WO2020062656A1 - 一种条形霍尔离子源 - Google Patents

一种条形霍尔离子源 Download PDF

Info

Publication number
WO2020062656A1
WO2020062656A1 PCT/CN2018/123204 CN2018123204W WO2020062656A1 WO 2020062656 A1 WO2020062656 A1 WO 2020062656A1 CN 2018123204 W CN2018123204 W CN 2018123204W WO 2020062656 A1 WO2020062656 A1 WO 2020062656A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
casing
process gas
strip
ion source
Prior art date
Application number
PCT/CN2018/123204
Other languages
English (en)
French (fr)
Inventor
刘伟基
Original Assignee
中山市博顿光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山市博顿光电科技有限公司 filed Critical 中山市博顿光电科技有限公司
Publication of WO2020062656A1 publication Critical patent/WO2020062656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • H01J27/14Other arc discharge ion sources using an applied magnetic field
    • H01J27/143Hall-effect ion sources with closed electron drift

Definitions

  • the invention relates to the technical field of ion sources, in particular to a strip-shaped Hall ion source.
  • An ion source is a device that ionizes neutral atoms or molecules and draws an ion beam out of them.
  • the Hall ion source uses ionized electrons in a vacuum environment to interact with an electric field and a magnetic field to ionize a gas charged into a vacuum chamber, and emits ions under the action of an electric field and a magnetic field.
  • Hall ion source as a gridless ion source, is widely used in the field of general auxiliary coating because of its low maintenance cost. Its anode plasmatizes the process gas in cooperation with a strong axial magnetic field. This axial magnetic field The strong imbalance separates gas ions and forms an ion beam. Due to the strong effect of the axial magnetic field, the Hall ion source ion beam needs to supplement electrons to neutralize the ion current.
  • the cathode of the traditional Hall ion source mainly uses tungsten. However, the tungsten wire has a short service life and low use efficiency. When an ion beam is received, it usually needs to be replaced in about ten hours, and the tungsten wire still has certain pollution to the environment.
  • the existing Hall ion sources are mostly circular, with limited coverage, and because there is only one air inlet, because the gas near the process gas is large, the beam distribution is not uniform, which is not suitable for assembly line production lines.
  • the present invention provides a stripe Hall ion source.
  • the ion source uses a hollow cathode as the neutralizer of the Hall ion source, which greatly improves the working capacity of the Hall ion source.
  • the Hall-shaped ion source realizes the stripe distribution of the ion beam flow, which further increases the coverage area of the ion beam, which is more suitable for the production of assembly lines and coiled products.
  • a strip-shaped Hall ion source including:
  • a hollow hollow shell is provided at both upper and lower ends, and the shell is made of a magnetic conductive material;
  • a cooling mechanism arranged in the casing and located at the lower end of the anode and a process gas transmission mechanism with multiple inputs;
  • the hollow cathode includes a metal shell, a hollow cathode tube disposed in the metal shell, an inert gas delivery pipe communicating with the hollow cathode tube, and the inert gas used for ionization is delivered to the hollow through the inert gas delivery pipe.
  • the hollow cathode is further connected with a start-up power source, a sustaining power source, and a cathode power source, and a negative electrode of the start-up power source, the sustaining power source, and the cathode power source is connected to the hollow cathode tube, the start-up power source, the sustaining power source, and
  • the cathode of the cathode power supply is connected to the metal case.
  • a DC voltage of 1500V or more is provided by the start-up power supply to penetrate the inert gas at the head of the hollow cathode tube to generate a current loop.
  • a power supply is provided by maintaining the power supply. 2A stable current output, turn off the start-up power at the same time, and then provide a proper voltage through the 10A DC cathode power supply to achieve continuous output of electron flow from the cathode tube.
  • the cooling mechanism includes a cooling bottom plate, a plurality of cooling plates, and a cooling water inlet pipe and a cooling water outlet pipe.
  • the cooling bottom plate is provided with a plurality of cooling plates. Both are provided with cooling pipelines, and the cooling water inlet pipeline and the cooling water outlet pipeline are in communication with the cooling pipeline of one of the cooling plates, and two adjacent cooling plates are also communicated through a connecting pipe, and the cooling water passes through The cooling water inlet pipe enters one of the cooling plates, and then flows through the connecting pipe to the adjacent cooling plate. After passing through all the cooling plates in turn, the cooling water that absorbs the heat returns to the original cooling plate, and finally passes through the cooling water outlet pipe. discharge.
  • the process gas transmission mechanism includes an air inlet, a process gas delivery pipe a and a process gas delivery pipe b connected to the air inlet, and the process gas delivery pipe a and the process gas delivery pipe b are along The strip-shaped shell extends laterally.
  • the process gas delivery pipe a and the process gas delivery pipe b are further provided with a plurality of process gas distribution pipes for splitting, and a plurality of the process gas distribution pipes are arranged in a cooling way.
  • the split ports on the splitter board on the board are connected, and each process gas split pipe is also provided with a gas flow controller. Through multi-channel air flow control, the precise control of the ventilation at different positions is achieved, so that the process gas can be accurately controlled. Shunting ensures uniform distribution of the ion beam current in space.
  • cooling plate is further provided with a magnetic field distribution plate.
  • a bottom plate of the case is further provided at the bottom end of the case, and the plurality of magnets are disposed between the bottom plate of the case and the cooling bottom plate.
  • a plurality of fixing posts are further provided between the bottom plate of the casing and the cooling bottom plate.
  • the N and S poles of the magnet are respectively used to connect the negative and positive poles of a magnetic field DC power source, and the anode is also connected to the positive pole of a 50-300V DC power source, and hot electrons are generated by hollow cathode ionization.
  • the electrons move toward the anode under the action of the electric field. Due to the effect of the magnetic field, the electrons advance in a spiral orbit around the magnetic field lines, colliding with the atoms of the working or reactive gas to dissociate them.
  • the beneficial effects of the present invention are: simple structure, reasonable design, realizing a filamentless structure by using a hollow cathode tube, further improving the service life of the cathode, greatly improving power, and using an inert gas to avoid polluting the environment.
  • the ion source is arranged in a strip shape, which greatly increases the coverage area and is more suitable for the use of continuous production lines. The uniform distribution of the ion beam is ensured by setting up multiple process gas supply pipes and by accurately supplying the gas in each way.
  • FIG. 1 is a first structural schematic diagram of the present invention
  • FIG. 2 is a second structural schematic diagram of the present invention
  • FIG. 3 is a third structural diagram of the present invention.
  • FIG. 4 is a schematic structural diagram of a hollow cathode according to the present invention.
  • FIG. 5 is a frame diagram of a process gas transmission mechanism of the present invention.
  • a strip-shaped Hall ion source includes: a strip-shaped hollow casing 1 with openings at upper and lower ends, and the casing 1 is made of a magnetic conductive material.
  • the magnetic field of the magnet is limited to the prototype range, and the effect of the magnetic field is improved.
  • the ion source further includes a hollow cathode 2 fixed at one end of the casing 1, and a cathode port of the hollow cathode 2 is located above an upper opening of the casing 2, wherein the hollow cathode 2 includes a metal casing 21 And a hollow cathode tube 22 provided in the casing 21, an inert gas delivery pipe 23 communicating with the hollow cathode tube 22, and the inert gas used for ionization is delivered to the hollow cathode tube 22 through the inert gas delivery pipe 23,
  • the hollow cathode 2 is also connected with a start-up power source, a sustaining power source, and a cathode power source, and the anodes of the start-up power source, the sustaining power source, and the cathode power source are connected to the hollow cathode tube 22, and the start-up power source, the positive electrode of the sustaining power source, and a metal case are connected to the metal cathode.
  • a DC voltage of more than 1500V is provided by the start-up power supply for breaking the inert gas at the head of the hollow cathode tube 22 to generate a current loop.
  • a stable current of 2A is provided by maintaining the power supply.
  • Output at the same time turn off the start-up power, and then provide a proper voltage through the 10A DC cathode power supply to achieve electron flow from the hollow cathode Tube continuously output.
  • the ion source further includes an anode 3 corresponding to the hollow cathode 2 provided in the casing 1, and the anode 2 corresponding to the strip-shaped casing 1 is also provided in a strip shape and follows the strip shape.
  • the casing 1 is arranged in the transverse direction, and an anode port corresponding to the upper end opening of the casing 1 is provided above the anode 3.
  • the ion source further includes a cooling mechanism disposed in the housing 1 and located at the lower end of the anode 3, and a process gas transmission mechanism with multiple inputs, wherein the cooling mechanism includes a cooling base plate 6, a plurality of cooling plates 7, And a cooling water inlet pipe 8 and a cooling water outlet pipe 9, the cooling bottom plate 6 is provided with a plurality of cooling plates 7, and a plurality of cooling plates 7 are each provided with a cooling pipe, and the cooling The water inlet pipe 8 and the cooling water outlet pipe 9 are in communication with the cooling pipe of one of the cooling plates 7, and two adjacent cooling plates 7 are also connected through a connecting pipe 14. The cooling water passes through the cooling water inlet pipe 8 Enter one of the cooling plates 7, and then flow to the adjacent cooling plate 7 through the connecting pipe 14. After passing through all the cooling plates 7, the heat-absorbing cooling water returns to the original cooling plate 7, and finally passes through the cooling water outlet pipe. 9 drainage.
  • the cooling mechanism includes a cooling base plate 6, a plurality of cooling plates 7, And a cooling water inlet pipe 8 and
  • the process gas transmission mechanism described by the ion source includes an air inlet 10, and a process gas delivery pipe a11 and a process gas delivery pipe b12 connected to the air inlet 10.
  • a transfer pipe a11 and a process gas transfer pipe b12 extend laterally along the strip-shaped casing 1.
  • the process gas transfer pipe a11 and the process gas transfer pipe b12 are further provided with a plurality of process gas distribution pipes for splitting.
  • the process gas distribution pipelines described above are in communication with the distribution openings on the distribution plate 13 provided on the cooling plate 7, and each process gas distribution pipeline is also provided with a gas flow controller correspondingly. Accurate control of air flow at different positions of the X-shaped Hall ion source, so that the process gas is accurately divided, and the ion beam flow is uniformly distributed in the space.
  • the ion source further includes a plurality of magnets 5 disposed in the casing 1 and located at the lower end of the cooling bottom plate 6.
  • the bottom end of the casing 1 is further provided with a casing bottom plate 4.
  • the plurality of magnets 5 are disposed in Between the casing bottom plate 4 and the cooling bottom plate 6, a plurality of fixing columns 15 are also provided between the casing bottom plate 4 and the cooling bottom plate 6, and the cooling plate 7 is further provided with a magnetic field distribution plate 16.
  • the N and S poles of the magnet 5 are respectively connected to the negative and positive poles of a magnetic field DC power source.
  • the anode 3 is also connected to the positive pole of a 50-300V DC power source. Thermionic electrons are generated by hollow cathode ionization.
  • the electrons move toward the anode under the action of the electric field. Due to the effect of the magnetic field, the electrons advance in a spiral orbit around the magnetic field lines, colliding with the atoms of the working or reactive gas to dissociate them. They are accelerated under the action of the Hall electric field to obtain the corresponding The energy forms a plasma with part of the hot electrons emitted from the hollow cathode, and is emitted by the plasma source to interact with the substrate to achieve the purposes of cleaning and auxiliary coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本发明提供一种条形霍尔离子源,包括条形的壳体,设置在所述壳体一端的中空阴极,中空阴极的阴极口位于壳体上端开口的上方;设置在所述壳体内的与所述中空阴极相对应的阳极,阳极上方设置有与壳体上端开口对应的阳极口;设置阳极下端的冷却机构和工艺气输气机构;以及设置在壳体内并位于冷却底板下端的多个磁铁。本发明结构简单,设计合理,通过使用中空阴极管实现无灯丝结构,进一步提高了阴极的使用寿命,功率大大提高,另外,通过将离子源设置为条形,大大提高了覆盖面积,更加适合连续生产线的使用,并且通过设置多路工艺气体供气管道,以及通过准确各路的供气量,保证离子束的均匀分布。

Description

一种条形霍尔离子源 技术领域
本发明涉及离子源技术领域,尤其是一种条形霍尔离子源。
背景技术
离子源是使中性原子或分子电离,并从中引出离子束流的装置。霍尔离子源通过在真空环境下,利用发射的电子在电场和磁场的相互作用下,使充入真空室的气体产生离化,在电场和磁场的作用下发射离子。
霍尔离子源作为一种无栅网式离子源,因其维护价格低廉,被广泛应用在一般辅助镀膜领域,其阳极在一个强轴向磁场的协作下将工艺气体等离子化,这个轴向磁场的强不平衡性将气体离子分离并形成离子束,由于轴向磁场的作用太强,霍尔离子源离子束需要补充电子以中和离子流,传统的霍尔离子源的阴极主要是采用钨丝,但是钨丝使用寿命较短,使用效率低,在收到离子束冲击时,一般十几个小时左右就需要对其进行更换,并且钨丝对环境还有一定的污染。另外,现有的霍尔离子源多为圆形,覆盖范围有限,而且由于只有一路进气口,由于工艺气体附近气体较大,导致束流分布不均匀,不适合流水线型生产线使用。
发明内容
针对现有技术的不足,本发明提供一种条形霍尔离子源,该离子源通过使用中空的阴极最为霍尔离子源的中和器,大大提高霍尔离子源的工作能力,并且通过条形霍尔离子源,实现离子束流的条形分布,进一步增加了离子束的覆盖面积,更适合流水线生产以及卷绕产品的生产使用。
本发明的技术方案为:一种条形霍尔离子源,包括:
上下两端均开设有开口的条形的中空的壳体,所述壳体采用导磁材料制成;
固定在所述壳体一端的中空阴极,所述中空阴极的阴极口位于壳体上端开口的上方;
设置在所述壳体内的与所述中空阴极相对应的阳极,所述阳极上方设置有与壳体上端开口对应的阳极口;
设置在壳体内并位于阳极下端的冷却机构和具有多路输入的工艺气输气机构;
以及设置在壳体内并位于冷却机构和工艺气输气机构下端的多个磁铁。
进一步的,所述的中空阴极包括金属的外壳、以及设置在金属外壳内的中空阴极管,与中空阴极管连通的惰性气体输送管道,通过惰性气体输送管道将用于电离的惰性气体输送至 中空阴极管中,所述的中空阴极还连接有启动电源、维持电源、以及阴极电源,所述启动电源、维持电源、以及阴极电源的负极与中空阴极管连接,所述启动电源、维持电源、以及阴极电源的正极与金属外壳连接,首先通过启动电源提供1500V以上的直流电压用于击穿中空阴极管头部的惰性气体产生电流回路,击穿后,为了保证电流一直维持,通过维持电源提供一个2A的稳定的电流输出,同时关闭启动电源,然后通过10A直流的阴极电源提供一个适当的电压,实现电子流从阴极管不断输出。
进一步的,所述的冷却机构包括冷却底板、多个冷却板、以及冷却水进水管道和冷却水出水管道,所述的冷却底板上设置有多个冷却板,多个所述的冷却板内均设置有冷却管路,所述的冷却水进水管道和冷却水出水管道与其中一个冷却板的冷却管路相连通,并且两相邻冷却板之间还通过连接管相连通,冷却水通过冷却水进水管道进入其中一个冷却板,然后通过连接管流向与其相邻的冷却板,依次流经所有的冷却板后,吸收热量的冷却水回到最初的冷却板,最后经冷却水出水管道排出。
进一步的,所述的工艺气输气机构包括进气口、以及与进气口连接的工艺气输送管道a和工艺气输送管道b,所述的工艺气输送管道a和工艺气输送管道b沿条形壳体横向延伸,所述的工艺气输送管道a和工艺气输送管道b上还设置有多个用于分流的工艺气体分流管道,多个所述的工艺气体分流管道均与设置在冷却板上的分流板上的分流口相连通,并且每个工艺气体分流管道上还相应设置有气体流量控制器,通过多路气流控制,实现不同位置通气量的精确控制,从而实现将工艺气体精准分流,从而保证离子束流在空间的均匀分布。
进一步的,所述冷却板上还设置有磁场分配板。
进一步的,所述壳体底端还设置有壳体底板,所述的多个磁铁设置在壳体底板与冷却底板之间。
进一步的,所述的壳体底板与冷却底板之间还设置有多个固定柱。
进一步的,所述的磁铁的N极和S极分别用于连接磁场直流电源的负极和正极,所述的阳极还与50-300V的直流电源的正极连接,通过中空阴极电离产生热电子,当阳极施加正电位时,电子在电场的作用下向阳极运动,由于磁场的作用,电子绕磁力线以螺旋轨道前进,与工作或反应气体的原子发生碰撞使其离化,在霍尔电场的作用下被加速获得相应的能量,与中空阴极发射的部分热电子形成等离子体,由等离子体源发射出来与基片发生作用达到清洗和辅助镀膜的目的。
本发明的有益效果为:结构简单,设计合理,通过使用中空阴极管实现无灯丝结构,进一步提高了阴极的使用寿命,功率大大提高,并且通过使用惰性气体,从而避免污染环境,另外,通过将离子源设置为条形,大大提高了覆盖面积,更加适合连续生产线的使用,并且 通过设置多路工艺气体供气管道,以及通过准确各路的供气量,保证离子束的均匀分布。
附图说明
图1为本发明的结构示意图一;
图2为本发明的结构示意图二;
图3为本发明的结构示意图三;
图4为本发明中空阴极的结构示意图;
图5为本发明工艺气输气机构的框架图;
图中,1-壳体,2-中空阴极,3-阳极,4-壳体底板,5-磁铁,6-冷却底板,7-冷却板,8-冷却水进水管道,9-冷却水出水管道,10-进气口,11-工艺气输送管道a,12-工艺气输送管道b,13-分流板,14-连接管,15-固定柱,16-磁场分配板,21-外壳,22-中空阴极管,23-惰性气体输送管道。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
如图1-图4所示,一种条形霍尔离子源,包括:上下两端均开设有开口的条形的中空的壳体1,所述的壳体1采用导磁材料制成,使得磁铁的磁场限制在样机范围内,提高磁场作用效果,并且通过将离子源设置成条形,进一步增加离子束流的覆盖范围,从而解决了传统离子源只能覆盖一定圆形区域的问题。
所述的离子源还包括固定在所述壳体1一端的中空阴极2,所述中空阴极2的阴极口位于壳体2上端开口的上方,其中,所述的中空阴极2包括金属的外壳21、以及设置在外壳21内的中空阴极管22,与中空阴极管22连通的惰性气体输送管道23,通过惰性气体输送管23道将用于电离的惰性气体输送至中空阴极管22中,所述的中空阴极2还连接有启动电源、维持电源、以及阴极电源,所述启动电源、维持电源、以及阴极电源的负极与中空阴极管22连接,所述启动电源、维持电源的正极与金属的外壳21连接,首先通过启动电源提供1500V以上的直流电压用于击穿中空阴极管22头部的惰性气体产生电流回路,击穿后,为了保证电流一直维持,通过维持电源提供一个2A的稳定的电流输出,同时关闭启动电源,然后通过10A直流的阴极电源提供一个适当的电压,实现电子流从中空阴极管不断输出。
所述的离子源还包括设置在所述壳体1内的与所述中空阴极2相对应的阳极3,所述的阳极2对应条形的壳体1也设置为条形,并沿条形的壳体1的横向方向布设,所述阳极3上方设置有与壳体1上端开口对应的阳极口。
所述的离子源还包括设置在壳体1内并位于阳极3下端的冷却机构和具有多路输入的工艺气输气机构,其中,所述的冷却机构包括冷却底板6、多个冷却板7、以及冷却水进水管道8和冷却水出水管道9,所述的冷却底板6上设置有多个冷却板7,多个所述的冷却板7内均设置有冷却管路,所述的冷却水进水管道8和冷却水出水管道9与其中一个冷却板7的冷却管路相连通,并且两相邻冷却板7之间还通过连接管14相连通,冷却水通过冷却水进水管道8进入其中一个冷却板7,然后通过连接管14流向与其相邻的冷却板7,依次流经所有的冷却板7后,吸收热量的冷却水回到最初的冷却板7,最后经冷却水出水管道9排出。
如图5所示,所述的离子源所述的工艺气输气机构包括进气口10、以及与进气口10连接的工艺气输送管道a11和工艺气输送管道b12,所述的工艺气输送管道a11和工艺气输送管道b12沿条形壳体1横向延伸,所述的工艺气输送管道a11和工艺气输送管道b12上还设置有多个用于分流的工艺气体分流管道,多个所述的工艺气体分流管道均与设置在冷却板7上的分流板13上的分流口相连通,并且每个工艺气体分流管道上还相应设置有气体流量控制器,通过多路气流控制,实现条形霍尔离子源不同位置通气量的精确控制,从而实现将工艺气体精准分流,从而保证离子束流在空间的均匀分布。
所述的离子源还包括以及设置在壳体1内并位于冷却底板6下端的多个磁铁5,所述壳体1底端还设置有壳体底板4,所述的多个磁铁5设置在壳体底板4与冷却底板6之间,所述的壳体底板4与冷却底板6之间还设置有多个固定柱15,所述冷却板7上还设置有磁场分配板16,所述的磁铁5的N极和S极分别与磁场直流电源的负极和正极连接,所述的阳极3还与50-300V的直流电源的正极连接,通过中空阴极电离产生热电子,当阳极施加正电位时,电子在电场的作用下向阳极运动,由于磁场的作用,电子绕磁力线以螺旋轨道前进,与工作或反应气体的原子发生碰撞使其离化,在霍尔电场的作用下被加速获得相应的能量,与中空阴极发射的部分热电子形成等离子体,由等离子体源发射出来与基片发生作用达到清洗和辅助镀膜的目的。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (9)

  1. 一种条形霍尔离子源,其特征在于,包括:
    上下两端均开设有开口的条形的中空的壳体;
    固定在所述壳体一端的中空阴极,所述中空阴极的阴极口位于壳体上端开口的上方;
    设置在所述壳体内的与所述中空阴极相对应的阳极,所述阳极上方设置有与壳体上端开口对应的阳极口;
    设置在壳体内并位于阳极下端的冷却机构和具有多路输入的工艺气输气机构;
    以及设置在壳体内并位于冷却机构和工艺气输气机构下端的多个磁铁。
  2. 根据权利要求1所述的一种条形霍尔离子源,其特征在于:所述的中空阴极包括金属的外壳、以及设置在金属的外壳内的中空阴极管,与中空阴极管连通的惰性气体输送管道,通过惰性气体输送管道将用于电离的惰性气体输送至中空阴极管中,所述的中空阴极还连接有启动电源、维持电源、以及阴极电源,所述启动电源、维持电源、以及阴极电源的负极与中空阴极管连接,所述启动电源、维持电源的正极与金属的外壳连接,首先通过启动电源提供1500V以上的直流电压用于击穿中空阴极管头部的惰性气体产生电流回路,击穿后,为了保证电流一直维持,通过维持电源提供一个2A的稳定的电流输出,同时关闭启动电源,然后通过10A直流的阴极电源提供一个适当的电压,实现电子流从阴极管不断输出。
  3. 根据权利要求1所述的一种条形霍尔离子源,其特征在于:所述的冷却机构包括冷却底板、多个冷却板、以及冷却水进水管道和冷却水出水管道,所述的冷却底板上设置有多个冷却板,多个所述的冷却板内均设置有冷却管路,所述的冷却水进水管道和冷却水出水管道与其中一个冷却板的冷却管路相连通,并且两相邻冷却板之间还通过连接管相连通,冷却水通过冷却水进水管道进入其中一个冷却板,然后通过连接管流向与其相邻的冷却板,依次流经所有的冷却板后,吸收热量的冷却水回到最初的冷却板,最后经冷却水出水管道排出。
  4. 根据权利要求1所述的一种条形霍尔离子源,其特征在于:所述的工艺气输气机构包括进气口、以及与进气口连接的工艺气输送管道a和工艺气输送管道b,所述的工艺气输送管道a和工艺气输送管道b沿条形的中空壳体横向延伸,所述的工艺气输送管道a和工艺气输送管道b上还设置有多个用于分流的工艺气体分流管道,多个所述的工艺气体分流管道均与设置在冷却板上的分流板上的分流口相连通,并且每个工艺气体分流管道上还相应设置有气体流量控制器。
  5. 根据权利要求1所述的一种条形霍尔离子源,其特征在于:所述壳体的底端还设置有壳体底板,所述的多个磁铁设置在壳体底板与冷却底板之间。
  6. 根据权利要求3所述的一种条形霍尔离子源,其特征在于:所述冷却板上还设置有磁 场分配板。
  7. 根据权利要求1所述的一种条形霍尔离子源,其特征在于:所述的磁铁的N极和S极分别用于连接磁场直流电源的负极和正极,所述的阳极还与50-300V的直流电源的正极连接。
  8. 根据权利要求5所述的一种条形霍尔离子源,其特征在于:所述的壳体底板与冷却底板之间还设置有多个固定柱。
  9. 根据权利要求5所述的一种条形霍尔离子源,其特征在于:所述的壳体采用导磁材料制成。
PCT/CN2018/123204 2018-09-27 2018-12-24 一种条形霍尔离子源 WO2020062656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811133963.3A CN109166780B (zh) 2018-09-27 2018-09-27 一种条形霍尔离子源
CN201811133963.3 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020062656A1 true WO2020062656A1 (zh) 2020-04-02

Family

ID=64892689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123204 WO2020062656A1 (zh) 2018-09-27 2018-12-24 一种条形霍尔离子源

Country Status (2)

Country Link
CN (1) CN109166780B (zh)
WO (1) WO2020062656A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626483A (zh) * 2020-12-17 2021-04-09 南阳清水科技有限公司 一种双路参数设定霍尔离子源控制***
CN113793791A (zh) * 2021-09-15 2021-12-14 中山市博顿光电科技有限公司 离子束修形离子源及其启动方法、真空腔室

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750600B2 (en) * 2001-05-03 2004-06-15 Kaufman & Robinson, Inc. Hall-current ion source
US6870164B1 (en) * 1999-10-15 2005-03-22 Kaufman & Robinson, Inc. Pulsed operation of hall-current ion sources
CN102308358A (zh) * 2008-12-08 2012-01-04 通用等离子公司 具有自清洁阳极的闭合漂移磁场离子源装置及基材改性修改方法
CN102832091A (zh) * 2011-06-14 2012-12-19 北京中科九章空间科技发展有限责任公司 一种强流霍尔离子源***
CN103227090A (zh) * 2013-02-04 2013-07-31 深圳市劲拓自动化设备股份有限公司 一种线性等离子体源
CN208903965U (zh) * 2018-09-27 2019-05-24 中山市博顿光电科技有限公司 一种条形霍尔离子源

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201409253Y (zh) * 2009-05-05 2010-02-17 核工业西南物理研究院 一种阳极层线性离子源
US8508134B2 (en) * 2010-07-29 2013-08-13 Evgeny Vitalievich Klyuev Hall-current ion source with improved ion beam energy distribution
CN102254775B (zh) * 2011-03-29 2013-05-22 核工业西南物理研究院 增强磁场型线性离子源
US10134557B2 (en) * 2013-06-12 2018-11-20 General Plasma, Inc. Linear anode layer slit ion source
CN103887133B (zh) * 2014-04-01 2016-01-27 南京迪奥赛真空科技有限公司 一种磁场增强型线性大面积离子源
CN105553298B (zh) * 2016-01-29 2018-06-26 深圳航天科技创新研究院 一种空心阴极电源变换器及其控制***
CN206271656U (zh) * 2016-12-22 2017-06-20 中山市博顿光电科技有限公司 霍尔离子源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870164B1 (en) * 1999-10-15 2005-03-22 Kaufman & Robinson, Inc. Pulsed operation of hall-current ion sources
US6750600B2 (en) * 2001-05-03 2004-06-15 Kaufman & Robinson, Inc. Hall-current ion source
CN102308358A (zh) * 2008-12-08 2012-01-04 通用等离子公司 具有自清洁阳极的闭合漂移磁场离子源装置及基材改性修改方法
CN102832091A (zh) * 2011-06-14 2012-12-19 北京中科九章空间科技发展有限责任公司 一种强流霍尔离子源***
CN103227090A (zh) * 2013-02-04 2013-07-31 深圳市劲拓自动化设备股份有限公司 一种线性等离子体源
CN208903965U (zh) * 2018-09-27 2019-05-24 中山市博顿光电科技有限公司 一种条形霍尔离子源

Also Published As

Publication number Publication date
CN109166780B (zh) 2023-10-24
CN109166780A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
EP1719147B1 (en) Fluid-cooled ion source
US10134557B2 (en) Linear anode layer slit ion source
EP2485571B1 (en) High-current single-ended DC accelerator
CN102254775B (zh) 增强磁场型线性离子源
WO2020062656A1 (zh) 一种条形霍尔离子源
CN101308754B (zh) 一种新型磁路结构考夫曼型离子源
CN102779711B (zh) 具有超大离子束发散角的离子源
CN105390357B (zh) 一种环型离子推力器放电室
CN111681936B (zh) 一种高能离子注入机用的尖端场形负氢离子源装置
CN109192641B (zh) 一种潘宁冷阴极离子源
CN202111925U (zh) 一种三阴极多级直流弧放电等离子体发生装置
CN106531600A (zh) 一种孔形水冷电极引出***负氢离子源的装置
CN115839323B (zh) 一种自维持霍尔推力器运行方法
CN106508075B (zh) 热阴极等离子体电子枪
CN215771057U (zh) 射频离子源
CN2646155Y (zh) 闭合式电子漂移型气体离子源
CN211125568U (zh) 一种离子束镀膜聚焦离子源
CN208903965U (zh) 一种条形霍尔离子源
CN202705458U (zh) 一种具有超大离子束发散角的离子源
CN104221477A (zh) 等离子体产生装置、蒸镀装置以及等离子体产生方法
CN109671604A (zh) 一种基于空心阴极放电的潘宁离子源
CN109786203B (zh) 多通道离子源产生装置
US9198274B2 (en) Ion control for a plasma source
CN220172065U (zh) 一种离子源发生器
CN103647095B (zh) 一种激光-碱性燃料电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935087

Country of ref document: EP

Kind code of ref document: A1