WO2020062951A1 - 化合物及其用途 - Google Patents

化合物及其用途 Download PDF

Info

Publication number
WO2020062951A1
WO2020062951A1 PCT/CN2019/091678 CN2019091678W WO2020062951A1 WO 2020062951 A1 WO2020062951 A1 WO 2020062951A1 CN 2019091678 W CN2019091678 W CN 2019091678W WO 2020062951 A1 WO2020062951 A1 WO 2020062951A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
tumor
present
cancer
callide
Prior art date
Application number
PCT/CN2019/091678
Other languages
English (en)
French (fr)
Inventor
钱锋
刘正生
Original Assignee
愈磐生物科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愈磐生物科技(苏州)有限公司 filed Critical 愈磐生物科技(苏州)有限公司
Priority to AU2019351035A priority Critical patent/AU2019351035A1/en
Priority to CA3112275A priority patent/CA3112275A1/en
Priority to EP19865985.6A priority patent/EP3858836A1/en
Priority to JP2021516822A priority patent/JP2022501390A/ja
Priority to KR1020217007979A priority patent/KR20210070978A/ko
Priority to CN201980056258.4A priority patent/CN112654626A/zh
Publication of WO2020062951A1 publication Critical patent/WO2020062951A1/zh
Priority to US17/203,758 priority patent/US20210196730A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/661Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • A61K31/585Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin containing lactone rings, e.g. oxandrolone, bufalin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4025Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6907Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0031Rectum, anus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0034Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0043Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/02Suppositories; Bougies; Bases therefor; Ovules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/12Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/12Aerosols; Foams
    • A61K9/122Foams; Dry foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • C07D239/545Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals with other hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/553Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals with other hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms with halogen atoms or nitro radicals directly attached to ring carbon atoms, e.g. fluorouracil
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/22Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains four or more hetero rings

Definitions

  • the present invention relates to the field of medicine, specifically, the present invention relates to compounds and uses thereof, and more particularly, the present invention relates to compounds, compounds represented by formula (I), pharmaceutical compositions containing the compounds, uses of the compounds and compositions, and the use of the compounds Preparation.
  • Pancreatic cancer is a malignant tumor of the digestive tract that is very malignant and difficult to diagnose and treat. About 90% of them are ductal adenocarcinomas that originate from the epithelium of the ducts. Its morbidity and mortality have increased significantly in recent years. The 5-year survival rate is ⁇ 5%, which is one of the worst prognosis malignancies. The early diagnosis of pancreatic cancer is not high, the surgical mortality is high, and the cure rate is low.
  • pancreatic cancer The cause of pancreatic cancer is not fully understood. Its occurrence is related to smoking, alcohol consumption, high-fat and high-protein diet, excessive drinking of coffee, environmental pollution and genetic factors; survey reports in recent years have found that the incidence of pancreatic cancer is significantly higher in the diabetic population than in the general population; others have noted chronic There is a certain relationship between pancreatitis patients and the incidence of pancreatic cancer. It is found that the proportion of pancreatic cancer in patients with chronic pancreatitis is significantly higher; in addition, there are many factors that have a certain relationship with the occurrence of this disease, such as occupation, environment, and geography.
  • pancreatic cancer The clinical manifestations of pancreatic cancer depend on the location of the cancer, the course of the disease, the presence or absence of metastasis, and the involvement of adjacent organs. Its clinical characteristics are short duration, rapid development and rapid deterioration. The most common are abdominal distension and pain. Although there is conscious pain, not all patients have tenderness, and if there is tenderness, it is the same as the conscious pain.
  • pancreatic cancer Existing research shows that the pathological features of pancreatic cancer are that the matrix occupies the vast majority of cancer tissues, about 80%, while cancer cells account for a minority. This pathological feature of pancreatic cancer tissue has led to its extremely deficient vascular system, making it difficult to administer drugs and ineffective immunotherapy.
  • pancreatic cancer pancreatic cancer
  • pancreatic cancer tissue cancer cells actually account for only about 20%, and more than 70% of them are extracellular matrix (stroma).
  • Extracellular matrix includes fibroblasts, immune and inflammatory cells, endothelial cells and complex extracellular media.
  • the clinical manifestation is that the texture of pancreatic cancer tissue is hard, and pathological examination found that a large number of collagen fibers surround a relatively small number of pancreatic cancer cells. Under the "protection" of the tumor stroma, these small numbers of cancer cells can successfully escape the surveillance of the body's immune system, and wantonly proliferate, differentiate and metastasize.
  • PSC pancreatic stellate cells
  • PSCs will lose lipid droplets in the cytoplasm, and at the same time rapidly proliferate and secrete a large number of Cell growth factor receptors (vascular endothelial growth factor receptor VEGFR, fibroblast growth factor receptor, etc.), extracellular matrix proteins (including collagen, laminin, integrin) and inhibitors of matrix protein degradation enzymes ( Metalloproteinase inhibitors, hyaluronidase inhibitors, etc.) and so on.
  • the activation of PSC caused the balance of various components outside the pancreatic cancer tissue to be broken, a large amount of connective tissue hyperplasia, and the secretion of matrix degrading enzymes were reduced. As a result, the content of extratumoral matrix increased greatly.
  • This complex stroma-rich microenvironment protects tumor cells from immune surveillance and renders many immunotherapies ineffective; on the other hand, it restricts tumor blood vessel formation, and as a physical barrier, it greatly restricts anti-tumor chemotherapy drugs from entering the tumor.
  • Cells, which make chemotherapy drugs lose their efficacy, and ultimately promote tumor evolution, invasion and metastasis.
  • the inventors of the present application used small molecule drugs to promote the "dormant" of PSC and reduce the production of stroma.
  • small molecule chemotherapeutics are chemically coupled, so as to obtain a coupling molecule with a bidirectional targeting function that simultaneously targets pancreatic tumor cells and pancreatic stellate cells, and has better preparation and drugability.
  • Appropriate drug formulations can improve the pharmacokinetic properties of small molecule drugs, so as to have the best synergistic effect on the production of stroma and the inhibition of cancer cells, thereby improving the drug-resistant environment of pancreatic cancer tumors and increasing the effective killing of tumor cells .
  • Calcipotriol is an example of a small molecule inhibitor acting on PSC.
  • Triptolide TP is an example of a highly effective small molecule chemotherapy drug.
  • the inventors designed to connect triptolide and carbotriol through an enzymatically degradable linker to synthesize a new, dual-targeting coupling compound, which is named "Callide" in this application.
  • Callide Compared with the original TP, Callide has an increased molecular weight, a slower crystallization tendency, and is more hydrophobic.
  • nano drug delivery systems such as polymer micelles, albumin composite nanoparticles, liposomes, etc.
  • a variety of nano drug delivery systems are easy to load and deliver Callide, thereby optimizing Callide's pharmacokinetics and increasing Callide enrichment at tumor sites.
  • Calide is produced by the catalytic degradation of esterase in the body by Callide, thus synchronizing the pharmacokinetics of Cal and TP, achieving the promotion of PSC dormancy (carbotriol) and inhibition of pancreatic cancer tumor cells (triple tripterygium wilfordii) A) double-targeting, synergistic effect, and greatly reduced toxic and side effects.
  • the present invention proposes a compound.
  • it comprises a tumor matrix regulatory group and a cytotoxic group coupled to each other, the tumor matrix regulatory group is used to regulate the tumor matrix, and the cytotoxic group is used to kill tumor cells.
  • the compounds according to the embodiments of the present invention can simultaneously act on tumor stroma and tumor cells, thereby achieving the purpose of eliminating or reducing tumor stroma while killing tumor cells.
  • the pharmacokinetic properties of the compounds according to the embodiments of the present invention are improved, and the pharmacokinetics of tumor stroma regulatory groups and cytotoxic groups are synchronized, and the production of stroma and the inhibition of cancer cells is good. Synergistic effect, the tumor's drug-resistant environment is improved, the effective killing of tumor cells is significantly improved, and the toxic and side effects of the drug are greatly reduced.
  • the above compound may further include at least one of the following additional technical features:
  • the tumor matrix regulatory group includes a member selected from Calcipotriol (Cal), Cyclopamine, ganciclovir (GCV), and Fingolimod. ), At least one of all-trans retinoic acid (ATRA) and hyaluronidase (HA).
  • the cytotoxic group includes a member selected from Triptolide (TP), paclitaxel, docetaxel, doxorubicin, camptothecin, hydroxycamptothecin, 5-fluorouracil, gemcitabine , Cisplatin, irinotecan, oxaliplatin, pemetrexed, capecitabine, epirubicin, sorafenib, gefitinib, erlotinib, imatinib, nilo Tenib, Dasatinib, Everolimus, Sunitinib, Ibrutinib, Crizotinib, Pazopanib, Carfilzomib, Tofatinib, Axitinib, Rigo Fenib, verofinib, sirolimus, bonatinib, lovatinib, olabanib, ceritinib, romidepsin, alotinib, be
  • Triptolide TP
  • the above-mentioned compounds that can control tumor stroma and cytotoxic groups, and the compounds obtained in any combination can achieve simultaneous action on tumor stroma and tumor cells, thereby achieving the purpose of eliminating or reducing tumor stroma while killing tumor cells.
  • the compound further comprises an enzymatic degradation linker. Furthermore, the compound can generate tumor matrix regulatory group and cytotoxic group drugs through enzymatic degradation in vivo, which synchronizes the pharmacokinetics of tumor matrix regulatory group and cytotoxic group drugs, and achieves the promotion of PSC dormancy and Inhibit synergistic effects of tumor cells.
  • the enzymatic degradation linker has at least one of the following structures:
  • the invention proposes a compound.
  • it contains one of the following structures or the isomers, stereoisomers, geometric isomers, tautomers, nitrogen oxides, hydrates, solvents of said structures Compounds, metabolites, pharmaceutically acceptable salts or prodrugs,
  • R 1 is independently calcipotriol, cyclopamine, ganciclovir, fingolimod, all-trans retinoic acid or hyaluronidase;
  • R 2 is independently triptolide, paclitaxel, docetaxel, doxorubicin, camptothecin, hydroxycamptothecin, 5-fluorouracil, gemcitabine, cisplatin, irinotecan, oxaliplatin, pemetrexed Sai, capecitabine, epirubicin, sorafenib, gefitinib, erlotinib, imatinib, nilotinib, dasatinib, everolimus, sunitinib Nisin, irutinib, crizotinib, pazopanib, carfilzomib, tofatinib, axitinib, regorafenib, verofinib, sirolimus, ponatinib Nisin, lovatinib, olabanib, ceritinib, romidepsin, alertinib, belistatin, biscitin
  • the compounds according to the embodiments of the present invention can be catalyzed and degraded in vivo to produce tumor matrix regulatory groups and cytotoxic group drugs. Furthermore, the compound can act on tumor stroma and tumor cells simultaneously, thereby achieving the purpose of eliminating or reducing tumor stroma while killing tumor cells.
  • the pharmacokinetic properties of the compounds according to the embodiments of the present invention are improved, and the pharmacokinetics of tumor stroma regulatory groups and cytotoxic groups are synchronized, and the production of stroma and the inhibition of cancer cells is good. Synergistic effect, the drug resistant environment of cancer tumors is improved, the effective killing of tumor cells is significantly improved, and the toxic and side effects of drugs are greatly reduced.
  • the present invention includes a structure of one of the following:
  • the above-mentioned compound according to the embodiment of the present invention comprises a tumor matrix regulatory group and a cytotoxic group coupled to each other, the tumor matrix regulatory group is used to regulate the tumor matrix, and the cytotoxic group is used to kill tumor cells .
  • the compounds according to the embodiments of the present invention can act on tumor stroma and tumor cells simultaneously, thereby achieving the purpose of eliminating or reducing tumor stroma while killing tumor cells.
  • the pharmacokinetic properties of the above-mentioned compounds according to the embodiments of the present invention are improved, and the pharmacokinetics of the tumor matrix regulatory group and the cytotoxic group are synchronized, and the generation of stroma and the inhibition of cancer cells are improved.
  • the synergistic effect of the cancer and tumor can improve the drug resistance environment, the effective killing of tumor cells is significantly improved, and the toxic and side effects of the drug are greatly reduced.
  • the invention proposes a compound.
  • the compound is a compound represented by formula (I), or isomers, stereoisomers, geometric isomers, tautomers of the compound represented by formula (I) Body, nitrogen oxides, hydrates, solvates, metabolites, pharmaceutically acceptable salts or prodrugs,
  • the compound according to the embodiment of the present invention 1) effectively simultaneously controls pancreatic stellate cells and pancreatic cancer tumor cells in pancreatic cancer tissues, 2) compared to TP, Callide's pharmacokinetic properties are significantly optimized, and toxicity is significantly reduced; 3) in In a highly clinically relevant pancreatic cancer transgenic mouse model, the compound significantly prolongs the median survival time of tumor animals compared to existing first-line drugs for treating pancreatic cancer, such as gemcitabine.
  • an isomer of the compound represented by the formula (I) is represented by the formula (II) or the formula (III).
  • the compounds represented by the formula (II) and the formula (III) according to the embodiment of the present invention have properties similar to those of the compound represented by the formula (I). It can effectively control pancreatic stellate cells and pancreatic cancer tumor cells simultaneously in pancreatic cancer tissues. Compared with TP, the pharmacokinetic properties of the compounds represented by formula (II) and formula (III) are significantly optimized, and the toxicity is significantly reduced; and In transgenic mouse models with highly clinically relevant pancreatic cancer, the median survival time of tumor animals is significantly extended compared to existing first-line drugs for pancreatic cancer, such as gemcitabine.
  • the invention provides a pharmaceutical composition.
  • the pharmaceutical composition includes the aforementioned compound as an active ingredient.
  • the pharmaceutical composition according to the embodiment of the present invention can effectively control the formation of matrix in cancer tissue and achieve more effective treatment of tumors.
  • the pharmaceutical composition according to an embodiment of the present invention has a longer half-life and treatment window and a significantly reduced therapeutic toxicity compared to existing cancer drugs.
  • the above pharmaceutical composition may further include at least one of the following additional technical features:
  • the pharmaceutical composition further includes a pharmaceutically acceptable excipient.
  • the pharmaceutical composition is in the form of micelles, emulsions, albumin nanoparticles, liposomes, capsules, pills, tablets, granules, oral liquids, oral creams, aerosols or sprays form.
  • administration is easy.
  • the pharmaceutical composition is in the form of a micelle, and the micelle is composed of a polyethylene glycol-polylactic acid block copolymer, a monomethoxy polyethylene glycol polylactic acid, Methoxy polyethylene glycol polylactic glycolic acid copolymer, monomethoxy polyethylene glycol polycaprolactone, monomethoxy polyethylene glycol polytrimethylene carbonate, and monomethoxy polyethylene glycol At least one of the polyamino acids is formed.
  • the active ingredient can not only be prevented from being engulfed by the human reticular endothelial system and the internal environment of others, but also be slowly released at the diseased site. Give full play to the efficacy of treating or preventing cancer.
  • the pharmaceutical composition further comprises other anti-pancreatic cancer drugs, wherein the other anti-pancreatic cancer drugs include 5-fluorouracil, gemcitabine, FOLFIRINOX, nanopaclitaxel / gemcitabine combination, and ONIVYDE TM One or more.
  • the therapeutic effect of the pharmaceutical composition on pancreatic cancer is more significant.
  • the present invention provides the use of the aforementioned compound or the aforementioned pharmaceutical composition in the preparation of a medicament for treating or preventing cancer.
  • the active compounds in the coupling compound or the pharmaceutical composition according to the embodiment of the present invention can be effectively degraded into tumor matrix regulatory groups and cytotoxic group drugs in vivo.
  • the tumor matrix regulatory groups can effectively inhibit the growth of tumor matrix and cytotoxicity.
  • the group exerts a cytotoxic effect to achieve effective killing of tumor cells.
  • the compound or the pharmaceutical composition according to the embodiment of the present invention can be effectively used for treating or preventing cancer.
  • the above-mentioned use may further include at least one of the following additional technical features:
  • the cancer is pancreatic cancer, liver cancer, breast cancer, skin cancer, prostate cancer or fibroblastoma.
  • the inventors have found that the above tumor has an obvious stromal microenvironment, and the compound or the pharmaceutical composition according to the embodiment of the present invention is more effective in treating the above cancer.
  • the cancer is pancreatic cancer.
  • the use of the compound or pharmaceutical composition according to the embodiment of the present invention to treat pancreatic cancer is more significant.
  • the present invention proposes a method for preparing the aforementioned compound.
  • the method includes: performing a linking reaction between a first coupling component and a second coupling component, the first coupling component is used to regulate a tumor stroma; and the second coupling component is used to Kill tumor cells.
  • the compound obtained by using the above method according to the embodiment of the present invention can simultaneously act on tumor stroma and tumor cells, thereby achieving the purpose of eliminating or reducing tumor stroma while killing tumor cells.
  • the pharmacokinetic properties of the compounds obtained according to the method of the embodiment of the present invention are improved, the pharmacokinetics of the first coupling component and the second coupling component are synchronized, and the production of the matrix and the inhibition of cancer cells are improved.
  • the synergistic effect of the cancer and tumor can improve the drug resistance environment, the effective killing of tumor cells is significantly improved, and the toxic and side effects of the drug are greatly reduced.
  • the above method may further include at least one of the following additional technical features:
  • the ligation reaction is performed under the condition that a first coupling component, a second coupling component, and a linker coexist, and the linker is represented by formulas (88) to (97).
  • the linker is represented by formulas (88) to (97).
  • n 1-10.
  • the compounds represented by the formulas (88) to (97) can be used as effective linkers to chemically couple the first coupling component and the second coupling component to form a stable compound.
  • the first coupling component is Cal
  • the second coupling component is TP
  • the linker is a compound represented by formula (88).
  • a molar ratio of the first coupling component to the second coupling component is 1: 1. Therefore, the second coupling component has a significant effect on suppressing tumor cells, the first coupling component has a significant effect on suppressing the formation of cancer stroma, and the synergistic treatment effect of the two is significant.
  • FIG. 1 shows the synthesis of a compound represented by formula (I) (referred to herein as Callide and compound 5 in the synthetic route) and the preparation of Callide-supported micelles (referred to herein as Callide NP ) according to an embodiment of the present invention
  • FIG. 2 is a graph showing the cell survival rate after treating cells with TP, Cal, TP / Cal and Callide NP with or without porcine liver Esterase (PLE) according to an embodiment of the present invention
  • FIG. 3 is a graph showing the plasma time curve and pharmacokinetic parameters of rat plasma after administration according to an embodiment of the present invention
  • FIG. 5 is a diagram showing smooth muscle actin and collagen expression of rat pancreatic stellate cells and pancreatic cancer cells in vitro after administration according to an embodiment of the present invention
  • FIG. 6 is a tumor suppression and mouse survival rate extension effect diagram of co-implantation of rat-derived pancreatic stellate cells and pancreatic cancer cells in vivo after administration according to an embodiment of the present invention
  • FIG. 7 shows that TP according to an embodiment of the present invention can inhibit tumor growth more effectively than Callide NP in a CDX model
  • FIG. 8 shows that Callide NP can effectively reduce the growth of pancreatic cancer tumors in a human xenograft model according to an embodiment of the present invention.
  • FIG. 9 is a photo of a nude mouse before and after administration according to an embodiment of the present invention.
  • the invention proposes a compound.
  • the compound includes a tumor matrix regulatory group and a cytotoxic group coupled to each other, the tumor matrix regulatory group is used to regulate a tumor matrix, and the cytotoxic group is used to kill a tumor cell .
  • the compounds according to the embodiments of the present invention can act on tumor stroma and tumor cells simultaneously, thereby achieving the purpose of eliminating or reducing tumor stroma while killing tumor cells.
  • the pharmacokinetic properties of the compounds according to the embodiments of the present invention are improved, synchronizing the pharmacokinetics of tumor stroma regulatory groups and cytotoxic groups, and having a good synergistic effect on the production of stroma and the inhibition of cancer cells
  • the resistance environment of cancer tumors has been improved, the effective killing of tumor cells has been significantly improved, and the toxic and side effects of drugs have been greatly reduced.
  • the tumor matrix regulatory group includes a member selected from Calcipotriol (Cal), Cyclopamine, ganciclovir (GCV), and Fingolimod. ), At least one of all-trans retinoic acid (ATRA) and hyaluronidase (HA).
  • calcipotriol is a VDR ligand and a major regulator of PSCs, which is involved in regulating the return of PSCs to rest, thereby inducing matrix content; cyclopamine can interact with Smoothened (Smo in the Hedgehog signaling pathway) ) Protein binding, thereby inhibiting the activity of the protein and reducing the formation of matrix; ganciclovir can inhibit the excessive proliferation of ⁇ -SMA positive in tumor matrix by competitively inhibiting the combination of deoxyguanosine trivalent phosphate and DNA polymerase.
  • fingolimod as a sphingosine phosphate receptor modulator, inhibits cell autophagy and promotes apoptosis by inhibiting the AMPK / mTOR pathway and inhibits the activation of pancreatic stellate cells ;
  • All-trans-retinoic acid is an analog of vitamin A, with the same mechanism of action as calcipotriol, and can act on fibroblast vitamin receptors produced by tumors to reduce the content of matrix; hyaluronidase can effectively degrade the tumor matrix The component-hyaluronic acid, directly reduces the density and content of the matrix.
  • the cytotoxic group includes a member selected from Triptolide (TP), paclitaxel, docetaxel, doxorubicin, camptothecin, hydroxycamptothecin, 5-fluorouracil, gemcitabine , Cisplatin, irinotecan, oxaliplatin, pemetrexed, capecitabine, epirubicin, sorafenib, gefitinib, erlotinib, imatinib, nilo Tenib, Dasatinib, Everolimus, Sunitinib, Ibrutinib, Crizotinib, Pazopanib, Carfilzomib, Tofatinib, Axitinib, Rigo Fenib, verofinib, sirolimus, bonatinib, lovatinib, olabanib, ceritinib, romidepsin, alotinib, be
  • Triptolide TP
  • Triptolide is an effective TFIIAH inhibitor.
  • FIIAH is a universal transcription factor. It is responsible for recruiting the DNA that needs to be transcribed to the promoter for transcription and unwinding these DNAs. In addition, if Cell DNA is damaged. TFIIAH is also used to unscrew DNA during gene repair. Overproliferation of cancer cells is accompanied by DNA transcription and related mRNA expression. TFIIAH is therefore more highly expressed than normal tissues, making it chemotherapy.
  • TP is a target for drug treatment of cancer.
  • TP is an effective treatment for pancreatic cancer; paclitaxel and docetaxel can be used to inhibit tubulin synthesis in tumor cells, thereby inhibiting tumor cell proliferation and achieving tumor suppressive effects.
  • doxorubicin can inhibit the synthesis of RNA and DNA, has the strongest inhibitory effect on RNA, has a broad anti-tumor spectrum, and has effects on a variety of tumors. It is a cycle-nonspecific Drugs have a killing effect on tumor cells in various growth cycles.
  • cell death rates and drugs Camptothecin and hydroxycamptothecin are cytotoxic quinoline alkaloids, which can inhibit DNA topoisomerase (TOPO I) and bind to the complex formed by Topo I-DNA to stabilize this complex. As a result, the broken DNA strand cannot be rejoined, preventing DNA replication and RNA synthesis.
  • Irinotecan is a semi-synthetic derivative of camptothecin, and camptothecin can specifically interact with Topoisomerase I binds, which induces a reversible single-strand break, thereby unwinding the double-stranded DNA structure, thereby promoting the death of cancer cells
  • 5-fluorouracil is a uracil analogue that can be transformed into cells efficiently Fluorouracil deoxynucleotides interfere with DNA synthesis by blocking the conversion of deoxyribonucleotide by intracellular thymidine synthase to thymidine
  • gemcitabine is a difluoronucleoside antimetabolite against cancer Is a
  • oxaliplatin can act on DNA by generating hydration derivatives Intra- and inter-chain cross-links are formed, thereby inhibiting DNA synthesis, producing cytotoxic effects and antitumor activity;
  • Pemetrexed is an antifolate preparation with a structure containing a pyrrolimidin group at the core.
  • Folic acid-dependent normal metabolic process inhibits cell replication, thereby inhibiting tumor growth; capecitabine can be converted into 5-FU antimetabolite fluoropyrimidine deoxynucleoside carbamates in vivo, which can inhibit cell division and interfere with RNA And protein (protein) synthesis, thereby inhibiting cancer cell proliferation; epirubicin: an isomer of adriamycin, the mechanism of action is directly embedded between DNA nucleobase pairs Interfere with transcription process, prevent the formation of mRNA, thus inhibiting the synthesis of DNA and RNA.
  • Small molecule targeted drugs and their targets are as follows: sorafenib (PDGF / VEGF), gefitinib (EGFR), erlotinib (EGFR / HER2), imatinib (Bcr-Abl), nepal Rotinib (Bcr-Abl), Dasatinib (Bcr-Abl), Everolimus (Bcr-Abl), Sunitinib (PDGF / VEGF), Ibrutinib (BTK), Crizotin (ALK), pazopanib (PDGF / VEGF), carfilzomib (26S proteasom), tofacitinib (JAK), axitinib (VEGFR), regorafenib (multikinase inhibitor) , Verofinib (B-Raf), sirolimus (mTOR), bonatinib (Bcr-Abl), lovatinib (RTK), olabanib (PA
  • the inventors designed and synthesized a variety of different drug coupling molecules. After using different degradable linkers, the drug can achieve different degrees of degradation in the body. One part of the drug coupling molecule achieves inhibition of the tumor matrix and the other part of the tumor cell kills. And through the design of different formulations and treatment schemes, the inventors achieved a balance between tumor stroma inhibition and cancer cell killing to achieve the purpose of synergy.
  • the compound further comprises an enzymatic degradation linker. Furthermore, the compound can generate tumor matrix regulatory group and cytotoxic group drugs through enzymatic degradation in vivo, which synchronizes the pharmacokinetics of tumor matrix regulatory group and cytotoxic group drugs, and achieves the promotion of PSC dormancy and Inhibit synergistic effects of tumor cells.
  • the enzymatic degradation linker has at least one of the following structures:
  • the invention proposes a compound.
  • it contains one of the following structures or the isomers, stereoisomers, geometric isomers, tautomers, nitrogen oxides, hydrates, solvents of said structures Compounds, metabolites, pharmaceutically acceptable salts or prodrugs,
  • R 1 is independently calcipotriol, cyclopamine, ganciclovir, fingolimod, all-trans retinoic acid or hyaluronidase;
  • R 2 is independently triptolide, paclitaxel, docetaxel, doxorubicin, camptothecin, hydroxycamptothecin, 5-fluorouracil, gemcitabine, cisplatin, irinotecan, oxaliplatin, pemetrexed Sai, capecitabine, epirubicin, sorafenib, gefitinib, erlotinib, imatinib, nilotinib, dasatinib, everolimus, sunitinib Nisin, irutinib, crizotinib, pazopanib, carfilzomib, tofatinib, axitinib, regorafenib, verofinib, sirolimus, ponatinib Nisin, lovatinib, olabanib, ceritinib, romidepsin, alertinib, belistatin, biscitin
  • the compounds according to the embodiments of the present invention can be catalyzed and degraded in vivo to produce tumor matrix regulatory groups and cytotoxic group drugs. Furthermore, the compound can act on tumor stroma and tumor cells simultaneously, thereby achieving the purpose of eliminating or reducing tumor stroma while killing tumor cells.
  • the pharmacokinetic properties of the compounds according to the embodiments of the present invention are improved, and the pharmacokinetics of tumor stroma regulatory groups and cytotoxic groups are synchronized, and the production of stroma and the inhibition of cancer cells is good. Synergistic effect, the drug resistant environment of cancer tumors is improved, the effective killing of tumor cells is significantly improved, and the toxic and side effects of drugs are greatly reduced.
  • compound (1) to compound (27) are coupling compounds formed by calcipotriol and triptolide through an enzymatically degradable linker.
  • Compounds (28) to (57) are calcipotriol and Gemcitabine is a coupling compound formed by enzymatically degradable linkers.
  • Compounds (58) to (87) are coupling compounds formed by calcipotriol and paclitaxel linked together by an enzymatically degradable linker.
  • the above-mentioned compound according to the embodiment of the present invention comprises a tumor matrix regulatory group and a cytotoxic group coupled to each other, the tumor matrix regulatory group is used to regulate the tumor matrix, and the cytotoxic group is used to kill tumor cells .
  • the compounds according to the embodiments of the present invention can act on tumor stroma and tumor cells simultaneously, thereby achieving the purpose of eliminating or reducing tumor stroma while killing tumor cells.
  • the pharmacokinetic properties of the above-mentioned compounds according to the embodiments of the present invention are improved, and the pharmacokinetics of the tumor matrix regulatory group and the cytotoxic group are synchronized, and the generation of stroma and the inhibition of cancer cells are improved.
  • the synergistic effect of the cancer and tumor can improve the drug resistance environment, the effective killing of tumor cells is significantly improved, and the toxic and side effects of the drug are greatly reduced.
  • the invention proposes a compound.
  • the compound has a compound represented by formula (I), or an isomer of a compound represented by formula (I) (such as compound II, compound III), stereoisomers, geometric isomers Isomers, tautomers, nitrogen oxides, hydrates, solvates, metabolites, pharmaceutically acceptable salts or prodrugs,
  • the above-mentioned compound according to the embodiment of the present invention is a novel, dual-targeted coupling compound that is synthesized by linking triptolide and calcipotriol through an enzymatically degradable linker.
  • This application is named as this compound. "Callide”.
  • Callide Compared with the original TP, Callide has an increased molecular weight, a slower crystallization tendency, and is more hydrophobic.
  • a variety of nano drug delivery systems (such as polymer micelles, albumin composite nanoparticles, liposomes, etc.) are easy to load and deliver Callide, optimizing Callide's pharmacokinetics, and enhancing Callide's enrichment at tumor sites, Reduce the toxic and side effects of TP.
  • Calide is produced by the catalytic degradation of esterase in the body by Callide, thus synchronizing the pharmacokinetics of Cal and TP, achieving the promotion of PSC dormancy (carbotriol) and the inhibition of pancreatic cancer tumor cells (triple A), and significantly reduce toxic and side effects.
  • the coupling compound according to the embodiment of the present invention can effectively control the formation of stroma in pancreatic cancer tissue and achieve effective aggregation of TP, thereby achieving more effective treatment of pancreatic cancer.
  • the compounds according to embodiments of the present invention have a longer half-life and treatment window and a significantly reduced therapeutic toxicity compared to existing TP drugs for treating pancreatic cancer.
  • isomers refers to a compound that has the same molecular formula but different atomic arrangements. In short, the phenomenon that compounds have the same molecular formula but different structures is called isomerism; compounds with the same molecular formula but different structures are isomers of each other. Many isomers have similar properties. In organic chemistry, isomers can be homogeneous substances (containing the same functional groups) or different types of substances (containing different functional groups).
  • Stereoisomers refer to compounds that have the same chemical structure, but differ in the arrangement of atoms or groups in space. Stereoisomers include enantiomers, diastereomers, conformers (rotomers), geometric isomers (cis / trans) isomers, atropisomers, etc. .
  • Chiral is a molecule that cannot overlap with its mirror image; “Achiral” refers to a molecule that can overlap with its mirror image.
  • Enantiomers refer to two isomers of a compound that cannot overlap but mirror image each other.
  • Diastereomer refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, such as melting points, boiling points, spectral properties, and reactivity. Diastereomeric mixtures can be separated by high resolution analytical operations such as electrophoresis and chromatography, such as HPLC.
  • optically active compounds Many organic compounds exist in optically active forms, that is, they have the ability to rotate the plane of plane-polarized light.
  • the prefixes D and L or R and S are used to indicate the absolute configuration of the molecule with respect to one or more of its chiral centers.
  • the prefixes d and l or (+) and (-) are symbols used to specify the rotation of planar polarized light caused by a compound, where (-) or l indicates that the compound is left-handed.
  • Compounds prefixed with (+) or d are right-handed.
  • a specific stereoisomer is an enantiomer, and a mixture of such isomers is called an enantiomeric mixture.
  • a 50:50 mixture of enantiomers is called a racemic mixture or a racemate, and this can occur when there is no stereoselection or stereospecificity in a chemical reaction or process.
  • any asymmetric atom (e.g., carbon, etc.) of a compound disclosed herein can exist in racemic or enantiomerically enriched form, such as (R)-, (S)-, or (R, S) -configuration presence.
  • each asymmetric atom has at least 50% enantiomeric excess in the (R)-or (S) -configuration, at least 60% enantiomeric excess, at least 70% enantiomeric excess, at least 80% enantiomeric excess, at least 90% enantiomeric excess, at least 95% enantiomeric excess, or at least 99% enantiomeric excess.
  • the compounds of the invention may be in one of the possible isomers or mixtures thereof, such as racemates and non-corresponding isomer mixtures (depending on the number of asymmetric carbon atoms) Exists in the form.
  • Optically active (R)-or (S) -isomers can be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. If the compound contains a double bond, the substituent may be in the E or Z configuration; if the compound contains a disubstituted cycloalkyl group, the substituent of the cycloalkyl group may have a cis or trans configuration.
  • the resulting mixture of any stereoisomers can be separated into pure or substantially pure geometric isomers, enantiomers, diastereomers, for example, by chromatography And / or fractional crystallization.
  • racemates of any of the resulting end products or intermediates can be resolved into optical enantiomers by methods known to those skilled in the art using known methods, for example, by subjecting the diastereomeric salts obtained Separation. Racemic products can also be separated by chiral chromatography, such as high performance liquid chromatography (HPLC) using a chiral adsorbent.
  • enantiomers can be prepared by asymmetric synthesis, for example, refer to Jacques, et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Principles of Asymmetric Synthesis ( 2nd Ed. Robert E.
  • tautomers or “tautomeric forms” refers to structural isomers with different energies that can be converted to each other through a low energy barrier. If tautomerization is possible (eg in solution), the chemical equilibrium of the tautomers can be reached.
  • protontautomers also known as prototropic tautomers
  • Valence tautomers include interconversions through the reorganization of some bonding electrons.
  • keto-enol tautomerism is the interconversion of pentane-2,4-dione and 4-hydroxypent-3-en-2-one tautomers.
  • tautomerism is phenol-keto tautomerism.
  • a specific example of phenol-keto tautomerization is the interconversion of pyridin-4-ol and pyridin-4 (1H) -one tautomers. Unless otherwise indicated, all tautomeric forms of the compounds of the invention are within the scope of the invention.
  • prodrug used in the present invention represents the conversion of a compound into a compound represented by formula (I) in vivo. Such transformations are affected by the prodrug's hydrolysis in the blood or the enzyme's conversion into the parent structure in the blood or tissues.
  • the prodrug compound of the present invention may be an ester.
  • esters can be used as prodrugs of phenyl esters, aliphatic (C1-24) esters, acyloxymethyl esters, carbonates, Carbamates and amino acid esters.
  • a compound in the present invention contains a hydroxyl group, which can be acylated to obtain a compound in the form of a prodrug.
  • Other prodrug forms include phosphate esters.
  • these phosphate ester compounds are obtained by phosphorylation of hydroxy groups on the parent.
  • prodrugs please refer to the following documents: T. Higuchi and V. Stella, Pro-drugs, Novel Delivery Systems, Vol. 14 of the ACSSymposium Series, Edward B. Roche, ed., Bioreversible Carriers, and Drug Design , American Pharmaceutical Association and Pergamon Press, 1987, J. Rautio et al., Prodrugs: Design and Clinical Applications, Nature Review, Drug Discovery, 2008, 7, 255-270, and SJ Hecker et al., Prodrugs, Phosphates and others Journal of Medical Chemistry, 2008, 51, 2328-2345.
  • Metal refers to a product obtained by metabolizing a specific compound or a salt thereof in the body.
  • the metabolites of a compound can be identified by techniques well known in the art, and its activity can be characterized by experimental methods as described in the present invention. Such products can be obtained by administering a compound through oxidation, reduction, hydrolysis, amidolation, deamidation, esterification, degreasing, enzymatic cleavage, and the like.
  • the invention includes metabolites of a compound, including metabolites produced by sufficient contact of a compound of the invention with a mammal for a period of time.
  • “Pharmaceutically acceptable salt” as used in the present invention refers to organic and inorganic salts of the compounds of the present invention.
  • Pharmaceutically acceptable salts are well known to the inventors in the art, as described in the literature: S.M.Berge et al., Describe Acceptable salts in detail, J. Pharmaceuticals, Science, 1977, 66: 1-19.
  • Salts formed from pharmaceutically acceptable non-toxic acids include, but are not limited to, inorganic acid salts formed by reaction with amino groups such as hydrochloride, hydrobromide, phosphate, sulfate, perchlorate, And organic acid salts such as acetate, oxalate, maleate, tartrate, citrate, succinate, malonate, or other methods described in the book literature such as ion exchange method These salts.
  • salts include adipate, alginate, ascorbate, aspartate, besylate, benzoate, bisulfate, borate, butyrate, and camphoric acid Salt, camphor sulfonate, cyclopentylpropionate, digluconate, dodecyl sulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerol phosphate Salt, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodate, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, Malate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, palmitate, pipate, pectate, persulfate, 3 -Phen
  • Salts obtained by appropriate bases include salts of alkali metals, alkaline earth metals, ammonium and N + (C1-4alkyl) 4.
  • the present invention also contemplates the formation of quaternary ammonium salts of any compound containing a group of N.
  • Water-soluble or oil-soluble or dispersed products can be obtained by quaternization.
  • Alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like.
  • the pharmaceutically acceptable salts further include suitable, non-toxic ammonium, quaternary ammonium salts and amine cations formed by anti- counterions, such as halides, hydroxides, carboxylates, sulfates, phosphates, nitrates, C1- 8 sulfonates and aromatic sulfonates.
  • solvate of the present invention means an association formed by one or more solvent molecules and a compound of the present invention.
  • Solvent-forming solvents include, but are not limited to, water, isopropanol, ethanol, methanol, dimethylsulfoxide, ethyl acetate, acetic acid, and aminoethanol.
  • hydrate refers to an association formed by the solvent molecules being water.
  • the term “treating" any disease or disorder in some embodiments thereof, “treating” refers to ameliorating the disease or disorder (ie, slowing or preventing or reducing the development of the disease or at least one of its clinical symptoms). In other embodiments, “treating” refers to alleviating or improving at least one physical parameter, including a physical parameter that may not be perceived by the patient. In other embodiments, “treatment” refers to modulating a disease or condition physically (e.g., stabilizing a perceptible symptom) or physiologically (e.g., a parameter that stabilizes the body) or both. In other embodiments, “treating” refers to preventing or delaying the onset, occurrence or worsening of a disease or disorder.
  • Pharmaceutically acceptable acid addition salts can be formed with inorganic and organic acids, such as acetate, aspartate, benzoate, benzenesulfonate, bromide / hydrobromide, bicarbonate / Carbonate, bisulfate / sulfate, camphorsulfonate, chloride / hydrochloride, chlorotheophylline, citrate, ethanesulfonate, fumarate, glucoheptanoate, glucose Gluconate, glucuronide, hippurate, hydroiodate / iodide, isethionate, lactate, lactobionate, lauryl sulfate, malate, maleate Acid salt, malonate, mandelate, mesylate, methyl sulfate, naphthalate, naphthalenesulfonate, nicotinate, nitrate, stearate, oleate, oxalate Salt, palmitate, cit
  • Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, mandelic acid, methanesulfonic acid , Ethanesulfonic acid, p-toluenesulfonic acid, sulfosalicylic acid, etc.
  • Pharmaceutically acceptable base addition salts can be formed with inorganic and organic bases.
  • Inorganic bases from which salts can be derived include, for example, ammonium salts and metals from Groups I to XII of the Periodic Table.
  • the salt is derived from sodium, potassium, ammonium, calcium, magnesium, iron, silver, zinc, and copper; particularly suitable salts include ammonium, potassium, sodium, calcium, and magnesium salts.
  • Organic bases from which salts can be derived include primary, secondary, and tertiary amines, and substituted amines include naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like.
  • Certain organic amines include, for example, isopropylamine, benzathine, cholinate, diethanolamine, diethylamine, lysine, meglumine, piperazine, and tromethamine .
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound, a basic or acidic moiety using conventional chemical methods.
  • such salts can be obtained by reacting the free acid form of these compounds with a stoichiometric amount of a suitable base, such as hydroxide, carbonate, bicarbonate, etc. of Na, Ca, Mg or K, or by These compounds are prepared by reacting the free base form of these compounds with a stoichiometric amount of a suitable acid. This type of reaction is usually carried out in water or an organic solvent or a mixture of both.
  • a non-aqueous medium such as diethyl ether, ethyl acetate, ethanol, isopropanol, or acetonitrile is required.
  • a non-aqueous medium such as diethyl ether, ethyl acetate, ethanol, isopropanol, or acetonitrile.
  • the compounds disclosed in the present invention can also be obtained in the form of their hydrates or in the form of solvents containing them (such as ethanol, DMSO, etc.) for their crystallization.
  • solvents containing them such as ethanol, DMSO, etc.
  • the compounds disclosed herein may form solvates inherently or by design with pharmaceutically acceptable solvents, including water; therefore, the invention is intended to include both solvated and unsolvated forms.
  • any formula given by the present invention is also intended to represent the isotopically enriched form of these compounds as well as the isotopically enriched form.
  • Isotopically enriched compounds have the structure depicted by the general formula given in the present invention, except that one or more atoms are replaced by an atom having a selected atomic mass or mass number.
  • Exemplary isotopes that can be incorporated into the compounds of the present invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, and chlorine, such as 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 17 O , 18 O, 18 F, 31 P, 32 P, 35 S, 36 Cl and 125 I.
  • the compounds described herein include isotopically enriched compounds as defined herein, such as those compounds in which radioisotopes are present, such as 3 H, 14 C, and 18 F, or in which non-radioactive isotopes are present, such as 2H And 13 C.
  • This class of isotopically enriched compounds can be used in metabolic studies (using 14 C), reaction kinetic studies (using, for example, 2 H or 3 H), detection or imaging techniques such as positron emission tomography (PET) or including drugs or Single tissue photon emission computed tomography (SPECT) for the determination of substrate tissue distribution may be used in patients with radiotherapy.
  • 18 F-enriched compounds are particularly desirable for PET or SPECT studies.
  • Isotopically enriched compounds of formula (I) can be prepared by conventional techniques familiar to those skilled in the art or as described in the examples and preparation procedures of the present invention, using suitable isotopically labeled reagents instead of unlabeled reagents that were previously used.
  • isotopic enrichment factor refers to the ratio between the isotopic abundance and the natural abundance of a specified isotope.
  • the compound has at least 3500 (52.5% deuterium incorporation at each specified deuterium atom), at least 4000 (60% deuterium incorporation) for each specified deuterium atom, At least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium incorporation), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% Deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation) isotope enrichment factors.
  • the pharmaceutically acceptable solvates of the present invention include those in which the crystalline solvent may be isotopically substituted, such as D 2 O, acetone-d6, DMSO-d6.
  • the invention proposes a pharmaceutical composition.
  • the pharmaceutical composition contains the aforementioned compound as an active ingredient.
  • the pharmaceutical composition according to the embodiment of the present invention can effectively control the formation of matrix in cancer tissue and achieve more effective treatment of tumors.
  • the pharmaceutical composition according to the embodiment of the present invention has a longer half-life and treatment window and a significantly reduced therapeutic toxicity compared with the existing drugs for treating tumors.
  • the pharmaceutical composition further includes a pharmaceutically acceptable excipient.
  • the dosage form of the pharmaceutical composition is not particularly limited, and those skilled in the art can flexibly choose according to actual conditions.
  • the pharmaceutical composition is in the form of a micelle, an emulsion, a capsule, a pill, a tablet, a granule, an oral liquid, an oral cream, an aerosol or a spray. Thereby, administration is easy.
  • Polymer micelles have attracted more and more attention as drug carriers.
  • Polymer micelles can form a unique core-shell structure.
  • the outer shell is formed by hydrophilic segments and the inner core is formed by hydrophobic segments. This allows the hydrophobic drug to be wrapped in the inner core of the micelles and protects the loaded drug.
  • the micellar particle size is generally 10-100 nanometers, which makes it able to escape the phagocytosis of the human reticular endothelial system (RES) and the influence of others' internal environment, and can increase the high permeability and retention effect (EPR) of solid tumors.
  • RES human reticular endothelial system
  • EPR high permeability and retention effect
  • the pharmaceutical composition is in the form of a micelle
  • the carrier of the micelle is a degradable amphiphilic polymer, including polyethylene glycol polylactic acid diblock copolymer ( PEG-PLA), monomethoxypolyethylene glycol (mPEG) polylactic acid (left, right, racemic): mPEG-PLA, monomethoxypolyethylene glycol (mPEG) polylactic glycolic acid copolymer (Different ratios): mPEG-PLGA, monomethoxypolyethylene glycol (mPEG) polycaprolactone (PCL): mPEG-PCL, monomethoxypolyethylene glycol (mPEG) polytrimethylene carbonate (PTMC): mPEG-PTMC or monomethoxypolyethylene glycol (mPEG) polyamino acid (polylysine, polyglutamic acid, polyaspartic acid, polyornithine, polyarginine,
  • PEG-PLA polyethylene glyco
  • the molecular weight of polyethylene glycol polylactic acid diblock copolymer is 2000-2000.
  • PEG-PLA polyethylene glycol polylactic acid diblock copolymer
  • Those skilled in the art can use the following synthetic ideas:
  • the synthesis of PEG-PLA is based on monohydroxy PEG as the initiator and lactide.
  • As a polymerization monomer a block polymer obtained by ring-opening polymerization is used. If the molar amount of fixed PEG is constant, and the molar concentration of lactide monomers is changed, the length of PLA segments can be controlled, so as to obtain polymers with constant PEG chain lengths and different PLA chain lengths; similarly, different molecular weights are used.
  • PEG and then fix the concentration of lactide
  • PEG-PLA can also design and synthesize PEG-PLA with different PEG chain length and fixed PLA chain length. Therefore, the two segments of the amphiphilic block polymer can be chemically synthesized by adjusting the polymerization concentration and ratio of the two to obtain an arbitrary molecular weight.
  • studies have shown that different polymer chain lengths have different loading capacities for the drug, the stability of the micelles formed in vitro and in vivo, and the rate of drug release in vitro and in vivo. If the formulation is optimized by adjusting the type and properties of the polymer on the basis of the present invention, it is likely that a better therapeutic effect in vivo and in vitro can be obtained.
  • the synthesis of PEG-PLA is a block polymer obtained by using monohydroxy PEG as an initiator, lactide as a polymerization monomer, and ring-opening polymerization. If the molar amount of the fixed PEG is constant, and the concentration of the lactide monomer is changed, the length of the PLA segment can be controlled, so that a polymer having a constant PEG chain length and different PLA chain lengths can be obtained. Similarly, different polymers are used. The molecular weight of PEG and the concentration of lactide can also be used to design and synthesize PEG-PLA with different PEG chain length and fixed PLA chain length.
  • the two segments of the amphiphilic block polymer can be chemically synthesized by adjusting the polymerization concentration and ratio of the two to obtain an arbitrary molecular weight.
  • studies have shown that different polymer chain lengths have different loading capacities for the drug, the stability of the micelles formed in vitro and in vivo, and the rate of drug release in vitro and in vivo.
  • formulation optimization is performed by adjusting the type and nature of the polymer, so as to obtain a better preparation effect in vivo and in vitro is also within the protection scope of the present application.
  • the active ingredient can be prevented from being eliminated and degraded by the human reticular endothelial system into non-toxic monomers and excreted from the body.
  • the hydrophilic segment of PEG has the advantages of being easily soluble in water, easy to flow and low toxicity, and can achieve Long loop effect.
  • the micellar system can also effectively increase the drug loading and bioavailability of the active ingredients, thereby better exerting the efficacy of treating or preventing cancer.
  • the pharmaceutical composition further comprises other anti-pancreatic cancer drugs, wherein the other anti-pancreatic cancer drugs include 5-fluorouracil, gemcitabine, FOLFIRINOX, nanopaclitaxel / gemcitabine combination, and ONIVYDE TM One or more.
  • the pharmaceutical composition In combination with other drugs for treating pancreatic cancer, the pharmaceutical composition has a more significant therapeutic effect on pancreatic cancer.
  • the compounds of the present invention can be produced and formulated as racemic mixtures, isomers, enantiomers, diastereomers, rotamers, N-oxides, polymorphs, solvents Compounds and pharmaceutically acceptable salts and active metabolite forms; can also produce compounds containing formula (I) or its metabolites, enantiomers, non-corresponding isomers, N-oxides, polyamines A pharmaceutical composition of a crystalline form, solvate or pharmaceutically acceptable salt with a pharmaceutically acceptable carrier and optionally included excipients.
  • the pharmaceutical composition of the present invention can be produced and administered in dosage units, each unit containing a certain amount of at least one compound according to the present invention and / or at least one physiologically acceptable addition salt thereof. Dosages can vary over a very wide range because the compound is effective even at low dose levels and is relatively non-toxic.
  • the compound can be administered in a therapeutically effective low micromolar, and the dose can be increased to the maximum dose that the patient can withstand as needed.
  • the present invention also provides a pharmaceutical composition comprising a therapeutically effective amount of a compound represented by formula (I) or a pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable carriers, diluents Or excipients.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof can be combined with the pharmaceutical carrier as an active ingredient in an intimately mixed manner.
  • the carrier can have a variety of forms, depending on the form of the formulation for which administration is desired, such as oral or parenteral (including intravenous).
  • the pharmaceutical composition may exist as separate units suitable for oral administration, such as capsules, elixirs or tablets, each of which contains a predetermined amount of the active ingredient.
  • the composition may be in the form of a powder, granule, solution, suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil liquid emulsion.
  • the compounds or their pharmaceutically acceptable salts can also be administered by controlled release means and / or delivery devices.
  • the composition can be prepared by any method in the pharmaceutical industry. Generally, such methods include the step of combining the active ingredient with a carrier, which constitutes one or more essential ingredients. Generally, the compositions are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both. The product can then be conveniently made into the desired form.
  • the pharmaceutical carrier used may be a solid, liquid or gas.
  • solid carriers include lactose, gypsum powder, sucrose, talc, gelatin, agar, pectin, gum arabic, magnesium stearate, and stearic acid.
  • liquid carriers are syrup, peanut oil, olive oil and water.
  • gas carrier include carbon dioxide and nitrogen.
  • terapéuticaally effective amount refers to the total amount of each active ingredient sufficient to show a meaningful patient benefit. When administered separately using a separate active ingredient, the term refers only to that ingredient. When used in combination, the term refers to the combined amount of active ingredients that, whether administered in combination, sequentially or simultaneously, causes a therapeutic effect.
  • the compound represented by the formula (I) and a pharmaceutically acceptable salt thereof are as described above.
  • the carrier, diluent or excipient must be acceptable in the sense of being compatible with the other ingredients of the formulation and not harmful to its recipient.
  • a method for preparing a pharmaceutical preparation comprises combining a compound represented by formula (I) or a pharmaceutically acceptable salt thereof with one or more pharmaceutically acceptable carriers , Diluent or excipient.
  • pharmaceutically acceptable refers to compounds, raw materials, compositions and / or dosage forms which are within the scope of sound medical judgment and are suitable for contact with patient tissues without excessive toxicity or irritation , Allergies, or other problems and complications commensurate with a reasonable benefit / risk ratio, and effectively used for the intended purpose.
  • the compounds of the invention are administered in a therapeutically effective amount by any conventional means of administration for substances that exert similar effects.
  • a suitable dosage range is typically 1-500 mg per day, preferably 1-100 mg per day, and most preferably 1-30 mg per day, depending on various factors such as the severity of the disease being treated, the age and relative health of the subject to be administered, The potency of the compound used, the route and form of administration, the indication for which it is administered, and the preferences and experience of the relevant medical practitioner.
  • One of ordinary skill in the art of treating the disease can determine a therapeutically effective amount of a compound of the invention for a given disease without undue experimentation, relying on personal knowledge and the disclosure of this application.
  • the administration of the compound of the present invention can be performed according to the needs of the patient, for example, oral administration, nasal administration, parenteral administration (subcutaneous, intravenous, intramuscular, intrasternal and infusion), inhalation, Rectal, transvaginal, surface administration, topical, transdermal, and ocular administration.
  • solid oral dosage forms can be used for the administration of the compounds of the present invention, such as solid dosage forms of tablets, soft capsules, capsules, caplets, granules, lozenges, and bulk powders.
  • the compounds of the invention may be administered alone or in combination with various pharmaceutically acceptable carriers, diluents (e.g., sucrose, mannitol, lactose, starch) and excipients known in the art, including but not limited to Suspending agents, solubilizers, buffering agents, adhesives, disintegrating agents, preservatives, colorants, flavoring agents, lubricants, etc.
  • Suspending agents e.g., sucrose, mannitol, lactose, starch
  • excipients known in the art, including but not limited to Suspending agents, solubilizers, buffering agents, adhesives, disintegrating agents, preservatives, colorants, flavoring agents, lubricants, etc.
  • Time-release capsules, tablets and gels
  • Tablets can be made by compression or molding, optionally using one or more accessory ingredients or auxiliaries.
  • Compressed tablets may be prepared by compressing the active ingredient in a free-flowing form (e.g., powder or granules) in a suitable machine, optionally mixed with a binder, lubricant, inert diluent, surfactant or dispersant .
  • Molded tablets can be prepared by molding a mixture of powdered compounds moistened with an inert liquid diluent in a suitable machine.
  • Each tablet preferably contains from about 0.1 mg to about 500 mg of the active ingredient; and each elixirs or capsules preferably contains from about 0.1 mg to about 500 mg of the active ingredient.
  • the tablets, elixirs or capsules conveniently contain 0.1 mg, 1 mg, 5 mg, 25mg, 50mg, 100mg, 200mg, 300mg, 400mg or 500mg of active ingredient.
  • the compounds of the invention can also be administered in a variety of liquid oral dosage forms, including aqueous and anhydrous solutions, emulsions, suspensions, syrups and elixirs.
  • This dosage form may also contain suitable inert diluents known in the art, such as water, and suitable excipients known in the art, such as preservatives, lubricants, sweeteners, flavoring agents. And agents for emulsifying the compounds of the invention and / or making them suspensions.
  • the compounds of the invention may be administered by injection in the form of an isotonic sterile solution, for example, intravenously. Other preparations are also possible.
  • Suppositories for rectal administration of a compound of the present invention can be prepared by mixing the compound with suitable excipients such as cocoa butter, salicylate and polyethylene glycol.
  • Formulations for vaginal administration can be in the form of creams, gels, pastes, foams or sprays, and contain, in addition to the active ingredient, suitable carriers such as are known in the art.
  • the pharmaceutical composition may be a cream, ointment, tincture, lotion, emulsion, suspension, gel, solution, paste, powder suitable for administration to the skin, eyes, ears or nose , Sprays and drops.
  • Topical administration may also include transdermal administration by means of, for example, a transdermal patch.
  • the compounds of the invention are preferably administered by inhalation.
  • they may be administered as powders (preferably in micronized form), or by spray solutions or suspensions containing them.
  • Inhalable preparations include inhalable powders, metered aerosols with propellants, or inhalable formulations without propellants.
  • a diluent or carrier may be added to the powder compound of the present invention, which is generally non-toxic and chemically inert to the compound of the present invention, such as lactose or any other additive suitable for improving the breathable portion.
  • Inhalation aerosols containing a gas propellant may contain a compound of the invention in solution or dispersed form.
  • the propellant-driven formulation may also contain other ingredients, such as co-solvents, stabilizers, and optionally other excipients.
  • Propellant-free inhalable formulations containing a compound of the invention may be in the form of a solution or suspension in an aqueous medium, an alcoholic medium, or an aqueous alcoholic medium, and they may be passed through a spray nebulizer or ultrasound known in the art. Nebulizer delivery, or through soft-mist nebulizers such as deliver.
  • the compounds of the present invention may be administered as a single active agent or in combination with other pharmaceutically active ingredients including those currently used to treat pancreatic cancer, such as 5-fluorouracil, gemcitabine, FOLFIRINOX, nanopaclitaxel / Gemcitabine combination and compounds disclosed in ONIVYDE TM .
  • a compound of formula (I) is administered alone or in combination with other active ingredients for the prevention and / or treatment of cancers.
  • one therapeutic agent / pharmaceutical active ingredient may be administered in the morning and another may be administered later in the day. In other embodiments, one therapeutic agent / pharmaceutical active ingredient may be administered once a day and the other may be administered once a week. It is understood that if the ingredients are administered directly one after the other, the delay in the administration of the second ingredient should not cause the beneficial effects of the combination to be lost.
  • Simultaneous administration can be performed by any appropriate route, and preferably such as by administering these therapeutic agents to the subject in need thereof by the oral or intravenous route or the intramuscular route or subcutaneous injection, such that The form has a fixed ratio of each therapeutic agent.
  • each therapeutic agent can be performed by any suitable route, including but not limited to the oral route, the intravenous route, the intramuscular route, and absorption through mucosal tissues.
  • These therapeutic agents may be administered by the same route or by different routes.
  • both therapeutic agents of the combination can be administered orally.
  • the compounds of the invention may be included in a pharmaceutical composition.
  • the pharmaceutical composition comprises a compound described in the present invention or a pharmaceutically acceptable salt thereof as an active ingredient, and a pharmaceutically acceptable carrier; and optionally other therapeutic ingredients or adjuvants.
  • compositions include compositions suitable for oral, rectal, topical, and parenteral (including subcutaneous, intramuscular, and intravenous) administration, although in a given case, the most appropriate route depends on the particular host, and for The nature and severity of the condition to which the active ingredient is applied.
  • the pharmaceutical composition may conveniently be presented in unit dosage form and prepared by using any method well known in the pharmaceutical art.
  • a cream, ointment, jelly, solution or suspension containing the compound may be used for topical use.
  • oral lotions and mouthwashes are included within the scope of topical use.
  • compositions suitable for parenteral administration can be formulated as solutions or suspensions of the active ingredient in water.
  • a suitable surfactant may be included, such as hydroxypropyl cellulose.
  • Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof (in oil).
  • preservatives can be included to prevent harmful growth of microorganisms.
  • compositions suitable for injection use include sterile aqueous solutions or dispersions.
  • the composition may be in the form of a sterile powder for the immediate preparation of such sterile injectable solutions or dispersions. In all cases, the final injectable form must be sterile and must be effectively fluid for easy injection.
  • the pharmaceutical composition must be stable under the conditions of manufacture and storage; therefore, it should preferably be protected against contaminating effects of microorganisms, such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium including, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol), vegetable oil, and suitable mixtures thereof.
  • the pharmaceutical composition may be in a form suitable for topical use, such as an aerosol, cream, ointment, lotion, dusting powder, and the like.
  • the composition may be in a form suitable for use in a transdermal device, and these preparations may be prepared by a conventional processing method using a compound or a pharmaceutically acceptable salt thereof.
  • creams and ointments are prepared by mixing a hydrophilic material and water and about 5 wt% to about 10 wt% of a compound to produce a cream or ointment having a desired consistency.
  • the present invention provides a method for treating pancreatic cancer in a patient in need of such treatment, which method comprises co-administering to said patient a therapeutically effective amount of at least one compound of formula (I), or a pharmaceutically acceptable salt or solvent thereof ⁇ The compound.
  • the dosage of a compound of the present invention depends on a number of factors, including the specific disease to be treated, the severity of symptoms, the route of administration, the frequency of dose intervals, the specific compound used, the potency of the compound, its toxicological characteristics and feature.
  • the amount of active ingredient that can be combined with a carrier material to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
  • a formulation intended for oral administration to a human may conveniently contain from about 0.5 mg to about 5 g of active agent, which is complexed with a suitable and convenient amount of carrier material (which may comprise from about 5% to about 95% of the total composition) .
  • a unit dosage form will typically contain from about 1 mg to about 1000 mg of the active ingredient, typically 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg, or 1000 mg.
  • the specific dose level will depend on a range of factors including age, weight, general health, gender, diet, timing of administration, route of administration, excretion rate, drug combination, and severity of the particular disease undergoing treatment .
  • the present invention provides the use of the aforementioned compound or the aforementioned pharmaceutical composition in the preparation of a medicament for treating or preventing cancer.
  • the active ingredient in the compound or the pharmaceutical composition can be effectively degraded into a tumor matrix regulating group and a cytotoxic group drug in vivo.
  • the tumor matrix regulating group can effectively inhibit the growth of the tumor matrix.
  • the cytotoxic effect is exerted in vivo to achieve effective killing of tumor cells, and further, the compound or the pharmaceutical composition according to the embodiment of the present invention can be effectively used for treating or preventing cancer.
  • the cancer is pancreatic cancer, liver cancer, breast cancer, skin cancer, prostate cancer or fibroblastoma.
  • the above cancer types have a large amount of tumor stroma in a certain period of time.
  • These cancers have complex tumor microenvironments similar to pancreatic cancer due to activated stroma fibroblasts (vascular barrenness, insensitivity or resistance to chemotherapy drugs, immunity Inhibition, etc.), and tumor cells and these stromal fibroblasts also have similar interactions, the compounds according to the embodiments of the present invention can regulate activated stroma fibroblasts of these tumors, thereby reducing the stroma content in these tumor tissues, More second coupling components enter tumor cells to achieve the killing effect on tumor cells. Specific reports of these tumor microenvironments can be found in the literature (Margareta M. Mueller. Nature reviews, 2004).
  • the cancer is pancreatic cancer.
  • the use of the compound or pharmaceutical composition according to the embodiment of the present invention to treat pancreatic cancer is more significant.
  • an “effective amount” or “effective dose” of a compound or pharmaceutically acceptable composition of the present invention refers to an effective amount that treats or reduces the severity of one or more of the conditions mentioned in the present invention.
  • the compounds and compositions can be used in any amount and route of administration to effectively treat or reduce the severity of the disease. The exact amount necessary will vary depending on the patient, depending on race, age, general condition of the patient, severity of infection, special factors, mode of administration, and so on.
  • the compound or composition can be administered in combination with one or more other therapeutic agents, as discussed herein.
  • the invention proposes a method by which the aforementioned compounds can be prepared.
  • the method includes: performing a linking reaction between a first coupling component and a second coupling component, the first coupling component is used to regulate a tumor stroma; and the second coupling component is used to Kill tumor cells.
  • the compound obtained by using the above method according to the embodiment of the present invention can achieve the effect of simultaneously acting on tumor stroma and tumor cells, thereby achieving the purpose of eliminating or reducing tumor stroma while killing tumor cells.
  • the pharmacokinetic properties of the compounds obtained according to the method of the embodiment of the present invention are improved, the pharmacokinetics of the first coupling component and the second coupling component are synchronized, and the production of the matrix and the inhibition of cancer cells are improved.
  • the synergistic effect of the cancer and tumor can improve the drug resistance environment, the effective killing of tumor cells is significantly improved, and the toxic and side effects of the drug are greatly reduced.
  • the ligation reaction is performed in the presence of a linker.
  • the type of the linker is not particularly limited, as long as it can successfully perform a ligation reaction between the first coupling component and the second coupling component and perform enzymolysis in vivo.
  • the ligation reaction is performed under the condition that the first coupling component, the second coupling component, and a linker coexist, and the linker is of formula (88) to formula (97) At least one of the compounds shown,
  • n 1-10.
  • the compounds represented by the formulae (88) to (97) can be used as effective linkers to chemically combine the first coupling component and the second coupling component to form a stable coupling compound.
  • the first coupling component is Cal and the second coupling component is TP, wherein the compound represented by formula (A) is TP and the compound represented by (B) is Cal,
  • the ligation reaction uses a compound represented by formula (88) as a linker, and the ligation reaction efficiency is high.
  • the mass ratio of the compound represented by the formula (A) to the compound represented by the formula (B) is 1: 1.
  • the method for preparing the aforementioned compound is shown in FIG. 1A and includes the following steps:
  • Step 1 Synthesis of TP-COOH: Succinic anhydride (630 mg, 6.3 mmol) was added to a solution of triptolide (324 mg, 0.90 mmol) in dichloromethane (CH 2 Cl 2 ). Dimethylaminopyridine (DMAP, 765 mg, 6.3 mmol) and triethylamine (TEA, 783 ⁇ L, 0.98 mmol). The compound solution was stirred at room temperature for 24 hours, and the progress of the reaction was detected by column chromatography. After completion of the reaction, it was washed with dichloromethane and then brine, and the organic phase was collected. The organic phase was dried over sodium sulfate, filtered, and distilled. The obtained crude product was purified by a silica gel column, and 100: 1 dichloromethane: methanol was used as the mobile phase to obtain 380 mg of TP-COOH in white with a yield of about 92%.
  • DMAP dimethylaminopyridine
  • TEA
  • Second step To a solution of TP-COOH (64 mg, 0.14 mmol) in dichloromethane, add calcipotriol (Calcipotriol, Cal, 57 mg, 0.14 mmol), DMAP (84.3 mg, 0.69 mmol) and dicyclohexylcarbodicarbonate Imine (Dicyclohexylcarbodiimide, DCC, 143 mg, 0.69 mmol). The mixture solution was stirred at room temperature for 24 hours, and the progress of the reaction was detected by column chromatography. After the reaction, an appropriate amount of dichloromethane was added for dilution, followed by washing with a 0.1 M dilute hydrochloric acid solution and brine, and the organic phase was collected.
  • the organic phase was dried over sodium sulfate, filtered, and distilled.
  • the obtained crude product was purified by a silica gel column, and 100: 1 dichloromethane: methanol was used as the mobile phase to obtain 10 mg of Callide as a white solid with a yield of about 15%.
  • the present invention also provides a method for preparing a micelle.
  • a schematic diagram of a synthesis method is shown in FIG. 1B. The method includes the following steps:
  • the inventors have found that the method of the present invention can quickly and efficiently prepare and obtain the micelles, and the operation is simple, easy to control, has no special requirements on equipment, and is suitable for large-scale production.
  • TP is significantly aggregated, which can effectively inhibit TFIIAH, Cal can effectively inhibit the formation of pancreatic cancer stroma, the compound's half-life and treatment window are significantly improved compared to TP, so the compound's therapeutic effect on pancreatic cancer is more significant, and the compound's therapeutic toxicity The side effects are significantly reduced.
  • the micelles prepared by the method according to the embodiment of the present invention have good stability and can be effectively used for treating or preventing cancer, especially pancreatic cancer.
  • Pancreatic cancer cells were cultured, digested, and the medium was resuspended into a cell suspension and seeded in a 96-well plate with 4000 cells per well.
  • the experimental components were 5 groups, namely TP group, Cal group, physical mixed group of TP and Cal (TP / Cal), Callide-DMSO without esterase group (Callide without PLE), Callide-DMSO plus 10U esterase group (Callide with 10U PLE) Callide NP without esterase group (Callide NP without PLE), Callide NP plus 10U esterase group (Callide NP with 10U PLE).
  • Each group was prepared with 8 concentrations of 5nM, 10nM, 20nM, 40nM, 80nM, 100nM, 200nM, and 400nM, and each concentration was repeated in six wells. After 24 hours of administration, the drug solution was aspirated, washed twice with PBS, added with Husted dye, analyzed by a microplate reader, and plotted the relative cell survival rate curve to calculate the IC 50 of each compound.
  • TP has a high killing effect on all four types of pancreatic cancer cells, with an IC 50 of about 20 nM.
  • Cal as a clinical treatment for psoriasis, has no killing effect on cancer cells in the dose range studied by the inventors.
  • the compound Callide synthesized in this study did not have any toxic and side effects on cells in the absence of additional esterases.
  • Callide can degrade into TP (or TP-COOH) and produce cell killing effect.
  • TP or TP-COOH
  • TP has a weak ability to bind to proteins in plasma.
  • the analysis showed that the concentration of free TP drug in plasma is high and the half-life is short, which is one of the reasons for the serious in vivo toxicity of TP.
  • the physical mixing of TP and Cal did not improve the pharmacokinetic parameters of TP, which is why the toxicity of physical mixing of TP and Cal is comparable to that of free TP.
  • the concentration of free TP in plasma is significantly reduced, the plasma half-life is prolonged, and the average plasma retention time is extended, which is directly related to the long-lasting effect of Callide's lower toxicity (experimental results are shown in Figure 3).
  • mice BALB / C mice
  • mice BALB / C mice were divided into 5 groups, the Saline reference group and the TP, Cal, TP / Cal, and Callide NP groups. There were 5 mice in the reference group, 3 doses of high, medium and low in each group of the experimental group, 5 mice in each dose, a total of 65 mice.
  • TP (0.3mg / kg, 0.6mg / kg, 1.2mg / kg), Cal (0.6mg / kg, 1.2mg / kg, 1.8mg / kg), TP / Cal (0.6mg / kg, 1.2 mg / kg, 1.8 mg / kg), Callide NP (0.6 mg / kg, 1.2 mg / kg, 1.8 mg / kg), once a week, administered by tail vein injection.
  • mice in the TP group were given 1.8 mg / kg in advance, and all mice died after one administration. Therefore, the high, medium and low doses of TP were designed as the above doses. Even so, the mice in the TP group showed a significant toxic reaction. After the administration, the mice were sluggish and mentally debilitated, especially the 1.2 mg / kg dose of TP. In addition to the poor mental state of the mice, the mice Severe skin ulceration occurred at the tail injection site, and the weight of the mice was significantly reduced. Anatomical results showed that the organs of the mice had different degrees of necrosis, especially the testes. The relative weight of the testes was significantly reduced, and the spermatogonia and spermatocyte morphology were affected.
  • mice in the TP / Cal group were similar to that described above, and the toxic and side effects caused by free TP had extremely adverse effects on the health status of the mice. In contrast, none of the mice in the Cal group showed the above-mentioned adverse symptoms, and the mice were in good health. The above-mentioned adverse conditions of the mice in the Callide NP group were significantly reduced after the administration. Only in the high-dose experimental group, the mice had a poor mental state, but compared with the control group, there was no significant change in body weight and various organs ( The experimental results are shown in Figure 4).
  • pancreatic cancer cells primary cultured pancreatic stellate cells and pancreatic cancer cells of transgenic mice.
  • the pancreatic cancer cells were transfected with the luciferase gene by lentivirus transfection.
  • Pancreatic stellate cells alone were cultured in 12-well plates, 100,000 cells per well, treated with TP (10nM), Cal (100nM), TP / Cal (10 / 100nM), Callide NP (100nM) and incubated for 24 hours, then passed through Immunofluorescence staining was used to analyze the smooth muscle actin and collagen content of cells in each well.
  • Pancreatic stellate cells and pancreatic cancer cells were cultured in a 12-well plate at a 1: 1 ratio, with a total of 100,000 cells per well, using TP (10nM), Cal (100nM), TP / Cal (10 / 100nM), Callide NP (100 nM) treatment and incubation for 24 hours, and then the content of smooth actin and collagen in cells in each well was analyzed by immunofluorescence staining.
  • Example 6 In vivo anti-tumor effect experiment of Callide NP based on co-implantation of pancreatic stellate cells and pancreatic cancer cells
  • pancreatic stellate cells pancreatic cancer cells
  • nude mice strain Blab / Cnude, 6-8 weeks old.
  • pancreatic stellate cells and luciferase-transfected pancreatic cancer cell suspensions were mixed uniformly at a ratio of 1: 1, and the density was 10,000 cells / 40 ⁇ L.
  • Test process two kinds of cells were digested and centrifuged, PBS was re-spinned and mixed at a ratio of 1: 1, and then the cell mixture and matrigel were mixed and beat at a ratio of 1: 1.
  • Nude mice underwent related surgery under the premise of review by the Ethics Committee of Tsinghua University. 40 ⁇ L of the uniform cell suspension was injected into the pancreas with an insulin needle, the wound was sutured, and a sedative was injected subcutaneously. About one week after the cells were injected, each mouse was intraperitoneally injected with 0.1 ml of sodium fluorescein solution.
  • mice were anesthetized with isoflurane, and the size of the fluorescent signal in the pancreas of the mouse was detected with a small animal live imager.
  • Mice were then randomly divided into groups of 7 mice, each given TP (0.3mg / kg), Cal (0.35mg / kg), TP / Cal (0.3 / 0.35mg / kg), and Callide NP (0.6mg / kg) .
  • Administration was performed every two days for a total of 7 times, and the mice were weighed after each administration. After 4 doses, the size of the fluorescent signal in the pancreas of the mouse was also measured using a small animal in vivo imager.
  • the size of the fluorescent signal in the pancreas of the mouse was measured again using a small animal in vivo imager. At the same time, the survival rate of the mice was recorded. After the experiment, the tumor tissues of mice were taken, and the expression of smooth muscle actin and collagen at the tumor tissue site was detected by tissue immunostaining (experimental results are shown in Fig. 6).
  • Callide NP can significantly inhibit the tumor size of pancreatic stellate cells and pancreatic cancer cell co-implantation models and prolong the survival time of mice by synergistically inhibiting pancreatic stellate cells and pancreatic cancer cells.
  • Example 7 In vivo anti-tumor effect of pancreatic cancer MIA PaCa-2 cell line based on Callide NP
  • mice subcutaneous tumor model was established based on the MIA PaCa-2 cell line, and the inhibitory effects and toxic and side effects of each compound in the experimental group on tumors were evaluated after administration.
  • mice 0.1ml MIA PaCa-2 cell suspension was injected into the axillary abdomen of mice to monitor the tumor growth.
  • the tumor size was about 100mm 3
  • the mice were randomly divided into 5 groups, the Saline reference group and TP, Cal , TP / Cal, Callide NP four groups, 8 rats in each group.
  • the Cal group had no antitumor effect.
  • the other groups have a very obvious effect of inhibiting tumor growth.
  • the tumors were isolated and weighed.
  • the tumor weights in the TP, TP / Cal, and Callide NP groups were significantly smaller than those in the control group. It is worth noting that the tumor size of the TP group is smaller than that of the TP / Cal and Callide NP groups. This is because TP / Cal is a physical mixture of TP physiological saline solution and Cal micelle preparation, and the mutual interaction between the two The action reduces the role of TP.
  • Callide NP The premise of Callide NP is that it is degraded to TP, but due to the uncertainty of the esterase distribution and concentration in the body, the degradation of Callide NP is not complete, which limits the Callide NP to a certain extent. Antitumor effect of degradation and degradation product TP. (Or Callide NP changes the PK of TP, and the degradation product may be TP-COOH)
  • Callide NP can effectively inhibit tumor growth in mice subcutaneous tumor model based on MIA PaCa-2 cell line without significant toxic and side effects. And because Callide NP cannot be completely degraded to TP, its antitumor effect is slightly weaker than pure TP.
  • Example 8 In vivo antitumor effect of pancreatic cancer humanized tumor based on Callide NP
  • the newly prepared compound Callide in this study can be better degraded into TP which can regulate tumor matrix Cal and tumor cell killing effect under the catalytic action of porcine liver esterase; the long-term toxicity in vivo compared with TP It is also greatly reduced.
  • Callide NP has shown good anti-tumor effects. Effective treatment of pancreatic cancer is achieved through a dual action mechanism acting synergistically on tumor stroma and tumor cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Otolaryngology (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pulmonology (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Epoxy Compounds (AREA)

Abstract

一种如式(I)所示的化合物,或式(I)所示的化合物的同分异构体、立体异构体、几何异构体、互变异构体、氮氧化物、水合物、溶剂化物、代谢产物、药学上可接受的盐或前药。

Description

化合物及其用途 技术领域
本发明涉及医药领域,具体地,本发明涉及化合物及其用途,更具体地,本发明涉及化合物、式(I)所示化合物、包含化合物的药物组合物、化合物及组合物的用途以及化合物的制备方法。
背景技术
胰腺癌是一种恶性程度很高,诊断和治疗都很困难的消化道恶性肿瘤,约90%为起源于腺管上皮的导管腺癌。其发病率和死亡率近年来明显上升。5年生存率<5%,是预后最差的恶性肿瘤之一。胰腺癌早期的确诊率不高,手术死亡率较高,而治愈率很低。
胰腺癌的病因尚不十分清楚。其发生与吸烟、饮酒、高脂肪和高蛋白饮食、过量饮用咖啡、环境污染及遗传因素有关;近年来的调查报告发现糖尿病人群中胰腺癌的发病率明显高于普通人群;也有人注意到慢性胰腺炎病人与胰腺癌的发病存在一定关系,发现慢性胰腺炎病人发生胰腺癌的比例明显增高;另外还有许多因素与此病的发生有一定关系,如职业、环境、地理等。
胰腺癌临床表现取决于癌的部位、病程早晚、有无转移以及邻近器官累及的情况。其临床特点是整个病程短、病情发展快和迅速恶化。最多见的是上腹部饱胀不适、疼痛。虽然有自觉痛,但并不是所有病人都有压痛,如果有压痛则和自觉痛的部位是一致的。
现有研究表明,胰腺癌组织病理特征表现为基质占有癌症组织的绝大部分,约为80%,而癌症细胞却占少数。胰腺癌组织的此种病理特征导致了其极其匮乏的血管***,对其用药困难以及免疫疗法无效。
因此,寻找有效地治疗胰腺癌的治疗方法是科学家拭待解决的重大问题。
发明内容
本申请是基于发明人对以下事实和问题的发现和认识作出的:
在胰腺癌组织中,癌细胞其实只占20%左右,其中70%以上都是细胞外基质(stroma)。细胞外基质包括成纤维细胞、免疫及炎症细胞、内皮细胞及复杂的细胞外介质。临床表现为胰腺癌组织质地坚硬,并且病理学检测发现大量的胶原纤维包围着相对少量的胰腺癌细胞。这些少量的癌细胞在肿瘤基质的“保护”作用下能够顺利逃避机体免疫***的监视,肆意的增殖、分化和转移。
Stroma的发生和发展与胰腺星型细胞(pancreatic stellate cell,PSC)有直接关系。PSC是 位于胰腺腺泡细胞基底的一种肌成纤维细胞,正常情况下,PSC处于静止休眠状态,其胞质内含有大量的包含维他命A的脂滴,可正常分泌细胞外基质合成和降解的酶或抑制剂,以维持细胞外基质的分泌与降解的平衡。当胰腺受到损伤或有胰腺炎症发生时,PSC会受到细胞激酶、生长因子、低氧压力等的刺激而被激活,激活后的PSC会丢失胞质内的脂滴,同时快速增殖和分泌大量的细胞生长因子受体(血管内皮生长因子受体VEGFR、纤维原母细胞生长因子受体等),细胞外基质蛋白(包括胶原蛋白、层粘连蛋白、整联蛋白)和基质蛋白降解酶抑制剂(金属蛋白酶抑制剂、透明质酸酶抑制剂等)等等。PSC的激活使胰腺癌组织外各组分的平衡被打破,大量的***增生、基质降解酶分泌减少,此消彼长,肿瘤外基质的含量大大增加。这种复杂的富含stroma的微环境,一方面保护肿瘤细胞逃避免疫监视,使众多免疫治疗无效;另一方面限制了肿瘤血管的生成,作为物理屏障极大的限制了抗肿瘤化疗药物进入肿瘤细胞,从而使化疗药物失去疗效,最终促进了肿瘤的进化、侵袭和转移。
据此,特异性地针对胰腺癌stroma产生的“罪魁祸首”-被激活的PSC,本申请的发明人利用小分子药物促使PSC“休眠”,而减少stroma的生成。同时化学偶联小分子化疗药物,从而获得一个具备同时靶向胰腺肿瘤细胞和胰腺星型细胞的双向靶向功能、并且具备更好可制剂性、可成药性的偶联分子,通过进一步地利用适当的药物剂型,提高小分子药物的药代动力学性质,从而对stroma的产生和癌症细胞的抑制起到最佳协同作用,从而改善胰腺癌肿瘤的耐药环境,提高对肿瘤细胞的有效杀伤。
本申请的具体方案设计及作用效果阐述如下:
作用于PSC的小分子抑制剂以卡泊三醇(Calcipotriol,Cal)为例,高效的小分子化疗药物以雷公藤甲素(Triptolide,TP)为例。发明人设计将雷公藤甲素和卡泊三醇通过可酶降解的连接剂连接在一起,合成一个全新的,双靶向偶联化合物,本申请中将此化合物命名为“Callide”。与TP原药相比,Callide的分子量增加,结晶趋势变慢,并且更加疏水。因此,多种纳米药物递送***(如聚合物胶束,白蛋白复合纳米粒,脂质体,等)易于装载和递送Callide,从而优化Callide的药代动力学,提高Callide在肿瘤部位的富集,降低TP的毒副作用。同时,Callide在体内经过酯酶的催化降解才产生Cal和TP,从而较好同步了Cal和TP的药代动力学,实现促使PSC休眠(卡泊三醇)和抑制胰腺癌肿瘤细胞(雷公藤甲素)的双靶向、协同作用,并且大幅降低了毒副作用。
基于此,在本发明的第一方面,本发明提出了一种化合物。根据本发明的实施例,包含相互偶联的肿瘤基质调控基团和细胞毒性基团,所述肿瘤基质调控基团用于调控肿瘤基质,所述细胞毒性基团用于杀伤肿瘤细胞。根据本发明实施例的化合物可同时作用于肿瘤 基质和肿瘤细胞,从而实现消除或减少肿瘤基质的同时对肿瘤细胞进行杀伤的目的。根据本发明实施例的化合物的药代动力学性质得以提高,同步了肿瘤基质调控基团和细胞毒性基团的药代动力学,对基质(stroma)的产生和癌症细胞的抑制起到好的协同作用,肿瘤的耐药环境得以改善,对肿瘤细胞的有效杀伤显著提高,同时大幅降低了药物的毒副作用。
根据本发明的实施例,上述化合物还可以进一步包括如下附加技术特征至少之一:
根据本发明的实施例,所述肿瘤基质调控基团包括选自卡泊三醇(Calcipotriol,Cal),环巴胺(Cyclopamine),更昔洛韦(ganciclovir,GCV),芬戈莫德(Fingolimod),全反式维甲酸(all-trans retinoic acid,ATRA)以及透明质酸酶(hyaluronidase,HA)的至少之一。
根据本发明的实施例,所述细胞毒性基团包括选自雷公藤甲素(Triptolide,TP)、紫杉醇、多西紫杉醇、阿霉素、喜树碱、羟基喜树碱、5-氟尿嘧啶、吉西他滨、顺铂、伊立替康、奥沙利铂、培美曲塞、卡培他滨、表柔比星、索拉菲尼、吉非替尼、厄洛替尼、伊马替尼、尼洛替尼、达沙替尼、依维莫司、舒尼替尼、依鲁替尼、克唑替尼、帕唑帕尼、卡非佐米、托法替尼、阿西替尼、瑞戈非尼、维罗非尼、西罗莫司、泊那替尼、乐伐替尼、奥拉伯尼、色瑞替尼、罗米地辛、艾乐替尼、贝利司他、伯舒替尼、凡德他尼、卡博替尼、阿法替尼、曲美替尼、达拉非尼以及拉帕替尼的至少之一。
上述可以肿瘤基质调控基团和细胞毒性基团,任意组合下所获得的化合物可实现同时作用于肿瘤基质和肿瘤细胞,从而实现消除或减少肿瘤基质的同时对肿瘤细胞进行杀伤的目的。
根据本发明的实施例,所述化合物进一步包括酶降解连接剂。进而所述化合物可在体内经过酶催化降解产生肿瘤基质调控基团和细胞毒性基团药物,较好同步了肿瘤基质调控基团和细胞毒性基团药物的药代动力学,实现促使PSC休眠和抑制肿瘤细胞的协同作用。
根据本发明的实施例,所述酶降解连接剂具有如下结构的至少之一:
Figure PCTCN2019091678-appb-000001
Figure PCTCN2019091678-appb-000002
在本发明的第二方面,本发明提出了一种化合物。根据本发明的实施例,其包含以下其中之一的结构或所述结构的同分异构体、立体异构体、几何异构体、互变异构体、氮氧化物、水合物、溶剂化物、代谢产物、药学上可接受的盐或前药,
Figure PCTCN2019091678-appb-000003
其中,R 1独立地为卡泊三醇,环巴胺,更昔洛韦,芬戈莫德,全反式维甲酸或透明质 酸酶;
R 2独立地为雷公藤甲素、紫杉醇、多西紫杉醇、阿霉素、喜树碱、羟基喜树碱、5-氟尿嘧啶、吉西他滨、顺铂、伊立替康、奥沙利铂、培美曲塞、卡培他滨、表柔比星、索拉菲尼、吉非替尼、厄洛替尼、伊马替尼、尼洛替尼、达沙替尼、依维莫司、舒尼替尼、依鲁替尼、克唑替尼、帕唑帕尼、卡非佐米、托法替尼、阿西替尼、瑞戈非尼、维罗非尼、西罗莫司、泊那替尼、乐伐替尼、奥拉伯尼、色瑞替尼、罗米地辛、艾乐替尼、贝利司他、伯舒替尼、凡德他尼、卡博替尼、阿法替尼、曲美替尼、达拉非尼或拉帕替尼。
根据本发明实施例的化合物可在体内经过酶催化降解产生肿瘤基质调控基团和细胞毒性基团药物。进而该化合物可同时作用于肿瘤基质和肿瘤细胞,从而实现消除或减少肿瘤基质的同时对肿瘤细胞进行杀伤的目的。根据本发明实施例的化合物的药代动力学性质得以提高,同步了肿瘤基质调控基团和细胞毒性基团的药代动力学,对基质(stroma)的产生和癌症细胞的抑制起到好的协同作用,癌肿瘤的耐药环境得以改善,对肿瘤细胞的有效杀伤显著提高,同时大幅降低了药物的毒副作用。
根据本发明的实施例,其包含以下其中之一的结构:
Figure PCTCN2019091678-appb-000004
Figure PCTCN2019091678-appb-000005
Figure PCTCN2019091678-appb-000006
Figure PCTCN2019091678-appb-000007
Figure PCTCN2019091678-appb-000008
Figure PCTCN2019091678-appb-000009
Figure PCTCN2019091678-appb-000010
Figure PCTCN2019091678-appb-000011
Figure PCTCN2019091678-appb-000012
Figure PCTCN2019091678-appb-000013
Figure PCTCN2019091678-appb-000014
Figure PCTCN2019091678-appb-000015
Figure PCTCN2019091678-appb-000016
Figure PCTCN2019091678-appb-000017
Figure PCTCN2019091678-appb-000018
根据本发明的实施例的上述化合物,包含相互偶联的肿瘤基质调控基团和细胞毒性基团,所述肿瘤基质调控基团用于调控肿瘤基质,所述细胞毒性基团用于杀伤肿瘤细胞。根据本发明实施例的化合物可同时作用于肿瘤基质和肿瘤细胞,从而实现消除或减少肿瘤基质的同时对肿瘤细胞进行杀伤的目的。根据本发明实施例的上述化合物的药代动力学性质得以提高,同步了肿瘤基质调控基团和细胞毒性基团的药代动力学,对基质(stroma)的产 生和癌症细胞的抑制起到好的协同作用,癌肿瘤的耐药环境得以改善,对肿瘤细胞的有效杀伤显著提高,同时大幅降低了药物的毒副作用。
在本发明的第三方面,本发明提出了一种化合物。根据本发明的实施例,所述化合物为式(I)所示的化合物,或式(I)所示的化合物的同分异构体、立体异构体、几何异构体、互变异构体、氮氧化物、水合物、溶剂化物、代谢产物、药学上可接受的盐或前药,
Figure PCTCN2019091678-appb-000019
根据本发明实施例的化合物1)有效地同时控制胰腺癌组织中胰腺星状细胞和胰腺癌肿瘤细胞,2)相比TP,Callide的药代动力学性质明显优化,毒性显著下降;3)在具备高度临床相关性的胰腺癌转基因小鼠模型中,该化合物相比于现有治疗胰腺癌的一线药物,如吉西他滨,显著延长了肿瘤动物的中位生存期。
根据本发明的实施例,所述式(I)所示的化合物的同分异构体如式(II)或式(III)所示。
Figure PCTCN2019091678-appb-000020
Figure PCTCN2019091678-appb-000021
根据本发明实施例的上述式(II)和式(III)所示化合物具有与式(I)所示化合物相似的性质。即可有效地同时控制胰腺癌组织中胰腺星状细胞和胰腺癌肿瘤细胞,相比TP,式(II)和式(III)所示化合物的药代动力学性质明显优化,毒性显著下降;且在具备高度临床相关性的胰腺癌转基因小鼠模型中,相比于现有治疗胰腺癌的一线药物,如吉西他滨,显著延长了肿瘤动物的中位生存期。
在本发明的第四方面,本发明提出了一种药物组合物。根据本发明的实施例,所述药物组合物包含前面所述的化合物作为活性成分。根据本发明实施例的药物组合物能够有效控制癌组织中基质的形成并实现对肿瘤的更加有效的治疗。根据本发明实施例的药物组合物具有相比于现有治疗癌症药物更长的半衰期和治疗窗口以及显著下降的治疗毒性。
根据本发明的实施例,上述药物组合物还可以进一步包括如下附加技术特征至少之一:
根据本发明的实施例,所述药物组合物进一步包括药学上可接受的辅料。
根据本发明的实施例,所述药物组合物呈胶束,乳剂、白蛋白纳米粒、脂质体、胶囊剂、丸剂、片剂、颗粒剂、口服液体、内服膏剂、气雾剂或喷雾剂的形式。由此,易于进行给药。
根据本发明的实施例,所述药物组合物呈胶束的形式,并且所述胶束是由包括聚乙二醇-聚乳酸嵌段共聚物、单甲氧基聚乙二醇聚乳酸、单甲氧基聚乙二醇聚乳酸乙醇酸共聚物、单甲氧基聚乙二醇聚己内酯、单甲氧基聚乙二醇聚三亚甲基碳酸酯和单甲氧基聚乙二醇聚氨基酸的至少之一形成。由此,不仅能够使活性成分免受人体网状内皮***的吞噬及其他人体内环境的影响,在病变部位缓慢的进行释放,还能够有效提高活性成分的载药量及生物利用度,从而更好地发挥治疗或预防癌症的功效。
根据发明的实施例,所述药物组合物进一步包含其他的抗胰腺癌的药物,其中,所述 其他的抗胰腺癌的药物包括5-fluorouracil、吉西他滨、FOLFIRINOX、纳米紫杉醇/吉西他滨联合和ONIVYDE TM的一种或几种。联合其它治疗胰腺癌的药物,所述药物组合物的对于胰腺癌的治疗效果更加显著。
在本发明的第五方面,本发明提出了前面所述的化合物或前面所述的药物组合物在制备药物中的用途,所述药物用于治疗或预防癌症。根据本发明实施例的偶联化合物或药物组合物中的活性成分在体内可以有效降解为肿瘤基质调控基团和细胞毒性基团药物,肿瘤基质调控基团可有效抑制肿瘤基质的生长,细胞毒性基团发挥细胞毒作用,实现对肿瘤细胞的有效杀伤,进而,利用根据本发明实施例的化合物或药物组合物可有效用于治疗或预防癌症。
根据本发明的实施例,上述用途还可以进一步包括如下附加技术特征至少之一:
根据本发明的实施例,所述癌症为胰腺癌、肝癌、乳腺癌、皮肤癌、***癌或成纤维胶质瘤。发明人发现,上述肿瘤具有明显的基质微环境,利用根据本发明实施例的化合物或药物组合物对上述癌症的治疗效果更佳。
根据本发明的实施例,所述癌症为胰腺癌。利用根据本发明实施例的化合物或药物组合物对胰腺癌的治疗效果更加显著。
在本发明的第六方面,本发明提出了一种制备前面所述化合物的方法。根据本发明的实施例,所述方法包括:将第一偶联成分与第二偶联成分进行连接反应,所述第一偶联成分用于调控肿瘤基质;所述第二偶联成分用于杀伤肿瘤细胞。利用根据本发明实施例的上述方法获得化合物能够可同时作用于肿瘤基质和肿瘤细胞,从而实现消除或减少肿瘤基质的同时对肿瘤细胞进行杀伤的目的。根据本发明实施例的方法所获得化合物的药代动力学性质得以提高,同步了第一偶联成分和第二偶联成分的药代动力学,对基质的产生和癌症细胞的抑制起到好的协同作用,癌肿瘤的耐药环境得以改善,对肿瘤细胞的有效杀伤显著提高,同时大幅降低了药物的毒副作用。
根据本发明的实施例,上述方法还可以进一步包括如下附加技术特征至少之一:
根据本发明的实施例,所述连接反应是在第一偶联成分与第二偶联成分以及连接子同时存在的条件下进行的,所述连接子为式(88)~式(97)所示化合物的至少一种,
Figure PCTCN2019091678-appb-000022
Figure PCTCN2019091678-appb-000023
其中n为1-10。式(88)~式(97)所示化合物可作为有效的连接子,将第一偶联成分和第二偶联成分进行化学偶联,而形成稳定的上述化合物。
根据本发明的实施例,所述第一偶联成分为Cal,所述第二偶联成分为TP,所述连接子为式(88)所示化合物。由此,连接反应效率高。
根据本发明的实施例,所述第一偶联成分与所述第二偶联成分的摩尔比为1:1。由此,第二偶联成分抑制肿瘤细胞的作用显著,第一偶联成分抑制癌基质形成的作用显著,两者的协同治疗作用明显。
附图说明
图1是根据本发明实施例的合成式(I)所示化合物(在本文中称为Callide,合成路线中为化合物5)和制备Callide承载胶束(在本文中称为Callide NP);
图2是根据本发明实施例的在有或无猪肝酯酶(Porcine liver Esterase,PLE)条件下用TP,Cal,TP/Cal and Callide NP处理细胞后,细胞的成活率结果图;
图3是根据本发明实施例的用药后大鼠血浆药时曲线及药物药代动力学参数图;
图4是根据本发明实施例的用药后小鼠的体重变化(上面)和睾丸指数(下面)的结果图;
图5是根据本发明实施例的用药后体外鼠源胰腺星型细胞和胰腺癌细胞的平滑肌动蛋白和胶原蛋白的表达情况图;
图6是根据本发明实施例的用药后体内鼠源胰腺星型细胞和胰腺癌细胞共植入原位模型的肿瘤抑制和小鼠生存率延长效果图;
图7是根据本发明实施例的TP在CDX模型中比Callide NP能够更有效地抑制肿瘤生 长;
图8是根据本发明实施例的Callide NP在人类异种移植模型中能够有效降低胰腺癌肿瘤的生长;以及
图9是根据本发明实施例的裸鼠用药前和用药后的照片。
发明详细描述
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
现在详细描述本发明的某些实施方案,其实例由随附的结构式和化学式说明。本发明意图涵盖所有的替代、修改和等同技术方案,它们均包括在如权利要求定义的本发明范围内。本领域技术人员应认识到,许多与本发明所述类似或等同的方法和材料能够用于实践本发明。本发明绝不限于本发明所述的方法和材料。在所结合的文献、专利和类似材料的一篇或多篇与本申请不同或相矛盾的情况下(包括但不限于所定义的术语、术语应用、所描述的技术,等等),以本申请为准。
应进一步认识到,本发明的某些特征,为清楚可见,在多个独立的实施方案中进行了描述,但也可以在单个实施例中以组合形式提供。反之,本发明的各种特征,为简洁起见,在单个实施方案中进行了描述,但也可以单独或以任意适合的子组合提供。
除非另外说明,本发明所使用的所有科技术语具有与本发明所属领域技术人员的通常理解相同的含义。本发明涉及的所有专利和公开出版物通过引用方式整体并入本发明。
除非另外说明,应当应用本发明所使用的下列定义。出于本发明的目的,化学元素与元素周期表CAS版,和《化学和物理手册》,第75版,1994一致。此外,有机化学一般原理可参考"Organic Chemistry",Thomas Sorrell,University Science Books,Sausalito:1999,和"March's Advanced Organic Chemistry"by Michael B.Smith and Jerry March,John Wiley&Sons,New York:2007中的描述,其全部内容通过引用并入本发明。
除非另有说明或者上下文中有明显的冲突,本文所使用的冠词“一”、“一个(种)”和“所述”旨在包括“至少一个”或“一个或多个”。因此,本文所使用的这些冠词是指一个或多于一个(即至少一个)宾语的冠词。例如,“一组分”指一个或多个组分,即可能有多于一个的组分被考虑在所述实施方案的实施方式中采用或使用。
化合物
在本发明的第一方面,本发明提出了一种化合物。根据本发明的实施例,所述化合物包含相互偶联的肿瘤基质调控基团和细胞毒性基团,所述肿瘤基质调控基团用于调控肿瘤基质,所述细胞毒性基团用于杀伤肿瘤细胞。根据本发明实施例的化合物可同时作用于肿瘤基质和肿瘤细胞,从而实现消除或减少肿瘤基质的同时对肿瘤细胞进行杀伤的目的。根据本发明实施例的化合物的药代动力学性质得以提高,同步了肿瘤基质调控基团和细胞毒性基团的药代动力学,对基质stroma的产生和癌症细胞的抑制起到好的协同作用,癌肿瘤的耐药环境得以改善,对肿瘤细胞的有效杀伤显著提高,同时大幅降低了药物的毒副作用。
根据本发明的实施例,所述肿瘤基质调控基团包括选自卡泊三醇(Calcipotriol,Cal),环巴胺(Cyclopamine),更昔洛韦(ganciclovir,GCV),芬戈莫德(Fingolimod),全反式维甲酸(all-trans retinoic acid,ATRA)以及透明质酸酶(hyaluronidase,HA)的至少之一。其中,卡泊三醇(Calcipotriol,Cal)是一种VDR配体,是PSC主要调控因子,参与调节PSC重回静止状态,从而诱导基质含量;环巴胺可与Hedgehog信号通路中的Smoothened(Smo)蛋白结合,从而抑制该蛋白活性,减少基质的形成;更昔洛韦可通过竞争抑制脱氧鸟苷的三价磷酸盐与DNA聚合酶的结合来抑制肿瘤基质中过度增殖的α-SMA阳性的成纤维母细胞的数量,而降低基质的含量;芬戈莫德作为鞘氨醇磷酸盐受体调节剂,通过抑制AMPK/mTOR通路抑制细胞自噬促进细胞凋亡而抑制胰腺星状细胞的激活;全反式-维甲酸是维生素A类似物,作用机理同卡泊三醇,可作用于肿瘤产生的纤维母细胞维生素受体从而降低基质的含量;透明质酸酶可有效降解肿瘤基质的重要组成部分-透明质酸,直接降低基质的密度、含量。
根据本发明的实施例,所述细胞毒性基团包括选自雷公藤甲素(Triptolide,TP)、紫杉醇、多西紫杉醇、阿霉素、喜树碱、羟基喜树碱、5-氟尿嘧啶、吉西他滨、顺铂、伊立替康、奥沙利铂、培美曲塞、卡培他滨、表柔比星、索拉菲尼、吉非替尼、厄洛替尼、伊马替尼、尼洛替尼、达沙替尼、依维莫司、舒尼替尼、依鲁替尼、克唑替尼、帕唑帕尼、卡非佐米、托法替尼、阿西替尼、瑞戈非尼、维罗非尼、西罗莫司、泊那替尼、乐伐替尼、奥拉伯尼、色瑞替尼、罗米地辛、艾乐替尼、贝利司他、伯舒替尼、凡德他尼、卡博替尼、阿法替尼、曲美替尼、达拉非尼以及拉帕替尼的至少之一。其中,雷公藤甲素(Triptolide,TP)是一种有效的TFIIAH抑制剂,FIIAH是一个通用的转录因子,负责将需要转录的DNA招募到启动子进行转录,并解螺旋这些DNA,另外,如果细胞的DNA受到损伤,基因修复的过程中TFIIAH也用来解螺旋DNA,癌症细胞的过度增殖均伴随着DNA的转录,以及相关mRNA的表达,TFIIAH也因此比正常组织高度表达,使其成为化疗药物治疗癌症的靶点,TP是一种有效的胰腺癌治疗药物;紫杉醇和多西紫杉醇可用于抑制肿瘤细胞微管蛋白的合成,从 而抑制肿瘤细胞的增殖,实现对肿瘤的抑制作用,且随着药物浓度的提高,体外细胞存活率逐渐降低;阿霉素可抑制RNA和DNA的合成,对RNA的抑制作用最强,抗瘤谱较广,对多种肿瘤均有作用,属周期非特异性药物,对各种生长周期的肿瘤细胞都有杀灭作用,通过细胞增殖实验结果分析,细胞的死亡率与药物浓度有关;喜树碱、羟基喜树碱是一种细胞毒性喹啉类生物碱,能抑制DNA拓扑异构酶(TOPO I),与Topo I-DNA形成的复合物结合,稳定此复合物,从而使断裂的DNA链不能重新接合,阻止DNA复制及RNA合成,为细胞周期S期特异性药物,对G0期细胞无作用,对G1、G2与M期细胞有轻微杀伤力,另外,它还能直接破坏DNA结构,因此癌细胞增殖会被限制在特定的细胞周期,从而实现对肿瘤细胞生长的抑制作用;伊立替康是喜树碱的半合成衍生物,喜树碱可特异性地与拓扑异构酶I结合,后者诱导可逆性单链断裂,从而使DNA双链结构解旋,从而促使癌细胞死亡;5-氟尿嘧啶是氟尿嘧啶是尿嘧啶类似物,可以在细胞内转化为有效的氟尿嘧啶脱氧核苷酸,通过阻断脱氧核糖尿苷酸受细胞内胸苷酸合成酶转化为胸苷酸,而干扰DNA的合成;吉西他滨是一种二氟核苷类抗代谢物抗癌药,是去氧胞苷的水溶性类似物,是核糖核苷酸还原酶的一种抑制性酶的替代物,能够在肿瘤细胞DNA复制的过程中阻断DNA的合成从而抑制肿瘤细胞的生长;顺铂可与DNA结合,引起交叉联结,从而破坏DNA的功能,并抑制细胞有丝***,为一种细胞非特异性药物,癌细胞增殖被抑制;奥沙利铂可通过产生水化衍生物作用于DNA,形成链内和链间交联,从而抑制DNA的合成,产生细胞毒作用和抗肿瘤活性;培美曲塞是一种结构上含有核心为吡咯嘧啶基团的抗叶酸制剂,通过破坏细胞内叶酸依赖性的正常代谢过程,抑制细胞复制,从而抑制肿瘤的生长;卡培他滨可体内转变成5-FU的抗代谢氟嘧啶脱氧核苷氨基甲酸酯类药物,能够抑制细胞***和干扰RNA和蛋白质(protein)合成,进而抑制癌细胞增殖;表柔比星:阿霉素的同分异构体,作用机制是直接嵌入DNA核碱对之间,干扰转录过程,阻止mRNA的形成,从而抑制DNA和RNA的合成。
小分子靶向药物及其靶点如下:索拉菲尼(PDGF/VEGF)、吉非替尼(EGFR)、厄洛替尼(EGFR/HER2)、伊马替尼(Bcr-Abl)、尼罗替尼(Bcr-Abl)、达沙替尼(Bcr-Abl)、依维莫司(Bcr-Abl)、舒尼替尼(PDGF/VEGF)、依鲁替尼(BTK)、克唑替尼(ALK)、帕唑帕尼(PDGF/VEGF)、卡非佐米(26S proteasom)、托法替尼(JAK)、阿昔替尼(VEGFR)、瑞戈非尼(多激酶抑制剂)、维罗非尼(B-Raf)、西罗莫司(mTOR)、泊那替尼(Bcr-Abl)、乐伐替尼(RTK)、奥拉伯尼(PARP)、色瑞替尼(ALK)、罗米地辛(HDAC)、艾乐替尼(ALK)、贝利司他(HDAC)、博舒替尼(Src/Abl)、凡德他尼(多激酶抑制剂)、卡博替尼(C-Met)、阿法替尼(EGFR)、曲美替尼(MEK1/2)、达拉非尼(BRAF)、拉帕替尼 (EGFR/erb2)。基于以上小分子靶向药物针对各自的靶点,药物可以特异性的与癌细胞表面或相关靶点结合,从而可以特异性的杀死癌细胞而对正常细胞的毒副作用大大降低。
基于本发明偶联化合物的设计思路:为了同时作用于肿瘤基质和肿瘤细胞,发明人设计合成多种不同的药物偶联分子。采用不同的可降解的连接子后,药物可以在体内实现不同程度的降解,药物偶联分子的一部分实现对肿瘤基质的抑制作用而另一部分实现对肿瘤细胞的杀伤。而且通过不同的制剂和治疗方案的设计,发明人实现了肿瘤基质抑制和癌细胞杀伤之间的平衡,以达到协同作用的目的。
根据本发明的实施例,所述化合物进一步包括酶降解连接剂。进而所述化合物可在体内经过酶催化降解产生肿瘤基质调控基团和细胞毒性基团药物,较好同步了肿瘤基质调控基团和细胞毒性基团药物的药代动力学,实现促使PSC休眠和抑制肿瘤细胞的协同作用。
根据本发明的实施例,所述酶降解连接剂具有如下结构的至少之一:
Figure PCTCN2019091678-appb-000024
另一方面,本发明提出了一种化合物。根据本发明的实施例,其包含以下其中之一的 结构或所述结构的同分异构体、立体异构体、几何异构体、互变异构体、氮氧化物、水合物、溶剂化物、代谢产物、药学上可接受的盐或前药,
Figure PCTCN2019091678-appb-000025
其中,R 1独立地为卡泊三醇,环巴胺,更昔洛韦,芬戈莫德,全反式维甲酸或透明质酸酶;
R 2独立地为雷公藤甲素、紫杉醇、多西紫杉醇、阿霉素、喜树碱、羟基喜树碱、5-氟尿嘧啶、吉西他滨、顺铂、伊立替康、奥沙利铂、培美曲塞、卡培他滨、表柔比星、索拉菲尼、吉非替尼、厄洛替尼、伊马替尼、尼洛替尼、达沙替尼、依维莫司、舒尼替尼、依鲁替尼、克唑替尼、帕唑帕尼、卡非佐米、托法替尼、阿西替尼、瑞戈非尼、维罗非尼、西罗莫司、泊那替尼、乐伐替尼、奥拉伯尼、色瑞替尼、罗米地辛、艾乐替尼、贝利司他、伯舒替尼、凡德他尼、卡博替尼、阿法替尼、曲美替尼、达拉非尼或拉帕替尼。
根据本发明实施例的化合物可在体内经过酶催化降解产生肿瘤基质调控基团和细胞毒性基团药物。进而该化合物可同时作用于肿瘤基质和肿瘤细胞,从而实现消除或减少肿瘤基质的同时对肿瘤细胞进行杀伤的目的。根据本发明实施例的化合物的药代动力学性质得以提高,同步了肿瘤基质调控基团和细胞毒性基团的药代动力学,对基质(stroma)的产生和癌症细胞的抑制起到好的协同作用,癌肿瘤的耐药环境得以改善,对肿瘤细胞的有效杀伤显著提高,同时大幅降低了药物的毒副作用。
根据本发明的再一具体实施例,其包含以下其中之一的结构:
Figure PCTCN2019091678-appb-000026
Figure PCTCN2019091678-appb-000027
Figure PCTCN2019091678-appb-000028
Figure PCTCN2019091678-appb-000029
Figure PCTCN2019091678-appb-000030
Figure PCTCN2019091678-appb-000031
Figure PCTCN2019091678-appb-000032
Figure PCTCN2019091678-appb-000033
Figure PCTCN2019091678-appb-000034
Figure PCTCN2019091678-appb-000035
Figure PCTCN2019091678-appb-000036
Figure PCTCN2019091678-appb-000037
Figure PCTCN2019091678-appb-000038
Figure PCTCN2019091678-appb-000039
Figure PCTCN2019091678-appb-000040
其中,化合物(1)~化合物(27)是卡泊三醇和雷公藤甲素通过可酶降解的连接子连接在一起形成的偶联化合物,化合物(28)~化合物(57)是卡泊三醇和吉西他滨通过可酶降解的连接子连接在一起形成的偶联化合物,化合物(58)~化合物(87)是卡泊三醇和紫杉醇通过可酶降解的连接子连接在一起形成的偶联化合物。
根据本发明的实施例的上述化合物,包含相互偶联的肿瘤基质调控基团和细胞毒性基团,所述肿瘤基质调控基团用于调控肿瘤基质,所述细胞毒性基团用于杀伤肿瘤细胞。根据本发明实施例的化合物可同时作用于肿瘤基质和肿瘤细胞,从而实现消除或减少肿瘤基质的同时对肿瘤细胞进行杀伤的目的。根据本发明实施例的上述化合物的药代动力学性质得以提高,同步了肿瘤基质调控基团和细胞毒性基团的药代动力学,对基质(stroma)的产生和癌症细胞的抑制起到好的协同作用,癌肿瘤的耐药环境得以改善,对肿瘤细胞的有效杀伤显著提高,同时大幅降低了药物的毒副作用。
另一方面,本发明提出了一种化合物。根据本发明的实施例,该化合物具有式(I)所示的化合物,或式(I)所示的化合物的同分异构体(如化合物II,化合物III)立体异构体、几何异构体、互变异构体、氮氧化物、水合物、溶剂化物、代谢产物、药学上可接受的盐或前药,
Figure PCTCN2019091678-appb-000041
Figure PCTCN2019091678-appb-000042
根据本发明实施例的上述化合物是将雷公藤甲素和卡泊三醇通过可酶降解的连接子连接在一起,而合成一个全新的,双靶向偶联化合物,本申请将此化合物命名为“Callide”。与TP原药相比,Callide的分子量增加,结晶趋势变慢,并且更加疏水。多种纳米药物递送***(如聚合物胶束,白蛋白复合纳米粒,脂质体,等)易于装载和递送Callide,优化了Callide的药代动力学,提高了Callide在肿瘤部位的富集,降低TP的毒副作用。同时,Callide在体内经过酯酶的催化降解才产生Cal和TP,从而较好同步了Cal和TP的药代动力学,实现促使PSC休眠(卡泊三醇)和抑制胰腺癌肿瘤细胞(雷公藤甲素)的协同作用,并且大幅降低了毒副作用。根据本发明实施例的偶联化合物能够有效控制胰腺癌组织中基质的形成并实现TP的有效聚集,实现对胰腺癌的更加有效的治疗。根据本发明实施例的化合物具有相比于现有治疗胰腺癌药物TP更长的半衰期和治疗窗口以及显著下降的治疗毒性。
“同分异构体”是指一种有相同分子式而有不同的原子排列的化合物。简单地说,化合物具有相同分子式,但具有不同结构的现象,叫做同分异构现象;具有相同分子式而结构 不同的化合物互为同分异构体。很多同分异构体有相似的性质。有机化学中,同分异构体可以是同类物质(含有相同的官能团),也可以是不同类的物质(所含官能团不同)。
“立体异构体”是指具有相同化学构造,但原子或基团在空间上排列方式不同的化合物。立体异构体包括对映异构体、非对映异构体、构象异构体(旋转异构体)、几何异构体(顺/反)异构体、阻转异构体,等等。
“手性”是具有与其镜像不能重叠性质的分子;而“非手性”是指与其镜像可以重叠的分子。
“对映异构体”是指一个化合物的两个不能重叠但互成镜像关系的异构体。
“非对映异构体”是指有两个或多个手性中心并且其分子不互为镜像的立体异构体。非对映异构体具有不同的物理性质,如熔点、沸点、光谱性质和反应性。非对映异构体混合物可通过高分辨分析操作如电泳和色谱,例如HPLC来分离。
本发明所使用的立体化学定义和规则一般遵循S.P.Parker,Ed.,McGraw-Hill Dictionary of Chemical Terms(1984)McGraw-Hill Book Company,New York;and Eliel,E.and Wilen,S.,"Stereochemistry of Organic Compounds",John Wiley&Sons,Inc.,New York,1994。
许多有机化合物以光学活性形式存在,即它们具有使平面偏振光的平面发生旋转的能力。在描述光学活性化合物时,使用前缀D和L或R和S来表示分子关于其一个或多个手性中心的绝对构型。前缀d和l或(+)和(-)是用于指定化合物所致平面偏振光旋转的符号,其中(-)或l表示化合物是左旋的。前缀为(+)或d的化合物是右旋的。一种具体的立体异构体是对映异构体,这种异构体的混合物称作对映异构体混合物。对映异构体的50:50混合物称为外消旋混合物或外消旋体,当在化学反应或过程中没有立体选择性或立体特异性时,可出现这种情况。
本发明公开化合物的任何不对称原子(例如,碳等)都可以以外消旋或对映体富集的形式存在,例如(R)-、(S)-或(R,S)-构型形式存在。在某些实施方案中,各不对称原子在(R)-或(S)-构型方面具有至少50%对映体过量,至少60%对映体过量,至少70%对映体过量,至少80%对映体过量,至少90%对映体过量,至少95%对映体过量,或至少99%对映体过量。
依据起始物料和方法的选择,本发明化合物可以以可能的异构体中的一个或它们的混合物,例如外消旋体和非对应异构体混合物(这取决于不对称碳原子的数量)的形式存在。光学活性的(R)-或(S)-异构体可使用手性合成子或手性试剂制备,或使用常规技术拆分。 如果化合物含有一个双键,取代基可能为E或Z构型;如果化合物中含有二取代的环烷基,环烷基的取代基可能有顺式或反式构型。
所得的任何立体异构体的混合物可以依据组分物理化学性质上的差异被分离成纯的或基本纯的几何异构体,对映异构体,非对映异构体,例如,通过色谱法和/或分步结晶法。
可以用已知的方法将任何所得终产物或中间体的外消旋体通过本领域技术人员熟悉的方法拆分成光学对映体,如,通过对获得的其非对映异构的盐进行分离。外消旋的产物也可以通过手性色谱来分离,如,使用手性吸附剂的高效液相色谱(HPLC)。特别地,对映异构体可以通过不对称合成制备,例如,可参考Jacques,et al.,Enantiomers,Racemates and Resolutions(Wiley Interscience,New York,1981);Principles of Asymmetric Synthesis(2 ndEd.Robert E.Gawley,Jeffrey Aubé,Elsevier,Oxford,UK,2012);Eliel,E.L.Stereochemistry of Carbon Compounds(McGraw-Hill,NY,1962);Wilen,S.H.Tables of Resolving Agents and Optical Resolutions p.268(E.L.Eliel,Ed.,Univ.of Notre Dame Press,Notre Dame,IN 1972);Chiral Separation Techniques:A Practical Approach(Subramanian,G.Ed.,Wiley-VCH Verlag GmbH&Co.KGaA,Weinheim,Germany,2007)。
术语“互变异构体”或“互变异构形式”是指具有不同能量的可通过低能垒(low energy barrier)互相转化的结构异构体。若互变异构是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(protontautomer)(也称为质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键互变异构体(valence tautomer)包括通过一些成键电子的重组来进行的互相转化。酮-烯醇互变异构的具体实例是戊烷-2,4-二酮和4-羟基戊-3-烯-2-酮互变异构体的互变。互变异构的另一个实例是酚-酮互变异构。酚-酮互变异构的一个具体实例是吡啶-4-醇和吡啶-4(1H)-酮互变异构体的互变。除非另外指出,本发明化合物的所有互变异构体形式都在本发明的范围之内。
本发明所使用的术语“前药”,代表一个化合物在体内转化为式(I)所示的化合物。这样的转化受前体药物在血液中水解或在血液或组织中经酶转化为母体结构的影响。本发明前体药物类化合物可以是酯,在现有的发明中酯可以作为前体药物的有苯酯类,脂肪族(C1-24)酯类,酰氧基甲基酯类,碳酸酯,氨基甲酸酯类和氨基酸酯类。例如本发明里的一个化合物包含羟基,即可以将其酰化得到前体药物形式的化合物。其他的前体药物形式包括磷酸酯,如这些磷酸酯类化合物是经母体上的羟基磷酸化得到的。关于前体药物完整的讨论可以参考以下文献:T.Higuchi and V.Stella,Pro-drugs as Novel Delivery Systems, Vol.14 of the A.C.S.Symposium Series,Edward B.Roche,ed.,Bioreversible Carriers in Drug Design,American Pharmaceutical Association and Pergamon Press,1987,J.Rautio et al.,Prodrugs:Design and Clinical Applications,Nature Review Drug Discovery,2008,7,255-270,and S.J.Hecker et al.,Prodrugs of Phosphates and Phosphonates,Journal of Medicinal Chemistry,2008,51,2328-2345。
“代谢产物”是指具体的化合物或其盐在体内通过代谢作用所得到的产物。一个化合物的代谢产物可以通过所属领域公知的技术来进行鉴定,其活性可以通过如本发明所描述的那样采用试验的方法进行表征。这样的产物可以是通过给药化合物经过氧化,还原,水解,酰氨化,脱酰氨作用,酯化,脱脂作用,酶裂解等等方法得到。相应地,本发明包括化合物的代谢产物,包括将本发明的化合物与哺乳动物充分接触一段时间所产生的代谢产物。
本发明所使用的“药学上可接受的盐”是指本发明的化合物的有机盐和无机盐。药学上可接受的盐在所属领域是为发明人所熟知的,如文献:S.M.Berge et al.,describe pharmaceutically acceptable salts in detail in J.Pharmaceutical Sciences,1977,66:1-19.所记载的。药学上可接受的无毒的酸形成的盐包括,但并不限于,与氨基基团反应形成的无机酸盐有盐酸盐,氢溴酸盐,磷酸盐,硫酸盐,高氯酸盐,和有机酸盐如乙酸盐,草酸盐,马来酸盐,酒石酸盐,柠檬酸盐,琥珀酸盐,丙二酸盐,或通过书籍文献上所记载的其他方法如离子交换法来得到这些盐。其他药学上可接受的盐包括己二酸盐,藻酸盐,抗坏血酸盐,天冬氨酸盐,苯磺酸盐,苯甲酸盐,重硫酸盐,硼酸盐,丁酸盐,樟脑酸盐,樟脑磺酸盐,环戊基丙酸盐,二葡萄糖酸盐,十二烷基硫酸盐,乙磺酸盐,甲酸盐,反丁烯二酸盐,葡庚糖酸盐,甘油磷酸盐,葡萄糖酸盐,半硫酸盐,庚酸盐,己酸盐,氢碘酸盐,2-羟基-乙磺酸盐,乳糖醛酸盐,乳酸盐,月桂酸盐,月桂基硫酸盐,苹果酸盐,丙二酸盐,甲磺酸盐,2-萘磺酸盐,烟酸盐,硝酸盐,油酸盐,棕榈酸盐,扑酸盐,果胶酸盐,过硫酸盐,3-苯基丙酸盐,苦味酸盐,特戊酸盐,丙酸盐,硬脂酸盐,硫氰酸盐,对甲苯磺酸盐,十一酸盐,戊酸盐,等等。通过适当的碱得到的盐包括碱金属,碱土金属,铵和N+(C1-4烷基)4的盐。本发明也拟构思了任何所包含N的基团的化合物所形成的季铵盐。水溶性或油溶性或分散产物可以通过季铵化作用得到。碱金属或碱土金属盐包括钠,锂,钾,钙,镁,等等。药学上可接受的盐进一步包括适当的、无毒的铵,季铵盐和抗平衡离子形成的胺阳离子,如卤化物,氢氧化物,羧化物,硫酸化物,磷酸化物,硝酸化物,C1-8磺酸化物和芳香磺酸化物。
本发明的“溶剂化物”是指一个或多个溶剂分子与本发明的化合物所形成的缔合物。形成溶剂化物的溶剂包括,但并不限于,水,异丙醇,乙醇,甲醇,二甲亚砜,乙酸乙酯,乙酸和氨基乙醇。术语“水合物”是指溶剂分子是水所形成的缔合物。
如本发明所使用的术语“治疗”任何疾病或病症,在其中一些实施方案中,“治疗”指改善疾病或病症(即减缓或阻止或减轻疾病或其至少一种临床症状的发展)。在另一些实施方案中,“治疗”指缓和或改善至少一种身体参数,包括可能不为患者所察觉的身体参数。在另一些实施方案中,“治疗”指从身体上(例如稳定可察觉的症状)或生理学上(例如稳定身体的参数)或上述两方面调节疾病或病症。在另一些实施方案中,“治疗”指预防或延迟疾病或病症的发作、发生或恶化。
可药用的酸加成盐可与无机酸和有机酸形成,例如乙酸盐、天冬氨酸盐、苯甲酸盐、苯磺酸盐、溴化物/氢溴酸盐、碳酸氢盐/碳酸盐、硫酸氢盐/硫酸盐、樟脑磺酸盐、氯化物/盐酸盐、氯茶碱盐、柠檬酸盐、乙二磺酸盐、富马酸盐、葡庚糖酸盐、葡糖酸盐、葡糖醛酸盐、马尿酸盐、氢碘酸盐/碘化物、羟乙基磺酸盐、乳酸盐、乳糖醛酸盐、月桂基硫酸盐、苹果酸盐、马来酸盐、丙二酸盐、扁桃酸盐、甲磺酸盐、甲基硫酸盐、萘甲酸盐、萘磺酸盐、烟酸盐、硝酸盐、十八酸盐、油酸盐、草酸盐、棕榈酸盐、扑酸盐、磷酸盐/磷酸氢盐/磷酸二氢盐、聚半乳糖酸盐、丙酸盐、硬脂酸盐、琥珀酸盐、磺基水杨酸盐、酒石酸盐、甲苯磺酸盐和三氟乙酸盐。
可以由其衍生得到盐的无机酸包括例如盐酸、氢溴酸、硫酸、硝酸、磷酸等。
可以由其衍生得到盐的有机酸包括例如乙酸、丙酸、羟基乙酸、草酸、马来酸、丙二酸、琥珀酸、富马酸、酒石酸、柠檬酸、苯甲酸、扁桃酸、甲磺酸、乙磺酸、对甲苯磺酸、磺基水杨酸等。
可药用碱加成盐可与无机碱和有机碱形成。
可以由其衍生得到盐的无机碱包括,例如铵盐和周期表的I族至XII族的金属。在某些实施方案中,该盐衍生自钠、钾、铵、钙、镁、铁、银、锌和铜;特别适合的盐包括铵、钾、钠、钙和镁盐。
可以由其衍生得到盐的有机碱包括伯胺、仲胺和叔胺,取代的胺包括天然存在的取代的胺、环状胺、碱性离子交换树脂等。某些有机胺包括,例如,异丙胺、苄星青霉素(benzathine)、胆碱盐(cholinate)、二乙醇胺、二乙胺、赖氨酸、葡甲胺(meglumine)、哌嗪和氨丁三醇。
本发明的可药用盐可以用常规化学方法由母体化合物、碱性或酸性部分来合成。一般 而言,该类盐可以通过使这些化合物的游离酸形式与化学计量量的适宜碱(如Na、Ca、Mg或K的氢氧化物、碳酸盐、碳酸氢盐等)反应,或者通过使这些化合物的游离碱形式与化学计量量的适宜酸反应来进行制备。该类反应通常在水或有机溶剂或二者的混合物中进行。一般地,在适当的情况中,需要使用非水性介质如***、乙酸乙酯、乙醇、异丙醇或乙腈。在例如"Remington′s Pharmaceutical Sciences",第20版,Mack Publishing Company,Easton,Pa.,1985;和“药用盐手册:性质、选择和应用(Handbook of Pharmaceutical Salts:Properties,Selection,and Use)”,Stahl and Wermuth(Wiley-VCH,Weinheim,Germany,2002)中可找到另外一些适宜盐的列表。
另外,本发明公开的化合物、包括它们的盐,也可以以它们的水合物形式或包含其溶剂(例如乙醇、DMSO,等等)的形式得到,用于它们的结晶。本发明公开化合物可以与药学上可接受的溶剂(包括水)固有地或通过设计形成溶剂化物;因此,本发明旨在包括溶剂化的和未溶剂化的形式。
本发明给出的任何结构式也意欲表示这些化合物未被同位素富集的形式以及同位素富集的形式。同位素富集的化合物具有本发明给出的通式描绘的结构,除了一个或多个原子被具有所选择原子量或质量数的原子替换。可引入本发明化合物中的示例性同位素包括氢、碳、氮、氧、磷、硫、氟和氯的同位素,如 2H, 3H, 11C, 13C, 14C, 15N, 17O, 18O, 18F, 31P, 32P, 35S, 36Cl和 125I。
另一方面,本发明所述化合物包括同位素富集的本发明所定义的化合物,例如,其中存在放射性同位素,如 3H, 14C和 18F的那些化合物,或者其中存在非放射性同位素,如2H和 13C。该类同位素富集的化合物可用于代谢研究(使用 14C)、反应动力学研究(使用例如 2H或 3H)、检测或成像技术,如正电子发射断层扫描术(PET)或包括药物或底物组织分布测定的单光子发射计算机断层成像术(SPECT),或可用于患者的放疗中。 18F富集的化合物对PET或SPECT研究而言是特别理想的。同位素富集的式(I)所示化合物可以通过本领域技术人员熟悉的常规技术或本发明中的实施例和制备过程所描述使用合适的同位素标记试剂替代原来使用过的未标记试剂来制备。
此外,较重同位素特别是氘(即, 2H或D)的取代可提供某些治疗优点,这些优点是由代谢稳定性更高带来的。例如,体内半衰期增加或剂量需求降低或治疗指数得到改善带来的。应当理解,本发明中的氘被看做式(I)化合物的取代基。可以用同位素富集因子来定义该类较重同位素特别是氘的浓度。本发明所使用的术语“同位素富集因子”是指所指定同位素的同位素丰度和天然丰度之间的比例。如果本发明化合物的取代基被指定为氘,该化 合物对各指定的氘原子而言具有至少3500(各指定氘原子处52.5%的氘掺入)、至少4000(60%的氘掺入)、至少4500(67.5%的氘掺入),至少5000(75%的氘掺入),至少5500(82.5%的氘掺入)、至少6000(90%的氘掺入)、至少6333.3(95%的氘掺入)、至少6466.7(97%的氘掺入)、至少6600(99%的氘掺入)或至少6633.3(99.5%的氘掺入)的同位素富集因子。本发明可药用的溶剂化物包括其中结晶溶剂可以是同位素取代的例如D 2O、丙酮-d6、DMSO-d6的那些溶剂化物。
药物组合物
在本发明的第二方面,本发明提出了一种药物组合物。根据本发明的实施例,该药物组合物包含前面所述的化合物作为活性成分。根据本发明实施例的药物组合物能够有效控制癌组织中基质的形成并实现对肿瘤的更加有效的治疗。根据本发明实施例的药物组合物具有相比于现有***药物更长的半衰期和治疗窗口以及显著下降的治疗毒性。
根据本发明的实施例,所述药物组合物进一步包括药学上可接受的辅料。
根据本发明的实施例,所述药物组合物的剂型不受特别限制,本领域技术人员可以根据实际情况灵活选择。根据本发明的实施例,所述药物组合物呈胶束、乳剂、胶囊剂、丸剂、片剂、颗粒剂、口服液体、内服膏剂、气雾剂或喷雾剂的形式。由此,易于进行给药。
聚合物胶束作为药物载体,越来越受到瞩目。聚合物胶束能够形成独特的核壳结构,外壳由亲水链段形成,内核由疏水链段形成,这样可以将疏水药物包裹在胶束的内核,并对所载入药物进行保护。胶束粒径一般为10-100纳米,使其可以逃离人体网状内皮***(RES)的吞噬及其他人体内环境的影响,同时能够增加实体瘤的高通透性和滞留效应(EPR)。因而,根据本发明的实施例,所述药物组合物呈胶束的形式,并且所述胶束的载体是可降解的两亲性聚合物,包括聚乙二醇聚乳酸二嵌段共聚物(PEG-PLA)、单甲氧基聚乙二醇(mPEG)聚乳酸(左旋、右旋、外消旋):mPEG-PLA、单甲氧基聚乙二醇(mPEG)聚乳酸乙醇酸共聚物(不同配比):mPEG-PLGA、单甲氧基聚乙二醇(mPEG)聚己内酯(PCL):mPEG-PCL、单甲氧基聚乙二醇(mPEG)聚三亚甲基碳酸酯(PTMC):mPEG-PTMC或单甲氧基聚乙二醇(mPEG)聚氨基酸(聚赖氨酸、聚谷氨酸、聚天冬胺酸、聚鸟氨酸、聚精氨酸、聚组氨酸等),其中,各聚合物的各嵌段分子量可根据需要进行设计合成。例如聚乙二醇聚乳酸二嵌段共聚物(PEG-PLA)分子量为2000-2000,本领域技术人员可用合成思路如下:PEG-PLA的合成是以单羟基PEG做引发剂,以丙交酯做聚合单体而采用开环聚合而成的嵌段聚合物。如果固定PEG的摩尔量不变,而改变丙交酯单体的摩尔浓度就可以控制PLA链段的长度,从而得到PEG链长不变而PLA链长不等的聚合物;同样,采用不 同分子量的PEG,再固定丙交酯的浓度,也能够设计合成不同PEG链长而固定PLA链长的PEG-PLA。所以,两亲性嵌段聚合物的两个链段是可以通过化学合成的方法,调节二者的聚合浓度和比例而得到任意分子量大小的。而且研究表明聚合物链长不同,对药物的包载能力、所形成胶束的体内外稳定性、体内外药物释放的速率等等都是不同的。如果在本发明的基础上通过调节聚合物的种类和性质而进行制剂优化,是很有可能可以得到更好的体内外治疗效果的。例如根据本发明的实施例,PEG-PLA的合成是以单羟基PEG做引发剂,以丙交酯做聚合单体而采用开环聚合而成的嵌段聚合物。如果固定PEG的摩尔量不变,而改变丙交酯单体的浓摩尔浓度就可以控制PLA链段的长度,从而得到PEG链长不变而PLA链长不等的聚合物;同样,采用不同分子量的PEG,再固定丙交酯的浓度,也能够设计合成不同PEG链长而固定PLA链长的PEG-PLA。所以,两亲性嵌段聚合物的两个链段是可以通过化学合成的方法,调节二者的聚合浓度和比例而得到任意分子量大小的。而且研究表明聚合物链长不同,对药物的包载能力、所形成胶束的体内外稳定性、体内外药物释放的速率等等都是不同的。在本发明实施例的基础上通过调节聚合物的种类和性质而进行制剂优化,从而得到更好的体内外治疗效果的制剂也在本申请的保护范围内。由此,能够阻止活性成分被人体网状内皮***清除和降解成无毒的单体被***出体外,且亲水段的PEG具有易溶于水、链易流动和低毒的优点,可达到长循环的效果。此外,胶束体系还能够有效提高活性成分的载药量及生物利用度,从而更好地发挥治疗或预防癌症的功效。
根据发明的实施例,所述药物组合物进一步包含其他的抗胰腺癌的药物,其中,所述其他的抗胰腺癌的药物包括5-fluorouracil、吉西他滨、FOLFIRINOX、纳米紫杉醇/吉西他滨联合和ONIVYDE TM的一种或几种。联合其它治疗胰腺癌的药物,所述药物组合物对于胰腺癌的治疗效果更加显著。
本发明的化合物可以生产和配制为其外消旋混合物、同分异构体,对映异构体、非对映异构体、旋转异构体、N-氧化物、多晶型物、溶剂合物和药学上可接受的盐以及活性代谢物形式;也可以生产含式(I)所示的化合物或其代谢物、对映异构体、非对应异构体、N-氧化物、多晶型物、溶剂合物或药学上可接受的盐与药学上可接受的载体和任选包含的赋形剂的药物组合物。
本发明的药物组合物可以剂量单位生产和给药,各单位包含一定量的至少一种本发明所述的化合物和/或至少一种其生理学上可接受的加成盐。剂量可以在非常宽的范围内变化,这是因为该化合物即使是低剂量水平也是有效的,并且相对而言无毒性。该化合物可以治疗有效的低微摩尔给药,可以根据需要将剂量提高到患者所能承受的最大剂量。
当可用于治疗时,治疗有效量的式(I)所示化合物及其药学上可接受的盐可作为未加工的化学药品给予,还可作为药物组合物的活性成分提供。因此,本发明内容还提供药物组合物,该药物组合物包括治疗有效量的式(I)所示化合物或其药学上可接受的盐和一种或多种药学上可接受的载体、稀释剂或赋形剂。
实际上,按照常规的制药学复合技术,本发明的化合物或其药学上可接受的盐可以作为活性成分以密切混合的方式与制药学载体相组合。载体可以具有各种各样的形式,这取决于希望进行施用的制剂的形式,例如口服或肠胃外(包括静脉内)。因此,所述药物组合物可以作为适合于口服施用的分开的单元存在,例如胶嚢、扁嚢剂或片剂,其中每个都含有预定量的活性成分。此外,所述组合物可以以下列形式存在:粉末、颗粒剂、溶液、在水性液体中的悬浮液、非水性液体、水包油乳剂或油包水液体乳剂。除了上面展示的常用剂型外,所述化合物或其药学上可接受的盐,也可以通过控释手段和/或递送装置来施用。所述组合物可以通过制药业中的任何方法来制备。一般地,此类方法包括将活性成分与载体(其构成一种或多种必需成分)相组合的步骤。一般地,所述组合物通过将活性成分与液体载体或细分的固体载体或两者均匀且密切地混合来制备。然后,所述产品可以方便地被制成所希望的形式。
所采用的制药学载体可以是固体、液体或气体。固体载体的实例包括乳糖、石膏粉、蔗糖、滑石、明胶、琼脂、果胶、***胶、硬脂酸镁和硬脂酸。液体载体的实例为糖浆、花生油、橄榄油和水。气体载体的实例包括二氧化碳和氮气。
本发明所使用的术语“治疗有效量”是指足以显示出有意义的患者益处的各活性组分的总量。当使用单独的活性成分单独给药时,该术语仅指该成分。当组合应用时,该术语则是指不论组合、依次或同时给药时,都引起治疗效果的活性成分的组合量。式(I)所示化合物及其药学上可接受的盐如上所述。从与制剂其他成分相容以及对其接受者无害的意义上来讲,载体、稀释剂或赋形剂必须是可接受的。根据本发明内容的另一方面,还提供用于制备药物制剂的方法,该方法包括将式(I)所示化合物或其药学上可接受的盐与一种或多种药学上可接受的载体、稀释剂或赋形剂混匀。本发明所使用的术语“药学上可接受的”是指这样的化合物、原料、组合物和/或剂型,它们在合理医学判断的范围内,适用于与患者组织接触而无过度毒性、刺激性、***反应或与合理的利益/风险比相对称的其他问题和并发症,并有效用于既定用途。
通常,本发明的化合物通过用于发挥类似效用的物质的任何常规施用方式以治疗有效量被施用。适宜的剂量范围典型地为每天1-500mg,优选每天1-100mg,最优选每天1-30 mg,这取决于多种因素,例如所治疗疾病的严重性、施用对象的年龄和相对健康状况、所用化合物的效力、施用的途径和形式、施用所针对的适应症以及相关医学执业者的偏好和经验。治疗所述疾病领域的普通技术人员无需过多实验依靠个人知识和本申请的公开内容即能确定用于给定疾病的本发明化合物的治疗有效量。
本发明化合物的给药可以根据患者需要来进行,例如,经口给药、经鼻给药、非肠道给药(皮下、静脉内、肌肉内、胸骨内和输注)、吸入给药、经直肠给药、经***给药、体表给药、局部给药、透皮给药和经眼给药。
可以将各种固体口服剂型用于本发明化合物的给药,例如片剂、软胶囊、胶囊、囊片、颗粒、锭剂和散装粉末的固体剂型。可以将本发明化合物单独给药或与本领域已知的各种药学上可接受的载体、稀释剂(例如,蔗糖、甘露醇、乳糖、淀粉)和赋形剂组合给药,包括但不限于助悬剂、增溶剂、缓冲剂、粘合剂、崩解剂、防腐剂、着色剂、调味剂、润滑剂等。定时释放胶囊、片剂和凝胶剂对于本发明化合物的给药也是有利的。
片剂可以通过压制或模制来制备,可选地使用一种或多种辅助成分或助剂。压制片剂可通过在合适的机器中压制以自由流动形式(例如粉末或颗粒)的活性成分来制备,可选地与粘合剂、润滑剂、惰性稀释剂、表面活性剂或分散剂相混合。模制片剂可通过在合适的机器中模压用惰性液体稀释剂润湿的粉末状化合物的混合物来制备。每个片剂优选地含有大约0.lmg至大约500mg的活性成分;和每个扁嚢剂或胶嚢优选地含有大约0.1mg至大约500mg的活性成分。因此,在服用一个或两个片剂、扁嚢剂或胶嚢(每天一次、两次或三次)的情况下,片剂、扁嚢剂或胶嚢方便地含有0.lmg、1mg、5mg、25mg、50mg、100mg、200mg、300mg、400mg或500mg的活性成分。
还可以将本发明的化合物以多种液体口服剂型给药,包括含水和无水溶液、乳剂、悬浮液、糖浆和酏剂。这种剂型还可以包含本领域中已知的适合的惰性稀释剂,例如水,和本领域中已知的适合的赋形剂,例如防腐剂、润滑剂、甜味剂、调味剂。以及用于使本发明化合物乳化和/或使其成为悬浮液的试剂。本发明的化合物可以以等渗无菌溶液的形式注射给药,例如,静脉内注射。其它制备物也是可能的。
用于本发明化合物的直肠给药的栓剂可以通过将化合物与适合的赋形剂例如可可脂、水杨酸酯和聚乙二醇混合来制备。
用于***给药的制剂可以为霜剂、凝胶剂、糊剂、泡沫或喷雾剂形式,除了活性成分之外还包含例如本领域已知的适合的载体。
用于局部给药,药物组合物可以为适合于对皮肤、眼睛、耳或鼻给药的霜剂、软膏、 搽剂、洗液、乳剂、悬浮液、凝胶剂、溶液、糊剂、粉剂、喷雾剂和滴剂的形式。局部给药还可以包括通过例如透皮贴片的方式进行的透皮给药。
对于呼吸道疾病的治疗,优选本发明的化合物通过吸入给药。为此,可以以粉剂(最好为微粒化形式)直接给药,或通过含有它们的喷雾溶液剂或混悬液给药。
可吸入制备物包括可吸入的粉剂、含推进剂的计量气雾剂或不含推进剂的可吸入制剂。
可以向本发明的粉末化合物加入稀释剂或载体,所述稀释剂或载体通常是无毒的并且对于本发明的化合物为化学惰性的,例如乳糖或适合于改善可呼吸部分的任何其他添加剂。
包含气体推进剂例如氢氟烷烃的吸入气雾剂可以包含溶液或分散形式的本发明化合物。推进剂驱动的制剂还可以包含其他成分,例如共溶剂、稳定剂和任选的其它赋形剂。
含本发明化合物的不含推进剂的可吸入制剂可以是在含水介质、醇类介质或含水酒精介质中的溶液或悬浮液形式,并且它们可以通过现有技术已知的喷射雾化器或超声雾化器递送,或者通过细雾雾化器(soft-mist nebulizers)例如
Figure PCTCN2019091678-appb-000043
递送。
本发明的化合物可以作为单独的活性剂给药或与其它药物活性成分组合给药,所述其他药物活性成分包括目前用于治疗胰腺癌的那些,例如,5-fluorouracil、吉西他滨、FOLFIRINOX、纳米紫杉醇/吉西他滨联合和ONIVYDE TM中披露的化合物。
优选地,给与单独的或与其他活性成分组合的式(I)所示化合物用于预防和/或治疗特征在于癌症。
术语“组合使用”或“组合”要理解为如下含义:各成分可以同时地或者或多或少同时地、或者相继分别地给药。在其中一些实施例中,一种治疗剂/药物活性成分可以早上给药,另一种在当日稍后时间给药。在另一些实施例中,一种疗剂/药物活性成分可以一天给药一次,另一种则一周给药一次。要理解的是,如果各成分是直接相继地给药,则第二种成分给药的延迟不应使得丧失该组合的有益疗效。
同时给药可以由任何适当途径进行,且较好是诸如通过使这些治疗剂由经口途径或静脉内途径或经肌内途径或经皮下注射对有该需要的对象给药,使得该给药形式有每一种治疗剂的固定比例。
每一种治疗剂的或多或少同时给药或相继给药可以由任何适当途径、包括但不限于经口途径、经静脉内途径、经肌内途径、和经由粘膜组织吸收进行。这些治疗剂可以由相同途径也可以由不同途径给药。例如,该组合的两种治疗剂都可以经口给药。
本发明化合物可被包含在药物组合物中。所述药物组合物包含本发明所描述的化合物 或者其药学上可接受的盐作为活性成分,和药学上可接受的载体;并且任选地包含其他治疗成分或助剂(adjuvant)。
所述组合物包括适合于口服、直肠、局部和肠胃外(包括皮下、肌内和静脉内)施用的组合物,尽管在给定的情况下,最合适的途径取决于具体的宿主,以及为了其而施用所述活性成分的病状的性质和严重度。所述药物组合物可以方便地以单位剂量形式存在,并通过使用制药领域中所熟知的任何方法来制备。
包含所述化合物的乳膏剂、软膏剂、胶冻剂、溶液或悬浮液可用于局部使用。为了本发明的目的,在局部使用的范围内包括口腔洗剂和漱口剂。
适合于肠胃外施用的药物组合物可以被制成活性成分在水中的溶液或悬浮液。可以包括合适的表面活性剂,例如羟丙基纤维素。还可以在甘油、液态聚乙二醇以及它们的混合物(在油中)中制备分散体。此外,可包含防腐剂以防止微生物的有害生长。
适合于注射使用的那些药物组合物包括无菌水溶液或分散体。所述组合物可以是无菌粉末的形式,用于即时制备此类无菌可注射溶液或分散体。在所有情况下,最终的可注射形式必须是无菌的,而且必须是有效流动的以便能够容易地注射。
所述药物组合物在生产和贮存的条件下必须是稳定的;因此,优选地应当针对微生物(例如细菌和真菌)的污染作用进行防护。所述载体可以是溶剂或分散介质,包括例如水、乙醇、多元醇(例如,甘油、丙二醇和液态聚乙二醇)、植物油及其合适的混合物。
所述药物组合物可以为适合于局部使用的形式,例如气雾剂、乳膏剂、软膏剂、洗液、扑粉等。此外,所述组合物可以为适合于在透皮装置中使用的形式,可以通过常规的加工方法,使用化合物或其药学上可接受的盐来制备这些制剂。作为实例,乳膏剂和软膏剂通过下列方式来制备:混合亲水性材料和水以及大约5wt%至大约10wt%的化合物,从而产生具有所需稠度的乳膏剂或软膏剂。
本发明提供在需要这种治疗的患者中治疗胰腺癌的方法,该方法包括联合给予所述患者治疗有效量的至少一种式(I)所示化合物,或其药学上可接受的盐或溶剂合物。
本发明的化合物的剂量取决于多种因素,包括要治疗的具体疾病、症状的严重程度、给药途径、剂量间隔频率、所用的具体化合物、化合物的效力、毒理学特征和药代动力学的特征。
可与载体材料相组合从而产生单剂量形式的活性成分的量将取决于被治疗的宿主和特定的施用方式而变化。例如,意欲口服施用给人的制剂可以方便地含有大约0.5mg至大约5g的活性剂,其与合适且方便的量的载体材料(可占总组合物的大约5%至大约95%)相 复合。单位剂量形式一般将包含大约1mg至大约1000mg的活性成分,通常为25mg、50mg、100mg、200mg、300mg、400mg、500mg、600mg、800mg或1000mg。
对于任何特定的患者,具体的剂量水平将取决于一系列因素,包括年龄、体重、总体健康状况、性别、饮食、施用时机、施用途径、***速率、药物联合和经历治疗的特定疾病的严重度。
化合物或药物组合物在制备药物中的用途
在本发明的第三方面,本发明提出了前面所述的化合物或前面所述的药物组合物在制备药物中的用途,所述药物用于治疗或预防癌症。根据本发明实施例化合物或药物组合物中的活性成分在体内可以有效降解为肿瘤基质调控基团和细胞毒性基团药物,肿瘤基质调控基团可有效抑制肿瘤基质的生长,细胞毒性基团在体内发挥细胞毒作用,实现对肿瘤细胞的有效杀伤,进而,利用根据本发明实施例的化合物或药物组合物可有效用于治疗或预防癌症。
根据本发明的实施例,所述癌症为胰腺癌、肝癌、乳腺癌、皮肤癌、***癌或成纤维胶质瘤。上述癌症类型在一定的病程时期是具有大量的肿瘤基质的,这些癌症因具有被激活的stromal fibroblasts而与胰腺癌具有类似的复杂肿瘤微环境(血管贫瘠、对化疗药不敏感或耐药、免疫抑制等),且肿瘤细胞与这些基质成纤维细胞之间也具有类似的相互作用,根据本发明实施例的化合物能够调控这些肿瘤的被激活的stroma fibroblasts从而减少这些肿瘤组织里面的stroma含量,使更多的第二偶联成分进入到肿瘤细胞,实现对肿瘤细胞的杀伤作用。具体这些肿瘤微环境的报道可参见文献(Margareta M.Mueller.Nature reviews,2004)。
优选地,所述癌症为胰腺癌。利用根据本发明实施例的化合物或药物组合物对胰腺癌的治疗效果更加显著。
本发明的化合物或药学上可接受的组合物的“有效量”或“有效剂量”是指处理或减轻一个或多个本发明所提到病症的严重度的有效量。根据本发明的方法,化合物和组合物可以是任何给药量和任何给药途径来有效地用于处理或减轻疾病的严重程度。必需的准确的量将根据患者的情况而改变,这取决于种族,年龄,患者的一般条件,感染的严重程度,特殊的因素,给药方式,等等。化合物或组合物可以和一个或多个其他治疗剂联合给药,如本发明所讨论的。
制备化合物的方法
在本发明的第四方面,本发明提出可一种制备前面所述化合物的方法。根据本发明的 实施例,所述方法包括:将第一偶联成分与第二偶联成分进行连接反应,所述第一偶联成分用于调控肿瘤基质;所述第二偶联成分用于杀伤肿瘤细胞。利用根据本发明实施例的上述方法获得化合物能够实现可同时作用于肿瘤基质和肿瘤细胞,从而实现消除或减少肿瘤基质的同时对肿瘤细胞进行杀伤的目的。根据本发明实施例的方法所获得化合物的药代动力学性质得以提高,同步了第一偶联成分和第二偶联成分的药代动力学,对基质的产生和癌症细胞的抑制起到好的协同作用,癌肿瘤的耐药环境得以改善,对肿瘤细胞的有效杀伤显著提高,同时大幅降低了药物的毒副作用。根据本发明的实施例,所述连接反应是在连接子存在下进行的。其中,连接子的种类不受特别限制,只要能够成功起到将第一偶联成分与第二偶联成分进行连接反应并在能在体内进行酶解即可。
根据本发明的具体实施例,所述连接反应是在第一偶联成分与第二偶联成分以及连接子同时存在的条件下进行的,所述连接子为式(88)~式(97)所示化合物的至少一种,
Figure PCTCN2019091678-appb-000044
其中,n为1-10。式(88)~(97)所示化合物可作为有效的连接子,将第一偶联成分与第二偶联成分进行化学联合,而相成稳定的上述偶联化合物。根据本发明的再一具体实施例,所述第一偶联成分为Cal,所述第二偶联成分为TP,其中,式(A)所示化合物为TP,是(B)所示化合物为Cal,
Figure PCTCN2019091678-appb-000045
所述连接反应以式(88)所示化合物作为连接子,连接反应效率高。
根据本发明的实施例,所述式(A)所示化合物与式(B)所示化合物的质量比为1:1。由此,TP抑制肿瘤细胞的作用显著,Cal抑制胰腺癌基质形成的作用显著,两者的协同治疗作用明显。
根据本发明的具体实施例,所述制备前面所述化合物的方法如图1A所示,包括以下步骤:
第一步:TP-COOH的合成:往雷公藤甲素(324mg,0.90mmol)的二氯甲烷(Dichloromethane,CH 2Cl 2)溶液中加入丁二酸酐(Succinic anhydride,630mg,6.3mmol),二甲基氨基吡啶(Dimethylaminopyridine,DMAP,765mg,6.3mmol)和三乙胺(Triethylamine,TEA,783μL,0.98mmol)。化合物溶液在室温下搅拌反应24h,柱层析法检测反应的进行。反应完毕后先后用二氯甲烷、盐水洗,收集有机相。有机相用硫酸钠干燥后过滤,蒸馏。所得粗产物用硅胶柱提纯,流动相用100:1的二氯甲烷:甲醇,得到白色380mg的TP-COOH,产率约92%。
第二步:往TP-COOH(64mg,0.14mmol)的二氯甲烷溶液中加入卡泊三醇(Calcipotriol,Cal,57mg,0.14mmol)、DMAP(84.3mg,0.69mmol)和二环己基碳二亚胺(Dicyclohexylcarbodiimide,DCC,143mg,0.69mmol)。混合物溶液室温下搅拌反应24h,柱层析法检测反应的进行。反应完毕加适量二氯甲烷稀释,先后用0.1M的稀盐酸溶液和盐水洗,收集有机相,有机相用硫酸钠干燥后过滤,蒸馏。所得粗产物用硅胶柱提纯,流动相用100:1的二氯甲烷:甲醇,得到白色10mg的Callide固体,产率约15%。
在本发明的再一方面,本发明还提供了一种制备胶束的方法。根据本发明的实施例,合成方法示意图如图1B所示,该方法包括以下步骤:
称取1mg的Callide和19mg的聚乙二醇-聚乳酸嵌段共聚物(Polyethylene glycol-polylactic acid block copolymer,PEG-PLA),用5ml的乙腈溶解在50ml的圆底烧瓶中,超声1min使之充分溶解。60摄氏度水浴旋蒸除溶剂,得到一个透明的薄膜,待溶剂蒸发完全后继续旋蒸30分钟以除去残留的有机溶剂。往圆底烧瓶内加5ml的60摄氏度预热的 生理盐水,超声水化,得到包裹药物的聚合物胶束,命名为Callide NP。聚合物胶束溶液用动态光散射仪分析其粒径大小,透射电子显微镜分析其外貌形态,结果如图1C所示。
发明人发现,利用本发明的该方法能够快速有效地制备获得所述胶束,且操作简单、易于控制,对设备没有特殊要求,适合规模化生产。另外,TP得到显著聚集,能够有效抑制TFIIAH,Cal能够有效抑制胰腺癌基质形成,化合物的半衰期和治疗窗口相对于TP得到显著提高,因而化合物对胰腺癌的治疗效果更加显著,且化合物的治疗毒副作用显著下降。利用根据本发明实施例的方法所制备的胶束稳定性较好,能够有效用于治疗或预防癌症,特别是胰腺癌。
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1化合物Callide体外降解实验
实验材料:磷酸盐缓冲液(PBS,Ph=7.2-7.4),猪肝酯酶,高效液相色谱仪(HPLC)
实验方法:HPLC法
实验过程:在5ml有(或无)猪肝酯酶的PBS缓冲液中,加入50微升的1mg/ml的Callide(乙醇溶液助溶),37摄氏度条件下搅拌,分别于1min、5min、10min、30min、1h、2h、4h、8h、12h、24h、48h取200微升溶液,过滤,用HPLC测定溶液中的Callide、卡泊三醇的浓度。
结果:在没有猪肝酯酶的条件下,Callide不能降解,即使时间延长至48h,溶液中的Callide浓度保持不变;而在有猪肝酯酶存在时,Callide能够降解成单一的卡泊三醇,且随着时间的延长,Callide浓度降低,卡泊三醇浓度升高(实验结果如图1D所示)。
结论:本研究合成的新化合物Callide能够在酯酶的催化作用下成功降解。
实施例2 Callide的细胞毒性实验
实验材料:四种胰腺癌细胞系,分别为MIA PaCa-2、PANC-1、SW1990、SW1990-GEM。细胞全培养基,酶标仪
实验方法:DNA assay法
实验过程:胰腺癌细胞培养,消化,培养基重悬成细胞悬液后接种到96孔板,每孔4000个细胞。实验组分为5组,分别为TP组,Cal组,TP和Cal的物理混合组(TP/Cal),Callide-DMSO不加酯酶组(Callide without PLE),Callide-DMSO外加10U酯酶组(Callide with 10U PLE)Callide NP不加酯酶组(Callide NPwithout PLE),Callide NP外加10U酯酶组 (Callide NPwith 10U PLE)。每组配制5nM、10nM、20nM、40nM、80nM、100nM、200nM、400nM共8个浓度,每个浓度重复六个孔。给药24h后吸除药液,PBS洗两遍,加入Husted染料,酶标仪分析,绘制细胞相对生存率曲线,计算各化合物的IC 50
结果:TP作为传统的细胞毒性药物对4种胰腺癌细胞均具有较高的杀伤作用,IC 50=20nM左右。Cal作为一个临床治疗牛皮癣的药物,在发明人所研究的剂量范围内对癌细胞并没有杀伤作用。本研究所合成的化合物Callide在没有外加酯酶的条件下没有对细胞产生任何的毒副作用。但是,在猪肝酯酶的催化作用下,Callide能够降解成为TP(或TP-COOH)而产生细胞杀伤性作用。相比于纯化合物Callide,Callide的胶束制剂具有类似的细胞毒作用。Callide NP在没有外加酯酶的条件下同样没有对细胞产生任何的毒副作用。但是,在猪肝酯酶的催化作用下,Callide NP中的Callide能够降解成为TP(或TP-COOH)而产生细胞杀伤性作用且IC 50相对于TP来说提高了4-7倍(实验结果如图2所示)。
结论:本研究制备的Callide和Callide NP在有酯酶的催化降解条件下均能够成功的降解,成为有效成分而起到对癌细胞的杀伤作用。但是由于胶束对Callide降解的保护作用,对于Callide的释放和降解受到抑制,因而Callide NP的IC50值增大,细胞毒作用有所降低。
实施例3 Callide NP的大鼠PK实验
实验材料:大鼠,品系SD,6-9周龄大小。分析仪器:安捷伦1290/6460三重四级杆质谱联用仪,产地美国。
实验方法:色谱-质谱联用分析
实验过程:12只SD大鼠随机分成4组,每组3只。分别给药TP(0.3mg/kg),TP/Cal(0.3/0.35mg/kg),Callide NP(0.3mg/kg),Callide NP(0.6mg/kg)。每只大鼠在5min,15min,30min,1h,2h,4h,8h通过眼眶取血300微升,4℃10000rpm离心,取上清血浆。血浆用乙酸乙酯/水萃取,涡旋,超声,4℃离心,上清在氮气保护下挥发干,再用流动相乙腈/水溶解,离心取上清后进样。
结果:TP作为游离药物在血浆内与蛋白结合能力较弱,分析测得血浆内游离的TP药物浓度较高,半衰期短,这也是TP产生严重的体内毒性的原因之一。TP与Cal物理混合后也没有改善TP的药代动力学相关参数,这也是TP和Cal物理混合的毒性与游离TP的毒性相当的原因。而Callide作为TP的前药,在血浆中的产生游离TP的浓度明显降低,血浆半衰期有所延长,血浆平均滞留时间延长,这与Callide毒性较低作用效果持久具有直接的关系(实验结果如图3所示)。
结论:Callide作为TP的前药通过聚合物胶束进行递送能够显著改善体内药代动力学性质,降低游离TP的严重副作用,提高了TP的抗癌作用效果。
实施例4 Callide NP的小鼠短、长期给药的毒性实验
实验材料:BALB/C小鼠
实验方法:BALB/C小鼠分为5组,Saline参照组和TP、Cal、TP/Cal、Callide NP四组给药组。参照组5只小鼠,实验组每组高、中、低3个剂量,每个剂量5只小鼠,共计65只小鼠。给药剂量:TP(0.3mg/kg、0.6mg/kg、1.2mg/kg)、Cal(0.6mg/kg、1.2mg/kg、1.8mg/kg)、TP/Cal(0.6mg/kg、1.2mg/kg、1.8mg/kg)、Callide NP(0.6mg/kg、1.2mg/kg、1.8mg/kg),一周一次,尾静脉注射给药。
结果:TP组小鼠预先给予1.8mg/kg,一次给药后小鼠全部死亡,因此设计TP的高、中、低剂量为上述剂量。即便如此,TP组小鼠均表现出了明显的毒性反应,给药结束后,小鼠行动迟缓,精神萎靡,尤其是1.2mg/kg剂量的TP,除小鼠精神状态不佳以外,小鼠尾部注射部位出现严重的皮肤溃烂,小鼠体重明显减轻,解剖学结果发现小鼠脏器均有不同程度的坏死,尤其是睾丸,睾丸的相对重量明显减轻,***和***细胞形态受损严重。TP/Cal组的小鼠状态与上述情况类似,游离的TP引起的毒副作用对小鼠的健康状态有极为不利的影响。相对于此,Cal组的小鼠均未出现上述不良症状,小鼠健康状态良好。Callide NP组小鼠在给药结束后上述不良状态明显减轻,仅在高剂量的实验组出现了小鼠精神状态不佳,但是和对照组相比,体重和各脏器均未有明显变化(实验结果如图4所示)。
结论:相对于TP,Callide的长期毒性显著降低,这是发明人进行进一步验证Callide的抗肿瘤效果作用的前提。
实施例5 Callide NP的协同作用于胰腺星型细胞和胰腺癌细胞的体外作用效果
实验材料:转基因小鼠原代培养的胰腺星型细胞和胰腺癌细胞。其中胰腺癌细胞通过慢病毒转染的方法转染荧光素酶基因。
实验方法:体外共培养,免疫荧光组化分析
试验过程:取自发形成肿瘤的KPC小鼠,解剖得到肿瘤组织,通过体外物理破碎,酶解的方式分离、培养原代胰腺星型细胞和胰腺癌细胞。
单独胰腺星型细胞用12孔板培养,每孔10万个细胞,用TP(10nM),Cal(100nM),TP/Cal(10/100nM),Callide NP(100nM)处理孵育24小时,然后通过免疫荧光染色分析每孔内细胞的平滑肌动蛋白和胶原蛋白的含量。
胰腺星型细胞与胰腺癌细胞以1:1的比例用12孔板培养,每孔共10万个细胞,用TP(10nM),Cal(100nM),TP/Cal(10/100nM),Callide NP(100nM)处理孵育24小时,然后通过免疫荧光染色分析每孔内细胞的平滑肌动蛋白和胶原蛋白的含量。
结果:对于单一的胰腺星型细胞,TP处理的细胞的平滑肌动蛋白和胶原蛋白的含量与对照组细胞没有明显差别;Cal处理后细胞的相关蛋白表达水平降低,荧光强度明显变小;TP/Cal及Callide NP都有一样的作用趋势。对于共培养的胰腺星型细胞与胰腺癌细胞,对照组中相比于单一的胰腺星型细胞,相互之间的相关蛋白的表达水平明显增加,在用TP处理后相关蛋白的表达水平变化不明显,而Cal,TP/Cal及Callide NP处理后的细胞的相关蛋白表达水平明显降低(实验结果如图5所示)。
结论:Callide可以在酯酶的催化降解下产生Cal,通过Cal重塑被激活的PSC的作用下降低细胞的平滑肌动蛋白和胶原蛋白的含量,同时减弱胰腺星型细胞与胰腺癌细胞之间的相互作用。
实施例6 Callide NP的基于胰腺星型细胞和胰腺癌细胞共植入原位模型的体内抗肿瘤效果实验
实验材料:胰腺星型细胞,荧光素酶转染的胰腺癌细胞;裸鼠:品系Blab/C nude,6-8周龄大小。
实验方法:胰腺星型细胞与荧光素酶转染的胰腺癌细胞悬液以1:1的比例混合均匀,密度10000个/40μL的密度接种于胰腺部位,接种体积40μL。
试验过程:两种细胞消化离心,PBS重旋后以1:1比例混合,再以此细胞混合液与基质胶以1:1比例混合吹打均匀。裸鼠在符合清华大学伦理委员会审查的前提下进行相关手术,将吹打均匀的细胞悬液用胰岛素针注射40μL到胰腺部位,再缝合伤口,皮下注射镇静剂。细胞注射一周左右后,每只小鼠腹腔注射0.1ml荧光素钠盐溶液,10min后将小鼠用异氟烷麻醉,用小动物活体成像仪检测小鼠胰腺部位荧光信号的大小。随后将小鼠随机分组,每组7只,分别给予TP(0.3mg/kg)、Cal(0.35mg/kg)、TP/Cal(0.3/0.35mg/kg)、Callide NP(0.6mg/kg)。每两天给药一次,共7次,每次给药后称量小鼠体重。给药4次后,同样用小动物活体成像仪检测小鼠胰腺部位荧光信号的大小。全部给药完成后再次用小动物活体成像仪检测小鼠胰腺部位荧光信号的大小。同时记录小鼠的生存率情况。实验结束后,取小鼠肿瘤组织,用组织免疫染色的方法检测肿瘤组织部位平滑肌动蛋白和胶原蛋白的表达情况(实验结果如图6所示)。
结果:相比于对照组,TP组肿瘤抑制效果不显著,但是毒性明显,给药七次后,小鼠体重显著降低,并且同样有一只小鼠死亡;Cal组无肿瘤抑制效果,胰腺癌细胞荧光信号与对照组无明显差异,小鼠生存率无明显差异;TP/Cal组小鼠肿瘤细胞荧光信号有所降低,但是肿瘤重量变化无明显差异,其肿瘤抑制效果及对小鼠生存率的贡献有限;Callide NP组小鼠胰腺癌细胞的荧光信号明显降低,小鼠生存率相比于对照组有显著延长,而且通过肿瘤 组织免疫染色发现平滑肌动蛋白和胶原蛋白的含量有所降低,这与Callide NP的肿瘤抑制效果有直接关系。
结论:Callide NP通过协同抑制胰腺星型细胞和胰腺癌细胞,能够显著抑制原位胰腺星型细胞和胰腺癌细胞共植入模型的肿瘤大小并延长小鼠生存期。
实施例7 Callide NP的基于胰腺癌MIA PaCa-2细胞系的体内抗肿瘤效果实验
实验材料:MIA PaCa-2细胞系,
实验方法:基于MIA PaCa-2细胞系的小鼠皮下肿瘤模型的建立,给药后评价实验组各化合物对肿瘤的抑制效果及毒副作用。
实验过程:小鼠腋下腹部注射0.1ml的MIA PaCa-2细胞悬液,监测肿瘤的生长情况,待肿瘤大小为100mm 3左右时,小鼠随机分为5组,Saline参照组和TP、Cal、TP/Cal、Callide NP四组给药组,每组8只。给药剂量,TP(0.3mg/kg)、Cal(0.3mg/kg)、TP/Cal(0.3/0.35mg/kg)、Callide NP(0.3mg/kg,理论上完全降解为TP后的给药剂量),尾静脉注射给药,一周一次。肿瘤尺寸每两天测量一次。
结果:如图7所示,相对于Saline组,Cal组没有抗肿瘤效果。其他组均具有非常明显的抑制肿瘤生长的作用。小鼠解剖后,分离肿瘤称重,TP、TP/Cal、Callide NP组肿瘤的重量明显小于对照组。值得注意的是,TP组的肿瘤大小肿瘤是比TP/Cal和Callide NP组都要小的,这是因为,TP/Cal是TP生理盐水溶液与Cal胶束制剂的物理混合,二者的相互作用降低了TP发挥作用,Callide NP起作用的前提是降解为TP,但是由于体内酯酶的分布和浓度的不确定性,Callide NP的降解并不完全,这在一定程度上限制了Callide NP的降解及降解产物TP的抗肿瘤效果。(或者Callide NP改变了TP的PK,且降解产物可能是TP-COOH)
结论:Callide NP在基于MIA PaCa-2细胞系的小鼠皮下肿瘤模型中,能够有效的抑制肿瘤生长且没有明显的毒副作用。且由于Callide NP不能完全降解为TP,其抗肿瘤作用稍微弱于纯TP。
实施例8 Callide NP的基于胰腺癌人源化肿瘤的体内抗肿瘤效果实验
实验材料:人源化的胰腺癌组织
实验方法:基于人源化的胰腺癌组织的小鼠皮下肿瘤模型的建立
实验过程:建立人源化的胰腺癌组织的小鼠皮下肿瘤模型,给予TP(0.3mg/kg)、Callide NP(0.3mg/kg,理论上完全降解为TP后的给药剂量),尾静脉注射给药,一天一次。一周后Callide NP的剂量增加到0.6mg/kg。
结果:实验初始的一周内,TP的抑制肿瘤生长的效果非常明显,但是Callide NP并没有, 发明人使给药剂量加倍后,Callide NP逐渐开始表现出较好的肿瘤抑制效果。这是因为在Callide NP的给药剂量为0.3mg/kg时,Callide在体内降解为TP的速度和程度并不能达到TP的有效治疗浓度,剂量加倍后Callide的优势开始显现出来,肿瘤抑制的效率慢慢超过TP,肿瘤生长抑制曲线的斜率大于TP。这说明Callide NP在适宜的浓度剂量条件下能够表现出相当于或者优于TP的肿瘤抑制效果(如图5所示)。而且,从小鼠的精神状态、尾部静脉注射部位的皮肤情况来看,Callide NP均表现出了较好的安全性(如图9所示)。肿瘤组织的免疫组织化学染色结果也显示出Callide降解产生的Cal对肿瘤基质产生了作用,肿瘤组织的纤维蛋白含量明显降低,同时伴随着肿瘤细胞的凋亡(图8)。
结论:在人源化的小鼠皮下移植瘤模型中,Callide NP表现出了较好的抗肿瘤潜力,同时其安全性也远远优于单一的TP。且良好的抗肿瘤效果来源于对肿瘤基质的弱化作用以及对肿瘤细胞杀伤的双重作用机制。
综上所述,本研究新制得的化合物Callide能够较好的在猪肝酯酶的催化作用下降解成为具有调控肿瘤基质的Cal以及肿瘤细胞杀伤作用的TP;体内长期给药毒性相比于TP来说也大大降低。在不同的小鼠肿瘤模型中,Callide NP均表现出了良好的抗肿瘤效果。通过协同作用于肿瘤基质和肿瘤细胞的双重作用机制实现对胰腺癌的有效治疗。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (17)

  1. 一种化合物,其特征在于,包含相互偶联的肿瘤基质调控基团和细胞毒性基团,所述肿瘤基质调控基团用于调控肿瘤基质,所述细胞毒性基团用于杀伤肿瘤细胞。
  2. 根据权利要求1所述的化合物,其特征在于,所述肿瘤基质调控基团包括选自卡泊三醇,环巴胺、更昔洛韦、芬戈莫德、全反式维甲酸以及透明质酸酶的至少之一。
  3. 根据权利要求1所述的化合物,其特征在于,所述细胞毒性基团包括选自雷公藤甲素、紫杉醇、多西紫杉醇、阿霉素、喜树碱、羟基喜树碱、5-氟尿嘧啶、吉西他滨、顺铂、伊立替康、奥沙利铂、培美曲塞、卡培他滨、表柔比星、索拉菲尼、吉非替尼、厄洛替尼、伊马替尼、尼洛替尼、达沙替尼、依维莫司、舒尼替尼、依鲁替尼、克唑替尼、帕唑帕尼、卡非佐米、托法替尼、阿西替尼、瑞戈非尼、维罗非尼、西罗莫司、泊那替尼、乐伐替尼、奥拉伯尼、色瑞替尼、罗米地辛、艾乐替尼、贝利司他、伯舒替尼、凡德他尼、卡博替尼、阿法替尼、曲美替尼、达拉非尼以及拉帕替尼的至少之一,
    任选地,所述化合物进一步包括酶降解连接剂,
    任选地,所述酶降解连接剂具有如下结构的至少之一,
    Figure PCTCN2019091678-appb-100001
    Figure PCTCN2019091678-appb-100002
  4. 一种化合物,其包含以下其中之一的结构或所述结构的同分异构体、立体异构体、几何异构体、互变异构体、氮氧化物、水合物、溶剂化物、代谢产物、药学上可接受的盐或前药,
    Figure PCTCN2019091678-appb-100003
    其中,R 1独立地为卡泊三醇,环巴胺,更昔洛韦,芬戈莫德,全反式维甲酸或透明质酸酶;
    R 2独立地为雷公藤甲素、紫杉醇、多西紫杉醇、阿霉素、喜树碱、羟基喜树碱、5-氟尿嘧啶、吉西他滨、顺铂、伊立替康、奥沙利铂、培美曲塞、卡培他滨、表柔比星、索拉 菲尼、吉非替尼、厄洛替尼、伊马替尼、尼洛替尼、达沙替尼、依维莫司、舒尼替尼、依鲁替尼、克唑替尼、帕唑帕尼、卡非佐米、托法替尼、阿西替尼、瑞戈非尼、维罗非尼、西罗莫司、泊那替尼、乐伐替尼、奥拉伯尼、色瑞替尼、罗米地辛、艾乐替尼、贝利司他、伯舒替尼、凡德他尼、卡博替尼、阿法替尼、曲美替尼、达拉非尼或拉帕替尼。
  5. 根据权利要求4所述的化合物,其特征在于,包含以下其中之一的结构:
    Figure PCTCN2019091678-appb-100004
    Figure PCTCN2019091678-appb-100005
    Figure PCTCN2019091678-appb-100006
    Figure PCTCN2019091678-appb-100007
    Figure PCTCN2019091678-appb-100008
    Figure PCTCN2019091678-appb-100009
    Figure PCTCN2019091678-appb-100010
    Figure PCTCN2019091678-appb-100011
    Figure PCTCN2019091678-appb-100012
    Figure PCTCN2019091678-appb-100013
    Figure PCTCN2019091678-appb-100014
    Figure PCTCN2019091678-appb-100015
    Figure PCTCN2019091678-appb-100016
    Figure PCTCN2019091678-appb-100017
  6. 一种化合物,其为如式(I)所示的化合物,或式(I)所示的化合物的同分异构体、立体异构体、几何异构体、互变异构体、氮氧化物、水合物、溶剂化物、代谢产物、药学上可接受的盐或前药,
    Figure PCTCN2019091678-appb-100018
  7. 根据权利要求6所述的化合物,其特征在于,式(I)所示化合物的同分异构体具有式(II)或式(III)所示的结构,
    Figure PCTCN2019091678-appb-100019
  8. 一种药物组合物,其特征在于,包含权利要求1~7所述的化合物作为活性成分。
  9. 根据权利要求8所述的药物组合物,其特征在于,进一步包括药学上可接受的辅料。
  10. 根据权利要求8所述的药物组合物,其特征在于,所述药物组合物呈胶束,乳剂,白蛋白纳米粒、脂质体、胶囊剂、丸剂、片剂、颗粒剂、口服液体、内服膏剂、气雾剂或喷雾剂的形式,
    优选地,所述药物组合物呈胶束的形式,并且所述胶束是由包括聚乙二醇聚乳酸嵌段共聚物、单甲氧基聚乙二醇聚乳酸、单甲氧基聚乙二醇聚乳酸乙醇酸共聚物、单甲氧基聚乙二醇聚己内酯、单甲氧基聚乙二醇聚三亚甲基碳酸酯和单甲氧基聚乙二醇聚氨基酸的至少之一形成。
  11. 根据权利要求8所述的药物组合物,其特征在于,进一步包含其他的抗胰腺癌的药物,其中,所述其他的抗胰腺癌的药物包括5-fluorouracil、吉西他滨、FOLFIRINOX、纳米紫杉醇/吉西他滨联合和ONIVYDE TM的一种或几种。
  12. 权利要求1~7任一项所述的化合物或权利要求8~11任一项所述的药物组合物在制备药物中的用途,所述药物用于治疗或预防癌症。
  13. 根据权利要求12所述的用途,其特征在于,所述癌症为胰腺癌、肝癌、乳腺癌、皮肤癌、***癌或成纤维胶质瘤,
    优选地,所述癌症为胰腺癌。
  14. 一种制备权利要求1~7任一项所述化合物的方法,其特征在于,包括:
    将第一偶联成分与第二偶联成分进行连接反应,所述第一偶联成分用于调控肿瘤基质;所述第二偶联成分用于杀伤肿瘤细胞。
  15. 根据权利要求14所述的方法,其特征在于,所述连接反应是在第一偶联成分与第二偶联成分以及连接子同时存在的条件下进行的,所述连接子为式(88)~式(97)所示化合物的至少一种,
    Figure PCTCN2019091678-appb-100020
    其中,n为1-10。
  16. 根据权利要求15所述的方法,其特征在于,所述第一偶联成分为卡泊三醇,所述第二偶联成分为雷公藤甲素,所述连接子为式(88)所示化合物。
  17. 根据权利要求16所述的方法,其特征在于,所述第一偶联成分与所述第二偶联成分的摩尔比为1:1。
PCT/CN2019/091678 2018-09-28 2019-06-18 化合物及其用途 WO2020062951A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2019351035A AU2019351035A1 (en) 2018-09-28 2019-06-18 Compound and use thereof
CA3112275A CA3112275A1 (en) 2018-09-28 2019-06-18 Compound and use thereof
EP19865985.6A EP3858836A1 (en) 2018-09-28 2019-06-18 Compound and use thereof
JP2021516822A JP2022501390A (ja) 2018-09-28 2019-06-18 化合物及びその用途
KR1020217007979A KR20210070978A (ko) 2018-09-28 2019-06-18 화합물 및 이의 용도
CN201980056258.4A CN112654626A (zh) 2018-09-28 2019-06-18 化合物及其用途
US17/203,758 US20210196730A1 (en) 2018-09-28 2021-03-17 Compound and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018108232 2018-09-28
CNPCT/CN2018/108232 2018-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/203,758 Continuation US20210196730A1 (en) 2018-09-28 2021-03-17 Compound and use thereof

Publications (1)

Publication Number Publication Date
WO2020062951A1 true WO2020062951A1 (zh) 2020-04-02

Family

ID=69952819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091678 WO2020062951A1 (zh) 2018-09-28 2019-06-18 化合物及其用途

Country Status (8)

Country Link
US (1) US20210196730A1 (zh)
EP (1) EP3858836A1 (zh)
JP (1) JP2022501390A (zh)
KR (1) KR20210070978A (zh)
CN (1) CN112654626A (zh)
AU (1) AU2019351035A1 (zh)
CA (1) CA3112275A1 (zh)
WO (1) WO2020062951A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572241A (zh) * 2021-06-21 2023-01-06 润佳(苏州)医药科技有限公司 双价化合物、偶联物及其用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874160B (zh) * 2022-07-11 2022-09-23 北京丹大生物技术有限公司 多西紫杉醇衍生物、多西紫杉醇人工抗原、杂交瘤细胞株、多西紫杉醇单克隆抗体及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201026A2 (en) * 2013-06-10 2014-12-18 Cedars-Sinai Medical Center Antioxidant, anti-inflammatory and anticancer derivatives of triptolide and nanospheres thereof
CN106995449A (zh) * 2017-04-13 2017-08-01 遵义医学院 鬼臼毒素‑维甲酸杂合物合成方法和应用于预防、***的药物
CN107698521A (zh) * 2016-03-23 2018-02-16 上海华理生物医药有限公司 一种5-氟尿嘧啶取代羧酸衍生物的制备及用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201026A2 (en) * 2013-06-10 2014-12-18 Cedars-Sinai Medical Center Antioxidant, anti-inflammatory and anticancer derivatives of triptolide and nanospheres thereof
CN107698521A (zh) * 2016-03-23 2018-02-16 上海华理生物医药有限公司 一种5-氟尿嘧啶取代羧酸衍生物的制备及用途
CN106995449A (zh) * 2017-04-13 2017-08-01 遵义医学院 鬼臼毒素‑维甲酸杂合物合成方法和应用于预防、***的药物

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Bioreversible Carriers in Drug Design", 1987, AMERICAN PHARMACEUTICAL ASSOCIATION AND PERGAMON PRESS
"McGraw-Hill Dictionary of Chemical Terms", 1984, MCGRAW-HILL BOOK COMPANY
"Remington's Pharmaceutical Sciences", 1985, MACK PUBLISHING COMPANY
"Tables of Resolving Agents and Optical Resolutions", 1972, UNIV. OF NOTRE DAME PRESS, pages: 268
ELIEL, E.L.: "Stereochemistry of Carbon Compounds", 1962, MCGRAW-HILL
ELIEL, E.WILEN, S.: "Stereochemistry of Organic Compounds", 1994, JOHN WILEY & SONS, INC.
HE, QINGLI ET AL.: "Targeted Delivery and Sustained Antitumor Activity of Triptolide through Glucose Conjugation", ANGEW. CHEM., vol. 128, no. 39, 30 August 2016 (2016-08-30) - 19 September 2016 (2016-09-19), pages 12214 - 12218, XP055697883 *
J. RAUTIO ET AL.: "Prodrugs: Design and Clinical Applications", NATURE REVIEW DRUG DISCOVERY, vol. 7, 2008, pages 255 - 270, XP055227338, DOI: 10.1038/nrd2468
JACQUES ET AL.: "Enantiomers, Racemates and Resolutions", 1981, WILEY INTERSCIENCE
MANFREDINI, STEFANO ET AL.: "Retinoic Acid Conjugates as Potential Antitumor Agents: Synthesis and Biological Activity of Conjugates with Ara-A, Ara-C, 3(2H)-Furanone, and Aniline Mustard Moieties", J. MED. CHEM., vol. 40, no. 23, 31 December 1997 (1997-12-31), pages 3851 - 3857, XP002236863, DOI: 10.1021/jm9602322 *
MARGARETA M. MUELLER., NATURE REVIEWS, 2004
MICHAEL B. SMITHJERRY MARCH: "Chiral Separation Techniques: A Practical Approach", 2007, WILEY-VCH VERLAG GMBH & CO. KGAA
NAKAGAWA-GOTO, KYOKO ET AL.: "Antitumor Agents. 258. Syntheses and Evaluation of Dietary Antioxidant-Taxoid Conjugates as Novel Cytotoxic Agents", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 17, 4 July 2007 (2007-07-04), pages 5204 - 5209, XP022206853, DOI: 10.1016/j.bmcl.2007.06.083 *
ROBERT E. GAWLEYJEFFREY AUBE: "Principles of Asymmetric Synthesis", 2012, ELSEVIER
S. J. HECKER ET AL.: "Prodrugs of Phosphates and Phosphonates", JOURNAL OF MEDICINAL CHEMISTRY, vol. 51, 2008, pages 2328 - 2345, XP008148502, DOI: 10.1021/jm701260b
S. M. BERGE ET AL., J. PHARMACEUTICAL SCIENCES, vol. 66, 1977, pages 1 - 19
STAHLWERMUTH: "Handbook of Pharmaceutical Salts: Properties, Selection, and Use", 2002, WILEY-VCH
T. HIGUCHIV. STELLA: "Pro-drugs as Novel Delivery Systems", A.C.S. SYMPOSIUM SERIES, vol. 14
THOMAS SORRELL: "Organic Chemistry", 1999, UNIVERSITY, SCIENCE BOOKS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572241A (zh) * 2021-06-21 2023-01-06 润佳(苏州)医药科技有限公司 双价化合物、偶联物及其用途

Also Published As

Publication number Publication date
US20210196730A1 (en) 2021-07-01
KR20210070978A (ko) 2021-06-15
CA3112275A1 (en) 2020-04-02
CN112654626A (zh) 2021-04-13
JP2022501390A (ja) 2022-01-06
EP3858836A1 (en) 2021-08-04
AU2019351035A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
EP1807083B1 (en) Use of pirlindole for the treatment of diseases which are characterized by proliferation of t-lymphocytes and/or hyperproliferation of keratinocytes in particular atopic dermatitis and psoriasis
BE1011980A5 (fr) Traitement du cancer avec des epothilones.
AU2016213972A1 (en) Combinations of IRS/Stat3 dual modulators and anti-cancer agents for treating cancer
EP3458448B1 (en) Fasn inhibitors for use in treating non-alcoholic steatohepatitis
WO2016040877A1 (en) Human dosing of phosphatase inhibitor
JP2018533560A (ja) 癌を治療するための併用療法
US20210196730A1 (en) Compound and use thereof
US10220072B2 (en) Mesalamine for the treatment of cancer
TW201609094A (zh) 治療癌症之新穎方法
CA2782472A1 (en) Method of treating scars and beta-catenin-mediated disorders
JP6462147B2 (ja) Hsp90阻害ペプチド結合体及びその腫瘍治療における応用
AU2017214157A1 (en) Application of phosphodiesterase 4 inhibitor ZL-n-91 in preparation of medications for lung cancer proliferation and metastasis
CN113082039A (zh) 一种用于治疗索拉菲尼耐药肿瘤的组合物及其应用
CN104557909A (zh) 3-酰氧基取代右旋去氧娃儿藤宁衍生物、其制法和药物组合物与用途
EA036434B1 (ru) Способ лечения рака легких с применением комбинации ингибитора киназы аврора и паклитаксела
CN105163732B (zh) 用于治疗眼科疾病和病症的方法
US10857113B2 (en) Bezafibrate for the treatment of cancer
JP2012507494A (ja) リポ酸及びヒドロキシクエン酸を有効成分として含む薬学的組み合わせ
BR112020009596A2 (pt) combinações de moduladores duplos de irs/stat3 e anticorpos anti pd-1/pd-l1 para tratar câncer
WO2021185356A1 (zh) 丁基苯酞及其衍生物的用途
EP4385510A1 (en) Use of ensartinib or salt thereof in treatment of disease carrying met 14 exon skipping mutation
CN111247148B (zh) Wnt通路调节剂
WO2021114089A1 (en) Methods of using crocetin in treating solid tumors
CA3212601A1 (en) Specialized pro-resolving mediators (spms) as melanocyte growth promoter and pro-survival factors and uses thereof
CN108358953A (zh) 铜与咪唑并吡啶类化合物的配合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3112275

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021516822

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019351035

Country of ref document: AU

Date of ref document: 20190618

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019865985

Country of ref document: EP

Effective date: 20210428