WO2020062643A1 - 应用于机器人的充电座 - Google Patents

应用于机器人的充电座 Download PDF

Info

Publication number
WO2020062643A1
WO2020062643A1 PCT/CN2018/122785 CN2018122785W WO2020062643A1 WO 2020062643 A1 WO2020062643 A1 WO 2020062643A1 CN 2018122785 W CN2018122785 W CN 2018122785W WO 2020062643 A1 WO2020062643 A1 WO 2020062643A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
bright
charging
robot
plane
Prior art date
Application number
PCT/CN2018/122785
Other languages
English (en)
French (fr)
Inventor
王晓佳
郭盖华
谌鎏
Original Assignee
深圳乐动机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳乐动机器人有限公司 filed Critical 深圳乐动机器人有限公司
Publication of WO2020062643A1 publication Critical patent/WO2020062643A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the invention belongs to the technical field of charging equipment, and more particularly, relates to a charging base applied to a robot.
  • This type of robot is basically equipped with a rechargeable battery.
  • the robot can move autonomously on the ground by relying on the power provided by the rechargeable battery.
  • a battery power detection device is provided inside the robot. When the robot receives a charging instruction, the robot needs to return to the charging base for charging.
  • the most widely used charging base is mainly for the robot to receive the infrared signal emitted by the signal transmitting device on the charging base to coarsely position the charging base, and then use the robot to accurately locate the optical identification code on the signal window of the lidar recognition signal loaded by the robot.
  • the optical identification code on the charging base is mainly composed of bright and dark bar-shaped identification codes, and the bright code and the password are at the same installation angle.
  • the lidar is close to the charging base or the lidar signal is strong enough, the password is easy to be mistaken. It is recognized as a bright code, so it is difficult to accurately determine whether it is the encoding method of the charging base, so that the charging base cannot be accurately positioned.
  • the identification code structure with a square waveform cannot generate accurate identification information, so it is also difficult to accurately determine whether it is the encoding method of the charging base, so that the charging base cannot be accurately positioned.
  • An object of the embodiments of the present invention is to provide a charging stand applied to a robot to solve technical problems existing in the prior art.
  • the charging base applied to a robot includes a base body, a charging contact sheet provided on the base body, a signal transmitting device, an optical identification code, and the base body.
  • the optical identification code includes a bright code and a secret code arranged in the signal window. The bright code and the secret code are arranged at intervals.
  • the plane of the secret code is relative to the signal window. The flat part of the plane has an inclined angle.
  • a beneficial effect of the charging stand applied to a robot is that the charging stand applied to a robot arranges bright codes and passwords spaced apart, and there are inclined clips on the flat planes of the password plane and the signal window. Angle, when the robot receives the charging instruction, the robot will detect the position of the charging base through the laser radar. Because the laser light is perpendicularly incident on the bright code and obliquely incident on the dark code, the signal intensity reflected by the bright code and the dark code is greatly different, so It is easy to be distinguished by the robot, and the robot can accurately locate the specific position of the charging base and move to the charging base for charging.
  • FIG. 1 is a schematic structural diagram of a charging stand applied to a robot according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an explosion structure of a charging stand applied to a robot according to an embodiment of the present invention
  • FIG. 3 is a first schematic diagram of a relative position of an optical code according to a first embodiment of the present invention
  • FIG. 4 is a second schematic diagram of a relative position of an optical code according to a first specific embodiment provided by the present invention.
  • FIG. 5 is a first schematic diagram of a relative position of an optical code according to a second specific embodiment provided by the present invention.
  • FIG. 6 is a second schematic diagram of a relative position of an optical code according to a second specific embodiment provided by the present invention.
  • FIG. 7 is a first schematic diagram of a relative position of an optical code according to a third specific embodiment provided by the present invention.
  • FIG. 8 is a second schematic diagram of a relative position of an optical code according to a third specific embodiment provided by the present invention.
  • FIG. 9 is a first schematic diagram of a relative position of an optical code according to a fourth embodiment of the present invention.
  • FIG. 10 is a second schematic diagram of a relative position of an optical code according to a fourth specific embodiment provided by the present invention.
  • a component when a component is called “fixed to” or “disposed to” another component, it may be directly on another component or indirectly on the other component.
  • a component When a component is referred to as being “connected to” another component, it can be directly connected to the other component or indirectly connected to the other component.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless specifically defined otherwise.
  • the charging base applied to the robot includes a base body 1, a charging contact sheet 2, an optical identification code 3, a signal window 4, and a signal transmitting device 6, wherein the charging contact sheet 2, the optical identification code 3, and the signal window 4.
  • the signal transmitting device 6 is arranged on the base 1 and the charging contacts are provided in two pieces.
  • the infrared device 6 is located between the two charging contacts 2.
  • the signal transmitting device 6 is used to transmit infrared signals.
  • the robot can easily adjust the infrared signals after receiving the infrared signals.
  • the charging contact 2 is used for coarse positioning.
  • the signal window 4 is used by the robot to transmit the laser light to identify the optical identification code 3.
  • the optical identification code 3 includes a bright code 31 and a secret code 32, which are arranged on the inner side of the signal window 4.
  • the code 32 is arranged at intervals. The first and last two are the bright code 31, that is, the bright code 31 is always one more than the code 32.
  • the bright code 31 and the code 32 are rectangular.
  • the plane where the bright code 31 is located and the plane part of the signal window 4 In parallel, the plane where the code 32 is located has an inclined angle with respect to the plane portion of the signal window 4, the reflectance of the code 32 is less than 10%, and the reflectance of the bright code 31 is greater than 90%.
  • the password 32 is integrated with the base 1 so that the connection between the password 32 and the base 1 is more firm and stable.
  • the signal transmitting device includes one or more of an infrared information transmitting device, an ultrasonic transmitting device, a magnetic field signal generating device, and a millimeter wave signal generating device.
  • the robot In order to enable the above-mentioned robot to have sufficient power to continuously move indoors, a battery power detection device is provided inside the robot.
  • the charging base is mainly a robot that receives an infrared signal emitted by a signal transmitting device on the charging base to coarsely position the charging base, and then accurately locates the optical identification code 3 on the robot by a lidar recognition signal window 4 on the robot.
  • the range of the reflected signal intensity received by the signal receiver after the laser radar is incident on the identification code is represented by 0 to 255.
  • the intensity of the reflected signal incident on the bright code 31 perpendicular to the laser light is greater than or equal to 200, and the intensity of the reflected signal incident on the dark code 32 perpendicular to the laser light is less than 200. If the distance between the laser radar and the charging base is less than 0.5m or the The intensity can make the laser light perpendicularly incident on the code 32 and the bright code 31 reflect signals greater than or equal to 200. At this time, the reflected signal of the code 32 cannot be distinguished from the bright code 31, and the code 32 is easily misidentified as the bright code 31. Therefore, it is difficult to accurately determine whether the intensity of the reflected signal of the optical identification code 3 is the encoding method of the charging base, so that the charging base cannot be accurately positioned.
  • the installation angles of the bright code 31 and the dark code 32 with respect to the signal window 4 are set to different angles. After the laser light is incident, there is an inclined angle with the bright code 31 or the dark code 32. The laser light is at the bright code 31 or the dark code. Inclined reflection on 32 makes the reflected signals of bright code 31 and dark code 32 easier to distinguish.
  • the charging base provided by the present invention is applied to a robot.
  • the bright code 31 and the password 32 are arranged at intervals.
  • the plane where the code 32 is located and the plane portion of the signal window 4 have an inclined angle.
  • the robot will detect the position of the charging base through the laser radar. Since the laser light is incident perpendicularly to the bright code 31 and obliquely incident to the dark code 32, the signal strength reflected by the bright code 31 and the dark code 32 is quite different, so it is easy.
  • the robot can accurately locate the specific position of the charging base and move to the charging base for charging.
  • the top of the code 31 and the top of the code 32 are not on the same straight line, and the bottom of the code 32 and the bottom of the code 31 On the same straight line, the plane where the bright code 31 is located is parallel to the plane part of the signal window 4, and the angle between the plane where the code 32 is located and the plane part of the signal window 4 is 0 to 45 degrees.
  • the top of the code 31 and the top of the code 32 are not on the same line, and the bottom of the code 32 and the bottom of the code 31 Not on the same straight line, the distance from the top of the code 32 to the plane where the bright code 31 is located is greater than the distance from the bottom of the code 32 to the plane where the bright code 31 is located.
  • the plane where the bright code 31 is located is parallel to the plane part of the signal window 4, and the included angle between the plane where the code 32 is located and the plane part of the signal window 4 is 0 to 45 degrees.
  • the bottom of the code 31 and the part of the code 32 are on the same straight line, and the top of the code 32 and the top of the code 31 On the same line.
  • the plane where the bright code 31 is located is parallel to the plane part of the signal window 4, and the included angle between the plane where the code 32 is located and the plane part of the signal window 4 is 0 to 45 degrees.
  • the bottom of the password 32 and the bottom of the bright code 31 are not on a straight line, and the top of the password 32 And the top of the bright code 31 is not on a straight line, and the distance from the top of the password 32 to the plane on which the bright code 31 is located is smaller than the distance of the bottom of the password 32 from the plane on which the bright code 31 is located.
  • the plane where the bright code 31 is located is parallel to the plane part of the signal window 4, and the included angle between the plane where the code 32 is located and the plane part of the signal window 4 is 0 to 45 degrees.
  • the intensity of the reflected light signal of the code 32 is less than 100, and the intensity of the reflected light signal of the light code 31 is greater than or equal to 200, so the robot can easily recognize the light code 31 and the code 32 on the charging stand , So that the robot can accurately locate the specific position of the charging base and quickly move to the charging base for charging.
  • each bright code 31 and the dark code signal reflected by each dark code 32 there are multiple codes 32 and multiple codes 31.
  • the plane where all the codes 31 are located is parallel to the plane of the signal window 4.
  • the tilt angles of all the codes 32 are the same, and the incident angle and direction of the laser light are changed. After the laser light is incident on the bright code 31 and the dark code 32, the difference between the bright code signal reflected by each bright code 31 and the dark code signal reflected by each dark code 32 is greater, so that the robot can distinguish between the bright code signal and the dark code signal. Time is simpler and faster.
  • an infrared filter 5 is attached to the signal window 4, and the bright code 31 is in contact with the infrared filter 5.
  • the surface of the infrared filter 5 and the bright code 31 is as small as possible. The distance effectively avoids the mutual interference of light from the two reflecting surfaces.
  • the infrared filter 5 is located between the signal window 4 and the bright code 31. The infrared filter 5 will prevent the entry of external stray light, making the bright code 31 signal reflected by the bright code 31 stronger and more pure, making the robot recognize the bright Code 31 signal is faster and easier.
  • the cross section of the base 1 is elongated, and the charging contact piece 2 is arranged parallel to the long edge of the base 1 and is located on the side of the charging base.
  • the slice 2 is far from the ground, avoiding dangerous situations such as the charging stand and the robot being short-circuited by water.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Manipulator (AREA)

Abstract

一种应用于机器人的充电座,其中,该应用于机器人的充电座包括座体、红外信号发射装置、设于座体上的充电触片及光学识别码,以及设于座体上用于安装光学识别码的信号窗,光学识别码包括设于信号窗内的亮码和暗码,亮码和暗码之间间隔排列,暗码所在平面和信号窗的平面部分有倾斜夹角。本方案提供的应用于机器人的充电座将亮码和暗码间隔排列,暗码所在平面和信号窗的平面部分有倾斜夹角,机器人在接收到充电指令时,机器人会通过激光雷达去探测充电座的位置,由于激光垂直入射到亮码和倾斜入射到暗码后,亮码和暗码所反射的信号强度差别较大,因此很容易被机器人区分开,机器人便可以精确定位充电座的具***置并移动至充电座处进行充电。

Description

应用于机器人的充电座 技术领域
本发明属于充电设备技术领域,更具体地说,是涉及一种应用于机器人的充电座。
背景技术
随着科学技术和人们生活水平的不断提高,移动机器人的运用也变得越来越普遍,例如用于清洁地面的扫地机器人、用于室内巡逻的安保机器人等。这类机器人基本都装备有可再充电电池,机器人依靠充电电池提供的电能,能够在地面上自主移动。为了使得上述机器人能够有足够的动力在室内持续移动,机器人内部设置有电池电量检测装置,当机器人接收到充电指令时,机器人需要返回到充电座上进行充电。
目前运用最广泛的充电座主要是机器人接收充电座上信号发射装置发射的红外信号对充电座进行粗定位,然后通过机器人通过自身装载的激光雷达识别信号窗上的光学识别码进行精确定位。
充电座上的光学识别码主要由亮暗相间的条形识别码组成,并且亮码和暗码处于同一安装角度,当激光雷达距离充电座较近时或者激光雷达信号足够强时,暗码容易被误识别为亮码,因此很难准确判断是否是充电座的编码方式,从而无法对充电座进行精确定位。并且激光雷达测距分辨率不足或距离较远时,采用方波形的识别码结构无法产生准确的识别信息,因此也很难准确判断是否是充电座的编码方式,从而无法对充电座进行精确定位。
技术问题
本发明实施例的目的在于:提供一种应用于机器人的充电座,用以解决现有技术中存在的技术问题。
技术解决方案
为解决上述技术问题,本发明实施例采用的技术方案是:
提供了一种应用于机器人的充电座,该应用于机器人的充电座包括座体、设置于所述座体上的充电触片、信号发射装置、光学识别码,以及设于所述座体上用于安装光学识别码的信号窗,所述光学识别码包括设置于所述信号窗内的亮码和暗码,所述亮码和所述暗码之间间隔排列,所述暗码平面相对于信号窗的平面部分有倾斜夹角。
有益效果
与现有技术相比,本发明实施例提供的应用于机器人的充电座的有益效果在于:该应用于机器人的充电座将亮码和暗码间隔排列,暗码平面和信号窗的平面部分有倾斜夹角,机器人在接收到充电指令时,机器人会通过激光雷达去探测充电座的位置,由于激光垂直入射到亮码和倾斜入射到暗码后,亮码和暗码所反射的信号强度差别较大,因此很容易被机器人区分开,机器人便可以精确定位充电座的具***置并移动至充电座处进行充电。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的应用于机器人的充电座的结构示意图;
图2为本发明实施例提供的应用于机器人的充电座的***结构示意图;
图3为本发明提供的第一个具体实施方式的光学码的相对位置示意图一;
图4为本发明提供的第一个具体实施方式的光学码的相对位置示意图二;
图5为本发明提供的第二个具体实施方式的光学码的相对位置示意图一;
图6为本发明提供的第二个具体实施方式的光学码的相对位置示意图二;
图7为本发明提供的第三个具体实施方式的光学码的相对位置示意图一;
图8为本发明提供的第三个具体实施方式的光学码的相对位置示意图二;
图9为本发明提供的第四个具体实施方式的光学码的相对位置示意图一;
图10为本发明提供的第四个具体实施方式的光学码的相对位置示意图二。
其中,附图中的标号如下:
1-座体;2-充电触片;
3-光学识别码;31-亮码;32-暗码;
4-信号窗;5-红外滤光片;6-信号发射装置。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接连接到另一个部件或者间接连接至该另一个部件上。
还需说明的是,本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此,附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本发明所述的技术方案,以下结合具体附图对本发明提供的一种应用于机器人的充电座的实现通过具体实施例进行详细说明。
需说明的是,该应用于机器人的充电座,包括座体1、充电触片2、光学识别码3、信号窗4以及信号发射装置6,其中充电触片2、光学识别码3、信号窗4、信号发射装置6设置于座体1上,充电触片设置为两片,红外装置6位于两充电触片2之间,信号发射装置6用于发射红外信号,机器人接收红外信号后便于对充电触片2进行粗定位,信号窗4可供机器人发出的激光透过用于识别光学识别码3,光学识别码3包括设置于信号窗4内侧的亮码31和暗码32,亮码31和暗码32之间间隔排列,首尾两个为亮码31,即亮码31总比暗码32多一个,亮码31和暗码32均呈矩形,所述亮码31所在平面与信号窗4的平面部分平行,所述暗码32所在平面相对于信号窗4的平面部分有倾斜夹角,暗码32的反射率小于10%,亮码31的反射率大于90%。在本实施例中,暗码32与座体1一体设置,使得暗码32与座体1之间的连接更加牢固和稳定。在本实施例中,信号发射装置包括红外信息发射装置、超声波发射装置、磁场信号发生装置、毫米波信号发生装置中的其中一种或多种。
具体的,为了使得上述机器人能够有足够的动力在室内持续移动,机器人内部设置有电池电量检测装置,接收到充电指令时,机器人需要返回到充电座处进行充电。目前运用最广泛的充电座主要是机器人接收充电座上信号发射装置发射的红外信号对充电座进行粗定位,然后通过机器人上的激光雷达识别信号窗4上的光学识别码3进行精确定位。在此以0~255表示激光雷达入射到识别码后信号接收器接收到的反射信号强度范围。一般而言,激光垂直入射到亮码31上的反射信号强度大于或等于200 ,激光垂直入射到暗码32上的反射信号强度小于200,如果当激光雷达距离充电座的距离小于0.5m或者激光的强度能使激光垂直入射到暗码32和亮码31上的反射信号都大于或等于200时,这时暗码32的反射信号无法和亮码31区分开,暗码32容易被误识别为亮码31,因此很难准确判断光学识别码3的反射信号强度是否是充电座的编码方式,从而无法对充电座进行精确定位。本实施例将亮码31和暗码32相对于信号窗4的安装角度设置为不同的角度,激光在入射后与亮码31或者暗码32之间存在一个倾斜的角度,激光在亮码31或者暗码32上发生倾斜的反射,使得亮码31和暗码32的反射信号变得更加容易区分。
本发明提供的应用于机器人的充电座,与现有技术相比,本发明将亮码31和暗码32间隔排列,暗码32所在平面和信号窗4的平面部分有倾斜夹角,机器人在接收到充电指令时,机器人会通过激光雷达去探测充电座的位置,由于激光垂直入射到亮码31和倾斜入射到暗码32后,亮码31和暗码32所反射的信号强度差别较大,因此很容易被机器人区分开,机器人便可以精确定位充电座的具***置并移动至充电座处进行充电。
以下为本实施例的四个具体的实施方式:
实施例一
请参阅图3及图4,作为本发明提供的应用于机器人的充电座的具体实施方式一,亮码31的顶部与暗码32的顶部不在同一直线上,暗码32的底部和亮码31的底部处于同一条直线上,亮码31所在平面与信号窗4的平面部分平行,暗码32所在平面与信号窗4的平面部分夹角范围为0~45度。
实施例二
请参阅图5和图6,作为本发明提供的应用于机器人的充电座的具体实施方式二,亮码31的顶部与暗码32的顶部不在同一直线上,暗码32的底部和亮码31的底部不在同一条直线上,所述暗码32顶部距所述亮码31所在平面的距离大于所述暗码32底部距所述亮码31所在平面的距离。亮码31所在平面与信号窗4的平面部分平行,暗码32所在平面与信号窗4的平面部分夹角范围为0~45度。
实施例三
请参阅图7和图8,作为本发明提供的应用于机器人的充电座的具体实施方式三,亮码31的底部与暗码32的部在同一直线上,暗码32的顶部和亮码31的顶部处于同一条直线上。亮码31所在平面与信号窗4的平面部分平行,暗码32所在平面与信号窗4的平面部分夹角范围为0~45度。
实施例四
请参阅图9和图10,作为本发明提供的应用于机器人的充电座的具体实施方式四,所述暗码32的底部和所述亮码31的底部不在一条直线上,所述暗码32的顶部和所述亮码31的顶部不在一条直线上,所述暗码32顶部距所述亮码31所在平面的距离小于所述暗码32底部距所述亮码31所在平面的距离。亮码31所在平面与信号窗4的平面部分平行,暗码32所在平面与信号窗4的平面部分夹角范围为0~45度。
以上四种具体的实施方式,激光入射后,暗码32的反射光信号强度小于100,亮码31的反射光信号强度大于或等于200,因此机器人很容易识别充电座上的亮码31和暗码32,从而使得机器人可以精确地定位充电座的具***置并快速移动至充电座进行充电。
进一步地,暗码32为多个,亮码31为多个,所有亮码31所在平面均与信号窗4平面部分平行设置,所有暗码32的倾斜角度均相同,激光入射的角度和方向均是变化的,激光入射到亮码31和暗码32上后,各个亮码31所反射的亮码信号以及各个暗码32所反射的暗码信号之间的差别更大,使得机器人在分辨亮码信号和暗码信号时更加简单迅速。
进一步地,请参阅图1及图2,信号窗4上贴设红外滤光片5,亮码31与红外滤光片5贴靠,尽可能地缩小红外滤光片5和亮码31表面的距离,有效避免了两个反射面的光线的相互干扰。红外滤光片5位于信号窗4和亮码31之间,红外滤光片5将阻止外界杂散光的进入,使得亮码31所反射的亮码31信号更强更纯,使得机器人在识别亮码31信号时更加快捷简单。
进一步地,请参阅图1及图2,座体1截面呈长条状,充电触片2平行于座体1的长边缘设置且位于充电座的侧面,充电座在给机器人充电时,充电触片2远离地面,避免了充电座、机器人发生浸水短路等危险情况。
以上仅为本发明的优选实施例而已,并不用于限制本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (11)

  1. 应用于机器人的充电座,包括座体、设置于所述座体上的充电触片、信号发射装置、光学识别码,以及设于所述座体上用于安装光学识别码的信号窗,所述光学识别码包括设置于所述信号窗内的亮码和暗码,其特征在于:所述亮码和所述暗码之间间隔排列,所述暗码所在平面相对于信号窗的平面部分有倾斜夹角。
  2. 如权利要求1所述的应用于机器人的充电座,其特征在于:所述亮码所在平面与信号窗的平面部分平行。
  3. 如权利要求2所述的应用于机器人的充电座,其特征在于:所述暗码所在平面与信号窗的平面部分的夹角范围为0度~45度。
  4. 如权利要求1至3任一项所述的应用于机器人的充电座,其特征在于:所述暗码为多个,所述亮码为多个,所述暗码的顶部和所述亮码的顶部不在一条直线上,所述暗码的底部和所述亮码的底部在一条直线上。
  5. 如权利要求1至3任一项所述的应用于机器人的充电座,其特征在于:所述暗码为多个,所述亮码为多个,所述暗码的顶部和所述亮码的顶部不在一条直线上,所述暗码的底部和所述亮码的底部不在一条直线上,所述暗码顶部距所述亮码所在平面的距离大于所述暗码底部距所述亮码所在平面的距离。
  6. 如权利要求1至3任一项所述的应用于机器人的充电座,其特征在于:所述暗码为多个,所述亮码为多个,所述暗码的底部和所述亮码的底部不在一条直线上,所述暗码的顶部和所述亮码的顶部在一条直线上。
  7. 如权利要求1至3任一项所述的应用于机器人的充电座,其特征在于:所述暗码为多个,所述亮码为多个,所述暗码的底部和所述亮码的底部不在一条直线上,所述暗码的顶部和所述亮码的顶部不在一条直线上,所述暗码顶部距所述亮码所在平面的距离小于所述暗码底部距所述亮码所在平面的距离。
  8. 如权利要求2所述的应用于机器人的充电座,其特征在于:多个所述暗码与所述座体为一体化设计。
  9. 如权利要求1至5中任一项所述的应用于机器人的充电座,其特征在于:所述信号窗上设有红外滤光片,所述亮码与所述红外滤光片贴靠。
  10. 如权利要求1至5中任一项所述的应用于机器人的充电座,其特征在于:所述座体截面呈长条状,所述充电触片平行于所述座体的长边缘设置且位于所述充电座的侧面。
  11. 如权利要求1至5中任一项所述的应用于机器人的充电座,其特征在于:所述信号发射装置包括红外信息发射装置、超声波发射装置、磁场信号发生装置、毫米波信号发生装置中的其中一种或多种。
PCT/CN2018/122785 2018-09-26 2018-12-21 应用于机器人的充电座 WO2020062643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821577868.8U CN208849499U (zh) 2018-09-26 2018-09-26 应用于机器人的充电座
CN201821577868.8 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020062643A1 true WO2020062643A1 (zh) 2020-04-02

Family

ID=66374563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122785 WO2020062643A1 (zh) 2018-09-26 2018-12-21 应用于机器人的充电座

Country Status (2)

Country Link
CN (1) CN208849499U (zh)
WO (1) WO2020062643A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219999A (zh) * 2021-07-08 2021-08-06 上海景吾智能科技有限公司 一种机器人自动回充路径规划方法及***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547502A (zh) * 2021-08-02 2021-10-26 苏州触达信息技术有限公司 一种智能巡检机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080022343A (ko) * 2006-09-06 2008-03-11 엘지전자 주식회사 로봇청소기 장치 및 그에 따른 제어방법
CN105910599A (zh) * 2016-04-15 2016-08-31 深圳乐行天下科技有限公司 机器人设备及其定位目标物方法
CN107817801A (zh) * 2017-11-03 2018-03-20 深圳市杉川机器人有限公司 机器人控制方法、装置、机器人以及充电座
CN107918940A (zh) * 2017-10-09 2018-04-17 北京奇虎科技有限公司 外接设备识别方法和装置、标识装置、外接设备、***
CN207257426U (zh) * 2017-09-29 2018-04-20 深圳悉罗机器人有限公司 充电桩及智能移动机器人识别充电桩***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080022343A (ko) * 2006-09-06 2008-03-11 엘지전자 주식회사 로봇청소기 장치 및 그에 따른 제어방법
CN105910599A (zh) * 2016-04-15 2016-08-31 深圳乐行天下科技有限公司 机器人设备及其定位目标物方法
CN207257426U (zh) * 2017-09-29 2018-04-20 深圳悉罗机器人有限公司 充电桩及智能移动机器人识别充电桩***
CN107918940A (zh) * 2017-10-09 2018-04-17 北京奇虎科技有限公司 外接设备识别方法和装置、标识装置、外接设备、***
CN107817801A (zh) * 2017-11-03 2018-03-20 深圳市杉川机器人有限公司 机器人控制方法、装置、机器人以及充电座

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219999A (zh) * 2021-07-08 2021-08-06 上海景吾智能科技有限公司 一种机器人自动回充路径规划方法及***

Also Published As

Publication number Publication date
CN208849499U (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
US8553212B2 (en) Geodesic measurement system and method for identifying a target unit having a geodesic measurement device
US5966227A (en) Active cooperative tuned identification friend or foe (ACTIFF)
US20150168554A1 (en) Friend or foe identification system and method
US11095166B2 (en) Multiple beam wireless power transmission system
WO2020062643A1 (zh) 应用于机器人的充电座
WO2010108644A1 (en) Method for optically scanning and measuring a scene
Shao et al. RETRO: Retroreflector based visible light indoor localization for real-time tracking of IoT devices
US9761113B1 (en) Light curtain protection system featuring a passive optical module
US12003118B2 (en) Wireless power system having identifiable receivers
US10782400B2 (en) Identification friend or foe (IFF) system and method
CN105910599A (zh) 机器人设备及其定位目标物方法
CN206332707U (zh) 传感器组件及终端
CN104102393A (zh) 导光板触控装置
RU2375724C1 (ru) Способ лазерной локации заданной области пространства и устройство для его осуществления
WO2020142870A1 (zh) 一种测距装置
CN112346068A (zh) 一种提高激光雷达角度分辨率的装置与方法
US10360423B2 (en) Image sensor with range and light-level detection
CN105954738A (zh) 一种直驱小型旋转扫描测距装置
Carver et al. Sunflower: locating underwater robots from the air
CN205720649U (zh) 一种直驱小型旋转扫描测距装置
US20220244556A1 (en) Optical detection system for improved alignment
Yata et al. Fusion of omni-directional sonar and omni-directional vision for environment recognition of mobile robots
CN210570543U (zh) 一种快速检测激光雷达反射镜角度装置
CN109387822A (zh) 一种共轴多倍频激光雷达
CN211505897U (zh) Tof模块、三维扫描装置及以及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935672

Country of ref document: EP

Kind code of ref document: A1