1 - 耦合动态储能的固体蓄热电锅炉供热制冷*** - Google Patents

耦合动态储能的固体蓄热电锅炉供热制冷*** Download PDF

Info

Publication number
WO2020063224A1
WO2020063224A1 PCT/CN2019/102250 CN2019102250W WO2020063224A1 WO 2020063224 A1 WO2020063224 A1 WO 2020063224A1 CN 2019102250 W CN2019102250 W CN 2019102250W WO 2020063224 A1 WO2020063224 A1 WO 2020063224A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat
heat exchanger
energy storage
storage device
Prior art date
Application number
PCT/CN2019/102250
Other languages
English (en)
French (fr)
Inventor
马美秀
徐桂芝
杨岑玉
邓占锋
陈梦东
王乐
梁立晓
宋洁
Original Assignee
全球能源互联网研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司 filed Critical 全球能源互联网研究院有限公司
Publication of WO2020063224A1 publication Critical patent/WO2020063224A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/006Central heating systems using heat accumulated in storage masses air heating system
    • F24D11/007Central heating systems using heat accumulated in storage masses air heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/006Central heating systems using heat accumulated in storage masses air heating system
    • F24D11/008Central heating systems using heat accumulated in storage masses air heating system with conventional supplementary heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Definitions

  • the present application relates to the field of clean energy conversion from coal to electricity, for example, to a solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage.
  • solar energy storage devices can only collect and store solar energy during the day or part of the sun, and hydrogen energy is a secondary energy source. It also faces many problems including safety, generation and transportation costs, and cannot be continuously supplied. In addition, the heat generated by the compressed air energy storage device during the compression process is insufficient to make the turbine continue to run stably for a long time, so these dynamic energy storage devices still have problems such as instability and intermittentness.
  • the present application provides a solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage to solve the problems of instability and intermittentness of the dynamic energy storage device in the related art.
  • An embodiment of the present application provides a solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage, including: a dynamic energy storage device, a solid heat storage electric boiler, a fan, a gas-water heat exchanger, a water-water heat exchanger, and a refrigeration unit.
  • the dynamic energy storage device is connected to the refrigeration unit and is configured to provide a first heat source for the refrigeration unit, and the refrigeration unit is configured to use the first heat source for cooling; or the dynamic energy storage device is provided.
  • the fan is connected to the solid heat storage electric boiler, the solid heat storage electric boiler is connected to the gas-water heat exchanger, and the fan is configured to transfer air to the air after being pressurized.
  • the solid heat storage electric boiler is heated, the solid heat storage electric boiler is configured to transfer the heated air to the gas-water heat exchanger; the gas-water heat exchanger is configured to transfer the heat of the heated air to The once-circulated water in the air-water heat exchanger, after the temperature of the once-circulated water is cooled, enters the fan, and the fan is further configured to pressurize the cooled air; after heating The primary circulating water enters the refrigeration unit to provide a second heat source for the refrigeration unit, and the refrigeration unit is configured to use the second heat source for cooling; or, the heated primary circulating water enters the water
  • the water heat exchanger provides a second heat source for the water-water heat exchanger, and the water-water heat exchanger is configured to use the second heat source to heat the circulating backwater in the water-water heat exchanger.
  • FIG. 1 is a schematic structural diagram of a solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage in an embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of a heating and cooling system for a solid heat storage electric boiler coupled with dynamic energy storage according to an embodiment of the present application.
  • 1-solid heat storage electric boiler 2-dynamic energy storage device; 3-fan; 4-air-water heat exchanger; 5-third calorimeter; 6-first thermometer; 7-first valve; 8-second valve ; 9- second thermometer; 10- third valve; 11- cold user; 12- fourth valve; 13- refrigeration unit; 14- fifth valve; 15- sixth valve; 16- second calorimeter; 17- Seventh valve; 18- heat user; 19- water-water heat exchanger; 20- eighth valve; 21- ninth valve; 22- first calorimeter; 23- increase pump; 24- tenth valve.
  • the terms “center”, “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inside”, “outside” and the like indicate the orientation or position The relationship is based on the orientation or position relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore It should not be construed as a limitation on this application.
  • the terms “first,” “second,” and “third” are used for descriptive purposes only, and should not be construed to indicate or imply relative importance.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense unless otherwise specified and defined, for example, they may be fixed connections, detachable connections, or integrally Connection; it can be mechanical or electrical connection; it can be directly connected or indirectly connected through an intermediate medium; it can also be the internal connection of two components; it can be a wireless connection or a wired connection.
  • installation should be understood in a broad sense unless otherwise specified and defined, for example, they may be fixed connections, detachable connections, or integrally Connection; it can be mechanical or electrical connection; it can be directly connected or indirectly connected through an intermediate medium; it can also be the internal connection of two components; it can be a wireless connection or a wired connection.
  • the heat supply and cooling system includes: a dynamic energy storage device 2, a solid heat storage electric boiler 1, a fan 3, and a gas generator.
  • the dynamic energy storage device 2 provides the first heat source for heating;
  • the fan 3 is connected to the solid heat storage electric boiler 1, the solid heat storage electric boiler 1 is connected to the gas-water heat exchanger 4, and the fan 3 pressurizes the air and transmits it to the solid heat storage electric boiler 1 for heating.
  • the solid heat storage electric boiler 1 transfers the heated air to the gas-water heat exchanger 4; the gas-water heat exchanger 4 transfers the heat of the heated air to the primary circulating water in the gas-water heat exchanger 4,
  • the air enters the fan 3 and is pressurized again; the heated primary circulating water enters the refrigeration unit 13 to provide a second heat source for the refrigeration unit 13 and the refrigeration unit 13 uses the second heat source for cooling; or the heated primary circulating water enters the water water Heater 19, the water of the heat exchanger to provide a second heat source circulating backwater, the water of the second heat exchanger 19 using the heat source for heating water of heat exchanger 19, 19.
  • the dynamic energy storage device 2 includes at least one of a compressed air energy storage device, a hydrogen energy storage device, and a solar energy storage device.
  • the compressed air energy storage device stores excess air through compressed air during a low load period of the power grid. In the case of the peak load of the power grid, the compressed air is released to generate heat through the expander to generate power as the first heat source; the hydrogen energy storage device electrolyzes water into hydrogen and stores it, and converts the stored hydrogen into electricity. The work generates heat energy as the first heat source; the solar energy storage device collects and stores solar energy, and converts the stored solar energy into heat energy as the first heat source.
  • the dynamic energy storage device 2 in the embodiment of the present application is not limited to one or more of a compressed air energy storage device, a hydrogen energy storage device, and a solar energy storage device. In practical applications, the dynamic energy storage device may also be other Device that can provide a heat source.
  • the solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage provided in the embodiment of the present application, the dynamic energy storage device 2 and the solid heat storage electric boiler 1 are arranged in the same heating and cooling system, which not only realizes heating in winter, but also ensures Cooling in summer, and using the solid heat storage electric boiler 1 to solve the problems of fluctuation and instability of the dynamic energy storage device 2, maintaining the stability of heating or cooling, and improving the efficiency of the use of renewable energy and electrical energy.
  • the solid heat storage electric boiler 1 uses a phase change material to heat the air.
  • the dynamic energy storage device 2 in the case of heating, is used to provide a heat source.
  • the fourth valve 12 and the seventh valve 17 are opened.
  • Other valves are closed, the dynamic energy storage device 2 uses the first heat source to provide heat for the heat user 18; when the energy of the dynamic energy storage device 2 is insufficient, the solid heat storage electric boiler 1 is used to provide the second heat source for heating.
  • the valve 7, the ninth valve 21, the fifth valve 14 and the sixth valve 15 are also opened.
  • the fan 3 pressurizes the air and transfers it to the solid heat storage electric boiler 1 for heating, and the solid heat storage power boiler 1 transmits the heated air to the gas water.
  • the air-water heat exchanger 4 transfers the heat of the heated air to the once-circulated water in the air-water heat exchanger 4, the cooled air enters the fan 3 and is pressurized again; the once-circulated water after heating Enter the water-to-water heat exchanger 19 to provide a second heat source for the water-to-water heat exchanger 19.
  • the water-to-water heat exchanger 19 uses the second heat source to heat the circulating water in the water-to-water heat exchanger 19 to supply heat to the heat users 18.
  • the dynamic energy storage device 2 is used to provide a heat source.
  • the third valve 10 and the tenth valve 24 are opened, and the other valves are closed.
  • the dynamic energy storage device 2 provides a first heat source for the refrigeration unit 13, and the refrigeration unit 13 uses the first heat source to cool the cold user 11; when the energy of the dynamic energy storage device 2 is insufficient, the solid heat storage electric boiler 1 is used to provide a second The heat source is cooled.
  • the second valve 8 and the eighth valve 20 are also opened.
  • the fan 3 pressurizes the air and transfers it to the solid heat storage electric boiler 1 for heating.
  • the solid heat storage power boiler 1 transfers the heated air to the air-water heat exchanger. 4;
  • the air-water heat exchanger 4 transfers the heat of the heated air to the primary circulating water in the air-water heat exchanger 4, the cooled air enters the fan 3 and is pressurized again; the heated primary circulating water enters the refrigeration unit 13.
  • the refrigeration unit 13 uses the second heat source to cool the cold user 11.
  • the foregoing embodiment is only an implementation manner of the solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage during heating and cooling.
  • This application is not limited to this. In practical applications, Heating and cooling can also be achieved in other ways.
  • the solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage further includes: a first calorimeter 22, a second calorimeter 16, and a third calorimeter 5.
  • a first calorimeter 22 is connected between the heat exchanger 4 and the water-to-water heat exchanger 19, and the first calorimeter 22 calculates the first heating ratio and the first cooling ratio of the solid heat storage electric boiler 1; the water-to-water heat exchanger 19 and the heat user
  • a second calorimeter 16 is connected between 18, the second calorimeter 16 calculates the heat demand of the thermal user 18;
  • a third calorimeter 5 is connected between the dynamic energy storage device 2 and the refrigeration unit 13, and the third calorimeter 5 calculates dynamic energy storage The second heating ratio and the second cooling ratio of the device 2.
  • the solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage further includes a programmable logic controller (PLC) connected to the first calorimeter 22, the second calorimeter 16 and the third calorimeter. 5.
  • PLC programmable logic controller
  • the programmable logic controller controls the heat supply or cooling capacity of the dynamic energy storage device 2 according to the first heating ratio, the first cooling ratio, the heat demand, the second heating ratio, and the second cooling ratio.
  • the first calorimeter 22 calculates the first heat supply ratio and the first refrigeration ratio of the solid heat storage electric boiler 1, and when calculating the economic analysis, the contribution amount of the solid heat storage electric boiler 1 can be seen, and the second calorimeter 16 calculates the heat demand of the thermal user 18, and the third calorimeter 5 calculates the second heating ratio and the second cooling ratio of the dynamic energy storage device 2.
  • the programmable logic controller can prioritize the dynamics according to the heat demand of the thermal user 18
  • the energy storage device 2 supplies heat or refrigeration, and the shortcomings are supplemented by a solid heat storage electric boiler 1.
  • the dynamic energy storage device provides 150KW of heat for 3 hours, and the rest of the heat needs to be provided by the solid heat storage electric boiler.
  • the continuous heating or cooling for 24 hours can be obtained.
  • the contribution rate of the dynamic energy storage device is 9.4%, while the contribution rate of the solid heat storage electric boiler is 90.6%.
  • the solid-state heat storage electric boiler heating and cooling system coupled with dynamic energy storage further includes: an additional pump 23, and an additional pump is connected between the gas-water heat exchanger 4 and the water-water heat exchanger 19.
  • the increase pump 23 is connected to a programmable logic controller, and the programmable logic controller controls the increase of the pump 23 to stabilize the pressure of the circulating water.
  • the solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage further includes a first thermometer 6, a gas-water heat exchanger 4 and a water-water heat exchanger 19 connected to the first A thermometer 6, the programmable logic controller is connected to the first thermometer 6 and the fan 3, and the programmable logic controller adjusts the air flow through the fan 3 according to the value of the first thermometer 6.
  • the programmable logic controller when the value of the first thermometer 6 exceeds the set first temperature value, the programmable logic controller sends out a first high temperature alarm signal; when the value of the first thermometer 6 exceeds the set second temperature In the case of the temperature value, the programmable logic controller controls the fan 3 to stop working.
  • the solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage further includes a second thermometer 9, and a second thermometer 9 is connected between the water-water heat exchanger 19 and the heat user 18.
  • the programmable logic controller is connected to the second thermometer 9, and when the value of the second thermometer 9 exceeds the set third temperature value, the programmable logic controller sends a second high temperature alarm signal.
  • the fan includes a variable frequency fan.
  • a calorimeter is provided in the solid heat storage electric boiler heating and cooling system coupled with dynamic energy storage provided in the embodiment of the present application to calculate the heating ratio, the cooling ratio of the solid heat storage electric boiler, and the user's heat demand. Priority can be given to the total heat demand.
  • the dynamic energy storage device is dispatched to supply heat, and the shortcomings are supplemented by the boiler to achieve the maximum utilization of energy.
  • a thermometer is set in the system, and the air flow of the fan can be adjusted according to the value of the thermometer. When the temperature count value is high, a high-temperature alarm signal is issued to remind the air-water heat exchanger and the water outlet of the water-water heat exchanger to have a high temperature to avoid air-water. Equipment such as heat exchangers and water-to-water heat exchangers are damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种耦合动态储能的固体蓄热电锅炉供热制冷***,包括:动态储能装置(2)、固体蓄热电锅炉(1)、风机(3)、气水换热器(4)、水水换热器(19)及制冷机组(13),其中,动态储能装置(2)设置为为制冷机组(13)提供第一热源进行制冷;或者,动态储能装置(2)设置为提供第一热源进行供热;制冷机组(13)设置为利用所述第一热源进行制冷;风机(3)设置为将空气加压后传递至固体蓄热电锅炉(1)加热,固体蓄热电锅炉(1)设置为加热空气后传递至气水换热器(4),将空气的热量传给气水换热器(4)中的一次循环水;加热后的一次循环水为制冷机组提(13)供第二热源进行制冷;或者,加热后的一次循环水为水水换热器(19)提供第二热源,水水换热器(19)设置为利用第二热源加热水水换热器(19)中的循环回水。

Description

耦合动态储能的固体蓄热电锅炉供热制冷***
本申请要求在2018年09月26日提交中国专利局、申请号为201811125050.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及煤改电清洁能源领域,例如涉及一种耦合动态储能的固体蓄热电锅炉供热制冷***。
背景技术
随着国民经济和社会经济的快速发展,我国面临的能源短缺、环境恶化问题日益突出。因此,大规模开发利用可再生能源和寻找替代能源已成为能源行业发展的当务之急。可利用的新能源包括太阳能和氢能等能源,利用氢储能和太阳能储能等动态储能装置提供能量具有良好的发展前景。
但是,太阳能储能装置只能在白天或者有阳光的部分时间进行太阳能的收集和存储,而氢能属于二次能源,还面临包括安全、生成和输送的成本等诸多问题,不能持续性供应,另外压缩空气储能装置在压缩过程中产生的热量不足以使涡轮机持续长时间稳定运行,因此这些动态储能装置仍然存在不稳定性、间歇性等问题。
发明内容
本申请提供一种耦合动态储能的固体蓄热电锅炉供热制冷***,以解决相关技术中动态储能装置存在不稳定性、间歇性的问题。
本申请实施例提供一种耦合动态储能的固体蓄热电锅炉供热制冷***,包括:动态储能装置、固体蓄热电锅炉、风机、气水换热器、水水换热器及制冷机组,其中,所述动态储能装置连接所述制冷机组,设置为为所述制冷机组提供第一热源,所述制冷机组设置为利用所述第一热源进行制冷;或者,所述动态储能装置设置为提供所述第一热源进行供热;所述风机连接所述固体蓄热电锅炉,所述固体蓄热电锅炉连接所述气水换热器,所述风机设置为将空气加压后传递至所述固体蓄热电锅炉加热,所述固体蓄热电锅炉设置为将加热后的空气传递至所述气水换热器;所述气水换热器设置为将所述加热后的空气的热量传递至所述气水换热器中的一次循环水,经过所述一次循环水降温后的空气进入所述风机,所述风机还设置为对所述降温后的空气加压;加热后的所述一次循环水进入所述制冷机组,为所述制冷机组提供第二热源,所述制冷机组设置 为利用所述第二热源进行制冷;或者,加热后的所述一次循环水进入所述水水换热器,为所述水水换热器提供第二热源,所述水水换热器设置为利用所述第二热源加热所述水水换热器中的循环回水。
附图说明
图1为本申请实施例中的一种耦合动态储能的固体蓄热电锅炉供热制冷***的结构示意图;
图2为本申请实施例中的另一种耦合动态储能的固体蓄热电锅炉供热制冷***的结构示意图。
附图标记:
1-固体蓄热电锅炉;2-动态储能装置;3-风机;4-气水换热器;5-第三热量计;6-第一温度计;7-第一阀门;8-第二阀门;9-第二温度计;10-第三阀门;11-冷用户;12-第四阀门;13-制冷机组;14-第五阀门;15-第六阀门;16-第二热量计;17-第七阀门;18-热用户;19-水水换热器;20-第八阀门;21-第九阀门;22-第一热量计;23-增加泵;24-第十阀门。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
在本申请的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。可以按照具体情况理解上述术语在本申请中的含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本申请实施例提供一种耦合动态储能的固体蓄热电锅炉供热制冷***,如 图1所示,该供热制冷***包括:动态储能装置2、固体蓄热电锅炉1、风机3、气水换热器4、水水换热器19及制冷机组13,其中,动态储能装置2连接制冷机组13,为制冷机组13提供第一热源,制冷机组13利用第一热源进行制冷;或者,动态储能装置2提供第一热源进行供热;风机3连接固体蓄热电锅炉1,固体蓄热电锅炉1连接气水换热器4,风机3将空气加压后传递至固体蓄热电锅炉1加热,固体蓄热电锅炉1将加热后的空气传递至气水换热器4;气水换热器4将加热后的空气的热量传递至气水换热器4中的一次循环水,降温后的空气进入风机3,再次加压;加热后的一次循环水进入制冷机组13,为制冷机组13提供第二热源,制冷机组13利用第二热源进行制冷;或者,加热后的一次循环水进入水水换热器19,为水水换热器19提供第二热源,水水换热器19利用第二热源加热水水换热器19中的循环回水。
在一实施例中,动态储能装置2包括压缩空气储能装置、氢储能装置、太阳能储能装置中至少之一,压缩空气储能装置在电网负荷低谷期的情况下通过压缩空气存储多余的电能,在电网负荷高峰期的情况下将压缩空气释放通过膨胀机做功发电的方式产生热能,作为第一热源;氢储能装置将水电解制成氢气并储存,将储存的氢气转化为电能做功产生热能,作为第一热源;太阳能储能装置通过将太阳能收集储存,将储存的太阳能转化为热能,作为第一热源。
本申请实施例中的动态储能装置2并不限于压缩空气储能装置、氢储能装置、太阳能储能装置中的一种或多种,在实际应用中,动态储能装置还可以是其他的可以提供热源的装置。
本申请实施例提供的耦合动态储能的固体蓄热电锅炉供热制冷***,将动态储能装置2和固体蓄热电锅炉1设置在同一供热制冷***中,不仅实现冬季供暖,同时还保证了夏季制冷,并利用固体蓄热电锅炉1解决动态储能装置2的波动性和不稳定性的问题,维持供热或制冷的稳定性,提高了可再生能源和电能等能量的使用效率。
在一实施例中,固体蓄热电锅炉1采用相变材料加热空气。
本申请实施例在供热的情况下,使用动态储能装置2提供热源,如图2所示,在动态储能装置2提供热源供热的情况下,第四阀门12和第七阀门17打开,其他阀门关闭,动态储能装置2利用第一热源为热用户18供热;在动态储能装置2能量不足的情况下,使用固体蓄热电锅炉1提供第二热源供热,此时第一阀门7、第九阀门21、第五阀门14及第六阀门15也打开,风机3将空气加压后传递至固体蓄热电锅炉1加热,固体蓄热电锅炉1将加热后的空气传递至气水换热器4;气水换热器4将加热后的空气的热量传递至气水换热器4中的一次循环水,降温后的空气进入风机3,再次加压;加热后的一次循环水进入水 水换热器19,为水水换热器19提供第二热源,水水换热器19利用第二热源加热水水换热器19中的循环回水,为热用户18供热。
本申请实施例在制冷时,使用动态储能装置2提供热源,如图2所示,在动态储能装置2提供热源制冷的情况下,第三阀门10和第十阀门24打开,其他阀门关闭,动态储能装置2为制冷机组13提供第一热源,制冷机组13利用第一热源为冷用户11制冷;在动态储能装置2能量不足的情况下,同时使用固体蓄热电锅炉1提供第二热源制冷,此时第二阀门8和第八阀门20也打开,风机3将空气加压后传递至固体蓄热电锅炉1加热,固体蓄热电锅炉1将加热后的空气传递至气水换热器4;气水换热器4将加热后的空气的热量传递至气水换热器4中的一次循环水,降温后的空气进入风机3,再次加压;加热后的一次循环水进入制冷机组13,为制冷机组13提供第二热源,制冷机组13利用第二热源为冷用户11制冷。
在一实施例中,上述实施例仅仅是该耦合动态储能的固体蓄热电锅炉供热制冷***在供热制冷时的一种实施方式,本申请并不以此为限,在实际应用中,还可通过其他方式实现供热和制冷。
在一实施例中,如图2所示,耦合动态储能的固体蓄热电锅炉供热制冷***还包括:第一热量计22、第二热量计16和第三热量计5,气水换热器4和水水换热器19之间连接第一热量计22,第一热量计22计算固体蓄热电锅炉1的第一供热比例、第一制冷比例;水水换热器19和热用户18之间连接第二热量计16,第二热量计16计算热用户18的需热量;动态储能装置2和制冷机组13之间连接第三热量计5,第三热量计5计算动态储能装置2的第二供热比例、第二制冷比例。
在一实施例中,耦合动态储能的固体蓄热电锅炉供热制冷***还包括:可编程逻辑控制器,可编程逻辑控制器连接第一热量计22、第二热量计16及第三热量计5,可编程逻辑控制器根据第一供热比例、第一制冷比例、需热量、第二供热比例及第二制冷比例控制动态储能装置2的供热量或制冷量。
本申请实施例中第一热量计22计算固体蓄热电锅炉1的第一供热比例、第一制冷比例,在计算经济分析时就可以看到固体蓄热电锅炉1的贡献量,第二热量计16计算热用户18的需热量,第三热量计5计算动态储能装置2的第二供热比例、第二制冷比例,可编程逻辑控制器就可以根据热用户18的需热量,优先调度动态储能装置2供热或制冷,不足之处再用固体蓄热电锅炉1来补充。
例如,供热或供冷连续需求总量为200KW时,动态储能装置提供3小时150KW热量,其余热量均需由固体蓄热电锅炉提供,通过计量可得到在24小时连续供热或供冷的状态下,动态储能装置贡献率为9.4%,而固体蓄热电锅炉贡 献率为90.6%。
在一实施例中,如图2所示,耦合动态储能的固体蓄热电锅炉供热制冷***还包括:增加泵23,气水换热器4和水水换热器19之间连接增加泵23,增加泵23连接可编程逻辑控制器,可编程逻辑控制器控制增加泵23稳定一次循环水的压力。
在一实施例中,如图2所示,耦合动态储能的固体蓄热电锅炉供热制冷***还包括:第一温度计6,气水换热器4和水水换热器19之间连接第一温度计6,可编程逻辑控制器连接第一温度计6和风机3,可编程逻辑控制器根据第一温度计6的数值调节通过风机3的空气流量。
在一实施例中,在第一温度计6的数值超过设定的第一温度值的情况下,可编程逻辑控制器发出第一高温报警信号;在第一温度计6的数值超过设定的第二温度值的情况下,可编程逻辑控制器控制风机3停止工作。
在一实施例中,如图2所示,耦合动态储能的固体蓄热电锅炉供热制冷***还包括:第二温度计9,水水换热器19和热用户18之间连接第二温度计9,可编程逻辑控制器连接第二温度计9,在第二温度计9的数值超过设定的第三温度值的情况下,可编程逻辑控制器发出第二高温报警信号。
在一实施例中,所述风机包括变频风机。
本申请实施例提供的耦合动态储能的固体蓄热电锅炉供热制冷***中设置热量计,计算固体蓄热电锅炉的供热比例、制冷比例和用户的需热量,可以根据总的热需求,优先调度动态储能装置供热,不足之处再用锅炉补充,达到能量的最大利用率。另外在***中设置温度计,可以根据温度计的数值调节风机的空气流量,在温度计数值较高时发出高温报警信号,提示气水换热器和水水换热器出水口温度较高,以免气水换热器和水水换热器等设备损坏。

Claims (10)

  1. 一种耦合动态储能的固体蓄热电锅炉供热制冷***,包括:动态储能装置、固体蓄热电锅炉、风机、气水换热器、水水换热器及制冷机组,其中,
    所述动态储能装置连接所述制冷机组,设置为为所述制冷机组提供第一热源,所述制冷机组设置为利用所述第一热源进行制冷;或者,所述动态储能装置设置为提供所述第一热源进行供热;
    所述风机连接所述固体蓄热电锅炉,所述固体蓄热电锅炉连接所述气水换热器,所述风机设置为将空气加压后传递至所述固体蓄热电锅炉加热,所述固体蓄热电锅炉设置为将加热后的空气传递至所述气水换热器;
    所述气水换热器设置为将所述加热后的空气的热量传递至所述气水换热器中的一次循环水,经过所述一次循环水降温后的空气进入所述风机,所述风机还设置为对所述降温后的空气加压;
    加热后的所述一次循环水进入所述制冷机组,为所述制冷机组提供第二热源,所述制冷机组设置为利用所述第二热源进行制冷;或者,加热后的所述一次循环水进入所述水水换热器,为所述水水换热器提供第二热源,所述水水换热器设置为利用所述第二热源加热所述水水换热器中的循环回水。
  2. 如权利要求1所述的***,其中,所述动态储能装置包括压缩空气储能装置、氢储能装置、太阳能储能装置中至少之一,所述压缩空气储能装置设置为在电网负荷低谷期的情况下通过压缩空气存储多余的电能,在电网负荷高峰期的情况下将所述压缩空气释放通过膨胀机做功发电的方式产生热能,作为所述第一热源;所述氢储能装置设置为将水电解制成氢气并储存,将储存的氢气转化为电能做功产生热能,作为所述第一热源;太阳能储能装置设置为通过将太阳能收集储存,将储存的太阳能转化为热能,作为所述第一热源。
  3. 如权利要求1所述的***,其中,所述固体蓄热电锅炉采用相变材料加热空气。
  4. 如权利要求1所述的***,还包括:第一热量计、第二热量计和第三热量计,
    所述气水换热器和所述水水换热器之间连接所述第一热量计,所述第一热量计设置为计算所述固体蓄热电锅炉的第一供热比例、第一制冷比例;
    所述水水换热器和用户之间连接所述第二热量计,所述第二热量计设置为计算所述用户的需热量;
    所述动态储能装置和所述制冷机组之间连接所述第三热量计,所述第三热量计设置为计算所述动态储能装置的第二供热比例、第二制冷比例。
  5. 如权利要求4所述的***,还包括:可编程逻辑控制器,所述可编程逻辑控制器连接所述第一热量计、第二热量计及第三热量计,所述可编程逻辑控制器设置为根据所述第一供热比例、所述第一制冷比例、所述用户的需热量、所述第二供热比例及所述第二制冷比例控制所述动态储能装置的供热量或制冷量。
  6. 如权利要求5所述的***,还包括:增加泵,所述气水换热器和所述水水换热器之间连接所述增加泵,所述增加泵连接所述可编程逻辑控制器,所述可编程逻辑控制器还设置为控制所述增加泵稳定所述一次循环水的压力。
  7. 如权利要求5所述的***,还包括:第一温度计,所述气水换热器和所述水水换热器之间连接所述第一温度计,所述可编程逻辑控制器连接所述第一温度计和所述风机,所述可编程逻辑控制器还设置为根据所述第一温度计的数值调节通过所述风机的空气流量。
  8. 如权利要求7所述的***,其中,所述可编程逻辑控制器是设置为:
    在所述第一温度计的数值超过设定的第一温度值的情况下,发出第一高温报警信号;
    在所述第一温度计的数值超过设定的第二温度值的情况下,控制所述风机停止工作。
  9. 如权利要求5所述的***,还包括:第二温度计,所述水水换热器连接所述第二温度计,所述可编程逻辑控制器连接所述第二温度计,所述可编程逻辑控制器还设置为在所述第二温度计的数值超过设定的第三温度值的情况下,发出第二高温报警信号。
  10. 如权利要求1-9中任一项所述的***,其中,所述风机包括变频风机。
PCT/CN2019/102250 2018-09-26 2019-08-23 耦合动态储能的固体蓄热电锅炉供热制冷*** WO2020063224A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811125050.7 2018-09-26
CN201811125050.7A CN109442533A (zh) 2018-09-26 2018-09-26 一种耦合动态储能的固体蓄热电锅炉供热制冷***

Publications (1)

Publication Number Publication Date
WO2020063224A1 true WO2020063224A1 (zh) 2020-04-02

Family

ID=65544359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102250 WO2020063224A1 (zh) 2018-09-26 2019-08-23 耦合动态储能的固体蓄热电锅炉供热制冷***

Country Status (2)

Country Link
CN (1) CN109442533A (zh)
WO (1) WO2020063224A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110578962B (zh) * 2019-08-14 2021-05-07 长沙理工大学 一种耦合电转气设备的供热***协同控制方法及控制装置
CN112112693A (zh) * 2020-10-19 2020-12-22 中国科学院理化技术研究所 采用电蓄热的液态空气储能***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954586A (zh) * 2011-08-30 2013-03-06 朱杰 移动式高温固体蓄热电锅炉供暖、制冷***
CN205119567U (zh) * 2015-11-27 2016-03-30 佛山市海天调味食品股份有限公司 一种应用于二次热能回收的动态储能热水罐
CN205754122U (zh) * 2016-07-14 2016-11-30 徐甲兴 适用于高原高寒地区的光伏蓄热供热***
CN206386990U (zh) * 2016-12-16 2017-08-08 赫普热力发展有限公司 固体电蓄热装置配合汽动循环水泵深度调峰***
CN207555710U (zh) * 2017-11-08 2018-06-29 淄博方宏供热有限公司 一种空气源热泵和蓄热电锅炉联合集中供热***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200783A (en) * 1977-07-18 1980-04-29 Ehret Boyd P Apparatus for collecting and thermally storing energy
CN100572973C (zh) * 2003-10-31 2009-12-23 潘戈 一种太阳能、峰谷电蓄热的热水供应与制冷复合装置
CN106705188A (zh) * 2017-03-13 2017-05-24 中国石油天然气第八建设有限公司 一种固体谷电能蓄能设备
CN206890666U (zh) * 2017-06-23 2018-01-16 杭州兴润科技有限公司 定时定温供暖控制***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954586A (zh) * 2011-08-30 2013-03-06 朱杰 移动式高温固体蓄热电锅炉供暖、制冷***
CN205119567U (zh) * 2015-11-27 2016-03-30 佛山市海天调味食品股份有限公司 一种应用于二次热能回收的动态储能热水罐
CN205754122U (zh) * 2016-07-14 2016-11-30 徐甲兴 适用于高原高寒地区的光伏蓄热供热***
CN206386990U (zh) * 2016-12-16 2017-08-08 赫普热力发展有限公司 固体电蓄热装置配合汽动循环水泵深度调峰***
CN207555710U (zh) * 2017-11-08 2018-06-29 淄博方宏供热有限公司 一种空气源热泵和蓄热电锅炉联合集中供热***

Also Published As

Publication number Publication date
CN109442533A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2016127698A1 (zh) 适于主动配电网的蓄能型热电冷联供装置及其运行方法
US10001326B2 (en) Electric power peak-shaving and combined heat and power waste heat recovery device and operation method thereof
CN109696891B (zh) 包含空气源热泵和储能的微能源网***及其运行控制方法
AU2013273381B2 (en) Method of regulating a plant comprising cogenerating installations and thermodynamic systems intended for air conditioning and/or heating
WO2019205561A1 (zh) 一种含压缩空气储能的cchp微网结构及其运行方法
CN102563959B (zh) 集成能源匹配***及其控制方法
CN101886856A (zh) 节能三联热水及空调综合运用装置
JP3230102U (ja) 可逆膨張器に基づく総合エネルギーシステム
Sun et al. A solar/gas fired absorption system for cooling and heating in a commercial building
CN101825073A (zh) 一种分布式太阳能梯级利用***
CN113175699B (zh) 基于多种清洁能源综合利用的分布式供热***
CN110567024A (zh) 太阳能谷电蓄能供热采暖***
CN102644957A (zh) 一种太阳能采暖控制***及其控制方法
CN101285420A (zh) 一种燃气轮机循环与热泵集成的供能***及方法
WO2020063224A1 (zh) 耦合动态储能的固体蓄热电锅炉供热制冷***
CN203823962U (zh) 带热水供应的家用光伏直流变频空调器
CN113587189B (zh) 一种可再生能源供热***及方法
CN202660776U (zh) 一种基于环式热管的微型太阳能热电联产***
CN108448944A (zh) 数据中心余热发电***
CN205156426U (zh) 一种集成热化学过程的热电冷多联产***
Huang et al. Evaluation of thermal performance of air source heat pump heating system based on electricity equivalent
CN216522492U (zh) 一种基于可再生能源耦合应用的零碳冷热供应***
CN214540448U (zh) 一种光气电储地热耦合的园区综合能源供能***
JP2019114404A (ja) 電力供給システムおよび電力供給システムの制御方法
CN208174578U (zh) 数据中心余热发电***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865128

Country of ref document: EP

Kind code of ref document: A1